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Abstract

Finding relationships between social entities and discovering the underlying structures

of networks are fundamental tasks for analyzing social networks. In recent years, var-

ious methods have been suggested to study these networks efficiently, however, due

to the dynamic and complex nature that these networks have, a lot of open problems

still exist in the field. The aim of this research is to propose an integrated computa-

tional model to study the structure and behavior of the complex social network.

The focus of this research work is on two major classic problems in the field which are

called community detection and link prediction. Moreover, a problem of population

adaptation through knowledge migration in real-life social systems has been identified

to model and study through the proposed method. To the best of our knowledge, this

is the first work in the field which is exploring this concept through this approach.

In this research, a new adaptive knowledge-based evolutionary framework is defined

to investigate the structure of social networks by adopting a multi-population cultural

algorithm. The core of the model is designed based on a unique community-oriented

approach to estimate the existence of a relationship between social entities in the

network. In each evolutionary cycle, the normative knowledge is shaped through

the extraction of the topological knowledge from the structure of the network. This

source of knowledge is utilized for the various network analysis tasks such as estimat-

ing the quality of relation between social entities, related studies regarding the link

prediction, population adaption, and knowledge formation.

The main contributions of this work can be summarized in introducing a novel method

to define, extract and represent different sources of knowledge from a snapshot of a

given network to determine the range of the optimal solution, and building a proba-

bility matrix to show the quality of relations between pairs of actors in the system.

Introducing a new similarity metric, utilizing the prior knowledge in dynamic social

network analysis and study the co-evolution of societies in a case of individual migra-
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tion are another major contributions of this work.

According to the obtained results, utilizing the proposed approach in community de-

tection problem can reduce the search space size by 80%. It also can improve the

accuracy of the search process in high dense networks by up to 30% compared with

the other well-known methods. Addressing the link prediction problem through the

proposed approach also can reach the comparable results with other methods and

predict the next state of the system with a notably high accuracy. In addition, the

obtained results from the study of population adaption through knowledge migration

indicate that population with prior knowledge about an environment can adapt them-

selves to the new environment faster than the ones who do not have this knowledge

if the level of changes between the two environments is less than 25%. Therefore,

utilizing this approach in dynamic social network analysis can reduce the search time

and space significantly (up to above 90%), if the snapshots of the system are taken

when the level of changes in the network structure is within 25%.

In summary, the experimental results indicate that this knowledge-based approach

is capable of exploring the evolution and structure of the network with the high

level of accuracy while it improves the performance by reducing the search space and

processing time.
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Chapter 1

Introduction

In recent years, the role of social networks in the evolution of societies has been at

the center of attention which is mainly because of the extensive growth of Internet

usage and digital connectivity. In general, the social network consists of social actors

who are linked together through some kind of relations. Having complex interdepen-

dent structures with enormous influences on other systems makes them an attractive

and critical research topic for a broad range of scientific fields including sociology,

computer, physics, business, medical, and management sciences. Indeed, because of

the mutual influence of the network and people, exploring the behavior and struc-

ture of these networks have been reviewed by a vast variety of business-oriented,

socio-economic, and political approaches. [41, 14, 42, 21, 45]

Consequently, social network analysis (SNA) as an interdisciplinary field has many

applications ranging from the study of information propagation and its cascades ef-

fects [5, 11, 17, 19, 26] to spread of disease and viruses [13, 10, 6, 37, 18] and from

events and disasters detection [47, 57, 40, 38, 25] to prediction of future activities

and interactions [48, 23, 4]. Enhancing the marketing and impact maximization tech-

niques [44, 20, 27, 22, 35, 32, 24, 36, 51, 55], identification of high-risk groups and

suspicious activities [12, 15, 16, 9, 52, 39, 49], opinion mining and sentiment analysis
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[28, 8] are other emerging applications of these studies.

Even though various methods have been already proposed to study these networks

efficiently, due to the dynamic and complex nature of these networks, a lot of open

challenges still exist. In this research work, a novel knowledge-based evolutionary

approach is introduced for the investigation of the structure and evolution of complex

social networks. Three main research problems in the field have been identified and

addressed through this approach. An introduction to this research study is presented

in this chapter with the following structure. Basic concepts and characteristics of the

social networks are reviewed in the next section. The research problems are defined in

section 1.2. The contributions are listed in section 1.3 and the dissertation structure

are discussed in section 1.4.

1.1 Social Networks: Basic Concepts

As mentioned before, social networks are social structures made up of a set of actors

which are connected to each other through some kind of relations. The common

method to represent these networks is mapping them to a graph structure. Therefore,

the set of actors forms the set of nodes, and the relations are mapped to a set of links.

Consequently, G(V,E) represents a social network graph where V = {v1, . . . , vn} is

a set of nodes and E is a set of edges that connect the vertices, e = (vi, vj) ∈

E where vi, vj ∈ V .

Hence, the graph with n nodes can be described by its adjacency matrix denoted

by A which is an n by n matrix where Aij is 1 if there is a link between vi and vj

and it is 0 if the link does not exist. Furthermore, in a case that the direction of

relations is necessary for the analysis a directed graph is used to model the network.

The weighted graph also can be utilized in a case that the quality of relationships

is not uniform. In other words, edge-weight measures the strength of the connection
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between a pair of nodes.

Weights can be assigned to the edges by using various techniques but in principle

three main criteria are considered for this issue:

• Similarity between the nodes,

• Distance between the nodes,

• The frequency of relations between two nodes.

In the first case, the level of similarity between a pair of nodes can be considered

to calculate the weight of links between them. Different metrics such as the number

of shared features, common neighbor nodes or similar attributes can be employed

for this process. The second case is focusing on the length of the path between two

nodes. Usually, the shorter length leads to have a higher edge-weight. The last one

is counting the number of paths between a pair of nodes. Having more paths means

stronger connections between the nodes. Combinational methods also can be utilized

to make a weighted graph.

On the other hand, in recent years, an emerging concept of multi-layer social

network analysis is receiving close review. The main assumption is that the actors

are linked to each other through different kind of relations simultaneously and can

be members of multiple networks at the same time. In other words, due to the

social nature of humans, each actor accepts different social roles (e.g. friend, teacher,

manager, mother, child, girl) in the society. Each role has its own particular type of

relationship and social etiquette. The fact is, the actor must take some of these roles

concurrently which requires multi-membership in societies. The aim of the multi-layer

approach is to model these relationships in a realistic manner.

In online social networks also the concept is very critical because users can have

profiles on multiple social network websites and perform various activities in more



4

than one network at once which highlights the need for multi-layer social network

analysis.

In this approach, each layer corresponds to a particular network. Thus, each

of them has its own members and relations. Due to the multi-membership effect,

these layers are connected to each other through their common members. As this

is an emerging field, a standard method for representation has not been defined yet.

Nevertheless, if m different layers exist in the system, Gi(V,E) represents a social

graph of the layer i where 1 ≤ i ≤ m. The graph can be weighted or unweighted, and

directed or undirected.

Consequently, a multi-layer structure system can be represented by a multi-graph

denoted by M as M = {G1, G2, . . . , Gm}. Hence, the set of nodes in M denoted by

V (M) is defined as
⋃m

i=1 V (Gi) where V (Gi) represents the set of nodes in the layer

i. Meanwhile, V (Gi) ∩ V (Gj) 6= ø, 1 ≤ i, j ≤ m, i 6= j which means that each layer

has two sets of members, the independent and the shared ones. The shared members

act as a bridge between the societies and have a substantial role in the co-evolution

of the layers. As a result, many studies focus on their effects and characteristics in

the network.

1.1.1 Characteristics of Social Networks

Social Networks as a subset of complex networks have the community structure which

is indicated by a high level of clustering coefficient value. Clustering coefficient index

in a graph measures the tendency of nodes to cluster together. It is defined as the

fraction of node’s neighbors that are neighbors of each other. Meanwhile, social actors

are willing to join the communities through their circle of friends and link to similar

others which is referred to the homophily effect in social science. [31, 46, 34, 33, 30]

Moreover, social networks demonstrate the small-world phenomenon which means

that social actors can be linked together through short chains of intermediate friends.
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In other words, any two random nodes in the network can be linked by a short path

in the graph. In addition, the degree distribution in these networks follow the power-

law distribution. In fact, there exist relatively few nodes in the network with a high

degree of connectivity and many nodes with low degree. [3, 1]

1.2 Research Problems and Objectives

This research focuses on the evolution of social networks with emphasis on the role

of underlying knowledge in the evolution process. The ultimate goal of this research

study is to employ graph theories, network science, and optimization methods to

make a computational intelligence framework for describing the functionality of the

complex dynamic social systems with the capability of exploring behaviors of these

networks.

Utilizing different sources of knowledge extracted from the structure of the network

in the analysis process is the main concept that distinguishes this work from the other

existing approaches in the field of social network analysis.

Although the scope of social network analysis is very vast, finding relationships

between social actors and discovering the underlying structures of the network are its

fundamental tasks [7, 43, 21]. Therefore, community detection and link prediction

problems which are two classic critical issues in the field are extensively studied in

this work. In addition, a real-life problem is introduced and explored which is called

population adaption through knowledge migration. To the best of our knowledge,

this is the first work in the field that addresses this problem with this approach.

Consequently, the following research problems are addressed in this work through

the proposed approach.

Community Detection

Social networks are highly interactive and dynamic systems which are consisted
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of interconnected communities. Having knowledge about these communities can shed

light on understanding the nature of these social systems which is essential for decision

and policy making processes.

Briefly, community detection in social network is an NP-hard problem which deals

with finding groups of actors who are more similar or close to each other than other

ones in the other groups [50]. In other words, the goal is to find groups of people

who have more relations and interactions with each other in the network. Each of

this group is called a community. The issue can be seen as an optimization problem

where the goal is to maximize the number of relations inside the group and minimize

the links to the outside.

The central concept that distinguishes this problem from the classic graph clus-

tering problems is that the number of communities is unknown in advanced while it

must be known in the classic clustering problem.

Link Prediction

The problem of link prediction in social networks refers to exploring the dynamic

nature of the network and its evolution. The link prediction problem can be defined

as predicting the structure of a network in the near future by having a snapshot of it

at the current time. In other words, given a state of a network at time t, the target

is to estimate the likelihood of a connection between pairs of unconnected actors at

time t+ 1.

The problem has a broad range of application in recommendation systems, e-

commerce, bioinformatic, politics, and security related issues. It can also be used to

monitor the evolution of the system and identify the missing links between pairs of

identities in the network [29, 2]. Identification of the missing links can be interpreted

as finding the hidden connections between pairs of actors which are present in reality

but were not observed.
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Population Adaptation

Investigating the role of knowledge in the process of individual adaptation is the

next goal of this research topic. The key question here is to find out how a population

can perform in different environments when it has a prior knowledge about the similar

environment? In other words, the question is how a population with prior knowledge

about a problem can solve a similar problem and adapt itself to the new situation.

Moreover, to what level of similarity between two situations, migrated population

can be adapted efficiently? We define this concept as the adaptation process. The

result of this research can lead to a remarkable reduction in the search time and space

throughout the multiple steps of dynamic social network analysis.

1.3 Research Contributions

To address the research problems, a novel adaptive knowledge-based evolutionary

computational model is proposed to study the structure and evolution of social net-

works by adopting a multi-population cultural algorithm (MPCA). This framework

is capable of modeling the above three problems and their associated effects properly.

In order to estimate the existence of a relationship between social entities in the net-

work, a unique community oriented approach is defined which forms the core of the

framework.

Briefly, the proposed model is designed based on the topological knowledge which

is extracted from the structure of the network in each evolution cycle to form the nor-

mative knowledge. The knowledge is used to direct and enhance the search process

to identify the proper sub-populations (Communities). The extracted knowledge can

be employed in various network analysis tasks such as estimating the quality of rela-

tion between social entities, related studies regarding the link prediction, population

adaptation, and knowledge formation.
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To address the problem of community detection, we have proposed a novel knowledge-

based evolutionary algorithm using a variant of MPCA [53]. Our first contribution

is to propose a novel method to define, extract, and represent normative and domain

knowledge sources from a snapshot of the network to determine the range of the op-

timal solution. The obtained knowledge is stored in a knowledge repository called

belief space to guide the search direction and reduce the size of the required search

space for finding the optimal/near optimal solution. As our second contribution, a

unique data structure has been defined which is based on a probability matrix to form

the belief space.

The results of comparison between our approach and other well-known related

algorithms clearly show that our algorithm is capable of finding near optimal solu-

tion identifying the correct communities faster and more accurately than the others.

Meanwhile, the evaluation results show that the search space can be reduced dramat-

ically by 80% as a result of using our approach.

To deal with the link prediction problem in social network, we have proposed a

community-oriented knowledge-based computational model which can estimate the

next state of a given network with a notably high accuracy in [54]. By identifying

the existing communities of the current state of a given network and make use of the

belief space in [53], our proposed algorithm calculates the probability of a relationship

between each unconnected pair of individuals and estimates the chance of being con-

nected at the next time slot. A unique mapping function and a novel computational

model based on the weighted graph have been introduced in this research to estimate

the interdependency of each pair of individuals in the network.

We have tested and compared the model on synthetic networks and a big real

standard data set from the Stanford large network dataset collection [50]. AUC

(Area under the curve) and Precision measurements have been used to evaluate the

performance of the model against several well-known other methods. The results show
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that our method is able to predict the next state of the network with approximately

80% accuracy.

To cope the problem of population adaptation, the behavior and status of a dy-

namic social network have analyzed in a case where a population from one network

migrates to another similar network and transfers its knowledge to it [56]. In effect,

we have attempted to find how a migrated population will adapt itself to a new envi-

ronment with similar characteristics based on the knowledge that it has learned from

the previous network and what the role of this prior knowledge is in its evolution. As

a case study we chose the problem of community detection in social networks.

To make a research framework we have adopted our previously proposed MPCA

based community detection algorithm [53] for four different knowledge migration sce-

narios. For each scenario, two cases were examined: one case with individuals with

prior knowledge about the similar networks, and another case with individuals with-

out prior knowledge. The results show that when the changes in the structure of

networks are less than 25%, trained population can adapt itself to the new network

very fast; but when the difference is higher, in the best case they perform like a

random population without any training.

As mentioned before, the significance of this contribution in dynamic social net-

works is that it allows us to use the extracted knowledge from a previous step, stored

in the belief space, to detect new communities by eliminating the need for a new

search if the similarity of two consecutive network snapshots is within 85%. This

method can be generalized to accelerate the search performance in complex dynamic

social networks.
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1.4 Dissertation Outline

The rest of this dissertation is organized as follows.

In chapter 2, the problem of community detection in social networks as a funda-

mental task in social network analysis is extensively reviewed. Our proposed approach

to deal with this issue is also described in the same chapter which forms the core of

our research work.

In chapter 3, to extend the functionality of the community detection algorithm

into a dynamic environment the problem of population adaption through knowledge

migration are discussed.

In chapter 4, the problem of link prediction in social networks is reviewed. Our

unique community-based approach which utilizes the extracted belief space to tackle

the issue of link prediction is discussed in this chapter.

Finally, the last chapter will be the conclusion of this research.
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Chapter 2

Community Detection in Social

Networks

Social networks can be viewed as a reflection of the real world which can be studied to

gain insight into the real life societies and events. During the last decade, community

detection as a fundamental part of social network analysis has been explored widely,

however, because of the complex nature of the network, it is still an open problem.

In this chapter, we propose a knowledge-based evolutionary algorithm to solve this

problem by using a multi-population cultural algorithm. In our algorithm, knowledge

is extracted from the network to guide the search direction and find the optimal/near

optimal solution. Meanwhile, in each step, the knowledge is updated based on the

current state of the network. The results of comparison between our method and

other well-known algorithms show that our algorithm is capable of finding the true

communities faster and more accurately than the others.
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2.1 Introduction

Nowadays, more than 1 billion people around the world use online social networks

to transfer and share their ideas, thoughts, experiments and willingness. Extracting

knowledge from these networks can reveal their structure which has a lot of real-life

applications such as marketing, group analysis, and decision making.

Generally, social networks consist of connected communities formed by individuals

who communicate with each other. Finding these communities is a fundamental task

in social network analysis. However, because of the complex and dynamic nature of

these networks, identifying these communities is still an open challenging problem.

The first step to analyze a network is mapping it into a graph, G(V, E), where

V is a set of nodes or agents and E is a set of edges or links between agents. Let A

be an adjacency matrix for this graph. The entry of A(i,j) is 1 if there is a direct

link between nodes i and j otherwise it is 0 if no link exists. Accordingly, community

detection in a social network can be seen as an optimization problem where the goal is

to find groups of nodes that have more interconnections between each other and fewer

intra-links with other nodes. The target is to find the best solution among all possible

solutions to the problem [8, 18]. As the highlighted problem can be categorized as

an NP-Hard problem, many researchers have proposed various methods based on

evolutionary algorithms to solve it.

While most of the research are based on genetic algorithms, in this paper we use a

different group of evolutionary algorithms which is known as cultural algorithms. The

main feature of cultural algorithms that distinguish them from others is employing

knowledge [3, 21]. In other words, it is a knowledge-based evolutionary algorithm.

The cultural algorithm as shown in Fig. 2.1 is a dual inheritance model which consists

of two main spaces, population, and culture or belief space. According to the model,

in each generation, a group of individuals is selected to update the belief space and

the new population is generated based on the parameters which were defined in the



20

belief space. The belief space in this model acts as a global knowledge repository

which is made of information about the individuals and can be used to guide the

search direction.

Figure 2.1: Cultural Algorithm Process

Our proposed algorithm is based on the multi-population cultural algorithm[10]

which is illustrated in Fig. 2.2. To make the population spaces, a specific number of

individuals are generated randomly based on the state space of the network. As the

individual(a candidate solution) is composed of a combination of different elements,

the state space of the network contains the possible states for each element. After the

initial generation, in each population, a group of individuals that have better fitness

values is selected to make a belief space. The belief space has a vital role in this

algorithm and guides the search direction by determining a range of possible states

for each element of the individuals. Hence, the belief space can be seen as a new

state space for the network. Consequently, the new individuals in each population

are generated based on this belief space. Meanwhile, in each step, the belief space is

updated according to the state of the best-selected individuals of each population.
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Figure 2.2: Multi-Population Cultural Algorithm Process

The rest of the paper is organized as follows. In the next section, we review major

methods in this area. Section 3 contains the proposed algorithm. Evaluation and

results are reviewed in Section 4, and conclusions are represented in section 5.

2.2 Related Works

In recent years, different methods have been proposed to solve the community detec-

tion problem. One of the most important method which became the base for further

research in this field was proposed by Girvan and Newman [6]. In this paper, the con-

cept of modularity was defined, and a divisive method was proposed for the problem.

Many researchers proposed different algorithms based on the concept of modularity

with various approaches. However, some of these algorithms need prior knowledge

of the network, and some others have poor performance on large complex networks

[2, 7, 18]. To cope with these drawbacks, researchers have employed evolutionary

algorithms by different approaches and techniques. However, the common goal is to

detect unknown numbers of communities in the network with a high level of internal

connections and low level of external links [1, 2, 6, 7, 8, 9].

Some research focuses particularly on enhancing the fitness function. A fitness

function has critical importance in evolutionary algorithms, as it estimates how close
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the solution is to the final solution and consequently guides the algorithm direction

directly or indirectly. For this purpose, some recent studies have addressed the prob-

lem as a multi-objective problem. The first objective aims at maximizing the internal

links and the second is minimizing the external connections [1, 2, 4, 6, 9, 13, 14].

Pizzuti [18] proposed a new algorithm to solve the problem by using a genetic algo-

rithm. The author has used the density measure and has defined the new concept of

community score as a global measure to partition a given network into clusters. The

goal of the algorithm is to maximize this score.

In Facetnet [13], the authors have proposed a new framework to solve the problem

by using a multi-objective evolutionary algorithm. In their model, an individual can

be a member of more than one community at the same time. They have defined the

snapshot quality function and the temporal cost function and an iterative algorithm

which uses a function to update rules in order to decrease the value of the cost

function uniformly. On the other hand, they have introduced concepts of community

membership, community net and evolution net in their framework. Meanwhile, they

have proposed a mechanism for adding and removing individuals from communities to

cope with the dynamic aspect of the network. A soft modularity function to measure

the effectiveness of a community was also employed.

Some recent research uses the NSGA-II (Non-dominated Sorting Genetic Algo-

rithm) as the core of their algorithm [2, 9, 19]. Kim, Mckey, and Moon [9] proposed

HIGA (hybrid immigrants GA) to cope with the dynamic aspect of the network. The

authors have defined an algorithm called Adaptive Immigrants NSGA-II (AI-NSGA

II) to give their method dynamic adaptability. The min-max cut and global silhouette

index defined as the two objectives of the fitness function. On the other hand, Chen,

Wang, and Wei [2] have employed the modularity function and NMI as similarity

measures for the first and second objectives. They have also used community score

[18] for the solution selection process.
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Many studies have also been carried out based on other techniques [1, 6, 7, 20, 15].

Gong et al.[6] proposed a multi-objective algorithm based on the non-dominated

neighbor immune algorithm (NNIA). For the first objective they used the modularity

function [5] and for the second, they used NMI as a similarity measure. Amiri, Hos-

sain, and Crawford [1] have suggested a multi-objective evolutionary algorithm based

on the harmony search algorithm. Jia et al. [7] proposed a Differential Evolution

(DE) approach to solving the problem. Modularity function was employed to obtain

the fitness function while for the initialization step a particular biased process was

used in order to prevent making unreasonable results. Furthermore, for the mutation

they used ”rand/1” strategy. Qiu and Lin [20] proposed a new algorithm to solve the

problem by using a hierarchical structure model. Random walk approach was imple-

mented and the Gaussian Mixture Model (GMM) was used to generate the transition

probability matrix to calculate the likelihood of relation between a node and each

community.

2.3 Proposed Model for Community Detection

In this section, we describe the proposed algorithm which is a multi-population cul-

tural algorithm for community detection in social networks. The individual represen-

tation method and mechanism for crossover and mutation are described in detail in

the next part. After that, the structure of belief space will be defined and discussed.

2.3.1 Individual Representation

The representation of an individual in our algorithm is based on a particular locus-

based adjacency representation method [17]. The individual or a candidate solution

is represented by an array of nodes. The length of the array is equal to the number of

nodes in the graph. Each cell of this array is identified by a number which corresponds
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to the number of nodes in the graph. For example, cell#5 refers to the node #5. The

value of each cell is chosen randomly from the state space of the network denoted by

NS, which is formed based on the adjacency matrix of the network graph. Therefore,

for each node in the graph, a set of neighbor nodes is defined as follows:

Algorithm 1 Network state

1: procedure Main(Adjacency)

2: for i← 1 : n do

3: for j ← i+ 1 : n do

4: if A(i, j) = 1 then

5: NS(i, j)← j

6: NS(j, i)← i

7: end if

8: end for

9: end for

10: end procedure

As an example, Fig. 2.4 illustrates the network state space of a network graph

which has been shown in Fig. 2.3. In addition, Fig. 2.5 illustrates two different

random representations of the network based on the network state.

Figure 2.3: A network graph
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Figure 2.4: The network state space

Figure 2.5: Two random representations of the network

2.3.2 Initialization

A specific number of individuals are generated randomly based on the individual

representation method to form the population spaces. One common problem that

usually occurs in the other algorithms in the initialization phase is that some of the

individuals are not valid. It means that the individual contains some links which

do not exist in the original graph. However in our algorithm, as individuals are

generated based on the network state space, existence of the links can be assured

because elements of each individual are selected randomly from valid neighbors nodes.

2.3.3 Fitness Function

The objective function is another important factor in the evolutionary algorithms.

This function has a key role in guiding the direction of the evolution. However, our
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algorithm is independent of it and can work with any form of objective function

if it is adaptable with our representation method. Nevertheless, we have employed

community score, one of the best-known fitness function which has been defined by

Pizzuti [18]. This function can work without prior knowledge of the number and size

of the communities, and its goal is to maximize the community score. In this paper,

the same fitness function is used for all populations, but it is possible to have different

fitness functions in each population.

Let N = {C1, C2, ..., Ck}, denotes the network which consists of different commu-

nities. The score of each community is calculated as shown in the following equation,

Eq. 2.1.

Q(Ck) =

∑
i

(∑
j ai,j

|J |

)r

|I|
×
∑
i,j

ai,j (2.1)

Where i, j ∈ Ck and ai,j denotes a value of the position (i,j) of the adjacency

matrix. In addition, |J |, |I| denote the number of j and i in the C respectively. Finally,

the community score is the summation of all communities’ scores in the graph then:

CS =
k∑
1

Q(Ck) (2.2)

2.3.4 Belief Space

The core of our algorithm is the belief space which is formed by the selected individuals

of each population in every generation to guide the direction of the evolution. We

consider that the best solution can be represented by combining elements of the

best-selected individuals. In fact, the idea is, instead of searching all possible states

and combinations, the search space must be limited to the elements of the selected

population. Therefore, in each generation, the belief space defines a range of the best

feasible solutions. Consequently, the new population is generated in the range which
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has been defined in the belief space. It is expected that in each generation, better

solutions are being generated by the algorithm.

We define two different sources of knowledge in the belief space. The first is called

BS average and stores the best ever average fitness value of the previously selected

populations. In each generation, a selected individual can change the belief space

if its fitness value is higher than the average value of the previous individuals which

influenced the belief space (BS average). As shown in Alg. 2, if BS average is less than

the average fitness value of the currently selected population it must be replaced with

the new one. As mentioned before, each individual is represented by an array with

the length of n which is the number of nodes. Therefore the selected population can

be presented by an s by n matrix where each row of the matrix shows an individual

and s is the size of the selected population and n is the number of nodes in the graph.

As shown in Eq. 2.4, let SP denotes the selected population which consists of selected

individuals (SI) in Eq. 2.3 then the average is computed by calculating the average

of fitness values of the selected individuals. It has been represented in Eq. 2.5.

SI = [si1, si2, ..., sin] (2.3)

SP =


SI1

...

SIs

−− > SP =


si1,1 . . . si1,n

... . . .
...

sis,1 . . . sis,n

 (2.4)

Average =

∑s
j=1 Fitness(Sij)

s
(2.5)

The second source of knowledge is the normative knowledge, BSN, which is rep-

resented by an n by n matrix. In each generation, for all individuals of the selected

population, the relative frequency of values of all cells are calculated and added into

the corresponding entry in the matrix. In fact, as shown in Alg. 2 for all the selected

individuals, BSN(j, value(j)) is updated with the relative frequency of the value(j) in
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the cell#j where j is the cell number.

Algorithm 2 Update Beleif Space

1: function Update(SP ) . Selected Population

2: s← |SP |

3: n← |SI|

4: for i← 1 to s do

5: if Fitness(SIi) > BS average then

6: for j ← 1 to n do

7: BSN(j, value(j))← relative frequency value(j) in rowj

8: end for

9: end if

10: end for

11: if BS average < Average then

12: BS average = Average

13: end if

14: end function

For example, in Fig. 3.6, the BSN is formed based on the network with eight nodes

and four selected individuals. The first row shows neighbors of the node 1. According

to the matrix, the probability of connection between node 1 and node 2 in the final

solution is 75% while it is 25% for node 3. It means that in the next generation, node

2 will be presented in the first cell of the individuals with a probability of 75% while

node 3 with the probability of 25%.
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Figure 2.6: Sample Belief space- N=8 nodes SP=4 individuals

2.3.5 Crossover and Mutation

As populations are generated based on the belief space, the role of Crossover and

Mutation operators is completely different in comparison with Genetic algorithms.

In fact, these operators help the algorithm to escape from the local maxima.

The algorithm presented in this paper is based on the multi-population spaces.

Therefore, each population can have its own crossover and mutation operators. How-

ever, to choose a parent for the crossover in the first population, the first individual

is selected randomly among all individuals and the second one is randomly chosen

among individuals who are not in the selected population. Given these two individ-

uals, a new individual will be generated by combining the parent’s elements. As the

parents in these operators are selected among all individuals, the chance of having

children with entirely different elements is very high. For the mutation operator, an

individual is generated based on the network state space similar to the first genera-

tion. It is expected that the algorithm escapes from the local maxima and generates
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some solutions outside the current domain by using crossover and mutation

2.3.6 Our proposed algorithm

Our proposed algorithm is started by generating the initial population, after evalu-

ating the fitness of individuals and sorting them, the best groups of individuals of

each population are selected based on their fitness function. These groups update the

belief space. The new generation of individuals is generated based on the probability

matrix of the belief space. Meanwhile, in each iteration with a small probability some

individuals are generated by crossover or mutation operators. Each population space

in this algorithm can have their own fitness function or operators. The algorithm

continues until the last iteration, and the individual with the best fitness function

value will be presented as the best solution.
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Algorithm 3 MPCA-CD

1: procedure Main(Adjacency)

2: NS ←MakeNS(Adjacency) . Initialize the network State

3: l← |Selected Individuals| . Define the number of selected individuals

4: el← |Elite Individuals| . Define the number of elite individuals

5: Pop← Represent(NS) . Initialize the populations

6: F ← Fitness(Pop) . Evaluate the individuals’ fitness values

7: Pop← Sort(Pop, F ) . Sort the individuals by their fitness values

8: SP ← Select(Pop, l) . Select individuals to update the belief space

9: Belief = Update(SP ) . Select individuals to update the belief space

10: loop . Start the Loop

11: Pop(el : end)← Represent(Belief) . generate the populations based on

the Belief space

12: F ← Fitness(Pop)

13: Pop← Sort(Pop, F )

14: SP ← Select(Pop, l)

15: Belief = Update(SP )

16: if < stopcriteria > then

17: Break

18: end if

19: end loop

20: end procedure

2.4 Evaluation

To evaluate the effectiveness of the model, we compare it with four well-known al-

gorithms in this field. The first one is GA-Net [18] which is a genetic algorithm,
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the second one is the Girvan-Newman algorithm(GN), DECD [7] is the third one

which is based on Differential Evolution and the last one is MOGA-Net [19]. We also

compare it with variable-CA [24]. To measure the similarity level between the true

communities and the detected ones we used Normalized Mutual Information (NMI)

[5, 18].

We made 60 artificial networks based on the Newman benchmark [5, 17]. Each

network was generated randomly and has 128 nodes which are categorized in 4 same-

sized communities with 32 nodes while the degree of each node was 16. Meanwhile,

each node is connected to other nodes in its community by internal degree, Zin, and

to other nodes by external degree, Zout (Zin + Zout = 16). The range of Zout of our

artificial networks in this experiment is from 1 to 6 where six implies that each node

is connected to 6 nodes outside of its community which means that the network is

very noisy and fuzzy.

Our proposed algorithm has been implemented in Matlab, and all tests have been

performed on a Pentium dual core 2.1GHz with 2.5 GB RAM. In addition, for the

first population, crossover and mutation rate were set to 0.8 and 0.2 respectively. The

population size was 200, and the number of generations is set to 50 while roulette

selection function was used. For the second population, the size was set to 100, and

the selection rate was 20% similar to the first one, but the rate of mutation increased

to 50% while the roulette wheel selection was used.

As demonstrated in Fig. 2.7, the proposed algorithm can detect actual commu-

nities with 100% success when Zout is less than or equal to 5 while none of other

algorithms can achieve this rate. For Zout of 5, the average NMI of our algorithm

is 1 while the value for GN, GA, DECD, and MOGA-Net are 0.72, 0.77, 0.95 and

0.98 respectively. Even when Zout becomes 6, our algorithm has better performance

when compared to the others, and its value was 0.83 while the best value of other

algorithms was achieved by MOGA-Net which was 0.67. In addition, this value for
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the variable-CA was 0.69.

Figure 2.7: Average NMI rate for Zout ranges from 1 to 6

For the real datasets, we have employed Zachary Karate club [23], Dolphin net-

works [16] and American Football [23]. Zachary Karate Club dataset was made by

Zachary as a result of a study on the friendship of 34 members of a karate club during

two years. The group was split into two groups because of some disagreements, and

it has 34 nodes in two groups. Our algorithm detected two communities on just three

generations on this dataset. The average NMI value for our algorithm in this dataset

as shown in Table. 2.1 was 1 which is same as MOGA-NET. The value was 0.82 and

0.69 for the GA and GN algorithms respectively.

For the dolphin dataset which has 62 nodes and was generated based on statistics

obtained from seven years of dolphins’ behavior, the average NMI over ten different

attempts was 1 for the MOGA-Net and 0.956 for our algorithm and was 0.935 for the

GA.

American Football dataset was made based on the United state college football



34

information and has 115 nodes and 616 edges which were grouped into 12 teams. Our

algorithm achieved the highest NMI value among other algorithms in this dataset

whose value is 0.923.

Table 2.1: NMI values of the algorithms on real datasets

Dataset/Algorithm GN MOGA-NET GA MPCA

Zakhary 0.692 1.000 0.818 1.000

Dolphin 0.574 1.000 0.935 0.956

American Football 0.760 0.796 0.805 0.923

These results clearly highlight that the method presented in this paper gives a

better performance than other algorithms and can detect the true communities in

noisy networks as well. Another important point is that, as the method is based on

belief space, it is expected that the algorithm provides better performance with an

increase in the size of the network since more nodes can create a rich belief space to

guide the search direction while the search domain narrows down at each step.

2.5 Discussion and Conclusion

In this section, the results obtained during the process of community detection are

extensively reviewed and discussed. At the first step, we would like to show how the

algorithm identifies the optimal/ near optimal solution during the evolution cycles.

After that, the role of knowledge in the reduction of search space are discussed.

Moreover, two more structures are reviewed to form the belief space. Runtime analysis

and the results of running the algorithm on large networks are reported at the end of

this section.
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2.5.1 Demonstration of the Evolution Process

To demonstrate how the individuals (candidate solutions) are evolved during the

process, we ran the algorithm on a random benchmark graph, and we have selected

the best individual of each generation. The graph has been generated based on the

Newman benchmark with 128 nodes and Zout of 5 which means that it has a complex

structure. Therefore, it has four communities where the nodes 1 to 32 are placed in

the first community, nodes 33 to 64 forms the second, nodes 65 to 96 shapes the third

one and 97 to 128 are placed in the fourth community. The test has been repeated 10

times independently, and the NMI value of each individual has been calculated and

illustrated in Fig. 2.8 (the experiments are named 1 to 10). As shown in the figure,

the first results of all experiments are very far from the optimal solution, but during

the process, they are evolved to reach the optimal point. In fact, the rate of evolution

is increased after the 10th iteration. Therefore, this interval can be interpreted as the

learning period for the algorithm.

Figure 2.8: Evolution of individuals in a network with Zout = 5
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To clarify the subject, the detected communities (Decoded best individual) at the

end of iterations 1, 10, 18, 20, 23, 24 and 25 of the first experiment are shown in

Figures. 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15.

Fig. 2.9 shows the obtained result after the first iteration, the algorithm found just

two communities in the network. For example, nodes 33, 35, 36, 37, 38, 39, 40, 43,

45, 46, 48, 49, 50, 51, 52, 53, 57, 58, 59, 63, 64, 66, and 112 are categorized together

in the second community. The NMI value for this solution is 0.25901 as illustrated in

Fig. 2.8. The best individuals do not change until the end of the 10th iteration. At

this point, as shown in Fig. 2.10, the best individual generated by the algorithm has

identified five groups in the network and obtained a higher NMI value.

Figure 2.9: Identified communities at iteration 1

As illustrated in Fig. 2.11, after the 18th iteration, most of the nodes were clustered

correctly, but the number of groups is still incorrect. In the 20th iteration, the

algorithm identified four communities. However, some nodes were categorized into

wrong communities. For example, as shown in Fig. 2.12, the nodes 61 and 85 have
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been clustered in the first community which is not correct.

Figure 2.10: Identified communities at iteration 10

Figure 2.11: Identified communities at iteration 18
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Figure 2.12: Identified communities at iteration 20

Figure 2.13: Identified communities at iteration 23
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Figure 2.14: Identified communities at iteration 24

Figure 2.15: Identified communities at iteration 25
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The evolution cycles still continue to find the optimal/near optimal value. The

obtained results at the end of iteration 23 and 24 are illustrated in Fig. 2.13 and

Fig. 2.14 respectively. In iteration 24, the node 61 is the only one who has placed

wrongly. Finally, the algorithm found the best solution in iteration 25 and identified

the four communities correctly as demonstrated in Fig. 2.15.

We have repeated the experiment for 100 times on various synthetic networks,

and we observed that the results follow the similar evolution patterns. For example,

when Zout is 5, the algorithm can find the optimal value at around iteration 25, and

a significant change in the NMI value is expected at around iteration 10.

Figure 2.16: Evolution of individuals on a synthetic network with Zout = 5

To demonstrate the role of knowledge in the evolution process, we ran ten more

experiments on a random synthetic graph which was generated based on the Newman

method with Zout of 5. The result is demonstrated in Fig. 2.16. After that, we utilized

the genetic algorithm (without a knowledge structure) to detect the communities on

the same graph. The results show that, this algorithm could not find any communities
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in the graph and the NMI values were always 0. It clearly indicates that, the extracted

knowledge is a powerful tool which can guide the search process, especially in the

complex structures.

In our next attempt, we set a new configuration and changed the value of variable

r in the fitness function from 1.0 to 1.7. The number of iterations has also been set

to 30. Again, we ran our MPCA ten times and captured the NMI values of the best

individuals of the iterations. After that, the genetic algorithm was executed on the

same network for ten times and the NMI values were captured. Fig. 2.17 and Fig. 2.18

show the results of our proposed algorithm and the genetic one respectively.

As demonstrated in the figures, the rate of evolution in the knowledge-based algo-

rithm is higher than the genetic method. In fact, at the first generations, the rate is

almost the same for the both algorithms, but from approximately 8th iteration, the

cultural algorithm has a faster progress. In addition, MPCA could find the optimal

solution in average by 23 iterations while the genetic one could not find it at all.

Figure 2.17: Evolution of individuals-MPCA- Zout = 5 - r=1.7
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Figure 2.18: Evolution of individuals-GA- Zout = 5 - r=1.7

According to the above experiments, it is clear that, our proposed MPCA can

significantly improve the search performance in the both levels of accuracy and run-

time compare to the genetic algorithm.

2.5.2 The Role of Knowledge in Search Space Reduction

To show the role of knowledge in the reduction of the search space, a snapshot of

the network state space of a graph with Zout = 5 has been compared to the obtained

belief space. Fig. 2.19 illustrates the neighbors of the first 32 nodes.
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Figure 2.19: A snapshot of the network state space in a graph with Zout = 5

For example the first node in this graph has 16 neighbors which are nodes 3, 4, 6,

7, 18, 20, 24, 26, 28, 29, 38, 53, 71, 96, and 123. It means that in the initial stage,

an individual can randomly choose one of them as the value of its first cell. The

situation is similar for the other cells. Hence, the algorithm must search among 16

possible nodes for each cell of the individual’s array.

One of the primary goals of this algorithm is to optimize the search space by using

different sources of knowledge. Because of this, the belief space was introduced to

enhance the search process. In Fig. 2.20, a snapshot of the belief space for the same

set of nodes (1 to 32) in the graph has been illustrated after the 16th iteration. As

the figure shows, by using the belief space, the neighbors of the first node has been

reduced dramatically from 16 to just 3 (27, 18, 7) nodes. It implies that the search

domain became about 5 times smaller than the original network. The situation is

almost the same for the other nodes. Hence, instead of searching among 16 neighbors

for each cell, the algorithm just need to search between two or three neighbors (the
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exception is node 18 which has 4 neighbors in the belief space) for each one to find

the optimal/near optimal solution which proves that the belief space can significantly

reduce the search domain (above 80%).

Figure 2.20: A snapshot of the belief space after the 16th iteration (the first 32 nodes)

2.5.3 The Structure of Belief Space

In section 2.3.4, we introduced a data structure to form the belief space. In this

section, two more structures to shape the belief space are discussed.

In the first structure that we call it fixed-size belief space, all individuals of the

selected population are involved in the update process. For this purpose, the belief

space must be an n by s matrix where n is the number of nodes in the graph, and s is
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the number of individuals in the selected population. In each update process, for all

individuals of the selected population, values of all cells are added to the corresponded

rows of the matrix.

In this case, to update the culture, the matrix must become empty before the new

entries are added to it. Therefore, the size of the belief space is always fixed. As we

mentioned before, each individual is represented by an array with the length of n.

Therefore, the selected population can be presented by an s by n matrix where each

row of it shows an individual as shown in the equation 2.4. Accordingly, the belief

space can be defined as the transpose matrix of the selected population.

Let SP denotes the selected population which consists of selected individuals (SI)

the belief space, BS, can be defined as:

BS = SP T =


si1,1 . . . sis,1

... . . .
...

sin,1 . . . sin,s

 (2.6)

For example, as shown in Fig. 2.21 , if the graph has 8 nodes, the belief space is

defined as an 8× s matrix where the row #i in the matrix is filled with values of the

cell #i of the selected individuals.

Figure 2.21: A sample belief space with the fixed-size structure
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The second structure called variable-sized belief space, is very similar to the real

situation. In real societies, culture is frequently updated. However, the previous

cultural elements are not discarded, and they remain in the system while some of

them become stronger, or weaker. Therefore, in each update process, instead of

erasing the belief space, new elements are appended to the matrix. To employ this

structure the size of the belief space must be equal to n×s×g where g is the number

of iterations. As an example, if the graph has 100 nodes and the size of the selected

population is 20, and the maximum iteration is 30, the belief space size becomes

60000.

We have evaluated the performance of each method using the test framework

defined before in Section 2.4. We compared the average number of generations which

were occurred to reach the best solution in different algorithms. As Fig. 2.22 shows,

all different versions of our algorithm can find the best solution in fewer generations

than the other algorithms. For example, when Zout is 5, CA-Var (variable-sized belief

space), Ca-Fix (Fixed-size belief space) and MPCA found the correct answers in

average by 28, 30, 25 generations respectively while other methods could not find it.

On the other hand, in compare with the fixed-size belief space, the variable ap-

proach shows a better performance on the conducted tests. However, according to

the results, MPCA has the best performance among them.
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Figure 2.22: The number of generations to obtain the optimal solution

2.5.4 Run-Time Analysis

Our proposed algorithm has four principal components which are the individual rep-

resentation, fitness function evaluation, decoding phase and culture modification. In

other words, the run-time of the algorithm is directly dependent on the performance

of these components. In this section, the performance of these elements is examined

and reviewed.

The algorithm starts with the individual representation. In the locus-based repre-

sentation, the search space of each node is limited to its adjacent nodes. Therefore, it

has a complexity of O(dn) where n is the number of nodes in the graph, and d is the

degree of nodes. Because of the fact that the degree of the nodes in social networks

follows the power-law distribution, the value of d is usually much smaller than n.

To compute the fitness value, at first, the individual must be decoded. For the

decoding phase, we employed and modified a backtracking algorithm which has been
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proposed in [22] and demonstrated in Algorithm. 4. This algorithm can decode a

given individual in a linear time with the complexity of O(n). Moreover, the fitness

function is the most critical and time-consuming component of this model which must

be run for all generated individuals and has the complexity of O(m) where m is the

number of edges in the network. In addition, the complexity of culture modification

is almost constant and ignorable.

Hence, the run time complexity of each iteration in our proposed algorithm is

O(m+n), where n is usually much smaller than m. For the whole algorithm, the time

complexity can be represented as O(gs(m+n)) where g is the number of iterations,

and s is the size of the population.

Algorithm 4 Decoding

1: procedure Decode(Individual)

2: n← size(I) . n = the number of nodes

3: Current community ← 1 . # of found community

4: Community assign(1 : n)← −1 . Initialize the array

5: for i← 1 to n do . Start the Loop

6: Ctr ← 1 . Community index

7: if Community assign(i) = −1 then . If this node does not have a

community

8: Community assign(i)← Current Community . Assign a

Community number to the node # i

9: Neighbor ← I(i) . The entry(i) from the Individual Array becomes

neighbor of node # i

10: Previous(Ctr)← i . Save the previous community index (used in

backtrack process)
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Algorithm 4 Decoding - Page 2

11: if I(i) 6= 0 then

12: Ctr ← Ctr + 1 . Increase the Community index

13: while Community assign(Neighbor) = −1 do . While this node

does not have a community

14: Previous(Ctr)← Neighbor

15: Community assign(Neighbor)← Current Community .

Assign the same Community number to the neighbor node

16: Neighbor = I(neighbor) . Change the neighbor

17: Ctr ← Ctr + 1

18: end while

19: end if

20: if Community assign(Previous(Ctr)) 6= Current Community then

21: Ctr ← Ctr − 1 . Decrease the Community index

22: while Ctr ≥ 1 do . Backtrack condition

23: Community assign(Previous(Ctr)) ←

Community assign(Neighbor) . Assign a Community number

24: Ctr ← Ctr − 1

25: end while

26: else

27: Current Community ← Current Community + 1 . Create

another Community

28: end if

29: end if

30: end for

31: end procedure

In order to analyze the run-time performance of our proposed algorithm, various
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experiments have been carried out on 50 synthetic networks ranging from 128 nodes

to 10000 nodes. To generate the network, we used LFR benchmark in [12, 11]. By

using this benchmark, we can create power-law networks with customized features.

Our networks have been generated in seven categories of 128, 512, 1024, 2000, 3000,

5000 and 10000 nodes.

The following parameters have been considered to generate these networks:

• β = 1, β set the exponent for the distribution of community size in the network

• γ = 2: γ set the exponent for the nodes’ degree distribution.

• µ = 0.3, µ is the mixing parameter which determines the ratio of the number

of edges between various communities to the total number of them. The higher

number means more complex community structure.

• DAverage = 20, DAverage represents the average degree of each node in the graph.

• DMax = 50, DMax set the maximum degree size for each node.

The obtained results show that the runtime of the algorithm is increased linearly

on the scale of the network. For example, in Fig. 2.23 the average runtime of the

algorithm on a synthetic network has been illustrated. In this example, the algorithm

ran on the network with five different population size of 50, 100, 200, 300, and 400.

For each of these population, the number of iterations has been set to 10, 20, 30,

40, 50, 60 and 100. The algorithm ran 10 times for each option, and in total 350

independent experiments have been carried out.

As seen in the chart, the rate of increase for all of the iterations is linear. For

example, when the population size is 100, and the number of iterations is 30, the

runtime is 0.444s. By increasing the size of the population to 300, the runtime

increases to 1.32s. In another instance, when the size of the population and the

number of iterations are both 50, the runtime is 0.3777s, but when the population
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size is changed to 400, the runtime also is increased to 2.8s which clearly indicates

the linear nature of the growth.

On the other hand, by increasing the number of iterations, the runtime will in-

crease respectively. For instance, when the population size and the number of itera-

tions were 200 and 10 respectively, the obtained runtime was 0.371, but by changing

the iterations number to 50, the runtime gradually increased to 1.445s.

Figure 2.23: Runtime analysis on variable population size and iterations

Fig. 2.24 demonstrates the runtime details of each process when the population size

is 50. As hypothesized, the fitness evaluation is the most time-consuming component

of our algorithm. The decoding process is another element in the system which grows

slightly during the process. We have to mention that, the range of obtained values for

the individual representation process were slightly different to the decoding process.

Moreover, updating the culture is the least time-consuming part of this system. As

seen in the chart, in regards to the fitness component, the runtime of other elements
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are ignorable.

Figure 2.24: Runtime analysis- Population size = 50

The obtained results for other populations are also demonstrated in Figures. 2.25,

2.26, 2.27, 2.28. The results show that, regardless of the population size and the num-

ber of iterations, fitness evaluation plays the major role in increasing the algorithm

running time which is predictable. On the other hand, it clearly shows that adding

the belief space has a minor impact on the complexity which is ignorable in regards

to its significant impact on the performance improvement.
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Figure 2.25: Runtime analysis- Population size = 100

Figure 2.26: Runtime analysis- Population size = 200



54

Figure 2.27: Runtime analysis- Population size = 300

Figure 2.28: Runtime analysis- Population size = 400
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Finally in Fig. 2.29 we have illustrated the average overall runtime of the algorithm

on synthetic graphs ranging from 128 nodes to 10000 nodes. The obtained results

confirm that the runtime of the algorithm increases linearly in regards to the scale of

the network.

Figure 2.29: Runtime- Network size from 128 to 10000 nodes

2.5.5 More Evaluations

In this part we evaluate the performance of our proposed algorithm on more datasets.

Our datasets have been generated based on LFR benchmark which has been described

in the previous section. For the first experiment, we have created 18 synthetic graphs

with variable sizes ranging from 128 to 1000 nodes. The µ parameter were set from

0.1 to 0.6. Generally, when µ is bigger than 0.4, the number of links between members

of the community is almost similar or smaller than the external links. The degrees

of the networks also follow the power-law degree distribution. For instance, Fig. 2.30

shows the Probability Density function (PDF) of the degree (in Logarithmic Bins) of

the network with 1000 nodes and µ = 6.
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Figure 2.30: PDF of Degree- N=1000, µ = 6

We ran the algorithm 10 times on each of these networks and compared the ob-

tained NMI values with the results achieved by the genetic algorithm on the same

datasets. The results are illustrated in Fig. 2.31. As shown in the chart, our algo-

rithm could find the optimal solution when the µ is less than 4. For the networks

with more complex structure (µ ≥ 4) also the algorithm obtained much better values

than the genetic one.
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Figure 2.31: MPCA vs. GA, N=128 to 1000, µ = 0.1 to 0.6

In the second experiment, we ran our algorithm on larger networks ranging from

128 to 10000 nodes. The results are shown in Fig. 2.32. According to the results, by

increasing the size of the network, the accuracy of the algorithm are slightly decreased.

The problem perhaps is related to the fitness function and its limitation. However,

we observed that by increasing the number of iterations the quality of the candidate

solutions are increased which means that our algorithm can escape from the local

optima.
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Figure 2.32: MPCA- N=128 to 10000

In another experiment, we have collected some data from Twitter on 4th of Nov.

2015 at 3:00 PM. Based on our extracted data, we identified the following list which

represents the 10 top trend concepts at that time in Canada.

• #PM23

• #NationalStressAwarenessDay

• Minister

• Jody Wilson-Raybould

• Catherine McKenna’

• #KidsToWork

• #EveryEntrepreneur

• #BeyondMarketing
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• Maryam Monsef

• Marc Garneau

We searched for the first ranked topic which is ’#PM23’ and extracted 1000 sam-

ples from the Tweets. After that, we made a social graph by linking the Screen name

of users who mentioned this hashtag in their tweets. In addition, the related hashtags

also linked to this tag. Overall, 1000 samples were collected and the network was

shaped as shown in Fig. 2.33. The number of nodes in the graph are 1000 with 1515

edges and the cluster coefficient index of 0.243.

Figure 2.33: Social Graph from twitter data
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We test our algorithm on this social network and illustrated the results. As

demonstrated in Fig. 2.34, the algorithm found 55 communities. The first four big

communities are #PM23, #pm23, @liberal party and #swearingIn. We evaluated our

information and found that the #PM23 and #pm23 referred to the new Canadian

federal cabinet (Prime Minister 23) which were the top trend topics in that day.

@Liberal party was the screen name that tweets about this hashtag and #SwearingIN

referred to the swearing-in ceremony in Canada.

Figure 2.34: Identified Communities in the social graph
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2.5.6 Conclusion

In this chapter, we have extensively reviewed the problem of community detection in

social networks. We also introduced a novel multi-population cultural algorithm to

deal with the problem. The core of the algorithm is belief space which determines

the range of the feasible solutions and guides the search direction towards finding the

optimal/near optimal solution during the search process.

The performance, runtime, scalability and accuracy of the proposed model have

been examined thoroughly on real-life and synthetic networks. The synthetic net-

works were generated in variable sizes based on Newman and LFR benchmarks. The

results show that the proposed algorithm can find the real communities with a high

accuracy even when the graph has a very complex and dense structure. Meanwhile,

in comparison with other well-known evolutionary approaches in the field, it achieved

much better results in fewer evolution cycles. The functionality of our algorithm was

also demonstrated on the real-life data extracted from Twitter.

In addition, a comprehensive study has been performed to shed light on the role of

knowledge in the evolution process. The obtained results confirm that the extracted

knowledge can significantly enhance the process in both levels of accuracy and pro-

cessing time. In fact, the search space can be reduced dramatically by 80% as a result

of using our approach. The runtime analysis also shows that adding the belief space

has few impact on the overall complexity of the algorithm. Moreover, in compare to

the genetic method, the algorithm has better performance in all the experiments.

On the other hand, we proposed two more structures to shape the belief space. A

study has been carried out to compare the performance of these proposed structures.

According to the results, the probability based matrix has the better performance in

comparison to the other methods.
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In summary, the major contributions of our proposed approach can be listed as fol-

lows:

• Introduce a unique method to define, extract, and represent Normative and

Domain knowledge sources from a snapshot of the network to determine the

range of the optimal solution.

• Introduce a novel data structure based on a probability matrix to store the

normative knowledge.

• Introduce a method for utilizing the extracted knowledge to guide the search

direction.
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Chapter 3

Population Adaptation in Social

Networks based on Knowledge

Migration

Social networks can be analyzed from different aspects- micro and macro. If we

assume that the main asset of each network is its population and the key difference

between populations is their knowledge, then it is the knowledge that drives the

evolution of any network.

In this chapter, the behavior and status of a network will be analyzed in a case

where a population from one network migrates to another similar network and trans-

fers its knowledge to it. In fact, we are going to find how a migrated population will

adapt itself to a new environment with similar characteristics based on the knowledge

that it has learned from the previous network and what is the role of this prior knowl-

edge in its evolution. For this purpose, different scenarios are modeled by employing

a cultural algorithm with various networks and populations on two different cases: a

population with migrated knowledge and a population without it.
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The results clearly show that when the changes in the structure of networks are

less than 25%, trained population can adapt itself with the new network very fast but

when the difference is higher, in the best case they perform like a random population

without any training.

As the case study of this research is community detection in social networks,

the obtained results confirm that our proposed community detection algorithm can

adapt itself very fast to the various snapshots of dynamic systems if the topological

difference between two consecutive snapshots of the network is less than 15%. It can

lead to a remarkable reduction in the search time and space throughout the dynamic

social network analysis.

3.1 Introduction

Social networks can be defined as collaborative, open and diverse environments which

consist of associated entities. Due to their interactive nature, information and knowl-

edge can be shared among all of their members which can be used to accelerate their

evolution process. In a general view, a network consists of two essential layers- struc-

ture and content. These two layers are directly under the influence of each other and

co-evolve themselves [18, 1, 5, 6]. The structure usually consists of members of the

network and their relations. On the other hand, the content layer typically contains

information which is transmitted between the network members. In some types of

networks, members of the network just transmit data from one point to another, such

as computer networks. In some other networks, members of the network not only

transmit the information but also generate and produce the content. Consequently,

the network member can be considered as the source of information. Examples could

be found in networks such as social networks and the Web. In general terms, knowl-

edge and information are the driving engines which guide the evolution of this type
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of network.

These networks are not abstract, and they are in constant interactions with their

surrounding environment [2]. Having knowledge about their behavior, characteristics

and contents can reveal hidden patterns which can be useful to describe characteristics

of the environment. Because of the importance and wide range of applications that it

has, network analysis is at the center of attention of research centers around the world.

In these networks, each member that we call social agent, has some sort of knowledge

which comes from different sources including learning from the environments, learning

from other members, etc. Meanwhile, all of these social agents taken together are

called as population. They follow some unwritten rules and patterns that can be

defined as culture. As these individuals interact with each other they transfer their

own knowledge to others and update themselves with others’ knowledge; consequently,

a network evolves very fast.

In this paper, the target is to find out how a population can perform in different

environments when it has a prior knowledge attached to it. If a population knows how

it can perform in certain scenarios based on this knowledge, how it will perform if we

change the environment? To what level of similarity between two networks, migrated

population can be adapted efficiently? We define this concept as an adaptation pro-

cess. In other words, we are interested in figuring out how populations perform in

networks which are related to some extent. What if a population with some knowl-

edge is kept under a different environment? How comfortably will it adapt to this

new environment? In addition to that, how will the adaptation vary depending upon

how similar is the environment with the one this population is comfortable to?

To find answers to these questions, we choose the problem of community detection

in social networks as a case study. As a framework, we have adapted an existing

cultural algorithm [17] to find communities in social networks. This is an evolutionary

method which works by extracting some knowledge from the structure of the networks.
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We define four main scenarios to implement our idea. First is, where knowledge and

population both are extracted and migrated to another similar network and the second

one, where only the population is extracted and migrated, the third one is when just

the knowledge is migrated to another network and the last one is if only the best

individuals migrated to the target network. We test the performance of adaptation

process for all scenarios in various level of similarity between networks by comparing

their adaptation time.

This paper is organized as follows. In the next section, we will review some

existing methods in this field. Our model will be proposed in the third section, and

the experiments and the results will come after that in the fourth section. The last

section will be the conclusion and future works.

3.2 Literature Review

In this section, we will review some existing work related to our research. As our

framework is a cultural algorithm, we start by reviewing the architecture of cultural

algorithms. After that, we review some research in the field of population migration

and adaptation.

Cultural Algorithms are a branch of Evolutionary Algorithms and an extension

to the genetic algorithms to find an approximate solution for complex problems. As

shown in Fig. 3.1, it encompasses a population component, and in addition to Genetic

Algorithms, a knowledge component which is also known as belief space. The belief

space updates itself during the runtime of the algorithm and shares the knowledge

among the individuals in the population. Knowledge is the beacon that guides the

evolution of the population. The role of knowledge is to evolve the next generation

with the help of extracted knowledge from the best individuals active in the previous

generations [17, 3, 7, 14, 9].
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Figure 3.1: Classic schema of a Cultural Algorithm

Depending upon various domains of knowledge that a population can have in

the cultural algorithms, a belief space is categorized in five different categories- Nor-

mative, Situational, Domain, Spatial, and Temporal. Normative knowledge provides

standards that are used to define every individual’s behavior in the population. These

standards are used as guidelines for mutational adjustments for individuals. In fact,

normative knowledge is that stores the knowledge about the acceptable behavior of

the agents. Situational knowledge deals with success and failure of events and takes

care of the best solutions found in each iteration. Domain specific knowledge, which

is similar to situational knowledge, imbues the knowledge about the domain the al-

gorithm is applied to. Spatial knowledge stores the knowledge about the topography

of the search space and finally, Temporal knowledge, which stores the history of the

search space [17, 3, 14, 9].

The idea of cultural algorithms is inspired by the natural cultural evolution pro-

cess. It assumes that by using knowledge, generations can evolve faster than normal

biological evolution. Because of the comprehensive learning mechanism that it has,

cultural algorithms can be used to analyze complex systems in both static and dy-
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namic environments [17, 3, 14]. The dual-inheritance feature of Cultural Algorithms

allows the system to both learn and adapt the best features of any population. A

belief space stores the knowledge it gains during the runtime of a cultural algorithm.

This updated belief space then influences the next population generation process.

This next generated population, in return, updates the belief space with the help of

best individuals. Furthermore, a fitness function is used to evaluate each individual’s

performance [17, 3, 7, 14, 9].

Like most of the evolutionary algorithms, the cultural algorithm process starts by

generating a random population. The quality of generated individuals is evaluated

by the fitness function in the next step, and the group of them that have higher

fitness values are selected to be candidates for updating the belief space. Based on

the problem, some criteria may be set by the accept function which is used to give

permission to some of the selected individuals to update the belief space. In the next

step, the knowledge is extracted from the individuals and the update function revises

the belief space based on them. After that, the new generation of the population is

generated based on the rules which are defined in the influence function. The process

continues until the predefined stop criteria is met by the algorithm [17, 3, 7, 14, 9].

To decrease the processing time and increase the efficiency in multi-agent systems

recent work has been done on Multi-Population Cultural algorithms (MPCA) which

are an extension to the Cultural Algorithms [17, 7, 9, 8, 10]. As shown in Fig. 3.2, in

MPCA, a population is divided into many sub-populations, and each one of them is

assigned a global belief space common to all of them [17, 9].
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Figure 3.2: Architecture of an MPCA

The authors in [8] claim that previous work has not been done to study the

performance of MPCA in a case that individuals influence the evolution of other sub-

populations. Therefore, they have proposed Transfer-Agent based MPCA. In their

proposed model, unlike MPCA, best individuals are not used to update the global

belief space. Instead, their positions itself are swapped with each other such that each

subpopulation and a foreign individual are introduced to each other. According to

their results, transferring individuals between different subpopulations that are having

different knowledge, results in better performance in the cases where individuals from

a subpopulation with more knowledge are transferred to subpopulations with less

knowledge.

The authors in [11], proposed a new population adaptation technique based on a

genetic algorithm to reduce the amount of required time to reach an optimal decision

for a cognitive engine. They proposed a method that uses information from previous

cognition cycle to seed the initial generation by utilizing the optimal decision of the

previous cycle to bias the first generation. According to their results, this technique

can enhance the required time to reach the solution by up to 480% in comparison to

a standard random initialized Genetic Algorithm.

In [7], the authors proposed a new MPCA based on knowledge migration. As
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shown in Fig. 3.3, they worked on an MPCA without a global belief space, where in

this model, each population has own belief space. They proposed a mechanism for

knowledge migration between these sub-belief spaces.

Figure 3.3: Knowledge migration on an MPCA without global belief space

Some research also has been carried out by using the evolutionary algorithm on

dynamic environments [18, 1, 5, 6, 15]. The authors in [15], studied the performance of

a cultural algorithm in dynamic environments and concluded that the CA is suitable

to work on dynamic networks. To the best of our knowledge, there is no empirical

research exist to study the potential outcome of migrating trained population for a

special problem to another similar issue.

3.3 Problem Statement

As we mentioned before, the main objective of this research is to study the role of

knowledge in population adaptation. The question is that, what is the role of prior



75

knowledge in the process of adaptation? Particularly, as shown in Fig. 3.4, we are

interested in determining how adaptation process evolves in a case where a population

with prior knowledge about an environment migrates to a new similar environment.

To achieve the goal, the problem of community detection in social networks has

been chosen as a case study. We would like to analyze the results of adaptation process

by migrating a population which is trained to solve the problem in one network into

another network with a similar topology.

Figure 3.4: Population adaptation process by knowledge migration

The results of this research can be useful to clarify the role of knowledge in the

evolution of dynamic networks. In addition, they can be used as a validation mea-

surement for social network analysis and decision-making systems.

3.3.1 Community Detection in Social Networks

A social network can be defined as a graph, G(V,E), where V = {v1, v2, . . . , vn}, is a

set of nodes which represents the network population and E = {(vi, vj), . . .}, (vi, vj) ∈

V , is a set of edges which can be interpreted as interactions between pair of agents

in the population. Consequently, the graph with n vertices can be formed based on
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its n-by-n adjacency matrix. Let A denote the adjacency matrix of the unweighted

network, an entry of A(i,j) is 0 if nodes i and j are not connected together and A(i,j)

is 1 when there is a link between them.

On the other hand, social networks have some distinct characteristics. Having a

high value of clustering coefficient value is one of them which indicates that the net-

work consists of connected communities. The clustering coefficient can be calculated

based on the number of links between neighbors of a node, and the node degree. If

Ni denotes the number of links between neighbors of the node i, and Di denotes the

degree of the node i, the cluster coefficient of the node i, Ci, can be computed as [16]:

Ci =
(2×Ni)

(Di.(Di− 1))
(3.1)

Community detection, therefore, is one of the fundamental parts of social network

analysis, especially if the target is to analyze the structure of the network and its

evolution. Community detection can be defined as finding groups of nodes in the

network that have more links between each other than outside the group. In recent

years, many methods have been proposed to solve the problem efficiently, from classic

clustering algorithms to probabilistic models. However, in this paper we are adapting

the knowledge-based evolutionary algorithm which has been proposed in [17] as our

framework. In the following paragraphs, we briefly review its mechanism. As shown

in Fig. 3.5, this algorithm has been defined on two levels — the population and the

belief space.



77

Figure 3.5: Components of the proposed cultural algorithm in [17]

As the algorithm has been defined based on multi-population architecture, in

the initial stage, individuals must be generated randomly to form the population. An

individual in this algorithm is actually a random subset of the graph and is represented

with the help of a unique locus-based adjacency representation [12]. The individual

is structured as an array of nodes of the network, and its size is made equal to the

number of nodes present in the network. Every cell of this array is direct mapping

to its corresponding node in the graph. It means that cell #n in the array represents

the nth node in the network. Each cell of this array is filled choosing a random node

from the list of its direct neighbors in the network.

Figure 3.6: A sample network and two random individuals

For example, according to the graph adjacency matrix in Fig. 3.6, node #1 is

connected to node #2 and #3. Node #2 is connected to nodes #1, #3, and #4. In

addition, node #3 is connected to node #1 and #2. Hence, the Random Individual
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1 and 2 have been generated based on the described mechanism in the previous para-

graph. As shown in Fig. 3.6, by illustrating the individual the probable communities

that form the graph can be extracted. In fact, as a result of decoding an individual,

all nodes in the array which are linked together are considered as a separate sub-set

of a network which can be interpreted as a community. Consequently, each individual

splits the network into some random communities and assigns the network’s nodes

randomly to them.

After this step, these individuals will be evaluated with the help of fitness function.

The algorithm used the concept of community score which has been proposed in [13] as

the fitness function where the higher value of the community score can be interpreted

as the better-formed community. When sorted, a group of individuals with better

fitness values is selected to be a candidate to update the belief space [17].

The belief space is the core of the algorithm and consists of two sources of knowl-

edge which have been extracted from the accepted individuals. The first one is the

situational knowledge which stores the average fitness value of the accepted indi-

viduals and the second one is the normative knowledge. The situational knowledge

has been used to filter the selected candidates by accepting just those candidates

that their fitness values are higher or equal to the situational value. The accepted

individuals can update the normative knowledge which is represented by an n-by-n

matrix, where n is the number of the nodes in the network. Each row of the matrix is

filled with the relative frequency of links between each pair of nodes among accepted

individuals [17].

For example, assume the empty 6-by6 matrix and three individuals have been

accepted to update it. Let Individual1 = [2, 3, 1, 5, 6, 5], Individual2 = [2, 3, 2, 1, 6, 4]

and Individual3 = [3, 3, 1, 5, 6, 4]. The result of the update process is a matrix which

has been illustrated in Fig. 3.6. In this example, node #2 has been seen in the first

position of these individuals, two times out of three. Therefore, the value of entry
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(1, 2) of the matrix is set to 0.666. Following the same instructions, the value of entry

(1, 3) is 0.333.

Normative knowledge can be interpreted as the weighted adjacency matrix such

that the weight shows the level of the relation between each pair of the neighbor nodes

among the best individuals. Therefore, it can be useful to limit the search space

needed to generate the next generation of individuals. In fact, instead of searching

all the neighbors, the random search will be limited just to those neighbors that have

been seen together in the best-accepted individuals and the weight determines the

chance of selection in the search process.

Figure 3.7: Normative knowledge extracted from the three accepted individuals

After updating the belief space, like as other evolutionary algorithms, if the stop

condition has not been met the algorithm starts a loop and generates new populations

in every single iteration such that majority of individuals are generated based on this

matrix and a minority of them based on the original adjacency matrix [17]. The fitness

evaluation, selection, and belief space update process continue until the condition met.

3.4 Population Adaptation Based on Knowledge

Migration

To study the role of prior knowledge in the adaptation process we propose the

following four different scenarios:
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• Transferring the adapted populations and their knowledge from a random social

network to another network,

• Transferring knowledge obtained during adaptation process to another popula-

tion which deals with a different network,

• Transferring the adapted population from one network to another,

• Transferring the best individuals of the adapted population to another network.

Before describing the scenarios, the training environment must be defined. To

train populations, as we mentioned in the previous section, the community detec-

tion algorithm proposed in [17] has been chosen to find the network communities.

The input of it, is a random social network graph, and as the outputs, normative

knowledge matrix, best individuals and the number of executed iterations to find the

correct communities will be extracted. This algorithm starts with generating random

populations and stops when the predefined number of iterations has been reached. At

first, the belief space is empty, so an individual is generated completely random based

on the network adjacency matrix by using the mechanism which has been discussed

in the last section. Fig. 3.8 illustrates this process.
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Figure 3.8: Training process

To implement our scenarios, we then need to change the network. The new net-

work will be generated based on the current network such that, a particular number

of random edges will be added to it. The number of edges that must be added will be

determined according to the degree of non-similarity that we want to have between

two networks.

For example, let a base network has 100 nodes and 2000 edges, assume the degree

of non-similarity=5%. Therefore, the new graph must have the same number of nodes

and 2100 edges which means that 100 edges must be added randomly to the network.

The only condition that must be set here is that the distribution of these edges must

be such that the new graph still remains in the category of social networks and keeps

its characteristics [16].

To analyze the performance of the adaptation with or without the prior knowledge,

we compare the number of iterations which are needed to find the correct communities
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in the networks (without prior knowledge) with the one obtained from each of the

scenarios. For example, let the algorithm needs 10 iterations to find the communities

in a training environment. If each of the scenarios can find the correct communities

in another network by adapting the knowledge obtained from the training in fewer

iterations, it shows the role of knowledge in improving the adaptation process.

Another goal is to change the degree of similarity. We would like to estimate

what the role of prior knowledge is in the adaptation process in different degree of

similarity between two networks.

3.4.1 Scenario 1: Population and knowledge migration

In this scenario, the trained population, and its knowledge will be imported by the

algorithm. As shown in Fig. 3.9, instead of generating random populations in the ini-

tial phase, the trained population will be used as the initial populations. In addition,

the normative knowledge obtained from these populations will be exchanged with the

empty normative knowledge matrix. The goal of this scenario is that to know, how the

population that has prior knowledge about a similar network can adapt themselves

to the new network.



83

Figure 3.9: Migrating trained population and its knowledge to the new network

3.4.2 Scenario 2: Knowledge migration

The goal of the second scenario is to analyze the role of knowledge alone in the evo-

lution of the populations. Considering, knowledge about a structure of a network

transfers to new populations that do not have any prior knowledge about their net-

work’s structure. As shown in Fig. 3.10, initial individuals will be generated based

on the imported knowledge instead of generating them randomly.

The difference between the first and the second scenario is that here the trained

populations do not migrate physically and the initial individuals are generated based

on their obtained knowledge during the adaptation process.
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Figure 3.10: Migrating knowledge from trained population to another network

3.4.3 Scenario 3: Population migration

As shown in Fig. 3.11, in this scenario, the trained population will be migrated to

the new environment. The assumption is that the knowledge is an integral part of

the populations therefore by migrating them, their knowledge automatically will be

transferred to the new network.

Accordingly, the algorithm will import the trained population in the initial phase

instead of generating random populations.
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Figure 3.11: Migrating the trained population to new network

3.4.4 Scenario 4: Migration of the best individuals

In the final scenario, instead of transferring the whole of the trained populations, just

the selected individuals (best individuals after ranking process) which are actually the

elite group of populations will be migrated to the new network. Therefore, they will

join the randomly generated individuals in the new algorithm. Fig. 3.12 illustrates

this scenario.
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Figure 3.12: Migrating the best-trained individuals to new network

3.5 Evaluation

To test our scenarios, we have implemented the algorithm proposed in [17] which

has been described before. The size of each population has been set to 200 and the

selection rate has been set to 20%. For the fitness function, we used the concept of

community score which has been proposed in [13] and used in [17, 13]. The number

of iterations was also set on 50. The test has been carried out on a 3.2 GHz core i5

computer with 12 GB RAM. The code has been written in MATLAB R2014r.

To generate the social network graph, 10 base networks have been generated ac-

cording to the Girvan-Newman benchmark in [4] which is one of the commonly ac-

ceptable benchmarks in the field of community detection. Each network has 128

nodes which are grouped in four communities with the size of 32 nodes each. Each

node has the average degree of 16, such that Zin + Zout = 16, where Zin denotes the

number edges that the node has inside the community and Zout denotes the number

of links that node has with the other nodes outside its community. By increasing the
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value of Zout, the complexity of the graph will increase.

In our experiments, the average degree of Zout was set to 5 and the rate of success in

finding the correct communities were 100%. To measure the accuracy of the algorithm

the Normalized Mutual Information (NMI) [17, 13, 4] value has been used which

computes the similarity level between the actual communities and the detected ones.

Based on each of the base networks, we generated 50 other networks by using 5

different levels of non-similarity, 5%, 10%, 15%, 20%, and 25% (10 networks for each

degree). Therefore, 500 networks have been generated in total. In the following

paragraphs, we describe the results obtained in each scenario separately.

3.5.1 Scenario 1

In this scenario, we first ran the community detection algorithm (algorithm without

prior knowledge) on the base networks and extracted the normative knowledge matrix

and the final generated populations. Then we exported them to the algorithm to

implement the first scenario. In the next step, this algorithm (first scenario) and the

original community detection algorithm ran 10 times for each of the 50 networks.

The average numbers of iterations obtained by both algorithms to find the correct

communities for each of these networks have been illustrated in Fig. 3.13.

As shown in Fig. 3.13, the community detection algorithm without prior knowledge

was needed almost the fix number of iterations in all networks to find the communities.

On the other hand, when the degree of non-similarity was 5% (means that there is

95% similarity between the structure of two networks), the algorithm proposed for

the first scenario (with the trained populations and prior knowledge) could find the

correct communities in the first attempt in all 10 networks. It can be interpreted as

the population could adapt themselves very fast and in just one attempt.

By increasing the degree to 10% and 15%, the algorithm still could find the correct

communities in almost half or fewer iterations in comparison to the algorithm without
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prior knowledge. However, it was observed that, by increasing the non-similarity

degree, the role of knowledge in the adaptation process would be vague. Finally,

when the degree was set to 25%, we observed that not only the knowledge was less

useful but also in some experiments it made more iterations to reach the goal.

Figure 3.13: The results obtained from the first scenario

3.5.2 Scenario 2

Similar to the first scenario, we started running the algorithm on the base networks

and extracting the normative knowledge matrix. Then we exported it to the algorithm

according to the description of the second scenario. We, then, ran both the algorithms

10 times for each of the 50 networks similar to the first scenario. As shown in Fig. 3.14,

akin to the first scenario’s experiments, the average number of iterations needed to

find the correct communities in the algorithm without prior knowledge is almost

fixed. However, with 5% degree of non-similarity, the algorithm which has been
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defined based on the second scenario, found the correct communities in the first run.

Moreover, for the degree of 10% and 15%, the average performance of this algorithm

was almost similar to the first scenario when the degree of non-similarity was 10%

and 15%.

However, for the degree of 20%, the performance of this algorithm was slightly bet-

ter than the algorithm without prior knowledge. Finally, similar to the first scenario,

at the degree of 25%, we observed that knowledge was either not useful at all or even

for some experiments increased the number of iteration to reach the desired state.

Comprehensively, it seems that transferring knowledge with the trained populations

had better performance in comparison to transferring just the obtained knowledge.

Figure 3.14: The average values of the results obtained from the second scenario
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3.5.3 Scenario 3

According to the third scenario, the trained populations were imported by the algo-

rithm as the initial populations. As shown in Fig. 3.15, the results obtained from this

scenario were almost similar to the results of the first scenario. We believe that the

role of the population with prior knowledge is stronger than the role of knowledge by

itself.

Regarding the fourth scenario, we extracted the best-selected individuals (80 in-

dividuals) and exported them to the populations. The rest of individuals (320 indi-

viduals) has been generated randomly based on the graph adjacency matrix.

Figure 3.15: The average values of the results obtained from the third scenario
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3.5.4 Scenario 4

As shown in Fig. 3.16, this scenario has better performance in comparison to the third

scenario; however, its performance is almost similar to the other scenarios when the

degree is above 20%.

Figure 3.16: The average values of the results obtained from the fourth scenario

The results achieved from the experiments clearly show that the knowledge plays

a significant role in the adaptation process especially when the level of difference

between the training and target network is less than 25%. It means that prior knowl-

edge can dramatically increase the speed and quality of the adaptation. However, the

interesting observation obtained from this study indicates that the prior knowledge

is not only helpful when the difference between the training network and the target

network is more than 20% but also sometimes can increase the time needed for the

adaptation process. Another interesting fact is that migration of trained individuals



92

has a better impact on the adoption process rather than transferring the obtained

knowledge.

3.6 Conclusion and Future Work

In recent years, a lot of work has been carried out on social network analysis and

population migration, but most of them have not considered the role of knowledge

migration in the population adaptation process. In this research we proposed to an-

alyze the role of knowledge migration in population adaptation, taking community

detection in social networks as our case study. We have shown how knowledge, as-

sociated with any population, can play a significant role in its adaptation process

in social networks with the help of multi-population cultural algorithms. To study

the role of prior knowledge, we have proposed the following four different scenarios

for transferring knowledge and the trained population from one network to another

network.

• Transferring the adapted populations and their knowledge from a random social

network to another network,

• Transferring knowledge obtained during adaptation process to another popula-

tion which deals with a different network,

• Transferring the adapted population from one network to another,

• Transferring the best individuals of the adapted population to another network.

According to the results, we can observe that if two networks are similar to some

extent, knowledge can play a very crucial role in the population adaptation process.

According to our results, if the degree of non-similarity is less than 25% the influence

of knowledge on population adaptation is very significant, but if it is more than 25%
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not only its impact will be minimal, but also it may act as an obstacle and make the

adaptation process complex.

Another main observation of this research is that the first and the third scenarios

had better performances in comparison with the other scenarios. It can be interpreted

that, transferring just a source of knowledge from one network to another by itself

has less impact on the adaptation process in contrast to transferring the trained

individuals.

The significance of this contribution in dynamic social networks is that it allows

us to use the obtained knowledge from a previous analysis, stored in the belief space,

to identify new communities by eliminating the need for a new search, if the similarity

of two consecutive network snapshots is within 85%. This method can be generalized

to accelerate the search performance in complex and dynamic social networks.

In the future, we would like to extend our work on the real world problems in-

cluding single and multiplex networks and implement it to more experimental envi-

ronments. Our target is to add a variety of complex scenarios to the framework and

evaluate the outcome. Studying the role of different types of knowledge in the adap-

tation process, particularly domain knowledge would be one extension to our future

work.
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Chapter 4

Link Prediction in Social Networks

Social networks have a dynamic nature, so their structures frequently change over

time. In this chapter, we propose a new community-oriented knowledge-based evo-

lutionary method to predict the state of a network in the near future by extracting

knowledge from its current structure. This method is based on the fact that social

networks consist of interconnected communities and their members tend to join these

communities. By observing the current state of a given network, the method calcu-

lates the probability of a relationship between each pair of individuals who are not

directly connected to each other and estimate the chance of being linked in the next

time slot.

A unique mapping function and a novel computational model based on the weighted

graph have been defined for the estimation process. We have tested and compared

the method on various synthetic networks and real datasets. Results show that our

method can predict the next state of a network with a notably high rate of accuracy.
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4.1 Introduction

People use social networks to interact with others. Regardless of the content, these

interactions can reveal valuable information about real societies and individuals. This

information can be useful to identify the structure and topology of these networks,

which makes it possible to track their evolutions and predict the next state. Nat-

urally, these networks are extremely dynamic, and their rate of evolution is very

high. Consequently, their structure changes frequently. Since these networks reflect

real life events, having knowledge about their next state can be applied to various do-

mains such as recommendation systems, decision making, marketing and risk analysis

[11, 5, 32, 7, 16, 18].

For example, in online social networks, it can be used to recommend new friends or

products to the users [14, 2]. Meanwhile, in social media and the stock market, it acts

as a powerful tool to predict the upcoming trends, events and behaviors [34, 39, 10,

22, 25]. In professional and academic networks it is helpful to find possible teams of

experts for particular tasks [36, 31, 37]. In political science, predicting the outcome

of elections or political decisions are challenging tasks which can become possible

with the help of this knowledge [6, 13]. In crime networks, it can be seen as a tool

which can shed light on the criminal system analysis [3]. In health science, predicting

disease and its spread and outbreak are another applications of this important topic

[12, 17, 26, 34].

In the field of social network analysis, this problem is known as Link Prediction,

which can be defined as estimating the likelihood of a connection between two dis-

connected entities in a network in the near future [7, 16, 18]. The main idea behind

this problem is, the future state of a network is not random and has a dependency

on the current state. Therefore, the target is to find the level of dependency and the

main factors affecting it.

Social Networks as a subset of complex networks have some particular charac-
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teristics such as power-law distribution, the high value of cluster coefficient, and

homophily phenomenon. The power-law distribution in social networks means that

there exist relatively few nodes in the network with a high degree of connectivity

which are called hubs and many nodes with low degree [1]. Identifying the hubs is an

important task in analyzing the evolution of social networks.

Cluster coefficient measures another important characteristic of a network which

can be interpreted as the tendency of nodes to cluster together. It is defined as:

C =
(3×#triangles)

(#connected triplets in the network)
(4.1)

Having a high level of cluster coefficient in the network indicates the strong tendency

of users to join communities. Meanwhile, regarding the homophily phenomenon, users

are willing to join the communities through their circle of friends. Accordingly, in

this paper we propose a knowledge-based community-oriented evolutionary framework

based on these properties to estimate the state of a network in the near future just

by having one snapshot of the network.

Our proposed model is defined based on the similarity approach with two main

assumptions. The first is that an individual in a network tends to join a community.

The second is that, each individual joins a community through their friends. Hence,

the similarity measurement here is defined as having a common community. For

example, if a person in a network has 6 friends and 5 of them are members of a

community with 30 people, the probability of a friendship between this person and

members of the community in the near future is higher than other cases, and the level

of this similarity can be estimated approximately.

To estimate this likelihood, a knowledge-based structure which is called belief

space has been adapted from the evolutionary cultural algorithm which has been

proposed for the community detection problem in [41]. Cultural algorithms are a



100

specific type of evolutionary algorithm that use knowledge to enhance the search

process to find near optimal solutions for a problem [41, 33]. As shown in Fig. 4.1, a

cultural algorithm consists of Population and Belief spaces. In fact, the population

space is a set of feasible solutions for a given problem which is the community detection

problem in this case. The belief space is a knowledge-based structure which guides

the population generation process in each iteration, and is evolved by extracting

information from the population space [41, 33].

In other words, as illustrated in Fig. 4.1, in each iteration a set of candidate

solutions for a given problem are generated in the population space. A fitness function

evaluates their performances, and the best group of them are selected. Different types

of knowledge will be extracted from this group in the belief space to shape the range

of the target solution which is lead to the search space reduction. The new set of

solutions is generated based on the obtained range in the belief space.

Figure 4.1: A cultural algorithm process

In this paper, by focusing on the belief space as a great source of knowledge, we

propose an algorithm to determine the level of dependency between each pair of users

and estimate their tendency to communicate with each other. The main structure of

our proposed algorithm is a directed weighted graph which is generated from the belief

space data and demonstrates levels of relationships between all neighbor nodes. For
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predictions, a mathematical model is proposed to estimate the likelihood of having a

relationship between each unconnected pair of nodes. This model has been defined

based on two main concepts, the number of paths between each unconnected pair of

nodes and the length of these paths. Having more paths and shorter distances implies

a higher chance of connection in the next time slot. Finally, our algorithm calculates

the probability of a relation between pairs of nodes which are not directly connected

and ranks them.

The main contributions of this research can be summarized into the following

categories:

• Introducing a novel concept of observing the quality of links between pairs of

nodes. By observing a snapshot of the social graph, an evolutionary approach

has been used to determine the level of dependency between each connected

pairs of nodes and make a weighted network.

• Proposing a mathematical method to extract information from the structure of

a given network as a similarity index.

• Proposing a unique knowledge-based computational model for analyzing the

evolution of social systems and estimating the state of the network in the next

time slot.

The rest of the paper is organized as follows: In the next section, the problem

definition and related works will be reviewed. The detailed description of our model

has been presented in section 4.3. After that, in section 4.4 the evaluation of the

model will be studied and discussed. Conclusions are presented in the last section.



102

4.2 Problem Definition and Related Works

If a network maps to a graph, G(V,E), where V is a fixed number of nodes and E

represents links between each pair of nodes, an edge is defined as e = (u, v) ∈ E,

where u, v ∈ V , at a particular timeslot (t). As shown in Fig. 4.2, predicting a state

of the graph at time t+ 1 by having a snapshot of it at time t, is defined as the Link

Prediction Problem in social networks. In other words, given a network Gt at time t,

the output of a link prediction algorithm will be a list of edges which are not in Gt

and have high probability of appearing in Gt+1 [7, 16, 18].

Figure 4.2: Predicting the state of a network at time t+ 1, given a snapshot of it at

time t

The problem is closely related to another issue in the field which is defined as

finding missing links in the network. The assumption is that the observed network

might not thoroughly capture all the links. Therefore, they may exist some hidden

links between the users which are not directly visible. Predicting these missing links

is a challenging task which can lead to better understanding of the current state of

the network [28]. As illustrated in Fig. 4.3.a, the actual network has five nodes with

nine edges. However, the observed network which is shown in Fig. 4.3.b just captured

seven edges. In this issue, the main task is to identify the missing links demonstrated

in Fig. 4.3.c, by estimating the level of interdependence between all the non-observed

links.



103

Figure 4.3: Inferring the missing links in a graph with 5 nodes

In recent years, the problem of link prediction in social networks has received

extensive attention from researchers due to the wide range of its applications and

fast growth of online social networks. Having access to more data about the network

and its users in both structure and content levels has had a significant impact on

these research works. The current works can be basically categorized into two cate-

gories based on their approaches which are similarity-based methods and probabilistic

models.

The idea behind the similarity-based approach can be expressed as having a high

number of similarities among pairs of users increases their chance of making a link

in the near future [16, 18]. Therefore, in this approach, the algorithms calculate the

level of similarity between each pair of nodes x and y and assign a score to them.

After ranking them, they select the pairs which have higher scores as they have more

likelihood to be linked in the next timestep.

The similarity between two nodes can be measured based on the node’s infor-

mation and attributes or the network’s structure. Profile information, the number

of publications or tweets, topics of interest and users’ transactions and activities

are some examples which can be used as node′s attributes to measure the similarity

[5, 4, 15, 38]. In [4], the authors proposed a tree-based model to estimate the simi-

larity between users based on the semantic dependencies of their profiles’ keywords.
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To find the semantic similarities between the keywords, they proposed a forest model

which consists of multiple trees. In this model, each keyword is mapped to a node

and will be linked to another node if there is a relation between the corresponding

keywords. The hierarchical architecture of the model is used to calculate the distance

between the pairs of nodes. They used WordNet to obtain the list of related keywords

as the core of their model. After that, they defined two concepts of Weak and Strong

similarities to estimate the level of similarity between users.

In another work [15], the authors proposed a model to combine the network struc-

ture and node attributes to deal with the problem. They extended the existing model

which they called it Social-Attribute Network (SAN) and employed various link pre-

diction algorithms. Their result demonstrated that integrating the both concepts can

improve the performance and lead to the more accurate prediction.

There exist many research works which are concentrated on node’s attributes to

solve the link prediction problem [5, 18, 16, 4, 15, 38]. However, due to lack of access

to the users’ information, extracting the attributes is a big challenge in this approach.

Meanwhile, as the main focus of this paper is using structural information to tackle

the problem, the topology-based methods will be reviewed in the next paragraphs.

The unsupervised methods for the link prediction mainly rely on the structural

similarity of the nodes [11, 16, 18]. Many similarity indexes have been proposed

such as the Jaccard similarity coefficient, Katz, Common Neighbors, Leicht-Holme-

Newman. Some of these indexes calculate the similarity between a pair of nodes

based on their number of common neighbors. Some others are global and compute

the similarity based on the existing paths between two nodes [16, 18, 38].

The Common Neighbors index counts the number of shared neighbors of nodes x

and y. It is formally define as:

C(x, y) = |Γ(x) ∩ Γ(y)| (4.2)
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where Γ(x) and Γ(y) are the lists of neighbors of nodes x and y, respectively. The

assumption is that the likelihood of a friendship between two unconnected nodes in

a network become higher by increasing the number of their shared friends.

The Jaccard similarity coefficient is another important neighbor-based index which

measures the number of shared neighbors between two nodes over number of their all

unique neighbors. The index is defined as:

J(x, y) =
|Γ(x) ∩ Γ(y)|
|Γ(x) ∪ Γ(y)|

(4.3)

This index gives a higher similarity score to the nodes which have more common

neighbors and less private ones.

Leicht-Holme-Newman is also an neighbor-based index which determines the simi-

larity by calculating the number of common neighbors between nodes x and y relative

to the product of their degrees. It assigns a high similarity score to a pair of nodes that

have many common neighbors compared to the expected number of such neighbors

[21].

L(x, y) =
|Γ(x) ∩ Γ(y)|
d(x)d(y)

(4.4)

where d(x) and d(y) are the degrees of nodes x and y, respectively.

The Resource Allocation Index is another neighbor-based index which performs

well on real networks. Consider the situation where node x sends some resources to

node y through its mutual neighbors. The similarity between x and y is then defined

as the amount of resources received by node y. The index is formulated as:

RA(x, y) =
∑

z∈Γ(x)∩Γ(y)

1

|Γ(z)|
(4.5)

Academic-Adar Coefficient (AA) is a neighbor-based index which was initially

proposed to estimate the level of similarity of a pair of web pages. The index assigns
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more weight to the rare features in comparison to the common ones. The assumption

is that the rare items are more valuable than the ordinary ones. Consequently, more

weight is assigned to the common nodes with lower degrees. The metric is defined as:

AA(x, y) =
∑

z∈Γ(x)∩Γ(y)

1

log|Γ(z)|
(4.6)

Preferential Attachment (PA) is another neighbor-based index which gives a higher

similarity score to a pair nodes that have more degrees. The assumption is that the

likelihood of a connection between high-degree nodes is greater than low-degree ones.

The index has the lowest computational complexity and is defined as:

PA(x, y) = |Γ(x)|.|Γ(y)| (4.7)

In [24, 42], the authors have comprehensively compared some of the indexes on

many real networks. According to the results, the resource allocation index has better

performance in comparison to the other metrics. However, despite the existence of

many neighbor-based indexes, none of them can be used as an absolute universal

solution for all types of networks. However, the main challenge in this approach is

the issue of scalability. Therefore, a suitable metric must be chosen based on the

characteristics of a given social networks [16, 18].

As mentioned before, another approach to calculate the similarity relies on the role

of existing paths between a pair of nodes. Consequently, global structural information

is required in this approach. Katz and Friend Link are examples of this approach

which are reviewed in the following paragraphs [16, 18, 38, 29].

Katz is an important path-based index which estimates the similarity based on

the number of paths between two nodes and their distances. The idea is that the

more paths between two nodes and the shorter distance imply the higher probability

of connection between them. The index counts all paths between a pair of nodes and
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assigns more weights to the shorter paths. It is defined as:

Katz(x, y) =
∞∑
l=1

βl.|pathlx,y| (4.8)

where β is a parameter to regulate the path’s weights and pathlx,y is the set of all

paths between nodes x and y with the length of l.

FriendLink is a path-based index which measures the similarity between two nodes

x and y, by counting the number of paths of varying length between them. The

assumption is that all the paths regardless of their lengths must be considered in the

estimation process. The index is defined as:

FL(x, y) =
l∑

i=2

1

i− 1
.
|pathix,y|∏i
j=2 (n− j)

(4.9)

Where n is the number of nodes in the network,l is the maximum length of a path,

1/(i − 1) is the parameter to regulate the paths’ weights based on their length, and

pathix,y is the number of all length-i paths between the nodes.

In addition, maximum likelihood and probabilistic models approaches which are

supervised methods are also used to solve the link prediction problem. In [8], the

authors proposed a maximum likelihood method for prediction of missing links in

networks. Their assumption is that the network has a hierarchical structure. They

proposed a method to identify the hierarchical fabric of the network to make a den-

drogram called hierarchical random graph. They introduced a method to assign a

probability of connection between a pair of nodes in the dendrogram by using sam-

pling. Their ultimate target is to find the dendrogram that best fits the observed

network and predict the missing links in such network. Compare to simple similarity

indexes, these models can predict the links more accurately, but by increasing the

size of the network (|network| > 104), they become impractical because of their time

complexity [16, 18, 38].
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Evolutionary and swarm-based approaches are also used to solve the problem

that have been proposed in recent years [5, 32, 7, 35]. In [5], the authors have used

the Covariance Matrix Adaption Evolutionary Strategy (CMA-ES) to optimize the

prediction accuracy. They suggested a linear model for combining common neighbor’s

similarity indexes and nodes specific information by assigning a weight to each index.

They mentioned that the limitation of their work is that the optimal model may not

be linear. On the other hand, the model does not need any prior information about

the network which is the main advantage of this model. In addition, their proposed

model can be applied to various networks regardless of the types.

In [7], the authors proposed an algorithm based on ant colony optimization to solve

the problem. The model relies on the subgraph evolution. Random walk strategy has

been implemented in their algorithm to select paths. The probability is assigned to

an edge to help an artificial ant select a better edge. In each iteration, the quality of

the paths is evaluated to update the probabilities for the next iterations. Finally, the

path with higher quality is selected as a link which has more likelihood to appear.

The optimization part consists of three main steps. First, the probability of traversal

of an ant from node x to node y in the graph must be computed. The second is

releasing the pheromone on the traversed path from the home to the food source

(destination). The final step is pheromone evaporation which is essential to find the

shortest path in the network.

In [9], the authors proposed a prediction model to estimate the missing links in the

network using the obtained information from the community structure. The model,

extract the community structures and compute the number of times that a pair of

nodes appeared together a community under different resolutions. The likelihood of

a connection between them then will be calculated.

Since the future has not come yet, validation and verification of the link prediction

algorithms is a challenging task. Therefore, to test and evaluate the performance
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of the algorithms two main methods exist. The first one is to use datasets with

timestamps which have been obtained from real networks. Consequently, the output

of a proposed algorithm is compared with the structure of the network in the next

timestep which can be extracted from the datasets. Another option is to divide a

network randomly into two subsets, the training set, ET , and the probe set, EP . As

the result, ET ∪ EP = E (the set of the network’s edges) and ET ∩ EP = ∅. Here,

ET can be considered as the observed known interactions and EP as the set of links

that must be predicted for testing. In the prediction process, information from ET

must not be used.

To measure the accuracy of the algorithms, two main methods are commonly used,

the Area Under the Receiver Operating Characteristic Curve (AUC) and Precision

[16, 18].

AUC is defined as:

AUC =
(n′ + 0.5n′′)

n
(4.10)

where n is the number of independent comparisons and n′ denotes the number of times

a randomly chosen missing link (a link in EP ) had a higher score than a randomly

chosen nonexistent link (a link in U−E, where U denotes the universal set containing

all possible links, of which there are |V |(|V | − 1)/2, with |V | the number of nodes

in the network). Furthermore, n′′ denotes the number of times that their score is

the same [16, 18]. In fact, AUC is used to estimate the probability that a randomly

chosen missing link obtains more score than a randomly chosen nonexistent link. In

the implementation phase, to reduce the time complexity, at each time a random pair

of a missing link and a nonexistent link is selected for the comparison, instead of

comparing all possible states.

As an instance, Fig. 4.3.b can be interpreted as ET and Fig. 4.3.c as EP . Therefore,

pairs of (1,3) and (3,5) are selected as probe links. Provided ET , a link prediction algo-

rithm calculates the likelihood of a relation between the pair of all non-observed edges
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in the graph ((1,3),(3,5) and (1,5)). Assume that the assigned scores are S(1,3)=0.5,

S(3,5)=0.6, and S(1,5)=0.5. The obtained scores must be compared with each other

to measure the accuracy of the results. Hence, as there are just one nonexistent link

and two probe links, two possible comparisons are considered: (S(1,3)=S(1,5)) and

(S(3,5)>S(1,5)). Accordingly, the AUC value is equal to (1× 1 + 1× 0.5)/2 = 75%.

Given the ranked non-observed links, Precision is defined as:

Precision =
# relevant items selected

# items selected
(4.11)

In the case that the top-L links from the predicted links are chosen, if Lr denotes

the number of these links which are in EP , then Precision can be defined as Lr/L

[16, 18].

4.3 Proposed Evolutionary Model

As we mentioned before, community is the core of our model. Thus, in our model

we adapt outputs of the evolutionary cultural algorithm which has been proposed

to detect communities on social networks in [41]. This algorithm is reviewed briefly

in section 4.3.1. While the output of this algorithm is the list of communities, the

focus of this research is on the belief space. This belief space can be interpreted as a

probability matrix which estimates the quality of relationships between each pair of

nodes in the network which are directly connected together. Using this belief space

which is updated by the extracted information from populations in each iteration,

the cultural algorithm limits the search space and enhances the individual evolutions.

In our model, we propose using this knowledge repository as a source of information.

Our hypothesis is that, this belief space which has designed to capture the relations

among the nodes in order to assign them to the true communities, can be used for

estimating the next state of the network.
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As shown in Fig. 4.4, the belief space will be mapped to a directed weighted graph.

The weights indicate the level of dependency between each connected pair of nodes.

After that, we propose a method to estimate the likelihood of relationships between

pairs of unlinked nodes in the graph. Ranking them will be the last process of this

model.

Figure 4.4: Components of the proposed model

4.3.1 Making the Weighted Graph

In this part, we briefly describe the mentioned community detection algorithm [41].

In this algorithm, an individual can be seen as a feasible solution for the community

detection problem. An individual therefore is represented based on a particular locus-

based adjacency method [30] stored in an array structure. The length of this array is

equal to the number of nodes in the graph. Each cell of this array is addressed from

1 to n (the length of the array) which determines a node in the graph with the same

number. E.g., cell #10 corresponds to node #10. The value of each cell #i, is an

address of a node which is randomely chosen from the list of neighbors of the node

#i.
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Figure 4.5: A sample network

For example, as shown in Fig. 4.5, if a network has seven nodes, one sample

individual can be defined as an array of nodes, shown in Fig. 4.6. As illustrated in

Fig. 4.7, this random individual represents a sub-graph with two communities (nodes

#1, 5, 6, and 7 in one community and nodes #2 ,3, and 4 in another).

Figure 4.6: A random individual

Figure 4.7: Illustration of the individual in Fig. 4.6 - shows two separate communities

(1,5,6,7) and (2,3,4)

As mentioned before and presented in Fig. 4.1, in each iteration, a specific number

of individuals are generated by the algorithm (to make a population) according to the

rules which are set in the belief space. The quality of these individuals is evaluated
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using a fitness function which assigns a score to each individual. Consequently, they

can be compared with each other. After sorting them, a group of them that have

better fitness values are selected to change the belief space. However, to be eligible

to update the belief space, they must meet some other conditions.

To update the belief space, each cell of these individuals adds its value to the

n by n belief space matrix, where n is the number of nodes. The algorithm will

calculate the relative frequency of these values and store them in the matrix as shown

in Fig. 4.8. A selected individual denoted by SIi(j), 1 ≤ i ≤ k, 1 ≤ j ≤ n where k=

|selected individuals|, is an array of adjacency links consists of n cells. As mentioned

before, it represents a subgraph of a given network which has a high community

score. In the belief space matrix, Rx,y, 1 ≤ x ≤ n, 1 ≤ y ≤ n, represents the number

of times that node x linked to node y. In fact, the matrix demonstrates the relative

frequency of the times that two neighbors appeared together in the same community

according to the obtained knowledge from the best-selected individuals. With this

method, the belief space can be considered as an alternative adjacency matrix for the

graph, because it is a weighted sub-graph of the main network that shows the level

of dependency between nodes according to the community index. Hence, the next

generation of individuals are generated using this adjacency matrix.
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Figure 4.8: The structure of the belief space

Fig. 4.9 shows an example for updating the belief space. Five individuals have

been selected to update the belief space of the same network shown in Fig. 4.5. If

the matrix had been empty before, then it is populated by the relative frequency of

nodes and their neighbors. For example, node #5 was linked to node #1, 20% of

times (once out of 5 times). If we illustrate this belief space, a directed weighted

graph will be the result as shown in Fig. 4.10.

Figure 4.9: Belief space formed by 5 selected individuals
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Figure 4.10: Illustration of the belief space in Fig. 4.9

The belief space plays a key role by setting some rules for generating new gener-

ations of individuals. This space collects and saves normative knowledge of the best

group of individuals. The assumption is that best individuals are close to an optimal

solution, thus the final solution can be generated by combining components of them.

In fact, the belief space defines a new state space for the network by storing best in-

dividuals. In the subsequent iterations, new generations of individuals are produced

mostly based on this state space.

Our main assumption here is, if the number of iterations approaches infinity, the

belief space matrix can accurately represent some information about the level of de-

pendency between the connected nodes. Consequently, these relative frequencies can

be used as the probability of a relation in the next timeslot based on the community

function. By processing a snap shot of an undirected and unweighted network, a

weighted directed graph is made which reveals hidden information about the quality

of relations in the network.

4.3.2 Computing the Probabilities

To compute the probability of relations of a pair of unconnected nodes in this weighted

graph, two criteria have been considered. The first is the number of paths between
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each pair of unconnected nodes. The second is the distance between them. The

assumption is that existence of more paths between a pair of nodes makes a higher

probability of connection between them while the distance must be considered to

enhance the weighting system. To reduce the complexity, we assume the paths’

length is always two, which means that the probability is computed for those pairs

of unconnected nodes that have only one node between themselves. Let G(V,E,W )

denote the input weighted graph, where V is a set of nodes and E is a set of edges

between each pair of nodes (hence, each edge e is of the form (i, j), with i, j ∈ V .

Furthermore, W is a set of weights of edges, with 0 ≤ W (i, j) ≤ 1 for all edges (i, j).

For each pair of unconnected nodes (i, k), where i, k ∈ V and (i, k) /∈ E, if there is

a node j with j ∈ V and (i, j), (j, k) ∈ E, the estimated weight between i and k is

computed as follows:

∀j ∈ V → (i, j), (j, k) ∈ E, (i, k) 6∈ E,

W ′(i, j, k) = max(W (i, j),W (j, i))×max(W (j, k),W (k, j)). (4.12)

If there would a link between two nodes i and k in the absence of node j, then

W ′(i, j, k) can be interpreted as the estimated weight of that link.

For each similar path this weight must be computed accordingly, and, finally, the

probability of a relation between nodes i and k is computed as follows:

P (i, k) = 1− 1

2(n+
∑n

1 W
′(i, j, k))

, (4.13)

where n is the number of paths between i and k.

For example, in Fig. 4.10, a direct link does not exist between node#1 and #7

but there are two paths of length two between them. Therefore, n = 2, and the nodes

#5 and #6 represent j. We have W ′(1, 5, 7) = 0.8 × 0.6 = 0.48 and W ′(1, 6, 7) =
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0.2× 0.6 = 0.12, and P (1, 7) = 1− (1/(2× (2 + 0.6)) = 0.6153.

4.3.3 Ranking the Probabilities

After calculating all the probabilities, the predicted pairs must be ranked based on

their probabilities. Finally, the top-L of them will be selected as the final predicted

edges. This process is shown in the following algorithm:

Algoritm CA-LP (G,A,B,L)

Input:

G: an undirected and unweighted graph, G(V,E)

A: adjacency matrix of G

B: Belief Space matrix

L: desired number of top predicted links

Output:

O: n*n matrix of L probabilities where

O(i,j)=P(i,j), ( i,j are members of V)

Main:

1: Map Belief space to a weighted directed Graph

2: Compute P(i,k) by extracting weights from B according to

(12) and (13), for all pairs where A(i,k)=0 and A(i,j), A(j,k)=1

3: Store probabilities in a array

4: Sort the array

5: Choose the top-L and store in O where O(i,k)=P(i,k)
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4.4 Evaluation

To evaluate the performance of our proposed algorithm (CA), we have used various

synthetic networks and real large social network datasets. For the first group of

synthetic networks, ten graphs were generated randomly based on Newman’s method

in [27]. Each of these graphs has 128 nodes with the degree of 16 and 1024 edges. In

addition, each graph consists of four same-sized communities where each community

has 32 members. Each of these members has Zin links to other members who are inside

its own community and Zout links to members from other communities (Zin +Zout =

16). The range of Zout in these ten graphs were set from 3 to 5. In fact, a higher

value of Zout leads to generate a more complex network.

Table 4.1: Description of the generated synthetic networks based on Girvan bench-

mark

Fraction #Nodes #Edges ET EP U

70% 128 1024 717 307 8128

80% 128 1024 819 205 8128

90% 128 1024 922 102 8128

As shown in Table 4.1, we have evaluated the accuracy of our model by changing

the fraction of observed edges in the network, ET , from 70% to 90%. The belief space

which was imported to the algorithm was obtained from the result of running the

community detection algorithm proposed in [41]. We tested the effectiveness of the

algorithm according to both AUC and Precision methods. Tests were implemented

100 times independently on the top-100 instances. We also compared the results of

AUC with five other similarity metrics, Common Neighbors(CN), Jaccard (JC) and

Leicht-Holme-Newman (LH), Adamic/Adar (AA), and Resource Allocation (RA).

The results are illustrated in figures. 4.11 and 4.12.

The results clearly show that the proposed algorithm has better performance
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in comparison with other metrics on this group of synthetic networks. However,

by reducing the number of observed edges, the accuracy of the algorithm reduced

significantly. The main reason for this issue is that the community detection algorithm

can not find the true communities when the system is very noisy. In fact, by removing

a considerable amount of edges from the network randomly, the community structure

which is the base of this model will be affected.

Another interesting observation is that, by increasing the complexity of the net-

work (Zout > 4) the performance of the algorithm reduced significantly. We believe

the cause to be the increasing rate of errors in the community detection algorithm

when Zout becomes larger.

In addition to Precision, we also compared the top-l predicted links calculated

by the algorithm, l = |EP |, with the probe set, EP . As a result, in average 78.28%

of the predicted links were among the probe set when the fraction of the observed

network was 90%. It was 77.85% and 75.14% when the fraction were 80% and 70%

respectively. It means that the algorithm could predict the correct links with an

accuracy of more than 75%.

We have also evaluated the performance of our algorithm on another group of

synthetic networks. The previous benchmark is useful to create a network with 128

nodes but does not have a mechanism to generate bigger network. Therefore, we

have generated various networks based on LFR benchmark in [20, 19]. By using

this benchmark, we can generate power-law networks with customized features. We

generated two groups of 1000 and 3000 nodes graphs. For each group, three graphs

have been generated at different levels of complexity. In total, six more synthetic

networks have been generated based on the LFR benchmark as shown in Table 4.2.
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Table 4.2: Description of the synthetic networks generated based on LFR benchmark

Label #Nodes #Edges µ Daverage Cluster Coefficient

Network#1 1000 9860 0.300+/- 0.025 19.72 0.344

Network#2 1000 9804 0.400+/- 0.026 19.608 0.232

Network#3 1000 9885 0.500+/- 0.023 19.77 0.144

Network#4 3000 29219 0.300+/- 0.026 19.479 0.326

Network#5 3000 29074 0.400+/- 0.026 19.383 0.225

Network#6 3000 29561 0.500+/- 0.023 19.707 0.127

The following parameters have been considered to generate these networks:

• β = 1, β set the exponent for the distribution of community size in the network

• γ = 2: γ set the exponent for the nodes’ degree distribution.

• µ = vary from 0.3 to 0.5, µ is the mixing parameter which determines the ratio

of the number of edges between various communities to the total number of

them. The higher number means more complex community structure.

• DAverage = 20, DAverage represents the average degree of each node in the graph.

• DMax = 50, DMax set the maximum degree size for each node.
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Figure 4.11: Comparison of the algorithms based on AUC over Girvan benchmark
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Figure 4.12: Comparison of the algorithms based on AUC and Precision over Girvan

benchmark

As shown in figures.4.13 and 4.14, the generated graphs with LFR benchmark rep-

resent the power-law distribution. In addition, they have a high number of cluster

coefficient relatively. Meanwhile, the average distance between nodes in all of them

is less than four which represents the small-world effect on the social networks. Con-

sequently, these graphs can represent key features of real social networks. Hence, to

evaluate the performance of our algorithm we repeat the experiments using them.
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Similar to the previous experiments, a group of edges must be removed randomly to

make a probe set. For each network, the probe set was extracted randomly ranging

from 10% to 30%. Consequently, the performance and the level of accuracy of the

algorithm were evaluated.

The results of the evaluation have been illustrated in Fig.4.15. According to the

results, our algorithm has better performance in most of the cases. In fact, as long as

community detection algorithm finds the true communities with high accuracy, the

link prediction algorithm can work fine. As shown in the diagrams, by increasing the

size of µ, the algorithm’s accuracy is reduced which is because of the performance of

the community detection algorithm. However, even with this weakness, the proposed

algorithm can beat the other methods.

On the other hand, the results show that the trend for the graphs with 3000 nodes

is not different from the graphs with 1000 nodes and our proposed model can predict

the missing links with a high accuracy. Regarding our observations, the performance

of the algorithm is almost the same when 90% and 80% of the network are assigned to

the observed set, but when it reduced to 70%, the algorithm’s performance reduced

significantly. Moreover, randomly removal of many edges from the network, changes

the community structure. This issue is a significant obstacle for the community-

detection process. Perhaps using datasets with timestamps is a better option to

measure the accuracy of the algorithm which can demonstrate more precision.
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Figure 4.13: Synthetic networks (Generated based on LFR benchmark (network#1

to 3))
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Figure 4.14: Synthetic networks (Generated based on LFR benchmark (network#4

to 6))
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Figure 4.15: Comparison of the algorithms based on AUC over LFR benchmark

We also tested the performance of our proposed algorithm on a real-world big

dataset, Orkut, with 117,185,083 edges [40]. The dataset obtained from the Stanford

Large Network Dataset Repository [23] is a benchmark dataset used by researchers

in social network analysis. Another reason for selecting this dataset is that it is

a network with ground-truth communities which make us possible to validate our

results. Information about this dataset is represented in Table 4.3.

Table 4.3: Orkut Dataset Specification

#Nodes #Edges Cluster Coefficient ET EP U

3072441 117185083 0.1666 105466575 11718508 4719945313020
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Figure 4.16: Obtained results from the Orkut Dataset

The procedure for running the experiment on this dataset is similar to the method

described before in experimental setup for synthetic networks. The network was di-

vided into two sets, the training set (90%) and the probe set (10%). After ten

iterations of independent experiments, the AUC and the precision were calculated.

As shown in Fig. 4.16, the algorithm could estimate the correct links with over 68%

success based on the precision method. Regarding the size of the network, we believe

that it is an acceptable rate for prediction. We have also repeated the experiment by

changing the size of the training set. As shown in Fig. 4.17, when the training set is

90%, the algorithm obtained the highest values for both of AUC and Precision. By

reducing it to 80%, a slight reduction can be observed in the level of accuracy. How-

ever, when it is decreased to 70% a significant change in accuracy is visible. Although

the size of the training set is an effective parameter in this process, but according to

our observations, the main reason for this reduction is the random removal of edges

which reshapes the structure of the network.
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Figure 4.17: Obtained results from the Orkut Dataset (range of training set from

70% to 90%)

4.5 Conclusion and Future Work

In this chapter, the problem of link prediction in social network has been extensively

discussed. In addition, we proposed a knowledge-based model to predict the state

of a network in the near future. The key part of this model is the belief space

which is a probability matrix that shows the level of dependency between linked

nodes. Assuming it as an adjacency matrix, a weighted directed graph can be made.

Consequently, the probability of relation between two disconnected nodes will be

computed based on this graph.

The central hypothesis is that if the network has the community structure, each

individual can be joined to at least one community through its friends. Therefore,

the quality of relations between pairs of unconnected individuals can be estimated

through the community-detection process. Consequently, the present computational

model has a community-oriented approach.
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We evaluated the performance of our algorithm on various synthetic networks and

real-world datasets and compared it with three other metrics. AUC (Area under

the curve) and Precision measurements have been used to evaluate the performance

of the model against several well-known other methods. The results show that our

method can predict the next state of the network with approximately 80% accuracy.

The comparisons show that the proposed method has better performance in respect

of the performance of other methods.

However, we believe that by increasing the number of iterations in the evolutionary

model, the quality of prediction will be improved. Meanwhile, since the size of the

belief space is fixed to the number of nodes, the complexity of the algorithm will not

change based on the number of iterations or the number of edges.

The main contributions of this research can be summarized in the following items:

• Proposing a method for estimating the quality of links between a pair of nodes

in the network

• Introducing a novel method to use the concept of community as a similarity

index.

• Employing the cultural algorithm as a knowledge-based evolutionary algorithm

for the link prediction problem in social networks.

In the future, we would like to observe the performance of the algorithm in different

types of social networks and extend our work to multiple networks. Currently, we have

tested the algorithm using the common standard procedure of dividing the training

and probe set randomly in the ratio of 70-90% and 10-30%, in the future we would

like to test the performance on different rates to find the optimal training size.
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Chapter 5

Conclusions

In this dissertation, a new knowledge-based approach for social network analysis has

been proposed and extensively reviewed. Introducing new methods for representation,

extraction, and utilization of knowledge from the structure of social networks are the

main contributions of this research work. Throughout this study, the emphasis was

on the role of knowledge in the evolution of societies and solutions. According to the

experimental results, utilizing the knowledge has a remarkable impact on enhancing

the search process to find the optimal/near optimal solution for the problems, and it

is significantly effective and robust.

In addition, we found that MPCA has a tremendous potential to model the social

systems. It has derived from the real social systems and has a great capacity to

be applied to social network analysis. Therefore, we proposed various models and

algorithms based on this idea to deal with some major problems in this research field.

Community detection, link prediction and knowledge and population migration in

social networks were addressed through our proposed approach in this dissertation.

In the community detection problem, the core question was to find the underlying

interconnected structure of a given network. The results indicated that the proposed

algorithm and methods profoundly improved the accuracy and the run-time of the
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search process. Interestingly, while the target of the algorithm was to find the near-

optimal solution, the evaluation results show that the algorithm can find the optimal

solutions for a variety of complex social structures in fewer evolution cycles compare to

the other evolutionary methods. Reduction of the search space by 80% and enhancing

the accuracy by up to 30% in comparison with the genetic algorithms are the major

achievements of this approach. The run-time analysis also shows that the proposed

method has a negligible impact on the complexity.

In the link prediction problem, the target was to estimate the evolution of a

given network in the next time step. Our community-oriented approach could get

competitive results in this field while the most significant contribution of it, is to

define a method for measuring the quality of connections between pairs of actors in

the system. In other words, given a snapshot of a undirected, unweighted network,

the proposed algorithm estimates the quality of connections between pairs of nodes

and represents them as a directed weighted graph. Introducing a new community-

oriented similarity index to calculate the likelihood of a relationship between a pair

of unconnected nodes is our another contribution. The results demonstrated that

the proposed model is capable of predicting the next state of a given network by the

average level of 80% accuracy.

The new concept of migration in the both level of knowledge and population and

its role in the process of population adaption has been studied in this field. To the

best of our knowledge, it is the first research which addresses these problems. The

experimental results show that having prior knowledge about a problem or environ-

ment can help an individual to adapt faster to the similar situations if the difference

level between two cases is less than 25%. If it is higher, not only knowledge is not

helpful, but also it may decrease the performance.

To conclude, an integrated knowledge-based computational model has been intro-

duced in this research study using MPCA and based on the community structure of
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the social systems to describe the evolution of complex dynamic social networks. The

results clearly demonstrate that this model can significantly increase the efficiency

and effectiveness of social network analysis in a variety of tasks and problems. The

proposed approach not only can be applied to address the classic problems in the

field but also it can be employed to cope with the new challenges and issues such as

knowledge migration and population adaptation. This proposed model can be used in

a broad range of applications including recommendation systems, resource allocation

and organizational and social analysis.

We believe that by employing our proposed approach and techniques, social net-

work analysis can be carried out from a new perspective by focusing on the role of

knowledge as the primary asset of the system.

In the future, we would like to employ different sources of knowledge to deal

with more social issues through this approach. Co-evolution of networks in multi-

layer systems, layer selection strategies and the formation of belief space are our

next research targets. Measuring the impact of these sources of knowledge on the

adaptation process and enhancing its functionality are also our future works in the

field.

In addition, we are going to apply this approach to more real-life datasets extracted

from online social networks for business and research-oriented projects such as team

formation, group identification, and organizational resource optimization.
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