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ABSTRACT 

 

Augmented Reality (AR) systems allow users to experience reality with 

extra data. These systems can be used in various applications such as real-time 

informatics and games. An important requirement for many games is the ability to 

find a path from one point to another with minimum cost.  

In recent years, pathfinding algorithms have evolved tremendously, and 

researchers have created numerous variations and techniques that have improved 

game experience. AR games can be played in an immersive way using the real 

world as a game world, however, the information perceived by these systems do 

not provide suitable search spaces (and search graphs) for pathfinding algorithms.  

This thesis proposes a novel method which generates a search space 

representation from the perceived information from an AR system, specifically 

Microsoft’s Kinect. The generated search space can provide a basis to apply 

existing knowledge of pathfinding to augmented reality. 
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CHAPTER 1 

Introduction  

1.1 Thesis Claim 

This thesis proposes a new technique for creating a search space representation from a 3D 

scene using the Microsoft Kinect depth sensor. The generated search space can be used as 

a map or search graph for pathfinding in augmented reality games. 

1.2 Pathfinding 

Pathfinding algorithms solve the problem of finding a shortest (or least cost) path 

between two points in a given searchable environment. These algorithms are essentially 

graph search algorithms.  

 

Figure 1.1 Pathfinding environment with initial setup 
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For example, consider point S as a starting point and point G as a goal point and assume 

these points are located on some searchable environment (e.g. map). Pathfinding 

algorithms use knowledge of the environment, typically encoded in the form of a search 

space representation (or search graph) and possibly some additional heuristic 

information, to return the shortest (obstacle avoiding) path. We will provide more details 

in a later chapter but for an overview, here is some valuable information. 

Figure 1.1 shows an initial setup of pathfinding scenario. The green dot shows starting 

position and red dot represents a goal position. Grey blocks are considered as a walls or 

obstacles. There are lots of ways to represent the environment but for simplicity, here we 

consider a grid representation.  

This initial setup is passed to a pathfinding algorithm which finds a path (typically, 

shortest or least cost) from the start position to the goal position avoiding all obstacles. 

For different scenarios, we can implement lots of variations and different mechanisms in 

the pathfinding setup. For example, the above setup uses only a four-way transition on 

the grid; alternatively, one might use eight-way or diagonal transition.   

In Figure 1.2, the cyan blocks represent nodes that have been explored (closed list) by the 

pathfinding algorithm, green blocks correspond to nodes on the search frontier (open list) 

by the pathfinding algorithm, and the yellow line represents the path found on the map. 

Though there are many pathfinding algorithms and search space representations in the 

literature, the above is typical of many of them. 

Pathfinding Algorithm 

Search Space Representation 
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 Figure 1.2 Output of pathfinding process  

The most well-known pathfinding algorithm is A* [13], usually pronounced as A-star. In 

general, pathfinding algorithms are graph-search algorithms. The most common search 

space representations are grid-based, waypoint-based, and navmesh-based. We will look 

at these in the next section. 

1.2.1 Search Space Representation 

Search space representations are commonly referred to as maps, and they are a spatial 

representation of a search space. Games are created in a computer-generated synthetic 

environment. In such environments, the game creator has full control over all aspects of 

the game design. These environments commonly consist of 3D models of objects and 
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hidden layers of search space. Search spaces can make game experiences more user-

friendly. It is also useful to implement AI game characters that find a path using search 

space. Search spaces are graphs at their core. There are many different types of search 

space representations available to the game designer but for a simple introduction, we 

will consider the search spaces below: 

 Grid representation 

 Navmesh representation 

 

Figure 1.3 Grid search space representation [1] 

Figure 1.3 shows simple grid representation for a search space. There are lots of 

variations in grid representation that are available, like a hexagonal grid. A square grid 

has an equal size of square pieces called tiles. A square grid is made of equally distanced 
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horizontal and vertical lines. Each tile in the square grid is considered as a node in an 

equivalent graph, and each side is considered an edge. In this case, they are called four-

way connected grids. It is really important to understand that this graph representation is 

(normally) not visible to users, though, it is treated as a layer of map design and used in 

pathfinding. In some cases, nodes are connected to other nodes with eight different ways 

which include corners. This kind of representation is called an eight-way connected grid.  

 

Figure 1.4 Navmesh search space representation [2] 
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A navigational mesh, commonly referred to as a navmesh is an interconnected set of 

polygons representing a search space. The polygons used in a navmesh are convex. For 

pathfinding purposes, each polygon is considered as a node in the graph and a connection 

between two polygons is considered as an edge between two nodes.  

As shown in Figure 1.4, the green portion represents the obstacle, the blue portion 

represents the searchable (walkable) space, and the white portion represents the radius of 

the game character (it ensures there is room to move without scraping the walls). The 

searchable space is divided into convex polygons which are navmesh tiles. We will 

discuss more about navmesh in later chapters as this thesis mainly focused on navmesh 

search space representation. 

1.3 Depth Sensors 

Classical cameras can capture black and white or color photos. According to the pinhole 

camera model, photographs are a two-dimensional representation of the three-

dimensional scenes. In technical terms, this kind of camera is a type of RGB sensor 

because they capture photo frames in Red, Green and Blue color combination.  

Human eyes and brains are trained to observe these photographs with depth perception, 

but computers are not and this is one of the classical problems in computer vision. If we 

need to teach computers how to process taken frames, we need to calculate depth. There 

are lots of hardware and software solutions to measure depth, but below are the two main 

types of hardware for depth perception: 

 Active depth sensors 

 Passive depth sensors 
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Figure 1.5 Laser range finding sensors 

Figure 1.5 shows laser range finding sensors from different manufacturers. Laser range 

finding sensors are classified as active depth sensors. Researchers have developed various 

methods and algorithms to calculate depth using these sensors. For example, the Time of 

Flight method which calculates depth using the round trip time taken by a laser beam to 

travel from source to source. The biggest disadvantage of these systems is cost and 

complexity of operation. There is another kind of active depth sensor which uses 

structured light to detect depth. One notable example of this is Microsoft Kinect.   

 

Figure 1.6 Microsoft Kinect depth sensor [3] 

The biggest advantages of Microsoft Kinect sensor are its low price, accuracy, and strong 

developer community. Many researchers have used Kinect in their projects to detect 
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depth and so do we. We will discuss more about Kinect in later chapters as it is mainly 

used in experiments. 

The stereo camera system is the best example of a passive depth sensor. It uses a 

triangulation technique to determine depth. These systems are cheap and easy to use, but 

the biggest disadvantage is their accuracy. The depth perception using this type of sensor 

is not as good as active depth sensors.   

  

Figure 1.7 Stereo camera system 

1.4 Application of Research 

The proposed technique in this research can be used in various applications, but we have 

focused more on Augmented Reality as it is motivation for this thesis.  

1.4.1 Augmented Reality 

Augmented Reality [14] means the experience of reality with extra data. This extra data is 

added to the user’s experience of reality, and hence the experience is termed augmented 

reality. Humans perceive reality using their senses granted by their eyes, ears, skin, nose, 

etc. We gather information using our eyes as visuals or a stream of images. Different 

senses perceive information in different forms like how ears perceive sound. The 

computers use different sensors to perceive the environment such as cameras for visual 
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information. This thesis mainly focuses on visual augmented reality systems, although 

there are different augmented reality concepts available like audio augmented reality, 

haptic feedback augmented reality, etc. Visual augmented reality, which is also 

commonly referred to as simply Augmented Reality (AR), mostly deals with the visuals 

of the surrounding environment. The diagram below show what an AR system looks like. 

 

Figure 1.8 A simplified augmented reality system 

As shown in Figure 1.8, an AR system at its bare minimum, consists of a visual receptor 

(camera), a processing unit (computational unit) and display. On one hand, we have the 

environment to perceive and on the other hand, we have a user who will experience the 

AR. In some cases, various sensors are used like magnetometer, gyroscope, and 

accelerometer which we will discuss later on. A camera normally catches visuals from 
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the environment and transfers them to a computation unit in the form of frames. A 

computational unit processes those frames and decides what to augment on top of that 

and then transfers visuals to a screen with augmented data.  

Augmented reality can bifurcate into two types: marker-less AR and marker-based AR. 

The marker-based AR system relies on 2D or 3D markers to create environment 

awareness, like barcodes or 3D objects. Marker-less AR does not depend on any markers 

or environment knowledge. Instead, they collect information and produce environment 

awareness during execution.  

1.5 Problem Domain 

It is really important to understand the relationship between pathfinding and augmented 

reality before going further. Both of these concepts are used in game development, 

although pathfinding handles object navigation within an environment, whereas AR is 

focused on the immersion factor. 

Games in augmented reality generally use marker-based AR concepts where they don’t 

need environment information, which is the reason why they don’t need real-time 

pathfinding. If you play immersive games by considering real world as your map, then 

that scenario is the same as virtual games. Given that virtual games need pathfinding and 

because of the lack of search space representation in markerless augmented reality 

games, developers cannot apply existing knowledge of pathfinding to AR games. To fill 

this gap between pathfinding and augmented reality, one needs to create search space 

representation to make pathfinding knowledge applicable in the context of AR.  
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1.6 Motivation 

Most available augmented reality mobile games use marker-based augmented reality 

concepts. It should be noted however, that marker-based augmented reality produces a 

limited immersive game-playing experience. It also requires complex arrangements, like 

setting up markers before playing games, and it is also costly and time-consuming. In the 

end, this type of setup delivers a less engaging experience, which is counter-intuitive in 

the context of AR. On the other hand, marker-less augmented reality games can be played 

in a more immersive way by using the real world as a map for games. One needs to 

collect environment or scene-specific information using some vision technology.  

Most SLAM algorithms are used to create 3D reconstruction (models, environment, etc.) 

from the scene, but this reconstruction can be used further to create search space 

representation. To the best of our knowledge, search space representations are not used in 

AR games because of the early stage of augmented reality. As many people believe, 

necessity is the mother of invention; there is no need to create search space because most 

games are marker-based, but as technology evolves, more complex games will be 

released on the market.  

Pathfinding research has carried out numerous ways to determining a path in games. This 

existing knowledge is also applicable to augmented reality games, but it is not included 

due to the lack of search space representation. Hence, the main motivation of this 

research is to reduce the gap between augmented reality and pathfinding in the context of 

games. Our aim is to produce a search space representation, specifically a navmesh, from 

a 3D scenes reconstructed from the output of a Kinect device. Our work takes a 
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reconstructed 3D scene as input, produces useable navmesh and extracts associated 

search graphs, which could then be used by existing pathfinders. 

1.7 Thesis Outline 

Chapter 1 stats our thesis claim and then introduces the basic thesis-related topics. It 

gives an overview of pathfinding and augmented reality. The thesis motivation is then 

described. 

Chapter 2 focuses on background literature review and related work. It deals with 

explanation of existing work and some of the very important research carried out in the 

past. It describes various important algorithms and techniques from the KinectFusion 

algorithm to automated navmesh generation. 

Chapter 3 explains useful concepts to understand further chapters. Chapter 4 is dedicated 

to our approach. This chapter explains all the concepts developed in this thesis. The 

experiments are presented in Chapter 5. The conclusion and future work are given in 

Chapter 6. 
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CHAPTER 2 

Background and Related Work  

2.1 SLAM 

SLAM algorithms help to build point cloud of a 3D scene. We will see details of point 

cloud in later chapters but for now, it is a way of representation for a 3D scene. As we are 

working with Microsoft Kinect sensor, we have to look for depth-based SLAM 

algorithms. One of the most well-known of these algorithms is Dense Planar SLAM [4] 

which uses an RGB-D sensor to map the environment. The Dense Planar SLAM 

represents surfaces using bounded planes. As shown in Figure 2.1, it has detected various 

planes from the scene and used them in various applications.  

 

Figure 2.1 Dense Planar SLAM in action [4] 
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Dense planar SLAM [4] can also associate same planes registered on different frames. 

Normally, the whole scene is not covered with a fixed camera’s field of view, so we have 

to move the camera to capture the whole scene. That also comes with one more problem 

called registration. When we make point cloud using the RGB-D sensor, we also need to 

integrate different point clouds from different scenes. 

 

Figure 2.2 Data Association in dense planar SLAM [4] 

As shown in Figure 2.2, there are various cases of data association in dense planar SLAM 

[4]. We will see in later chapters how detecting planes work. 

The second important SLAM algorithm is KinectFusion [5], that can reconstruct a 3D 

scene using Microsoft Kinect depth data. KinectFusion [5] takes raw depth data from the 

Kinect sensor, estimates pose, predicts surfaces and then reconstruct the whole 3D scene. 

The generated reconstruction is made out of triangular meshes (also known as a face or 

tile). Each mesh has a tile index and a normal vector which represents its direction. For 

each new frame, the algorithm has to find a new pose and integrate reconstruction. 

KinectFusion [5] can integrate two different reconstructions from two different frames. 
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Figure 2.3 KinectFusion [5] in action 

Figure 2.3 shows KinectFusion [5] results, the left side is the RGB frame of a 3D scene, 

and the right side is the output from KinectFusion [5]. Figure 2.4 shows zoom in of the 

meshes, where triangular meshes are used for 3D reconstruction. 

 

Figure 2.4 Near view of reconstruction 
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KinectFusion has also been an inspiration for this thesis. We have used the reconstructed 

triangular meshes concept to generate the high-level search space navigational mesh. 

2.2 Search Space 

Although there are many different search spaces available to use, depending on 

implementation needs, we have used navmesh. The reason for this choice, as well as the 

pros and cons, will be discussed in later chapters. Navmesh was first discussed in a book 

called AI Game Programming Wisdom [15], followed by Game AI Pro [16] and since its 

origin, the basic concept of Navmesh has remained unchanged. One more paper [6] 

describes grid based map generation for robot navigation. They used a normal RGB 

camera to perceive visual data and proposed an algorithm which can create a grid-based 

search space. This work is quite different from this thesis as they have used a monocular 

camera which does not provide the depth information. Furthermore, they have used a grid 

representation which has many limitations compare to navmesh. 

 

Figure 2.5 RGB camera based grid generation for robots [6] 
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Xiao and Hao have explained in their paper [17] how pathfinding works in navmesh. 

Their work is relevant to this thesis because while creating navmesh search space 

representation, it is important to understand the characteristics of pathfinding used in it. 

2.3 Automatic Search Space Generation 

There are various techniques and tools available to generate an automatic navmesh, but 

normally when games are created game designers want to create search space manually. 

The manual process produces better results compared to automatic but it is quite tedious, 

as well as a time-consuming process. To remedy this, researchers have designed many 

new automatic search space generation algorithms.  

These algorithms don’t have reasoning like humans do so their generated search spaces 

are not that accurate, but they are good enough to save game designers time and effort. 

Stuart Golodetz has described an automatic navmesh generation method in his paper [7]. 

He provides a new approach which is free from the problem of agent’s geometry 

consideration during navmesh generation. He has introduced a basic navmesh generation 

technique called Brush Unioning [7]. Figure 2.6 shows algorithm for brush unioning.  

Another paper [9] explains the concept of suboptimal navmesh generation. The approach 

is called Automatic Navigation Mesh Generator (ANavMG) which has introduced 

convex relaxation. This thesis follows a similar approach to generate a navmesh which 

does not lie in NP-Hard, as demonstrated by ANavMG. Another paper [8] of the same 

authors has proposed a near-optimal GPU-based navmesh generation. They have used the 

2D abstraction of the 3D game environment to generate a navmesh. 
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Figure 2.6 Brush unioning algorithm [7] 

The disadvantage of this method is that it cannot generate a navmesh in a continuously 

changing environment, but it is useful in a static environment. This thesis is influenced by 

the works of Roman and Nuria [8] [9] as they used 3D object normals and navmesh. We 

will see more details about 3D normals and their association in later chapters. 

ANavMG uses a concept called convexity relaxation which allows system to generate 

more efficient navmesh. Figure 2.7 shows convexity relaxation concept which is relevant 

to surface unification used in this thesis. 
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Figure 2.7 Convexity relaxation of ANavMG [8] 

 

Figure 2.8 2D abstraction of 3D environment [8] 

Figure 2.8 shows how 2D abstraction works. The left side of the figure is the 3D scene, 

and the right side of the image shows its 2D abstraction. Figure 2.10 shows a generated 

navmesh from 2D abstraction. 
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ANavMG can work with single layered and multi layered environments. It is more 

suitable for systems like premade game world. The model and environment used in game 

world must be without any distortion and need to be smooth. This thesis has introduced a 

method for rough, on-the-fly generated 3D scene. Figure 2.9 shows flowchart of 

ANavMG algorithm for single layered environment. 

 

Figure 2.9 ANavMG execution flowchart [9]  
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Figure 2.10 Generated navmesh of Figure 2.8 [8] 

One more, important algorithm has been introduced by Hale and Youngblood in their 

paper [10]. This algorithm is called Adaptive Space Filling Volumes 3D (ASFV3D). This 

algorithm seeds world-space with a series of unit cubes and then it automatically 
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subdivides it, to convert cubes into higher-order polyhedrons. Figure 2.11 shows 

ASFV3D algorithm.  

 

Figure 2.11 ASFV3D algorithm [10] 
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CHAPTER 3 

Concept Description   

3.1 Navmesh as a Search Space 

Navmesh is a type of search space representation, widely used in game AI and 

pathfinding applications. It is made of interconnected convex polygons. Each polygon in 

navmesh is sometimes called a tile or face. Let’s assume we have a 2D environment with 

few obstacles in it. Figure 3.1 shows an example of a 2D environment with simple 

navmesh where black blocks are obstacles and black lines are boundaries of navmesh 

cells.  

 

Figure 3.1 Navmesh example with obstacles 
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As we know, pathfinding algorithms are graph search algorithms which require a graph 

as an argument to the algorithm so this visual representation must break down into a 

graph for calculation.  

There are numerous ways to convert a navmesh into a graph. For example, denoting a tile 

as a node, edge as a node, etc. We have used an approach called edge as a node. Each 

polygon in navmesh has an edge, which is considered as a connection between two 

polygons. The edge as a node approach takes a midpoint of an edge and denotes it as a 

node on the graph. Nodes are connected with each other in the same way as navmesh tiles 

are connected.  

 

Figure 3.2 Edges as a node in Navmesh 
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Figure 3.2 shows the edge as a node approach where blue dots represent each node on the 

graph. An agent is a 3D or 2D model that will follow the path after pathfinding is 

applied. The agent can move anywhere inside the convex polygon. Pathfinding is 

required to find a path across different polygons. The method used for movement inside a 

polygon is known as ray casting. According to the ray casting method, if we put a light 

bulb in any place inside the polygon, the ray originating from the bulb will reach every 

possible place inside the polygon. That is the main reason why we have used convex 

polygons instead of non-convex polygons. During that free movement inside each 

polygon, the agent doesn’t need pathfinding mechanism. Unlike grid search space, 

navmesh representation requires both mesh and graph for pathfinding calculation. 

Normally, when graph representation boils down to the graph, the grid is not required for 

pathfinding.   

 

Figure 3.3 Graph representation of navmesh 
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Figure 3.3 represents a graph made out of navmesh. Neither graph nor navmesh is visible 

to users; it is just a logical layer for pathfinding. We will see more details about it in later 

topics. There are a couple of methods to represent graphs, for example, edge list, 

adjacency matrices, etc. We have used adjacency list for this thesis. Table 3.1 shows the 

adjacency list of navmesh graph of Figure 3.3. 

N1 ->       N2, N11 

N2 -> N1, N3, N12 

N3 -> N2, N4, N12 

N4 -> N3, N5 

N5 -> N4, N6, N16 

N6 -> N5, N7, N16 

N7 -> N6, N8 

N8 -> N7, N9, N14 

N9 -> N8, N10, N14 

N10 -> N9, N11 

N11 -> N1, N10 

N12 -> N2, N3, N13 

N13 -> N12, N14, N15 

N14 -> N8, N9, N13, N15 

N15 -> N13, N14, N16 

N16 -> N5, N6, N15 

Table 3.1 Adjacency list of navmesh  
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There are a few reasons why navmesh is more popular than any other search space. The 

navmesh requires less memory for storage and it is also light on pathfinding computation 

when compared to grid and waypoint. Unlike grid, it provides best-area coverage of the 

game environment. The proposed method in this thesis will generate a search space as an 

adjacency list as an output. 

3.2 Point Cloud 

The point cloud is a way of representation for 3D scenes which is made up of 3D points. 

Points in point cloud are defined as three parameters that show its x, y and z-axis 

coordinates in 3D space.  

𝑃 =  [𝑥, 𝑦, 𝑧] 

Many different techniques can generate the point cloud but in this thesis, we have used 

RGB-D Microsoft Kinect Sensor.  

 

Figure 3.4 Point cloud of a 3D room scene [11] 
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Normally, the point cloud is measured considering the camera as a point of origin. So, the 

camera coordinates are [0, 0, 0] and rest of the points in point cloud is mapped 

accordingly. The point cloud visualization system works somewhat different compared to 

point cloud recording system.  

The visualization contains two camera points, first [0, 0, 0] which is used for recording 

the point cloud, and the second is used for viewing through the camera, which changes its 

coordinates according to the spectator’s needs. Point clouds can be classified into two 

categories, sparse point cloud and dense point cloud. We have used dense point cloud in 

this thesis because of its accuracy and effectiveness despite its high cost and complexity. 

Sparse point cloud has a very low density of points in a particular space. The well-known 

approach which generates sparse point cloud is parallel tracking and mapping [18]. Dense 

point cloud has very high number of points in a particular space. Normally, the sparse 

point cloud is created using RGB (monochrome or color camera) sensors, and dense point 

cloud is created using RGB-D (depth sensor like Microsoft Kinect) sensors.  

The more points we have, the better navmesh we can generate. It is a trade-off between 

density and accuracy. The main idea behind this research is to reduce the number of 

meshes in recent 3D reconstruction algorithms. If we use low-density point cloud SLAM 

algorithms, we will have a low number of generated polygons, but it will also produce 

less accurate navmesh.  

The monocular SLAM also has low accuracy for determining points in point cloud. 

Hence, augmented reality experience with monocular SLAM is not smooth and 

immersive. 
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Figure 3.5 [Left] Sparse [Right] Dense point cloud 

According to the pinhole camera model, a point [x, y, z] of the 3D space (real world 

coordinates) can be determined using two points [x1, y1] and [x2, y2] of 2D space 

(image) using triangulation method. If we follow this, then it will take a large of time and 

CPU cycles to produce a point cloud of a small scene. Hence, we have used Kinect sensor 

which provides us with the depth of a particular point in the frame and thus we can build 

point cloud easily.   

3.2.1 Normal of Point in Point Cloud   

 

Figure 3.6 Normal of point in point cloud using PCL [11] 
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A point normal is also referred to as a surface normal because it shows the orientation of 

the surface where the point resides on. As described in point cloud library documentation 

[11], finding the normal of a point is approximating normal of a surface tangent plane. 

So, basically the normal of a point is described as, 

�⃗⃗�  =  𝑎𝑖 ̂ +  𝑏𝑗̂  +  𝑐�̂�   OR   �⃗⃗�  =  [𝑎, 𝑏, 𝑐] 

Point normal shows the direction of the tangent to the surface where that point is located. 

The same concept can be applied to surface normal which we will see in the next few 

topics. The surface normal is more important to this thesis as we have used surface 

normals in surface unification process. The determination of surface normal and surface 

construction is not a part of this thesis. We have used the KinectFusion [5] algorithm to 

generate surface reconstruction and surface normal. It is provided in the form of a one or 

two-dimensional array with the surface indices. In this thesis, we have used point cloud 

library to determine normal of the mesh surface and KinectFusion for surface 

reconstruction, and reconstructed surface normal prediction. 

3.3 Search Space as a Logical Layer 

In game AI, the physical layer is something you can interact with. Although computer 

games are virtual, and it does not have existence in the real world because they only exist 

in computer memory. The physical layer of the game involves an agent that can also see 

and interact with the game environment. For example, 3D or 2D models used in games. 

On the other hand, the logical layer is something the agent cannot see or interact with. 

For example, search space representation. Even though the logical layer exists with the 
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physical layer, it is only used in computation. The physical layer provides the context for 

agents and the logical layer provides the context for computation. 

As shown on figure 3.7, the game world is the base and the rest of the layers are set on 

top of it. Wherever game designers want AI interaction, they have to implement a logical 

layer. In this thesis, we have worked on a logical layer of this aspect, especially the graph 

representation.        

 

Figure 3.7 Hierarchy of different layers  

The logical layer is also made of two parts, logical representation layer, and logical 

computational layer.  

The logical representation layer is used for representation and understanding, such as 

search space. In some cases, search spaces are not used in the logical computational 

layer. For example, in grid search space, the actual grid representation is used only for 

game designers to give them a better understanding of the environment, but its logical 
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computation layer is only used for game AI computation. The logical representation and 

computation layer of navmesh are both used during game AI computation. These layers 

are merged to create a whole game and pathfinding experience. 
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CHAPTER 4 

Thesis Approach and Explanation  

4.1 Surface Unification 

The 3D reconstruction algorithms like KinectFusion [5] builds a surface of the 3D scene. 

The surface unification process can be applied to those surfaces that are built up. The 

problem with 3D reconstruction algorithms is that, its output is not suitable for game AI 

pathfinding. It generates a dense mesh from a small 3D scene. That much detail is 

unnecessary as a search space in pathfinding. Surface unification solves this problem and 

generates a less dense navmesh. The next few paragraphs discuss some parts of Microsoft 

Kinect, but for more details, refer to chapter 5.  

4.1.1 Different Surface Types 

The KinectFusion [5] has generated the meshed 3D reconstructed surfaces. The 

generation of navmesh depends on surface and surface normal. As discussed in the 

previous topic, surface normal is derived using point cloud library [11]. For example, if a 

surface plane (which is also a small mesh in a large mesh network) S1 has normal vector 

N1 and surface plane S2 has normal vector N2.  

For surface S1,  𝑁1⃗⃗⃗⃗  ⃗ = 𝑎1𝑖̂ + 𝑏1𝑗̂ + 𝑐1�̂� 

For surface S2,  𝑁2⃗⃗⃗⃗  ⃗ = 𝑎2𝑖̂ + 𝑏2𝑗̂ + 𝑐2�̂� 

The angle between two surface normal vectors is defined as the Angle of Surface 

Unification. The angle of surface unification is different for every single consecutive pair 
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of meshes [19] in 3D reconstruction. The angle of surface unification between two 

normal vectors is defined as, 

∅ = cos−1(
𝑁1⃗⃗⃗⃗  ⃗ .  𝑁2⃗⃗⃗⃗  ⃗

‖𝑁1⃗⃗⃗⃗  ⃗‖ .  ‖𝑁2⃗⃗⃗⃗  ⃗‖
) 

Where, 𝑁1⃗⃗⃗⃗  ⃗ .  𝑁2⃗⃗⃗⃗  ⃗ = 𝑎1. 𝑎2 + 𝑏1. 𝑏2 + 𝑐1. 𝑐2 

 ‖𝑁1⃗⃗⃗⃗  ⃗‖ =  √𝑎12 + 𝑏12 + 𝑐12 

‖𝑁2⃗⃗⃗⃗  ⃗‖ =  √𝑎22 + 𝑏22 + 𝑐22 

The angle of surface unification ∅ is discussed more in the Experiment and Result section 

but for now, it is important to look at different cases of surface orientation. 

 

Figure 4.1 Concave surface orientation 

There can be three possible surface orientations: Concave, convex and flat. The concave 

orientation has nothing to do with a convex polygon of mesh in navmesh; it is just a type 

of surface structure and orientation relative to other meshes. As shown in Figure 4.1, the 
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angle of surface unification generated by a concave surface orientation will be between 0 

and 180 degrees.  

0° <  ∅𝑐𝑜𝑛𝑐𝑎𝑣𝑒   ≤   180°  

As shown in Figure 4.2, the angle of surface unification generated by a convex surface 

will also be between 0 and 180. 

0° <  ∅𝑐𝑜𝑛𝑣𝑒𝑥   ≤   180° 

Concave and convex surfaces are handled in different ways which we will examine in the 

next few topics.  

 

Figure 4.2 Convex surface orientation 

Surface Unification algorithm is required for all kinds of surface orientations, but a flat 

surface is directly eligible for the convex test. The flat surface has 0 angle of surface 

unification which means it is ready for unification and can be directly transferred for the 

convex test. As shown in figure 4.3, the angle of surface unification is 0. 
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∅𝑓𝑙𝑎𝑡 = 0 

 

Figure 4.3 Flat surface orientation 

4.1.2 Surface Unification without Registration 

Surface unification algorithms are divided into two different categories: With 

registration, and without registration, but we have focused more on the without 

registration case. Microsoft Kinect gives depth data as a frame. Each pixel in the frame 

represents the depth of a particular pixel related to its RGB frame. We have constructed 

the point cloud frame using Microsoft Kinect depth data. We will see more details about 

depth data, Microsoft Kinect and point cloud generation in the Experiment and Result 

section. In this method, registration is not required, so surface unification is run on every 

frame. To compute surface unification on every single frame is not feasible so it is used 

as a base concept and sometimes used during research work. As shown in Figure 4.4, 

point cloud frame is a 480 * 640 * 3, 3-dimentional array, which holds x, y and z 

coordinates of each frame pixel respectively. We have used 640 * 480-pixel frame from 
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Microsoft Kinect, if it is in another resolution, then point cloud frame is made of that 

dimension. The dimension does not matter as they simply show the size of the array. 

 

Figure 4.4 Point cloud frame 

The format of point cloud frame is described below; each index holds a depth in 

millimeter.  

𝑋𝑟𝑜𝑤 𝑐𝑜𝑙𝑢𝑚𝑛 

KinectFusion [5] used Microsoft Kinect depth data to build point cloud then to build a 3-

dimensional surface reconstruction. We have used depth data to build point cloud and 

passed this point cloud to KinectFusion. Before reconstruction we extract each surface 

reconstruction frame for the surface unification process. We do not need full 

reconstruction as it is similar to the physical layer of search space. The array index is 

used as an index of each point in the point cloud. Figure 4.5 shows the intermediate 
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output of KinectFusion [5]. The dimension of each surface reconstruction frame is also 

the same as each respective point cloud frame without registration case and hence, it is 

also 480 * 640 pixels. The surface reconstruction frame is only a two-dimensional array 

as it is just showing the mesh of a particular scene frame. KinectFusion generates only a 

three-vertex triangular mesh. As you can see from Figure 4.5, a particular number is 

repeated only three times. Note that this is not an actual reconstruction frame and is only 

being used as an example.  

 

Figure 4.5 Surface reconstruction frame from KinectFusion [5] 

The number on each cell shows the index of the polygon, and as it is a triangular 

polygon, three vertices are part of each polygon. For example, index (1, 1), (1, 2) and (2, 

1) shows a polygon with index 1, and it is located at location (1, 1), (1, 2) and (2, 1) on 

the frame. This can only be possible without the registration process as it processes each 

frame during surface unification. 
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Figure 4.6 shows, the surface normal of each polygon. The surface normal collection is a 

two-dimensional array in which the first column shows an index of each mesh and the 

consecutive three columns show the x, y and z components of the normal vector. Again, 

the numbers used in this image are only for example purposes. 

 

Figure 4.6 Surface normal collection 

In the surface reconstruction frame, each cell has a list of participating points from point 

cloud in mesh building. That list is sorted and represents indices of the polygon. We have 

converted the surface reconstruction frame in such a way that each pixel in the surface 

reconstruction frame is matched with exactly the same pixel in point cloud frame. The 

surface unification algorithm uses that list of participating points and its corresponding 

polygon indices to unify the surface. The intermediate list of participant polygon indices 

can have a minimum of one element and maximum as much as needed. There is a simple 

process for extracting comma separated values which has been implemented.  
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The surface reconstruction frame and surface normal collection are very important for the 

surface unification process. Below is the algorithm for surface unification without 

registration frame.  

Algorithm SurfaceUnification 

 Input: double surfacerecon[][], surfacenorm[][] 

 Output: surfaceunify[][] and surfacenormunify[][] 

 

inter[] 

while i < surface_unification_index do 

 for j = 1 to 480 step 1 do 

  for k = 1 to 640 step 1 do 

   inter <- list_extract(surfacerecon[j][k]) 

   if inter.length == 1 then  

    surfaceunify[j][k] <- inter[0] 

surfacenormunify[j][k] <- find(inter[0],          

surfacenorm) 

   else 

  for d = 0 to inter.length step 1 do 

    if ∅(inter[d], inter[d+1]) < ∅𝑡𝑒𝑠𝑡, ∅𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 

     nextindex <- mesh.next 

     surfaceunify[j][k] <- nextindex 

surfacenormunify[nextindex][] <-        

average(find(inter[d],surfacenorm), 

find(inter[d+1],surfacenorm)) 

    else 

     surfaceunify[j][k] <- inter[d] 

surfacenormunify[nextindex][] <-

find(inter[d],surfacenorm) 

   end if 

   end if 

   end for 

  end for 

 end for 

end do 

The single dimensional array named inter used in the algorithm is responsible for holding 

the intermediate list of participant polygon indices. The two-dimensional arrays 

surfacerecon and surfacenorm holds the surface reconstruction frame and reconstructed 

surface normal respectively. This algorithm gives two two-dimensional arrays named 
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surfaceunify and surfacenormunify which holds new unified logical surface structure. It 

holds only logical level information because it does not have any relation with the 

original surfacerecon and surfacenorm arrays, and it also does not interact with physical 

layer arrangements.  

The ∅𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  is a function which represents angle of surface unification. The ∅𝑡𝑒𝑠𝑡  is 

determined after a couple of experiments and testing and will be discussed more in the 

next chapter. The angle of surface unification function takes two vectors as arguments 

and returns the angle between them in degrees. There is one more function that is used 

called average, which takes two vectors as an argument and returns their average.  

One of the important concepts we have used in the surface unification algorithm is 

surface unification index. Surface unification index simply shows the number of times we 

need to run the surface unification procedure. If the surface unification index is 1, then 

the surface unification procedure only runs once.  

As we are combining polygons, it is not guaranteed that the resulting polygon will remain 

convex after the unification process. Hence, we run a convex test to check that the 

polygon will remain convex, but as we keep discarding on bases of the convex test, we 

cannot merge enough polygons to generate meaningful search space. To eliminate this 

problem, we have introduced surface unification index.  

It might be possible that the updated polygon in surfaceunify metrics can merge with 

another neighboring updated polygon. After each iteration of the surface unification 

process, the number of polygons in the scene will be reduced. It is also not recommended 

to put a very high number as the surface unification index because as we are merging and 
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averaging surface normal vectors, it is quite possible that the number of polygons is so 

reduced that pathfinding will not be effective anymore. It is important to find a balance 

between the surface unification index and the pathfinding approach in generated 

navmesh. 

The worst case time complexity of this algorithm is Ο (𝑗𝑘𝑑), where j represents the 

height of the surface reconstruction array, k is the width of the surface reconstruction 

array and d is the length of the intermediate list of participant polygon indices array. The 

j and k are part of the first nested loop which parse 2-dimentional array and d is counter 

for one dimensional array. Normally, 𝑗 ≠ k and 𝑑 ≪≪ 𝑗, 𝑘.   

4.1.3 Surface Unification with Registration  

Registration is a process of combining a two-point cloud frame into a one-point cloud 

frame.  

 

Figure 4.7 Registration using point cloud library [11] 

As shown in Figure 4.7, similar points in different frames are recognized and then 

combined in same point cloud. Registration algorithms combine each frame data into a 

single set of separate data store because when frames update the content, it overwrites on 

top of old data. Surface unification process changes in a dramatic way when we consider 

registration because we cannot process raw frames in the case with registration.  
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The first major change will come to point cloud, as there will be no separate point cloud 

frame available. It will all combine to one single file which has an ordered list of all 

points in point cloud with its respective x, y and z coordinates. The surface reconstruction 

is also built accordingly. We have not used this approach in our thesis, but it is important 

to mention as a future work. 

4.2 Convex Test 

The convex polygon is a polygon having all internal angles less than 180 degrees. If it 

does not, then it is called as a non-convex polygon. As we have seen previously, navmesh 

needs all of its polygons to be convex.  

The surface unification algorithm tries to reduce the number of polygons in three-

dimensional reconstruction and makes it more suitable for search space generation. 

During the unification process, similar or less than the threshold angle of surface 

unification polygons are combined and merged into a single polygon. 

 

Figure 4.8 [Left] convex polygon [Right] non-convex polygon 
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The surface unification algorithms guarantee the unification of similar or threshold 

meshes but it does not guarantee that every polygon is convex. It is required to run 

convex tests before confirming the result of surface unification. This test ensures that a 

newly unified polygon is convex, otherwise it will discard the unification and fall back to 

the previous stage. 

 Algorithm ConvexTest 
Input: double surfacerecon[][], pointcloud[][], 

surfaceunify[][] 

 Output: boolean value showing true or flase 

check <- convex_test_value 

check_arr[][] 

Point a[][] 

same <- true; positive, negative 

for j = 0 to 480 step 1 do 

 for k = 0 to 640 step 1 do 

  check_arr = find(check, surfacerecon[][]) 

 end for 

end for 

for x = 0 to check_arr.length step 1 do 

 a = findcoordinate(check_arr[x][0],check_arr[x][1]) 

end for 

while allpoint ∈ a  
for y = 0 to a.length step 1 do 

 cx1 = a[y+1][1] – a[y][1] 

 cx2 = a[y+1][2] – a[y][2] 

 cx3 = a[y+2][1] – a[y+1][1] 

 cx4 = a[y+2][2] – a[y+1][2] 

 product = cx1*cx4 – cx2*cx4 

 if product < 0 

 negative  = true 

 else if product > 0 

  positive = true 

 if positive && negative = true 

 return false 

 end if 

return true   

end do 

The convex test algorithm is the combination of convex test and data extraction. The first 

half of the algorithm works as a search agent and finds desired values in surfacerecon, 
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pointcloud, and surfaceunify matrices. The method called find will find the desired 

indices of mesh in the surfacerecon matrix with the given convex test value. For example, 

if someone wants to check mesh 4, then convex test value will become 4 and pass it to 

find and find will return all the occurrences of mesh 4 in surfacerecon. The 

findcoordinate procedure finds a three-dimensional point in the pointcloud matrix related 

to its mesh index returned by the find method. The convex test checks for every 

consecutive pair of three points of the polygon. The convex test returns Boolean values 

which are processed by the surface unification procedure. The implementation of the 

convex test in this thesis is somewhat greedy from the algorithmic perspective. If the 

immediate result of convex test is false, then the surface unification process discards the 

changes. It is quite possible to wait until a few more polygons are merged in and it may 

become convex. The worst case time complexity of convex test is Ο (𝑗𝑘)  where j 

represents the height of the surface reconstruction array, k is the width of the surface 

reconstruction array. The j and k are part of the first nested loop which parse 2-

dimentional array where 𝑗 ≠ k. 

 

Figure 4.9 Greedy behavior of convex test 
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As shown in Figure 4.9, three different polygons are connected with each other, and each 

polygon is convex by itself.  

According to surface unification and the convex test, both cases shown in Figure 4.10 

will fail as the resulting polygon is not convex. The example shows a special case of 

unification where convex test’s greedy behavior stands out. It might be possible that this 

case would not come during unification. 

 

Figure 4.10 Left: Mesh 1 & 3 Merge Right: Mesh 1 & 2 Merge 

The resulting polygon after the unification of all three polygons is also convex as shown 

in Figure 4.11.  
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The convex test will not wait until all of the polygons merge because it is called on every 

polygon unification. It is like a tradeoff between efficiency and getting the best result. If 

it waits for a certain time, then the process will become very time-consuming, and if it 

doesn’t, then we might not get the best result. It is up to the developers of the process to 

decide how it should be implemented. 

 

Figure 4.11 Convex polygon after surface unification 

4.3 Search Space Generation 

The last key substance of this thesis is the search space generation procedure which 

makes the whole thesis meaningful and relevant. The procedures developed to this point 

are mainly providing a high level framework to do search space generation calculation. 

Search space generation calculation will produce an adjacency list or adjacency matrix, 

which is one form of graphs, which in turn are a low-level representation of search space. 

Essentially, an adjacency list is a space efficient form of the adjacency matrix, so it does 

not matter from a research perspective what the output is, but it may affect 
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implementation, although conversion from adjacency matrix to adjacency list is simple. 

Figure 4.12 shows how all procedures work together.  

 

Figure 4.12 Flow chart of whole process 

The total number of meshes available in a 3D scene is determined by the last number of 

the mesh index. The search space generation algorithm generates an adjacency matrix 

first and then converts it to an adjacency list. The adjacency matrix is a square matrix and 
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shows connectivity between two elements. In this case, the elements are nodes and 

connectivity between them will become edges. The SearchSpaceGen algorithm is 

responsible for creating the adjacency matrix and the MatrixToList algorithm is 

responsible for creating the list from the matrix. 

Algorithm SearchSpaceGen 

 Input: double surfaceunify[][],surfacenormunify[][] 

 Output: Adjacency Matrix searchspace[][]  

intermediate[] 

i <- 0 

searchspace[lastmeshindex][lastmeshindex] 

for j = 0 to 480 step 1 do 

 for k = 0 to 640 step 1 do 

  if newdata(surfaceunify[j][k]) > 0 

   for x = 0 to intermediate.length step 1 do 

    for y = x+1 to intermediate.length step 1 do   

    searhspace[intermediate[x]][intermediate[y]] <- 

intermediate[y] 

    searhspace[intermediate[y]][intermediate[x]] <- 

intermediate[y] 

    end for 

   end for 

  end if 

 end for 

end for 

The search space generation algorithm uses the surfaceunify matrix which is the result of 

the surface unification process. The function newdata searches in the surfaceunify matrix 

and store data on each cell to the intermediate matrix. The intermediate is a single 

dimensional array which holds information about cell connectivity. The surfaceunify 

holds the same data as surfacerecon.  

The worst case time complexity of search space generation is Ο (𝑗𝑘) where j represents 

the height of the surface unification array, k is the width of the surface unification array. 

The j and k are part of the first nested loop which parse 2-dimentional array where 𝑗 ≠ k. 
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Each cell in surfaceunify holds the list of connected polygons, sometimes a single 

element, which represents a point inside the polygon, and sometimes multiple elements, 

which represents a point on an edge. The points on the edge have a connection with other 

polygons, which is represented by unordered pairs of listed elements. The adjacency 

matrix is normally represented as true or 1 as a connection and false or 0 as no 

connection, but here we have put the column number instead of 1 or true. The concept of 

an adjacency matrix is discussed more in section 3.1. 

Algorithm MatrixToList 

 Input: double searchspace[][] 

 Output: Adjacency List adjlist 

List adjlist[lastmeshindex] 

i <- 0 

for j = 0 to searchspace.length step 1 do 

 for k = 0 to searchspace.length step 1 do 

  adjlist.add(j) 

  if searchspace[j][k] ≠ 0 && i >= lastmeshindex   
   adjlist[i].add(searchspace[j][k]) 

  end if 

 end for 

i++ 

end for 

The MatrixToList procedure converts the adjacency matrix into an adjacency list. We 

have used an array of lists to implement the adjacency list. Each cell in the array holds 

the first list member and add method adds new elements to the list. The following 

diagram shows the whole processing pipeline for search space generation.  

The worst case time complexity of search space generation is Ο (𝑛2) where n represents 

the dimension  of search space array which is square array of n elements. It is required to 

parse whole array hence we have implemented double nested loop.  
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Figure 4.13 Pipeline of entire process 

The adjacency matrix contains the number of columns if there is an edge between two 

meshes, else 0. 

4.4 Example of Whole Pipeline 

This section shows example of start to end pipeline processing. As shown in figure 4.14, 

scene of flat wall was perceived using Microsoft Kinect. 

 

Figure 4.14 Flat wall scene as an input 

The figure 4.15 shows depth map of figure 4.14 scene. The point cloud is created using 

Kinect generated depth map. The generated point cloud is passed to KinectFusion 
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algorithm and output is shown in figure 4.16. The 3D reconstructed surface is made with 

triangular meshes and shown in figure 4.17. It is quite big mesh so we have considered 

blue outlined portion for this example. The output of Kinect fusion is forwarded to 

surface unification process.   

 

Figure 4.15 Depth map of figure 4.15 

 

Figure 4.16 KinectFusion output of figure 4.15 
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Figure 4.17 3D reconstruction mesh 

 

Figure 4.18 First cycle of surface unification with convex test 
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Figure 4.18 shows the first two polygons considered for unification. Once they are 

unified, convex test will check convexity of generated polygon. In this case, it will return 

true and process goes on. As shown in figure 4.19, The first iteration of surface 

unification and convex test will generate red block as shown in the diagram. After 

processing whole frame the output will pass to search space generation procedure which 

will generate adjcency matrix and then adjacency list. 

 

Figure 4.19 First iteration of surface unification with convex test 

 



 

 55   

 

CHAPTER 5 

Experiments and Results  

5.1 Microsoft Kinect 

Microsoft Kinect is a depth sensor which can get the depth data along with visual data. 

Normal cameras which are often called RGB sensors can only perceive visual 

information in the form of pixels. Each pixel is made of different values of Red, Green 

and Blue respectively. The picture taken by an RGB sensor is a 2D representation of a 3D 

world. The world coordinate is converted to camera coordinate and camera coordinates 

are converted to frame coordinates using various translation, rotation and projection 

techniques. One of the major problems in visual processing is to determine the depth of a 

particular pixel using camera intrinsic and extrinsic parameters. Pinhole model can help 

to get the depth of a particular frame pixel but it requires minimum two points, intrinsic 

and extrinsic parameters. 

 

Figure 5.1 Microsoft Kinect as a depth sensor [12] 
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The frame pixel is made of two coordinates x and y, but a point in the scene is made of 

three coordinates x, y and z. The RGB-D sensors on other hand, provides direct depth 

data using IR light emitters. So, there is no processing required to get depth of any pixel 

of the frame because Microsoft Kinect gives depth in millimeters.  

The IR emitter in Kinect sensor transmits previously known pattern of IR dots and IR 

receiver receives that dot pattern. The difference in position of IR dots are considered and 

depth data is calculated.  

 

Figure 5.2 Kinect depth data 

As shown in the Figure 5.2, depth data is represented in pixel value of perceived image. 

The diagram shows 640 * 480 pixel frame and each pixel has its depth in millimeters. It 
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is quite easy to build the point cloud using depth data. The x and y coordinates can be 

determined using pinhole model and z coordinate using perceived depth data. Microsoft 

Kinect has many versions but we have used Microsoft Kinect XBOX 360 in this thesis. 

Each version has minor changes in its capabilities [20].  

5.2 System Specification 

The minimum requirements for the experiment depends upon the selection of Microsoft 

Kinect Device. The hardware and software requirements are listed below. 

Operating System Windows 7 

Software Development Kit Kinect for Windows SDK 

Table 5.1 Software requirement for Kinect 

Processor 

32-bit(x86) or 64-bit(x64) processor 

Dual Core 2.66 GHz or faster 

Connectivity Dedicated USB 2.0 

RAM 2 GB RAM 

Table 5.2 Hardware requirement for Kinect 

Microsoft has released Kinect for Windows SDK for easy access to all Kinect-related 

functions and libraries. Although, Kinect can be programmed with other third party SDKs 

like OpenNI and OpenKinect, this thesis has used Kinect for Windows SDK because its 

implementation is in C#.NET language and we have also implemented experiments in 

C#.NET.  
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The field of view for Kinect is 43 degrees vertical and 57 degrees horizontal. The range 

of depth sensing is 80 cm minimum to 4-meter maximum. The newer versions have near-

view option which can sense the nearest 40 cm. 

5.3 Experiment Design 

The experiments are designed in such a way that four main concepts, surface unification, 

convex test, search space matrix generation and matrix to list conversion are covered. 

The experiments are performed first on example dataset. The next step of experiments is 

divided into two subcategories: With obstacle and without obstacle. The implementation 

of the experiments needs good lighting conditions as we are working with Microsoft 

Kinect and KinectFusion algorithm. The Microsoft Kinect is already calibrated so we 

have skipped the calibration procedure. The experiment setup is different for each case 

and it will not affect end results, as all point cloud and surface reconstruction calculations 

are relative to the chosen coordinate system. In this experiment, a table with the 

dimension of 3.50 ft * 2.25 ft * 2 ft (length * width * height) and a box with the 

dimension of 1 ft * 1 ft * 0.50 ft (length * width * height) have been used. The table acts 

as a flat surface and a box acts as an obstacle. 

The result of search space generation is dependent on the 3D reconstruction algorithm 

because our proposed method uses the output of the 3D reconstruction algorithm as an 

input for the processing pipeline. As we have not considered the case with registration, 

sometimes the 3D reconstruction algorithm produces a reconstruction with holes meaning 

that the scene is discontinued from the search space perspective. We cannot consider a 

hole as an obstacle because even obstacles have search space. We have treated obstacles 

as a region of movement. This is the main reason we have removed a portion from the 



 

 59   

 

original scene and found the best reconstruction without holes. As the experiments were 

performed under a controlled environment, it is easy to find blocks of 100 * 100 pixel in 

reconstruction. 

5.3.1 Example Dataset 

The example dataset is specifically made for this experiment. The special reconstruction 

of 9 points (3 * 3 reconstruction matrix) and corresponding normal collection is used. 

These points are not recorded using Microsoft Kinect but used same as other recorded 

points. As show in below Figure 5.3, 9 points of point cloud are reconstructed using 

triangular mesh.  

 

Figure 5.3 Reconstruction mesh of example data 

The Table 5.3 is the reconstruction matrix of example dataset.   

1 1,2,3 3,4 

1,2,5 2,3,4,5,6,7 4,7,8 

5,6 6,7,8 8 

Table 5.3 Reconstruction matrix for example dataset 
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5.3.2 Scene without Obstacle 

 

Figure 5.4 Experiment Setup for obstacle-free scene 

The obstacle-free scene is arranged in such a way that the table acts as a wall and covers 

the whole frame. We have taken a portion of 100 * 100 pixel from the input from 640 * 

480. The reason for sampling has been explained in previous topic 3.2. As shown in the 

Figure 5.5, the 3D reconstruction with mesh shown acts as an input for our pipeline. We 

have only used the first 100 pixels to the generate search space.  
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Figure 5.5 3D reconstruction Left: textured Right: meshed 

5.3.3 Scene with Obstacle 

 

Figure 5.6 Experiment Setup for obstacle scene 

The obstacle scene is arranged in such a way that the depth-conceivable side of the 

obstacle always remains facing the Kinect (i.e. the side with the greatest surface area). As 
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such, the orientation of the obstacle does matter during the experiment. We haven’t used 

top view as an input although top view produces reconstruction without any holes. The 

reason for this is because we want to demonstrate the capability of search space 

generation procedures which can generate search space on obstacles too. Hence, we have 

set up Kinect at different elevations.  

The height of the object also affects the output. Thus, we haven’t used thin objects as an 

obstacle. The proposed method does not use any vision-based obstacle detection 

algorithms, hence, it cannot detect obstacles with very low height. We have used 

reconstruction parameters like angle between two polygons to differentiate between 

obstacle and non-obstacle space.  

This reconstruction parameter-based technique has heavy dependency on quality of 

reconstruction. If the reconstruction has lots of error or noise, the generated search space 

will also be affected by it. For example, if reconstruction is not smooth or a flat surface 

has bumps on it, search space generation treats them as obstacles and produces different 

search space for it.  

 

Figure 5.7 3D reconstruction Left: textured Right: meshed 
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5.4 Results 

The result section displays and discuss results gathered by all experiments. This section 

divided into three section – example dataset, obstacle-less scene and obstacle-based 

scene. The results for obstacle-less scene is recorded from single viewpoint as different 

viewpoint does not affect results. The obstacle-based scene is experimented from two 

different viewpoints. All experiments are performed with two different values of surface 

unification index. The result section also contains time to execute two major procedures – 

surface unification with convex test and search space generation with matrix to list. 

5.4.1 Example Dataset 

∅𝑡𝑒𝑠𝑡 ∅𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 Surface 

Unification 

Index 

Number of 

Polygons 

before 

Unification 

Number of 

Polygons 

after 

Unification 

Number of 

Disjoint 

Meshes 

0 30 1 8 8 1 

5 30 1 8 7 1 

10 30 1 8 6 1 

15 30 1 8 6 1 

20 30 1 8 4 1 

25 30 1 8 3 1 

Table 5.4 An example dataset results 
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The example dataset is created in such a way that normal collection has random normal 

distribution. The normal vector of any polygon is assigned as it has made angle less than 

30 degrees with its neighbor polygon’s normal. 

As shown in Table 5.4, all values of ∅𝑡𝑒𝑠𝑡 and  ∅𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 are in degrees. The example 

dataset does not have any normal whose angle of surface unification is more than 30 

hence, there is only one generated search space.  

∅𝑡𝑒𝑠𝑡 ∅𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 Surface 

Unification 

Index 

Number of 

Polygons 

before 

Unification 

Number of 

Polygons 

after 

Unification 

Number of 

Disjoint 

Meshes 

0 30 2 8 8 1 

5 30 2 8 7 1 

10 30 2 8 6 1 

15 30 2 8 5 1 

20 30 2 8 3 1 

25 30 2 8 1 1 

Table 5.5 An example dataset results with different index 

The above Table 5.5 shows results with search space unification index is equals to 2. As 

you can see, on second run the 25-degree case is converted into single polygon. As 

number of  ∅𝑡𝑒𝑠𝑡 increases the change with higher index is also increases.  
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Above graph shows comparison between two different surface unification index for 

example dataset. Table 5.6 shows execution time for example dataset experiment. 

∅𝑡𝑒𝑠𝑡 Surface Unification 

+ Convex Test 

Search Space 

Generation 

0 0.005 0.003 

5 0.004 0.003 

10 0.004 0.002 

15 0.004 0.002 

20 0.004 0.002 

25 0.004 0.002 

Table 5.6 Execution time for example dataset 
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5.4.2 Scene without Obstacle 

∅𝑡𝑒𝑠𝑡 ∅𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 

Surface 

Unification 

Index 

Number of 

Polygons 

before 

Unification 

Number of 

Polygons 

after 

Unification 

Number of 

Disjoint 

Meshes 

0 30 1 10,106 890 1 

5 30 1 10,106 768 1 

10 30 1 10,106 417 1 

15 30 1 10,106 158 1 

20 30 1 10,106 124 1 

25 30 1 10,106 107 1 

Table 5.7 Scene without obstacle 

We have considered 100 * 100 block in reconstruction matrix. Assume the reconstruction 

algorithm gives accurate reconstruction without any noise. In that case, the number of 

polygons available in a 100 * 100 pixel block will be almost 10,000 or more than that. 

The table 5.7 shows results for a scene without obstacle with various selections of angle 

of surface unification.  

As you can see, the number of angle of surface unification rises, the number of polygons 

unified is decreasing which is considered a good sign from pathfinding aspect. It also 
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means that the ability to detect small distortion in reconstruction or ability to detect small 

objects is also low with a high value of ∅𝑡𝑒𝑠𝑡. 

The convex test rejection is simply showing the number of rejection for failure to be 

convex after unification, which is directly proportional to the number of polygons 

generated after unification. The surface unification index is 1 throughout the whole 

experiment. The higher number may generate better search space by reducing the number 

of polygons but it will also add a tremendous amount of time complexity (almost times 

the index of unification!) 

The time to run this experiment depends upon the angle of reconstruction, reconstruction 

quality and 3D scene arrangement.  

∅𝑡𝑒𝑠𝑡 Surface Unification 

+ Convex Test 

Search Space 

Generation 

0 0.23 0.19 

5 0.25 0.17 

10 0.19 0.21 

15 0.20 0.22 

20 0.21 0.21 

25 0.22 0.20 

Table 5.8 Execution time for each segment of execution pipeline 
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As shown in Table 5.8, the execution time for each process is different as they are 

processing different sizes of matrices. The highest was taken by surface unification and 

convex test. We have calculated the combined time for surface unification and convex 

test because convex test is called after every unification.  

The ∅𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 for this scene is 30 degrees which means if the angle of surface unification 

is 30 or more, it will detect it as an obstacle and separate the search space. This 

experiment does not have any angle of surface unification more than 30 so it has only one 

search space. The different values for surface unification index can affect execution time. 

The table 5.5 shows results for surface unification index equal to 2. 

∅𝑡𝑒𝑠𝑡 ∅𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 

Surface 

Unification 

Index 

Number of 

Polygons 

before 

Unification 

Number of 

Polygons 

after 

Unification 

Number of 

Disjoint 

Meshes 

0 30 2 10,106 885 1 

5 30 2 10,106 692 1 

10 30 2 10,106 385 1 

15 30 2 10,106 158 1 

20 30 2 10,106 127 1 

25 30 2 10,106 101 1 

Table 5.9 Scene without obstacle for different surface unification index 
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It is important to notice that the number of polygons after the second iteration of 

unification has decreased. As the angle of surface unification increases, the rate of 

decrement in the number of polygons after unification also increases, but since it 

increases the time for execution, it is not advised to increase more than 2 or 3. 

5.4.3 Scene with Obstacle 

The scene with obstacle is 640 * 480 pixels and has two different planes, one that the 

obstacle resides on and another that the table resides on. As shown in table 5.10, the 

number of disjoint meshes shows how many different search spaces (separated meshes) 

are generated from the scene. As we have discussed earlier, the search space generation 

pipeline generates search space on obstacles as well because the detection of obstacles is 

based on the angle of surface unification. As we have increased the angle of surface 

unification, the number of polygons generated is decreasing, which also means the ability 

to ignore the obstacle or distortion increases. 
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∅𝑡𝑒𝑠𝑡 ∅𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 Surface 

Unification 

Index 

Number of 

Polygons 

before 

Unification 

Number of 

Polygons 

after 

Unification 

Number of 

Disjoint 

Meshes 

0 50 1 307840 62375 21 

5 50 1 307840 52257 21 

10 50 1 307840 46348 21 

15 50 1 307840 42522 21 

20 50 1 307840 30254 21 

25 50 1 307840 25698 21 

35 50 1 307840 18666 21 

40 50 1 307840 12650 21 

Table 5.10 Scene with obstacle from first point of view 

∅𝑡𝑒𝑠𝑡 ∅𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 Surface 

Unification 

Index 

Number of 

Polygons 

before 

Unification 

Number of 

Polygons 

after 

Unification 

Number of 

Disjoint 

Meshes 

0 50 2 307840 60751 21 

5 50 2 307840 51244 21 
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10 50 2 307840 46300 21 

15 50 2 307840 40252 21 

20 50 2 307840 25124 21 

25 50 2 307840 22458 21 

35 50 2 307840 14588 21 

40 50 2 307840 8544 21 

Table 5.11 Scene with obstacle from first point of view with different index 

 

The above graph shows relation between different surface unification index results. As 

you can see from graph, as angle of surface unification increases, the number of unified 

polygons are decreasing. The number of unified polygons with index equals to 2 is less 

compared to polygons with index equals to 1  
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∅𝑡𝑒𝑠𝑡 ∅𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 Surface 

Unification 

Index 

Number of 

Polygons 

before 

Unification 

Number of 

Polygons 

after 

Unification 

Number of 

Disjoint 

Meshes 

0 50 1 307764 65642 19 

5 50 1 307764 57758 19 

10 50 1 307764 51477 19 

15 50 1 307764 42106 19 

20 50 1 307764 36758 19 

25 50 1 307764 28445 19 

35 50 1 307764 19984 19 

40 50 1 307764 14446 19 

Table 5.12 Scene with obstacle from second point of view 

∅𝑡𝑒𝑠𝑡 ∅𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 Surface 

Unification 

Index 

Number of 

Polygons 

before 

Unification 

Number of 

Polygons 

after 

Unification 

Number of 

Disjoint 

Meshes 

0 50 2 307764 64524 19 

5 50 2 307764 56878 19 
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10 50 2 307764 51210 19 

15 50 2 307764 40254 19 

20 50 2 307764 34856 19 

25 50 2 307764 25476 19 

35 50 2 307764 16214 19 

40 50 2 307764 12878 19 

Table 5.13 Scene with obstacle from second point of view 

 

The table 5.12 shows the results from the second point of view which means the location 

of Kinect is shifted to a different point. There are no changes in scene arrangements or 

the surrounding environment. As shown in above graph, there is not much difference 

between first view point and second view point. 
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∅𝑡𝑒𝑠𝑡 Surface Unification Index = 1 Surface Unification Index = 2 

 Surface 

Unification + 

Convex Test 

Search Space 

Generation 

Surface 

Unification + 

Convex Test 

Search Space 

Generation 

0 0.59 0.48 1.08 0.98 

5 0.55 0.49 1.05 0.97 

10 0.52 0.42 1.25 0.98 

15 0.58 0.43 1.16 0.95 

20 0.59 0.46 1.19 0.91 

25 0.56 0.44 1.02 0.92 

35 0.47 0.49 1.04 1.01 

40 0.52 0.43 1.08 1.02 

Table 5.14 Execution time for each cycle for first view point 

∅𝑡𝑒𝑠𝑡 Surface Unification Index = 1 Surface Unification Index = 2 

 Surface 

Unification + 

Convex Test 

Search Space 

Generation 

Surface 

Unification + 

Convex Test 

Search Space 

Generation 

0 0.49 0.58 1.00 1.01 
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5 0.52 0.57 1.04 1.01 

10 0.50 0.55 1.02 1.02 

15 0.48 0.54 0.98 1.00 

20 0.51 0.52 1.03 1.02 

25 0.51 0.52 1.02 1.01 

35 0.51 0.48 1.00 0.99 

40 0.52 0.51 1.00 0.99 

Table 5.15 Execution time for each cycle for second view point 

The execution time for scene with obstacle is obviously higher than that of scene without 

obstacle. There are several holes in scene without obstacles but the arrangements of holes 

do not affect surface unification. Hence, we have considered the whole scene for 

experiment. 

The ∅𝑡𝑒𝑠𝑡 and ∅𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 are two main type of angle of surface unification used in these 

experiments. The ∅𝑡𝑒𝑠𝑡 is determining factor for unification and ∅𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 is responsible 

to detect obstacle. We have tested different values for ∅𝑡𝑒𝑠𝑡 and ∅𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒  to determine 

ideal values for the experiments. The values used in experiments are covering most of the 

possible configuration.  

5.5 Comparison 

The whole pipeline is unique in its implementation but the concepts used in each stage 

have correlation with other parallel research work. So, we can compare the other research 
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work with appropriate section of pipeline from this thesis. The one of the important such 

research wok had been done by Oliva and Pelechano. They have introduced an algorithm 

called ANavMG which is automatic navmesh generation algorithm.  

 

Figure 5.8 ANavMG with CPU and GPU performance 
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As we can see from Figure 5.8 and following graph, the ANavMG approach has 

incremental time with the amount of node it has processed but thesis approach is pretty 

much static with the total number of vertices. In this obstacle-less scene we have used 

static 100 * 100 image frame. Hence, the total number of polygons are static where as 

ANavMG’s input size is variable. The graph represent x-axis for polygons and y-axis for 

execution time. It looks like 417 polygons has huge drop but it is just slight change from 

0.42 to 0.40 seconds. 

 

There is one more paper which has compared different 3D scene triangle mesh generator 

algorithms in term of execution time [21]. Above graph shows execution time on y-axis 

in seconds. As we know, lower the time, better the algorithm is. Thesis approach has 

slight more execution time than divide and conquer method of uniform random 

triangulation.    
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CHAPTER 6 

Conclusion and Future Work  

6.1 Conclusion 

The thesis has explained and examined the concept of search space generation for 3-

dimensional reconstructed surfaces. It can only work with the near field 3-dimensional 

scene because of the limitations of Microsoft Kinect sensor as we have used it as an 

RGB-D sensor. We have reviewed and were inspired by several popular research works 

such as PTAM [18] and KinectFusion [5]. 

 

Figure 6.1 Gap between pathfinding and augmented reality  

As shown in Figure 6.1, pathfinding used in game artificial intelligence and augmented 

reality is used in various aspects of vision-based technologies. The field of interactive and 

immersive games is huge and covers both pathfinding and augmented reality concepts. 

There is however, a gap between pathfinding and augmented reality regarding developing 
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games. There is no existing framework for game developers such that they can apply 

knowledge of game AI to their projects, especially pathfinding. This thesis works as a 

bridge between these two fields and allows developers and designers to stretch existing 

knowledge of game AI to augmented reality. Through the concepts illustrated in this 

thesis, we can develop frameworks which can provide search space of 3D scenes in real 

time. Although we started this thesis by focusing on augmented reality as an application 

of the research, it may be used anywhere else depending on the requirements. 

We have introduced the concept of surface unification, which is a new way to combine 3-

dimensional reconstructed meshes. The next step in the process is a convex test which is 

a famous mathematical concept for checking convexity of a given polygon. The convex 

test we have implemented is configured for the whole processing pipeline. The next 

concept introduced was search space generation. It uses surface unification and convex 

test process to generate an adjacency list. The whole pipeline provides a base for search 

space generation framework. 

The thesis also includes a handful of examples and experiments. The thesis concepts are 

tested over several cases and demonstrate satisfying results. The experiment setup is 

predefined, and a controlled environment is used as it is a similar practice in research 

work. We have set up a small 3D scene with one table and a few obstacles. The table 

represents a flat surface where the navmesh will be generated, and obstacles act as a 

separation point. The presented approach considers obstacles as a point where two search 

spaces are disjointed—one for regular flat surface and one for obstacle surface. 
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6.1.1 Importance of the Thesis 

Immersive gameplay experience has become so important in recent days which is beyond 

our imagination. After the dawn of augmented reality and RGB-D sensor like Microsoft 

Kinect, the new direction of game design has opened. This kind of depth sensor was 

previously only available to researchers and enthusiasts but is now available in the 

consumer market. For example, Google has introduced Project Tango [22] which has 

built-in depth sensor which can do lots of new things that traditional mobile devices 

cannot do. At the current rate of technology advancements, the day when humans will 

have depth perception-enabled mobile device is not far off. This type of depth sensor 

makes augmented reality a lot easier. The current games on the market with augmented 

reality features use concepts of marker-based tracking to implement augmented reality. 

Although they have designed games in such a way that users feel it as a markerless 

augmented reality, but actually it is not. This thesis provides a framework to create 

markerless augmented reality which can generate search space, and thus it will make the 

whole game experience more immersive and realistic. 

6.2 Future Work 

There are lots of components of this thesis where we can bring improved version. The 

basic important future work will involve improvement of time and space complexity of 

presented algorithms. The surface unification, convex test, and search space generation 

all use array as the main data structure. It can be made more effective by using other data 

structures. 
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The convex test is a greedy algorithm, but we can improve the efficiency of the whole 

pipeline by implementing dynamic programming algorithm strategies, as well as 

potentially implementing machine learning to learn how many meshes should combine 

before running the convex test.  

The major future work will be trying to implement registration-based surface unification. 

Registration may change the whole pipeline of processing, but it is a good improvement 

to make because it will make it more efficient and applicable. The implementation of 

registration-based search space generation will also make it process in real-time. 
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