
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2017

Implementation and Web Mounting of the
WebOMiner_S Recommendation System
Amrutraj Alhad Chachad
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Chachad, Amrutraj Alhad, "Implementation and Web Mounting of the WebOMiner_S Recommendation System" (2017). Electronic
Theses and Dissertations. 5970.
https://scholar.uwindsor.ca/etd/5970

https://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F5970&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5970&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5970&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/5970?utm_source=scholar.uwindsor.ca%2Fetd%2F5970&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

	 i	

Implementation and Web Mounting of the

WebOMiner_S Recommendation System

By

Amrutraj Chachad

A Thesis
Submitted to the Faculty of Graduate Studies

through the School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science
 at the University of Windsor

	
	
	

Windsor, Ontario, Canada

2017

© 2017 Amrutraj Chachad

	 ii	

Implementation and Web Mounting of the
WebOMiner_S Recommendation System

By

Amrutraj Chachad

APPROVED BY:

__

A. Sarker
Department of Mathematics and Statistics

__

Y. H. Tsin
School of Computer Science

__

C. I. Ezeife, Advisor
School of Computer Science

May 9, 2017

	 iii	

DECLARATION OF ORIGINALITY
	

I hereby certify that I am the sole author of this thesis and that no part of this thesis has

been published or submitted for publication. I certify that, to the best of my knowledge,

my thesis does not infringe upon anyone’s copyright nor violate any proprietary rights

and that any ideas, techniques, quotations, or any other material from the work of other

people included in my thesis, published or otherwise, are fully acknowledged in

accordance with the standard referencing practices. Furthermore, to the extent that I have

included copyrighted material that surpasses the bounds of fair dealing within the

meaning of the Canada Copyright Act, I certify that I have obtained a written permission

from the copyright owner(s) to include such material(s) in my thesis and have included

copies of such copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved

by my thesis committee and the Graduate Studies office, and that this thesis has not been

submitted for a higher degree to any other University or Institution.

	
	

	 iv	

ABSTRACT
	

The ability to quickly extract information from a large amount of heterogeneous data

available on the web from various Business to Consumer (B2C) or Ecommerce stores selling

similar products (such as Laptops) for comparative querying and knowledge discovery

remains a challenge because different web sites have different structures for their web data

and web data are unstructured. For example: Find out the best and cheapest deal for Dell

Laptop comparing BestBuy.ca and Amazon.com based on the following specification:

Model: Inspiron 15 series, ram: 16gb, processor: i5, Hdd: 1 TB. The “WebOMiner” and

“WebOMiner_S” systems perform automatic extraction by first parsing web html source

code into a document object model (DOM) tree before using some pattern mining techniques

to discover heterogeneous data types (e.g. text, image, links, lists) so that product schemas

are extracted and stored in a back-end data warehouse for querying and recommendation.

Although a web interface application of this system needs to be developed to make it

accessible for to all users on the web.

This thesis proposes a Web Recommendation System through Graphical User Interface,

which is mounted readily on the web and is accessible to all users. It also performs

integration of the web data consisting of all the product features such as Product model name,

product description, market price subject to the retailer, etc. retained from the extraction

process. Implementation is done using “Java server pages (JSP)” as the GUI designed in

HTML, CSS, JavaScript and the framework used for this application is “Spring framework”

which forms a bridge between the GUI and the data warehouse. SQL database is

implemented to store the extracted product schemas for further integration, querying and

knowledge discovery. All the technologies used are compatible with UNIX system for

hosting the required application.

Keywords
Web data mining, Data extraction and integration, Pattern Discovery, Wrapper Induction,

Modeling Data Warehouse	 	

	 v	

	
	
	

DEDICATION
	
This work is dedicated to my father Mr. Alhad Chachad and my mother Mrs. Dhanashri

Chachad for their love, support and encouragement. Without their motivation and

guidance, the completion of this work would not have been possible.

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 vi	

	
	
	

ACKNOWLEDGEMENT	

	
	
	

I would like to give my sincere appreciation to all of the people who have helped

me throughout my education.

 This thesis is dedicated to my supervisor Dr. C.I. Ezeife who has been a constant

source of knowledge and information. I express my humble gratitude for her generosity

to spend quality time to train her students to achieve their goals with sheer hard work.

	
I would also like to thank my external reader, Dr. Animesh Sarker, my internal

reader, Dr. Yung H. Tsin, and my thesis committee chair, Dr. Ngon for making time to be

in my thesis committee, reading the thesis and providing valuable input. I appreciate all

your valuable suggestions and the time, which have helped improve the quality of this

thesis.

Finally, I express my appreciations to all my friends and colleagues at University

of Windsor, especially Bindu Peravali and Sravya Vangala for their support and

encouragement. Thank you all!

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 vii	

	
	
	
	
	

TABLE OF CONTENTS

DECLARATION	OF	ORIGINALITY	...	iii	

ABSTRACT	...	iv	

DEDICATION	..	v	

ACKNOWLEDGEMENT	...	vi	

TABLE	OF	FIGURES	...	ix	

CHAPTER	1.	INTRODUCTION:	..	1	

1.1. Web data Mining……………………………………………………………………..1	

1.2. Applications of Web data extraction systems: .. 7

1.2.1. Enterprise Application: .. 8

1.2.2. Social Applications: .. 9

1.3. Thesis Contributions…………………………………………………………...…...10

1.3.1. Feature Contribution……………………………………………………..….…...10	

1.3.2. Method Contribution……………………………………………………..……...11	

1.4. Outline of Thesis: .. 12

CHAPTER	2.	RELATED	WORK	...	13	

2.1. Existing Web Scrapers: ... 13

2.2. Related Systems: .. 14

2.2.1. IEPAD: Information Extraction Based On Pattern Discovery 14

2.2.2. STALKER: A Hierarchical Approach to Wrapper Induction 17

2.2.3. DEBYE: Data Extraction By Example .. 19

2.2.4. LIXTO: Visual Web Info Extraction .. 21

2.2.5. Simultaneous record detection and attribute labeling in web data extraction ... 23

2.2.6. WebOMiner: Towards Comparative Mining of Web documents using NFA 25

2.2.6.1. Major Limitations……………………………………………...……………….30

	 viii	

2.2.7. WebOMiner_S:Comparative mining of B2C Websites…….……………………31

2.2.7.1. Major Limitations……………………………………………...……………….39

CHAPTER	3.	PROPOSED	WebOMiner_SRec	System	...	40	

3.1. WebOMiner_SRec system: ... 40

3.1.1. Architecture of our WebOMiner_SRec System: ... 40

3.1.2. Algorithm for our WebOMiner_SRec System: ... 41

3.1.3. WebOMiner_SRec System modules and working: ... 43

3.1.3.1. Schema Mapper: ... 43

3.1.3.2. Data warehouse loader: .. 47

3.1.3.2.1. Data Access object class: ... 49

3.1.3.3. Query manager: .. 52

3.2. Possible contributions and developments: ... 58

CHAPTER	4.	IMPLEMENTATION:	...	59	

4.1. Where are the source code files: ... 59

4.1.1. Which OS is supported by the WebOMiner_SRec: ... 59

4.2.	Installation	and	Working	procedure:	..	60	

4.2.1. Steps for Windows installation: ... 61

4.2.2. Steps for Unix installation: .. 62

4.3. How to use the WebOMiner_SRec system: .. 62

4.3. Comparing WebOMiner_SRec with other existing systems: 73
	
CHAPTER 5. CONCLUSION AND FUTURE WORK:………………………….........74

5.1. Future Work: ………………………………………..……………………………..74	

REFERENCES	...	76	

APPENDIX - A …………………………………………………...…………………….80

VITA AUCTORIS ……………………………………………………………...……...90	

	
	

	

	 ix	

TABLE OF FIGURES
	
	
FIGURE 1: Example Input webpage…………………………………………………….4

FIGURE 2: Expected output page……………………………………………………….5

FIGURE 3: Output data extracted from Amazon……………………………………….6

FIGURE 4: Googleshop interface ……………………………………………………....9

FIGURE 5: Web page with data regions and data blocks.………… …………………26

FIGURE 6: WebOMiner Algorithm….………………………………………………...27

FIGURE 7: Content object array for data block identification and classification……28

FIGURE 8: Architecture of the WebOMiner system…………………………………..29

FIGURE 9: Experiments conducted on web data sources……………………..............30

FIGURE 10: Extracted schema class………………………………………….……….34

FIGURE 11: Temp.xml file……….………………………………………….…………35

FIGURE 12: Occurrence.data file…...….……………………………………………...36

FIGURE 13: WebOMiner_SRec system architecture……….…………………………40

FIGURE 14: Seller fact table for Datawarehouse.………… …………………………50

FIGURE 15: Product table for Datawarehouse……..…………………………………51

FIGURE 16: Create session…………………………………………………………….55

FIGURE 17: Hibernate configuration file…..…….…………………………………...55

FIGURE 18: Hibernate mapping file….……………………………………………….56

FIGURE 19: Input page to WebOMiner_SRec………………………………………...63

FIGURE 20: Scraped data display result………………………………………………64

FIGURE 21: Quick search results...…… ……………………………………………...65

FIGURE 22: Advanced search Interface…….…………………………………………66

FIGURE 23: Advanced search for error free inputs…………………………………...67

FIGURE 24: Advanced search results..………… ……………………………………..68

FIGURE 25: Filter search results……….……………………………………………...69

FIGURE 26: Comparative search results………………………………………………70

FIGURE 27: Historical search results……...…………………………………………..71

FIGURE 28: About page………....……………………………………………………..72	

	 1	

CHAPTER 1: INTRODUCTION

Web data drives today's businesses and the Internet into a powerhouse of information. Most

businesses rely on the web to gather data that is crucial to their decision-making processes.

Thus, it has become increasingly necessary for users to utilize automated tools in finding

the desired information resources, and to track and analyze their usage patterns. Companies

also, regularly assimilate and analyze product specifications, pricing information, market

trends and regulatory information from various websites and when performed manually,

this is often a time-consuming, error-prone process. World Wide Web (WWW) is growing

exponentially over the years and the web documents constitute some of the largest

repositories of information (Kosala and Blockeel 2000). The web poses great challenges for

resource and knowledge discovery based on the following observations: (1) The web is too

huge; (2) Complexity of Web pages; (3) Web is dynamic information source; (4) Diversity

of user communities; (5) Relevancy of Information. Web content usually refers to the

information that can be seen on a web document by an individual. It also includes some

hidden information, which help users interact with web contents (Cooley et. al., 1997).

Therefore, there is a huge need for a value-added service that can be used to integrate

information from multiple sources.

1.1. Web data Mining:

Web mining aims to discover useful information or knowledge from the Web hyperlink

structure, page content, and usage data (Zhou et. al., 2007). Although Web mining uses many

data mining techniques, as mentioned above it is not purely an application of traditional data

mining techniques due to the heterogeneity and semi-structured or unstructured nature of the

Web data.

Many new mining tasks and algorithms were invented in the past decade. Based on the

primary kind of data used in the mining process, Web mining tasks can be categorized into

three types: Web structure mining, Web content mining and Web usage mining (Liu 2007).

	 2	

Web structure mining: Web structure mining discovers useful knowledge from hyperlinks (or

links for short), which represent the structure of the Web (Chakrabarti 2000). For example,

from the links, we can discover important Web pages, which is a key technology used in

search engines. We can also discover communities of users who share common interests.

Traditional data mining does not perform such tasks because there is usually no link structure

in a relational table.

Web content mining: Web content mining extracts or mines useful information or knowledge

from Web page contents (Bharanipriya and Prasad 2011). For example, we can automatically

classify and cluster Web pages according to their topics. These tasks are similar to those in

traditional data mining. However, we can also discover patterns in Web pages to extract

useful data such as descriptions of products, postings of forums, etc., for many purposes.

Furthermore, we can mine customer reviews and forum postings to discover consumer

opinions. These are not traditional data mining tasks.

Web usage mining (Srivastava et. al., 1997): Web usage mining refers to the discovery of

user access patterns from Web usage logs, which record every click made by each user. Web

usage mining applies many data mining algorithms. One of the key issues in Web usage

mining is the pre-processing of clickstream data in usage logs in order to produce the right

data for mining. However, due to the richness and diversity of information on the web, there

are a large number of Web mining tasks.

The Web mining process is similar to the data mining process. The difference is usually in

the data collection. In traditional data mining, the data is often already collected and stored in

a data warehouse. For Web mining, data collection can be a substantial task, especially for

Web structure and content mining, which involves crawling a large number of target Web

pages.

	 3	

Example:

Gathering customizable website information through robots/crawlers, comparison-shopping

agents, meta-search engines and newsbots, etc. Web pages have hyperlinks and anchor

texts, which do not exist in traditional documents. Hyperlinks are extremely important for

search and play a central role in search ranking algorithms. Anchor texts associated with

hyperlinks too are crucial because a piece of anchor text is often a more accurate

description of the page than its hyperlink points. Second, Web pages are semi-structured

(Hammer et.al., 1997). A Web page is not simply a few paragraphs of text like in a

traditional document. A Web page has different fields, e.g., title, metadata, body, etc. The

information contained in certain fields (e.g., the title field) is more important than in others.

Furthermore, the content in a page is typically organized and presented in several structured

blocks. Some blocks are important and some are not (e.g., advertisements, privacy policy,

copyright notices, etc). Effectively detecting the main content block(s) of a Web page is

useful to Web search because terms appearing in such blocks are more important.

Let us consider a live example of a web page taken from a product website having data

blocks to display the existing product information in the web sellers inventory.

	 4	

Figure 1 shows a Web page segment containing a list of Laptops on BestBuy (This is the

source input HTML page). The description of each Laptop is a data record.

	

Figure	1:	Example	input	web	page	

Figure 2 shows a page segment containing a data table, where each data record is a table

row, which is the expected output of the web data extraction process.

	

	

	 5	

	
Figure	2:	Expected	output	

	

Defined by the BestBuy input HTML page, the expected output gives a list of Laptops with

the following description:

- Laptop Model: for eg. Asus Zenbook UX330CA

- Processor: Intel Core m3

- Memory: 256 GB

- RAM: 8GB

- Operating System: Windows 10

- Color: Quartz Grey

- Price: 899.00$

- Deal: for eg. Black Friday deal, sale end date: 15th December 2016

	 6	

Another example of a similar input page from Amazon:

Figure	3:	Output	Data	extracted	from	Amazon

In this example, we observe that along with Best Buy, Amazon also has a list of laptops

that have similar kind of product description. This is the main reason for developing a

system that can produce comparative queries in order to obtain such kind of result: Find the

cheapest Acer laptop which has a processor of Intel i5 generation, a HDD with at least 512

GB memory space and an operating system which supports at least Windows 10

application. Additional features can be graphic card description or the weight restrictions of

the laptop.

Types of pages used for extraction:

These input pages are called as Structured web pages. These are the type of pages that

follows a defined structure, which is attained due to the structured data source like a

database or table. While data on the webpage is being published it will have a formatted

style. A product rich page from an e-commerce website like bestbuy.ca is the example of

structured web page since all the information such as product details are essentially stored

	 7	

in a database which are published on to a webpage following a strict template. Such data

can be extracted using wrappers by generating the extraction rules manually or

automatically based on the target data. In a structured web page there are two

classifications, the List Page and the detail page (Chang et. al., 2006).

We have chosen to mine a list page instead of a detail page because of the following

reasons:

1. List pages provide the most important attributes of the object in the customers

perspective whereas the detail pages contains all the attributes of the object. As our

main objective is to develop a system that can perform a comparative mining and

historical querying as value added service for the customers.

2. Our observation is that the detail page contains more noise than the list page, on

Considering the recommendations and advertisements. As we work towards

eliminating noisy data in our data warehouse we prefer to mine less noisy web pages.

It is very resource consuming to extract data from the list page then move to another

description page for data extraction as the list page has a list of products and each product

link has a pointer to a description page. Detail web page displays only one object with all of

its attributes (Annoni and Ezeife 2009). The object is a Laptop and the detail page displays

all the additional attributes of this object such as name of the laptop, price, configuration,

dimensions and weight, build quality, etc. All this can be extracted to store into a data

warehouse for value added services.

1.2. Applications of Web data extraction systems:

For web data extraction systems, many works cover techniques to solve some particular

problems related to a single or, sometimes, a couple of fields of application. The aim of this

activity is to analyze the greatest possible number of applications that are strictly related to

Web data extraction tasks. In the following, we describe a taxonomy in which key

application fields are divided into two sections namely, enterprise applications and social

applications.

	 8	

1.2.1. Enterprise Application:

• Context advertising: The main underlying principle is to present, to the user,

commercial advertisements together with the content of the Web page, ensuring a

potential increase of the interest in the ad. This aim can be reached by analyzing the

semantic content of the page, extracting relevant information, both in the structure and

in the data, and then contextualizing the ads content and placement in the same page.

Contextual advertising, compared to the old concept of Web advertising, represents an

intelligent approach to provide useful information to the user, statistically more

interested in the ads, and a better source of income for advertisers.

• Customer Care: Usually medium/big sized companies with customers support

receives a lot of unstructured information like emails, support forum discussions,

documentation, shipment address information, credit card transfer reports, phone

conversation transcripts, etc. The capability of extracting this information simplifies

the way of classifying them, analyzing relationships, populating own structured

databases and ontologies, etc.

• Database building: In the Web marketing sector this can be defined as the activity of

building a database about a particular domain. Fields of application are countless.

Financial companies could be interested in extracting financial data from the Web, e.g.

scheduling the activities to be executed automatically and periodically.

Companies selling products or services probably want to compare their pricing with other

competitors. Other related tasks, obviously involved in the Web data extraction are:

duplicating an on-line database, extracting dating sites information, acquiring job postings

from job sites, etc.

1.2.2. Social Applications:

• Social Networks: Social networks attract attention of many industries for work done

on extracting relevant data from social networks. This is a new interesting problem and

field of application for Web data extraction systems.

	 9	

• Comparison Shopping: One of the most appreciated Web social services is the

comparison shopping, through platforms with the capability to compare products or

services, going from simple price comparison to features comparison, technical sheets

comparison, user experiences comparison, etc. These services heavily rely on Web data

extraction, using websites as sources for data mining to make possible the comparison

of similar items. There are a lot of comparison-shopping systems available on the

Internet, which is also known as web data extraction systems. For example

Googleshop, NextTag, ShopZilla, etc.

Figure 4 shows an example working of the Googleshop web data extraction application

available for comparison-shopping:

Figure	4:	Example	Googleshop	application

	
	

	 10	

1.3. Thesis Contributions:

	

1.3.1. Feature Contribution:

1. Extending the WebOMiner_S data extraction system with a Web GUI for querying

extracted E-Commerce data from multiple data sources through UNIX server for web

access and availability.

2. Extending the WebOMiner_S data extraction system such that the extracted product

schemas previously extracted from the web, which were stored in the database as generic

schema and attribute name like Product1 (column1, column2. Column3, column …n) are

now assigned more meaningful product table and attribute names such as laptop (price,

model, cpu, etc.).

Secondly, the old system stored schemas from different websites eg. (Staples, BestBuy,etc)

as separate tables like product1(column1, column2, column …n) and product 2 (column 1,

column 2, … column n) making comparative querying difficult. This thesis renames

extracted tables and attributes and also integrates them into one product data-warehouse

table called in the database for comparative and historical querying.

3. Extending the WebOMiner_S data extraction system such that it can directly answer

comparative historical queries on the web through the GUI in much the same way as

existing recommendation systems on the web such as Googleshop and ShopZilla do.

	

	 11	

1.3.2. Method Contribution:

To achieve the goals of our system, thesis proposes the system called the

WeboMiner_SRec, which accepts user queries about comparative prices and features of

retail E-Commerce store products as well as previously extracted product schema and their

data values from E-Commerce websites. It outputs through the GUI, the results on product

and pricing data drawn from stored accumulated multiple data source (e.g. Staples,

BestBuy) product information into data warehouse. Input is Product1 (Column 1, Column

2, … Column n) and the Output is Laptop (product name, price, etc.). The

WebOMiner_SRec system does this through the following sequence of steps:

1. Query manager algorithm is devised to process the flow of the entire application. It

works as follows:

(i) It creates an environment to run the WebOminer_SRec on the web using miner

server (Debian server in Unix environment) using Maven plugin (Maven scripts

help to run the java application through Unix terminal).

(ii) JDBC connection class ensures a secure connection to the data-warehouse by

calling Servlet() methods in Java for data-warehouse connection parameters.

(iii) After the connection is done successfully queries are made to fetch desired

results that are encapsulated in the form of java objects and rendered back to the

view interface as “ResultList” data object.

2. Schema Mapper function creates a feature and column element such as (Dell Laptop,

product name). Then it maps the feature to its respective columns using:

(i) Schema Mapper generates mapping rules based on the data type, for example: an

explicit rule is defined for each of the column attributes specified in the data-

warehouse product table. These rules check for data type: as <Integer> with

symbols like “$” to be placed in the “price” column element. Accordingly, all

columns have their respective rules scripted for appropriate data value matching.

(ii) Once all the feature elements are mapped to their respective column elements,

the load file method defined by the data-warehouse loader is used to transport

data into the data-warehouse.

	 12	

3. Data-warehouse loader accepts the renamed product schema e.g. Laptop (product name,

price, …) from step 1to store it in an already existing data warehouse product table. It

also includes one dimension table for the seller called “Seller table” that stores

information about the sellers. The third file is the Load file element to transport data

from the source database to the data warehouse. This is done as follows:

(i) Seller_fact table contains foreign key attribute about the seller information such

as (seller name, ID, time/date, seller url, …) from the product table that helps to

categorize and mantain information based on the sellers/vendors.

(ii) A <load file> method is called that contains the data and feature to column

mapping file that loads entire data or the amount of data specified by the buffer

size of the Load file directly into the already existing product table in the data-

warehouse.

	

1.4. Outline of Thesis:

Chapter 2: A survey of related articles and existing similar systems specifying the

architecture, algorithms and major limitations associated with these related systems.

Chapter 3: Discusses the proposed WebOMiner_SRec system and the advantages it has

over the other related systems. It defines the architecture, algorithm and the system

requirements to execute this model.

Chapter 4: Discusses the major contributions, developments and implementation for our

proposed WebOMiner_SRec system.

Chapter 5: Provides conclusion and future work for our approach.

Chapter 6: Provides a list of References.	

APPENDIX – A

VITA AUCTORIS

	

	
	

	 13	

CHAPTER 2: RELATED WORK

Web data extraction system is defined as a software automatically and repeatedly extracting

data from Web pages with changing contents and delivers extracted data to a database or

some other application (Baumgartner et al., 2009). It introduces three important aspects:

• Automation and scheduling: The automation of page access where creating many

instances of the same task to handle asynchronous update changes is important.

Scheduling is also important, e.g. if a user needs to grab data from a news website, the

scheduler is necessary to execute scripts automatically and periodically.

• Data transformation: The steps between data extraction and data delivery such as data

cleaning are captured in the process of data transformation. Here, the main objective is

to fetch a unique homogenous structure for the data (Rahm & Do, 2000).

• Use of the extracted data: After the data is extracted and parceled in the required

format, It is now represented as structured data and is now ready to be stored in any

form of DBMS, warehouse or CMS management. This storage is necessary to either

structure the data or for the purpose of statistical analysis (Berthold & Hand, 1999).

2.1. Existing web data extraction systems available on the web:

There are several systems and applications available on the web that perform web data

extraction and compare product results. Examples of such systems are:

1. Google Shop (Best Application available on the web)

2. NextTag (One of the most popular depending on viewers choice)

3. Price-Grabber

4. Shopping.com

	 14	

2.2. Related System:

2.2.1 IEPAD: Information Extraction Based On Pattern Discovery

(Chang & Lui, IEPAD: information extraction based on pattern discovery, 2001)

IEPAD is the semi-supervised learning system, which extracts data from web without using

some manual methods such as labeling the Sample pages. It highlights the usage of

repetitive patterns occurred in web pages in order to present the target data as a structure

called PAT trees. And, multiple sequence alignment is used to comprehend all record

instances.

The Major contributions of the paper include 1) Identifies the target data record without

any human intervention by examining the fact that data records occur as repetitive patterns

in a web document and data is pushed into web pages from underlying databases using a

common template. 2) Uses a data structure called PAT trees a Binary suffix tree, to

discover repetitive patterns as they only record exact match for suffixes. 3) Uses multiple

sequence alignment by the center star method, which begins from each occurrence of a

repeat and ends before the beginning of next occurrence.

The Architecture of the system has 3 modules first is an Extraction rule generator, the

pattern viewer and the Extractor module. Where the first module analyses the html tag

structure and generates rules, the second module displays the rules to the uses to select one

rule among them to perform extraction and the third module extracts all the data records

that match with the rule selected. Their algorithm is explained with a running example as

follows

Example 1: For Instance consider this 2 lines of html code as input for the system in their

first step.

 Congo< I>242</I>

 Egypt<I>342</I>
$

The HTML page is given as an input to this component it then translates into a string of

abstract representations called tokens, which is identified by a binary code. Here tokens are

divided into two types, tag tokens and text tokens where tag tokens are the html tags and

text tokens are the original text in between the tags denoted by Text().

Discovering patterns based on tag tokens majorly block level tags excluding text tags will

result in more abstract patterns that represent the whole web page.

	 15	

Example 2: Token string generated by the translator for the above example is as follows

 Html()Text(_)Html()Html(<I>)Text(_)Html(
)

Html()Text(_)Html()Html(<I>)Text(_)Html(
)$

These as encoded into binary strings as shown below

Html () 000, Html () 001, Html (<I>) 011 then the pattern would be 00000101.

The binary pattern, which is the output of the previous step, is given as input to this step. A

Patrica tree is a specification of binary suffix tree where 0 goes to left and 1 goes to right.

Here, each internal node is an indication of which bit is to be used for branching. Every

sequence of bits starting from each of the encoded token extending it to the end of the token

string. Each string is represented by a bit position. An important observation in pat tree is

that, all suffix strings with the same prefix will be under the same sub tree. Also, each edge

is associated with a virtual edge label, which is the string between those two nodes. We can

uniquely identify a string by its prefix.

Every Path label of the internal node represents a repeated sequence of inputs. Hence to

discover the repeated patterns we now only have to observe the path labels. Thus the

problem of identifying data records is narrowed to fetching repeated patterns in IEPAD.

	 16	

K J L M O P
K J L X O P
K J L X O -

For a path label in the internal node v if its sub tree is having different left characters then it

is called Left_Diverse. Based on this a lemma is proposed that maximum repeat should be a

left diverse. The number of times any pattern has occurred can be easily known by the

occurrence counts and the reference positions. Hence the user has to define a threshold

value or it can even be a default value. Regularity, compactness and coverage are defined

as the standard deviation of the interval between two adjacent occurrences is calculated as

regularity. Whereas compactness is a measure of the density of a maximal repeat, this is

used to eliminate maximal repeats that are scattered apart beyond a given bond. Along with

these, Coverage measures the volume of content in the maximal repeats. IEPAD uses

multiple string alignment for pattern matching; it does not allow any partial or

inappropriate matching only strings exactly matched are considered. For Example, Suppose

“kjl” is the pattern discovered for token string, if we have multiple

alignments kjlmn, kjlm, kjlmo the extraction pattern can be

generalized as “kjl[m\x]o[p\-]” where “ –“ represents missing

characters. Thus the problem is transformed to find the multiple alignments of the k strings.

The approximation algorithm is used to find the center string Sc in K strings. Once the

center string is found, each string is iteratively aligned to the center string to construct

multiple alignments, which is in turn used to construct the extraction pattern.

The extraction process starts when the user selects one or more patterns from the pattern

viewer. The extractor searches the PAT tree for maximum occurrences to find the target

data but if the web page cannot be expressed as PAT tree then a normal pattern-matching

algorithm can be used for extraction. Their results show 97% accuracy in successfully

identifying the target data. However the major Short comings of the paper includes the

following

1) The assumption that multiple data records will be homogenous fails as data records in

web pages can have different attributes because of the missing values.

2) Requires a trained user that can infer rules to extract actual data records.

3) Their assumption that target data will be under the same parent node fails for large

number of web pages, as there is no necessity in HTML5 after using the block tags to

section web pages.

4) Does not propose any strategy to overcome noise or unnecessary data.

	 17	

5) Their use of binary suffix trees only produces exact matches is a huge drawback because

of the missing attribute values in data records.

6) Did not discuss about the heterogeneity of the web data such as the Images and their

extraction process.

 2.2.2 STALKER: A Hierarchical Approach to Wrapper Induction

(Muslea, Minton, & Knoblock, A hierarchical approach to wrapper induction, 1999)

This is a supervised approach for data extraction, where the user labels some sample pages

from which the system generates the extraction rules. There by data in web pages having

similar structure can be extracted by matching those rules. It performs a hierarchical data

extraction by using embedded catalog formalism. The Major Contributions of the paper

includes 1) Introducing the concept of hierarchical data extraction using embedded

catalogue tree in which leaves are the attributes and internal node are the tuples.2) web

content can be extracted by some consecutive tokens called landmarks that enable the

wrapper to locate data x with in a data region p. 3) Multiple scans are performed to handle

missing values and multiple permutations. The Stalker proposed to represent a web page as

typical embedded catalogue tree where each leaf node contains the target data and the

internal nodes form the list of K tuples. Again the items in k tuples can be a leaf node l or

another list L. Each edge of the tree is associated with an extraction rule in order to extract

x from p.

For example consider the Restaurant description as given below

1:<p> Name: Yala <p> Cuisine: Thai <p><i>

2:4000 Colfax, Phoenix, AZ 85258 (602) 508-1570

3:</i>
 <i>523 Vernon, Las Vegas, NV 89104 (702) 578-2293

4:</i>
 <i>403 Pica, LA, CA 90007 (213) 798-0008</i>

	 18	

The stalker inductive algorithm generates extraction rules to capture each data item by

taking as input the set of sequence of prefix tokens. User identifies the start of x from the

sample page using the GUI. For instance consider that the user has marked the area codes

then the sequential covering algorithm starts by generating linear l, as it then covers all the

examples and generates disjuncts. In the fore mentioned example algorithm initially

generates SkipTo() it matches E2 and E4 but does not match E1, E3. While in the second

iteration algorithm considers only uncovered examples and generates SkipTo (phone) and

SkipTo(). The figure represents the slg that accepts both the rules. Thus Stalker tries to

generate slg that accepts all the positive examples and reject all the negative ones. The

algorithm contains a function called learnDisjuncts () generates all the candidates

repeatedly selects and refines the best candidate until it finds a perfect disjunct which only

accepts the positive pages. In order to find best disjunct stalker searches for a disjunct that

accepts the largest number of positive examples. Another function Refine () obtains netter

disjuncts() by making its landmarks more specific or by adding new states to the automata.

Followed by the GetTokens() which gives out the tokens that have appeared at least once.

Their experimentation proves that their methodology achieves 97% accuracy. But

Shortcomings of the paper are 1) their algorithm requires Multiple passes over the input

data to extract the target data. 2) The performance of the algorithm entirely depends on the

sample training pages given, making the system dependent on a trained user. 3) Their

Technique is scientifically complex and time consuming that it cannot be used in real time

applications. 4) Maintaining wrapper is another huge dis-advantage of this system; every

time new presentation structure arrives the wrapper has to be updated.

	 19	

2.2.3 DEBYE: Data Extraction By Example

(Laender, Ribeiro-Neto, & da Silva, DEByE–data extraction by example, 2002)

A supervised learning system where user marks example pages there by the structure is

learnt from the pages through patterns and from it structures can be extracted by comparing

the new data records with previous one. The Major contributions of the paper involve 1)

this paper proposes Object oriented content extraction without loss of relationship between

the data items. 2) It extracts atomic components first and then it assembles them into

objects. 3) Uses pattern matching to identify the similar tokens for extraction.

Debye has 2 modules The Graphical interphase and The Extractor. An object is denoted as

a pair O= <T, V> such that V є domain (T) where V is a type of O. thus O is an instance of

T. domain(T)={a1,a1,a3….an}(n>=1).Instances of A-types are termed as atoms. The pair

<T, ai> is termed as attribute value pair User has to highlight the target data from the web

page using the GUI. This target data is treated as objects. Such assembled objects are used

to generate oe_patterns in xml. These patterns are used to extract data from the new web

pages. The initial and final positions of occurrence of data are indicated by ipos, fpos

respectively. Attribute value pair patterns are described as <T,ai>, a local syntactic context

is associated to each avp it is the tokens surrounded by avp. Using this context information

avp patterns are built. In the given example in order to identify avp pattern for type price

would be as expressed in (a) that the value should be prefixed by Spre =“A deadly lie--$” in

particular and suffixed by

Ssuf = “; dead online”. So it strictly extracts only specific values. A more generalized pattern

is indicated by (b) it denotes that price value is prefixed by “$” and followed by “;” and “*”

indicates any value in that place.

	 20	

Figure 4: The execution of

bottom up

	 21	

OE patterns represent the structure of the data that the user needs to extract, its internal

nodes form another OE tree or type nodes (like price, book) and leaves are avp patterns.

There are two extraction strategies specified, the bottom up and the top down strategy. The

Top down strategy is a straight forward, the oe patterns are assembled for each example

object and using these patterns to discover new objects. This procedure is repeated based on

the number of example pages provided. Here the whole object is demolished into

components thus called a top down approach. This approach does not work well if the page

is variable structure.

In the Bottom up strategy the avp’s are priory recognized and extracted. For this approach

objects are represented as triple O = <T, V, L> where t is the type of the object, v is the

value and l is the index. The last row of circles indicates the avps. Each is avp is associated

with a label li. Contiguous pairs of title, price are formed as book instances. The values in

L9 are in reverse order and L11 does not have the price component, the bottom up strategy

can handle such cases. The list of objects assembled after the first step is indicated in 2nd

row. Further the book instances are grouped up as list of book instances. From the example

l1 is combined with l2 and l8 is combined with l9. Thus the data can be extracted from

similar pages. Major Short Comings are 1) Extraction precision falls low in case of missing

attributes or multi-ordered attributes. 2) Multiple scan of input page is needed to extend

each atomic attribute.

2.2.4 LIXTO: Visual Web Info Extraction:

(Baumgartner, Flesca, & Gottlob, 2001)

Lixto is an interactive tool for data extraction built with logic based language called Elog.

Elog uses a data log like logical syntax and semantics. Which translates relevant html

strings into XML. The LIXTO system provides a user interface to select the data of user’s

interest. Thus selected data is translated into xml. There is no necessity for the user to have

an idea over ELOG the underlying language. Elog is wrapper-programming language; it

generates wrappers for data extraction by taking input as the user selected data from the

web page. It is a collection of data-log like rules containing special extraction conditions in

their bodies. Once a wrapper is generated it can be automatically extract relevant

information from a permanently changing page. The lixto system associates the user-

	 22	

selected instance with a generalized tree path in the HTML parse tree, there by identifies

similar rules. For example, user selects pattern <ITEM> followed by sub pattern <PRICE

>, this sub pattern relationship expresses that an instance of <PRICE> should occur within

a pattern <ITEM>. Then the system searches for such occurred patterns. User can also add

conditions like after/before/ not after/range etc. Setting such filters can fetch perfectly

desired information. Pattern creation is done by User explicitly providing the patterns their

parents, can specify any attributes required then highlights all the objects in the provided

example already. For example if the user selects a <TALBE> as a pattern, LIXTO searches

for the occurrence this tag in the entire documents also highlights the <TR> tags. A rule is

constructed for generating a rule to extract all the target data items. The patterns generated

along with the hierarchical relationships are translated to XML by using their names as

default <XML> tags. Extraction language Mechanisms is as follows, Head predicates are

defined in Elog as record (S, X) where S indicates the parent pattern for instance

<TABLE> in our running example. X looks for the sub elements that qualify as S. Thus

defined head predicates are the patterns that Elog defines and extracts data according to the

web page. Lixto offers two mechanisms of data extraction- string extraction and tree

extraction. In the tree their tree paths identify extraction mechanism elements. An example

of tree path can be *table.*.tr here * indicates can be called a wildcard, it indicates anything

can occur. For correctly extracting only target data, attribute conditions can be applied. An

attribute condition is a triple specifying a required name, value and a corresponding regular

expression. The second extraction method is based on strings. In the parse tree leaf nodes

indicate the stings. Regular expressions are used to capture them. Elog atoms correspond to

special predicates with well-defined semantics as follows, In Elog the function mapping a

given source S to a set of elements matching an epd is treated as relation subelem (S, epd,

X). Subelem (s, epd, x) evaluates to true iff s is a tree region, epd is an element path

definition and x is a tree region contained in s where the root of x matches epd. The

extraction definition predicates specify a set of Extraction instances, the context condition

predicates specify that some other sub tree or text must (not) appear after / before a desired

extraction pattern. For example, on a page with several tables, the final table could be

identified by an external condition stating that no table appears after the desired table. The

internal condition predicates are semantic conditions like isCountry(x) or Date(x). Another

	 23	

class of predicates are the pattern predicates that indicates to patterns and their relationship

their parents. A standard rule in Elog is as quoted here New(S, X) ← Par (-, S), Ex(S, X),

Co(S, X, . . .)[a, b], where S is the parent instance variable, X is the pattern instance

variable, Ex (S, X) is an extraction definition atom, and the optional Co(S, X) are further

imposed conditions. A set of such rules forms a pattern. All the rules in a pattern uses the

same information like the name of the pattern, its parent etc. Such patterns form an

extraction program, which can be applied to similar pages. For Example, A wrapper for the

above quoted example every item is stored in its own table extracted by <record>, all such

patterns are defined in the same record. The price attribute uses concept attribute, namely

isCurrency which matches with the string like $ and the bids pattern uses a reference to

price. The final two patterns are strings.

2.2.5 Simultaneous record detection and attribute labeling in web data extraction

(Zhu, Nie, Wen, Zhang, & Ma, 2006)

This paper proposes a method called hierarchical conditional labeling, A novel graphical

approach to mutually optimize record recognition and attribute naming. Major

contributions of the paper involve 1) This approach extracts data from list web pages as

well as detail web pages. 2) Uses a vision based tree construction mechanism. 3) The

problem data record detection is viewed as assigning data record labels to the block in the

vision tree. Attributes labeling is considered as assigning labels to leaf blocks, and both the

tasks can be performed simultaneously.

HTML parse tree for the page

	 24	

4) Efficiently incorporates all useful features and their importance weights. Web pages are

represented as vision trees by using page layout features such as font, color, size separators

are the horizontal and vertical lines that do not cross any node visually.

A block in a web page is represented as a node in the vision tree Conditional Random

Fields are markov random fields, If x, y are 2 random variables then G= (V, E) where

x=label over observation to be labelled and y is the variables over corresponding labels.

Here, y could be a linear chain.

Now the problem of web data extraction can be narrowed as finding the maximum

conditional probability of y over x, where x are the features of all blocks , y are the possible

label assignments.

Based on the hierarchical representation of data a model can be constructed by denoting

inner nodes as rectangles and leaf nodes as ellipses. A random variable Y is associated with

each label. Based on the model graph a junction tree is constructed by mapping ellipses

clique nodes and rectangles as separators. Then the algorithm selects the arbitrary clique

node as a root node. The figure 2 represents the junction tree of the aforementioned

example. The value in each internal node are the values of that particular node along with

its child nodes. The value in the root is thus {0,1,2}.This is followed by two phases. Using

HCRFmodel for web extraction it is necessary to define the leabel spaces followed by

seperation between the variables at leaf nodes and those at inner nodes, because we need to

extract the attribute value of the laf node where a for the inner node has to be identified

Data	block	in	a	web	page

	 25	

wether it is a data record or not. There is a necessity to explicitly define label space and

inner label space each for its own pupose. Forexample the leaf label space for the extraction

of products data can be {Product name, product id, prcice, description etc}.

 How ever inner label space has 2 partitons object _type independent an dobject tpe

dependent.There are certain labels like page head, nav bar , page tail etc, that links to

different parts of web page. Such objects are independent of Object_type. The intermediate

labels such as data reocrs are dependent on Object_type. The feaures of Elements and

Blocks in HCRFS are for each element , the algorithm extracts both vision and content

features, all the information can be obtained form the vision tree features. The tree distance

of two blocks is defined as the edit distance of their corresponding sub-trees. To exploit the

similaruty between blocks the shape an dtype distamce can also be computed.They alo

consice that rpeated information in web pages odes not give useful information, as an

example they quote that the “add to cart” button and such types occur repeatedly in each

page which are not useful.

	

2.2.6. WebOMiner: Towards Comparative mining of Web document objects with NFA

(Ezeife	&	Mutsuddy,	2012)	

The WebOMiner system develops an automatic object oriented web content extraction and

mining technique for mining heterogeneous contents that are complex for in-depth

knowledge discovery. Complex querying consists of multiple combined queries along with

information kept up to date.

	 26	

Example:

Give comparative analysis of products during the past 2 years including number of sales,

views and comments about the product from all the possible websites that deliver the

expected product. Consider the following figure taken from (Ezeife & Mutsuddy, 2012)

that provides a representation of the regular web content available in any B2C website:

Figure	5:	Web	page	with	data	regions	and	data	blocks	

	

 The above product web page consists of Data regions, Data blocks, Data records,

Navigation block and the Advertisement block. Data records are usually found in the data

regions, which are represented as sub-trees in a DOM tree representation.

Example: A Product data record may contain:	 Product (title: string, image: image-file,

difSize (product number: integer, brand: string, price: real)).

The WebOMiner system has 4 modules:

• Crawler Module: Crawler is a spider that crawls through all the desired web pages to

	 27	

mirror the web contents such as text and image files into the local computer system. In

this case, the crawler stores a local copy of the HTML source page in the computer

system.

• Cleaner Module: The cleaner module is an important part of this technique that helps

in cleaning the input HTML document by revising the structure, eliminating noise

information, using transformation rules and so on. The output of the cleaner module is

given to the extractor module for further processing.

• Extractor Module: This module implements the main algorithm of the system.

Figure	6:	WebOMiner	algorithm	

	

	 28	

The extractor module takes as input the cleaned HTML file and constructs a DOM Tree to

classify the data by assigning them to object classes and further appends these objects to

the content array list.

Further, MinecontentObject.IdentifyTuple() function is called which generates the seed

NFA pattern for the data objects. Classification is done by matching and storing the

appropriate tuples in their respective TupleList category.

Example: product tuple, image tuple, list tuple, text tuple, form tuple, etc.

	
Figure	7:	Content	Object	array	for	data	block	identification	and	classification	

NFA (Non-deterministic finite state automata):

After the data recorded by the DOM Tree construction is analyzed, NFA is used to

identify individual tuples or individual records of data found in this DOM tree structure.

The NFA algorithm helps in assigning and classifying the data and their respective data

types into well-defined categories.

In NFA each pair of states has a next state. NFA functions by being able to identify any

kind of schema.

• Miner module: (CreateDBTable ()): The miner module does the work of storing these

data types and the data records in a database. A data warehouse can then be

implemented to store many such database records implementing a star schema to form

the fact and dimension tables for executing complex queries.

	 29	

• Architecture of the WebOMiner system is as follows (Ezeife & Mutsuddy, 2012):

Figure	8:	Architecture	of	the	WebOMiner	system	

Experiments: Experiments are conducted for a total of 7 different websites for analyzing

product related web pages. The resulting precision and recall values are as follows:

	 30	

Figure	9:	Experiments	conducted	on	web	data	sources	

Precision is defined to be the ratio of total correct records retrieved = 176 by the total

number of records retrieved by the system which happen to be 176.

Recall is defined to be the ratio of total correct records retrieved = 176 by the total number

of records available in the web page which happen to be 185.

Precision = 176/176 = 100 % Recall = 176/185 = 96 %

2.2.6.1. Major Limitations of WebOMiner system:

1. The WebOMiner system works on only limited types of data tuples such as product

name, price, etc. to extract information. Any other kind of information necessary or

unnecessary stays unnoticed.

2. System is not automated. Data extraction is performed manually for each web page.

3. Crawler scans through the whole web site. Instead, it needs to automatically focus on

only targeted web pages.

4. Object database schemas need to be designed automatically with data extraction for

each web site.

	 31	

5. Object warehouse schema needs to be designed for effective integration of these

database schemas generated for each websites.

6. Cleaner module is incapable of handling long tag attributes. Noise data handling is

uncertain after the web page is cleaned.

7. Data warehouse schema design and implementation is unknown. Therefore, it is

unclear to understand if the system would perform well with different and complex

data sets.

8. NFA is a slow and difficult matching technique. Therefore, performance can be

disappointing in terms of large datasets or huge websites.

2.2.7. WebOminer_S: Comparative Mining of B2C Web Sites by discovering web

database schemas: (Ezeife & Peravali, 2016):

The purpose of this application is to extract schema from the entire webpage in order to

retrieve only the required information from any B2C website and store it in the data

warehouse for comparative mining. It contains five modules, which are described as

follows:

Crawler module:

A web crawler also known as a web spider is a meta search engine that integrates the most

popular search results from various search engines like Google, yahoo, etc. This application

contains a mini web crawler taken from the WebOMiner system (Ezeife & Mutsuddy,

2012) that crawls through the web to extract data from targeted web pages that include

texts, tags and image contents. A mirror image of this document is stored in the local hard

drive.

	

	 32	

Cleaner module:

HTML cleaner is open source software used to clean web pages that are usually un-clean in

the form of missing tags and ill formed structure; therefore they are unsuitable for further

processing. HTML cleaner works by redefining all elements individually and maintaining

a well formed structure.An example is shown below to represent Uclean and Clean HTML

file:

1. Unclean HTML:

<h1>CONTENT</h1>

<table id=table1 cellspacing=2px

 <td>1 -> Home Page

 <td>2 -> Introduction

2. Cleaned HTML:

<h1>CONTENT</h1>

 <table id="table1" cellspacing="2px">

 <tbody>

 <tr>

 <td>

 <ahref="index.html">Home Page

 </td>

 <td>

 <ahref="intro.html"> Introduction

 </td>

 </tr>

 </tbody>

 </table>

	 33	

The HTML cleaner is used to transform unclean html page to a clean html page. It helps

in quickly skipping certain unwanted tags or attributes and restructuring the page

contents. Therefore, it easily avoids the expensive document model manipulation

process required after cleaning.

This module is implemented in java file called runBatchFile.java. The fuction runFile()

calls the input argument file called inputUncleaned HTML. As the name says, this file

is unclean and needs structuring.

This file is then provided to the htmlcleaner-2.2.jar in the form of a batch file called

cleanHTML.bat, which produces the cleaned HTML file. This cleaned file is stored in

the project folder with the name outputCleanedHTML. The module is designed to

create a batch file if it does not exist while cleaning process begins.

The syntax to use the html cleaner-2.2.jar with source and destination arguments is as

follows:

Java –jar*\rootfolder\htmlcleaner-2.2.jar src=business.html dest=business_.html

Here, the src=business.html is the input unclean HTML file and

Dest=business_.html is the cleaned HTML file which is then stored at a specific

location which is later used by the HTML parser.

An HTML parser or syntactical analyzer is a parser used to analyze a string of symbols

either in natural or computer language using the rules of grammar. But in this case, the

HTML parser takes in HTML code and extracting relevant information like the title of the

page, paragraphs in the page, headings in the page, links, bold text etc.

The parser called extractSchema.java uses the cleaned HTML page. The function used to

trigger this is parseTheHTML (). ExtractSchema is the main class; therefore an object of

this class is created which calls an argument having the name of the business being

amazon, ebay, bestbuy, etc.

	 34	

Example: Object generated of the extractSchema class is as follows,

(Ezeife & Peravali, 2016):

	
	

Figure	10:	Extract	Schema	class	main()	method	

The method called from the Extract Schema class does the following work on the

cleaned HTML file:

1. Extracts and stores all block of data such as <div>, , <table> into a file

called temp.xml.

2. All the attributes present in the page are eliminated and only the class attribute is

saved into the xml file.

	 35	

A view of the temp.xml file contents (Ezeife & Peravali, 2016):

	
Figure	11:	Temp.xml	file	

Once the program reads the file temp.xml it further creates the occurrence.data file,

which holds the account of the child and parent frequency. This file is important

because it is observed that the data records are huge in number in any product page.

Therefore the format for these records will be naturally more than any other HTML

structure written for any other purpose.

	 36	

A view of the occurrence.data file:

	
Figure	12:	Occurence.data	file	

The occurrence.data file gives the information about the parent node of the block usually

present with maximum frequency including children blocks as well.

Frequent pattern structure finder:

Frequent pattern structure finder analyzes the occurrence.data file to read the tag

information and the frequency of these tags to identify the data of focus. Further, it

functions as follows:

1. It creates a DOM Tree of this node information using the DocumentBuilderFactory. The

documentBuilder functions to retrieve the DOM document from the XML document.

	 37	

2. Xpath is then used for defining various parts in the XML document and navigating

between them. It retrieves the complete node using parent tag name.

3. The frequency of this node obtained is stored using the function printFinalTree().

4. The frequency children block is considered as the product data block.

Example:

Figure 21 is the occurrence.data file. It shows maximum number of child nodes present

within each parent node. Structure Finder algorithm marks these occurrences in order to

find the most frequent pattern. Tags such as <divclass=”clear”>, <divclass=”contentno-

bottom-pad”>, <divclass=”product-contentn-wrapperclear-fix”> provide the structure to

extract the database schema.

The frequent structure finder algorithm is shown below:

Algorithm FSFinder ():

Input: occurrence.data file, #WDHTML file

Output:

Nodelist frequent structures patterns (FRS), data tuples

Xmlnodetag: string (concatenating all the data tuples)

xpathExpression expr: string, path: string

Nodelist tag structure: struct list, data tuple: product block

Packages: Java DOM, Java Path, Java transformer

Begin

1. Call DocumentBuilderFactory ()

2. Call xpathFactory () to create xpath object to obtain the node list

3. For each tag in occurrence.data file,

Retrieved xml is stored in xmlnodetag[1]

Path = “//div[@class=”+xmlnodetag[1]”]”;

xpathExpression expr = xpath.compile(path)

struct list = xpath.evaluate // retrieves all the matching nodes

	 38	

nodelength = struct list.getlength()

#childs = struct list (0).getchildnodes().getlength()

If nodelength >= final nodelength, then final nodelength = nodelength &

If #childs > final childs, then final child = #child

Product block = xmlnodetag[1]

Data tuples (product blocks) = struct list

End For

4. For structlist child nodes

Begin

 Append child nodes to the Frequent structure list

End for

 5. Return string of integrated Data tuples (product blocks)

End

Schema extractor module:

	

The extractSchema.java file performs the task of this module. On identification of the

product block it efficiently retrieves the schema in the following manner:

1. All tags in the block are read to recognize the data type.

2. Each type of data is then classified into their respective types.

 Example:

Tags such as are categorized into image data type and so on.

Tags such as <p>, <h>, , <a>, are considered optional and stored as a

“string” type of data.

	 39	

3. Finally the schema consists of all the tag fields and their data types integrated into a

single String variable (WebSchema), which is the final output of this project that can

be further stored in a database.

A view of the string variable WebSchema is as follows (Ezeife & Peravali, 2016):
 Discovered schema for a single page of bestbuyWebsite is below:

 --

Product	 (prod-image:	 String	 img300x300:	 image	 prodDetails:	 String	 prodTitle:	 String	

prodPrice:	String	priceblock:	String	pricetitle:	String	shop-now:	String	customer-rating:	String	

rating-title:	String	rating-stars:String)	

The extracted data above is from the best buy website. Similarly, many more website data’s

can be extracted and stored in a data warehouse with the entire source website attributes

and properties participating as the dimension tables values.

2.2.7.1. Limitation for the WebOMiner_S:

1. Limitation of the WebOMiner_S is that it does not have a web-based application.

WebOminer_S does not have a provision for querying data records available in the data

warehouse.

2. Also there is no provision for integrating the data records as for each extraction, the

system creates a new database table. Therefore, new integration rules need to be specified

after every extraction. The product tables generated dynamically do not have appropriate

column labels for the discovered schema. It is difficult to integrate product data from

multiple data records from different websites such as bestbuy, Costco, etc. In order to

overcome this, columns have to be named appropriately.

	 40	

CHAPTER 3: PROPOSED WebOMiner_SRec SYSTEM

3.1. System Design, architecture and algorithm:

	

The purpose of the proposed WebOMiner_SRec system is to take input: the discovered

Product_Schema from the (WebOMiner_S system containing: crawler module, cleaner

module, HTML parser module, frequent pattern finder module schema extractor module)

and developing the (WebOMiner_SRec: Schema_Mapper module and the Query

Management Interface). The output of the WebOMiner_SRec system is the answer to all

the queries made to the datawarehouse for analysis. Let us understand all the modules and

their working in detail.

3.1.1. Architecture for our WebOMiner_SRec system:

	
Figure	5:	WebOMiner_SRec	system	architecture	

	 41	

Our systems aims at developing a Simplistic user interface by mounting the

WebOMiner_SRec system on the web domain using Java Enterprise Web functions. The

WebOMiner_S is a web data extraction system for yielding all essential information about

products. The WebOMiner_S on its final stage outputs a product schema such as Product

1(column 1, column 2, … column n), which is then taken as an input for our

WebOMiner_SRec system. The WebOMiner_SRec has an algorithm called

“Schema_mapper” for giving meaningful names to the column attributes of the already

existing product table in the data warehouse. It then creates a mapping container that

provides an environment based on annotators to map all the column elements to the

appropriate feature element such as (Dell Laptop Inspiron series to product name).

Annotators are the rules or conditions written in a <scriplet> format that contains an

annotation tree to map the column attributes to their exact data types. A Load file element

is introduced to perform the transport of all the mapped data from the database to the data

warehouse.

Once the transformed data is loaded to the datawarehouse product table, another table

called the seller table is created which stores all the information about the seller (for e.g.

Seller name, Id, seller url, date/time). This information is referenced directly from the

product table. Seller ID is the foreign key attribute used for integrating the Seller

information. Therefore, the final step of the WebOMiner_SRec is to create a secure non-

terminating connection between the data warehouse and the GUI. A connection is created

calling the JDBC.session.connection () methods to request data from the warehouse. Java

object method() handles the transaction processing for providing the perfect response to the

requested interface query. The final output of the WebOMiner_SRec is the ResultList

object that gives query results to the web users.

3.1.2.	Algorithm for our Web Recommendation system:

Algorithm WebOMiner_SRec

Input: Product_schema discovered which is the output obtained from WebOMiner_S

Output: Data from warehouse encapsulated in java objects (answer to user queries)

Other: Annotators: .xml

	 42	

Begin

1. Schema_Mapper: Define a feature to column (attribute) mapping container:

For each (input product_data),

1.1. Define a feature <element> (n) and a column <element> (m)

1.2. Check the annotation rules for mapping feature and column <element>

1.3. If “n” satisfies the rules for “m” condition

Then, map “n to m”

Note: the rules are defined based on RegEx and equivalent data types

 1.4. If n! = m, set m value = Null//

2. Loadfile<element>:

2.1. If mapping is performed completely for all “m to n” values

Then, load all mapped data to loadfile.xml

2.2. Loadfile.xml specifies the buffer size (0 – 1024 MB)

2.3. For every loadfile.xml,

 Check: if loadfile.xml is ready “OR” in uploading stage from

Mapping_Container.

2.4. If ready: upload the mapped data to the datawarehouse.

 End For

3. Query_Manager: Establish connection between data warehouse and java object

class.

4. Object data access: If connection to the database is made:

4.1. Query request consists: Access permission to the data values.

4.2. If required data exists,

 Encapsulate the data into Java object for access by appropriate display fields.

If not, gives an IO Exception

4.3. Map HTML/CSS interface fields to exact display data objects

4.4. Render query data on the Interface to show results.

 End

	 43	

3.1.3. System modules and working:
3.1.3.1. Schema_Mapper module:

Algorithm for SchemaMapper:

Input: Product schema and data tuples obtained from WebOMiner_S

Output: Product schema with meaning column values assigned to the product_domain

table in the datawarehouse and the datatuples to be stored in the datawarehouse

product_domain table.

Other: MappingAnnotations.xml file

Begin

1. Schema_Mapper: Define a feature to column (attribute) mapping container:

for each (input product_data),

2. Define a feature <element> (n) and a column <element> (m)

3. Connect to the database using

4. Check if “m” equals to every column attribute of the product_domain table

5. Check the annotation rules for mapping feature and column <element>

Where rules define conditions for column to data type matching:

If value=integer [0-9 && (!/) ends with $] map the integer value to price column,

etc.

6. If “n” satisfies the rules for “m” condition

Then, map “n to m”

7. if n != m, set m value = Null//

end for;

End

How Schema_Mapper works:

It makes sure that the value of the feature element is stored in a column of the appropriate

type. A feature structure is the underlying data structure that represents an analysis result. A

feature structure is an attribute-value structure. Each feature structure is of a type and every

type has a specified set of valid features or attributes (properties), much like a Java class.

	 44	

Features have a range type that indicates the type of value that the feature must have, such

as String.

For example, the text span "HP laptop 1TB HDD i3 processor" might be spanned by an

annotation of type Product with the features (product name, product description).

The type system defines the types of objects (feature structures) that may be discovered.

The type system defines all possible feature structures in terms of types and features

(attributes). It is possible to define any number of different types in a type system. A type

system is domain and application specific.

The analysis annotators produce their analysis results in the form of annotations.

Annotations are a special kind of feature structure that is designated for analysis

processing. An annotation spans or covers a piece of input data and is defined in terms of

its beginning and end positions.

Working example:

An annotator that recognizes expressions created for the data "100.55 US Dollars" an

annotation of type Expression that covers the text with the feature currencySymbol set to

"$".

All Schema_mapper structures are stored in the MappingAnnotations.xml file.

The Schema_Mapper structure contains the following objects:

1. The type system description that indicates the types, subtypes, and their features for

(e.g. Dell laptop i5 processor).

2. The column and feature attributes (e.g. product description).

To transport the Schema_mapper structure to the data warehouse we call the mapping ()

method that contains the database connection configuration information and a description of

the appropriate connection path to the data warehouse table. Using SchemaMapper(), each

feature is checked and mapped correctly to the already existing product table columns. The

following example shows the mapping rules generated by the Schema Mapper structure:

	 45	

 Format structure for the @annotator is as follows:

<SchemaMappingSpec> <name>com.tt.DocumentAnnotation</name>

<filter syntax="FeatureValue">toBeProcessed=0</filter>

 <JdbcMappings> <explicitMappings>

<explicitMappingRuleapplyToSubtypes="false">

<type>com.ibm.omnifind.types.Product</type>

<table>sample.Product</table>

<featureMappings>

<feature>uniqueId()</feature>

<column>ProductId</column></featureMapping>

<featureMapping><feature>uniqueId()</feature><column>ProductId()</column>

</featureMapping>

Annotator mapping rules are provided for the <Feature> and the <Column> element.

These mapping rules perform accurate validation methods.

For example:

$validator.mappingRule(“currency”, function(feature{product_price}, column{PRICE})

 { return this.(featureMapping) ||

 /`\$(\d{1,3}(\,\d{3})*|(\d+))(\.\d{2}?$/.test(productdb.table{price, product_price});)

 };

 The above rule explains:

1. Validation annotation for price. It calls the MappingRule method to validate

<feature> product_price, and <column> PRICE.

2. Mapping rule method checks for data integrity constrains for e.g. If it is a price

attribute, it checks for integer value, decimal value, “.” Product before the decimal

value and also symbols like “$”.

3. Validator annotation further returns a <featureMapping> element that is required to

start the next process of data loading.

	 46	

The Schema_mapper structure, is created as follows:

1. Create the Schema structure mapping file as the XSD schema:
JDBCMapping.xsd in ES_INSTALL_ROOT/configurations/parserservice/data directory.

2. Include the mapping in a <JdbcConfiguration xmlns="jdbc/100/xml"> element. The

namespace (specified in the xmlns attribute) must be exactly as shown.

3. Add a <databaseConnection> element that contains all database configuration information

and a <JdbcMappingSpec> element that contains the mapping structure for the product

table columns such as (product name, product id, prod description, etc.) that are stored in

the data warehouse product table.

4. Add the following component elements to the <databaseConnection> element:

(i) Mandatory: A <connectionUrl> element. This element contains the database

connection URL. Depending on the JDBC driver implementation, we can use local or

remote access to the database.

(ii) Mandatory: A <driver> element. This element contains the name of the JDBC driver

class, for example com.db2.jcc.DB2Driver.

(iii) Mandatory: A <driverLibraries> element. This element lists the driver libraries.

(iv) Mandatory: An <authentication> element. This element contains the user name and

password for the database (e.g. username: root, password: tiger).

 The following component elements are added to the <jdbcMappingSpec> element:

A <JdbcMapping> element shows the types and features that are mapped to the data

warehouse product table and its respective columns.

A <ExplicitMapping> element. This element is mandatory. It must have one or

more <ExplicitMappingRule> elements that define the annotation types and their

subtypes. If a mapping is defined in the explicit mappings rule, all of the annotations that

match the mapping definition will be stored in the data warehouse. If there is an explicit

mapping rule for the Seller annotation, all products related to the seller are added to the

seller table in the data warehouse.

	 47	

5. The <ExplicitMappingRule> must contain the attribute applyToSubtypes, which, if set to

true, stores not only the feature structure that is listed in the <type> element, but also all

of the feature structures derived from it. Add the following component elements

to <explicitMappingRule>:

7. A <type> element that contains the feature structure type.

8. A <table> element that contains the product schema and table name. The syntax

follows the rule schema.table_name.

9. A <filter> element that contains an explicit condition that is evaluated each time the

mapping rule matches. If the condition evaluates to true, the annotation stores the feature

structure in the mappings file.

10. The <featureMapping> element component structure works as follows:

If we are mapping a feature or feature path, the component elements include:

11. A <feature> element with the name of the feature. The feature must be defined for the

feature structure. We use a feature path construct to list all the features. (for e.g.

feature/prod_ID/schema.product_table).

12. A <column> element with the name of the column in which the feature value is to be

stored (for e.g. schema.product_table/product_name: Apple iphone 6). Database columns

that are not used in any feature mappings use a default value (usually null).

3.1.3.2. Datawarehouse Loader:

Algorithm for Datawarehouse loader:
Input: product_schema obtained from schema mapper module and data tuples to be stored in

the data warehouse product table.

Output: data records stored in the existing product table and seller data stored in the seller

table.

	 48	

Begin

1. Create database connection along with product_domain table with column attributes

specific to the product schema obtained from Schema Mapper from Mapping

Annotations.xml file.

2. A loadfile<> element is defined to transport all the extracted data to the product_domain

table.

3. For each attribute;

 Store all the data tuples with their unique ID

End for;

4. Create another seller_fact table having attributes for seller information.

 For each seller in the product_domain table;

 Map the unique ID of the seller to the seller_fact table as the Foreign key along with the

date/time attribute.

End for;

End

How datawarehouse loader works:

1. A <loadFile> element contains the following components:

§ The load file directory in a <loadFileDirectory> element.

§ The load file size in a <loadFileSize> element. The load file size limits are 10 <=

loadFileSize <= 10240 (10MB <= loadFileSize <= 10GB). If no value is defined, the

default is 1024 MB (1GB).

§ The load script name in a <loadScript> element.

If we do not specify a <loadFile> element, all data is stored directly in the database by

using JDBC connection.

	 49	

2. Data Access Object:

DAO stands for Data Access Object, which is commonly used for database interaction.

DAOs exist to provide a means to read and write data to the database and they should

expose this functionality through an interface by which the rest of the application will

access them. The DAO support makes it easy to work with data access technologies like

JDBC, Hibernate, JPA, or JDO in a consistent way. Therefore, our system implements

Hibernate connectivity to transport the LoadFile.xml to the database.

3. A data warehouse is generally understood as an integrated and time-varying collection of

data primarily used in strategic decision-making (Husemann et. al., 2000). Data Warehouse

is used to design a relation for a Product dataset for the following reasons:

1. Data Warehouse is subject oriented: Finance, Business, etc.

2. It stores Meta Data information

3. It is useful for accurate querying and analysis

4. It is a non-volatile repository

The WebOMiner Simple system implementation defines the use of a Data Warehouse as a

tool to design relations between database records, as the main purpose of this application is

to query historical information for analysis.

Therefore, we create a Seller_fact table to store all the seller information. Such as Seller_id,

Seller_name and Date/time. We also create a product_domain table, which stores all the

extracted data records. All the seller data tuples along with their unique id are stored in the

seller_fact table. These id’s are the foreign key attributes. This helps to integrate all the data

records from the product_domain table into the seller_fact table to categorize and save

information on the basis of sellers or vendors. This also helps in accurate querying and

helps to categorize records in the future when more sellers are added to the system

database.

	 50	

Working Example:

1. Figure 14 represents the seller_fact table created to store and categorize all the seller

information from integrated from the product_domain table in the data warehouse.

This table integrates and saves the ID, name, url link and the website name.

Example syntax: Create table seller_fact

 (ID int not null;

 Name string, url string, website string)	

Add Foreign Key constraints:

Alter Table Seller_Fact ADD CONSTRAINS _FK_ID FOREIGN KEY (ID)

REFERENCES product_domain (ID);

For example: Seller_table

ID NAME URL WEBSITE

3 BESTBUY http://www.bestbuy.ca/en-

CA/category/iphone/36586.aspx?searchRedirect=iphone
BestBuy.ca

	
Figure	14:	Seller_fact	table	from	the	datawarehouse

	 51	

2. Figure 15 represents the product_domain table created to store all the data records

along with their unique id’s and the date/time attribute.

Example syntax: Create table SellerFact

 (id int PK not null, comments null, currency null, name string not null, link PK,

 price int not null, seller string, date/time sysdate;

)

For example: product_domain table

Id Name Currency Price Seller Date/time

1 Iphone 6s 32gb,

space grey
Null 49.99 bestbuy 03-04-2017

11:59:00

	
Figure	15:	product_domain	table	from	the	data	warehouse

	 52	

3.2.3.3. Query Manager:

Algorithm for Query Manager:

Input: Database connection parameters from the Data warehouse loader module

Output: Answers to user queries displayed on the GUI

Begin:

1. Define a Web MVC framework to handle the process flow from making a request

 to the data warehouse and getting a response on the GUI.

2. For every request to the data warehouse;

Establish a secure session,

Establish a secure connection,

Have error free user queries to get optimal results,

End the connection until a new request is generated.

End for;

3. Display the appropriate results to the user in the form of Java objects (as java is

 Object oriented language. Objects are real time instances)

End

How the Query manager Works:

1. The Web-MVC module Model-View-Controller (MVC) is implementation for web

applications. The Web-Socket module provides support for WebSocket-based, two-way

communication between the client and the server.

• The Model encapsulates the application data and in general they will consist of POJO.

• The View is responsible for rendering the model data and in general it generates the

HTML output that the client's browser could interpret.

	 53	

• The Controller is responsible for processing the flow from the interface to the business

logic and the database connection.

Following is the sequence of events corresponding to an incoming HTTP request to

DispatcherServlet: After receiving an HTTP request, DispatcherServlet consults the

HandlerMapping to call the appropriate Controller. The Controller takes the request and

calls the appropriate service methods based on GET or POST method. The service method

will set model data based on the java business logic and returns view name to the

DispatcherServlet. The DispatcherServlet will take help from ViewResolver to pickup the

defined view for the request. Once view is finalized, The DispatcherServlet passes the

model data to the view, which is finally rendered, on the browser.

The DispatcherServlet: It delegates the request to the controllers to execute the

functionality specific to it. The @Controllerannotation indicates that a particular class

serves the role of a controller. The @RequestMapping annotation is used to map a URL to

either an entire class or a particular handler method.

@Controller

@RequestMapping("/data")

public class MinerController {

 @RequestMapping(method = RequestMethod.GET)

 public String printRecord(ModelMap model) {

 model.addAttribute("message", "Display result!");

 return "Record";

 }

}

	 54	

The @Controller annotation:

It defines the controller class. Here, the first usage of @RequestMapping indicates that all

handling methods on this controller are relative to the /minerWeb path. Next

annotation@RequestMapping (method = RequestMethod.GET) is used to declare the

Recordprint() method as the controller's default service method to handle HTTP GET

request.

2. After a successful connection, HTTP Response provides the Result List object to the

view interface. The format of the ResultList data object is as follows:

// ResultList object [0] [Product _1] {“Java data object”}

ID Int 33

Product_name String Dell Inspiron i5 series

Price Float 499.99

Date date 03-04-2017

Working Example:

Hibernate application is provided using “org.hibernate” package in Java.

1. Session creation:

In order to connect to the database from the Java enterprise logic, a session is created

using the following packages:

• org.hibernate.sessionfactory

• prg.hibernate.session

For example let us consider the code developed in our approach for creating a session

between the Java class and database:

	 55	

	
Figure	16:	Create	Session

2. Configuration file:

Once the session is created, a call to the configuration file is made to establish a

connection between the Java class and the database. It is done using the

“hibernate.connection.driver_class”.

Example: contains the username: “Scott” and password: “tiger” authentication

	

	

	
Figure	17:	Hibernate	configuration	file

	 56	

3. Mapping file:

It is necessary that the names defined for Java class and the database are same. Let us

consider an example for mapping constraints.

Example: Product is the name of the table in the data warehouse whereas

model.Product is the name of the Java class too.

	
Figure	18:	Hibernate	Mapping	file

Once the connection is completed, user specific queries can be made to the system. Let us

see how our system can perform query operations on data-warehouse tables using SQL and

JDBC Template object.

Working Example for database querying:

(i) Query: Find all records from the product data table from seller name (BestBuy.ca). “%”

Symbol is used to classify all the seller information to satisfy the input user criteria.

	 57	

(ii) Query: Find all records from the product data table for Product name (e.g. Apple

Iphone).

(iii) Query: Find all records from the product data table satisfying the price range (for e.g.

100$ - 900$) provided by the user at runtime.

(iv) Query: Find all records from the product data table satisfying the date range (for e.g.

“15-03-2017” to “07-04-2017”) stored by the system date:

	 58	

(v) Query: Display all the query results to the GUI view (returns a ResultList object):

After the queries are made to get the results, transaction management is an important part

of RDBMS-oriented enterprise application that is used to ensure data integrity and

consistency. Our system provides transaction capabilities to POJOs. Pojo’s are the java

class objects that encapsulate the warehouse data in order to transport them to the

presentation layer for display.

In the above example: resultList is the java object, which contains all the encapsulated

information that is rendered for display.

3.2. Possible contributions and developments:

The implementation of WebOMiner_SRec delivers good results with a simplistic user

interface that is delivered to the end user who wants to query the extracted data stored in

the data warehouse, as the WebOMiner_S system does not provide any graphical user

interface for querying and knowledge discovery. Therefore the WebOMiner_S is observed

to be a naive system with large number of possibilities for improvements. The possible

contributions are:

1. Our WebOMiner_SRec system develops annotation rules to map the column and the

data values appropriately.

2. Integrating the data warehouse records by mapping the required identifiers in the fact-

domain tables to provide consistency and integrity of data.

3. WebOMiner_SRec makes the use of Java object class methods to provide correct data

encapsulated in java objects to the front user (proves to be the answers to the user

specific queries).

	 59	

CHAPTER 4. IMPLEMENTATION AND RESULTS
	

4.1.Where are the source code files for the system:

(i) The entire WebOMiner_SRec application is available at “miner.newcs.uwindsor.ca”. This

is a “Debian server” in Linux supported by University of Windsor to deploy Java web

applications. To access it as user just type the URL “54.69.20.208:8080/about” in your web

browser.

(ii) To access it as administrator in order to modify/ improves the existing work, access the

Woddlab directory file system (request access permission from Dr. Christie Ezeife) à Look

for AmrutWebOMiner_SRec (which contains the source code and a readme.txt file as a guide

for getting the code running) à Download the code on your local Windows or Linux machine

and follow the readme.txt document to run the WebOMiner_SRec application.

4.1.1. Which operating system supports this application:

WebOMiner_SRec System is developed to work with Windows and is portable in University

of Windsor CDF Solaris Operating System on Unix environment and most importantly on the

Debian server for deploying the system on the web. Minimum requirements to have the system

running are: (i) atleast 4gb RAM, (ii) 256 gb HDD.

To make it simple, all setup tools used are compatible with both Windows and Unix operating

system. In that case, only minor changes are required to run the system on Windows and on

Unix. The steps to install and run the source-code for the system are explained below in

section 4.2.

	 60	

4.2. INSTALLATION AND WORKING PROCEDURE:

1. Conform operating system requirement described in section 4.1.1. Download the source

code on your computer from the Woddlab directory à AmrutWebOMiner_SRec.

2. Install java JDK 1.6 or later version and set the class path / path in environment variable.

Setting an environment variable is discussed in the flowing link:

 http://forums.sun.com/thread.jspa?threadID=5450340

3. For debugging and running the system we need to download and install Spring STS. Step

1. Install Spring Source Tool Suite (STS) IDE; download the latest binaries from

http://www.springsource.org/springsource-tool-suite-download. Once you downloaded the

installation, unpack the binary distribution into a convenient location.

Setup Spring Framework 4.0 Libraries

Step 2. Please download JAR files from here:

http://repo.spring.io/milestone/org/springframework/spring/4.0.0.RC1/spring-framework-

4.0.0.RC1-dist.zip

Set your CLASSPATH variable on this directory properly otherwise you will face problem

while running your application.

4. Install Maven (for building the application on Unix system):

Maven is downloadable as a zip file at “http://maven.apache.org/download.cgi”. Only the

binaries are required, so look for the link to apache-maven-{version}-bin.zip or apache-

maven-{version}-bin.tar.gz.

Once you have downloaded the zip file, unzip it to your computer. Then add the bin folder

to your path.

To test the Maven installation, run mvn from the command-line:

“mvn –v”

	 61	

5. Install My Sql latest version:

MySQL Workbench can be installed using the (.msi) installation package. The MSI

package bears the name mysql-workbench-version-win32.msi, where version indicates the

MySQL Workbench version number.

Step 1. Right-click the MSI file à select the Install option from the pop-up menu, or

simply double-click the file.

In the Setup Type window you may choose Complete or Custom installation. To use all

features of MySQL Workbench choose the complete option.

6. Install Tomcat version 8.0:

Step 1. Goto http://tomcat.apache.org ⇒ Under "Tomcat 8.5. {xx} Released"

(Where {xx} is the latest upgrade number) ⇒ Downloads ⇒ under "8.5. {xx}" ⇒ Binary

Distributions ⇒ Core ⇒ "ZIP" package (e.g., "apache-tomcat-8.5.{xx}.zip", about 9 MB).

Step 2. Create your project directory; say "d:\myProject" or "c:\myProject". UNZIP the

downloaded file into your project directory. Tomcat will be unzipped into directory

"d:\myProject\apache-tomcat-8.0.{xx}".

Step 3. For ease of use, we shall shorten and rename this directory to:

"d:\myProject\tomcat".

Take note of Your Tomcat Installed Directory. Hereafter, refer to the Tomcat installed

directory as <TOMCAT_HOME>.

4.2.1. Steps for windows installation:

1. Import “WebOMiner_SRec” in spring by using following steps:

File à Import Project àGeneralà File System à Select “WebOMiner_SRec”

from your computer à ok. The “webominers” project will be imported to Spring

STS.

	 62	

2. Go to Build path button in Menu bar of the Spring STS, select and click Debug

(WebOMiner_SRec) button. If the program is imported properly a new window will be

opened in the web browser with the running application.

4.2.2. Steps for Unix installation:

1. Use the command “mvn spring-boot:run” (this is a maven plugin for the Unix command

line). This command includes a run goal, which can be used to launch the application

directly from the command line. Running the application on the Unix environment is

simpler than running it on the Windows operating system. The java main class has

already been added to the source code. Therefore, the need to call the main class from

the command line is not required.

4.3.HOW TO USE THE WebOMiner_SRec System:

Once the entire application is installed on the computer and ready to run, follow the steps

below to use the WebOMiner_SRec on the local machine or follow the link

54.69.20.208:8080/about to access it directly on the web browser:

Step 1: GUI for the home page to input product and vendor information:

WebOMiner_SRec system implementation includes a front-end interface that further

connects to a Java servlet like Tomcat to access it on the browser.

The index page of the implementation has two action fields, one for the input seller source

such as “BestBuy” and the other is product input such as “iphone” that will be used for

extracting the data and for collecting records of data blocks into a data warehouse table

having the following attributes:

<ID>,<PRODUCT NAME & DESC>,<PRICE>,<SELLERINFO>, <DATE/TIME>

	 63	

Figure 19 represents a view of the home page developed for the WebOMiner_SRec

system:

	
Figure19:	Input	page	to	our	WebOMiner_SRec	System

On submitting the required information the records are stored in the data warehouse table

that are represented on the “Scraped Data” interface which is shown in Step 2.

Step 2: Scraped data interface for displaying the data records stored in the data warehouse

table.

The retrieved data records from the input fields specified in step 1 are displayed in the

Scraped data interface in the form of the following schema:

<Name><price><seller><time>
All the data records are perfectly placed in their respective columns to query these records

is future application.

	 64	

 For example:

NAME PRICE SELLER TIME/DATE

Apple iphone6 32gb 269.99 BestBuy 04-04-2017 (19:34)

 Figure 20 represents the results on the display interface of “Scraped data”

	
Figure20:	Scraped	data	display	result	

The Scraped data interface also contains a field to perform a quick search and it also

displays the number of records retrieved.

For example: A quick search for “iphone 6” displays 121 records that are available in the

database from all the various vendors/sellers like Amazon, BestBuy, etc.

	 65	

Figure 21 represents the quick search field to filter records

Figure21:	Result	from	quick	search	on	“iphone	6”		

	 66	

Step 3: Advanced Search interface for querying to obtain required results:

Figure 22 represents the Advanced Search feature that allows the user to query any kind of

historical information from the database records. This information can be queried based on

the following search criteria’s: Product name, Seller name, Price, Date, Time, additional

information displayed such as “product details”.

	
Figure	22:	Advanced	Search	

	 67	

The Advanced search has the feature of error correction, which helps to correct wrong

inputs provided by the user. An example would be “date range cannot have a low value

date in “Todate” field than the “Fromdate” field OR “it cannot have null values”

Figure 23 represents the use of error correction as follows:

	

	
Figure	23:	Advanced	search	for	error	free	inputs	

	

	

	

	 68	

Advanced search example:

The following figure displays results on the basis of input filters provided as:

Product: iphone

Price range: 0$ to 1350$

Date range: 03-04-2017 to 04-04-2017

Result: Apple iphone 6s gold, 32gb, Vendor: Fido-BestBuy, on date: 04-04-2017

Figure 24 represents the results obtained from advanced search tab:

	
Figure24:	Advanced	search	results	

	

	

	 69	

From the results we observe that the following seller “Best buy” can have iPhones from

different providers as seen in the display tab. Therefore, we can further query these results

as follows:

Example query: Figure 25 filters all records from Bestbuy with Fido service for iphone 6s

which is grey in color.

	
	

Figure	25:	filter	search	result	

	

	

In the above figure we can observe that the user can input any query such as “fido apple

smartphone grey”. It need not be the exact same word picked from the data record.

Therefore, it is possible to compare a product specification or the product price between

two sources like “BestBuy and Costco”.

	 70	

For example:

If a customer is searching for a laptop specifically having an “i5 processor” then he needs

to compare the following criteria:

Brand information: dell, Lenovo, Acer, apple, etc.

Other specifications: Memory HDD, Ram, etc.

Price: reasonable price and quality requirements.

Seller info: BestBuy, costco, etc.

Result: Dell E6410 is the cheapest laptop for 279.99$ from BestBuy

Figure 26 represents the results obtained by comparing two or more different vendors to

find results for laptops with i5 processor for the cheapest price.

	
Figure	26:		Comparative	Search	results	

	 71	

Example Historical Querying:

The WebOMiner_SRec system uses datawarehouse tables to store records and query

historical data. This application has the date/time attribute in order to retrieve historical

information from the present database records.

Figure 27 represents the result when the same web-source, in our case “Best Buy” changes

its product information over a time period.

	
Figure	27:	Historical	search	results	

	 72	

For example:

In the above figure,

Iphone 6s 128 gb price on 03-04-2017 à 49.99$

Iphone 6s 128 gb price on 04-04-2017 à 399.99$

Result: price for iphone 6s by BestBuy was different on 03-04-2017 and on 04-04-2017.

WebOMiner_SRec system therefore helps in storing and querying historical data

records.

WebOMiner_SRec application also has the “Information guide” as to understand how the

system works. It is a user friendly application supported for data querying and analysis. It

also has links directed to all the tabs provided on our system. The guide page looks as

follows:

	
Figure	28:	About	page	guide	

	 73	

	
	

4.4.Comparing WebOMiner_SRec with the existing web data extraction systems and the

WebOMiner_S:

1. WebOMiner_SRec extends the WebOMiner_S for adding a GUI and querying features

that is mounted on the web. It also provides a way to store extracted data records into a

single data warehouse table rather than creating new tables for every extraction. This

helps in integrating those data records for data comparison, knowledge discovery and

historical querying.

2. WebOMiner_SRec develops a GUI interace, which is simple to use, and is equally

robust as other web data extractors available on the Internet such as “Googleshop,

NextTag, etc.”

3. The WebOMiner_SRec allows the users to query historical data, which is not a feature

provided by “Googleshop” or any such existing application. It also allows the user to

make queries specifying any user inputs. Whereas, existing applications provide only a

limited scope for querying data records.

	

	

	 74	

	

CHAPTER 5: CONCLUSION AND FUTURE WORK

This thesis proposes the Implementation and mounting of the WebOMiner_Simple system

on a Web Server. Extending the WebOMiner_S data extraction system with a Web GUI for

querying extracted E-Commerce data from multiple data sources through UNIX server for

web access and availability. Extending the WebOMiner_S data extraction system such that

the extracted product schemas previously extracted from the web, which were stored in the

database as generic schema have now been given more meaningful names and all the

records are stored in a single data warehouse table for comparative and historical querying.

The WebOMiner_SRec extends the WebOMiner_S data extraction system such that it can

directly answer comparative historical queries on the web through the GUI in much the

same way as existing recommendation systems on the web such as Googleshop and

ShopZilla do. It is also as robust as Googleshop and other similar applications. This system

has a scope to extend data extraction from more web sources in the future as a separate

table is created to store only the web source information that is integrated with the

datawarehouse table. It also has scope for future development in terms of providing

meaningful recommendations to the system users.

5.1 Future Work

We feel that our effort of mining the product data records automatically in a simplistic way

has a lot of room for improvement.

1. Now that we have created the data warehouse for products, further mining and

querying functionalities are to be extended to analyze the database records and to

perform comparative analysis based on a simpler way for querying such as search

engines implemented using “Apache Solr” which is an intelligent search engine that

can catch any word or sentence or even a synonym of the records that need to be

fetched from the applications database.

	 75	

2. Our application is only capable of extracting the meta-data available on the “product

list page”. It can be modified and extended to extract complete product specifications

and details from the “detail product page”.

3. One of the main limitations of our system is that we have implemented our system

knowing the fact that certain big websites such as “walmart” do not allow the

permission to extract data. Work needs to be done to solve this problem.

4. Another important application for future scope is to have user specific data extraction.

Where the system can automatically determine which web sources or which kind of

products does the user usually search for knowledge discovery. Our system can be

further designed to analyze such patterns and automatically extract this information

over a period of time.

	 76	

REFERENCES

Annoni, E., & Ezeife, C. (2009). Modeling Web Documents as Objects for Automatic Web Content

Extraction-Object-oriented Web Data Model. ICEIS (1), (pp. 91-100).

Arthur, J., & Azadegan, S. (2005, May). Spring Framework for rapid open source J2EE Web

 Application Development: A case study. In Software Engineering, Artificial Intelligence,

 Networking and Parallel/Distributed Computing, 2005 and First ACIS International

 Workshop on Self-Assembling Wireless Networks. SNPD/SAWN 2005. Sixth International

 Conference on (pp. 90-95). IEEE.

	
Bhavik, P. (2010). A survey of the comparison shopping agent-based decision support systems.

Journal of Electronic Commerce Research, 178.

Bernstein, P. A., & Newcomer, E. (2009). Principles of transaction processing. Morgan

 Kaufmann, 12-18.

Bharanipriya, V., & Prasad, V. K. (2011). Web content mining tools: a comparative

 study. International Journal of Information Technology and Knowledge

 Management, 4(1), 211-215.

Chakrabarti, S. (2000). Data mining for hypertext: A tutorial survey. ACM SIGKDD Explorations

Newsletter, 1-11.

Chang, C.-H., Kayed, M., Girgis, M., & Shaala, K. (2006). A survey of web information extraction

systems. Knowledge and Data Engineering, IEEE Transactions on, 1411-1428.

Codd, E. F., Codd, S. B., & Salley, C. T. (1993). Providing OLAP (on-line analytical processing)

 to user-analysts: An IT mandate. Codd and Date, 32.

	
Cooley, R., Mobasher, B., & Srivastava, j. (1997). Web mining: Information and pattern discovery

on the world wide web. Tools with Artificial Intelligence, 1997. Proceedings., Ninth IEEE

International Conference on (pp. 558-567). IEEE.

Eagle, M. (2004). Wiring your web application with open source java. 2004-04-07. http://www.

 onjava.com/pub/a/onjava/2004/04/07/wiringwebapps. html.

	 77	

Escoffier, C., & Hall, R. S. (2007, March). Dynamically adaptable applications with iPOJO

 service components. In International conference on Software composition (pp. 113-128).

 Springer Berlin Heidelberg.

Escoffier, C., Hall, R. S., & Lalanda, P. (2007, July). iPOJO: An extensible service-oriented

 component framework. In Services Computing, 2007. SCC 2007. IEEE International

 Conference on (pp. 474-481). IEEE.

Ezeife, C., & Mutsuddy, T. (2012). Towards comparative mining of web document objects with

NFA: WebOMiner system. International Journal of Data Warehousing and Mining

(IJDWM), 1-21.

Ezeife, C. I., & Peravali, B. (2016, July). Comparative Mining of B2C Web Sites by Discovering

 Web Database Schemas. In Proceedings of the 20th International Database Engineering

 & Applications Symposium (pp. 183-192). ACM.

Gupta, P., & Govil, M. C. (2010). MVC Design Pattern for the multi framework distributed

 applications using XML, spring and struts framework. Int J Comput Sci Eng, 2(4), 1047-

 1051.

Hammer, J., McHugh, J., McHugh, J., & Garcia-Molina, H. (1997). Semistructured Data: The

TSIMMIS Experience. In Proceedings of the 1st East-European, 1-7.

Hammer, Joachim, J., McHugh, J., & Garcia-Molina, H. (1997). emistructured Data: The TSIMMIS

Experience. Advances in Databases and Information Systems.

Hogue, A., & Karger, D. (2005). Thresher: automating the unwrapping of semantic content from the

World Wide Web. Proceedings of the 14th international conference on World Wide Web

(pp. 86-95). ACM.

Hsu, C.-N., & Dung, M.-T. (1998). Generating finite-state transducers for semi-structured data

extraction from the web. Information systems, 521-538.

Hüsemann, B., Lechtenbörger, J., & Vossen, G. (2000). Conceptual data warehouse design (pp.

 6-1). Universität Münster. Angewandte Mathematik und Informatik. Kosala, R., &

 Blockeel, H. (2000). Web mining research: A survey. ACM Sigkdd Explorations

 Newsletter(1), 1-15.

	 78	

Inmon, W. H. (1996). The data warehouse and data mining. Communications of the ACM, 39(11),

 49-51. Inmon, W. H. (1996). The data warehouse and data mining. Communications of

 the ACM, 39(11), 49-51.

Inmon, W. H., Imhoof, C., & Battas, G. (1996). Building the Operational Data Store, John Wiley

 & Sons.

Johnson, R. (2005). J2EE development frameworks. Computer, 38(1), 107-110.

Kosala, R., & Blockeel, H. (2000). Web mining research: A survey. ACM Sigkdd Explorations

Newsletter(1), 1-15.

Ladley, J. (1997). Operational data stores: building an effective strategy. Data Warehouse:

 Practical Advice from the Experts (Englewood Cliffs, NJ: Prentice Hall, 1997).

Laender, A., Ribeiro-Neto, B., & da Silva, A. (2002). DEByE–data extraction by example. Data &

Knowledge Engineering, 121-154.

Laender, A., Ribeiro-Neto, B., da Sil va, A., & Teixeira, J. (2002). A brief survey of web data

extraction tools. ACM Sigmod Record, 84-93.

Lee, G. H., & Jung, J. (2007). Web framework with Java and XML in multi-tiers for productivity.

 Future Generation Computer Systems, 23(2), 263-268.

	
Liu, B. (2007). Web data mining: exploring hyperlinks, contents, and usage data. Springer Science

& Business Media.

Liu, B., & Chen-Chuan-Chang, K. (2004). Editorial: special issue on web content mining. Acm

Sigkdd explorations newsletter, 6(2), 1-4.

March, S. T., & Hevner, A. R. (2007). Integrated decision support systems: A data warehousing

 perspective. Decision Support Systems, 43(3), 1031-1043.

Meng, X., Hu, D., & Li, C. (2003). Schema-guided wrapper maintenance for web-data extraction.

Proceedings of the 5th ACM international workshop on Web information and data

management (pp. 1-8). ACM.

	 79	

Muslea, I., Minton, S., & Knoblock, C. (2001). Hierarchical wrapper induction for semistructured

information sources. Autonomous Agents and Multi-Agent Systems, 93-114.

Muslea, I., Minton, S., & Knoblock, C. (1999). A hierarchical approach to wrapper induction.

Proceedings of the third annual conference on Autonomous Agents (pp. 190-197). ACM.

Novotny, R., Vojtas, P., & Maruscak, D. (2009). Information extraction from web pages.

Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web

Intelligence and Intelligent Agent Technology-Volume 03 (pp. 121-124). IEEE Computer

Society.

Razina, E., & Janzen, D. S. (2007). Effects of dependency injection on maintainability, 53-84.

Srivastava, J., Cooley, R., Deshpande, M., & Tan, P.-N. (2000). Web usage mining: Discovery and

applications of usage patterns from web data. ACM SIGKDD Explorations Newsletter, 1(2),

12-23.

Wang, J., & Lochovsky, F. (2003). Data extraction and label assignment for web databases.

Proceedings of the 12th international conference on World Wide Web (pp. 187-196). ACM.

Wu, S.-T., Li, Y., Xu, Y., Pham, B., & Chen, P. (2004). Automatic pattern-taxonomy extraction for

web mining. Web Intelligence, 2004. WI 2004. Proceedings. IEEE/WIC/ACM International

Conference on (pp. 242-248). IEEE.

Zaiane, O., & Han, J. (1998). Webml: Querying the world-wide web for resources and knowledge.

Proc. ACM CIKM'98 Workshop on Web Information and Data Management (WIDM'98).

Citeseer.

Zhai, Y., & Liu, B. (2005). Web data extraction based on partial tree alignment. Proceedings of the

14th international conference on World Wide Web (pp. 76-85). ACM.

Zhou, M., & Zhou, S. (2007, June). Internet, open-source and power system simulation. In Power

 Engineering Society General Meeting, 2007. IEEE (pp. 1-5). IEEE.

	
Zhu, J., Nie, Z., Wen, J.-R., Zhang, B., & Ma, W.-Y. (2006). Simultaneous record detection and

attribute labeling in web data extraction. Proceedings of the 12th ACM SIGKDD

international conference on Knowledge discovery and data mining (pp. 494-503). ACM.

	
	

	 80	

 APPENDIX - A

 WebOMiner_SRec System Manual

 Developed by Amrutraj Chachad

	 81	

 TABLE OF CONTENTS
	
	
	
	
1.0 System Architecture …………………………………………………………..84

2.0 User Interface …………………………………………………………………86

2.1 How to debug, run the program and get the result………………………...87

3.0 Operating System ……………………………………………………………..88

4.0 Programming Environment …………………………………………………...88

5.0 Installation of the system…………………………………………………….. 88

5.1. Installation of Spring STS………………………………………………...88

5.2. Installation of MySql workbench…………………………………………89

6.0 Data Base, Schema and File format…………………………………………...90

7.0 Tomcat Installation ……………………………………………..……………..91

8.0 Information regarding Web Application ……………………………………...91

	 82	

1.0 System Architecture

Our WebOMiner_SRec system architecture consists of three modules: Presentation layer,

middle tier and data access layer. The overall architecture of the Web recommendation

system is shown in figure 1 below:

Figure 6: Architecture of Web Recommendation system

	 83	

Our systems aims at developing a Simplistic user interface by mounting the

WebOMiner_SRec system on the web domain using Java Enterprise functions. The

WebOMiner_S is a web data extraction system for extracting all essential information

about products. The WebOMiner_S on its final stage outputs the schema for product

attributes, which is then taken as an input for our WebOMiner_SRec system. The

WebOMiner_SRec has a module called “Schema_mapper” for naming all the columns

present in the product_schema provided by the WebOMiner_S system. It then creates a

mapping container that provides an environment based on annotators to map all the column

attributes to the appropriate data values. Annotators are the rules or conditions written in a

<scriplet> format that contains an annotation tree to map the column attributes to their

exact data types. A Load file element is introduced to perform the transport of all the

mapped data to the data warehouse.

The data warehouse creates two tables to store the product and seller information.

Therefore, the final step of the WebOMiner_SRec is to create perfect non-terminating

connection between the data warehouse and the interface fields. A connection is created

calling the JDBC session connection methods to request data from the warehouse. Java

object class method () handles the transaction processing for providing the perfect response

to the requested query. The final output of the WebOMiner_SRec gives the results to the

web users based on their queries.

	 84	

2.0 User Interface

The index page of the implementation has two action fields, one for the input seller source

such as “BestBuy” and the other is product input such as “iPhone” that will be used for

extracting the data and storing it in the database. User has to call the URL

“54.69.20.208:8080/about” from a web browser such as Google chrome to run the

application.

	 85	

2.1. How to debug, run the program on windows using ide and get the results:

To debug and run the system we need to confirm the following first:

1. Conform operating system requirement described in section 3.0.

2. Install java JDK 1.6 or later version and set the class path / path in environment variable.

Setting an environment variable is discussed in “forums.sun.java” in the flowing link:

 http://forums.sun.com/thread.jspa?threadID=5450340

3. For debugging and running the system from STS we need to download and install

Spring STS as described in section 5.1.

4. Import “webominers” project in Spring by using following steps:

File à Import Project àGeneralà File System à select “webominers” from your

computer à ok. The “webominers” project will be imported to Spring STS.

5. Install My Sql latest version as described in section 5.2.

6. Install Tomcat version 8.0 as described in section 8.0.

7. Make sure all the jar files needed 1. mysql-connector-java5.1.38-bin.jar 2. commons-

lang3-3.4.jar 3. commons-lang3-3.4-javadoc.jar 4. guava-16.0.1.jar 5. org-apache-

commons-lang.jar` driver file is in “libraries” folder under “webominers” package.

8. Go to Build path button in Menu bar of the Spring STS, select and click Debug

(webominers) button as shown in figure 3. If the program is imported properly a new

window will be opened in the web browser with the running WebOMiner_SRec

application.

	 86	

3.0. Operating System:

System is developed in 64-bit Windows 10 operating system at Intel i5 2.26 GHz

processor, 8.00 GB RAM Lenovo Thinkpad Machine. This system is portable in University

of Windsor CDF Solaris Operating System on Unix environment. In that case, to compile,

execute and run the program type “mvn spring-boot: run” on the Unix terminal command

line.

4.0 Programming Environment

The application is programmed and tested in Java 2 Platform Standard Edition version

1.6.0_16, which is installed on Windows and Unix systems. The advantages of this

environment are as follows:

• Regular expression capability.

• The improved Java Doc.

• Low coupling and usability.

• Relatively easy implementation of Object-Oriented design pattern.

5.0 Installation of WebOMiner_SRec system:

5.1. Installation of Spring (STS) IDE:

5.1.1. Installing the Software Bundle on Microsoft Windows:

Step 1 - Setup Java Development Kit (JDK):

Download latest java (JDK) version from oracle's java site.

Set to the class path for this JDK version in case Window OS.

• set PATH=C:\jdk1.6.0_23\bin;%PATH%

• set JAVA_HOME=C:\jdk1.6.0_23

	 87	

Alternatively, on Windows NT/2000/XP, you could also right-click on My Computer,

select Properties, then Advanced, then Environment Variables. Then, you would update the

PATH value and press the OK button.

To install SpringSource Tool Suite (STS) IDE, download the latest SpringSource Tool

binaries from http://www.springsource.org/springsource-tool-suite-download . Once you

downloaded the installation, unpack the binary distribution into a convenient location.

Step 2 - Setup Spring Framework 4.0 Libraries

If you are looking to download the JAR files required to run the Spring 4.0 examples,

please download it from here:

http://repo.spring.io/milestone/org/springframework/spring/4.0.0.RC1/spring-framework-

4.0.0.RC1-dist.zip

Set your CLASSPATH variable on this directory properly otherwise you will face problem

while running your application.

5.2 Installation of the MySql software using installer:

MySQL Workbench can be installed using the Installer (.msi) installation package. The

MSI package bears the name mysql-workbench-version-win32.msi, where version indicates

the MySQL Workbench version number.

To install MySQL Workbench,

right-click the MSI file à select the Install option from the pop-up menu, or simply

double-click the file.

In the Setup Type window you may choose Complete or Custom installation. To use all

features of MySQL Workbench choose the Complete option.

	 88	

6.0 Data Base Schema and format

The WebOMiner_SRec system implementation defines the use of a Data Warehouse as a

tool to design relations between database records, as the main purpose of this application is

to query historical information for analysis.

There are four web sources tested in this application (Amazon, bestbuy, Costco, craiglist).

These are called the seller fields and the product table records are shown in the figure

below:

	
Figure	7:	product	table	records

	 89	

7.0 Tomcat 8.0 Installation

• Goto http://tomcat.apache.org ⇒ Under "Tomcat 8.5.{xx} Released"

(where {xx} is the latest upgrade number) ⇒ Downloads ⇒ Under "8.5.{xx}" ⇒ Binary

Distributions ⇒ Core ⇒ "ZIP" package (e.g., "apache-tomcat-8.5.{xx}.zip", about 9 MB).

• Create your project directory, say "d:\myProject" or "c:\myProject". UNZIP the

Downloaded file into your project directory. Tomcat will be unzipped into directory

"d:\myProject\apache-tomcat-8.0.{xx}".

• For ease of use, we shall shorten and rename this directory to "d:\myProject\tomcat".

Take note of Your Tomcat Installed Directory. Hereafter, I shall refer to the Tomcat

installed directory as <TOMCAT_HOME>.

8.0 Web Application

The entire application of WebOMiner_S is available at “miner.newcs.uwindsor.ca.” To

access it as user just type the URL “54.69.20.208:8080/about” in your web browser.

To access it as administrator in order to modify/ improve the existing work ask the network

administrator to add you as “sudo user” to the server, so that you can access the contents

from your login.

	
	
	
	

	 90	

	
	
	

VITA AUCTORIS

NAME: Amrutraj Chachad

PLACE OF BIRTH:

Maharashtra, India

YEAR OF BIRTH:

1988

EDUCATION:

Thakur Polytechnic Mumbai, MH, 2009

Rajiv Gandhi Institute of Technology Mumbai,
MH, 2012

University of Windsor, M.Sc., Windsor, ON,
2017

	University of Windsor
	Scholarship at UWindsor
	2017

	Implementation and Web Mounting of the WebOMiner_S Recommendation System
	Amrutraj Alhad Chachad
	Recommended Citation

	Amrut WebOMiner_SRec.1.1

