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ABSTRACT

Studying gene expression through various time intervals of breast cancer survival may

provide insights into the recovery of the patients. In this work, we propose a hierarchical

clustering method used to separate dissimilar groups of genes in time-series data, which

have the furthest distances from the rest of the genes throughout different time intervals.

The isolated outliers(genes that trend differently from other genes) can serve as potential

biomarkers of breast cancer survivability. We partition the time axis (time points) into bins

of length six months starting from 1-6 up to 337-342 month intervals and, for each gene, we

average its expression level over all patients who appear in a survival bin. Gene expressions

throughout those time points are cubic spline interpolated to create a trending profile for

each gene. First, we universally align the gene expression profiles to minimize the total area

between them. Then, we cluster them using a sliding window approach and hierarchical

clustering based on minimum vertical distances. To the best of our knowledge, this work is

the first time-series model that is built on the survival time of patients after the treatment.

With this approach, we identified 46 genes (including 24 oncogenes and 18 tumor suppressor

genes) as potential biomarkers of breast cancer survivability.
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CHAPTER 1

Introduction

1.1 Breast Cancer

What is Cancer?

Cells are basic functional and structural units of a living organism. A human body has

trillions of cells that act as building blocks to form tissues and organs in the human body.

Cells grow and multiply as and when the body demands. They also have the ability and

mechanisms to repair themselves when damaged or die when they are unable to. When a cell

dies, a new cell replaces it, and this process happens in an orderly and controlled fashion.

FIGURE 1: Understanding cancer.

Cancer is a disease that is characterized by uncontrolled cell growth in an organ. Figure

1 shows how healthy cell becomes cancerous [5]. It starts when there is an unpredictable
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change in the structure of DNA (Deoxyribonucleic acid) in a cell that creates a mutation.

These mutated cells divide out of control and crowd out the healthy cells in the body. These

mutated cells also grow and form a tumor which can be cancerous or benign. A cancerous

tumor is malignant as it can grow and spread to other parts of the body, whereas a benign

tumor can grow but will not spread.

What is breast cancer?

Cancer can occur anywhere in the body as cells are everywhere in the body. Breast cancer

is the most common female cancer in the western world and one of the leading causes of

death by cancer among women. It stands second among the most prominent causes of death

amongst the middle-aged women in the world and most common in women over 50 years

of age [2, 18, 35, 69]. Breast cancer refers to a malignant tumor that has originated from

the cells of the breast. Recent studies showed that there exists extensive diversity between

and within breast cancer patients, while each breast cancer shows unique characteristics.

The heterogeneity of cancer complicates diagnosis and treatment [5]. Every person's cancer

develops uniquely and their responses to therapies are not the same. Breast cancer is caused

due to a genetic irregularity which occurs due to damaged DNA in a cell. Genomes are pieces

of DNA (deoxyribonucleic acid) inside a cell that instructs the cell what to do and when to

grow and divide. Each cell has about 25,000 genes in it [1]. Mutations in a small number of

genes, oncogenes or tumor suppressors, whose change deregulate many biological processes

leads to initiation and progression of breast cancer as well as resistance to treatment [31].

Figure 2 depicts the central dogma of molecular biology [4]. The red cross in the figure

shows the damaged DNA being used in transcription and translation processes. Gene ex-

pression is a process in which instructions in a DNA (i.e., genes) are converted into proteins

(functional products). It is a tightly regulated process that lets a cell to respond to the

2



FIGURE 2: Central dogma of molecular biology.

changes in the environment. Transcription and translation are the most critical processes in

the conversion of a gene to protein. Transcription makes a mRNA (messenger RNA) molecule

which has instructions encoded in it for protein synthesis. Translation is the process of de-

coding the instructions on a mRNA to assemble a protein. Gene expression profiling is a

process by which we identify active (over-expressed) and inactive genes (under-expressed).
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Biomarkers

A biomarker is defined as a measurable indicator of a biological process. There are five

distinct kinds of cancer biomarkers:

• Prognostic biomarkers: those that predict the development of cancer [30].

• Diagnostic biomarkers: those that predict the presence of disease or condition of in-

terest or the subtype of cancer [47].

• Predictive biomarkers: those that predict the survivability of patient treated with the

specific drug [22].

• Progression biomarkers: those that predict whether the cancer is spreading or not.

• Recurrence biomarkers: those that predict whether cancer will recur after sometime

[70].

In this thesis, we define survivability as the period a treated patient lives after the first

diagnosis of the disease. Thus, we focus on finding predictive biomarkers that can help us

predict survivability of breast cancer patients from gene expression time-series data.

1.2 Problem Statement

Given a breast cancer dataset of patients of different survival status (living/dead), overall

survival time, type of treatment and subtype, we aim to :

• Create a time-series dataset of patients using the overall survival in the dataset based

on survival status.

• Predict the breast cancer survivability of a patient by identifying the local and global

outliers in the time-series data.

4



• Determine the exact time point at which the outlier (gene) is under-expressed/over-

expressed.

Figure 3 depicts global and local outliers. Let us consider the curves as gene expression

profiles. From the beginning, the curve in red colour clearly trends different from other

curves. So this is a global outlier. The curve in yellow colour follows a similar trend with

other curves upto a certain point (represented by dotted lines) and starts following a different

trend. This is called a local outlier.

FIGURE 3: Local and global outliers.

1.3 Motivation

The discovery of biomarkers can be a crucial step in predicting survivability and handling of

any disease. The practical applications of gene expression analyses are innumerable. Gene
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expression values are different in various stages of progression of the disease. One of the

most powerful applications of gene expression analysis is to identify biomarkers that can be

used for disease risk assessment, early detection, prognosis and preventive measures [79]. In

the field of bioinformatics, in the recent years, researchers have spent lots of time and effort

in finding the biomarkers of different types of cancer at the genetic level. Genes tend to

under-express or over-express during progression and recurrence of any disease, especially

cancer. The problem of choosing those biomarker genes that provide insights about the

disease poses a challenging problem in high-dimensional data.

Previous work on detecting biomarkers at a gene level was focussed on grouping up of

similar gene expression profiles and eliminating the outlier genes as noise. In this thesis, we

propose a novel method to identify the genes that are dissimilar, as outlier genes, that can

serve as potential biomarkers of breast cancer survivability.

1.4 Conclusion

In this chapter, we discussed some important terminologies of breast cancer, the problem

statement and motivation for this thesis.

This thesis is organized as follows,

• In Chapter 2, we present the literature review.

• In Chapter 3, we introduce the materials and methods for this work.

• Chapter 4 contains details of computational experiments, results and discussion.

• Chapter 5 gives the conclusion of this thesis.

6



CHAPTER 2

Literature Review

Once a patient is diagnosed with breast cancer, one of the most challenging questions in

patient management are how to maximize the chances of survival with a chosen treatment.

Biomarkers identified using various methods discussed here are expected to provide more

accurate information to address this question. The following review helps us understand the

way biomarkers can be used to answer different clinical questions such as survival, disease

subtype and prognosis of a breast cancer patient. A relevant biomarker (gene in our case)

must be sensitive, specific, highly standardized and reproducible [79].

Yousef et al. [79] gave a review of various machine learning techniques such as clustering

and support vector machines (SVM), which are most commonly used for biomarker discovery.

They discussed various supervised, unsupervised learning and feature selection algorithms

in machine learning. They conclude that the best data mining approach to find biomarkers

would be to integrate different methods to arrive at an effective and efficient algorithm. They

also suggest incorporating biological knowledge in the algorithm to achieve more accurate

biological results.

Chen et al. [15] developed a network-constrained SVM algorithm for identifying cancer

biomarkers by integrating gene expression data and protein-protein interaction (PPI) data.

In this method, the clinical outcome of patients is predicted, and meaningful biomarkers

are identified by incorporating PPI network information. First, a classifier is built based

7



on gene-expression data and PPI network as input for predicting the outcome of new sam-

ples. Biomarkers were obtained by significance test based on permutation of sample labels.

These biomarkers had very high functional relevance to breast cancer and revealed potential

signaling pathways associated with breast cancer metastasis.

Swan et al. [67] used machine learning on proteomics data for biomarker identification.

In that paper, they used a process called peak picking (as part of preprocessing), which

checks the mass spectrometry data for peaks with significantly high signal intensities. These

peaks are considered as potential biomarkers (proteins), followed by using machine learning

techniques to identify the most suitable biomarkers. However, the drawback here is, the

results need further analysis. Also, additional preprocessing steps such as normalization,

peak alignment, and noise reduction techniques are essential to improve accuracy and avoid

errors.

Weiler et al. [43] developed a maximum difference subset algorithm that combines classi-

fication algorithm, statistics, and machine learning techniques. They described the goals of

data analysis in three steps (a) class discovery, (b) class prediction and (c) detecting dysreg-

ulated genes that trend different from other genes in the same subtype. The authors explore

the possibility that a clustering algorithm can be used in conjunction with a classical statis-

tical analysis in such way that considers classification accuracy for finding the dysregulated

genes. With this technique, they found five genes that were relevant to leukemia.

Miloli et al. [47] developed an algorithm that uses a new method called CM1 score

to identify biomarkers for subtype classification. CM1 score is a method to evaluate the

difference in expression levels of two samples in two classes. With this technique, they

identified 30 biomarkers for predicting breast cancer subtypes.

Alkhateeb et al. [9] proposed a time-series method to interpolate transcript expression

values over cancer stages to isolate outliers as biomarkers for prostate cancer. They used pro-

file alignment and hierarchical clustering to filter out gene transcripts that trend differently
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from the other genes that follow a similar trend. They suggest that a combination of proper

clustering algorithm, suitable distance function and validity index is the best approach to

solve the problem of outlier detection.

Another approach is biclustering which reveals groups of genes that show similar activity

patterns under a specific subset of experimental conditions [45]. They deployed an open

source tool designed by Madeira et al., BiGGEsTS to analyze our gene-expression time-

series data [27]. However, there are some drawbacks with the tool:

• It only selects a subset of genes under specific conditions and subset of conditions under

specific genes based on discretized matrix

• BiGGEsTS could not group all the genes with similar trend in one bicluster because

of its Discretized matrix technique

• BiGGEsTS could not capture the change in gene-expression trend accurately.

• Single gene can occur in many biclusters.

BiClustering in Scikitlearn is another algorithm and involves a process in which rows and

columns of a dataset are clustered simultaneously. The clusters of rows and columns are

known as biclusters. Each determines a submatrix of the original data matrix with some

desired properties [52].

The literature suggests that most of the researchers have used clustering algorithms on

the data to pick relevant outliers as biomarkers for a disease.

2.1 Contribution

In this thesis, we propose an adaptive clustering algorithm to detect biomarkers of breast

cancer survivability using time-series data. This algorithm is based on:
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• Creating a patient time-series data give gene expression data based on overall survival

of breast cancer patients.

• Multiple alignment of gene expression profiles based on their trend across time-series.

• A new adaptive clustering algorithm which we call sliding window approach to identify

outliers as biomarkers in time-series data.
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CHAPTER 3

Materials and Methods

Machine Learning

Machine learning is a branch of artificial intelligence that provides various methods and

algorithms that are trained on inputs, and a model is extracted from them [71]. Subsequently,

that model is tested on a different set of inputs, and then the algorithm performance is

measured [71]. Clustering is an unsupervised technique in machine learning [71].

3.1 Dataset

The dataset used for this thesis is the Molecular Taxonomy of Breast Cancer Interna-

tional Consortium (METABRIC) dataset [19], which is publicly available at cBioPortal [3].

METABRIC is a Canada-UK project that aims to classify breast tumors into further sub-

categories, based on molecular signatures that helps determine the best course of treatment

to improve patients survivability. This dataset contains clinical data (Patient ID, Survival

status, overall survival in months and type of treatment) for a total of 1,904 patients. Of

these, 480 patients were diagnosed/treated for breast cancer but died because of some other

reason; thus,we filtered them out as they will have no relevance to our problem of predicting

biomarkers of survivability. That gives us a total of 1,424 patients; from which we consider

only the patients who are still living and disease free, 801 patients, to predict biomarkers
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of survivability. The dataset has also expression data (24,368 genes determined through

microarray) for all the patients in the clinical dataset.

3.2 Preprocessing : Creating Time-Series

In preprocessing, first, the two datasets (clinical dataset and the gene expression dataset)

were merged with the KEY = PATIENT-ID, and next, we create a time-series. A time-series

is a sequence of measures at specific time points. Gene expression of cancer patients can be

measured at different time points. Also, time points can be interpolated to approximate the

growth of disease over time and isolate outliers.

FIGURE 4: Creating time-series dataset.
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Figure 4 depicts the process by which our time series data were created. The dataset

has patients overall survival (the day patients were diagnosed with breast cancer to the day

the dataset was created) in months. In this work, we assume the survival of each patient

as time-series. The shortest time of patient who survived is one month and the longest

being 342. To create the time-series data, we partition the time axis into survival bins of

length 6 months. We chose an interval of 6 months since the average time for progression of

cancer is 6 months. Also, for a cancer patient who is undergoing treatment, it takes at least

3-6 months to respond to it. For the dataset we have, time series starts from 1-6 months,

7-12 months and go on until 337-342, giving us 55 time points. Next, we average the gene

expression levels over all the patients appearing in a survival bin. Table 1 depicts the layout

of our time series dataset with 24,368 rows × 55 columns.

Time-point 1

(1 - 6 months)

Time-point 2

(7 - 12 months)
...

Time-point 55

(337 - 342 months)

Gene 1
Average of (Gene 1 in

1-6 Months bin)

Average of (Gene 1 in

7-12 Months bin)
...

Average of (Gene 1 in

337-342 Months bin)

Gene 2 . . ... .

Gene 3 . . ... .

Gene 4 . . ... .

Gene 24368

Average of (Gene

24368 in 1-6 Months

bin)

Average of (Gene

24368 in 7-12 Months

bin)

...

Average of (Gene

24368 in 337-342

Months bin)

TABLE 1: Layout of our time series dataset.

3.3 Time-Series Interpolation Methods

Interpolation is defined as the method of constructing new data points within a range of

already known data points [74]. There are four different methods to interpolate time-series

data:

• Piecewise Interpolation (Figure 5a) consists of locating the nearest data value and
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assigning that to unknown data value [74].

• Linear Interpolation (Figure 5b) - is to use linear polynomials to construct new data

points within the range of a discrete set of known data points [74].

• Polynomial Interpolation (Figure 5c) - is the interpolation of a given data set by

the polynomial of degree d >0 that passes through the points of the dataset [74].

• Spline Interpolation (Figure 5d) - Spline interpolation uses cubic polynomials in each

of the intervals and chooses the polynomials such that they fit smoothly together [74].

In this work, we use spline interpolation, since it is more accurate and computationally

less expensive.

FIGURE 5: Differrent interpolation methods.
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3.4 Clustering

A cluster is defined as a collection of objects that are similar to each other and are dissimilar

to the objects belonging to other clusters.

In this thesis, we use hierarchical agglomerative clustering which is a distance-based and

a bottom-up approach. Before performing clustering, it is important to determine the dis-

tance matrix, which shows the distance between each pair of points using a distance function.

This matrix is updated each time two points are clustered together. There are different ways

by which the distance or the proximity between clusters is measured. This process is called

linkage. In this thesis, we are using complete linkage (Figure 6) or furthest neighbors, which

computes the distance between the furthest pair of points for each pair of clusters and merges

the pair of clusters that have the minimum furthest distance among all such distances be-

tween the pair of clusters under consideration [56].

FIGURE 6: Clustering with complete linkage.
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3.5 Our Baseline Method

We propose an approach to identify biomarkers in breast cancer progression from outliers of

time-series clusters. We study the progression of breast cancer by identifying the biomarkers

in gene-expression profiles throughout various time-points created based on patient survival.

We propose an algorithm which is a combination of a cubic spline interpolation, universal

profile alignment, a distance function, a clustering algorithm to detect outliers, and a cluster

validity index (PAAC) to determine the best number of clusters for the dataset. Each of

these functions is discussed in detail below.

3.5.1 Natural Cubic Spline Interpolation

Gene expressions throughout the time points are natural cubic spline interpolated to create

a trending profile for each gene in the given dataset [9,62,65,66]. For profile x(t), where t is

a vector that represents time points [t1, t2, ., tn], x(t) is interpolated continuously as follows:

x(t) =


x1(t), ift1 ≤ t ≤ t2

xj(t), iftj < t ≤ tj+1

xn−1(t), iftn−1 < t ≤ tn

where xj(t) = xj3(t− tj)3 + xj2(t− tj)2 + xj1(t− tj)1 + xj0(t− tj)0

xj(t) interpolates x(t) in the interval [tj, t(j + 1)], with spline coefficients xjk ∈ R, for

1 ≤ j ≤ n − 1 and 0 ≤ k ≤ 3. The interpolated x(t) spline has a natural condition, which

means that the first and second derivatives of the spline at each interval x(t) are equal to

zero.
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3.5.2 Universal Alignment of Gene Profiles

Given a dataset X = {x1(t), x2(t), .. xm(t)} where m is the number of profiles, cubic splines

profiles were universally aligned by shifting the interpolated gene profiles vertically in such

a way that the squared error between any two of those profiles is minimal [9, 56, 62, 65, 66].

Pairwise alignment for all possible pairs of profiles is done by aligning all profiles to a profile

z(t) = 0 (universal alignment).

3.5.3 Distance Function

The distance between the two profiles x(t) and y(t) is the area d(x,y) between those two

profiles after universal alignment as per the equation below:

d(x, y) =

∫ tn

0

[x(t)− y(t)].dt

The distance between two profiles is the area between the two profiles after shifting the

profiles vertically in such a way to obtain the minimum possible area between them. All the

profiles are aligned to the universal profile z(t) (universal alignment) in such a way that the

area between z(t) and the profile is minimum [9,56,62,65,66].

3.5.4 Clustering Algorithm

The main objective of using clustering here is to filter out the profiles that trend differently

from other profiles [9, 62, 65, 66]. In this work, we have chosen singleton clusters as outliers.

We also choose clusters with a very small number of profiles that follow the same trend with

profiles within the cluster and dissimilar from other profiles in a different cluster. Hierarchical

agglomerative clustering is a bottom-up approach. Initially, each profile in the dataset is

an individual cluster (each profile is a cluster), and then the clusters are merged based on

the distance between them. Here, the clusters are combined based on complete linkage
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criteria (computing the distance between the furthest pair of points for each pair of clusters

and combines the pair of clusters that has the minimum furthest distance among all such

distances). The merging process continues until the desired number of clusters is reached.

This approach places the profiles with similar trends into one cluster and filters out profiles

that are less similar to other profiles as one or more different clusters.

3.5.5 Profile Alignment and Agglomerative Clustering Index

Profile alignment and agglomerative clustering Index (PAAC) [9, 62, 65, 66] is the validity

index that has been used to determine the desired number of clusters for the dataset. PAAC

is a modified version of the I-index [29]. Rueda et al. modified the I-Index formula to reduce

the impact the I-index value faces when many clusters are used in it as follows:

I(k) = (
1

k
)q × (

B

W
×D)p,

where:

D = (maxi,j=1)
kd(µi, µj),

B =
k∑

i<c

d(µi, µc),

W =
k∑

i=1

n∑
j=1

µijd(xj, µi),

k is the number of clusters, q is the coefficient of normalizing the number of clusters, p is

the coefficient of the degree of the index, µij = 1 if gene j belongs to the ith cluster; otherwise

µij = 0, µi is the center of ith cluster, n is the number of genes, and d(. , .) is the distance

between the profiles. The aim here is to choose the value of k, that has the maximum value

of I-index as the desired number of clusters for the dataset.
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3.6 Workflow of Our Baseline Method

In our baseline method, the entire time-series dataset (time point 1 to time point 55) is

universally aligned towards the universal profile z(t). Then, we use hierarchical clustering

to detect the gene profiles that trend differently from others. Finally, we use cubic spline

interpolation to identify singleton clusters that trend differently from other genes as outliers.

Figure 7 depicts the workflow of our baseline method.

FIGURE 7: Workflow of our baseline method.

3.7 Adaptive Clustering Algorithm

We propose an iterative adaptive clustering algorithm (ACTS) wherein we slice the time-axis

into distinct intervals based on three parameters, window size, outlier threshold and step size

(Figure 8). To detect the local and global outliers, it is essential to slice the time-series data

and perform the clustering algorithm on each interval separately and identify the outliers

based on the partial clustering results. Partially clustering the dataset makes our algorithm

to adapt to the structure of data in a specific interval and identifies the genes that are more

relevant to breast cancer survivability.
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FIGURE 8: Slicing the time series based on Window size and Step size.

3.8 Workflow of Proposed Algorithm

Figure 9 depicts the work flow of the proposed algorithm. The proposed algorithm uses an

iterative approach to detect outliers as biomarkers. We first slice the time-series dataset

based on two parameters, Window size and Step size. Window size is chosen in a way

that covers the interval that has the largest variation among genes. Step size here is a

fixed parameter, which is equal to two. Outlier threshold is an arbitrary parameter used

to limit the number of outliers in each interval. Then, we use hierarchical clustering and

spline interpolation methods to detect outliers on each sliced interval based on an Outlier

threshold.
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FIGURE 9: Workflow of the proposed algorithm.

3.8.1 Window Size for the First Iteration

Window size for the first iteration/interval is decided based on visualizing the data. This

parameter is dynamic and highly dependent on the structure of the dataset. We choose

the window size in such a way that the interval has considerable gene expression variability

among the genes and, many visible peaks which could be potential outliers. A disease like

cancer during the progression has several genes that are over-expressed in the initial stage

of the disease. Thus, the main idea here is to pick many observations/genes that trend

differently from others in the first Iteration. Once we determine the window size for the first
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iteration, the algorithm proceeds as follows:

• Extract data based on the window size from the time-series dataset.

• Perform multiple profile alignment and clustering to detect potential biomarkers within

that interval. In Figure 10, based on visualization, we choose window size = 8 time

points for the first iteration in our time-series dataset.

FIGURE 10: Window size for the first iteration.

3.8.2 Step Size = 2

Step size here is a fixed parameter and is used from the second iteration onwards until the

last time-point in the dataset. Genes that are outliers trend differently from others. We

investigated all possible trends a gene could follow, to be captured as an outlier. In Figure

11, the lines colored in red depict all possible trends a gene could follow during progression.

Based on this observation, we need to identify the trend of a gene in at least two time points
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to determine if it is an outlier in an interval. From the second iteration onwards, the step

size is used to include new time-points from the dataset for the next consecutive iterations

until the last time-point is reached.

FIGURE 11: Change in gene trend.

After the first iteration, we proceed with the algorithm based on Step size = 2. Figure

12 depicts how step size is used in our time-series dataset. From the second iteration until

the end, the algorithm proceeds as follows:
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• Adds two points after each iteration until the last time-point in the dataset.

• Performs multiple profile alignment and clustering on each interval until the end.

FIGURE 12: Step size from iteration 2 onwards.

3.8.3 Outlier Threshold

Outlier threshold is an arbitrary parameter used to determine and limit the number of genes

in a cluster that can be filtered out as outliers. Alkhateeb et al. [9] used a threshold of one

gene in a cluster (singleton clusters). In our case, it is difficult to determine the local outliers

with a threshold of one gene in a cluster. With specific time intervals, it is not easy to filter

out singleton clusters as there could be many genes following a similar trend. Thus, we set

a threshold of ≤ 5 genes in a cluster for filtering out the outliers and reduce redundancy in

each iteration. By grouping genes that have a very high similarity (similar trends) to each

other, the algorithm ensures minimum inter-cluster dissimilarity and maximum intra-cluster
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dissimilarity among the clustered data. Figure 13 contains the pseudo code for the proposed

algorithm.

1: Input: Time-Series Dataset,Window size, Step size, Outlier Threshold, k range
2: Output: Outliers in each interval
3:

4: input1 = Time-series Dataset (1:Window size)
5: clustering and PAAC(input1)
6:

7: repeat
8: input2 = new dataset;
9: clustering and PAAC(input2)

10: until last time point is reached
11:

12: function clustering and PAAC(input)
13: for each gene in input do
14: uni-align = Align each gene towards universal profile Z(t)
15: end for
16: for each value in k range do
17: perform Hierarchical Agglomerative Clustering of uni-align
18: perform PAAC to determine the best k value
19: end for
20: Choose k value for max(PAAC)
21: plot cubic spline Interpolation for best k value clustering result
22: if Cluster size ≤ Outlier Threshold then
23: filter genes in cluster as outliers
24: else
25: new dataset = Add time-points based on Step size for next iteration.
26: end if
27: end function

FIGURE 13: ACTS pseudocode.
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CHAPTER 4

Computational Experiments and

Results

4.1 Identifying the Window size for the first Iteration

For determining the window size for Iteration 1 we:

• Perform multiple alignment on the time-series dataset, and

• Visualize the dataset after multiple-alignment.

Figure 14 shows two plots. The graph on top depicts the gene-expressions data plotted

before alignment. The graph at the bottom (titled Universal Alignment towards the t−axis)

contains gene-expressions aligned towards the Z(t) = 0 profile.

As discussed in Chapter 3, the main idea is to select a window size such that many

outliers are filtered out in the very first iteration. In Figure 14, Universal Alignment, it

is noticeable that some genes are over and under-expressed at the same time in the first 8

time-points (green peaks in between red dotted lines, above and below the zero axis).

This suggests that in initial stages, the over-expressed genes could characterize the pro-

gression of breast cancer. Also, genes that are filtered out in the first few iterations could

be oncogenes that could lead to cancer proliferation and inactivity of certain genes (tumour
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FIGURE 14: Window size for the first iteration.

suppressor genes) that could slow down the rate at which cancer progresses. From Figure 14,

we infer that up-regulation of genes/peaks towards the end suggests high activity of tumor

suppressor genes which helped the patients survive for a long time.

4.2 Results of the Baseline Method

We identified 24 genes, which could potentially serve as biomarkers of breast cancer surviv-

ability. These could serve as global outliers as per our problem statement, considering the

whole time-series dataset. With parameters q = 0.7, p = 2, k = 46 clusters, we obtained 24

genes (Table 2) as singleton clusters (one gene per cluster).
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S.No Gene Related to BC?

1 HIST1H4C X

2 ATP5EP2 X

3 PSAP X

4 CD81 X

5 RPS5 X

6 EEF1A1 X

7 PYY2 X

8 HES7 X

9 ZNF678 X

10 ATP5B X

11 RPL11 X

12 RPS20 X

13 SNRPD2 X

TABLE 2: Results of baseline method.
(BC - Breast cancer)

S.No Gene Related to BC?

14 RPL32 X

15 HSP90B1 X

16 TOMM7 X

17 UBA52 X

18 BGN X

19 RPS15 X

20 RPL12 X

21 TIMP1 X

22 RPS16 X

23 FTL X

24 RPL10 X

4.3 Adaptive Clustering Algorithm

After running the ACTS, we found 53 genes as potential biomarkers of breast cancer sur-

vivability. The window size for Interval-1 is set to 8, step size is set to 2 from Interval-2

onwards. Outliers threshold on each interval ≤ 5. Summary of results is given in Table 3

and the list of genes in Table 4, respectively.
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Window TP Genes Outliers

1 1...8 24368 4

2 1...10 24364 19

3 1...12 24345 9

4 1...14 24336 -

5 1...16 24336 -

6 1...18 24336 5

7 1...20 24331 5

8 1...22 24326 -

9 1...24 24326 -

10 1...26 24326 -

11 1...28 24326 -

12 1...30 24326 -

13 1...32 24326 -

14 1...34 24326 6

TABLE 3: Outliers in each interval.
(TP-Time-points)

Window TP Genes Outliers

15 1...36 24320 4

16 1...38 24316 -

17 1...40 24316 -

18 1...42 24316 -

19 1...44 24316 -

20 1...46 24316 -

21 1...48 24316 -

22 1...50 24316 1

23 1...52 24315 -

24 1...54 24315 -

25 1...55 24315 -
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S.No TP Gene Rel. to BC?
1

1..8

SCGB2A2 X
2 ANKRD30A X
3 SCGB1D2 X
4 SCGB2A1 X
5

1..10

PIP X
6 TFF3 X
7 KRT81 X
8 CSN3 X
9 KLK5 X
10 C4orf7 X
11 TAT X
12 BEX1 X
13 UGT2B11 X
14 UGT2B7 X
15 LTF X
16 UGT2B28 X
17 LOC338579 X
18 PROM1 X
19 BAMBI X
20 VTCN1 X
21 KRT7 X
22 DQ893812 X
23 HLA-DRB1 X
24

1..12

DB005376 X
25 SERPINA6 X
26 PXDNL X
27 CPB1 X

TABLE 4: Genes filtered out as outliers
in each interval.

S.No TP Gene Rel. to BC?
28 1..12 DIO1 X
29 HSPB8 X
30 RAMP1 X
31 CST1 X
32 FLJ23152 X
33

1..18

CYP4X1 X
34 HMGCS2 X
35 CYP4Z1 X
36 TFAP2B X
37 PPP1R1B X
38

1..20

TFF1 X
39 GRIA2 X
40 EEF1A2 X
41 BMPR1B X
42 CLIC6 X
43

1..34

TCN1 X
44 MYBPC1 X
45 CNTNAP2 X
46 S100A9 X
47 S100A8 X
48 S100P X
49

1..36

SLC27A2 X
50 PHGR1 X
51 SYT13 X
52 SERPINA5 X
53 1..50 TUBA3D X

Rel. to BC? - Related to Breast Cancer,
TP - Time-point
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4.4 Comparison with other Approaches

4.4.1 BiClustering using BiGGEsTS

We compared ACTS with the biclustering method proposed by Madeira et al. Unlike cluster-

ing, biclustering is a process in which rows and columns of a matrix are clustered simultane-

ously. BiGGEsTS created a total of 679,107 biclusters for our time-series dataset. BiGGesTS

selects specific intervals where a group of genes tends to over-express and clusters them to-

gether. The time intervals are chosen from anywhere in the dataset (beginning, middle or

end) without changing the order of time-series. Moreover, ACTS always clusters genes from

the beginning (time-point 1) and continues until the end based on step size. Thus, genes that

have the similar trend from the beginning are clustered together in ACTS, and genes that

have similar expression trend in a specific time interval are clustered together in BiGGEsTS.

From the results, we could see that ACTS has better performance than BiGGEsTS. Let

us consider the following example. Genes SCGB2A2, ANKRD30A, SCGB1D2, SCGB2A1,

follow similar trend from time-point 1 to time-point 8 in the given dataset. The results of

BiGGEsTS and ACTS are as follows:

• BiGGEsTS clustered the genes :

– SCGBA2 in bicluster - 672447 (Figure 15; the green line show the trend of

SCGBA2)

– SCGB1D2, SCGB2A1 in bicluster 671866 (Figure 16; the green and yellow lines

show the trend of SCGB1D2 and SCGB2A1 respectively)

– ANKRDD30A in bicluster 671471 (Figure 17; the cyan line)
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FIGURE 15: bicluster 672447 - the green line shows the trend of SCGBA2.

FIGURE 16: bicluster 671866 - the green and yellow lines show the trend of SCGB1D2 and
SCGB2A1 respectively.
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FIGURE 17: bicluster 671471, cyan line shows the trend of ANKRDD30A.

Figure 18 depicts the clustering results of ACTS for the genes SCGBA2, SCGB1D2, SCGB2A1,

ANKRD30A. These genes were identified as outliers in the same cluster (highlighted in red)

after comparing it against the other 24368 genes. All clusters less than 5 genes(outlier

threshold) are plotted in red color.

FIGURE 18: Clustering results of ACTS for genes SCGBA2, SCGB1D2, SCGB2A1,
ANKRD30A.
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BiGGEsTS failed to cluster them in the same bicluster as it could not capture the simi-

larity in gene trends across time. The discretization technique used in BiGGEsTS does not

take the gene-expression values but discretized values (D, N, U element in a data matrix

are replaced by a U if the difference between its expression value and the value in the same

gene and previous time point are higher than the threshold (=1), by a D if such difference

is lower than the symmetric of the threshold value, and N otherwise) while clustering rows

and columns. BiGGEsTS ignores the trend associated with each gene. However, ACTS con-

siders the trend created by gene-expression for clustering and hence gives better accuracy in

filtering out biomarkers.

4.5 Adaptive Clustering Algorithm with k-means

k-means clustering approach was used to compare the results of ACTS. k-means algorithm

despite being sensitive to outliers, failed to detect any outlier genes in the time-series dataset.

k-means clustering on each iteration kept clustering the genes to the nearest centroid ignoring

the minute change in gene trends across time. However, hierarchical clustering accurately

captured all the dissimilarities in genes taking even the slightest change in trend into account.

4.6 BiClustering in Scikitlearn

BiClustering algorithm in Scikitlearn [52] was also applied to the time-series dataset and

we observed that it is not suitable for data having any time component in it. Biclustering

changes the order of conditions/column/features when it clusters the dataset columnwise. In

our case, the columns are time intervals in months. The order of time must be preserved to

pick meaningful insights and making accurate predictions on the progression of any disease.

Thus, Biclustering on Scikitlearn is not suitable for any dataset having time-series in it.
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4.7 Biological Insight

Our baseline method detected 24 local outliers of which 14 genes were related to breast can-

cer survivability. ACTS detected 53 outliers, out of which 46 of them were related to breast

cancer. ACTS yields an accuracy of 86.7% in terms of clustering the potential biomark-

ers of breast cancer survivability. We identified 24 oncogenes and 18 tumour suppressor

genes. With the help of previous literature, we observe the biological significance of all genes

obtained as potential biomarkers of breast cancer survivability :

4.7.1 Baseline Method

• PSAP are related to breast cancer recurrence and potentiate resistance to breast

cancer treatment [8].

• CD81 is a biomarker responsible for cancer proliferation [60].

• EEF1A1 is an oncogene, a potential oncoprotein that is overexpressed in about two-

thirds of breast tumours [68].

• HES7, SNRPD2, UBA52, RPL12 are genes that can affect the survival rate of

breast cancer patients if highly expressed [6, 28,29,36,55].

• RPL11, TIMP1, FTL and RPL32 are biomarkers of breast cancer development

[12,46,82].

• HSP90B1 is an oncogene that is associated with breast cancer metastasis and de-

creased survival [55].

• BGN is used for subtype-specific classification [81].

• RPS16 is MicRNa target to improve the efficacy of cancer therapy [34].
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4.7.2 Adaptive Clustering Algorithm

• Oncogenes: SCGB2A2, ANKRD30A, SCGB1D2, SCGB2A1, TFF3, KRT81, CSN3,

KLK5, C4orf7, BEX1, UGT2B11, UGT2B7, LTF, UGT2B28, PROM1, KRT7, SER-

PINA6, CPB1, RAMP1, CST1, FLJ23152, S100A9, S100A8 [11,13,14,17,20,24,25,33,

39,42,49,51,57,58,64,72,75,78,80,81].

• Tumour Suppressor Genes: TAT, BAMBI, VTCN1, HLADRB1, PXDNL, DIO1,

HSPB8, CYP4X1, HMGCS2, CYP4Z1, TFAP2B, TFF1, GRIA2, EEF1A2, BMPR1B,

MYBPC1, SLC27A2, SERPINA5 [7,10,16,21,26,32,37,38,48,53,54,59,61,63,73,76,77].

• SYT13 & TUBA3D are associated with ER specific cancer [23,50].

• TCN1 There will be adverse effects on treatment if this gene is highly expressed [40].

• S100P Survival rate is decreased if this gene is highly expressed [44].

• PIP

– regulates proliferation of luminal-A type breast cancer cells in an estrogen-independent

manner [77].

– ER+ breast cancer, particularly those with very high level of ER expression, PIP

appears to play an important role in proliferation and invasion as well as acquired

resistance to tamoxifen [26].

– Biomarker in breast cancer micrometastasis [16] and outcome prediction in breast

carcinoma [51].

• Figure 19 is the boxplot all the oncogenes (red) and tumor suppressor genes (green)

across all 55 timepoints:
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FIGURE 19: Expression of oncogenes and tumour suppressor genes.

Most of the oncogenes were over-expressed in the first and last few time-points. Some

tumour suppressor genes are underexpressed in the beginning, and most of them are over-

expressed at the end. The activity of tumour suppressor genes towards the end satisfies

the biological meaning of cancer, suggesting that the down-regulation of a set of genes may

be the underlying mechanism of cancer formation, while the up-regulation may characterize

and possibly control the state of evolution of individual cancers. Initially, the activity of

tumour suppressor genes was low, resulting in high activity of oncogenes, and hence the pro-

gression of the disease. Towards the end, more tumor suppressor genes are activated which

neutralizes the effect of oncogenes helping in patients increased survivability rate.

Since we know precisely at which time-point an oncogene is over-expressed, we can direct

or target treatments towards it to reduce/control their high activity which could improve

patients overall survivability. At the same time, any efforts to trigger or enhance the activity

of tumour suppressor genes could also contribute to increasing the rate of survivability during

treatment.
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4.8 Summary of results

We compared the results of our baseline method and ACTS with the other clustering methods

like biclustering with BiGGEsTS, biclustering in SckitLearn and k-means algorithm. Other

approaches failed to detect outliers as our method did. The results are summarized as follows:

• BiGGEsTS - created 679,107 biclusters for our time-series dataset. The tool does

not detect the outliers and is not flexible enough to let us download the data created

in each bicluster. We had to visually check the bicluster to compare the outlier genes

from ACTS.

• Biclustering in ScikitLearn - is based on Python. This method is not recommended

for data with time-series data as it does not preserve the order of time-series. The

algorithm alters the order of time-series while column-wise clustering.

• k-means Algorithm - could not filter outliers as it failed to detect the minute changes

in gene trends across all the time points. The algorithm kept clustering genes on each

interval to the nearest centroid. Thus, there were no Outliers detected with k-means

clustering.

S.No Method
Total

Outliners

Related to

Breast Cancer
Oncogenes

Tumor

Suppressor

Genes

Remarks

1 Baseline Method 24 14 12 -

Clustered 14 of 24 global

biomarkers related to

breast cancer correctly

2 ACTS 53 46 24 18

Clustered 46 of 53 lo-

cal biomarkers related to

breast cancer correctly

TABLE 5: Summary of results.
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Parameters

• Order of time-series must always be preserved

• Determining the Window size for the first iteration: This is an important parameter

chosen at the beginning of the algorithm. Since it is an iterative algorithm, the initial

window size must be selected carefully after visualizing the dataset.

• Outlier threshold: This is a parameter that determines the accuracy of the clustering

algorithm. We conducted a series of experiments to decide on the outlier threshold.

The outlier threshold must be chosen such that the biological meaning of the problem

is satisfied, and the results correspond to it.

• The number of clusters chosen at each interval should be carefully selected for optimal

clustering results.
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CHAPTER 5

Conclusion and Future Work

In this thesis, we were given a clinical and gene-expression dataset of breast cancer patients.

We have developed an innovative approach to detect outliers (genes that trend differently

from the majority of other) as biomarkers of breast cancer survivability from this data using

a time-series model. These biomarkers can be used to predict and improve patient survival,

diagnosis, and therapy for breast cancer.

To solve this, we first created a time-series dataset using patients overall survival. We

grouped patients into survival bins based on their survival in months and averaged the gene

expression level of all the patients in each survival bin.

Then, we sliced the time series dataset with a sliding window approach to create gene-

expression data on specific intervals and used profile alignment and agglomerative clustering

in each interval to detect local outliers.

Finally, we found the biological relevance of genes closely related to breast cancer sur-

vivability suggesting them as potential biomarkers for wet-lab experiments. Our algorithm

detected 46 genes related to breast cancer survivability including 24 oncogenes and 18 tumor

suppressor genes.
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5.1 Contributions

The main contributions of this thesis can be summarized as follows:

• We propose an adaptive clustering algorithm to detect biomarkers of breast cancer

survivability using time-series data.

• We create a time-series with gene-expression data based on overall survival of breast

cancer patients.

• Multiple alignment of gene expression profiles is based on their trend across time-series.

• ACTS (sliding window approach) is used to identify outliers (as biomarkers) in time-

series data.

5.2 Future Work

• We have used the data from living patients in the dataset. ACTS can also be extended

to the patients who died to pick biomarkers. We can compare the two results (living

and dead) and pull meaningful insights.

• Try this method on a different breast cancer dataset.

• Try this method on a different cancer dataset. e.g., prostate cancer data.

• Build a classifier to identify oncogenes and tumour suppressor genes in the set of

potential biomarkers obtained.
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APPENDIX A

Clustering results - Adaptive

Clustering Algorithm

Figures 20-27, depict the results of ACTS. The cluster highlighted in red color has the outlier

genes. Each outlier cluster has 5 or lesser than 5 genes in it.

FIGURE 20: Clustering results Window 1.
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FIGURE 21: Clustering results Window 2.

FIGURE 22: Clustering results Window 3.
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FIGURE 23: Clustering results Window 6.

FIGURE 24: Clustering Results Window 7.

FIGURE 25: Clustering results Window 14.
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FIGURE 26: Clustering results Window 15.

FIGURE 27: Clustering results Window 22.
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APPENDIX B

Oncogenes

Figures 28-51 depict the trend of oncogenes across all 55 time points in the dataset.

FIGURE 28: Gene trend of SCGB2A2.

54



FIGURE 29: Gene trend of ANKRD30A.

FIGURE 30: Gene trend of SCGB1D2.

55



FIGURE 31: Gene trend of SCGB2A1.

FIGURE 32: Gene trend of PIP.
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FIGURE 33: Gene trend of TFF3.

FIGURE 34: Gene trend of KRT81.
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FIGURE 35: Gene trend of CSN3.

FIGURE 36: Gene trend of KLK5.
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FIGURE 37: Gene trend of c4orf7.

FIGURE 38: Gene trend of BEX1.
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FIGURE 39: Gene trend of UGT2B11.

FIGURE 40: Gene trend of UGT2B27.

60



FIGURE 41: Gene trend of LTF.

FIGURE 42: Gene trend of UG2B28.
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FIGURE 43: Gene trend of PROM1.

FIGURE 44: Gene trend of KRT7.
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FIGURE 45: Gene trend of SERPINA6.
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Oncogenes

FIGURE 46: Gene trend of CPB1.
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FIGURE 47: Gene trend of RAMP1.

FIGURE 48: Gene trend of CST1.
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FIGURE 49: Gene trend of S100A9.

FIGURE 50: Gene trend of S100A8.
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FIGURE 51: Gene trend of FLJ23152.
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APPENDIX C

Tumour Suppressor Genes

Figures 52-69 depict the trend of oncogenes across all 55 time points in the dataset.

FIGURE 52: Gene trend of TAT.
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FIGURE 53: Gene trend of BAMBI.

FIGURE 54: Gene trend of VTCN1.
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FIGURE 55: Gene trend of HLA-DRB1.

FIGURE 56: Gene trend of PXDNL.
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FIGURE 57: Gene trend of DIO1.

FIGURE 58: Gene trend of HSPB8.
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FIGURE 59: Gene trend of CYP4X1.

FIGURE 60: Gene trend of HMGCS2.
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FIGURE 61: Gene trend of CYP4Z1.

FIGURE 62: Gene trend of TFAP2B.
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FIGURE 63: Gene trend of TFF1.

FIGURE 64: Gene trend of GRIA2.
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FIGURE 65: Gene trend of EEF1A2.

FIGURE 66: Gene trend of BMPR1B.
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FIGURE 67: Gene trend of MYBPC1.

FIGURE 68: Gene trend of SLC27A2.
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FIGURE 69: Gene trend of SERPINA5.
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