
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2016

Practical Guides for Data Retrieval in Deep Web
Crawling
Xu Sun
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Sun, Xu, "Practical Guides for Data Retrieval in Deep Web Crawling" (2016). Electronic Theses and Dissertations. 5869.
https://scholar.uwindsor.ca/etd/5869

https://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F5869&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5869&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5869&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/5869?utm_source=scholar.uwindsor.ca%2Fetd%2F5869&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Practical Guides for Data Retrieval in
Deep Web Crawling

By

Xu Sun

A Thesis
Submitted to the Faculty of Graduate Studies

through the School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science
at the University of Windsor

Windsor, Ontario, Canada

2016

c©2016 Xu Sun

Practical Guides for Data Retrieval in Deep Web Crawling

by

Xu Sun

APPROVED BY:

Dr. Huapeng Wu

Electrical and Computer Engineering

Dr. Dan Wu

School of Computer Science

Dr. Jessica Chen, Advisor

School of Computer Science

September 15, 2016

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyones copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my

thesis, published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis

has not been submitted for a higher degree to any other University or Institution.

III

ABSTRACT

Deep web crawling refers to the process of collecting documents that have been

organized into a data source and can only be retrieved via a search interface. This is

often achieved by sending different queries to the search interface. Dealing with the

difficulty in selecting suitable set of queries, this crawling process can be implemented

with stepwise refinement: documents are retrieved step by step, while in each step, we

adapt the query selection to our accumulated knowledge obtained from the documents

downloaded in the previous steps. However, it takes much of our time and effort to

download the documents and learn from the resulting sample in order to improve the

query selection. Here we propose a cost-effective, data-driven method for stepping the

adaptive crawling of the deep web. Through empirical study, we explore the criteria

in setting the lengths of the steps to best balance the trade-off between the sample

updating cost and the improved quality of the selected queries. Derived from four

existing data sets typically used for deep web crawling, such criteria provide practical

guidelines for cost-effective stepwise refinement in iterative document retrieval.

IV

AKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor Dr. Jessica Chen, for her

valuable assistance and support during my master program.

I also would like to present my appreciation to my committee members, Dr. Dan

Wu and Dr. Huapeng Wu. Thank them for their valuable comments and suggestions

to this thesis.

Meanwhile, I would like to thank Dr. Jianguo Lu and Dr. Yan Wang for collecting

the data sets and providing suggestions on my work.

Finally, I want to thanks to my parents and my friends who give me consistent

help over the past master life.

V

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY III

ABSTRACT IV

AKNOWLEDGEMENTS V

LIST OF TABLES VIII

LIST OF FIGURES IX

I Introduction 1

II Related Work 5
1 Query Selection Problem . 5

1.1 Greedy Algorithm . 6
1.2 Weighted Greedy Algorithm 7
1.3 TS-IDS Algorithm . 8
1.4 Incremental Queries . 9

2 Document Retrieving Strategies . 10
2.1 Automatic form filling . 10
2.2 Web Database Retrieval . 13
2.3 Domain Specific Crawling . 14

3 Summary . 15

III Background 17
1 Framework of crawling approaches . 17

1.1 One-step Sampling Approach 17
1.2 Incremental Approach . 18

2 Set-covering Model . 19
2.1 Document-term Matrix . 19
2.2 Hit Rate and Overlapping Rate 20
2.3 Query Selection Method . 21

IV Method 26
1 Overview . 26

1.1 Performance Parameters . 26
1.2 Revising Cost (k-value) . 28
1.3 Stop Criteria . 29
1.4 Work Process . 30

2 Problem Formalization . 34
3 Theoretical Basis . 35

3.1 Hypothesis I and Hypothesis II 36
3.2 Hypothesis III . 38

VI

4 Summary . 43

V Experiments 44
1 Experiment Environment and Datasets 44
2 Impact of Parameters . 45

2.1 k-value . 45
2.2 Unit Sending Cost . 46

3 Other Factors . 46
3.1 Initial Sample . 46
3.2 Create Query Pool . 50
3.3 Query Selection Algorithm . 50

VI Conclusion 52

REFERENCES 53

VITA AUCTORIS 58

VII

LIST OF TABLES

1 Example: weighted greedy algorithm 8

2 Example: TS − IDS algorithm . 9

3 Qual1 and Qual2, sample size is 200 in Newsgroup 38

VIII

LIST OF FIGURES

1 HTML form in Google deep web crawling 11

2 Text box, selection inputs and presentation inputs 12

3 Work flow of topic focused deep web crawling 15

4 Flow diagram of one-step sampling based approach 18

5 Set covering problem . 19

6 Example: Document-term matrix . 20

7 Example: query selection . 24

8 Flow diagram of work process . 31

9 Sample-querynumber relation, α = 0 33

10 Sample-condition relation, k = 0.001 and k = 104 34

11 Qual1 and Qual2, sample size = 200, β = 103, k = 10 37

12 Single step, equal splitting and 10/90 splitting where sample size is 200

and 400 . 40

13 Qual1(S1, c), Qual2(S1, c) and Qual3(S1, c) where sample size is 200

and 400 . 42

14 k = 10−1, k = 10, k = 103, k = 104 in newsgroup, wiki, reuters and

gov2. β is set to 103 . 45

15 β = 102, β = 103, β = 105 in newsgroup, wiki, reuters gov2. k is set

to 10 . 47

16 Sample-condition relation in different k − value, β = 103 48

17 Sample-condition relation in different β value, k = 10 49

18 Weighted greedy algorithm when k = 10−1, k = 10, k = 103, k = 104

in wiki, β is set to 103 . 51

19 Weighted greedy algorithm when β = 102, β = 103, β = 105 in wiki, k

is set to 10 . 51

IX

CHAPTER I

Introduction

Deep web is usually associated with databases or file systems, and the data kept

in the databases or file systems are retrieved using mechanisms different from those

used for surface web. With surface web, data can be accessed directly through URLs.

With deep web, on the other hand, data are guarded by a search interface. Crawling

deep web [6][13][19][26][41] is the process of collecting hidden data by issuing queries

through various interfaces such as HTML forms, web services, programmable web

API, etc. Crawling deep web is helpful when we want to reuse the excavated data, to

provide index to the data, or to build up an integrated environment for search such

data.

Two major issues have been substantially addressed in the literature regarding

deep web crawling. One is about learning and understanding the interface and the

returned result so that query submission and data extraction can be automated

[1][23][33]. Another issue, which is considered in this thesis, is about properly se-

lecting queries to be submitted to the search interface so that the hidden data can be

retrieved cost-effectively and efficiently.

The cost-effectiveness refers to maximizing the coverage of the retrieved docu-

ments in the dataset being considered with minimal cost. Different cost models have

been adopted in previous work [20][30][39][42] reflecting different settings in the real

world. Typically, they include either sending cost or receiving cost, or both, The

sending cost is usually counted using a constant value for each query. It models the

situation where document retrieval is charged by the website service provider on a

per-request basis. The receiving cost is usually counted using a constant value for

1

I. INTRODUCTION

each received link. With the assumption that the received links have more or less

the same number of bytes, this provides a simplified model to estimate the total

number of bytes downloaded for the request. It models the situation where the data

transmission over the internet is charged by the service provider of the data plan

on a per-usage basis. In this thesis, both sending and receiving cost are considered.

To keep the model simple, the unit sending cost is defined as the ratio to the unit

receiving cost.

The efficiency is concerned about reducing the time and memory space consumed

for the related computation and document retrieval.

Regarding query selection and data extraction, there are several typical questions:

(a) Where do we get the words to choose from? (b) What criteria do we use to select

the queries? (c) How to find a proper set of queries satisfying the given criteria? A

naive approach is to pick some words randomly from a dictionary. In the past, people

have found it more cost-effective to choose the queries from the terms that frequently

appear in the documents that are stored in the data source being considered. Core

to this proposal is what criteria should be adopted in order to rank the queries for

selection. Much of previous work was dedicated to proposing different solutions to

such criteria with different cost models [30][42].

This query selection scheme naturally leads to the following two-step document

retrieval approach:

• Initially, retrieve a set of sample documents by issuing some words randomly

selected from a dictionary.

• A query pool is built by taking terms appeared in the previous set of sample

documents. Then, a set of queries is selected and issued to the original database.

Clearly, this two-step approach can also be extended into a multi-step one by re-

peatedly refining the sample during the process of document retrieval, i.e. to repeat-

edly select queries, retrieve documents, update sample documents by downloading

newly obtained documents to local database, until certain conditions are met, such

as the limit of total cost is hit or the retrieval of the documents is sufficient enough.

2

I. INTRODUCTION

Normally, this adaptive document retrieval process can be more cost-effective

when we take more retrieving steps, because after each sample revision, we are in a

better position to select better queries. However, this requires multiple updates of the

sample, and it usually takes much of our time and efforts to download and analyze

new documents in order to improve the query selection on each step.

Some practical questions arise at this point: What is the optimal number of steps?

If each step may have different length, how to determine the optimal length of each

step?

In this thesis, we introduce the cost of each round of sample revision into the

problem domain, in order to quantitatively measure the trade-off between sending

more queries at a time and sending queries more often. This revision cost is defined

as the ratio to the unit sending/receiving cost, to keep the cost model simple. Note

that: The query here usually refers to the ”phrase” or single keyword in our study.

We use cost limit to define the length of a step. In a simple situation where there

is no receiving cost, this cost limit is reduced to the number of queries to select on

a step. Based on our cost model, we propose a method to determine, via empirical

study, the optimal lengths of the steps in terms of cost limit. The soundness of this

method is based on three hypotheses. For each hypothesis, we argue why it should

hold, together with some sample supporting data obtained from real datasets.

Through experiments, we have observed that such optimal lengths vary according

to different sizes of the sample dataset. Thus, we repeatedly apply the above method

to obtain the sample-condition relationship i.e. the optimal cost limits according to

different sample sizes.

We have applied the above method to four different datasets used for deep web

crawling. The resulting sample-condition graphs demonstrate similar values and their

distribution.

Such obtained sample-condition relationship provides practical guides on the adap-

tive document retrieval: We embed previously obtained sample-condition relationship

into the future crawling of the other datasets. Using such knowledge, the document

retrieval process is then able to dynamically determine, for each round of iteration,

3

I. INTRODUCTION

the best length for the next step of iteration. With such knowledge, the document

retrieving process will outperform the sample-based and the ordinary incremental

approaches proposed in the literature.

The datasets considered for deep web crawling are normally classified into text-

based documents [10][38][39] and image-based ones [2][19][28]. In the present work,

we only consider the data sources that contain plain text documents. Textual data

sources are usually associated with a keyword-based query interface, so the queries

are simply words or phrases, also called terms here. Given that many query interfaces

nowadays offer the advanced search feature to allow users to send multiple-keyword

queries, recent work on deep web crawling has seen the consideration of both single-

keyword [4][30][42] and multiple-keyword queries [32][41]. For simplicity, only simple-

keyword queries are considered in the present thesis. We leave it open for feature

work to extend the thesis work into the multiple-keyword setting.

The rest of this thesis is organized as follows: In chapter II, we review the previous

research work about deep web crawling. Chapter III introduces the preliminaries of

our method. In chapter IV, we present the new cost-effective document retrieval

method. In chapter V, we show the experiment results using four datasets. We

conclude our studies in chapter VI.

4

CHAPTER II

Related Work

In this chapter, we summarize the related work of our research with more details.

Section 1 reviews several techniques to analyze and select appropriate queries from

sample. In section 2, we introduce some other document retrieving strategies in deep

web crawling.

1 Query Selection Problem

One important problem of deep web crawling is how to generate a set of queries

cost-effectively and efficiently to harvest more documents, i.e determine which queries

should be submitted to a search interface. A simple solution is selecting some random

words from a dictionary. But it fails to consider that a large number of unnecessary

queries with many duplicates would be issued at the same time. Therefore, many

approaches [4][12][30][34][38][39] had been proposed to address the query selection

problem in deep web crawling.

In [4][37], the author study the problem of siphoning hidden data behind simple

search interfaces by issuing keyword-based queries. They suggest that terms presented

in a document collection would generate a set of appropriate queries and these queries

would lead to a high coverage(over 90% is obtained) for most of their sites considered.

Thus, instead of blindly sending queries, they sample HTML forms to select the higher

frequency keywords from a potential keyword list which is expected to lead to a high

coverage in original datasets. In addition, they consider the performance of stop

words in their experiments, which tend to be extremely cost-effective in some of the

5

II. RELATED WORK

document collections even though it sometimes turn out to be useless.

Their algorithm consists of two phases: The first phase is to iterate and build

the list of candidate keywords based on their frequency. Once new keywords was ap-

pended into this list, the algorithm modifies the frequency rank of existing keywords.

In phase 2, they select queries with the highest frequency firstly from the term list in

phase 1. They iteratively carry out this process until the coverage in original DB is

no more increased.

1.1 Greedy Algorithm

In [30], the author proposed an efficient sampling-based method to retrieve the most

of entire database in a text data source with low overlapping rate. At the beginning,

they downloaded a set of documents from original DB as the initial sample. From

this sample, a set of appropriate queries was acquired. The query selection process in

sample could be viewed as a set-covering problem which is NP-hard. So they apply

greedy algorithm in experiments to retrieve more documents with a lower cost on

selecting each query. This process is iterated until the selected query set can cover

all documents in sample. It is estimated that those queries which can return most

documents in sample are cost-effective to return most of data in original DB as well;

The sample size(the number of documents in sample) do not need to be very large in

order to get an accurate enough prediction of the total database. The framework of

this approach is showing below:

1. Create a sample D by initially selecting a fixed number of documents from

original DB.

2. Analyse the documents and terms in sample D, and build the query pool QP .

3. Select a set of queries Q from QP based on the greedy algorithm.

4. Issue query set Q to original DB to retrieve documents.

In this paper, the framework aims to select the most cost-effective query. The

work is carried out within the context that the bottleneck to deep web crawling is the

6

II. RELATED WORK

number of documents crawled, not the queries issued. So their algorithm focus on

minimizing the overlapping rate. However, in real deep web crawler, sending queries

to original DB may also account for a part of total resources.

1.2 Weighted Greedy Algorithm

In [30], the authors address the query selection problem by cast it as a set-covering

problem. Then they suggest greedy algorithm to generate an optimal query set in

practice. Therefore, each document is of equal importance in their experiments.

However, in real deep web crawling scenario, not every document is the same. That

is because a large document is more likely to be returned than the small documents

which only contain few words.

The initial solution to set covering problem for deep web crawling [30] was im-

proved [38] with the observation that the document-term relationship in this appli-

cation domain follows the power law instead of uniform distribution

In [38], Wang et al. further improve the straightforward greedy algorithm by

introducing weights into the greedy strategy. Similar to [30], this paper reports

the work on generating an appropriate set of queries so that they can cover all the

documents in sample D with less overlapping rate. In simple greedy algorithm [30],

the unit cost for sending one query q is set to 1/df , where df is the document frequency

of q. The queries are selected one by one. On each step, they select the query with

maximum new/df , where new is the number of new documents that could be retuned

by q. Unlike [30], in weighted greedy algorithm, the authors incorporate weights into

each query selection process, where the weight of a document is the inverse of its

term frequency. The idea behind the weighted greedy method is to select the query

with higher requirement degree as early as possible. The work process of this query

selection strategy is illustrated by the following example.

Example 1: qw is the weight of a query. It is the sum of the document weights for

the query. In table 1, the minimum df/qw value on this step is 1.72, which is for

query q1. So q1 is added into the appropriate query set.

7

II. RELATED WORK

document ID q1 q2 q3 q4 q5

d1 0.5 0 0 0 0.5

d2 0 0.5 0.5 0 0

d3 1 0 0 0 0

d4 0.33 0.33 0 0 0.33

d5 0 0.33 0.33 0.33 0

d6 0.5 0 0 0.5 0

d7 0 0.5 0 0 0.5

d8 0 0 0 0 1

d9 0 0.33 0.33 0 0.33

df 4 5 3 2 5

qw 2.33 1.99 1.16 0.83 2.66

df/qw 1.72 2.51 2.59 2.41 1.88

TABLE 1: Example: weighted greedy algorithm

1.3 TS-IDS Algorithm

In [39], Wang et al. further modified their weighted greedy algorithm to TS − IDS

algorithm in order to have a better performance in query selection. The authors define

IDS (the inverse of document size) as a measurement of the documents weight, and

TS (term size), as the number of documents it can cover, i.e. the document frequency.

Further, they have assumed that the importance of a document is proportional to the

minimal term size in it. The reason is that: a term with higher TS will bring about

large number of duplicates because more documents could be returned by issuing it

to search interface; On the other hand, small terms are usually with less redundancy

in crawling process. Based on their experiments, the TS − IDS method decreases

the redundancy rate compared with greedy algorithm [30] and IDS algorithm [38]

on a variety of datasets.

Example 2: In the previous example, the unit weight of a document di = 1
df
×

min(TS), and the weight of each query is the sum of unit documents weight. The

8

II. RELATED WORK

query with maximum µ/df will be selected. Here, µ = min(TS). Therefore, in table

2, q5 should be appended to the selected query set.

document ID q1 q2 q3 q4 q5

d1 2 0 0 0 2

d2 0 1.5 1.5 0 0

d3 4 0 0 0 0

d4 1.33 1.33 0 0 1.33

d5 0 0.66 0.66 0.66 0

d6 1 0 0 1 0

d7 0 2.5 0 0 2.5

d8 0 0 0 0 5

d9 0 1 1 0 1

df 4 5 3 2 5

µ 8.33 5.99 2.16 1.66 11.83

µ/df 2.08 1.20 0.72 0.83 2.37

TABLE 2: Example: TS − IDS algorithm

1.4 Incremental Queries

In great majority of incremental deep web crawling approaches, appropriate queries

or HTML forms [17][2] [26][27] are usually selected from documents or web pages

that have been downloaded in previous steps. The number of documents in sample

increases as more queries were sent to original database. This process is iterated until

some terminate conditions were satisfied.

Ntoulas et al. [42] proposed an incremental method on textual database to gen-

erate a near-optimal solution by analyzing and examining the documents returned

from previous steps. The basic idea of this method is that we can approximately get

a good prediction on how many pages or documents will be returned by every word

on each step. The frame work of their approach is the following:

9

II. RELATED WORK

1. Select a term as initial query q1 and send it to web site.

2. Acquire result index pages and download new documents from internet.

3. Predict the next ‘best’ query, then send it to site for retrieving and downloading

new pages.

4. Iterate this process until some termination criterion is met.

Query selection strategy

In order to generate the optimal query on each iteration, the author estimate the next

potential query qi by:

Efficiency(qi) =
Pnew(qi)

Cost(qi)

where P means the fraction of pages that qi can return. Pnew(qi) is the approximate

fraction of new documents that will be returned by qi:

Pnew(qi) = P (q1 ∨ · · · qi−1 ∨ qi)− P (q1 ∨ · · · ∨ qi−1)

Cost(qi) represents the total cost of issuing qi to web site, and it can be separated

into three aspects: submitting a query qi, retrieving result pages and downloading

new documents.

Additionally, the authors have reported on their experiments by three policies,

namely random, generic-frequency and adaptive on four real hidden websites. The

results show that their adaptive method is able to retrieve and download most of the

documents in deep websites by sending the least number of queries compared with

the other two policies.

2 Document Retrieving Strategies

2.1 Automatic form filling

In Google’s deep web crawling [32], the authors select good candidates after process-

ing and examining input values from HTML forms [24][31][15]. The technique they

10

II. RELATED WORK

developed aims a large coverage in deep web contents, rather than focusing on specific

web sites. Their surfacing method has already been incorporated into Google search

engine, and their results can drive more than a thousand queries per second today.

Form filling

In this paper, a HTML form is defined within a form tag just like figure 2.1. There

<form ac t i on =‘http :// books . com/ f ind ’ method=‘get ’>

<$input type=‘hidden ’ name=‘ src ’ va lue =‘hp’>

Keywords : <input type=‘ text ’ name=‘keywords ’>

Province : <s e l e c t name=‘ province ’> <opt ion value =‘Any’/>

<opt ion value =‘ON’/> . . . </s e l e c t>

Sort By : <s e l e c t name=‘ sort ’> <opt ion value =‘ re l evant ’/>

<opt ion value =‘ pr i ce ’/> . . . </s e l e c t>

<input type=‘submit ’ name=‘s ’ va lue =‘go ’>

</form>

FIGURE 1: HTML form in Google deep web crawling

are several input value in the form, but only select menus (selection inputs) and text

boxes (presentation inputs) were considered here. In their work, selection inputs were

usually assigned a wild card value that matches some records in their database. The

presentation inputs is often treated as sort order or HTML layout. Therefore, the

problem of query selection can be seen as the problem of selecting an appropriate

form contents in SQL:

select ∗ from DB where selection inputs ordered by presentation inputs

Also, in their assumptions, the value of text boxes could be a null string, but for

select menus, they assigned a default value as a wild card value. Figure 2 shows what

is selection input, presentation input and text box in amazon.ca.

11

II. RELATED WORK

FIGURE 2: Text box, selection inputs and presentation inputs

Query selection strategy

The purpose of that paper is to receive a good coverage on each web site by issuing

a small number of queries (form submissions). For this reason, they introduce TF -

IDF [35] to select terms from a page after examining the words most relevant to its

contents. In their deep web crawler, TF (term frequency) is a measurement for the

importance of the term on that corresponding web page. IDF (inverse of document

frequency) measures the importance of the word among all possible pages. That is

to say, TF -IDF can balance the word’s significance on the particular page with its

general significance by tf -idf(word, pages) = tf(word, page)× idf(word).

In their experiments, initially, they take top 50 words with the largest tf -idf

value into query pool. Only the top 25 words were added into query pool in next

steps. Furthermore, some useless words with high term frequency (over 80%) or

only appeared on one page will be removed from the query pool. Then they submit

the remaining queries in query pool to original database and a new sample will be

downloaded. This process is iterated until some termination condition is met.

12

II. RELATED WORK

2.2 Web Database Retrieval

As we all know, the majority of web databases are highly dynamic in practical ap-

plications. So a problem has to be addressed about how to maintain the consistency

between the local database and the integrated web database. In [20], the author

proposed an incremental crawling method to update their local database by several

queries generated by their incremental harvest model. That is to say, their work

can be divided into two phases: the first one is how to build the incremental har-

vest model; Second one is selecting the appropriate queries. Furthermore, they define

three measurements to evaluate the performance of their crawler in their experiments,

which are TRC (Total Coverage Rate), ICR (Incremental Coverage Rate) and EFF

(Efficiency).

Incremental harvest model

In their paper, Huang et al. use WDB(ti) to represent all the records in web database

at time ti. So the incremental records between the neighbouring samples, such as ti

and ti+1 can be calculated by:

∆WDB(ti+1) = WDB(ti+1)−WDB(ti)

Next, they build the training sample automatically through these incremental records,

and the incremental harvest model was obtained.

Query selection

The query selection problem is transferred to Set Covering Problem by keeping records

and queries in a document-term matrix. This is similar to [30]. Firstly, the initial

query qi was selected randomly from their initial query list (pool), then some new

records will be retrieved and downloaded to local database by submitting qi to the

web database. Afterwards, an optimal query is iteratively chosen on each step by their

incremental harvest model. This process is terminated when no more new records

were returned within recent 10 queries.

13

II. RELATED WORK

2.3 Domain Specific Crawling

From previous work, we know that the only way to crawling deep web data is by send-

ing some appropriate queries to search interface [3][22][36]. Moreover, some strategies

about query selection problem have already been introduced. Most of them usually

focused on receiving the largest coverage in original database, i.e. breadth-first. Ac-

tually, there are also some cost-effective deep web crawling methods for specific topics

[25], i.e. depth-first.

In [9], a Domain specific Hidden Web Crawler (AKSHR) was proposed. Their

framework can be divided into four phases: Firstly, there is a search interface crawling

which can retrieve and store domain-specific search interface by carrying out domain-

specific-assisted approach automatically; The second phase is a domain-specific inter-

face mapping. The authors use the Domain Specific Interface Mapper (DSIM) [8] to

detect the semantic distance between the components of different web interfaces in the

same deep web site. The third phase consists of an automatic form filling which can

generate queries by collecting labels and corresponding values from returned pages;

The last phase is page analysis, which distinguishes whether the result pages returned

by queries on last step is right or wrong. Additionally, they use three measurements

(Precision, Recall, and F −measure) to evaluate the performance of their crawling

results in experiments.

In [21], Jiang et al. provide a deep web crawler framework using machine learning

techniques. Because some existing crawling methods ignored the experience gained

from previous queries, in this paper, they analyze and conclude the environment

information on each given step. Furthermore, the crawler acquires this information

and selects the next query by reward calculation (Q-value) based on the last sample.

Moreover, in [40], the author further proposed a topic specific deep web crawling

method by applying weka as their classification arithmetic to analyze the semantic

webs. They use HarvestRatio as the measurement to evaluate the performance of

their experiment results.

Generally speaking, the framework of deep web domain specific crawling can be

14

II. RELATED WORK

describe by the following figure 3

FIGURE 3: Work flow of topic focused deep web crawling

3 Summary

In this chapter, we have reviewed some research work which are relevant to deep web

crawling. The present thesis is mainly based on the original sampling based [30] and

15

II. RELATED WORK

incremental approaches [42]. In these two papers, the authors have presented algo-

rithms and results that are very helpful in our work. On the other hand, their studies

may be more reasonable if they take both the sending cost and the downloading cost

into consideration. In our thesis, we would like to add some parameters and criteria

on their work. We will show the corresponding results in different situations.

16

CHAPTER III

Background

In this chapter, we discuss the preliminaries of our work in two sections. In Section

1, we will show the framework and relationship between one-step sample-based and

incremental approach. In Section 2, we introduce how to transfer the query selection

problem into set-covering problem.

1 Framework of crawling approaches

In this thesis, in order to concentrate on analyzing the performance of one-step sam-

pling approach [30] and incremental approach[42] under different criteria, we build our

own deep web crawler. In addition, we present the framework of these two approaches

in this section to show a rough work process of them.

1.1 One-step Sampling Approach

The framework of one-step sampling approach which is similar to [30], and the work

flow diagram is showing in figure 4. Firstly, we randomly collect some documents

as the initial sample D, and query pool QP is created by selecting some terms from

sample D. Then a query set Q with some appropriate queries are generated and saved

based on our query selection method. After that the corresponding result documents

which can be covered by Q will be retrieved from original datasets DB.

17

III. BACKGROUND

FIGURE 4: Flow diagram of one-step sampling based approach

1.2 Incremental Approach

With incremental strategies [42], queries are selected step by step, and new documents

are returned and saved as more queries were generated and issued. We follow this

same line of approach here. On first step: We randomly select some documents from

original DB as initial sample D1, which could be the same sample with one-step

sampling approach. Then, a set of optimal queries Q1 will be generated by greedy

algorithm based on the sample D1. After that, we issue Q1 to original database DB,

and a new sample D2 will be returned and downloaded to our local database. On next

steps: The process similar to the previous step is repeated until some termination

condition is met.

In our studies, the stop criteria could be any cost constraint. Specially, one-step

sampling approach can be seen as one part (first step) of incremental one. However,

the final results of these two approaches should be different in practice. The reason is

that: the total resources used for crawler are usually limited. We have to split all the

18

III. BACKGROUND

resources into pieces in incremental approach. But for one-step sampling approach,

we do not need to do this.

2 Set-covering Model

In our study, the query selection problem is to select a set of appropriate queries

which can cost-effectively retrieve as many new documents as possible with the least

cost. In previous paper [30], it is found out that the query selection problem can be

seen as the set-covering problem (SCP) [5][11][16][29] which is NP-hard [14]. So the

greedy algorithm has been used as a popular solution for this problem.

FIGURE 5: Set covering problem

In figure 5, suppose S is the total database with all documents (point) in it. If

a point is in a circle (q), we indicate that this document can be covered or returned

by this query q. Therefore, the query selection problem in dataset S is to find a set

of q (circle) which can cover more documents with a minimal cost. I.e. Set-covering

problem

2.1 Document-term Matrix

Definition 1: (Document-term Matrix) Given a set of documents D =
{
d1, d2, · · · , dm}

and a set of terms QP =
{
q1, q2, · · · , qn

}
, their relationship can be represented by

19

III. BACKGROUND

the document-term matrix A = (aij) where aij = 1 if the document di contains the

term qj, i.e. di can be covered by qj; otherwise aij = 0.

Example 3: A deep web data source DB = {d1, d2, · · · , d9} is shown in figure 6 below,

and query pool QP = {q1, · · · , q5}). Each query is contained in at least one document.

The corresponding document-term matrix is given on the right. One possible solution

to this set covering problem is Q = {q1,q3,q5}.

=⇒

q1 q2 q3 q4 q5

d1 1 0 0 0 1

d2 0 1 1 0 0

d3 1 0 0 0 0

d4 1 1 0 0 1

d5 0 1 1 1 0

d6 1 0 1 1 0

d7 0 1 0 0 1

d8 0 0 0 0 1

d9 0 1 1 0 1

FIGURE 6: Example: Document-term matrix

2.2 Hit Rate and Overlapping Rate

From document-term matrix, we can define hit rate [30] to reflect the cost-effectiveness

of the optimal query set Q in terms of its coverage.

Definition 2: (Hit Rate, HR) Given an m× n document-terms matrix A = (aij)

which comes from a datasets DB = {d1, · · · , dm } and a query pool QP ={ q1, · · · , qn
}. A set of queries Q (Q ⊆ QP) is represented by an n-binary vector X = [X1, · · · , Xn

], Xj = 1 if qj was selected to Q, otherwise, Xj = 0. Let Y = [y1, · · · , ym] be a binary

m-vector and yi = 1 if
∑n

j=1 aij × Xj ≥ 1, otherwise , yi = 0. The hit rate of Q in

DB, denoted by HR(DB,Q), is represented by the ratio between the number of unique

20

III. BACKGROUND

documents (u) collected by query set Q and the size of datasets DB.

u =
m∑
i=1

yi

HR(DB,Q) =
u

m

Additionally, we define overlapping rate [30] to represent the retrieving cost of all

matched documents by queries in Q.

Definition 3: (Overlapping Rate, OR) Given Q = {q1, · · · , qk}, the overlapping

rate of Q can be calculated by the ratio between the sum of the number of covered

documents by each query in Q (v) and the number of of unique documents (u). In

terms of document term matrix, this is defined as follows:

OR(DB,Q) =
v

u

2.3 Query Selection Method

Definition 4: (Query Selection) Given an m × n binary matrix A = (aij), let

Cost(retrieve) = [c1, c2, · · · , cn] be a non-negative n-vector and each Cost(retrievej) =∑m
i=1 aij represents the retrieval cost of the query qj. The total cost of query qj is

Cost(qj) = β+
∑m

i=1 aij where β is the ratio of unit cost between sending a query and

receiving a document. Hence, the query selection problem is to search for a binary

n-vector X = [X1, X2, · · · , Xn] that satisfies the objective function.

min
∑n

j=1

(
Cost(qj)×Xj

)
Subject to

n∑
j=1

aij ×Xj ≥ 1 (1 ≤ i ≤ m)

Xj ∈ 0, 1 (1 ≤ j ≤ n)

In the document-term matrix of a sample D, each column represents a poten-

tial query in query pool QP and each row represents a document in sample D.

21

III. BACKGROUND

Cost(retrievej) is the document frequency of term qj, which is the number of docu-

ments that can be returned by qj.

There are many query selection strategies in deep web crawling, and they can be

divided into three directions [30]:

• Minimize cost

We select the next query qk which has the smallest cost: Cost(qk) = min{Cost(qj) |

1 ≤ j ≤ n} and Xj = 0(qj has not been selected yet) on each step. The lowest

total cost for optimal query set Q is
∑n

j=1(Cost(qj)×Xj), which approximates

the smallest cost.

• Maximum coverage

Another query selection strategy is to select the next term qk to cover the largest

number of rows (documents) which are not yet covered by previous columns

(queries). Namely, if we select qk as the next column (query), setting Xk = 1

to maximize
∑m

i=1((1 − yi) × aik) where yi ∈ {0, 1} and yi = 1 if di has been

returned, otherwise, yi = 0. The largest coverage is approximated by covering

most new rows(documents) on each step.

• New/Cost

In our studies, we combine the previous two strategies together

new

cost
=
new returned documents by qk

Cost(qk)

One of the issues here is how do we know the number of new documents that

would be returned by qk. Let S(Qk−1) be the set of documents which have

already been returned by previous query set {q1, q2, · · · qk−1}. We can calculate

S(Qk) − S(Qk−1) by
∑m

i=1((1 − yi) × aik for every potential query in QP , i.e.

the number of new documents that could be retrieved by qk, where yi ∈ {0, 1}

and yi = 1 if di has been returned, otherwise, yi = 0. Therefore, we have:

new

cost
(qk) =

∑m
i=1((1− yi)× aik)

β +
∑m

i=1 aik
(1)

In algorithm 1, we show a specific query selection method.

22

III. BACKGROUND

Algorithm 1: Query selection algorithm

Input: an m× n matrix A = (aij), β

Output: optimal query set Q

Cost(qj) = β +
m∑
i=1

aij

Xj = 0(1 ≤ j ≤ n)

yi = 0(1 ≤ i ≤ n)

while
∑m

i=1 yi < m do

/* generate the query with maximum new/cost */

for all potential queries qk in QP do

new

cost
(qk) =

∑m
i=1((1− yi)× aik)

β +
∑m

i=1 aik

end

append qk with maximum new
cost

(qk) into optimal query set Q

Xk = 1

yi = 1, ai,k = 1 for (1 ≤ i ≤ n)

end

return Q

23

III. BACKGROUND

Example 4: Consider the document-term matrix in figure 6 as our original dataset

DB, and β = 10. A random initial sample D is given in figure 7. When we apply

algorithm 1 on DB:

q1 q2 q3 q4 q5

d1 1 0 0 0 1

d2 0 1 1 0 0

d4 1 1 0 0 1

d5 0 1 1 1 0

d6 1 0 1 1 0

d9 0 1 1 0 1

=⇒

q1 q2 q3 q4 q5

d1 1 0 0 0 1

d2 0 1 1 0 0

d4 1 1 0 0 1

d5 0 1 1 1 0

d6 1 0 1 1 0

d9 0 1 1 0 1

df 3 4 4 2 3

Cost(qk) 13 14 14 12 13

new/cost 0.23 0.29 0.29 0.17 0.23

=⇒

q1 q2 q3 q4 q5

d1 1 0 0 0 1

d2 0 1 1 0 0

d4 1 1 0 0 1

d5 0 1 1 1 0

d6 1 0 1 1 0

d9 0 1 1 0 1

df 3 4 4 2 3

Cost(qk) 13 14 14 12 13

new/cost 0.15 0 0.07 0.08 0.08

FIGURE 7: Example: query selection

1. q2 was selected, which has the largest new
cost

(q2) = 0.29 in QP , and d2, d4, d5, d9

will be returned by q2. Now X = [0,1,0,0,0], y2, y4, y5, y9 = 1, q2 is appended

24

III. BACKGROUND

into Q,
∑6

i=1 yi = 4 < 6. Note: q2 and q3 have the same new
cost

, we randomly

select one of them in this situation.

2. q1 was selected, which has the largest new
cost

(q2) = 0.15 in QP . After this step, X

= [1,1,0,0,0],
∑6

i=1 yi = 6, so we append q1 into Q. All documents in sample D

are covered by Q, so the while loop in algorithm 1 is terminated. Q = {q2, q1}

is returned by our query selection algorithm. The HR(DB,Q) = 8
9

= 0.89,

OR(DB,Q) = 4+5
8

= 1.125, because d4 was returned two times by Q.

25

CHAPTER IV

Method

In the previous chapter, we have shown some preliminary knowledge about deep web

crawling. In this chapter, we present our method. In section 1, we focus on giving an

overview of our method. In section 3, we propose three hypotheses, after which we

explain how to generate a sample-condition relation diagram and the equal splitting

strategy based on these three hypotheses.

1 Overview

In our studies, we aim to provide a guideline for users to choose a more cost-effective

and efficient crawling strategy in crawling deep web. With this objective, we need to

define some parameters to measure the performance of a crawler in different situations,

such as the coverage, cost model and quality. After that, we will explain the work

process of our method in section 1.4.

1.1 Performance Parameters

Coverage in Original Datasets

In our work, the coverage in original dataset DB refers to the ratio between the

number of documents that contain at least one of the selected queries in Q and the

total number of documents in DB, which is defined as hit rate (HR) in [30]. In our

work, we name the coverage in DB as HR(Q,DB), and it can be used to evaluate the

efficiency of a query set Q. Similarly, the coverage in sample D can be represented

by HR(Q,D). Therefore, no matter in which kind of strategy, HR(Q,DB) can be

26

IV. METHOD

calculated as following:

HR(Q,DB) =
number of documents containing Q

|DB|
(1)

|DB| means the number of documents in original database DB.

Cost Model

As pointed out in many papers on deep web crawler, the crawling cost comes from

many sources, such as the network traffics caused by receiving documents from DB

or the limitation on total number of queries that can be issued by the users daily.

In our work, for each query in Q, the unit receiving cost is represented by α.

Unless explicitly mentioned, in the following, we will use numeric value 1 to denote

the unit receiving cost. The cost of receiving 1000 documents, for example, will be

1000.

The unit cost of sending one query is represented by β, with integer values. When

α is nonzero, it can be viewed as the ratio of the cost between sending one query and

that of receiving one document. If α = 1, β = 1500, and there are 500 documents in

the data set containing term q, for example, the sending cost of q will be 1500, and

the receiving cost of q will be 500. The total cost of q will be 1500 + 500 = 2000.

The cost model for each query is:

Cost(q) = β + α× number of documents containing q (2)

where α is usually fixed as 1 in this thesis.

Quality

Let Q be a set of queries, and D is a data set. The quality of a query q w.r.t. (Q,D)

is measured by the per unit cost return of the number of documents that are obtained

by sending query q to D and that are not obtained by sending any other queries in

Q to D. Note that the cost is calculated for both sending and receiving.

During the query selection process, ideally, we determine the quality of a term

with respect to (Q,DB) where Q is the set of queries that have been used to build

27

IV. METHOD

the current sample, and DB is the original data set. However, during the crawling

process, we do not have complete information about the original data set. Thus, we

approximate this quality by measuring the quality of q w.r.t. (Q,S) where Q is the

set of queries already selected by the query selection process during the current round

of iteration, and S is the sample data set. The quality formula of sample S is given

below:

Qual(q,Q, S) =
number of new documents

c
(3)

A higher value of Qual(q,Q, S) means this q can harvest more new documents with

less resources.

1.2 Revising Cost (k-value)

In the adaptive query selection process, the document retrieval is realized by itera-

tively selecting queries followed by downloading the corresponding documents. This

process is adaptive in the sense that after each iteration of document downloading,

the newly retrieved documents are merged into the sample data set for update before

processing the next round of query selection.

We assume that the queries selected from the updated sample possess better

quality, compared to those selected from the sample without update. There are two

sources that may lead to such quality improvement.

• We have improved knowledge, obtained from the previously downloaded doc-

uments from the same data source, about the terms used in the original data

set. This information is used to enrich the sample for query selection.

• During the query selection process, we determine the quality of a term based on

its quality measured in the sample data set, in order to approximate the same

measurement in the original data set. Such estimation is generally better in the

updated data set.

This adaptive retrieval process requires multiple updates of the sample. Updating

sample data set is costly in terms of the amount of time needed for document down-

28

IV. METHOD

loading, and the computational resource consumed to construct the updated matrix,

to generate the query pool, and to select queries.

We use an integer number k to represent the cost of one round of sample update.

When α is nonzero, it can be viewed as the ratio between the cost of one round of

sample update and that of receiving one document. If k = 1000, for example, and

there are in total 5 iterations of sending and receiving in the crawling process, the

total cost for revising the sample data sets will be 1000 ∗ 5 = 5000.

Following the stepwise refinement approach, the problem here is how many steps

should we take and how to divide the iteration steps, in order to maximize the overall

result of document retrieval within limited cost budget, or minimize the cost to reach

the quality document retrieval.

1.3 Stop Criteria

In deep web crawling, the queries are usually selected from the query pool sequentially

[30][38][39][42]. There are basically three criteria to terminate the selection:

1. All documents in original datasets are retrieved by Q, or HR(Q,Original) is

high enough, to determinate the crawling process.

2. The crawling process has to terminate due to cost constraint.

3. The set of queries already selected has met the condition for the current round

of iteration

Here we study the best conditions for the third one. Such a condition, called refine-

ment condition, may include, for example:

• the total number of queries already selected

• the hit rate of the set of queries already selected

In our setting, this refinement condition is a cost limit in the sense that: The

query selection process for the current round should terminate if the cost of the

queries already selected has hit this cost limit. Here, the cost of a query includes

29

IV. METHOD

both the cost of sending this query, and the cost of retrieving all the documents that

could be retrieved by this query. The cost of a set of query is the total sum of the

cost of each query in this set.

1.4 Work Process

Through empirical study, we explore the best cost limit for the refinement condition

which determines the length of the steps. Such cost limit varies with different sample

sizes: when the sample is large, the cost limit will be larger, leaving the refinement

condition loose. In this situation, the iteration is in favour of the sample-based

crawling.

Actually, the result of our study is a sample-condition relation (SCR) that pro-

vides the refinement condition based on the sample size. This sample-condition re-

lation provides practical guidelines for cost-effective stepwise refinement in iterative

document retrieval. For example, when sample size is |D|, users can find the cor-

responding optimal cost condition is SCR(|D|) by checking our sample-condition

relation diagram.

Given a real deep web crawler, with the initial sample D. Using SCR, we can

find that the optimal cost condition is SCR(|D|). Suppose the total cost budget is

costT , HRtarget refers to the target of hit rate in original database. A flow diagram

for users is given in figure 8. Note that when the first query is selected, Q is empty.

The frame work of our method is explained here:

1. Set SCR(|D|) as the cost limit on first round by checking our sample-condition

relation diagram.

2. Apply greedy algorithm on D and QP , then select one optimal query q, calculate

Cost(q) by formula 1.1.

3. Let Cost(Q) = Cost(Q) + Cost(q), and check whether Cost(Q) < SCR(|D|)

and HR(Q,Original) < HRtarget and SCR(|D|) < costT .

4. If the answer is yes, add q into Q, go back to step 2 and select the next query.

30

IV. METHOD

FIGURE 8: Flow diagram of work process

31

IV. METHOD

Otherwise, set the total cost budget costT to costT − SCR(|D|). And issue

all queries in Q to DB. New documents will be retrieved and downloaded to

local database to construct new sample D′. Check the sample-condition relation

diagram, obtain a new cost limit SCR(|D′|) for D′. After that, proceed to the

next round by following step 2 again.

Special Cases

In normal cases, we set α to 1, so β can be treated as the ratio between the unit cost

of sending a query and receiving a document. There are also some special cases we

have to consider.

1. α = 0

In this situation, the cost limit is uniquely determined by the number of queries.

So the refinement condition expresses the constraint on the total number of queries

to select as the length of the step.

Example 5: Suppose that there is only sending cost and no receiving cost (α = 0).

The sample-condition relation is reduced into the sample-querynumber relation.

• Suppose that the sample size is initially 20. According to the sample-querynumber

relation in 9, we should select 5 queries for the first round.

• Suppose that the first two stop criteria in section 1.3 are not met, and that after

sending the first 5 queries, the sample size is updated into 100. By sample-

querynumber relation, we should select 11 queries for the next round.

• Suppose that the first two stop criteria in 1.3 remain unsatisfied. We send these

11 queries in the previous step to DB, and the sample size is updated into 300.

According to 9, we should select 14 queries for the next round.

This process is iterated until one of those three terminate conditions in section 1.3.

2. β = 0

In this situation, we do not need to consider the sending cost of each query in Q.

This is similar to what was introduced in Lu et al. [30]. In their work, they apply

32

IV. METHOD

FIGURE 9: Sample-querynumber relation, α = 0

the cost of retrieving URLs as the total cost in their studies. We will to provide more

detail in chapter V to this situation.

3. k → 0

When k → 0, the updating cost is almost ignorable. In this situation, the sug-

gested refinement condition is the tightest: terminating the query selection soon. To

the extremist, we could send the queries one by one, updating the sample after each

query.

4. k →∞

When k → ∞, on the other hand, the update cost is too high that we should

almost always go with the sample-based approach to send out all the queries at once.

The refinement condition in this situation is quite loose so the query selection process

mostly terminates with the first two conditions.

More precisely, a sample-condition relation on newsgroup data set with different

k value is given in 10, where β = 1000.

33

IV. METHOD

FIGURE 10: Sample-condition relation, k = 0.001 and k = 104

2 Problem Formalization

In our study, based on our cost model, we propose a method to determine the near

optimal lengths of the steps in terms of cost limit. On the other hand, we further

observe that optimal lengths vary according to different sizes of the sample dataset.

Given an initial sample S0 and total cost limit L. The aim of our study is to

determine a positive integer n and positive integers set {x1, x2, · · · , xn} to maximize

n∑
i=1

qi

subject to

n∑
i=1

ci < L

where xi represents the number of queries sent on the ith step, i.e. the length of this

step. qi represents the quality obtained by sending xi queries on the ith step. It can

be determined on S0 and {x1, x2, · · · , xi}. ci represents the cost spent on the ith step,

including the sending and receiving cost for the xi queries. It also can be determined

34

IV. METHOD

on S0 and {x1, x2, · · · , xi}. n is the total number of steps. Given cost limit L, n can

only have finite values. For each value n, variable xi (for 1 ≤ i ≤ n) can only take

finite values. Thus, this is a combinatorial optimization problem.

3 Theoretical Basis

The sample-condition relation is derived from the four data sets used for deep web

crawling. We need to determine, for a given sample size, the best refinement condition

(cost limit).

Let the sample size be fixed. In order to find the best condition, we study the

condition-quality relation with the following two strategies:

• single step strategy

• equal splitting strategy

With the single step strategy, we use the given cost limit c to select queries to

send to the original data set all at once. The quality of these queries is recorded as

the quality of this condition c with single step strategy.

With the equal splitting strategy, we use 50% of the cost limit c to select the first

part of the queries. This is followed by sample update with cost k. Then the second

part of the queries are selected with the remaining cost 50%× c− k. The quality of

the queries from these two parts is then recorded as the quality of this condition c

with the equal splitting strategy.

We use Q(S1, c) to denote the set of queries generated by greedy algorithm from

sample S1 under the cost limit c. With our context, the revising cost for updating

sample is fixed as k. In addition, we define Qual1(|S1|, c) as the quality of single step

strategy by sending Q(S1, c).

Qual1(S1, c) =
the number of new documents covered by Q(S1, c)

c

Similarly, the quality of equal splitting strategy is define as:

Qual2(S1, c) = Qual1(S1,
1

2
c) +Qual1(S2,

1

2
c− k)

35

IV. METHOD

where S2 is the updated sample after issuing Q(S1,
1
2
c) to DB.

3.1 Hypothesis I and Hypothesis II

We have the following two hypotheses on the condition-quality relationship. Let c and

c1 be two cost limits. Note that the cost k for updating sample data set is included

in the total cost limit c.

Hypothesis 1: If single step strategy yields better quality than equal splitting strategy

w.r.t. (S1, c), i.e. Qual1(S1, c) > Qual2(S1, c), then it would generally also yield

better quality than equal splitting strategy w.r.t. (S1, c1), if c1 < c.

The reason is this: In equal splitting strategy, k is fixed, and the crawler have to

split the cost limit c into two parts. When cost limit is c1, the available resources for

two parts are 1
2
c1 and 1

2
c1 − k respectively, which are both less than 1

2
c and 1

2
c − k

because of c1 < c. Therefore, the revising cost k plays a more important role in c1

than in c. That is to say, compared to c, there are more resource deduction to do

query selection for equal splitting than for single step when cost limit is c1. With less

queries generated, less new documents will be returned. When cost limit is c, Qual1

is smaller than Qual2, so given a smaller cost limit c1, the quality of equal splitting

strategy would generally not be better than single step strategy as well.

Hypothesis 2: If single step strategy cannot yield better quality than equal splitting

strategy w.r.t. (S1, c), i.e. Qual1(S1, c) < Qual2(S1, c), then generally it would not

yield better quality than equal splitting strategy either w.r.t. (S1, c1), if c1 > c.

With a larger value of cost limit c1, the revised sample S2 can make a more

accurate prediction to original DB than c, and the cost used in downloading new

sample S2 accounts for a smaller proportion in c1 compared with c. I.e. k has less

impacts on the results of equal splitting strategy. Consequently, for any c1 > c, if

Qual2(S1, c) > Qual1(S1, c), we have Qual2(S1, c1) > Qual1(S1, c1).

Based on these two hypotheses, we compare the condition-quality relations with

the two strategies, and search for the maximum cost limit c with which the single

36

IV. METHOD

step strategy yields better quality than equal splitting strategy: when cost limit is

larger than c, we should split the process into multiple steps.

We look for such refinement condition for a given sample size in this way:

• Use binary search to find a range [a1, a2] such that it contains the refinement

condition and (a2 − a1 < ∆);

• Use linear interpolation or average to find the refinement condition in range

[a1, a2].

The condition-quality relations with single step and equal splitting strategy on

newsgroup datasets is given below, where sample size is 200.

FIGURE 11: Qual1 and Qual2, sample size = 200, β = 103, k = 10

Example 6: In the above graph, red is from single step strategy and blue is from

equal splitting strategy. The maximum cost limit c for single step strategy to be better

is around 15000.

Suppose that we start from range [1, 28]. The splitting strategy is better for 28, so

we continue to consider range [1, 27] · · · . Eventually, we locate the range [23, 24]. So

37

IV. METHOD

the cost limit we are looking for is 2000 ∗ (24 − 23)/2.

Furthermore, in this condition-quality relation diagram, when c1 < 15000, single

step strategy always yields better quality; when c1 > 15000, equal splitting strategy

always yields better quality. To be more precise, we have listed some corresponding

data in Table 3 about this diagram.

cost limit Qual1: single step strategy Qual2: equal splitting strategy

21 169.5650 89.3000

22 130.0387 106.1250

23 88.9537 82.9750

24 49.8272 53.4937

25 26.4997 28.4844

26 14.1763 14.8453

27 7.4150 7.5172

28 3.7420 3.7961

29 1.8745 1.9115

210 0.9385 0.9785

TABLE 3: Qual1 and Qual2, sample size is 200 in Newsgroup

3.2 Hypothesis III

We define the refinement condition c for a given sample size to be the maximum cost

limit for single step strategy to be better than multi-step strategies. Based on the

following hypothesis III, we adopt the condition c obtained from the above method

with equal splitting strategy.

Hypothesis 3: Using other splitting strategy in the above method will yield similar

result of cost limit c.

In precious contents, we define Qual1 and Qual2 to measure the quality of single

step and equal splitting strategies. It should be noted that there are many other

strategies. Here are some examples of other splitting strategy:

38

IV. METHOD

1. Also splitting once, but with different percentage for the two parts, e.g. 10/90

splitting, which means the first part of query selection should terminate with

cost limit 10%×c, while the second part terminates with cost limit 90%×c−k.

2. Splitting more than once, e.g. 1
3
/1
3
/1
3
, which means the first part of query

selection should terminate with cost limit 1
3
× c; the second part terminates

with 1
3
× c− k; and the third part terminates with 1

3
× c− k.

10/90 Splitting Strategy

For the first situation, compared with equal splitting strategy, although 10/90 split-

ting can not generate a good query set on first step, it would have a more accurate

prediction to DB by updated sample on second step. Therefore, if equal splitting have

a better quality than single step with refinement condition c, usually 10/90 strategy

would also outperform the quality of single step strategy as well. On the other hand,

if single step strategy yields better quality than 50/50 strategy, it is usually because

the revising cost k accounts for a large proportion of the cost budget in the crawling

process. Even though 10/90 splitting strategy distribute 90% of its total resources

to the second step, which enriches the second part of the sending and receiving to

yield better result, such benefit is balanced by less improvement of the sample due

to less budget distributed to the first part of sending and receiving. That is to say

the quality of 10/90 splitting would not be much better than equal splitting strategy.

Furthermore, we show an example below.

Example 7: Figure 12 shows condition-quality relationships between single step, equal

splitting and 10/90 splitting strategies on newsgroup data set, where β = 103, k = 10.

From this diagram, we can find that, no matter in 10/90 or 50/50 splitting strategy,

the refinement condition c are within the range of [23, 24] and [24, 25], respectively for

|S1| = 200, |S1| = 400.

39

IV. METHOD

FIGURE 12: Single step, equal splitting and 10/90 splitting where sample size is 200

and 400

40

IV. METHOD

Multiple Steps Strategy

Similar to the definition of Qual1 and Qual2, we define Qual3 as the quality for

three-step:

Qual3(S1, c) = Qual1(S1,
1

3
c) +Qual1(S

′
2,

1

3
c− k) +Qual1(S3,

1

3
c− k)

The reason why we apply multiple-step strategy is to select better query and

obtain a more accurate prediction on the original database. When Qual1(S1, c) >

Qual2(S1, c), i.e. the quality of single step is better than two-step, even though we

can receive a more accurate prediction on second step, the growth in quality cannot

cover the cost which was spent in updating the sample. In other words, a large amount

of resources were wasted in modifying the sample. Therefore, when we take three-

step strategy into consideration, the available resources which could be distributed

on each step is less than equal splitting strategy. In addition, the actual cost used in

crawling work is only 1
3
c − k on each step, which was even less than equal splitting

strategy. Hence, normally if Qual1(S1, c) > Qual2(S1, c), Qual1(S1, c) would also be

better than Prod3(S1, c) as well. Analogously, if Qual1(S1, c) < Qual2(S1, c), the

improvement of quality can cover the impact of revising cost on second step. Thus

it usually can cover the impact of revision cost in next steps. Hence, in this case,

the quality of three-step strategy would in general also be better than single step.

Further evidence of these arguments is given in Figure 13.

Example 8: Figure 13 shows the condition-quality relation of one-step, two-step and

three-step strategies which is under newsgroup data set, where β = 103, k = 10. Take

all these three strategies into consideration, it suggests that c is in range [23, 24] for

all the three strategies when S1 = 200, and when sample size is 400, the conclusion

remains the same.

We concentrate on only a part of splitting strategies in our studies. Other strategy

may yield better result sometimes. For example, if 25/25/25/25 is the final split of

total cost budget according to our equal splitting strategy, in some situations, it is

possible that 30/30/40 strategy can generate a better result, but we do not check it

41

IV. METHOD

FIGURE 13: Qual1(S1, c), Qual2(S1, c) and Qual3(S1, c) where sample size is 200 and

400

42

IV. METHOD

in our experiments. Therefore, we have to point out that some limitations of this

study exists. It is hard for us to try all splitting strategies in our experiments due to

the limitation of computational resources.

4 Summary

In this chapter, we define some parameters to measure the coverage and quality of

different strategies. The purpose of our study is to provide a guideline for deep web

crawler based on our sample-condition relation diagram. Our method is cost-effective

and data-driven in general.

43

CHAPTER V

Experiments

In this chapter, we first explain in section 1, the datasets and the environment set-

ting for the experiments. Then we present the sample-condition relation in different

datasets. Moreover, we illustrate the impacts of some parameters on our results in

section 2. Finally, we discuss some issues related to our experiment in section 3.

1 Experiment Environment and Datasets

We write our Java code about query selection based on Lucene [18] package. In

order to show the consistency of our results, we carry out our experiments on four

famous datasets in deep web crawling: newsgroup, Wiki, Gov2 and Reuters. Given

the fixed value of unit sending cost β and revising cost k, we aim to provide a more

cost-effective crawling strategy for users by the way of checking our sample-condition

relation diagram. Our experiment is carried out on a web server with 24 processors.

The original datasets are quite large compared to the computation capability we

have. For example, it takes too much time to build a document-term matrix when we

try to select queries by applying adaptive method. Thus we randomly select 10,000

documents from each of these four datasets as our original database.

44

V. EXPERIMENTS

2 Impact of Parameters

2.1 k-value

In our experiments, we use k to represent the revising cost for updating sample in

adaptive crawling method. The reason is that the adaptive method have to take

a large amount of CPU time and space to retrieve and download new documents

from DB. After that, we also need to anylyze new sample and do query selection on

it. Therefore, in order to examine how much k affects the sample-condition relation

diagram, we set β to a fixed value 103, and provide the SCR diagram with four

different k values in the following figure 14.

FIGURE 14: k = 10−1, k = 10, k = 103, k = 104 in newsgroup, wiki, reuters and

gov2. β is set to 103

The results from figure 14 show that the condition has a log-like growth with the

45

V. EXPERIMENTS

increase of sample size. In addition, when k is increasing, the base of this log function

is increasing as well. That is to say, the cost limit is getting into a fixed value which

increases slowly as sample size increases. This result is in support of our previous

analysis. It demonstrates that when k increases its value, i.e. when it becomes more

and more expensive to perform the sample update, the cost limit will become higher

and higher, which turns more and more in favor of sample-based approach.

2.2 Unit Sending Cost

Recall that β refers to the ratio between unit sending and unit receiving cost in

general. When the unit receiving cost and the unit revising cost are fixed, a higher

value of β means the sending cost plays a more important role than revising cost,This

is very similar to the situation when α and β are fixed and k decreases its value. We

show our SCR diagram with three different β values below.

In the SCR diagrams in figure 15, when β = 102, for example, the relationship

between condition and sample size is similar to the SCR diagram where k = 104 in

figure 14.

A consolidated view on the impacts of k and β on sample-condition relation is

given in figure 16 and figure 17.

3 Other Factors

In our work, we first randomly retrieve some documents from original DB as initial

D. Then the QP is built by choosing some terms from this initial sample. After that,

we select appropriate queries on each step. There are some other factors that affect

our analysis on the step size of the increments in the querying process.

3.1 Initial Sample

About the method to generate initial sample D, we should be aware that we do

not have global knowledge about the original datasets in practice. The only way

46

V. EXPERIMENTS

FIGURE 15: β = 102, β = 103, β = 105 in newsgroup, wiki, reuters gov2. k is set

to 10

47

V. EXPERIMENTS

FIGURE 16: Sample-condition relation in different k − value, β = 103

48

V. EXPERIMENTS

FIGURE 17: Sample-condition relation in different β value, k = 10

49

V. EXPERIMENTS

to retrieve documents is by issuing some queries to search interface. Usually, some

queries are randomly selected to set up the initial sample. However, the random

sampling of documents by sending random queries to a corpus is a challenging task

[7][10]. In our context though the result between random queries and random sample

has little difference [3]. Thus, in our experiments, we acquire our initial sample by

randomly select some document IDs from our datasets.

Another issue regarding initial sample is the sample size. In our work, we run

our program with 15 different values of sample size to generate a sample-condition

relation diagram, and the maximum sample size in our experiments is 500. We do not

include sample size larger than 500 because when sample size is larger than 300, the

y-axis (condition) increases only very slightly with the growth of sample size. This

can be seen clearly from figure 14

3.2 Create Query Pool

In order to do query selection, we have to build a corresponding query pool on each

sample. In our experiments, similar to the other researches [30][38], we only select

the terms whose document frequency (df) is in a range of 2-15% of the sample size

as well. There are two reasons for this choice: If we include the terms with too low

df into QP , it is probable that we will generate too many queries in query selection

process. These queries will waste a large amount of resources in terms of sending

cost. On the other side, if too high frequency terms are selected and issued to the

original database, these queries will cause too many duplicates, which will seriously

reduce the efficiency of deep web crawler in this scenario.

3.3 Query Selection Algorithm

In this subsection, we show the dependency of our method on the query selection

strategy. The method we presented so far is based on the greedy strategy for query

selection, with which the queries are ranked for selection according to new/df, where

new denotes the number new documents this query can retrieve, and df is the docu-

50

V. EXPERIMENTS

ment frequency of the query. This ranking is consistent to the way quality of queries

are defined in our method.

If our method is applied with a query selection strategy whose query ranking

strategy is not consistent to what we use in our method, then the results might

exhibit different characteristics. As an example, we re-examine our method with

the weighted greedy algorithm. The ranking strategy in weighted greedy algorithm is

particularly designed for single-step approach: it is in favor of rare terms especially

at the beginning in order to gain better overall quality of the entire set of queries

selected. When this is used in our method, those rare terms are selected to determine

the cost limit, which may lead to lower cost limits.

Figure 18 shows the related SCR diagrams when k takes four increasing values.

Compared with the corresponding SCR diagrams obtained with greedy algorithm, we

can see that the curves do not have too much differences when k increases. Figure 19

shows the related SCR diagrams when β takes three increasing values. The results

are, on the other hand, similar to those obtained with greedy algorithm.

FIGURE 18: Weighted greedy algorithm when k = 10−1, k = 10, k = 103, k = 104

in wiki, β is set to 103

FIGURE 19: Weighted greedy algorithm when β = 102, β = 103, β = 105 in wiki, k

is set to 10

51

CHAPTER VI

Conclusion

In our thesis, we focus on providing a guideline for users to choose a more cost-

effective crawling strategy in crawling deep web. For this purpose, we introduce some

parameters to measure the performance in different situations. In our method, for

the cost-effectiveness, when the given cost budget is sufficient enough, we minimize

the cost to reach desired retrieving result. On the other hand, when the given cost

budget is limited, we maximize the retrieving result within this cost limit. Our

practical guides for the stepwise strategy is learnt from the empirical study which

was carried out on four existing data sets. We have also discussed the impacts of

revising cost (k) and unit sending cost (β) on the sample condition relation by our

experiment results.

52

REFERENCES

[1] Álvarez, M., Pan, A., Raposo, J., Bellas, F., and Cacheda, F. (2008). Extracting

lists of data records from semi-structured web pages. Data & Knowledge Engineer-

ing, 64(2):491–509.

[2] Álvarez, M., Raposo, J., Pan, A., Cacheda, F., Bellas, F., and Carneiro, V. (2007).

Crawling the content hidden behind web forms. In International Conference on

Computational Science and Its Applications, pages 322–333. Springer.

[3] Bar-Yossef, Z. and Gurevich, M. (2008). Random sampling from a search engine’s

index. Journal of the ACM (JACM), 55(5):24.

[4] Barbosa, L. and Freire, J. (2004). Siphoning hidden-web data through keyword-

based interfaces. In SBBD, pages 309–321.

[5] Beasley, J. E. and Chu, P. C. (1996). A genetic algorithm for the set covering

problem. European Journal of Operational Research, 94(2):392–404.

[6] Bergman, M. K. (2001). White paper: the deep web: surfacing hidden value.

Journal of electronic publishing, 7(1).

[7] Bharat, K. and Henzinger, M. R. (1998). Improved algorithms for topic distillation

in a hyperlinked environment. In Proceedings of the 21st annual international ACM

SIGIR conference on Research and development in information retrieval, pages

104–111. ACM.

[8] Bhatia, K. K. and Sharma, A. (2008). A framework for domain-specific interface

mapper (dsim). IJCSNS, 8(12):56.

53

REFERENCES

[9] Bhatia, K. K., Sharma, A., and Madaan, R. (2010). Akshr: A novel framework for

a domain-specific hidden web crawler. In Parallel Distributed and Grid Computing

(PDGC), 2010 1st International Conference on, pages 307–312. IEEE.

[10] Callan, J. and Connell, M. (2001). Query-based sampling of text databases.

ACM Transactions on Information Systems (TOIS), 19(2):97–130.

[11] Caprara, A., Fischetti, M., and Toth, P. (1999). A heuristic method for the set

covering problem. Operations research, 47(5):730–743.

[12] Caverlee, J., Liu, L., and Buttler, D. (2004). Probe, cluster, and discover: Fo-

cused extraction of qa-pagelets from the deep web. In Data Engineering, 2004.

Proceedings. 20th International Conference on, pages 103–114. IEEE.

[13] Chang, C.-H., Kayed, M., Girgis, M. R., and Shaalan, K. F. (2006). A survey

of web information extraction systems. IEEE transactions on knowledge and data

engineering, 18(10):1411–1428.

[14] Cormen, T. H. (2009). Introduction to algorithms. MIT press.

[15] Doan, A., Domingos, P., and Halevy, A. Y. (2001). Reconciling schemas of

disparate data sources: A machine-learning approach. In ACM Sigmod Record,

volume 30, pages 509–520. ACM.

[16] Feo, T. A. and Resende, M. G. (1995). Greedy randomized adaptive search

procedures. Journal of global optimization, 6(2):109–133.

[17] Furche, T., Gottlob, G., Grasso, G., Guo, X., Orsi, G., and Schallhart, C. (2013).

The ontological key: automatically understanding and integrating forms to access

the deep web. The VLDB Journal, 22(5):615–640.

[18] Hatcher, E. and Gospodnetic, O. (2004). Lucene in action.

[19] He, B., Patel, M., Zhang, Z., and Chang, K. C.-C. (2007). Accessing the deep

web. Communications of the ACM, 50(5):94–101.

54

REFERENCES

[20] Huang, Q., Li, Q., Li, H., and Yan, Z. (2012). An approach to incremental deep

web crawling based on incremental harvest model. Procedia Engineering, 29:1081–

1087.

[21] Jiang, L., Wu, Z., Feng, Q., Liu, J., and Zheng, Q. (2010). Efficient deep web

crawling using reinforcement learning. In Pacific-Asia Conference on Knowledge

Discovery and Data Mining, pages 428–439. Springer.

[22] Khare, R., An, Y., and Song, I.-Y. (2010). Understanding deep web search

interfaces: a survey. ACM SIGMOD Record, 39(1):33–40.

[23] Knoblock, C. A., Lerman, K., Minton, S., and Muslea, I. (2003). Accurately and

reliably extracting data from the web: A machine learning approach. In Intelligent

exploration of the web, pages 275–287. Springer.

[24] Kushmerick, N. (1997). Wrapper induction for information extraction. PhD

thesis, University of Washington.

[25] Liakos, P., Ntoulas, A., Labrinidis, A., and Delis, A. (2016). Focused crawling

for the hidden web. World Wide Web, 19(4):605–631.

[26] Liddle, S. W., Embley, D. W., Scott, D. T., and Yau, S. H. (2002). Extracting

data behind web forms. In International Conference on Conceptual Modeling, pages

402–413. Springer.

[27] Liu, J., Wu, Z., Jiang, L., Zheng, Q., and Liu, X. (2009). Crawling deep web

content through query forms. In WEBIST, pages 634–642.

[28] Liu, W., Meng, X., and Meng, W. (2010). Vide: A vision-based approach for

deep web data extraction. IEEE Transactions on Knowledge and Data Engineering,

22(3):447–460.

[29] Lorena, L. A. N. and Lopes, F. B. (1994). A surrogate heuristic for set covering

problems. European Journal of Operational Research, 79(1):138–150.

55

REFERENCES

[30] Lu, J., Wang, Y., Liang, J., Chen, J., and Liu, J. (2008). An approach to deep

web crawling by sampling. In Web Intelligence and Intelligent Agent Technology,

2008. WI-IAT’08. IEEE/WIC/ACM International Conference on, volume 1, pages

718–724. IEEE.

[31] Madhavan, J., Bernstein, P. A., Doan, A., and Halevy, A. (2005). Corpus-

based schema matching. In 21st International Conference on Data Engineering

(ICDE’05), pages 57–68. IEEE.

[32] Madhavan, J., Ko, D., Kot, L., Ganapathy, V., Rasmussen, A., and Halevy, A.

(2008). Google’s deep web crawl. Proceedings of the VLDB Endowment, 1(2):1241–

1252.

[33] Nelson, M. L., Smith, J. A., and Del Campo, I. G. (2006). Efficient, automatic

web resource harvesting. In Proceedings of the 8th annual ACM international work-

shop on Web information and data management, pages 43–50. ACM.

[34] Raghavan, S. and Garcia-Molina, H. (2000). Crawling the hidden web.

[35] Salton, G. and McGill, M. J. (1986). Introduction to modern information re-

trieval.

[36] Shestakov, D., Bhowmick, S. S., and Lim, E.-P. (2005). Deque: querying the

deep web. Data & Knowledge Engineering, 52(3):273–311.

[37] Vieira, K., Barbosa, L., Freire, J., and Silva, A. (2008). Siphon++: a hidden-

webcrawler for keyword-based interfaces. In Proceedings of the 17th ACM confer-

ence on Information and knowledge management, pages 1361–1362. ACM.

[38] Wang, Y., Lu, J., and Chen, J. (2009). Crawling deep web using a new set

covering algorithm. In International Conference on Advanced Data Mining and

Applications, pages 326–337. Springer.

[39] Wang, Y., Lu, J., and Chen, J. (2014). Ts-ids algorithm for query selection in

the deep web crawling. In Asia-Pacific Web Conference, pages 189–200. Springer.

56

REFERENCES

[40] Wang, Y., Zuo, W., Peng, T., and He, F. (2008). Domain-specific deep web

sources discovery. In 2008 Fourth International Conference on Natural Computa-

tion, volume 5, pages 202–206. IEEE.

[41] Wu, P., Wen, J.-R., Liu, H., and Ma, W.-Y. (2006). Query selection techniques

for efficient crawling of structured web sources. In 22nd International Conference

on Data Engineering (ICDE’06), pages 47–47. IEEE.

[42] Zerfos, P., Cho, J., and Ntoulas, A. (2005). Downloading textual hidden web

content through keyword queries. In Proceedings of the 5th ACM/IEEE-CS Joint

Conference on Digital Libraries (JCDL’05), pages 100–109. IEEE.

57

REFERENCES

VITA AUCTORIS

NAME: Xu Sun

PLACE OF BIRTH: Taian, Shandong province, China

YEAR OF BIRTH: 1990

EDUCATION: Shandong University, Software Engineering, Jinan,

China, 2011

University of Windsor, M.Sc in Computer Science,

Windsor, Ontario, 2016

58

	University of Windsor
	Scholarship at UWindsor
	2016

	Practical Guides for Data Retrieval in Deep Web Crawling
	Xu Sun
	Recommended Citation

	DECLARATION OF ORIGINALITY
	ABSTRACT
	AKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Related Work
	Query Selection Problem
	Greedy Algorithm
	Weighted Greedy Algorithm
	TS-IDS Algorithm
	Incremental Queries

	Document Retrieving Strategies
	Automatic form filling
	Web Database Retrieval
	Domain Specific Crawling

	Summary

	Background
	Framework of crawling approaches
	One-step Sampling Approach
	Incremental Approach

	Set-covering Model
	Document-term Matrix
	Hit Rate and Overlapping Rate
	Query Selection Method

	Method
	Overview
	Performance Parameters
	Revising Cost (k-value)
	Stop Criteria
	Work Process

	Problem Formalization
	Theoretical Basis
	Hypothesis i and Hypothesis ii
	Hypothesis iii

	Summary

	Experiments
	Experiment Environment and Datasets
	Impact of Parameters
	k-value
	Unit Sending Cost

	Other Factors
	Initial Sample
	Create Query Pool
	Query Selection Algorithm

	Conclusion
	REFERENCES
	VITA AUCTORIS

