
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2016

A Run-Time Approach of Combining Ontologies
to Enhance Interactive Requirements Elicitation for
Software Customization
Shubhrendu Tripathi
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Tripathi, Shubhrendu, "A Run-Time Approach of Combining Ontologies to Enhance Interactive Requirements Elicitation for Software
Customization" (2016). Electronic Theses and Dissertations. 5778.
https://scholar.uwindsor.ca/etd/5778

https://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F5778&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5778&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5778&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/5778?utm_source=scholar.uwindsor.ca%2Fetd%2F5778&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

A Run-Time Approach of Combining Ontologies to Enhance
Interactive Requirements Elicitation for Software Customization

by

Shubhrendu Tripathi

A Thesis

Submitted to the Faculty of Graduate Studies

through Computer Science

in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the

University of Windsor

Windsor, Ontario, Canada

2016

c© 2016 Shubhrendu Tripathi

A Run-Time Approach of Combining Ontologies to Enhance
Interactive Requirements Elicitation for Software Customization

by

Shubhrendu Tripathi

APPROVED BY:

Dr. A. Azab

Dept. of Industrial & Manufacturing Systems Engineering

Dr. S. Goodwin

School of Computer Science

Dr. X. Yuan, Advisor

School of Computer Science

May 20, 2016

Declaration of Co-Authorship /

Previous Publication

I. Co-Authorship Declaration

I hereby declare that this thesis incorporatesmaterial that is result of joint research of

the author and his supervisor Prof. Xiaobu Yuan. This joint research has been published

/ submitted to various conferences that are listed below.

I am aware of the University of Windsor Senate Policy on Authorship and I certify that

I have properly acknowledged the contribution of other researchers to my thesis, and

have obtained written permission from Prof. Xiaobu Yuan to include those materials in

my thesis.

I certify that, with the above qualification, this thesis, and the research to which it

refers, is the product of my own work.

iii

II. Declaration of Previous Publication

This thesis includes two original papers that have been previously published / sub-

mitted for publication in peer reviewed conferences, as follows:

Thesis Chapter Publication title / Full citation
Publication

status

Chapter 3,

Chapter 4,

Chapter 5

Yuan X. and Tripathi S.,

"Combining ontologies for requirements

elicitation," in Model-Driven Requirements

Engineering Workshop (MoDRE),

2015 IEEE International.

IEEE, 2015, pp. 1-5.

Conference
Proceeding
(Published)

Chapter 3,

Chapter 4,

Chapter 5

Yuan X. and Tripathi S.,

"An approach of dynamically combining

ontologies for interactive

requirements elicitation," in

Software Engineering and Service Science

(ICSESS), 2016 7th IEEE International

Conference on. IEEE, 2016

Conference
Proceeding
(In press)

I certify that I have obtained written permissions from the copyright owners to in-

clude the above published materials in my thesis. I certify that the above material

describes work completed during my registration as graduate student at the University

of Windsor.

I declare that, to the best of my knowledge, my thesis does not infringe upon any-

one’s copyright nor violate any proprietary rights and that any ideas, techniques, quo-

tations, or any other material from the work of other people included in my thesis,

published or otherwise, are fully acknowledged in accordance with the standard refer-

encing practices. Furthermore, to the extent that I have included copyrighted material

that surpasses the bounds of fair dealing within the meaning of the Canada Copyright

Act, I certify that the copyright owners of the two papers, referenced above, allow (IEEE)

iv

copyrighted material to be used in this thesis without additional written permission. 1

2.

I declare that this is a true copy of my thesis, including any final revisions, as ap-

proved by my thesis committee and the Graduate Studies office, and that this thesis

has not been submitted for a higher degree to any other University or Institution.

1 c©2015 IEEE [5]
2 c©2016 IEEE [5]

v

Abstract

This thesis highlights the recent developments in Requirements Engineering for Soft-

ware Product Line Engineering, with a focus on the use of ontology in interactive Re-

quirements Elicitation and the existing techniques of ontology operations. Recent re-

search done in Requirements Elicitation has been towards using ontologies as a mod-

eling basis for gathering requirements. A new algorithm has been developed to al-

low ontologies to be combined at run-time when gathering the requirements of soft-

ware clients. By harnessing knowledge in other ontologies, a more refined set of re-

quirements can be generated. A scenario illustrating the use of ontology combina-

tion towards acquiring requirements for mobile platforms is also provided. The pro-

posed method further enhances the capability of interactive software customization,

thus helping to make Software Product Line Engineering a new practice in software

development.

vi

Dedication

This thesis is dedicated to my dear mother, sister, and late father for their endless

love and support.

vii

Acknowledgements

I would like to sincerely thank and express my deep sense of gratitude for my super-

visor, Dr. Yuan. He has been very kind and patient throughout this endeavour. Without

his clear and effective guidance, this work would not have been possible. I have been

very fortunate to have a supervisor with a great intellect and vast knowledge, who cared

so much about my work, and who responded to my questions and queries so promptly.

He was consistently supportive and constantly encouraged me to improve and refine

my work. He was always available to discuss any issues, big or small, I had during my

research.

I also want to thank Dr. Goodwin and Dr. Azab. Their comments and suggestions

have been invaluable and have greatly improved the quality of this work.

viii

Table of Contents

Declaration of Co-Authorship / Previous Publication iii

Abstract vi

Dedication vii

Acknowledgements viii

List of Tables xii

List of Figures xiii

List of Acronyms xv

List of Listings xvi

1 Introduction 1

2 Related Work 3

2.1 Overview . 3

2.2 Software Customization . 3

2.2.1 Overview . 3

2.2.2 Software Product Line Engineering . 3

2.2.3 Service Oriented Architecture . 5

2.2.4 Integrating SPL and SOA . 6

2.3 Requirements Elicitation . 7

2.3.1 Overview . 7

ix

TABLE OF CONTENTS

2.3.2 Requirements Elicitation . 7

2.3.3 Ontologies in RE . 9

2.4 Interactive Requirements Elicitation . 11

2.5 Ontology and Operations . 14

2.5.1 Overview . 14

2.5.2 What is an Ontology? . 14

2.5.3 Operations on Ontologies . 16

2.5.3.1 Matching . 16

2.5.3.2 Alignment . 18

2.5.3.3 Mapping . 19

2.5.3.4 Integration . 20

2.5.3.5 Merging . 21

3 A New Method of Ontology Combination 25

3.1 Overview . 25

3.2 Problem Statement . 25

3.3 Ontology Combination . 26

3.4 Example . 27

3.5 Proposed Methodology . 31

3.5.1 Definitions . 31

3.5.2 Step 1: Generate Correspondences . 32

3.5.3 Step 2: Generate Relationships . 32

3.5.4 Step 3: Check consistency of combined ontology, Oc 32

3.5.5 Step 4: Validation of Oc . 32

3.6 Design of Algorithms . 35

3.6.1 Overview . 35

3.6.2 SelectLink algorithm . 36

3.6.3 GetCorrespondences algorithm . 37

3.6.4 GetRelationship algorithm . 40

3.6.5 FindRelationshipJWNL algorithm . 43

x

TABLE OF CONTENTS

3.6.6 GetHighestCM algorithm . 44

3.6.7 Time Complexity . 45

4 Experiments 47

4.1 Overview . 47

4.2 Software . 47

4.3 Interface . 48

4.4 Experiments . 51

4.4.1 Scenario I - Single Ontology . 51

4.4.2 Scenario II - Multiple Ontologies . 51

4.4.3 Scenario III - Ontology of Mobile SOA Functions 60

4.5 Case Study . 63

4.6 Contributions . 76

4.6.1 Overview . 76

4.6.2 Enhanced Interactive Requirements Elicitation 76

4.6.3 Extending Customization to Mobile Applications 77

5 Conclusion and Future Directions 78

5.1 Overview . 78

5.1.1 Conclusion . 78

5.1.2 Future Directions . 79

Bibliography 80

Vita Auctoris 89

xi

List of Tables

2.1 Summary of Ontologies in RE . 10

2.2 Comparison of Ontology Operations . 24

3.1 WordNet and Relationships . 42

3.2 Time Complexity of Combine algorithm . 46

xii

List of Figures

2.1 Software Product Line Engineering [59] . 4

2.2 Service Oriented Architecture [22] . 5

2.3 Requirements Engineering processes [68] . 8

2.4 Ontology-based Requirement Model [73] . 11

2.5 Pseudo code for requirement evaluation process [73] 12

2.6 Interactive Requirements Elicitation system [73] 13

2.7 Ontology as a Semantic Network [27] . 14

2.8 Ontology as a UML model [27] . 15

2.9 Ontology represented in OWL (excerpt) [27] 15

2.10 Ontology Matching [42] . 17

2.11 Partial view of an Ontology Alignment [25] 18

2.12 Ontology Mapping . 19

2.13 Ontology Integration [50] . 20

2.14 Ontology Merging [39] . 22

3.1 Pizza ontology [10] . 28

3.2 Food ontology [4] . 29

3.3 Excerpt of the Combined Ontology . 30

3.4 Methodology . 34

4.1 Existing interface of Interactive Requirements Elicitation system 48

4.2 Ontology Combination Viewer (OC Viewer) 49

4.3 Initial state of Interactive Requirements Elicitation system 49

xiii

LIST OF FIGURES

4.4 State of Interactive Requirements Elicitation system after selecting some

requirements . 50

4.5 BookStore ontology, OSPL in KRE . 52

4.6 Search ontology, Oi in KRE . 53

4.7 OrderSummary ontology, O j in KRE . 53

4.8 ManagePaymentInfo ontology, Ok in KRE . 54

4.9 Excerpt of Combined Ontology - OSPL and Oi 55

4.10 OC Viewer output after OSPL and Oi combination 55

4.11 Excerpt of Combined Ontology - OSPL and O j 56

4.12 OC Viewer output after OSPL and O j combination 56

4.13 Excerpt of Combined Ontology - OSPL and Ok 57

4.14 OC Viewer output after OSPL and Ok combination 57

4.15 Complete Combined Ontology after three iterations 58

4.16 PlatformMobile ontology, OMobile in KRE . 61

4.17 Excerpt of Combined Ontology - OSPL and OMobile 62

4.18 OC Viewer output after OSPL and OMobile combination 62

4.19 Ontology Combination - Abstract view . 76

xiv

List of Acronyms

DL Description Logic

JWNL Java WordNet Library

OWL Web Ontology Language

RE Requirements Elicitation

SOA Service Oriented Architecture

SPL Software Product Line

SPLE Software Product Line Engineering

xv

List of Listings

4.1 Dialogue Utterances (Part 1) . 65

4.2 Dialogue Utterances (Part 2) . 65

4.3 Dialogue Utterances (Part 3) . 66

4.4 Dialogue Utterances (Part 4) . 66

4.5 Dialogue Utterances (Part 5) . 67

4.6 Dialogue Utterances (Part 6) . 67

4.7 Dialogue Utterances (Part 7) . 68

4.8 Dialogue Utterances (Part 8) . 68

4.9 Dialogue Utterances (Part 9) . 69

4.10 Dialogue Utterances (Part 10) . 69

4.11 Dialogue Utterances (Part 11) . 70

4.12 Picked Requirements . 71

4.13 Abandoned Requirements . 71

4.14 Entire OC Viewer output . 72

4.15 OWL-S output file with platform-dependent details highlighted in gray . . . 75

xvi

Chapter 1

Introduction

Software Product Line Engineering (SPLE) is an active area in Software Engineering.

It holds the promise of making software customization as successful as the assembly-

line process in the automotive industry. By reducing bloat of unwanted code in software

systems, customization increases efficiency. In the near future of mobile, wearable and

embedded devices [58], the size of a software program takes on an important dimen-

sion. By utilizing customization, software modules can potentially be assembled and

re-assembled quickly to target different platforms in a cost-effective manner. Consider-

able progress [51] has been made in recent years for realizing this paradigm of software

development.

One of the main subdisciplines of Software Engineering, including SPLE, is Require-

ments Engineering. Requirements Elicitation (RE) forms an important part of the Re-

quirements Engineering process. A lot of effort [28] [60] has been put in this area of

research. From the early 1990s to the present, many techniques have been identified

to reduce errors and make the elicitation process work more efficiently. Ontologies have

been used to try and ensure that RE is accomplished in a well-defined manner which

in turn, ensures a robust implementation of a software system. Considerable progress

has been mode towards an interactive mode of RE for software customization [74]. On-

tologies have been utilized for providing the foundation for such interactive systems.

1

They provide an excellent basis for representing concepts and the relationships be-

tween them. Due to this, they are being increasingly used across a variety of domains

[45] [40].

The existing approach to interactive RE relies on using single ontologies to guide

the interaction [73]. It would be more beneficial to harness knowledge available across

multiple domains to dramatically improve the scope of interaction. Various operations

on ontologies, such as merging, are design time operations and are thus not useful

for an interactive system. Recently [73] with dialogue-based RE, an interactive way of

gathering requirements has been made possible. This thesis proposes a novel method

of Ontology Combinations. It is an approach to obtain knowledge in different ontologies

when requirements elicitation is actually performed. The existing interactive approach

uses a single ontology to drive the RE process of gathering requirements for building

a customized Software Product Line (SPL) application. By bringing together different

ontologies at run-time, this methodology promises to strengthen the interactive RE

process and enhance it considerably. By combining multiple ontologies dynamically at

run-time, a more detailed set of requirements can be obtained. This work defines the

methodology for performing ontology combinations and presents a combine algorithm

along with scenarios illustrating the approach. The contributions of this thesis are:

• An enhanced interactive RE process in which significantly more requirements are

acquired from multiple ontologies through ontology combinations.

• Addition of mobile platform-dependent features to a customized SPL application

by the use of ontology combinations.

Related work in the field of Software Customization, RE, Interactive RE and Ontolo-

gies is surveyed in Chapter 2. The thesis problem statement, along with the proposed

method of Ontology Combination as the solution, is covered in Chapter 3. Chapter 4

covers the details of the implementation and goes over the experiments conducted

with the proposed methodology. It also lists the contributions of this thesis. Chapter 5

concludes the thesis and points out some future directions of continuing research.

2

Chapter 2

Related Work

2.1 Overview

This chapter surveys the various topics pertinent to the thesis and a literature review

of related work.

2.2 Software Customization

2.2.1 Overview

This section presents an overview of the research area of Software Customization.

It highlights the area of inquiry in the context of background literature.

2.2.2 Software Product Line Engineering

Software Product Line Engineering (SPLE) is defined as a paradigm to develop soft-

ware applications (software-intensive systems and software products) using platforms

and mass customizations [59]. It is divided into two areas: Domain Engineering and Ap-

plication Engineering. Figure 2.1 summarizes the different processes involved in these

two areas.

3

2.2 Software Customization

Figure 2.1: Software Product Line Engineering [59]

Both, Domain and Application Engineering, gather requirements for which some as-

pects of Requirements Engineering are needed. Domain Engineering is the process

of SPLE in which the commonality and the variability of a SPL are defined and realised

[59]. It is comprised of five sub-processes: Product Management, Domain Requirements

Engineering, Domain Design, Domain Realisation, and Domain Testing. The Domain Re-

quirements Engineering sub-process covers "all activities for eliciting and documenting

the common and variable requirements of the product line" [59] whereas the Domain

Design sub-process covers activities for defining the reference architecture [59].

Application Engineering is the process of SPLE in which applications of the SPL are

built by reusing domain artefacts and exploiting the product line variability [59]. In con-

trast to Domain Engineering, one of themain goals of Application Engineering is tomake

use of the commonality and variability of a SPL to develop a customized product line ap-

plication [59]. Application Engineering is comprised of four sub-processes: Application

Requirements Engineering, Application Design, Application Realisation and Application

4

2.2 Software Customization

Testing. The Application Requirements Engineering sub-process contains activities that

are needed for developing the application requirements specification [59].

Considerable research has been done in the field of SPLE in the past few years [51].

Integrating SPLE and Software Oriented Architecture (SOA) paradigms has also been an

important focal point for researchers, more of which will be covered in a later section.

Various open research challenges can be found for topics encompassing SPLE [51]. Soft-

ware factory automation has been proposed [15], analogous to manufacturing factory

automation, for managing reusable assets across distinct SPLs. This model is based on

an architecture-driven meta-model which is customized to create applications directly.

A systematic overview of research literature for product derivation in SPLE has also

been done [60], where requirements are identified and validated for this purpose.

2.2.3 Service Oriented Architecture

Service Oriented Architecture (SOA) is a software model in which automation logic is

decomposed into smaller, distinct units of logic [22]. These units are collectively used

to create a larger piece of business automation logic. Figure 2.2 provides an overview

of this model.

Figure 2.2: Service Oriented Architecture [22]

Services can assume different roles when involved in different scenarios [22]. The

three main roles are, as shown in Figure 2.2, Service Broker, Service Consumer, and

Service Provider. In the role of a Service Provider, a service exposes a public interface

5

2.2 Software Customization

through which it can be invoked by requestors of the service [22]. A Service Consumer

is the sender of a service message requesting a specific service [22]. A Service Broker

acts as a registry of services, and stores information about what services are available

and who may use them. Universal Description, Discovery and Integration (UDDI) is an

example of a Service Broker.

The core concept in SOA is that these units can be distributed. They don’t need to

reside on the same machine but can be spread across an intranet or even the Internet.

2.2.4 Integrating SPL and SOA

SPL and SOA integration is an active area of research. The various studies done in

this combined field over the last decade have been surveyed [52]. The studies have

been classified according to research focus, types of research and contribution, along

with the various fields of ongoing research.

The concepts of SPL, SOA and component frameworks have been compared [32],

concluding with the assertion that while there are differences between them, these

concepts are in fact complementary to one another. An approach of a service-oriented

architecture in which product lines are regarded as services which are then used to

combine together into another, distinct product line has been presented [67]. A web

product line to showcase this approach has also been provided there. An approach for

reusing and combining services into service oriented product line applications has also

been proposed [43]. Various issues such as identification of services are resolved by

using feature-oriented product line engineering. Another method has been proposed

[37] in which services and their level of granularity are identified by using ontologies

in product lines. A way of grouping features and evaluating services, along with a case

study, has also been provided there.

Developing SOA applications as SPLs has been attempted [49]. A combination of

these two concepts is shown to provide advantages such as improved reuse and pro-

duction of customized applications for specific clients. The issue of service identification

for service-oriented product lines has been explored [36]. An approach has been de-

6

2.3 Requirements Elicitation

fined which bridges Feature Models (FMs) in SPLs and Business Process Models (BPMs)

in SOAs by using a BPM workflow model to identify services.

A model using SOA architecture derived from current software artefacts has been

defined [57]. There the focus has been on the reuse of these artefacts as SOA compo-

nents and the derivation process that assembles products out of services automatically.

This proposed approach has been implemented in the form of the Software Product Line

Integration Tool (SPLIT) [56], which has been used to developmodular services obtained

automatically from existing software artefacts. Then out of these services, products are

assembled using a variability-driven derivation process.

2.3 Requirements Elicitation

2.3.1 Overview

This section goes over the relevant research work done in the field of Requirements

Elicitation (RE). It also covers the use of Ontologies in RE.

2.3.2 Requirements Elicitation

Requirements Engineering is comprised of activites related to the development and

agreement of the final set of Requirements Specifications [68]. The various processes

in Requirements Engineering are outlined in Figure 2.3. The main processes used for

a majority of projects are: Requirements Elicitation, Requirements Analysis and Re-

quirements Specification. Other processes, such as Requirements Prototyping, are also

done for projects where it is feasible to do so. Requirements Elicitation (RE) is defined as

the process of discovering the requirements for a system by communicating with cus-

tomers, system users, and others who have a stake in the development of the system

[63]. It requires specific knowledge of the problem along with application domain and

organizational knowledge. RE plays an important part in Requirements Engineering.

Traditionally, human communication has been the method of acquiring requirements

7

2.3 Requirements Elicitation

Figure 2.3: Requirements Engineering processes [68]

[47]. However, this mode of collecting requirements is ambiguous and a primary source

of errors which leads to flawed and incomplete Requirements Specifications. Recogniz-

ing this, attempts have been made to use computer-assisted tools to gather require-

ments [46]. Extending this paradigm, a human-machine dialogue interface using natu-

ral language promises to reduce errors in the RE process.

In an early work [28], various approaches to obtain requirements were presented

using insight gained from social science paradigms. A prototype automated SPL engi-

neering environment has been presented which utilizes a product line repository [29].

Multiple-view models of SPLs were then used with a Knowledge Based RE Tool to derive

a software product. An approach of interactive RE to build customized software based

on a SPL has been presented recently [74]. An ontology model comprising of knowl-

edge of common and variable assets has been developed, which is then used to obtain

abstract requirements models for specific domains. A case study of an online book

shopping system has also been incorporated into that study to illustrate the approach

[74].

8

2.3 Requirements Elicitation

2.3.3 Ontologies in RE

Ontologies have been defined as "a formal, explicit specification of a shared con-

ceptualization" [65]. They began to be used in Requirements Engineering in the early

1980s [20]. They were used in a variety of domains such as network management [45]

and aerospace [40] [24].

Ontologies have been used for Requirements Analysis [35]. There, the incomplete-

ness and inconsistency in a Requirements Specification was determined by using on-

tologies. The quality of a specification wasmeasured along with predictionsmade about

requirement changes.

Ontology-based reasoning method for RE has also been introduced [21]. Here, re-

quirements were mapped to functions in domain ontology. Then reasoning was applied

to check for errors and other potential requirements. Ontology-driven guidance has

been used for RE [24]. Evaluation was done based on a domain ontology and a set of

requirements. Further progress has been made in manipulating ontologies by combin-

ing them. Combinations make an effective use of knowledge encapsulated in different

ontologies [71]. A methodology has been established to perform combinations for RE

[71]. Ontology-based RE for software customization, in the context of SPLs, has been

performed using an interactive approach [75] [74].

Ontologies have been developed for various Requirements Engineering processes

using a university course registration web application system as a case study [62].

There, a model called OntoPersonalURM, which uses a multi-step iterative ontology de-

velopment process, was created for Requirements Engineers. Ontology-based relation

mining has been used for Cloud software requirements [34]. Ontologies have also been

used for Requirements Specification verification and validation [17]. Similarly, an ontol-

ogy of requirements has been used in transforming informal requirements into a formal

specification [44].

Table 2.1 summarizes the research covered in this section.

9

2.3 Requirements Elicitation

Area Ontology used for

Requirements
Engineering

• Use of ontologies in RE began in early 1980s [20]

• Network management [45]

• Aerospace [40] [24]

• University course registration web application [62]

• Cloud software [34]

Requirements
Elicitation

• Reasoning method [21]

• Evaluation [24]

• Software customization using an interactive approach for
Software Product Lines [75] [73] [74]

• Combining ontologies [71]

Requirements
Analysis

• Quality of a Requirements Specification and requirement
changes [35]

• Domain knowledge and semantics [53]

Requirements
Specification

• Verification and Validation [17]

• Transforming informal requirements into a formal Require-
ments Specification [44]

Table 2.1: Summary of Ontologies in RE

10

2.4 Interactive Requirements Elicitation

2.4 Interactive Requirements Elicitation

Recently, significant progress has been made towards interactive RE using ontolo-

gies. An interactive machine-guided elicitation of requirements has been developed for

the customization of a SPL for SOA based software [74]. An ontology-based require-

ments model has been developed [73], as shown in Figure 2.4. Three main concepts

have been identified in the model - Requirement, Function and Quality. Other concepts

have been included as extensions - Softgoal, Rank and OtherInfo. Seven relationships

have been developed - Generalize, Decompose, Rely, Contradict, Associate, HasRank,

and Invalid. A group of ontology rules has also been developed for RE and ontology

instantiation to retrieve implicit knowledge of a product line [74]. A nine-step process

has been outlined for instantiating a domain model of a service-oriented architecture

of a family of software products.

Quality

Requirement

Function Softgoal

RankOtherInfo

II
1 0 .. *

II
1 0 .. *

II
1 0 .. *

V
1 0 .. *

I I I

VI
1

1 .. *
1

1

IV III

VII

Figure 2.4: Ontology-based Requirement Model [73]

Here, RE is performed using a dialogue-based system. Ontologies are utilized for

dialogue management. An ontology model [70] is used to manage dialogue interac-

tion independently of domains [74]. In a related work, similar technique is applied to

create customized software using conversational agents based on natural language in-

teraction [73]. The algorithm for the RE process is shown in Figure 2.5 [73]. Complete

11

2.4 Interactive Requirements Elicitation

details of the evaluation process, along with additional algorithms cited in Figure 2.5,

are described in that work [75].

Figure 2.5: Pseudo code for requirement evaluation process [73]

After the final set of requirements have been obtained, their service descriptions are

converted into an OWL-S ontology. Figure 2.6 shows the overview of the entire system

[73].

12

2.4 Interactive Requirements Elicitation

Figure 2.6: Interactive Requirements Elicitation system [73]

13

2.5 Ontology and Operations

2.5 Ontology and Operations

2.5.1 Overview

This section covers the definition of Ontology as well as the various operations per-

formed on them.

2.5.2 What is an Ontology?

As mentioned in Section 2.3.3, an Ontology is "a formal, explicit specification of a

shared conceptualization" [65]. Ontologies enable knowledge sharing and reuse in a

specific format. They have the advantage of being a formal and machine manipulable

model of a domain of interest. Ontologies present a shared vocabulary in representing

domain knowledge which allows reasoning to be performed.

Figure 2.7 shows an example of an ontology as a semantic network. Here, the ontol-

ogy is modeled as Concepts and Relationships. Concepts can be abstract that represent

intentions, beliefs, feelings etc., or they can be specific such as people, computers, ta-

bles, etc [30]. Relationships represent a type of association between Concepts of a

domain [30]. In Figure 2.7, the Concepts are shown as ovals and the arrows designate

the Relationships between the Concepts.

Figure 2.7: Ontology as a Semantic Network [27]

The same ontology is presented as a UML model in Figure 2.8. The boxes represent

the Concepts and the lines between them represent Relationships. An excerpt of the

14

2.5 Ontology and Operations

ontology represented in Web Ontology Language (OWL) format is shown in Figure 2.9.

OWL is an ontology language for the Semantic Web with formally defined meaning.

Figure 2.8: Ontology as a UML model [27]

Figure 2.9: Ontology represented in OWL (excerpt) [27]

15

2.5 Ontology and Operations

2.5.3 Operations on Ontologies

Over the previous decades of research, various operations on Ontologies have been

identified [23]. They are: Matching, Alignment, Mapping, Integration and Merging.

2.5.3.1 Matching

Matching is the process of finding relationships or correspondences between entities

of different ontologies [23]. This area of research is becoming increasingly important

for knowledge bases and the Semantic Web. Matching can be performed on Concepts,

Attributes, and Relations of ontologies.

Figure 2.10 gives an example of Ontology Matching [42]. Figure 2.10a shows how

concepts in the domain of the Motion Picture industry are represented in two different

ontologies, O1 and O2. Relations within the two ontologies are also shown as arrows. The

dotted lines represent the output of the Matching process. Similarly, in Figure 2.10b,

ontologies O1 and O2 contain knowledge of the Food domain. Concepts and relations

are matched between them and shown as dotted lines.

16

2.5 Ontology and Operations

(a) Movie ontologies O1, O2 and matching results. Dotted lines mean a matching

(b) Food ontologies O1, O2 and matching results. Dotted lines mean a matching

Figure 2.10: Ontology Matching [42]

17

2.5 Ontology and Operations

2.5.3.2 Alignment

Ontology Alignment is the process of bringing ontologies into agreement through

the automatic discovery of mappings between related concepts [31]. It is a set of cor-

respondences between two or more ontologies. The underlying principle in Alignment

is that ’ontologies can approximate other ontologies and that ontologies to be matched

are approximation of a common ideal ontology’ [23].

An example of Alignment is given in Figure 2.11. The excerpt shown in this figure is

the Alignment of two ontologies: the one on the left side is a fragment of the Forest Fire

Sensor ontology and the one on the right side is a fragment of the Fire Trucks Sensor

ontology. The dashed lines denote the Alignment obtained after applying an ontology

alignment algorithm [25].

Figure 2.11: Partial view of an Ontology Alignment [25]

18

2.5 Ontology and Operations

2.5.3.3 Mapping

Mapping is the oriented, or directed, version of the alignment which maps entities

of one ontology to at most one entity of another ontology [23]. This can viewed as

a collection of mapping rules oriented in a particular direction - from one ontology to

another.

Figure 2.12 shows an example of Mapping. Both ontologies, o1 and o2, represent

knowledge in the Restaurant domain. Ontology o1 encodes that knowledge in the con-

text of American restaurants, whereas ontology o2 does this in a Japanese context. The

bold arrows represent the map generated between the two ontologies. Figure 2.12b

presents an abstract view of the Mapping.

(a) Ontologies o1 and o2 with their mapping as bold arrows [14]

(b) ’Approximate ontology translation’ for the ontology mapping [38]

Figure 2.12: Ontology Mapping

19

2.5 Ontology and Operations

2.5.3.4 Integration

Integration is the inclusion in one ontology of another ontology [23]. The integrated

ontology contains the knowledge of the original ontologies. Integration is different from

Merging as one of the ontologies is modified whereas Merging creates a new ontology.

An example of Integration is given in Figure 2.13. A and B, are the initial ontologies.

Integration results in B being ’absorbed’ into A.

Figure 2.13: Ontology Integration [50]

20

2.5 Ontology and Operations

2.5.3.5 Merging

Merging is the creation of a new ontology from two, possibly overlapping, source

ontologies [23]. The initial ontologies are not modified, with the new ontology incorpo-

rating the knowledge of both the ontologies.

Figure 2.14 shows an example of Merging. Sample ontology 1 and Sample ontology

2 consist of information about the domain of Cars. A third ontology generated after the

Merging, as shown in Figure 2.14c, contains the knowledge of both Sample ontology 1

and Sample ontology 2 as a single ontology.

The ideas behind Ontology Merging can be traced back to the beginning of 1980s

[18]. The SMART algorithm was an early semi-automatic approach to Ontology Merging

and Alignment [54] . The PROMPT algorithm was an improvement of SMART and during

its development various Ontology Merging operations were identified [55].

Mathematical frameworks have been applied to OntologyMerging. Merging has been

done using Formal Concept Analysis (FCA-MERGE) [66]. Also, Category theory [33] has

been applied towards merging and Simple PushOut (SPO) in algebraic graph transfor-

mation [48] has been used to merge ontologies. Description Logic (DL) based merging

of Concrete and Fuzzy ontologies has also been accomplished [41].

An ontology integration process has been proposed in which two ontologies are

merged by generating an ontology intersection containing the maximum number of

entities contained in the input ontologies and their corresponding non-contradictory

axioms [69]. CODE [26] is a fully automated system that aims at preserving the source

ontology knowledge. It uses natural language processing in combination with a se-

mantic matching approach, along with scenario-based rules to make sure the merging

process is accurate. While being very comprehensive, CODE is a holistic process - taking

into account all aspects of the source ontologies including Class, Property and Instance.

While this is powerful, it is not useful for a more lightweight approach where only the

Classes of given ontologies need to be analyzed. It is a quite involved and cumbersome

process - going through multiple stages to acquire a merge, and would be difficult to

adapt to a nimble setting where quick operations are required.

21

2.5 Ontology and Operations

Thing

Vehicle

ancestor-of

cycle

is-a

car

is-a

bicycle

is-a

motorcycle

is-a

sedan

is-a

cab

is-a

wagon

is-a

bus

is-a

(a) Sample Ontology 1 about Car

Thing

Automobile

ancestor-of

Sedan

is-a

bus

is-a

wagon

is-a

taxi

is-a

brogham

is-a

Limousine

is-a

Shooting_brake

is-a

truck

is-a

(b) Sample Ontology 2 about Car

Thing

Vehicle

ancestor-of

Car/Automobile

is-a

cycle

is-a

Bus

is-a

Limousine

is-a

Sedan

is-a

Cab/Taxi

is-a

Wagon

is-a

Shooting_brake

is-a truck

is-a is-a

brougham

is-a is-a

bicycle

is-a

motorcycle

is-a

(c) Merged Ontology

Figure 2.14: Ontology Merging [39]

22

2.5 Ontology and Operations

Recently, Cloud-based ontology matching has been provided as a Service for inte-

gration and interoperability resolution primarily focused on biomedical systems [16].

A novel approach, but as the system has been built for a distributed architecture of a

cloud, it would be difficult to extract and incorporate the technique for a more restrictive

environment, such as a traditional, localized desktop system.

Also, ATOM base algorithm has been proposed that takes two ontologies and merges

them using an equivalence mapping [61]. A very clear and consistent terminology is

presented for the ATOM algorithm and lays down the foundations for developing similar

algorithms. Equivalence mapping is clearly defined and applied. A major drawback of

the algorithm is that it is limited to an IS-A relationship; it does not take into account

other possible relationships.

Table 2.2 presents the various operations and approaches described in the earlier

sections. This table compares the various works explored earlier on the basis of whether

user intervention is required, the type of relationship that is being used in the work (if

explicitly stated) and in the last column of the table, if the work is based on a Design-

Time or Run-Time approach.

The following chapter provides further discussion.

23

2.5 Ontology and Operations

Work Automated Relationship Place

[Noy and Musen, 1999]
(SMART) [54]

7 - Design-Time

[Noy and Musen, 2000]
(PROMPT) [55]

7 - Design-Time

[Stumme and Maedche,
2001] (FCA-MERGE) [66]

7 - Design-Time

[Hitzler et al., 2005] (Cate-
gory theory) [33]

7 - -

[Raunich and Rahm, 2011]
(ATOM) [61]

3 IS-A Design-Time

[Fudholi et al., 2014] (CODE)
[26]

3 - Design-Time

[Mahfoudh et al., 2014] (Al-
gebraic SPO) [48]

3 IS-A Design-Time

[Wu, 2014] (CODE) [26] 7 - Design-Time

[Amin et al., 2015] (Cloud-
based) [16]

7 - Design-Time

[Kumar and Harding, 2015]
(Description Logic) [41]

7

IS-A

TYPE-OF

PART-OF

Design-Time

Table 2.2: Comparison of Ontology Operations

24

Chapter 3

A New Method of Ontology

Combination

3.1 Overview

This chapter covers the problem statement of this thesis and the proposed method-

ology as the solution. The specific details of the methodology are developed thoroughly.

The corresponding Combine algorithm is covered comprehensively in the later sections.

3.2 Problem Statement

The interactive approach for RE, outlined in Section 2.4 above, uses a single ontology

for modeling the domain requirements [73]. This can be further enhanced by acquiring

knowledge from other domains. Multiple ontologies can be brought together for this

purpose, enabling the approach to acquire additional knowledge from diverse domains.

Various operations on ontologies were covered in Section 2.5.3. Among these ap-

proaches, mathematical frameworks [66] [33] [48] require formulating the ontologies

into mathematical structures such as lattices and fuzzy structures. This requires an

extra ’overhead’ operation, which is expensive in terms of the additional time that is

25

3.3 Ontology Combination

required. While bringing mathematical precision to the merging process, the present

mathematical approaches lose flexibility and would fall short in performance during a

dynamic use of such approaches.

All semi-automatic approaches [54] [55] [66] [33] [69] [16] [41] require human inter-

vention at important stages of the merging process. Dynamic combination of ontolo-

gies, needed during run-time, should not require any human intervention. Any tech-

nique requiring user decisions during the merge process would defeat the purpose of

interactive RE as the focus of the user needs to be on gathering requirements rather

than merging ontologies. Also, in order to merge ontologies in this manner, the user

will need to have an in-depth knowledge of the merging process. For the purpose of a

software customization system, this should not be required and this, ideally, should be

transparent to the user. The user should not be required to know about ontologies or

of the process of merging ontologies; this should be taken care of in the background of

the interactive system without involving the user.

Furthermore, all of them are design-time operations. As such, they cannot be applied

to an interactive mode of knowledge extraction.

This thesis proposes a dynamic run-time operation of Ontology Combinations which,

by overcoming these limitations, can enhance interactive RE immensely.

3.3 Ontology Combination

As outlined in Section 2.5, existing approaches are mainly focused on ‘deep’ merges

of ontologies. Classes, relations, etc (some or all attributes of ontologies) are sought to

be merged. RE does not need this as Requirements Artefacts are usually discrete items

brought together to form a new system. An artefact is usually defined as a specification

of a physical piece of information that is used or produced by a software development

process [64]. RE needs ontology combinations so that new Requirements Specifications

can be generated quickly from different ontologies. Reasoning should be relatively quick

and ideally should have a minimal overhead in generating a combined ontology as the

26

3.4 Example

entire structure of an ontology does not need to be merged.

Ontology Combination is similar to Ontology Merging but not the same operation. It

is different as ontologies being combined together might not share any ideas except for

the need of creating a joined ontology that might serve an entirely different purpose

from that of the original two ontologies.

3.4 Example

A general example can be used to demonstrate Ontology Combinations. Figure 3.1

shows a Pizza ontology. It has, among other concepts, a Food concept. This concept is

further extended to concepts like Pizza, IceCream, PizzaTopping etc. Now, another on-

tology can also contain information about food items such as the Food ontology shown

in Figure 3.2. This ontology contains a concept EdibleThing. EdibleThing is refined into

different types of consumable items such as Dessert, SweetFruit etc. If both these on-

tologies are combined, then a reasoning system based on the Pizza ontology can take

advantage of the knowledge available in the Food ontology. A good instance of this

would be in creating new and unexpected pizza topping combinations for ordering Piz-

zas like a topping of SweetFruit on a SpicyPizza. Figure 3.3 shows one possible pair of

nodes to achieve this desired combination.

27

3.4 Example

Figure 3.1: Pizza ontology [10]

28

3.4 Example

Figure 3.2: Food ontology [4]

29

3.4 Example

Figure 3.3: Excerpt of the Combined Ontology

30

3.5 Proposed Methodology

3.5 Proposed Methodology

The methodology of performing an Ontology Combination is detailed in this section.

Terminology used is presented in Section 3.5.1 Definitions. Then the steps are delin-

eated. The summary is shown in Figure 3.4.

3.5.1 Definitions

Many similar notations for Ontologies exist in research literature. For this discussion,

an ontology is defined as a tuple:

Oi = (Ci, Ri, Ii, Ai)
where

Ci is the set of concepts,

Ri is the set of relationships between the concepts,

Ii is the set of instances,

Ai is the set of axioms.

KRE is a RE Knowledge Base holding ontologies and their instances specialized to-

wards the acquisition of requirements. Ri and Ai are specific to Oi and Ii is part of KRE

and therefore will not be considered here.

Instances of ontologies will be assumed to honor the ontological evaluations after the

combination. It is assumed that all the ontologies are consistent before the beginning

of the combination process. Only concepts,Ci, are needed for the combination and will

be analyzed here.

For the sake of brevity and simplicity, a combination of only two ontologies will be

delineated here. Starting with primary ontology Op = (Cp, Rp, Ip, Ap), a secondary

ontology Os = (Cs, Rs, Is, As), is selected from KRE . The steps taken to combine them

are explained in the following sections.

31

3.5 Proposed Methodology

3.5.2 Step 1: Generate Correspondences

A set of concept correspondences is defined as the set of (match) mapping between

two ontologies [61]. Given two concepts, p ∈Cp and s ∈Cs, a concept correspondence

t, is defined as an ordered pair (p,s) of a primary ontology concept p and a secondary

ontology concept s [61]. Each t is characterized by a type selected from equivalence,

is-a and inverse-isa [61]. An equivalence correspondence is defined as a correspon-

dence where p and s represent the same concept; an is-a correspondence is defined

as a correspondence where p is a subclass of s and an inverse-isa correspondence is

defined as a correspondence where s is a subclass of p [61]. An is-a correspondence is

an oriented correspondence from a source concept to a target concept and expresses

an is-a relationship between them [61]. An inverse-isa correspondence is similarly de-

fined as the source concept being a ’superclass’ of the target concept [61]. Here, a set

of concept correspondences, T , will be used to identify the concepts in primary and

secondary ontologies. T will be used to generate the links between them in Step 2.

3.5.3 Step 2: Generate Relationships

On the basis of the type of correspondences, relationships can be generated for the

links that tie the ontologies together.

3.5.4 Step 3: Check consistency of combined ontology, Oc

The combined ontology, Oc, obtained after Step 2, will then be checked for consis-

tency using a suitable reasoner.

3.5.5 Step 4: Validation of Oc

A simple reasoning test can be performed to ensure that the link produced is valid

and produces sensible results.

32

3.5 Proposed Methodology

Ontology-based requirements elicitation can be then be carried out [75] using the

combined ontology Oc. After this, if a suitable set of requirements has not yet been

obtained, this process can be iterated over again. The above steps can be iterated over

as many times as needed until a satisfactory set of requirements is gathered.

As the use of this methodology matures, existing ontologies can be modified and

newer ones can be added to KRE . Over time, such a methodology would yield a mature

collection of ontologies which would help in refining requirements even further, leading

to a less ambiguous and a detailed set of Requirements Deliverables.

The next section, covering the Combine algorithm, gives the details of the algorithms

involved in this methodology.

33

3.5 Proposed Methodology

is now

Perform Requirements Elicitation using

Primary Ontology,

Ontologies

Oi Oj Ok ...

Create Combined Ontology
Generate Correspondences
Generate Relationships
Consistency check of combined ontology,
Validation of

Step 3:
Step 4:

Step 2:
Step 1:

Oc
Oc

Combined Ontology, Oc

Requirements Elicitation Knowledge Base,
KRE

Have the
Requirements
Deliverables

been
satisfactorily
completed?

Yes

No

Oc Op

Oc

Detach previously combined ontologies, if needed

Op

Start

End

Figure 3.4: Methodology

34

3.6 Design of Algorithms

3.6 Design of Algorithms

3.6.1 Overview

The Combine algorithm is called during the process of RE for a SPL, represented by

the ontology, OSPL. Another ontology, Oi, from the RE Knowledge Base, KRE , is given as

input to the algorithm to perform the combination.

The algorithm uses the following:

• WordNet [13] - is a lexical database for the English language, often described as a

combination of a dictionary and thesaurus.

• Java WordNet Library (JWNL) [7] - is a free and open-source Java API for accessing

WordNet.

• Apache Lucene [2] - is a free and open-source information retrieval Java library.

• SimMetrics [12] - is a free and open-source Java library of similarity and distance

metrics for strings.

The Combine algorithm is composed of smaller algorithms - SelectLink, GetCorre-

spondences, GetRelationship, FindRelationshipJWNL and GetHighestCM - all of which

are described in this section. The SelectLink algorithm is called initially with string,

strSPLLea f Node of the leaf node, Vl in OSPL and the ontology to be combined, Oi. The al-

gorithm then calls the GetCorrespondences algorithm to get Correspondences, if they

exist, between strLea f Node and any node in Oi. The GetCorrespondences algorithm in

turn, calls the GetRelationship algorithmwhich tries to find the relationships (IS-A, TYPE-

OF, and PART-OF). It does this through the use of the FindRelationshipJWNL algorithm,

which uses the JWNL API for WordNet. The GetHighestCM algorithm is used to determine

the Correspondence with the highest Confidence Measure in a given set of Correspon-

dences. The SelectLink algorithm returns a Correspondence which is used to link OSPL

and Oi together. This enables the two ontologies to be linked together dynamically,

resulting in a combined ontology. The combined ontology resides in memory. The algo-

35

3.6 Design of Algorithms

rithm can be called as many times as needed to combine other ontologies in KRE with

the main OSPL ontology.

3.6.2 SelectLink algorithm

The SelectLink algorithm is shown below:

Algorithm 1 SelectLink

Input: strSPLLea f Node is string for the concept of the leaf node Vl in OSPL
Input: Oi is ontology that is to be combined
Output: cHighest is a Correspondence that will link OSPL and Oi together

1: c← /0 . set of Correspondences

2: for each node ∈ Oi do
3: c← c ∪ GetCorrespondences(strSPLLea f Node, node.label)
4: end for

5: cHighest← GetHighestCM(c)

6: return cHighest

The input for the SelectLink algorithm is the string for the concept of the leaf node Vl

in OSPL, strSPLLea f Node, and the ontology that is to be combined, Oi. It returns as output,

a Correspondence c, which contains the node in Oi and the relationship that will link

OSPL and Oi together.

The loop in Line 2 to Line 4 iterates over all the nodes in Oi to find out if there is

a correspondence between the node and strSPLLea f Node. This is done by calling the

GetCorrespondences algorithm (Section 3.6.3). All correspondences are collected into

the set of Correspondences, c. The Correspondence with the highest Confidence Mea-

sure is selected by calling the GetHighestCM algorithm in Line 5. Confidence Measure

is described in GetHighestCM algorithm section (Section 3.6.6). This Correspondence

is then returned in Line 6 as the link between OSPL and Oi.

36

3.6 Design of Algorithms

3.6.3 GetCorrespondences algorithm

The GetCorrespondences algorithm is shown below:

Algorithm 2 GetCorrespondences

Input: strSPL is string for the concept of the leaf node Vl in OSPL
Input: strI is the string for the concept from Oi
Output: c is a Correspondence

1: if strSPL = strI then . same string
2: c.Relationship ← IS-A
3: c.CM = 0
4: return c
5: end if

6: tokensSPL← /0

7: tokensI← /0

8: cw← /0

9: strSPL← Lucene.StopWordsFilter(strSPL)
10: tokensSPL← Lucene.Tokenize(strSPL)

11: strI← Lucene.StopWordsFilter(strI)
12: tokensI← Lucene.Tokenize(strI)

13: for each wSPL ∈ tokensSPL do . first pass - try to find Anchor Word
14: for each wI ∈ tokensI do
15: if 0.0≤ SimMetrics.JaroWinkler(wSPL, wI) ≤ 0.1 then
16: wAnchorWord← shortestOf(wSPL, wI)
17: if sizeof(tokensSPL) = sizeof(tokensI) = 1 then . only one word
18: c.Relationship ← IS-A
19: return c
20: end if
21: end if
22: end for
23: end for

24: for each wSPL ∈ tokensSPL do . second pass
25: for each wI ∈ tokensI do
26: cw← cw ∪ GetRelationship(wSPL, wI)
27: end for
28: end for

29: cwHighest← GetHighestCM(cw)

30: if (cw.size() ≤ 1) and (cwHighest.RelationshipFound = true) then
31: c = cwHighest
32: else

37

3.6 Design of Algorithms

33: if wAnchorWord then
34: if strSPL.length > strI.length then . more ’generic’ concept
35: c.Relationship ← IS-A
36: c.CM = 0
37: else if word before wAnchorWord in strSPL = word before wAnchorWord in strI =

VERB) then
38: c.Relationship ← PART-OF
39: c.CM = 0
40: end if
41: else . No relationship has been found
42: c.Relationship = NULL
43: end if
44: end if

45: return c

The GetCorrespondences algorithm tries to determine the correspondence between

two concepts, strSPL from OSPL and strI from Oi, through two levels of matches:

• String Level Match is done on the entire two strings to figure out the relationship

between strSPL and strI. Line 1 to Line 5 and Line 13 to Line 23 are the String Level

Matching parts in the algorithm.

• Word Level Match is done on individual words of the strings to figure the relation-

ship between them. Line 24 to Line 28 are the Word Level Matching parts in the

algorithm.

The input to the GetCorrespondences algorithm are strSPL which is the string for the

concept of the leaf node Vl in OSPL and strI which is the string for the concept from Oi. The

output of the algorithm is a Correspondence which contains the relationship between

the two input strings and the Confidence Measure for that relationship.

A check is done in Line 1 to see if the two strings are equal and if they are, then the

relationship is considered of type IS-A and the algorithm returns this as a Correspon-

dence with Confidence Measure of 0. From Line 9 to Line 12, the Apache Lucene library

is used to filter for stop words and to tokenize the input strings. The first pass through

the two strings, from Line 13 to Line 23, tries to find an AnchorWord. An AnchorWord

is used to determine a ’core’ concept between the two strings. This is determined by

38

3.6 Design of Algorithms

utilizing the Jaro-Winkler distance implemented in the SimMetrics library. If the words

are similar and there is only one word in both the strings, then the relationship is of

type IS-A and the correspondence has been found.

If the relationship has not been found yet, then a second pass is made through the

string tokens, from Line 24 to Line 28. Each word in tokensSPL is compared with each

word in tokensI to determine the relationship between them by calling the GetRelation-

ship algorithm. All the Correspondences obtained are put into the set of Correspon-

dences, cw. The Correspondence with the highest Confidence Measure is selected by

calling the GetHighestCM algorithm in Line 29.

If no relationship has yet been found, then a relationship is sought based on the

wAnchorWord using the logic between Line 32 to Line 44. If strSPL is longer than strI, then

strI represents a more ’general’ concept and thus the relationship is of type IS-A. On

the other hand, if the words before the wAnchorWord - both in strSPL and strI are ’verbs’

(for example, ’Select book name’ and ’Find book author’ - here ’Select’ and ’Find’ are

verbs), then the relationship is assumed to be of type PART-OF.

If no relationship has been found yet and there was no wAnchorWord, then no relation-

ship has been found and the algorithm returns a NULL relationship.

39

3.6 Design of Algorithms

3.6.4 GetRelationship algorithm

The GetRelationship algorithm is shown below:

Algorithm 3 GetRelationship

Input: word1 and word2 are strings
Output: cw is a correspondence between the two words

1: word1POS← /0

2: word2POS← /0

3: cwAll← /0

4: JWNL.Initialize()

5: word1POS← JWNL.GetPOS() . get all Parts-of-Speech for word1
6: word2POS← JWNL.GetPOS() . get all Parts-of-Speech for word2

7: for each p1 ∈ word1POS do
8: for each p2 ∈ word2POS do
9: if p1 = p2 then
10: r← FindRelationshipJWNL(SYNONYM)
11: if r 6= NULL then
12: cw.Relationship ← IS-A
13: cw.ConfidenceMeasure ← r.Depth
14: cwAll← cwAll ∪ cw
15: end if

16: r← FindRelationshipJWNL(HYPERNYM)
17: if r 6= NULL then
18: cw.Relationship ← TYPE-OF
19: cw.ConfidenceMeasure ← r.Depth
20: cwAll← cwAll ∪ cw
21: end if

22: r← FindRelationshipJWNL(HYPONYM)
23: if r 6= NULL then
24: cw.Relationship ← TYPE-OF
25: cw.ConfidenceMeasure ← r.Depth
26: cwAll← cwAll ∪ cw
27: end if

28: if p1 = p2 =V ERB then
29: r← FindRelationshipJWNL(TROPONYM)
30: if r 6= NULL then
31: cw.Relationship ← TYPE-OF
32: cw.ConfidenceMeasure ← r.Depth
33: cwAll← cwAll ∪ cw
34: end if

40

3.6 Design of Algorithms

35: end if

36: r← FindRelationshipJWNL(HOLONYM)
37: if r 6= NULL then
38: cw.Relationship ← PART-OF
39: cw.ConfidenceMeasure ← r.Depth
40: cwAll← cwAll ∪ cw
41: end if

42: r← FindRelationshipJWNL(MERONYM)
43: if r 6= NULL then
44: cw.Relationship ← PART-OF
45: cw.ConfidenceMeasure ← r.Depth
46: cwAll← cwAll ∪ cw
47: end if
48: end if
49: end for
50: end for

51: cwHighest← GetHighestCM(cwAll)

52: return cwHighest

The GetRelationship algorithm takes as input two strings, word1 and word2 and returns

as output a Correspondence Word, cw which contains the relationship between the two

words and the corresponding Confidence Measure.

The JWNL library is initialized in Line 4. In Line 5 and Line 6, all the possible Parts-

Of-Speech values for the given words are found, as it is possible for a word to be a

NOUN or a VERB depending on the context. For example, the word ’act’ can be used

as a NOUN as in "Act II of Hamlet" and as a VERB - "acting in a movie". In the following

part of the algorithm, from Line 7 to Line 50, all the Parts-Of-Speech found for each of

the word is iterated through and if a match is found for the Part-Of-Speech, then the

relationship and the Confidence Measure for that relationship is determined by call-

ing the FindRelationshipJWNL algorithm with different WordNet Pointer Types such as

SYNONYM, MERONYM, etc.

Since there can be multiple Parts-Of-Speech for the two words, the Correspondence

with the highest Confidence Measure is obtained by calling the GetHighestCM algorithm

in Line 51, which is then subsequently returned by the algorithm.

41

3.6 Design of Algorithms

The following table summarizes the various WordNet Pointer and Relationship types:

WordNet Pointer Type Relationship Type

SYNONYM (SIMILAR) is-a

HYPONYM,

HYPERNYM,

TROPONYM

type-of

HOLONYM,

MERONYM
part-of

Table 3.1: WordNet and Relationships

42

3.6 Design of Algorithms

3.6.5 FindRelationshipJWNL algorithm

The FindRelationshipJWNL algorithm is shown below:

Algorithm 4 FindRelationshipJWNL

Input: start and end are JWNL.IndexWords
Input: type is the type of relationship being inquired about
Output: r is a JWNL.Relationship

1: JWNL.Synset[] startSenses = start.getSenses()
2: JWNL.Synset[] endSenses = end.getSenses()
3: JWNL.Relationship r← NULL

4: for each s1 ∈ startSenses do . Check all against each other to find a relationship
5: for each s2 ∈ endSenses do
6: RelationshipList = JWNL.RelationshipFinder(startSenses[i], endSenses[j], type)
7: if RelationshipList 6= NULL then
8: r← RelationshipList.get(0)
9: return r
10: end if
11: end for
12: end for

13: return NULL . Relationship type not found for start and end

The FindRelationshipJWNL algorithm takes as input two JWNL.IndexWords, start and

end. It also needs the type of relationship that needs to be figured out (as shown in the

table in Section 3.6.4), designated as type. If the requested relationship is found, the

algorithm returns as output a JWNL.Relationship, r which contains the relationship be-

tween the two words and the corresponding Confidence Measure. Otherwise, it returns

a NULL value.

The WordNet senses for the two input words are retrieved in Line 1 and Line 2. Be-

tween Line 4 and Line 12, the senses for each word are iterated over to find a match

for type. If a match is found, then the algorithm returns that relationship. Otherwise, a

NULL value is returned.

43

3.6 Design of Algorithms

3.6.6 GetHighestCM algorithm

The GetHighestCM algorithm is shown below:

Algorithm 5 GetHighestCM

Input: c is set of Correspondences
Output: cHighest is a Correspondence that has the highest Confidence Measure

1: cHighest.RelationshipFound ← f alse
2: if c.size() 6= 0 then
3: cHighest← c.get(0)
4: for each c1 ∈ c do
5: if c1.RelationshipFound = true then
6: if cHighest.ConfidenceMeasure ≥ c1.ConfidenceMeasure then
7: cHighest← c1
8: end if
9: end if
10: end for
11: end if

12: if (c.size() > 1) and (cHighest.CM > CM_THRESHOLD) then
13: cHighest.Relationship ← NULL
14: end if

15: return cHighest

If more than one word match/relationship has been found (Line 2), then the Confi-

dence Measure (CM) is used to resolve the relationship in the loop from Line 4 to Line 10.

This measure represents the depth between the two words/concepts and comes directly

from the JWNL library. The closer the ConfidenceMeasure is to 0, the closer it is assumed

to the ‘real’ relationship. A Confidence Measure of 0 represents a direct match. If two

(or more) relationships have the same Confidence Measure, the last one is selected as

the relationship between the two words. Similarly, if there are multiple word correspon-

dences between two strings, the Confidence Measure is used to determine the eventual

relationship between the two strings.

In Line 12 if the Confidence Measure found is greater then the CM_THRESHOLD, then

it is determined that no relationship has been found. WordNet provides senses between

two words that can very deep, and as such can provide very obscure relationships,

which perhaps makes sense at some literary level but may not be useful in the normal

44

3.6 Design of Algorithms

usage of the language. CM_THRESHOLD is thus used to ensure that no arcane or vague

relationships are provided as output by the algorithm.

3.6.7 Time Complexity

Note: The discussion below follows the convention where the symbol V is used as a

shorthand to denote |V | (the number of vertices in a graph) in the context of asymptotic

notation for Graph Algorithms [19].

For the Combine algorithm,

Vi is the set of nodes in the ontology Oi,

m is the number of words in tokensSPL,

n is the number of words in tokensI

The Combine algorithm is composed of the following algorithms: SelectLink , GetCor-

respondences , GetRelationship , FindRelationshipJWNL and GetHighestCM algorithms.

Since WordNet is a finite set of words and their senses, interaction with the WordNet

database in GetRelationship and FindRelationshipJWNL algorithms is assumed to be of

constant time for the purpose of determining the time complexity of the Combine algo-

rithm.

The GetHighestCM algorithm contains the for loop in Line 4 which iterates over a

given set of all the Correspondences to find out the highest Confidence Measure. This

algorithm is primarily called from two places - in the SelectLink algorithm to determine

the Correspondence to link OSPL and Oi together and in the GetCorrespondences algo-

rithm to obtain the correspondences between strSPL and strI. When GetHighestCM is

called in the SelectLink algorithm, the set of Correspondences can hold, at maximum,

a Correspondence for each node in Oi, which is Vi. When the algorithm is called from the

GetCorrespondences algorithm, the set of Correspondences can hold, at maximum, mn

Correspondences.

SelectLink and GetCorrespondences are the main algorithms which have a direct im-

45

3.6 Design of Algorithms

pact on the time complexity of the whole Combine algorithm. The SelectLink algorithm

goes through all the nodes in Oi to determine if any Correspondence exists between the

leaf node in OSPL and Oi. Therefore, it will always loop for Vi iterations. The critical part

of the Combine algorithm is the GetCorrespondences algorithm. It is where the decision

is made for the relationship between the two nodes using the two strings, one from OSPL

and the other from Oi. The GetCorrespondences algorithm tries find a Correspondence

between strSPL and strI. The loops - between Line 13 and Line 23, Line 24 and Line 28 -

go over the tokens generated for strSPL and strI, m and n times. For GetCorrespondences

algorithm, (mn+mn) = 2mn which in turn, implies mn operations.

From the above analysis, it can be seen that for the average case, the time com-

plexity of the Combine algorithm is O(mnVi). In the worst case, the length of both strPL

and strI can be the same, yielding a value of O(n2Vi). In the best case scenario, strSPL or

strI or both, can have just one word, which would then yield a time-complexity of O(kVi),

assuming k = mn. The various cases are summarized below:

Case Time Complexity

Average Case OOO(((mmmnnnVVV iii)))

Worst Case OOO(((nnn222VVV iii)))

Best Case
OOO(((kkkVVV iii)))

k = mn, where m = 1 or n = 1

Table 3.2: Time Complexity of Combine algorithm

46

Chapter 4

Experiments

4.1 Overview

This chapter covers the details of the implementation of the proposed approach. It

also covers the details of the experiments undertaken after the implementation. The

last section lists the contributions of this study.

4.2 Software

The following is a comprehensive list of all the software, libraries and APIs used for

implementing the solution:

• Java [6] - the programming language

• Eclipse [3] - IDE for Java

• OWL API [8] - Java API for creating, manipulating and serializing OWL ontologies

• Protégé [11] - Ontology editor

• Pellet [9] - OWL DL reasoner

• WordNet [13] - lexical database for the English language

47

4.3 Interface

• Java WordNet Library (JWNL) [7] - Java API for accessing WordNet

• Apache Lucene [2] - Java library used for information retrieval

• SimMetrics [12] - Java library for similarity and distance metrics for strings

• Apache Ant [1] - Java library for automating software build processes

The Combine algorithm, as discussed in Chapter 3, was implemented within the

existing interactive RE system [75] [73].

4.3 Interface

Figure 4.1 shows the existing interface of the dialogue system [73].

Figure 4.1: Existing interface of Interactive Requirements Elicitation system

The ’Ontology Combination Viewer’ (OC Viewer), shown in Figure 4.2, was added to

the interface to display the status of the various ontological combinations happening

in the background during the session. The output is color-coded to help convey the

information quickly:

• Green - means the ontology combination was successful

• Red - means the ontology combination was unsuccessful

• Blue - means that a leaf node was encountered

48

4.3 Interface

• Magenta - means that a mobile platform ontology was successfully combined

Figure 4.2: Ontology Combination Viewer (OC Viewer)

Figure 4.3 shows the initial state of the system. The ’Ontology Combination Viewer’

(OC Viewer) is shown on the bottom right side. The OC Viewer displays the output of

the Combine algorithm during the entire session.

Figure 4.3: Initial state of Interactive Requirements Elicitation system

Figure 4.4 shows the state of the system after some requirements have been se-

lected, with the OC Viewer displaying the corresponding messages on the status of

ontology combinations.

49

4.3 Interface

Figure 4.4: State of Interactive Requirements Elicitation system after selecting some
requirements

50

4.4 Experiments

4.4 Experiments

4.4.1 Scenario I - Single Ontology

As mentioned previously, the existing system [73] works with a single ontology. The

Ontology Combinationmethodology seeks to improve this by letting the system harness

other ontologies dynamically at run-time.

4.4.2 Scenario II - Multiple Ontologies

To illustrate the methodology, a scenario of requirements elicitation performed for

creating an online bookstore system can be used. BookStore ontology, shown in Figure

4.5, can be assumed as the initial primary ontology OSPL for the new online bookstore

system [75]. This ontology represents the knowledge of an online bookstore system.

The RE Knowledge Base, KRE , contains three more ontologies, Search, OrderSummary

and ManagePaymentInfo [75], shown in Figure 4.6, Figure 4.7 and Figure 4.8 respec-

tively. Search, OrderSummary and ManagePaymentInfo are designated as Oi, O j and Ok

respectively.

51

4.4 Experiments

Lo
ca
te
AB

oo
k

G
et
Re
fe
re
nc
e

G
et
Li
st

Se
ar
ch
Bo

ok
s

So
rt
Li
st

G
et
D
et
ai
le
dI
nf
o

Pi
ck
Fr
om

Li
st

re
ly
O
n

re
ly
O
n

re
ly
O
n

de
co
m
po
se
In
to

de
co
m
po
se
In
to

de
co
m
po
se
In
to

de
co
m
po
se
In
to

de
co
m
po
se
In
to

de
co
m
po
se
In
to

re
ly
O
n

M
an
ag
eS
ho
pp

in
gC

ar
t

Ad
dB

oo
kS
ho
pp

in
gC

ar
t

Re
m
ov
eB

oo
kS
ho
pp

in
gC

ar
t

G
et
Re
fe
re
nc
eI
te
m
Sh
op
pi
ng
Ca

rt

G
et
Sh
op
pi
ng
Li
st

Pi
ck
Ite

m
Sh
op
pi
ng
Li
st

G
et
Pu
bl
ic
at
io
nI
nf
o

G
et
Co

nt
en
ts

de
co
m
po
se
In
to

de
co
m
po
se
In
to

re
ly
O
n

re
ly
O
n

de
co
m
po
se
In
to

de
co
m
po
se
In
to

re
ly
O
n

de
co
m
po
se
In
to

re
ly
O
n

de
co
m
po
se
In
to

re
ly
O
n

de
co
m
po
se
In
to

Fi
ni
sh
O
rd
er

re
ly
O
n

re
ly
O
n

re
ly
O
n

de
co
m
po
se
In
to

Figure 4.5: BookStore ontology, OSPL in KRE

52

4.4 Experiments

Search

SearchKeywords

relyOn

decomposeInto

ExactMatch BroadMatch

associateWithassociateWith

SearchAdvanced

decomposeInto

Figure 4.6: Search ontology, Oi in KRE

OrderSummary

CalculateTotalPrice

CalculateBookPrice CalculateServicePrice

SetDeliveryInfo

relyOn

relyOn

decomposeInto

decomposeInto

decomposeInto

decomposeInto

relyOn

SetPaymentInfo

ChooseDeliveryOption EnterDeliveryInfo ChoosePaymentOption EnterPaymentInfo

PaymentInputSecurityHigh PaymentInputSecurityAverage

relyOn

decomposeInto

decomposeInto
decomposeInto

decomposeInto

decomposeInto

associateWith associateWith

Figure 4.7: OrderSummary ontology, O j in KRE

53

4.4 Experiments

AddPaymentOption
decomposeInto

decomposeInto

relyOn

RemovePaymentOption

ManagePaymentInfo

GetReferencePaymentOption

relyOn decomposeInto

relyOn

decomposeInto

GetListPaymentOptions PickPaymentOption

relyOn
decomposeInto

relyOn

GetCreditCardInfo

associateWith

Figure 4.8: ManagePaymentInfo ontology, Ok in KRE

54

4.4 Experiments

The process begins with the primary ontology OSPL being selected in the interactive

RE system [73]. As the various requirements are selected, if they are a leaf node, i.e.,

they don’t rely on or decompose into, other requirements, the Combine algorithm is

called for that leaf node. For the SearchBooks leaf node of the OSPL, Oi is selected by the

Combine algorithm from KRE . Oi is then combined with OSPL with an IS-A relationship with

the node Search in Oi to form a combined ontology. An excerpt of OSPL after combination

is shown in Figure 4.9.

Figure 4.9: Excerpt of Combined Ontology - OSPL and Oi

Figure 4.10 displays the output in the OC Viewer after the OSPL and Oi have been

successfully combined. When the "Search Relevant Books" (SearchBooks) leaf node is

encountered, the OC Viewer displays the message in Blue. The successful combination

of OSPL and Oi is logged in Green and gives the name of the leaf node in OSPL - "Search

relevant books" (SearchBooks), the name of the node that was matched in Oi - "Search"

(Search), the type of relationship found - "ISA", Confidence Measure of 0.0 and the name

(along with the path) of the ontology file - "./KnowledgeBase/Ontology/Search.owl".

Figure 4.10: OC Viewer output after OSPL and Oi combination

55

4.4 Experiments

Ontology-based requirements elicitation is then continued on using the combined

ontology. As elicitation moves on, once the FinishOrder leaf node is selected, the Com-

bine algorithm is called again. This time O j is selected from KRE . It is combined with OSPL

with OrderSummary of O j using the TYPE-OF relationship. An excerpt of the combined

ontology is shown in Figure 4.11.

Figure 4.11: Excerpt of Combined Ontology - OSPL and O j

Figure 4.12 displays the output in the OC Viewer after the OSPL and O j have been

successfully combined. When the "Finish the Order" (FinishOrder) leaf node is encoun-

tered, the OC Viewer displays the message in Blue. The successful combination of

OSPL and O j is logged in Green and gives the name of the leaf node in OSPL - "Finish

the Order" (FinishOrder), the name of the node that was matched in O j - "Get the Or-

der Summary" (OrderSummary), the type of relationship found - "TYPEOF", Confidence

Measure of 0.0 and the name (along with the path) of the ontology file - "./Knowledge-

Base/Ontology/OrderSummary.owl".

Figure 4.12: OC Viewer output after OSPL and O j combination

56

4.4 Experiments

After the leaf node of ChoosePaymentOption is selected, the Combine algorithm is

called again, and this time the ManagePaymentInfo ontology, Ok, is selected for combi-

nation with OSPL to help refine the ChoosePaymentOption concept. The node Manage-

PaymentInfo in Ok is linked to ChoosePaymentOption in OSPL with a PART-OF relationship.

An excerpt of the combined ontology is shown in Figure 4.13. The complete ontology,

after the three iterations, is given in Figure 4.15.

Figure 4.13: Excerpt of Combined Ontology - OSPL and Ok

Figure 4.14 displays the output in the OC Viewer after the OSPL and Ok have been

successfully combined. When the "Choose Payment Option" (ChoosePaymentOption)

leaf node is encountered, the OC Viewer displays the message in Blue. The successful

combination of OSPL and Ok is logged in Green and gives the name of the leaf node in

OSPL - "Choose Payment Option" (ChoosePaymentOption), the name of the node that

was matched in Ok - "Manage Payment Information" (ManagePaymentInfo), the type of

relationship found - "PARTOF", Confidence Measure of -1.0 and the name (along with

the path) of the ontology file - "./KnowledgeBase/Ontology/ManagePaymentInfo.owl".

Figure 4.14: OC Viewer output after OSPL and Ok combination

After ontology combinations, some relationships might need to be updated. The fol-

57

4.4 Experiments

Lo
ca
te
AB

oo
k

G
et
Re
fe
re
nc
e

G
et
Li
st

Se
ar
ch

So
rt
Li
st

G
et
D
et
ai
le
dI
nf
o

Pi
ck
Fr
om

Li
st

re
ly
O
n

re
ly
O
n

re
ly
O
n

de
co
m
po
se
In
to

de
co
m
po
se
In
to

de
co
m
po
se
In
to

de
co
m
po
se
In
to

de
co
m
po
se
In
to

de
co
m
po
se
In
to

re
ly
O
n

Se
ar
ch
Ke
yw

or
ds

Se
ar
ch
Ad

va
nc
ed

re
ly
O
n

de
co
m
po
se
In
to

de
co
m
po
se
In
to

Ex
ac
tM
at
ch

Br
oa
dM

at
ch

M
an
ag
eS
ho
pp

in
gC

ar
t

Ad
dB

oo
kS
ho
pp

in
gC

ar
t

Re
m
ov
eB

oo
kS
ho
pp

in
gC

ar
t

G
et
Re
fe
re
nc
eI
te
m
Sh
op
pi
ng
Ca

rt

G
et
Sh
op
pi
ng
Li
st

Pi
ck
Ite

m
Sh
op
pi
ng
Li
st

O
rd
er
Su
m
m
ar
y

Ca
lc
ul
at
eT
ot
al
Pr
ic
e

Ca
lc
ul
at
eB

oo
kP
ric
e

Ca
lc
ul
at
eS
er
vi
ce
Pr
ic
e

Se
tD
el
iv
er
yI
nf
o

re
ly
O
n

re
ly
O
n

de
co
m
po
se
In
to

de
co
m
po
se
In
to

de
co
m
po
se
In
to

de
co
m
po
se
In
to

re
ly
O
n

Se
tP
ay
m
en
tIn

fo

Ch
oo
se
D
el
iv
er
yO

pt
io
n

En
te
rD
el
iv
er
yI
nf
o

Ch
oo
se
Pa
ym

en
tO
pt
io
n

En
te
rP
ay
m
en
tIn

fo

Pa
ym

en
tIn

pu
tS
ec
ur
ity
H
ig
h

Pa
ym

en
tIn

pu
tS
ec
ur
ity
Av
er
ag
e

G
et
Pu
bl
ic
at
io
nI
nf
o

G
et
Co

nt
en
ts

de
co
m
po
se
In
to

de
co
m
po
se
In
to

Ad
dP
ay
m
en
tO
pt
io
n

de
co
m
po
se
In
to

de
co
m
po
se
In
to

re
ly
O
n

Re
m
ov
eP
ay
m
en
tO
pt
io
n

M
an
ag
eP
ay
m
en
tIn

fo

G
et
Re
fe
re
nc
eP
ay
m
en
tO
pt
io
n

re
ly
O
n

de
co
m
po
se
In
to

re
ly
O
n

de
co
m
po
se
In
to

G
et
Li
st
Pa
ym

en
tO
pt
io
ns

Pi
ck
Pa
ym

en
tO
pt
io
n

re
ly
O
n

de
co
m
po
se
In
to

re
ly
O
n

as
so
ci
at
eW

ith
as
so
ci
at
eW

ith

re
ly
O
n

re
ly
O
n

de
co
m
po
se
In
to

de
co
m
po
se
In
to

re
ly
O
n

de
co
m
po
se
In
to

re
ly
O
n

de
co
m
po
se
In
to

re
ly
O
n

de
co
m
po
se
In
to

re
ly
O
n

de
co
m
po
se
In
to

de
co
m
po
se
In
to

de
co
m
po
se
In
to

de
co
m
po
se
In
to

de
co
m
po
se
In
to

as
so
ci
at
eW

ith
as
so
ci
at
eW

ith

Fi
ni
sh
O
rd
er

re
ly
O
n

re
ly
O
n

IS
-A

Se
ar
ch
Bo

ok
s

TY
PE
-O
F

PA
RT
-O
F

G
et
Cr
ed
itC

ar
dI
nf
o

as
so
ci
at
eW

ith

Figure 4.15: Complete Combined Ontology after three iterations

58

4.4 Experiments

lowing section discusses this point in the context of combining ontologies for generating

specifications for different platforms.

59

4.4 Experiments

4.4.3 Scenario III - Ontology of Mobile SOA Functions

By including an ontology with platform-dependent functions, Ontology Combination

enables the system to be extended to produce specifications for different operating sys-

tems. To illustrate this, the PlatformMobile ontology, OMobile, in Figure 4.16 is used. The

OMobile ontology has been developed in particular to show how ontology combinations

can allow for the dynamic inclusion of concepts that are platform-specific while gather-

ing requirements interactively. It contains knowledge of platform-dependent concepts,

such as GetGPSCoordinates and GetMobileWallet, which are specific to mobile (and sim-

ilar) devices. When the OMobile ontology is combined during interactive RE, it allows for

the dynamic selection of these platform-dependent requirements.

After a leaf node has been reached, then a search is carried out in KRE for ontologies

matching the node with the wildcard character (eg. *locate*). If a corresponding match

for the filename is found, then the first matched file is selected for trying the combina-

tion (this is the default Ontology Combination approach). If no file has been found, then

a second attempt is made with the mobile ontology to find a correspondence between

the leaf node and any concepts inside the mobile ontology. This two-step search pro-

cess ensures that the mobile ontology is tried at least once for combination. With OSPL,

the leaf node of ChooseDeliveryOption is matched with DeliveryInfo in OMobile using an

IS-A relationship. An excerpt of the combined ontology is shown in Figure 4.17.

Figure 4.18 displays the output in the OC Viewer after the OSPL and OMobile have been

successfully combined. When the "Choose Delivery Option" (ChooseDeliveryOption)

leaf node is encountered, the OC Viewer displays the message in Blue. The successful

combination of OSPL and OMobile is logged in Magenta and gives the name of the leaf

node in OSPL - "Choose Delivery Option" (ChooseDeliveryOption), the name of the node

that was matched in OMobile - "Delivery Information" (DeliveryInfo), the type of relation-

ship found - "ISA", Confidence Measure of 0.0 and the name (along with the path) of

the ontology file - "./KnowledgeBase/OntologyMobile/PlatformMobile.owl".

60

4.4 Experiments

Pl
at
fo
rm

M
ob
ile

Ad
dP
ro
du
ct

Ad
dM

ob
ile
Pa
ym

en
tO
pt
io
n

G
et
Fr
on
tC
ov
er
Im
ag
e

D
el
iv
er
yI
nf
o

G
et
Q
RC

od
e

G
et
Ca

m
er
aD

ev
ic
eI
D

G
et
M
ob
ile
W
al
le
t

G
et
Sc
ee
nS
iz
e

G
et
G
PS
Co

or
di
na
te
s

(f
or

pr
es
en
tl
oc
at
io
n)

G
et
G
PS
D
ev
ic
eI
D

re
ly
O
n

re
ly
O
n

re
ly
O
n

as
so
ci
at
eW

ith

re
ly
O
n

re
ly
O
n re
ly
O
n

re
ly
O
n

re
ly
O
n

re
ly
O
n

de
co
m
po
se
In
to

de
co
m
po
se
In
to

de
co
m
po
se
In
to

as
so
ci
at
eW

ith

de
co
m
po
se
In
to

de
co
m
po
se
In
to

de
co
m
po
se
In
to

de
co
m
po
se
In
to

de
co
m
po
se
In
to

de
co
m
po
se
In
to

G
et
Cr
ed
itC

ar
dI
nf
o

co
nt
ra
di
ct
W
ith

Figure 4.16: PlatformMobile ontology, OMobile in KRE

61

4.4 Experiments

Figure 4.17: Excerpt of Combined Ontology - OSPL and OMobile

Figure 4.18: OC Viewer output after OSPL and OMobile combination

62

4.5 Case Study

After the ontologies are combined if the same requirement exists in two ontologies,

they are ‘merged’ together. Only one copy of a requirement is inside the combined

ontology - the ‘oldest’ one. The ‘incoming’ requirement is ‘merged’ with the old one

- the various properties (relyOn, decomposeInto, etc) are updated with the IRIs of the

’incoming’ requirement. The ‘neighboring’ requirements in the incoming ontology will

automatically be linked to the ‘old’ requirement in the combined ontology. The require-

ment will then be evaluated just like any other regular requirement.

4.5 Case Study

This section provides a case study of an online book shopping software system. The

book shopping system is customized through an interactive RE session. Ontology com-

binations occur during the interactive session, which are shown in the OC Viewer. Fi-

nally, an OWL-S file is generated as the output of the customization.

To customize the SOA based online book shopping system, RE is performed using the

BookStore ontology, OSPL [75]. The user needs the software system to retrieve informa-

tion about books [75] and to manage shopping carts as well. So the software system

should be able to retrieve details of books and provide shopping functionality such as

payment and delivery information. To accomplish this, the interactive RE system is

used to perform the customization. Listings 4.1 to 4.11 show the dialogue utterances

between the user (U) and the system (M) during the interactive session.

In Listing 4.1, the user is informed that the essential requirement "Manage a shop-

ping cart" has been selected. Similarly, the system informs the user that another essen-

tial requirement "Locate a book" has been picked. Following these selections, groups of

functional requirements, which are part of a particular requirement, are pre-evaluated.

Then, the system prompts the user for choosing various requirements. While selecting

requirements, if a leaf node is encountered, then the system automatically combines an

ontology from the RE Knowledge Base, KRE , using the Combine algorithm. This is done

for the following leaf nodes: "Search relevant books" in Listing 4.2, "Finish the Order"

63

4.5 Case Study

in Listing 4.3, "Choose Delivery Option" in Listing 4.6 and "Choose Payment Option" in

Listing 4.7. This is done in a manner that is transparent to the user. After ontology com-

binations, the new requirements are loaded into the session automatically. The user

is offered to choose the new requirement just like any other regular requirement - the

user does not know the difference between a requirement from the original ontology

(OSPL) and a requirement obtained from an ontology in KRE (Oi, O j, Ok, OMobile) which

has been combined with the original ontology. The OC Viewer displays the information

about ontology combinations in the background during the interactive session. After

completion, the user is given the choice of changing his decisions, and if no further

changes are needed, then the RE session is finished.

64

4.5 Case Study

1 M: Do you like to customize online
book shopping service? [YES]

2 U: YES
3 M: The functional requirement "

Manage a shopping cart" is
essential to the system. It will
be picked. [OK]

4 U: OK
5 M: The functional requirement "

Manage a shopping cart" has
been picked. [OK]

6 U: OK
7 M: The functional requirement "

Locate a book" is essential to
the system. It will be picked. [
OK]

8 U: OK
9 M: The functional requirement "

Locate a book" is going to be
picked. [OK]

10 U: OK
11 M: A group of functional

requirements, which compose
this requirement, are going to
be pre−evaluated. [OK]

12 U: OK
13 M: The requirement "Get detailed

info of a book" need to be
evaluated. Would you like to
choose the functional
requirement "Get detailed info
of a book"? [YES, NO]

14 U: YES
15 M: Are you sure you want to pick this

requirement "Get detailed info
of a book"? [YES]

16 U: YES
17 M: The group of functional

requirements, which compose
the requirement "Locate a book
", have been pre−evaluated. [
OK]

18 U: OK
19 M: The functional requirement "

Locate a book" has been picked.
[OK]

20 U: OK
21 M: The functional requirement "Get

reference to a book" has been
picked. [OK]

22 U: OK
23 M: The functional requirement "Pick a

book from a book list" has been
picked. [OK]

24 U: OK
25 M: The functional requirement "Get a

list of relevant books" is going
to be picked. [OK]

26 U: OK

Listing 4.1: Dialogue Utterances
(Part 1)

27 M: A group of functional
requirements, which compose
this requirement, are going to
be pre−evaluated. [OK]

28 U: OK
29 M: The requirement "Sort books in a

list" need to be evaluated.
Would you like to choose the
functional requirement "Sort
books in a list"? [YES, NO]

30 U: YES
31 M: Are you sure you want to pick this

requirement "Sort books in a list
"? [YES]

32 U: YES
33 M: The group of functional

requirements, which compose
the requirement "Get a list of
relevant books", have been pre
−evaluated. [OK]

34 U: OK
35 M: The functional requirement "Get a

list of relevant books" has been
picked. [OK]

36 U: OK
37 M: The functional requirement "

Search relevant books" has
been picked. [OK]

38 U: OK
39 M: The functional requirement "Sort

books in a list" has been picked.
[OK]

40 U: OK
41 M: The functional requirement "Get

detailed info of a book" is going
to be picked. [OK]

42 U: OK
43 M: A group of functional

requirements, which compose
this requirement, are going to
be pre−evaluated. [OK]

44 U: OK
45 M: The requirement "Get publication

info" need to be evaluated.
Would you like to choose the
functional requirement "Get
publication info"? [YES, NO]

46 U: YES
47 M: Are you sure you want to pick this

requirement "Get publication
info"? [YES]

48 U: YES
49 M: The requirement "Get contents"

need to be evaluated. Would
you like to choose the functional
requirement "Get contents"? [
YES, NO]

50 U: YES

Listing 4.2: Dialogue Utterances
(Part 2)

65

4.5 Case Study

51 M: Are you sure you want to pick this
requirement "Get contents"? [
YES]

52 U: YES
53 M: The group of functional

requirements, which compose
the requirement "Get detailed
info of a book", have been pre−
evaluated. [OK]

54 U: OK
55 M: The functional requirement "Get

detailed info of a book" has
been picked. [OK]

56 U: OK
57 M: The functional requirement "Get

publication info" has been
picked. [OK]

58 U: OK
59 M: The functional requirement "Get

contents" has been picked. [OK]
60 U: OK
61 M: The functional requirement "Get

reference to an item in the
shopping cart" has been picked.
[OK]

62 U: OK
63 M: The functional requirement "

Remove a book from cart" has
been picked. [OK]

64 U: OK
65 M: The functional requirement "Add a

book to the shopping cart" has
been picked. [OK]

66 U: OK
67 M: The functional requirement "Pick

an item in shopping list" has
been picked. [OK]

68 U: OK
69 M: The functional requirement "Get a

shopping list" has been picked. [
OK]

70 U: OK
71 M: The functional requirement "Finish

the Order" has been picked. [
OK]

72 U: OK
73 M: The requirement "Search in book

keywords" need to be evaluated
. Would you like to choose the
functional requirement "Search
in book keywords"? [YES, NO]

74 U: YES
75 M: Are you sure you want to pick this

requirement "Search in book
keywords"? [YES]

76 U: YES

Listing 4.3: Dialogue Utterances
(Part 3)

77 M: The functional requirement "
Search in book keywords" is
going to be picked. [OK]

78 U: OK
79 M: A group of quality requirements,

which are related with this
requirement, are going to be pre
−evaluated. [OK]

80 U: OK
81 M: The requirement "Exact match"

need to be evaluated. Would
you like to choose the quality
requirement "Exact match"? [
YES, NO]

82 U: YES
83 M: If you choose to pick the quality

requirement "Exact match", 1
requirement, which hasn’t been
evaluated, is contradicted with
this requirement. It cannot be
picked. Are you sure you want to
pick this requirement "Exact
match"? [YES]

84 U: YES
85 M: The group of qulity requirements

which, are related with
requirement "Search in book
keywords", have been pre−
evaluated. [OK]

86 U: OK
87 M: The functional requirement "

Search in book keywords" has
been picked. [OK]

88 U: OK
89 M: The requirement "Search" need to

be evaluated. Would you like to
choose the functional
requirement "Search"? [YES, NO
]

90 U: YES
91 M: Are you sure you want to pick this

requirement "Search"? [YES]
92 U: YES
93 M: The functional requirement "

Search" is going to be picked. [
OK]

94 U: OK
95 M: A group of functional

requirements, which compose
this requirement, are going to
be pre−evaluated. [OK]

96 U: OK
97 M: The requirement "Advanced

search" need to be evaluated.
Would you like to choose the
functional requirement "
Advanced search"? [YES, NO]

98 U: YES

Listing 4.4: Dialogue Utterances
(Part 4)

66

4.5 Case Study

99 M: Are you sure you want to pick this
requirement "Advanced search
"? [YES]

100 U: YES
101 M: The group of functional

requirements, which compose
the requirement "Search", have
been pre−evaluated. [OK]

102 U: OK
103 M: The functional requirement "

Search" has been picked. [OK]
104 U: OK
105 M: The functional requirement "

Advanced search" has been
picked. [OK]

106 U: OK
107 M: The quality requirement "Exact

match" has been picked. [OK]
108 U: OK
109 M: The quality requirement "Broad

match" has been abandoned. [
OK]

110 U: OK
111 M: The requirement "Get the Order

Summary" need to be evaluated
. Would you like to choose the
functional requirement "Get the
Order Summary"? [YES, NO]

112 U: YES
113 M: If you choose to pick the

functional requirement "Get the
Order Summary", 4
requirements, which haven’t
been evaluated, are prerequisite
of this requirement. They will
be picked. Are you sure you
want to pick this requirement "
Get the Order Summary"? [YES]

114 U: YES
115 M: The functional requirement "Get

the Order Summary" has been
picked. [OK]

116 U: OK
117 M: The functional requirement "

Calculate Total Price" is going to
be picked. [OK]

118 U: OK
119 M: A group of functional

requirements, which compose
this requirement, are going to
be pre−evaluated. [OK]

120 U: OK
121 M: The requirement "Calculate

Service Price" need to be
evaluated. Would you like to
choose the functional
requirement "Calculate Service
Price"? [YES, NO]

122 U: YES

Listing 4.5: Dialogue Utterances
(Part 5)

123 M: Are you sure you want to pick this
requirement "Calculate Service
Price"? [YES]

124 U: YES
125 M: The group of functional

requirements, which compose
the requirement "Calculate Total
Price", have been pre−
evaluated. [OK]

126 U: OK
127 M: The functional requirement "

Calculate Total Price" has been
picked. [OK]

128 U: OK
129 M: The functional requirement "

Calculate Book Price" has been
picked. [OK]

130 U: OK
131 M: The functional requirement "

Calculate Service Price" has
been picked. [OK]

132 U: OK
133 M: The functional requirement "Set

Delivery Information" is going to
be picked. [OK]

134 U: OK
135 M: A group of functional

requirements, which compose
this requirement, are going to
be pre−evaluated. [OK]

136 U: OK
137 M: The requirement "Enter Delivery

Information" need to be
evaluated. Would you like to
choose the functional
requirement "Enter Delivery
Information"? [YES, NO]

138 U: YES
139 M: Are you sure you want to pick this

requirement "Enter Delivery
Information"? [YES]

140 U: YES
141 M: The requirement "Choose Delivery

Option" need to be evaluated.
Would you like to choose the
functional requirement "Choose
Delivery Option"? [YES, NO]

142 U: YES
143 M: Are you sure you want to pick this

requirement "Choose Delivery
Option"? [YES]

144 U: YES

Listing 4.6: Dialogue Utterances
(Part 6)

67

4.5 Case Study

145 M: The group of functional
requirements, which compose
the requirement "Set Delivery
Information", have been pre−
evaluated. [OK]

146 U: OK
147 M: The functional requirement "Set

Delivery Information" has been
picked. [OK]

148 U: OK
149 M: The functional requirement "

Choose Delivery Option" has
been picked. [OK]

150 U: OK
151 M: The functional requirement "Enter

Delivery Information" has been
picked. [OK]

152 U: OK
153 M: The functional requirement "Set

Payment Information" is going
to be picked. [OK]

154 U: OK
155 M: A group of functional

requirements, which compose
this requirement, are going to
be pre−evaluated. [OK]

156 U: OK
157 M: The requirement "Choose

Payment Option" need to be
evaluated. Would you like to
choose the functional
requirement "Choose Payment
Option"? [YES, NO]

158 U: YES
159 M: Are you sure you want to pick this

requirement "Choose Payment
Option"? [YES]

160 U: YES
161 M: The requirement "Enter Payment

Information" need to be
evaluated. Would you like to
choose the functional
requirement "Enter Payment
Information"? [YES, NO]

162 U: YES
163 M: Are you sure you want to pick this

requirement "Enter Payment
Information"? [YES]

164 U: YES
165 M: The group of functional

requirements, which compose
the requirement "Set Payment
Information", have been pre−
evaluated. [OK]

166 U: OK
167 M: The functional requirement "Set

Payment Information" has been
picked. [OK]

168 U: OK

Listing 4.7: Dialogue Utterances
(Part 7)

169 M: The functional requirement "
Choose Payment Option" has
been picked. [OK]

170 U: OK
171 M: The functional requirement "Enter

Payment Information" is going
to be picked. [OK]

172 U: OK
173 M: A group of quality requirements,

which are related with this
requirement, are going to be pre
−evaluated. [OK]

174 U: OK
175 M: The requirement "Average

security for payment input"
need to be evaluated. Would
you like to choose the quality
requirement "Average security
for payment input"? [YES, NO]

176 U: NO
177 M: Are you sure you want to abandon

this requirement "Average
security for payment input"? [
YES]

178 U: YES
179 M: The requirement "High security for

payment input" need to be
evaluated. Would you like to
choose the quality requirement
"High security for payment input
"? [YES, NO]

180 U: YES
181 M: Are you sure you want to pick this

requirement "High security for
payment input"? [YES]

182 U: YES
183 M: The group of qulity requirements

which, are related with
requirement "Enter Payment
Information", have been pre−
evaluated. [OK]

184 U: OK
185 M: The functional requirement "Enter

Payment Information" has been
picked. [OK]

186 U: OK
187 M: The quality requirement "Average

security for payment input" has
been abandoned. [OK]

188 U: OK
189 M: The quality requirement "High

security for payment input" has
been picked. [OK]

190 U: OK

Listing 4.8: Dialogue Utterances
(Part 8)

68

4.5 Case Study

191 M: The requirement "Platform Mobile"
need to be evaluated. Would
you like to choose the functional
requirement "Platform Mobile"?
[YES, NO]

192 U: YES
193 M: If you choose to pick the

functional requirement "Platform
Mobile", 9 requirements, which
haven’t been evaluated, are
prerequisite of this requirement.
They will be picked. Are you
sure you want to pick this
requirement "Platform Mobile"? [
YES]

194 U: YES
195 M: The functional requirement "

Platform Mobile" has been
picked. [OK]

196 U: OK
197 M: The functional requirement "Add a

mobile payment option" is
going to be picked. [OK]

198 U: OK
199 M: A group of quality requirements,

which are related with this
requirement, are going to be pre
−evaluated. [OK]

200 U: OK
201 M: The requirement "Get Credit Card

Information" need to be
evaluated. Would you like to
choose the quality requirement
"Get Credit Card Information"? [
YES, NO]

202 U: YES
203 M: If you choose to pick the quality

requirement "Get Credit Card
Information", 1 requirement,
which hasn’t been evaluated, is
contradicted with this
requirement. It cannot be picked
. 1 requirement, which hasn’t
been evaluated, is prerequisite
of this requirement. It will be
picked. Are you sure you want to
pick this requirement "Get
Credit Card Information"? [YES]

204 U: YES
205 M: The group of qulity requirements

which, are related with
requirement "Add a mobile
payment option", have been pre
−evaluated. [OK]

206 U: OK

Listing 4.9: Dialogue Utterances
(Part 9)

207 M: The functional requirement "Add a
mobile payment option" has
been picked. [OK]

208 U: OK
209 M: The functional requirement "

Delivery Information" has been
picked. [OK]

210 U: OK
211 M: The functional requirement "Add

product" has been picked. [OK]
212 U: OK
213 M: The functional requirement "Get

Front Cover Image" has been
picked. [OK]

214 U: OK
215 M: The functional requirement "Get

Screen Size" has been picked. [
OK]

216 U: OK
217 M: The functional requirement "Get

GPS Coordinates" has been
picked. [OK]

218 U: OK
219 M: The functional requirement "Get

QR Code" has been picked. [OK]
220 U: OK
221 M: The functional requirement "Get

Camera Device ID" has been
picked. [OK]

222 U: OK
223 M: The functional requirement "Get

GPS Device ID" has been picked.
[OK]

224 U: OK
225 M: The quality requirement "Get

Credit Card Information" has
been picked. [OK]

226 U: OK
227 M: The quality requirement "Get

Mobile Wallet" has been
abandoned. [OK]

228 U: OK
229 M: The requirement "Manage

Payment Information" need to
be evaluated. Would you like to
choose the functional
requirement "Manage Payment
Information"? [YES, NO]

230 U: YES

Listing 4.10: Dialogue Utterances
(Part 10)

69

4.5 Case Study

231 M: If you choose to pick the
functional requirement "Manage
Payment Information", 4
requirements, which haven’t
been evaluated, are prerequisite
of this requirement. They will
be picked. Are you sure you
want to pick this requirement "
Manage Payment Information"?
[YES]

232 U: YES
233 M: The functional requirement "

Manage Payment Information"
has been picked. [OK]

234 U: OK
235 M: The functional requirement "Get

Reference to a Payment Option"
has been picked. [OK]

236 U: OK
237 M: The functional requirement "

Remove a Payment Option" has
been picked. [OK]

238 U: OK
239 M: The functional requirement "Add a

Payment Option" has been
picked. [OK]

240 U: OK
241 M: The functional requirement "Pick a

payment option" has been
picked. [OK]

242 U: OK
243 M: The functional requirement "Get a

list of payment options" has
been picked. [OK]

244 U: OK
245 M: All requirements have been

evaluated. Would you like to
make any change to your
selections (e.g. add
requirements, remove
requirements)? [ADD, REMOVE,
NO]

246 U: NO
247 M: Requirement elicitation has been

completed. Thank you very
much for using. [OK]

248 U: OK

Listing 4.11: Dialogue Utterances
(Part 11)

70

4.5 Case Study

The final list of picked requirements is displayed in Listing 4.12. Listing 4.13 shows

the final list of abandoned requirements.

1 Manage a shopping cart
2 Locate a book
3 Get reference to a book
4 Pick a book from a book list
5 Get a list of relevant books
6 Search relevant books
7 Sort books in a list
8 Get detailed info of a book
9 Get publication info

10 Get contents
11 Get reference to an item in the

shopping cart
12 Remove a book from cart
13 Add a book to the shopping cart
14 Pick an item in shopping list
15 Get a shopping list
16 Finish the Order
17 Search in book keywords
18 Search
19 Advanced search
20 Exact match
21 Get the Order Summary
22 Calculate Total Price
23 Calculate Book Price
24 Calculate Service Price
25 Set Delivery Information
26 Choose Delivery Option
27 Enter Delivery Information
28 Set Payment Information
29 Choose Payment Option
30 Enter Payment Information
31 High security for payment input
32 Platform Mobile
33 Add a mobile payment option
34 Delivery Information
35 Add product
36 Get Front Cover Image
37 Get Screen Size
38 Get GPS Coordinates
39 Get QR Code
40 Get Camera Device ID
41 Get GPS Device ID
42 Get Credit Card Information
43 Manage Payment Information
44 Get Reference to a Payment Option
45 Remove a Payment Option
46 Add a Payment Option
47 Pick a payment option
48 Get a list of payment options

Listing 4.12: Picked Requirements

1 Broad match
2 Average security for payment input
3 Get Mobile Wallet

Listing 4.13: Abandoned Requirements

71

4.5 Case Study

Listing 4.14 shows the output of the OC Viewer. It lists all the ontology combinations

that occurred during the session. Line 2 displays the output of the combination with

Search ontology, Oi. The combination with OrderSummary ontology, O j, is displayed

in Line 12. Line 20 shows the output of the combination with PlatformMobile ontology,

OMobile. The output of the combination with ManagePaymentInfo ontology, Ok, is shown

in Line 24.

1 "Search relevant books" is a leaf node
2 combine successful! (Search relevant books, Search, ISA, 0.0, ./KnowledgeBase/

Ontology/Search.owl)
3 "Get publication info" is a leaf node
4 combine unsuccessful! No correspondence found!
5 "Get contents" is a leaf node
6 combine unsuccessful! No correspondence found!
7 "Remove a book from cart" is a leaf node
8 combine unsuccessful! No correspondence found!
9 "Pick an item in shopping list" is a leaf node

10 combine unsuccessful! No correspondence found!
11 "Finish the Order" is a leaf node
12 combine successful! (Finish the Order, Get the Order Summary, TYPEOF, 0.0, ./

KnowledgeBase/Ontology/OrderSummary.owl)
13 "Advanced search" is a leaf node
14 combine unsuccessful! No correspondence found!
15 "Calculate Book Price" is a leaf node
16 combine unsuccessful! No correspondence found!
17 "Calculate Service Price" is a leaf node
18 combine unsuccessful! No correspondence found!
19 "Choose Delivery Option" is a leaf node
20 combine successful! with mobile platform ontology (Choose Delivery Option,

Delivery Information, ISA, 0.0, KnowledgeBase/OntologyMobile/
PlatformMobile.owl)

21 "Enter Delivery Information" is a leaf node
22 combine unsuccessful! No correspondence found!
23 "Choose Payment Option" is a leaf node
24 combine successful! (Choose Payment Option, Manage Payment Information,

PARTOF, −1.0, ./KnowledgeBase/Ontology/ManagePaymentInfo.owl)
25 "Get Screen Size" is a leaf node
26 combine unsuccessful! No correspondence found!
27 "Get Camera Device ID" is a leaf node
28 combine unsuccessful! No correspondence found!
29 "Get GPS Device ID" is a leaf node
30 combine unsuccessful! No correspondence found!
31 "Remove a Payment Option" is a leaf node
32 combine unsuccessful! No correspondence found!
33 "Add a Payment Option" is a leaf node
34 combine unsuccessful! No correspondence found!
35 "Get a list of payment options" is a leaf node
36 combine unsuccessful! No correspondence found!

Listing 4.14: Entire OC Viewer output

72

4.5 Case Study

The interactive RE session output is generated using the requirement evaluation

process [75] mentioned in Section 2.4. Through the use of ontology combinations,

platform-dependent requirements are included and evaluated. The requirement eval-

uation algorithm merges the various requirements such as AddMobilePaymentOption,

DeliveryInfo, GetFrontCoverImage into the ManageShoppingCart requirement, taking

into account the inputs and outputs of all these requirements. The output OWL-S doc-

ument is presented in Listing 4.15. The platform-dependent details are highlighted

in gray. The documents, BookShoppingProcess.owl and BookShoppingQuality.owl, are

imported by the profile document and define the instances of inputs, outputs and qual-

ities [75]. By using this OWL-S description, services can be discovered by semantic

capability matching. Then the services can be composed and executed based on the

corresponding service composition information offered by the service providers [75].

1 <?xml version="1.0" encoding="UTF−8"?>
2 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22−rdf−syntax−ns#"
3 xmlns:profile="http://www.daml.org/services/owl−s/1.2/Profile.owl

#"
4 xmlns:owl="http://www.w3.org/2002/07/owl#">
5
6 <owl:Ontology rdf:about="">
7 <owl:imports rdf:resource="http://www.daml.org/services/owl−s

/1.2/Profile.owl"/>
8 <owl:imports rdf:resource="http://www.w3.org/1999/02/22−rdf−

syntax−ns"/>
9 <owl:imports rdf:resource="ttp://www.w3.org/2002/07/owl"/>

10 <owl:imports rdf:resource="http://www.semanticweb.org/ontologies
/InteractiveRE/BookShoppingProcess.owl"/>

11 <owl:imports rdf:resource="http://www.semanticweb.org/ontologies
/InteractiveRE/BookShoppingQuality.owl"/>

12 </owl:Ontology>
13
14 <profile:Profile rdf:ID="Manage_a_shopping_cart">
15 <profile:textDescription>Manage a shopping cart</profile:textDescription>
16
17 <profile:has_process ref:resource="http://www.semanticweb.org/ontologies/

InteractiveRE/BookShoppingProcess.owl#ManageAShoppingCartProcess"/>
18
19 <profile:hasInput rdf:resource="http://www.semanticweb.org/ontologies/

InteractiveRE/BookShoppingProcess.owl#ListOfServices"/>
20 <profile:hasInput rdf:resource="http://www.semanticweb.org/ontologies/

InteractiveRE/BookShoppingProcess.owl#EnterNameInfo"/>
21 <profile:hasInput rdf:resource="http://www.semanticweb.org/ontologies/

InteractiveRE/BookShoppingProcess.owl#ReferenceToBookToRemove"/>
22 <profile:hasInput rdf:resource="http://www.semanticweb.org/ontologies/

InteractiveRE/BookShoppingProcess.owl#ListOfBooks"/>
23 <profile:hasInput rdf:resource="http://www.semanticweb.org/ontologies/

InteractiveRE/BookShoppingProcess.owl#ShoppingCartID"/>
24 <profile:hasInput rdf:resource="http://www.semanticweb.org/ontologies/

73

4.5 Case Study

InteractiveRE/BookShoppingProcess.owl#EnterAddressInfo"/>

25 <profile:hasInput rdf:resource="http://www.semanticweb.org/ontologies/
InteractiveRE/BookShoppingProcess.owl#MobileDeviceID"/>

26 <profile:hasInput rdf:resource="http://www.semanticweb.org/ontologies/
InteractiveRE/BookShoppingProcess.owl#ReferenceToShoppingCart"/>

27
28 <profile:hasOutput rdf:resource="http://www.semanticweb.org/ontologies/

InteractiveRE/BookShoppingProcess.owl#OrderServiceTotal"/>
29 <profile:hasOutput rdf:resource="http://www.semanticweb.org/ontologies/

InteractiveRE/BookShoppingProcess.owl#OrderBookTotal"/>
30 <profile:hasOutput rdf:resource="http://www.semanticweb.org/ontologies/

InteractiveRE/BookShoppingProcess.owl#PathToFrontCoverImage"/>
31 <profile:hasOutput rdf:resource="http://www.semanticweb.org/ontologies/

InteractiveRE/BookShoppingProcess.owl#PaymentOption"/>
32 <profile:hasOutput rdf:resource="http://www.semanticweb.org/ontologies/

InteractiveRE/BookShoppingProcess.owl#ListOfServicePrice"/>
33 <profile:hasOutput rdf:resource="http://www.semanticweb.org/ontologies/

InteractiveRE/BookShoppingProcess.owl#ReferenceToPaymentInfo"/>
34 <profile:hasOutput rdf:resource="http://www.semanticweb.org/ontologies/

InteractiveRE/BookShoppingProcess.owl#ReferenceToSecurityInfo"/>

35 <profile:hasOutput rdf:resource="http://www.semanticweb.org/ontologies/
InteractiveRE/BookShoppingProcess.owl#QRCode"/>

36 <profile:hasOutput rdf:resource="http://www.semanticweb.org/ontologies/
InteractiveRE/BookShoppingProcess.owl#ReferenceToABookInShoppingCart
"/>

37 <profile:hasOutput rdf:resource="http://www.semanticweb.org/ontologies/
InteractiveRE/BookShoppingProcess.owl#ListOfItemsInShoppingCart"/>

38 <profile:hasOutput rdf:resource="http://www.semanticweb.org/ontologies/
InteractiveRE/BookShoppingProcess.owl#BookIndexInShoppingCart"/>

39 <profile:hasOutput rdf:resource="http://www.semanticweb.org/ontologies/
InteractiveRE/BookShoppingProcess.owl#ShoppingCostTotal"/>

40 <profile:hasOutput rdf:resource="http://www.semanticweb.org/ontologies/
InteractiveRE/BookShoppingProcess.owl#OrderTotal"/>

41 <profile:hasOutput rdf:resource="http://www.semanticweb.org/ontologies/
InteractiveRE/BookShoppingProcess.owl#ListOfPaymentOptions"/>

42 <profile:hasOutput rdf:resource="http://www.semanticweb.org/ontologies/
InteractiveRE/BookShoppingProcess.owl#PaymentOptionDetails"/>

43 <profile:hasOutput rdf:resource="http://www.semanticweb.org/ontologies/
InteractiveRE/BookShoppingProcess.owl#DeliveryInfo"/>

44 <profile:hasOutput rdf:resource="http://www.semanticweb.org/ontologies/
InteractiveRE/BookShoppingProcess.owl#MobileDeviceProfile"/>

45 <profile:hasOutput rdf:resource="http://www.semanticweb.org/ontologies/
InteractiveRE/BookShoppingProcess.owl#GPSCoordinates"/>

46 <profile:hasOutput rdf:resource="http://www.semanticweb.org/ontologies/
InteractiveRE/BookShoppingProcess.owl#AddressDetails"/>

47 <profile:hasOutput rdf:resource="http://www.semanticweb.org/ontologies/
InteractiveRE/BookShoppingProcess.owl#ReferenceToPaymentOption"/>

48 <profile:hasOutput rdf:resource="http://www.semanticweb.org/ontologies/
InteractiveRE/BookShoppingProcess.owl#GPSDeviceID"/>

49 <profile:hasOutput rdf:resource="http://www.semanticweb.org/ontologies/
InteractiveRE/BookShoppingProcess.owl#MobileDevicePaymentOptions"/>

50 <profile:hasOutput rdf:resource="http://www.semanticweb.org/ontologies/
InteractiveRE/BookShoppingProcess.owl#DeliveryOption"/>

51 <profile:hasOutput rdf:resource="http://www.semanticweb.org/ontologies/
InteractiveRE/BookShoppingProcess.owl#ProductID"/>

74

4.5 Case Study

52 <profile:hasOutput rdf:resource="http://www.semanticweb.org/ontologies/
InteractiveRE/BookShoppingProcess.owl#ListOfBookPrices"/>

53 <profile:hasOutput rdf:resource="http://www.semanticweb.org/ontologies/
InteractiveRE/BookShoppingProcess.owl#ScreenSize"/>

54 <profile:hasOutput rdf:resource="http://www.semanticweb.org/ontologies/
InteractiveRE/BookShoppingProcess.owl#CameraID"/>

55
56 <profile:serviceParameter rdf:resource="http://www.semanticweb.org/ontologies/

InteractiveRE/BookShoppingQuality.owl#PaymentInputSecurityAverage"/>
57 <profile:serviceParameter rdf:resource="http://www.semanticweb.org/ontologies/

InteractiveRE/BookShoppingQuality.owl#GetCreditCardInfo"/>
58 </profile:Profile>
59
60 <profile:Profile rdf:ID="Locate_a_book">
61 <profile:textDescription>Locate a book</profile:textDescription>
62
63 <profile:has_process ref:resource="http://www.semanticweb.org/ontologies/

InteractiveRE/BookShoppingProcess.owl#LocateABookProcess"/>
64
65 <profile:hasInput rdf:resource="http://www.semanticweb.org/ontologies/

InteractiveRE/BookShoppingProcess.owl#SortingOrder"/>
66 <profile:hasInput rdf:resource="http://www.semanticweb.org/ontologies/

InteractiveRE/BookShoppingProcess.owl#PhrasesFromUserInput"/>
67 <profile:hasInput rdf:resource="http://www.semanticweb.org/ontologies/

InteractiveRE/BookShoppingProcess.owl#BookIndexInTheList"/>
68 <profile:hasInput rdf:resource="http://www.semanticweb.org/ontologies/

InteractiveRE/BookShoppingProcess.owl#SearchFields"/>
69 <profile:hasInput rdf:resource="http://www.semanticweb.org/ontologies/

InteractiveRE/BookShoppingProcess.owl#PhrasesForSearchFields"/>
70
71 <profile:hasOutput rdf:resource="http://www.semanticweb.org/ontologies/

InteractiveRE/BookShoppingProcess.owl#ListOfRelevantBooks"/>
72 <profile:hasOutput rdf:resource="http://www.semanticweb.org/ontologies/

InteractiveRE/BookShoppingProcess.owl#BookPublicationInfo"/>
73 <profile:hasOutput rdf:resource="http://www.semanticweb.org/ontologies/

InteractiveRE/BookShoppingProcess.owl#BookContents"/>
74
75 <profile:serviceParameter rdf:resource="http://www.semanticweb.org/ontologies/

InteractiveRE/BookShoppingQuality.owl#ExactMatch"/>
76 </profile:Profile>
77
78 </rdf:RDF>

Listing 4.15: OWL-S output file with platform-dependent details highlighted in gray

75

4.6 Contributions

4.6 Contributions

4.6.1 Overview

This section covers the contributions of the study undertaken for this thesis.

4.6.2 Enhanced Interactive Requirements Elicitation

The Ontology Combination methodology [71] [72], as shown in this thesis, provides

a seamless interactive experience for acquiring requirements from multiple ontologies.

Ontology Combinations are invisible to the user as they happen in the background and

without the user’s knowledge. The dynamic nature of Ontology Combination, in the

context of interactive RE, is shown in an abstract manner by Figure 4.19.

Figure 4.19: Ontology Combination - Abstract view

Ontologies that are being combined are assumed to be distinct, i.e., a concept to

be matched only exists in the primary SPL ontology, OSPL as an ‘imprecise’ concept,

and ontologies, Oi, O j, Ok, and OMobile, taken from the RE Knowledge base, KRE , serve to

refine that concept. This also illustrates the advantages of Ontology Combination over

ontology merging. Instead of creating a merged ontology, which would require more

76

4.6 Contributions

resources in terms of time andmemory, combining ontologies is less resource-intensive.

Iterating over the Ontology Combination process, requirements can be fine-tuned to the

smallest level of detail that the ontologies provide in KRE .

Experiments were conducted based on the number of ontologies being combined to-

gether during interactive requirements elicitation sessions. The desired outcome was

logical combinations between ontologies being combined together in a responsive man-

ner, transparent to the user. The requirements specification generated is ‘richer’ after

the combination process as compared to the specifications generated before the com-

bination occurred. In Section 4.4.2, there were sixteen requirements in the primary SPL

ontology OSPL - by combining OSPL with Oi, O j, Ok and OMobile, the number of requirements

were tripled to forty-eight requirements. This is a significant increase over the initial

ontology in the potential of acquiring requirements.

4.6.3 Extending Customization to Mobile Applications

The previous interactive RE system for SOA-based SPL produced specifications for

traditional (desktop-based) applications [75]. This thesis has extended that approach

to produce specifications for generating SOA applications for mobile operating systems.

A use-case was given in Section 4.4.3 Scenario III - Ontology of Mobile SOA Functions.

Contradictions due to platform-dependent features were resolved through the Ontol-

ogy Combination process. As the ecosystem of mobile software and hardware changes

rapidly, this will enable applications to be built for specific versions of particular mobile

operating systems in a rapid manner.

77

Chapter 5

Conclusion and Future

Directions

5.1 Overview

This chapter concludes the thesis and presents some potential directions of future

research.

5.1.1 Conclusion

The methodology of Ontology Combination has been proposed in this thesis. The

Combine algorithm brings ontologies together at run-time, dynamically enhancing the

interactive RE process. The Scenarios presented in this thesis illustrate the effective-

ness of the Ontology Combination methodology. Using this approach, interactive RE can

also be used seamlessly for the purpose of customizing software for specific platforms,

thereby helping to automate SPLs.

78

5.1 Overview

5.1.2 Future Directions

Run-time application of Ontology Combinations provides multiple future directions of

further research. The Ontology Combination methodology presented in this work uses

ontologies that are derived from the ontology requirement meta-model and performs

combination on these ontologies. A future direction of research can look into combining

ontologies that follow different designs, where the primary focus would be on trying

to accommodate the overlap and contradictions that the set of axioms from different

ontologies would entail.

Also, the Ontology Combination approach can be expanded by realizing a complete

SPL framework for SOA based applications. This framework can potentially create ap-

plications targeting multiple platforms, with features developed and maintained to suit

different hardware specifications. A comprehensive SPL framework can be extended

to both software and hardware feature resolution and creation of SOA software that

synthesizes the knowledge of both software and hardware features.

79

Bibliography

[1] (2016) Apache Ant. [Online]. Available: http://ant.apache.org/

[2] (2016) Apache Lucene. [Online]. Available: https://lucene.apache.org/

[3] (2016) Eclipse IDE. [Online]. Available: https://eclipse.org/

[4] (2016) Food ontology. [Online]. Available: http://www.w3.org/TR/2004/

REC-owl-guide-20040210/food.rdf

[5] (2016) IEEE Rightslink. [Online]. Available: http://www.ieee.org/publications_

standards/publications/rights/rights_link.html

[6] (2016) Java. [Online]. Available: https://www.java.com/

[7] (2016) Java WordNet Library (JWNL). [Online]. Available: https://sourceforge.net/

projects/jwordnet/

[8] (2016) The OWL API. [Online]. Available: http://owlapi.sourceforge.net/

[9] (2016) Pellet reasoner. [Online]. Available: http://pellet.owldl.com/

[10] (2016) Pizza ontology. [Online]. Available: http://protege.stanford.edu/ontologies/

pizza/pizza.owl

[11] (2016) Protege project. [Online]. Available: http://protege.stanford.edu

[12] (2016) SimMetrics. [Online]. Available: https://sourceforge.net/projects/

simmetrics/

80

http://ant.apache.org/
https://lucene.apache.org/
https://eclipse.org/
http://www.w3.org/TR/2004/REC-owl-guide-20040210/food.rdf
http://www.w3.org/TR/2004/REC-owl-guide-20040210/food.rdf
http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html
https://www.java.com/
https://sourceforge.net/projects/jwordnet/
https://sourceforge.net/projects/jwordnet/
http://owlapi.sourceforge.net/
http://pellet.owldl.com/
http://protege.stanford.edu/ontologies/pizza/pizza.owl
http://protege.stanford.edu/ontologies/pizza/pizza.owl
http://protege.stanford.edu
https://sourceforge.net/projects/simmetrics/
https://sourceforge.net/projects/simmetrics/

BIBLIOGRAPHY

[13] (2016) WordNet. [Online]. Available: https://wordnet.princeton.edu/

[14] Akahani J.-i., Hiramatsu K., and Kogure K., “Coordinating heterogeneous infor-

mation services based on approximate ontology translation,” in Proceedings of

AAMAS-2002 Workshop on Agentcities: Challenges in Open Agent Systems. Cite-

seer, 2002, pp. 10–14.

[15] Altintas N. I., Cetin S., and Dogru A. H., “Industrializing software development:

The “Factory Automation” way,” in Trends in Enterprise Application Architecture.

Springer, 2007, pp. 54–68.

[16] Amin M. B., Ahmad M., Khan W. A., and Lee S., “Biomedical ontology matching as

a service,” in Smart Homes and Health Telematics. Springer, 2015, pp. 195–203.

[17] Avdeenko T. and Pustovalova N., “The ontology-based approach to support the

completeness and consistency of the requirements specification,” SIBCON, 2015

IEEE International Siberian Conference on Control and Communications, p. to ap-

pear, 2015.

[18] Batini C., Lenzerini M., and Navathe S. B., “A comparative analysis of methodolo-

gies for database schema integration,” ACM computing surveys (CSUR), vol. 18,

no. 4, pp. 323–364, 1986.

[19] Cormen T. H., Introduction to algorithms. MIT press, 2009.

[20] Dobson G. and Sawyer P., “Revisiting ontology-based requirements engineering

in the age of the semantic web,” in Proceedings of the International Seminar on

Dependable Requirements Engineering of Computerised Systems at NPPs, 2006,

pp. 27–29.

[21] Dzung D. V. and Ohnishi A., “Ontology-based reasoning in requirements elicita-

tion,” in Software Engineering and Formal Methods, 2009 Seventh IEEE Interna-

tional Conference on. IEEE, 2009, pp. 263–272.

[22] Erl T., “Service-oriented architecture: Concepts, technology, and design,” 2005.

81

https://wordnet.princeton.edu/

BIBLIOGRAPHY

[23] Euzenat J. and Shvaiko P., Ontology Matching. Springer Science & Business Media,

2013.

[24] Farfeleder S., Moser T., Krall A., Stålhane T., Omoronyia I., and Zojer H., “Ontology-

driven guidance for requirements elicitation,” in The Semanic Web: Research and

Applications. Springer, 2011, pp. 212–226.

[25] Fernandez S., Marsa-Maestre I., Velasco J. R., and Alarcos B., “Ontology alignment

architecture for semantic sensor web integration,” Sensors, vol. 13, no. 9, pp.

12581–12604, 2013.

[26] Fudholi D. H., Rahayu W., and Pardede E., “Code (common ontology development):

A knowledge integration approach frommultiple ontologies,” in Advanced Informa-

tion Networking and Applications (AINA), 2014 IEEE 28th International Conference

on. IEEE, 2014, pp. 751–758.

[27] Gaševic D., Djuric D., and Devedžic V., Model driven engineering and ontology

development. Springer Science & Business Media, 2009.

[28] Goguen J. A. and Linde C., “Techniques for requirements elicitation.” RE, vol. 93,

pp. 152–164, 1993.

[29] Gomaa H. and Shin M. E., “Automated software product line engineering and prod-

uct derivation,” in System Sciences, 2007. HICSS 2007. 40th Annual Hawaii Inter-

national Conference on. IEEE, 2007, pp. 285a–285a.

[30] Gomez-Perez A., Fernández-López M., and Corcho O., Ontological Engineering:

with examples from the areas of Knowledge Management, e-Commerce and the

Semantic Web. Springer Science & Business Media, 2006.

[31] Granitzer M., Sabol V., Onn K. W., Lukose D., and Tochtermann K., “Ontology align-

ment - a survey with focus on visually supported semi-automatic techniques,” Fu-

ture Internet, vol. 2, no. 3, pp. 238–258, 2010.

82

BIBLIOGRAPHY

[32] Helferich A., Herzwurm G., Jesse S., and Mikusz M., “Software product lines,

service-oriented architecture and frameworks: worlds apart or ideal partners?”

in Trends in Enterprise Application Architecture. Springer, 2007, pp. 187–201.

[33] Hitzler P., Krötzsch M., Ehrig M., and Sure Y., “What is ontology merging?” in Amer-

ican Association for Artificial Intelligence, 2005.

[34] Hu J., Jia S., and Wu K., “Semantic-based requirements content management for

cloud software,”Mathematical Problems in Engineering, vol. 501, p. 474157, 2015.

[35] Kaiya H. and Saeki M., “Ontology based requirements analysis: lightweight se-

mantic processing approach,” in Quality Software, 2005.(QSIC 2005). Fifth Inter-

national Conference on. IEEE, 2005, pp. 223–230.

[36] Kang D. and Baik D.-K., “Bridging software product lines and service-oriented archi-

tectures for service identification using bpm and fm,” in Computer and Information

Science (ICIS), 2010 IEEE/ACIS 9th International Conference on. IEEE, 2010, pp.

755–759.

[37] Kang D., Song C.-y., and Baik D.-K., “A method of service identification for product

line,” in Convergence and Hybrid Information Technology, 2008. ICCIT’08. Third

International Conference on, vol. 2. IEEE, 2008, pp. 1040–1045.

[38] Keet C. M., “Aspects of ontology integration,” The PhD Proposal, School of Com-

puting, Napier University, Scotland, 2004.

[39] Kong H., Hwang M., and Kim P., “A new methodology for merging the heteroge-

neous domain ontologies based on the wordnet,” in Next Generation Web Services

Practices, 2005. NWeSP 2005. International Conference on. IEEE, 2005, pp. 6–pp.

[40] Kossmann M., Gillies A., Odeh M., and Watts S., “Ontology-driven requirements

engineering with reference to the aerospace industry,” in Applications of Digital

Information and Web Technologies, 2009. ICADIWT’09. Second International Con-

ference on the. IEEE, 2009, pp. 95–103.

83

BIBLIOGRAPHY

[41] Kumar S. K. and Harding J. A., “Description logic–based knowledge merging for

concrete-and fuzzy-domain ontologies,” Proceedings of the Institution of Mechani-

cal Engineers, Part B: Journal of Engineering Manufacture, p. 0954405414564404,

2015.

[42] Kwak J. and Yong H.-S., “Ontology matching based on hypernym, hyponym,

holonym, and meronym sets in word net,” International journal of Web & Semantic

Technology (I West), vol. 1, no. 2, 2010.

[43] Lee J., Muthig D., and Naab M., “An approach for developing service oriented prod-

uct lines,” in Software Product Line Conference, 2008. SPLC’08. 12th International.

IEEE, 2008, pp. 275–284.

[44] Li F.-L., Horkoff J., Borgida A., Guizzardi G., Liu L., and Mylopoulos J., “From stake-

holder requirements to formal specifications through refinement,” in Require-

ments Engineering: Foundation for Software Quality. Springer, 2015, pp. 164–

180.

[45] Lin C.-Y. I. and Ho C.-S., “A generic ontology-based approach for requirement analy-

sis and its application in network management software,” AI EDAM, vol. 13, no. 01,

pp. 37–61, 1999.

[46] Loucopoulos P. and Karakostas V., System requirements engineering. McGraw-Hill,

Inc., 1995.

[47] Macaulay L., “Requirements for requirements engineering techniques,” in Require-

ments Engineering, 1996., Proceedings of the Second International Conference on.

IEEE, 1996, pp. 157–164.

[48] Mahfoudh M., Thiry L., Forestier G., and Hassenforder M., “Algebraic graph trans-

formations for merging ontologies,” in Model and Data Engineering. Springer,

2014, pp. 154–168.

84

BIBLIOGRAPHY

[49] Medeiros F. M., de Almeida E. S., and de Lemos Meira S. R., “Towards an approach

for service-oriented product line architectures,” in Proceedings of the Workshop

on Service-oriented Architectures and Software Product Lines, 2009, pp. 1–7.

[50] Mena E., Kashyap V., Illarramendi A., and Sheth A. P., “Managing multiple informa-

tion sources through ontologies: relationship between vocabulary heterogeneity

and loss of information,” 1996.

[51] Metzger A. and Pohl K., “Software product line engineering and variability manage-

ment: achievements and challenges,” in Proceedings of the on Future of Software

Engineering. ACM, 2014, pp. 70–84.

[52] Mohabbati B., Asadi M., Gašević D., Hatala M., and Müller H. A., “Combining

service-orientation and software product line engineering: A systematic mapping

study,” Information and Software Technology, vol. 55, no. 11, pp. 1845–1859,

2013.

[53] Nguyen T. H., Grundy J., and Almorsy M., “Guitar: An ontology-based automated

requirements analysis tool,” in Requirements Engineering Conference (RE), 2014

IEEE 22nd International. IEEE, 2014, pp. 315–316.

[54] Noy N. F. and Musen M. A., “Smart: Automated support for ontology merging and

alignment,” in Proc. of the 12th Workshop on Knowledge Acquisition, Modelling,

and Management (KAW’99), Banf, Canada, 1999.

[55] ——, “Algorithm and tool for automated ontology merging and alignment,” in Pro-

ceedings of the 17th National Conference on Artificial Intelligence (AAAI-00). Avail-

able as SMI technical report SMI-2000-0831, 2000.

[56] Parra C. and Joya D., “Split: An automated approach for enterprise product line

adoption through soa,” Journal of Internet Services and Information Security (JISIS),

vol. 5, no. 1, pp. 29–52, 2015.

85

BIBLIOGRAPHY

[57] Parra C., Joya D., Giral L., and Infante A., “An soa approach for automating software

product line adoption,” in Proceedings of the 29th Annual ACM Symposium on

Applied Computing. ACM, 2014, pp. 1231–1238.

[58] Picco G. P., Julien C., Murphy A. L., Musolesi M., and Roman G.-C., “Software engi-

neering for mobility: reflecting on the past, peering into the future,” in Proceedings

of the on Future of Software Engineering. ACM, 2014, pp. 13–28.

[59] Pohl K., Böckle G., and van der Linden F. J., Software product line engineering:

foundations, principles and techniques. Springer Science & Business Media, 2005.

[60] Rabiser R., Grünbacher P., and Dhungana D., “Requirements for product deriva-

tion support: Results from a systematic literature review and an expert survey,”

Information and Software Technology, vol. 52, no. 3, pp. 324–346, 2010.

[61] Raunich S. and Rahm E., “Atom: Automatic target-driven ontology merging,” in

Data Engineering (ICDE), 2011 IEEE 27th International Conference on. IEEE, 2011,

pp. 1276–1279.

[62] Sim W. W. and Brouse P., “Developing ontologies and persona to support and en-

hance requirements engineering activities–a case study,” Procedia Computer Sci-

ence, vol. 44, pp. 275–284, 2015.

[63] Sommerville I. and Sawyer P., Requirements engineering: a good practice guide.

John Wiley & Sons, Inc., 1997.

[64] Specification O. A., “Omg unified modeling language (omg uml), superstructure,

v2. 1.2,” Object Management Group, 2007.

[65] Studer R., Benjamins V. R., and Fensel D., “Knowledge engineering: principles and

methods,” Data & knowledge engineering, vol. 25, no. 1, pp. 161–197, 1998.

[66] Stumme G. and Maedche A., “Fca-merge: Bottom-up merging of ontologies,” in

IJCAI, vol. 1, 2001, pp. 225–230.

86

BIBLIOGRAPHY

[67] Trujillo S., Kästner C., and Apel S., “Product lines that supply other product lines:

A service-oriented approach,” in SPLC Workshop: Service-Oriented Architectures

and Product Lines–What is the Connection, 2007.

[68] Tsui F. F., Karam O., and Bernal B., Essentials of software engineering. Jones &

Bartlett Publishers, 2014.

[69] Wu D., “Context knowledge base for ontology integration,” Ph.D. dissertation, KTH

Royal Institute of Technology, 2014.

[70] Yuan X. and Liu G., “A task ontology model for domain independent dialogue man-

agement,” in Virtual Environments Human-Computer Interfaces and Measurement

Systems (VECIMS), 2012 IEEE International Conference on. IEEE, 2012, pp. 148–

153.

[71] Yuan X. and Tripathi S., “Combining ontologies for requirements elicitation,” in

Model-Driven Requirements Engineering Workshop (MoDRE), 2015 IEEE Interna-

tional. IEEE, 2015, pp. 1–5.

[72] ——, “An approach of dynamically combining ontologies for interactive require-

ments elicitation,” in Software Engineering and Service Science (ICSESS), 2016

7th IEEE International Conference on. IEEE, 2016, (to appear).

[73] Yuan X. and Zhang X., “An interactive approach of online software customization

via conversational web agents,” in Green Computing and Communications (Green-

Com), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE International Con-

ference on and IEEE Cyber, Physical and Social Computing. IEEE, 2013, pp. 327–

334.

[74] ——, “An ontology-based requirementmodeling for interactive software customiza-

tion,” in Model-Driven Requirements Engineering Workshop (MoDRE), 2015 IEEE

International. IEEE, 2015, pp. 1–10.

87

BIBLIOGRAPHY

[75] Zhang X., “An interactive approach of ontology-based requirement elicita-

tion for software customization,” Master’s thesis, University of Windsor, 2011,

http://scholar.uwindsor.ca/etd/347.

88

Vita Auctoris

NAME Shubhrendu Tripathi

PLACE OF BIRTH New Delhi, India

YEAR OF BIRTH 1983

EDUCATION Memorial High School, Houston, Texas, USA

1998-1999

B.Sc., University of Houston, Texas, USA

1999-2002

89

	University of Windsor
	Scholarship at UWindsor
	2016

	A Run-Time Approach of Combining Ontologies to Enhance Interactive Requirements Elicitation for Software Customization
	Shubhrendu Tripathi
	Recommended Citation

	Declaration of Co-Authorship / Previous Publication
	Abstract
	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	List of Acronyms
	List of Listings
	Introduction
	Related Work
	Overview
	Software Customization
	Overview
	Software Product Line Engineering
	Service Oriented Architecture
	Integrating SPL and SOA

	Requirements Elicitation
	Overview
	Requirements Elicitation
	Ontologies in RE

	Interactive Requirements Elicitation
	Ontology and Operations
	Overview
	What is an Ontology?
	Operations on Ontologies
	Matching
	Alignment
	Mapping
	Integration
	Merging

	A New Method of Ontology Combination
	Overview
	Problem Statement
	Ontology Combination
	Example
	Proposed Methodology
	Definitions
	Step 1: Generate Correspondences
	Step 2: Generate Relationships
	Step 3: Check consistency of combined ontology, Oc
	Step 4: Validation of Oc

	Design of Algorithms
	Overview
	SelectLink algorithm
	GetCorrespondences algorithm
	GetRelationship algorithm
	FindRelationshipJWNL algorithm
	GetHighestCM algorithm
	Time Complexity

	Experiments
	Overview
	Software
	Interface
	Experiments
	Scenario I - Single Ontology
	Scenario II - Multiple Ontologies
	Scenario III - Ontology of Mobile SOA Functions

	Case Study
	Contributions
	Overview
	Enhanced Interactive Requirements Elicitation
	Extending Customization to Mobile Applications

	Conclusion and Future Directions
	Overview
	Conclusion
	Future Directions

	Bibliography
	Vita Auctoris

