
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2016

Comparative Mining of B2C Web Sites by
Discovering Web Database Schemas
Bindu Peravali
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Peravali, Bindu, "Comparative Mining of B2C Web Sites by Discovering Web Database Schemas" (2016). Electronic Theses and
Dissertations. 5861.
https://scholar.uwindsor.ca/etd/5861

https://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F5861&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5861&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5861&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/5861?utm_source=scholar.uwindsor.ca%2Fetd%2F5861&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Comparative Mining of B2C Web Sites by Discovering

Web Database Schemas

By

Bindu Peravali

A Thesis

Submitted to the Faculty of Graduate Studies through the School of

Computer Science in Partial Fulfillment of the Requirements for the Degree

of Master of Science at the

University of Windsor

Windsor, Ontario, Canada

 2016

© 2016 Bindu Peravali

Comparative Mining of B2C Web Sites by Discovering

Web Database Schemas

By

Bindu Peravali

APPROVED BY:

Dr. Zhiguo Hu, External Reader

Department of Mathematics & Statistics

Dr. Subir Bandyopadhyay, Internal Reader

School of Computer Science

Dr. Christie I. Ezeife, Advisor

School of Computer Science

 09/09/2016

iii

 DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this thesis has been

published or submitted for publication. I certify that, to the best of my knowledge, my thesis does

not infringe upon anyone’s copyright nor violate any proprietary rights and that any ideas,

techniques, quotations, or any other material from the work of other people included in my thesis,

published or otherwise, are fully acknowledged in accordance with the standard referencing

practices. Furthermore, to the extent that I have included copyrighted material that surpasses the

bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that I have

obtained a written permission from the copyright owner(s) to include such material(s) in my thesis

and have included copies of such copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved by my

thesis committee and the Graduate Studies office, and that this thesis has not been submitted for a

higher degree to any other University or Institution.

iv

ABSTRACT

Discovering potentially useful and previously unknown historical knowledge from

heterogeneous E-Commerce (B2C) web site contents to answer comparative queries such

as “list all laptop prices from Walmart and Staples between 2013 and 2015 including make,

type, screen size, CPU power, year of make”, would require the difficult task of finding the

schema of web documents from different web pages, extracting target information and

performing web content data integration, building their virtual or physical data warehouse

and mining from it. Automatic data extractors (wrappers) such as the WebOMiner system

use data extraction techniques based on parsing the web page html source code into a

document object model (DOM) tree, traversing the DOM for pattern discovery to recognize

and extract different web data types (e.g., text, image, links, and lists). Some limitations of

the existing systems include using complicated matching techniques such as tree matching,

non-deterministic finite state automata (NFA), domain ontology and inability to answer

complex comparative historical and derived queries.

This thesis proposes building the WebOMiner_S which uses web structure and

content mining approaches on the DOM tree html code to simplify and make more easily

extendable the WebOMiner system data extraction process. We propose to replace the use

of NFA in the WebOMiner with a frequent structure finder algorithm which uses regular

expression matching in Java XPATH parser with its methods to dynamically discover the

most frequent structure (which is the most frequently repeated blocks in the html code

represented as tags < div class = “ ′′ >) in the Dom tree. This approach eliminates the need

for any supervised training or updating the wrapper for each new B2C web page making

the approach simpler, more easily extendable and automated. Experiments show that the

WebOMiner_S achieves a 100% precision and 100% recall in identifying the product

records, 95.55% precision and 100% recall in identifying the data columns.

Key Words: Web Content Mining, Automatic Web Data Extraction, Data integration, Wrappers

v

DEDICATION

This thesis is dedicated to my father Koteswara Rao peravali, mother Jayalakshmi Peravali and

my brother Gourinath Peravali. Without their patience, understanding, support, and most of all

love, the completion of this work would not have been possible.

vi

ACKNOWLEDGEMENT

I would like to give my sincere appreciation to all of the people who have helped me

throughout my education. I express my heartfelt gratitude to my parents and brother for their support

throughout my graduate studies.

I am very grateful to my supervisor, Dr. Christie Ezeife for her continuous support

throughout my graduate study. She always guided me and encouraged me throughout the process

of this research work, taking time to read all my thesis updates and for providing financial support

through research assistantship.

I would also like to thank my external reader, Dr. Zhinguo Hu, my internal reader, Dr.

Subhir Bandhyopadhay, and my thesis committee chair, Dr. Dan Wu for making time to be in my

thesis committee, reading the thesis and providing valuable input. I appreciate all your valuable

suggestions and the time, which have helped improve the quality of this thesis.

Finally, I express my appreciations to all my friends and colleagues at University of

Windsor, especially vignesh aravindan and sravya vangala for their support and encouragement.

Thank you all!

vii

Table of Contents
DECLARATION OF ORIGINALITY .. iii

ABSTRACT .. iv

DEDICATION ... v

ACKNOWLEDGEMENT ... vi

LIST OF TABLES ... ix

LIST OF FIGURES .. x

CHAPTER 1: INTRODUCTION ... 1

1.1 Web Mining: .. 1

1.1.1 Web Structure Mining: .. 1

1.1.2 Web Usage Mining:.. 2

1.1.3 Web content mining: .. 2

1.2 Types of Web Pages ... 3

1.2.1 The Unstructured Web Page: .. 3

1.2.2 Semi-structured/Structured Web Pages... 4

1.2.2.1 The List Web Page .. 5

1.2.2.2 The Detail web page .. 7

1.3 Why List Page .. 7

1.4 Understanding the html source code behind the webpage .. 7

1.5 Building DOM Tree: ... 8

1.5.1 Using Tags Alone: .. 8

1.5.2 Using Both Tags and visual cues: ... 9

1.6 Cascading style sheets: .. 9

1.7 Xml and Xpath Parser: .. 10

1.8 Thesis Contributions: .. 11

1.9 Outline Of Thesis: ... 11

CHAPTER 2: RELATED WORK ... 13

2.1 Grammar Based Approaches: ... 13

2.1.1 IEPAD: Information Extraction Based On Pattern Discovery .. 13

2.1.2 STALKER: A Hierarchical Approach to Wrapper Induction .. 17

2.1.3 The WebOMiner : Towards Comparitive Mining Of Web Documents Using NFA 20

2.1.4 RoundRunner: Towards Automatic Data Extraction From Large Websites 22

viii

2.2 Comparison Based Approaches: ... 25

2.2.1 DEPTA: Data Extraction Based On Partial Tree Alignment... 25

2.2.2 DEBYE: Data Extraction By Example ... 28

2.2.3 Information Extraction From Web pages: .. 31

2.3 Vision Based Approaches: .. 33

2.3.1 LIXTO: Visual Web Info Extraction: ... 33

2.3.2 Simultaneous record detection and attribute labeling in web data extraction 35

CHAPTER 3 : PROPOSED SYSTEM THE WEBOMINER_S .. 38

3.1 Problems Addressed .. 38

3.2 Problem Domain ... 39

3.3 Proposed WebOMiner_S Architecture and Algorithm: ... 41

3.3.1 The Crawler Module: ... 43

3.3.2 The Cleaner Module: ... 47

3.3.3: The Parser Module: .. 48

3.3.4: The Frequent Structure Finder Module .. 52

3.3.5 The Schema Extractor Module: .. 60

CHAPTER4: EVALUATION OF WEBOMINER_S SYSTEM ... 63

4.1. Empirical Evaluations ... 63

4.2 Experimental Results .. 66

4.3. Comparison with the WebOMiner ... 68

4.4 Limitations ... 69

CHAPTER 5: CONCLUSION AND FUTURE WORK ... 70

5.1 Future Work .. 70

REFERENCES ... 72

A P PE N D I X – A .. 75

VITA AUCTORIS ... 88

ix

LIST OF TABLES

Table 1 …………………………………………………………………………….66

x

LIST OF FIGURES

Figure 1: Unstructured web page ... 4

Figure 2: Structured web page ... 5

Figure 3 : Detail Page... 6

Figure 4: Sample Html Source Code .. 8

Figure 5: Web page content for the sample html code ... 8

Figure 6: Refering css stylr using Class attribute ... 10

Figure 7: Sample css .. 10

Figure 8: A Pat Tree .. 15

Figure 9: Sample String Alignment .. 16

Figure 10:EC tree for LA weekly ... 18

Figure 11: Description of LA weekly .. 18

Figure 12: A slg for the start of area .. 19

Figure 13: Data block contents ... 21

Figure 14: matching two book web pages .. 23

Figure 15: complex mismatch ... 24

Figure 16: Vision tree .. 26

Figure 17: Sample HTML code and Coordinates rendered ... 26

Figure 18: Iterative tree alignment with two iterations .. 27

Figure 19: Snap shot of a web page and hierarchical structure for the object....................... 29

Figure 20: Extracted object in xml ... 30

Figure 21: The execution of bottom up .. 30

Figure 22: Sample DOM tree with 2 sub trees .. 32

Figure 23: Sample Dom tree .. 32

Figure 24: HTML parse tree for the page ... 35

Figure 25: A sample HTML page ... 35

Figure 26: Piece of data from sample web page .. 36

Figure 27: Junction tree for the subgraph starting from 0 .. 36

Figure 28: WebOMiner_S Architecture .. 41

Figure 29: WebOMiner_S Main Algorithm .. 42

Figure 30: Algorithm crawler ... 43

Figure 31: Input web page... 45

Figure 32: uncleaned.html ... 46

Figure 33: Clean Html File .. 47

Figure 34: Algorithm parser ... 49

Figure 35: Algortihm search_string ... 50

Figure 36: Temporary Xml file ... 51

Figure 37: Occurrence data file .. 51

Figure 38: Dom tree ... 52

Figure 39: Nodelist struct_List ... 53

Figure 40: Dom tree <div class=”supporting-info”> ... 54

Figure 41: Dom tree <div class="deal"> ... 55

Figure 42: Dom tree with <div class= "prodwrap"> .. 56

Figure 43: Dom tree product blocks ... 57

file:///C:/Users/BINDU%20PERAVALI/Downloads/Thesis%20Finalcopy%20(1).docx%23_Toc461802864
file:///C:/Users/BINDU%20PERAVALI/Downloads/Thesis%20Finalcopy%20(1).docx%23_Toc461802869
file:///C:/Users/BINDU%20PERAVALI/Downloads/Thesis%20Finalcopy%20(1).docx%23_Toc461802871
file:///C:/Users/BINDU%20PERAVALI/Downloads/Thesis%20Finalcopy%20(1).docx%23_Toc461802872
file:///C:/Users/BINDU%20PERAVALI/Downloads/Thesis%20Finalcopy%20(1).docx%23_Toc461802873
file:///C:/Users/BINDU%20PERAVALI/Downloads/Thesis%20Finalcopy%20(1).docx%23_Toc461802876
file:///C:/Users/BINDU%20PERAVALI/Downloads/Thesis%20Finalcopy%20(1).docx%23_Toc461802877
file:///C:/Users/BINDU%20PERAVALI/Downloads/Thesis%20Finalcopy%20(1).docx%23_Toc461802879
file:///C:/Users/BINDU%20PERAVALI/Downloads/Thesis%20Finalcopy%20(1).docx%23_Toc461802882
file:///C:/Users/BINDU%20PERAVALI/Downloads/Thesis%20Finalcopy%20(1).docx%23_Toc461802883
file:///C:/Users/BINDU%20PERAVALI/Downloads/Thesis%20Finalcopy%20(1).docx%23_Toc461802884
file:///C:/Users/BINDU%20PERAVALI/Downloads/Thesis%20Finalcopy%20(1).docx%23_Toc461802885
file:///C:/Users/BINDU%20PERAVALI/Downloads/Thesis%20Finalcopy%20(1).docx%23_Toc461802886
file:///C:/Users/BINDU%20PERAVALI/Downloads/Thesis%20Finalcopy%20(1).docx%23_Toc461802887
file:///C:/Users/BINDU%20PERAVALI/Downloads/Thesis%20Finalcopy%20(1).docx%23_Toc461802889
file:///C:/Users/BINDU%20PERAVALI/Downloads/Thesis%20Finalcopy%20(1).docx%23_Toc461802890
file:///C:/Users/BINDU%20PERAVALI/Downloads/Thesis%20Finalcopy%20(1).docx%23_Toc461802892
file:///C:/Users/BINDU%20PERAVALI/Downloads/Thesis%20Finalcopy%20(1).docx%23_Toc461802893
file:///C:/Users/BINDU%20PERAVALI/Downloads/Thesis%20Finalcopy%20(1).docx%23_Toc461802894
file:///C:/Users/BINDU%20PERAVALI/Downloads/Thesis%20Finalcopy%20(1).docx%23_Toc461802895
file:///C:/Users/BINDU%20PERAVALI/Downloads/Thesis%20Finalcopy%20(1).docx%23_Toc461802896
file:///C:/Users/BINDU%20PERAVALI/Downloads/Thesis%20Finalcopy%20(1).docx%23_Toc461802897
file:///C:/Users/BINDU%20PERAVALI/Downloads/Thesis%20Finalcopy%20(1).docx%23_Toc461802903

xi

Figure 44: Algorithm fs_finder ... 59

Figure 45: Frequent Structure .. 59

Figure 46: Schema Extractor .. 61

Figure 47: Discovered Schema .. 62

Figure 48: Dtabase table generated .. 62

Figure 49: noise extracted ... 67

Figure 50: Comparison on system runtime ... 68

Figure 51: Architecture of WebOminer_S .. 78

Figure 52: GUI for the user ... 79

Figure 53: Product table created .. 85

file:///C:/Users/BINDU%20PERAVALI/Downloads/Thesis%20Finalcopy%20(1).docx%23_Toc461802904
file:///C:/Users/BINDU%20PERAVALI/Downloads/Thesis%20Finalcopy%20(1).docx%23_Toc461802905
file:///C:/Users/BINDU%20PERAVALI/Downloads/Thesis%20Finalcopy%20(1).docx%23_Toc461802906
file:///C:/Users/BINDU%20PERAVALI/Downloads/Thesis%20Finalcopy%20(1).docx%23_Toc461802907
file:///C:/Users/BINDU%20PERAVALI/Downloads/Thesis%20Finalcopy%20(1).docx%23_Toc461802909
file:///C:/Users/BINDU%20PERAVALI/Downloads/Thesis%20Finalcopy%20(1).docx%23_Toc461802912
file:///C:/Users/BINDU%20PERAVALI/Downloads/Thesis%20Finalcopy%20(1).docx%23_Toc461802913

1

CHAPTER 1: INTRODUCTION

The World Wide Web is the biggest and most widely used information source that is easily

accessible (Liu, 2007). It is essential to provide tools for effective knowledge discovery. It

has numerous amounts of web pages that keep on updating and some gets deleted as well.

Data is heterogeneous in nature, several types of data such as text, image, video, and audio

are within the web.

Web has emerged as one of the important medium for business. E-commerce has evolved

as the most potential business area. Huge volume of products are being sold online, where

each vendor has his own web site to show case his products. We have identified the

necessity of a comparative agent for such product web pages which not only compares

current data but also historical. Such agents already exist in the literature but none of them

are totally automatic even if some of them are automatic each has its own downside.

The main intuition of the thesis is to develop a scalable and robust approach for automatic

web data extraction and storage for further analysis.

1.1 Web Mining:

Web mining can be stated as the application of data mining techniques on the web (Cooley,

Mobasher, & Srivastava, 1997). It is performed to discover unknown knowledge existing

on web data. Also to provide some value added services to the users. Containing large

volumes of data and its versatility, interest’s lots of researchers on performing several

mining techniques for knowledge discovery.

Web mining is categorized into 3 areas as given below

1) Web Structure mining

2) Web usage mining

3) Web content mining

1.1.1 Web Structure Mining:

Mining structured hyperlinks within the web is termed as Web Structure Mining (Kosala

& Blockeel, 2000). Web structure mining involves Mining the web document structure,

analysis of the tree-like structure of page structures to describe HTML or XML tag usage.

2

This area of research also involves study of World Wide Web structure as a whole like

social networks and citation analysis etc. Considering web as a directed graph, the analysis

of in-links and out-links to a page is the key to search engines. Traditional data mining

techniques does not perform the link analysis as they are stored as relational databases no

link structure exists. The structure of a web site can be obtained by analyzing the link

structure between pages (Kosala & Blockeel, 2000). It also involves web page

categorization and discovering communities on the web.

1.1.2 Web Usage Mining:

The web usage mining focuses on techniques that could present the user behavior while the

user interacts with the web (Srivastava, Cooley, Deshpande, & Tan, 2000). Such data is

stored on the webservers and log files this information can be mined for identifying the

user interests and further build recommendations accordingly. But the problem arises in

identifying individual user and their sessions.

There are 3 main tasks for performing the web usage mining, Preprocessing, Pattern

discovery, and Pattern analysis (Cooley, Mobasher, & Srivastava, 1997). Data can be

embedded into a web page by anybody there is no any restrictions, this flexibility gives

way to incomplete and in appropriate data which makes the task of pattern discovery

difficult. Hence preprocessing the web data before performing any task is must. Pattern

discovery is performed on web usage data by using several machine learning techniques

and statistical methods, pattern recognition along with data mining. Some of the major

approaches involves association rule mining, clustering, classification, sequential patterns

and dependency modeling (Srivastava, Cooley, Deshpande, & Tan, 2000). Such discovered

patterns can be analyzed for interesting patterns using some already existing forms such as

sql and olap depending up on the data.

1.1.3 Web content mining:

Mining the actual web page contents for knowledge is termed as web content mining

(Kosala & Blockeel, 2000). This area of web mining involves several data mining

techniques. Data in traditional data mining is typically available in relational data tables

but data in web is not homogeneous also it does not exist in a single repository, it is

3

distributed in large scale over numerable servers all over the world. Task of performing

web content mining involves gathering relevant information from the World Wide Web.

General Challenges in web content mining:

1) Web data is heterogeneous in nature, several kinds of data such as text, image, audio and

video exist on web.

2) Web data is dynamic, whenever an expensive mining task is performed on web data now

or then the data on web gets updated and as a result the same task has to be performed

again. This scenario gets worse when the data gets updated frequently, unfortunately this

is a common scenario in web. Introduction:

1.2 Types of Web Pages

Data on the World Wide Web has been classified by many researchers into 3 types. The

unstructured data, the semi structured and the Structured (Kosala & Blockeel, 2000). As the web is

not strict anybody can represent their content in any way they wanted. However based on the

domain the website / web page belongs to, it follows a similar structure with the other web pages

belonging to the same domain. For example all the web pages that belong the news columns will

project their content to the readers in a similar format. The type which the web page belong to

matters, because wrappers generated to extract the content on the web page highly depends on the

type of web page and its structure. Here, we discuss the different type of web pages.

1.2.1 The Unstructured Web Page:

The unstructured type of web page addresses the pages that do not follow any structure also called

free text documents. These type of web pages publish their content such as text, images, multimedia

in a free manner. Example of this documents are the news blogs and personal blogs etc. Blog writers

4

place their content according to their desire and no structure is followed necessarily.

Figure 1: Unstructured web page

On such web pages no template based web data extraction can be applied and these pages

are usually represented as a bag of words or phrases which can be mined using several data

mining techniques.

1.2.2 Semi-structured/Structured Web Pages

The semi- structured/Structured web pages are the type of pages that follows a defined structure

which are attained due to the structured data source like a database or table. While data on the

webpage is being published it will have a format and is aligned. A product rich page from an e-

commerce website like bestbuy.ca is the example of structured web page since all the information

such as product details are essentially stored in a database which are published on to a webpage

following a strict template. Such data can be extracted using wrappers by generating the extraction

rules manually or automatically based on the target data. Again in structured web page there are

5

 Figure 2: Structured web page

two classifications, the List Page and the detail page. Which are formed due to the type of template

used to generate them.

1.2.2.1 The List Web Page

 This type of web page consists of several structured data records. For example, e-commerce

websites display all the products belonging the same category in list or a grid format in their web

page. Considering the object oriented data model treating a single product as an object, a list web

page will have a set of objects that belong to the same type with a set of attributes that all the objects

6

may or may not be associated with. Figure highlights a web page from bestbuy.ca, it is a product

web page which is a list type of page having 8 objects displayed with several attributes such as

price, brand, size, color, processor, hard disk, ram and operating system. Also object 2, 8 have an

attribute discount which none of the other objects in the page has. It is meta data of the product

which can be stored into a data warehouse from historical querying and comparative analysis .This

page also has other data such as header, navigational data, advertisements (Currently not visible)

and footer (currently not visible), all this information has to be ignored and only the target objects

has to be extracted by the wrapper. This Figure is an example of our input web page for our system

WebOMiner_S performing the data extraction.

Figure 3 : Detail Page

7

1.2.2.2 The Detail web page

Detail web page displays only one object with all of its attributes. The Figure 4 showcases a detail

page from an e-commerce website chaptersindigo.ca. The object is a book and the detail page

displays all the attributes of this object such as name of the book, price, format, dimensions,

published on ,Published by , language etc. All this can be extracted to store into a data warehouse

for value added services.

1.3 Why List Page
We have chosen to mine a list page instead of a detail page because of the following reasons:

1. List pages provide with the most important attributes of the object in the customers

perspective whereas the detail pages contains all the attributes of the object. As our main

objective is to develop a system that can perform a comparative mining and historical

querying as value added service for the customers.

2. Our observation is that the detail page contains more noise than the list page, on

Considering the recommendations and advertisements. As we work towards eliminating

noisy data in our data ware house we prefer to mine less noisy web pages.

3. It is very resource consuming to extract data of an object and its attributes from the web

page then move to another page to extract another object and its attributes when all the

objects belong to the same type and while we can extract multiple objects from single page

in the list type.

1.4 Understanding the html source code behind the webpage

Before constructing any wrapper to extract the data on a web page understanding the html

source code helps in building the better ones. HTML stands for Hyper Text Markup Language,

it is a language that is a set of markup tags which helps in creating a web page. The HTML

documents are described by using finite set of html tags where each tag has a meaning and

usage purpose, typically to display document contents based on the user’s requirement. It is

the web browsers responsibility to process the HTML document and display the content. A

typical html file starts by declaring its <!DOCTYPE> which helps the browser to display the

web page correctly. By declaring the doctype to HTML i.e., <!DOCTYPE HTML> it

understands that the file is a html file and processes the tags to display contents appropriately.

The start of the html code is initiated by the tag<HTML> and the end by </HTML>, thus the

html tags are paired but there are few singleton tags as well. Some of the html tags

include<BODY>, <HEAD> for the browser to understand what comprises of the header section

and what’s in the body. Other tags helps to understand how the content should be displayed <

8

FONT>, <COLOR>, < H1>, <H2>, , <A>, < BR> etc., these are called inline tags. Tags

like <DIV>, <TABLE>, , <FORM>, , <TR>, <TD> helps in grouping, organizing

and sectioning the web page also called block level tags according to w3consortium. Figure

shows a sample html source code and how it will be rendered by the browser as a web page.

Figure 5: Web page content for the sample html code

1.5 Building DOM Tree:

Dom stands for document object model it has become a necessary step for many data

extraction algorithms. Dom tree is constructed using the html source code of the web page.

The tags and their hierarchies form the parent child relationship explaining how the content

is organized in the page. This insight allows the researchers to build wrappers for data

extraction. DOM trees can be built by using 2 methods.

1) Using tags alone 2) Using both tags and visual cues

1.5.1 Using Tags Alone:

Most of the html tags occur in pairs with an open tag and a closed tag. Within such pairs

there can be other pair of tags, giving rise to nested structure. A DOM tree for an html page

is built by considering each pair of tag as a node.

Html is not a strict language, missing or incomplete tags may be encountered so there a

necessity to properly embed the tags in order to derive a correct DOM tree. This gives rise

This is a Sample page <!Doctype html>

<html>

 <head>

 <title> sample</title>

 </head>

 <body>

 <p>this is a </p>

 <h1> Sample page </h1>

 </body>

</html>

Figure 4: Sample Html Source Code

9

to the preprocessing task called data cleaning. Followed by building a DOM tree from the

clean html file.

1.5.2 Using Both Tags and visual cues:

Relying on the visual information (location of tags on the screen) to infer the structural

relationship among tags for constructing a DOM tree is another method. Nested rectangles

are used to interpret the tag structure. This is performed by finding the 4 boundaries of a

rectangle of each html element by calling the rendering engine of a browser. Containment

check is performed to see if one rectangle is contained in another, this interprets the nested

structure of html tags.

1.6 Cascading style sheets:

The cascading style sheets helps the web developers to layout the information on the web page. It

consists of the information on how the html elements should be displayed on the web page. A

cascading style sheet can be created to define styles for the webpages, including the design, layout

and variations in display. All the B2C websites uses the external css to get the look for their

webpages. An external css contains several styles each identified by a unique class name. The class

attribute is referred in the html tag to which the preferred style has to be allocated. Figure given an

example, an external css and its usage in the html source code. Figure shows the sample css file

with two styles indicated by two classes’ prodlook and prodprice. The first style prodlook describes

that the content of any block that uses this class should set the font weight to be bold, the content

should maintain a left margin of 20 points. While the second style prodprice describes that the

content in any block that refers this class should be assigned of font sans_serif, with a color red and

a background of green. Second figure shows their usage in the html code using the class attribute.

10

Figure 6: Refering css stylr using Class attribute

Figure 7: Sample css

1.7 Xml and Xpath Parser:

Similar to HTML, XML is also a markup language and is a w3c recommendation. While HTML

has a predefined set of tags xml allows users to define their own self descriptive because of which

it is not only machine readable but also human readable. XML is designed to store and transport

data and exclusively used in IT systems. The major difference between the HTML and XML is that

the former one is designed to display data while the later one is to carry data. XPath (the XML Path

language) is a language for finding information in an XML document. XPath is used to navigate

through elements and attributes in an XML document. It uses path expressions to navigate in XML

documents. Also, it contains a library of standard functions. XPath uses path expressions to select

nodes or node-sets in an XML document. These path expressions look very much like the

expressions you see when you work with a traditional computer file system. Some of the sample

expressions are /-> selects from the root node//-> Selects nodes in the document from the current

node that match the selection no matter where they are. .-> Selects the current node , ..-> Selects

the parent of the current node, @->Selects attributes. It also has wild cards, XPath wildcards can

be used to select unknown XML nodes.* ->Matches any element node, @* -> Matches any attribute

node and node()-Matches any node of any kind. It provides with some methods to retrieve

information from the xml document such as, xpath evaluate() method to return specific data from

xml file that matches the xpath expression. It can take as input an xml document and returns its

nodes as a nodelist. getlength() method to get the count of no of matching nodes to the path

expression in the xml.

We have made use of all these functional features in our system to make the data extraction much

easier.

div.prodlook{

 font-weight:bold;

 margin-left:30px}

div.prodprice{

 font: sans-serif;

 color:red;

 background:green}

<div class=”prodlook”>…….</div>

<div class=”prodprice”>…..</div>

11

1.8 Thesis Contributions:

1) We propose to replace the use of the NFA in step 4 of the WebOMiner system with a frequent

structure finder (FSfinder) algorithm using both web content and structure mining. The FSfinder

uses the Java xpath parser to summarize the frequency of each tag occurrence in the web html code,

retaining only tags that meet a certain minimum occurrence (e.g. 3), then for each tag, it uses the

web page DOM tree to find the tag’s block and retrieve the most frequently used block. This most

frequently used block is then marked as the data block and its data region/table name is retrieved

with its schema.

2) Schema can be dynamically discovered for any given web page using our technique while with

the WebOMiner, to add and learn about a new or re-structured B2C web page, the NFAs need to

be refreshed so that it can recognize new features not previously in its structure. Our proposed

system uses regular expression matching in the Java xpath parser through its methods such as

compile(), evaluate() which will discover the most frequent structure block level tag (e.g.,< divclass

= “ ′′ >) in the Dom tree.

3) Our algorithm does not follow any hard matching techniques like tree alignment (such as

recognizing zones and blocks of the DOM tree with series 1 and 2 observations) or NFA as done in

. Instead we summarize and observed the occurrence of tags that create similar block structure.

4) WebOMiner_Simple is extendable and has the potential to be scalable to large websites because

of its simple and effective technique.

5) It is highly automated and no manual efforts (such as description of sample training B2C pages)

are required in the extraction process. We only have to give the system a product page web page

address and it will discover the database schema.

1.9 Outline Of Thesis:

The remainder of the thesis is organized as follows:

Chapter 2: Related literature in the area is presented. We have identified problems which are related

to the problem studied in this thesis. We categorized these problems in three sections and each

section explains the related work done in these problems and surveys the various solutions

proposed. Different works are compared in this section and we tried to identify the advantages and

disadvantages of the approaches.

Chapter 3: Detailed discussion of the problem addressed and new algorithms are proposed

12

Chapter 4: Explain performance analysis and the experiments conducted in detail.

Chapter 5: Concludes this thesis by explaining the work done. The contribution of this thesis is

explained in this section. An outline of future work is provided in this chapter.

13

CHAPTER 2: RELATED WORK

In this section we present the related work in the literature on web data extraction. There

have been several works conducted in this domain here we present most significant work

performed in the area of data extraction. Researchers had used several data mining

techniques on the web data to extract information, over the years web data extraction had

improved from manual to automatic using several data mining techniques. We have

categorized the existing work based on the scientific technique used and thus we have the

comparison based, vision based and the grammar based approaches in web data extraction.

The first category of systems build their wrappers based on the comparisons between the

new web page and the template. For comparing the web pages or the data blocks researchers

had used string matching, tree matching and multiple sequence alignment methods. In the

second group of systems unlike the other researchers the authors proposed to use the visual

information on the web page instead of underlying html code. Information like coordinates

of the data blocks on the web page and vision based Dom trees were used in the web data

extraction. In the third category of systems used grammar based approach for building their

wrappers. They observed patterns and used regular expressions to identify and further

extracted the data.

2.1 Grammar Based Approaches:

The data extraction systems that performed data extraction by inferring a grammar from the html

code of the webpage. The common tag structure shared by the web page is uncovered by using

regular expressions, string alignments which are further used to build rules for extraction.

2.1.1 IEPAD: Information Extraction Based On Pattern Discovery

(Chang & Lui, IEPAD: information extraction based on pattern discovery, 2001)

IEPAD is the semi-supervised learning system which extracts data from web without using

some manual methods such as labeling the Sample pages. It highlights the usage of

repetitive patterns occurred in web pages in order to present the target data as a structure

called PAT trees. And, multiple sequence alignment is used to comprehend all record

instances.

The Major contributions of the paper includes 1) Identifies the target data record without

any human intervention by examining the fact that data records occur as repetitive patterns

14

in a web document and data is pushed into web pages from underlying databases using a

common template. 2) Uses a data structure called PAT trees a Binary suffix tree, to discover

repetitive patterns as they only records exact match for suffixes. 3) Uses multiple sequence

alignment by the center star method which begins from each occurrence of a repeat and

ends before the beginning of next occurrence.

The Architecture of the system has 3 modules first is an Extraction rule generator, the

pattern viewer and the Extractor module. Where the first module analyses the html tag

structure and generates rules, the second module displays the rules to the uses to select one

rule among them to perform extraction and the third module extracts all the data records

that match with the rule selected. Their algorithm is explained with a running example as

follows

Example 1: For Instance consider this 2 lines of html code as input for the system in their

first step.

 Congo< I>242</I>

 Egypt<I>342</I>
$

The HTML page is given as an input to this component it then translates into a string of

abstract representations called tokens which is identified by a binary code. Here tokens are

divided into two types, tag tokens and text tokens where tag tokens are the html tags and

text tokens are the original text in between the tags denoted by Text(). Discovering patterns

based on tag tokens majorly block level tags excluding text tags will result in more abstract

patterns that represent the whole web page.

Example 2: Token string generated by the translator for the above example is as follows

 Html()Text(_)Html() Html(<I>)Text(_)Html(
)

Html()Text(_)Html()Html(<I>)Text(_)Html(
)$

These as encoded into binary strings as shown below

Html () 000, Html () 001, Html (<I>) 011 then the pattern would be 000001011$

The binary pattern which is the output of the previous step is given as input to this step. A Patrica

tree is a specification of binary suffix tree where 0 goes to left and 1 goes to right. Here, each

15

internal node is an indication of which bit is to be used for branching. Every sequence of bits starting

from each of the encoded token extending it to the end of the token string. Each sistring is

represented by a bit position. An important observation in pat tree is that, all suffix strings with the

same prefix will be under the same subtree. Also, each edge is associated with a virtual edge label

which is the sistring between those two nodes. We can uniquely identify a sistring by its prefix. The

edges labelled with the $ sign indicates the end of the string as shown in figure 8

Figure 8: A Pat Tree

Every Path label of the internal node represents a repeated sequence of inputs. Hence to

discover the repeated patterns we now only have to observe the path labels. Thus the

problem of identifying data records is narrowed to fetching repeated patterns in IEPAD.

For a path label in the internal node v if its sub tree is having different left characters then

it is called Left_Diverse. Based on this a lemma is proposed that maximum repeat should

be a left diverse. The number of times any pattern has occurred can be easily known by the

occurrence counts and the reference positions. Hence the user has to define a threshold

value or it can even be a default value. Regularity, compactness and coverage are defined

as the standard deviation of the interval between two adjacent occurrences is calculated as

regularity. Whereas compactness is a measure of the density of a maximal repeat, this is

16

used to eliminate maximal repeats that are scattered apart beyond a given bond. Along with

these, Coverage measures the volume of content in the maximal repeats. IEPAD uses

multiple string alignment for pattern matching, it does not allow any partial or inappropriate

matching only strings exactly matched are considered. For Example, Suppose “kjl” is the

pattern discovered for token string, if we have multiple alignments kjlmn, kjlm, kjlmo the

extraction pattern can be generalized as “kjl[m\x]o[p\-]” where “ –“ represents missing

characters. Thus the problem is transformed to find the multiple alignment of the k strings.

The approximation algorithm is used to find the center string Sc in K strings. Once the

center string is found, each string is iteratively aligned to the center string to construct

multiple alignment, which is in turn used to construct the extraction pattern.

The extraction process starts when the user selects one or more

patterns from the pattern viewer. The extractor searches the PAT

tree for maximum occurrences to find the target data but if the web

page cannot be expressed as PAT tree then a normal pattern

matching algorithm can be used for extraction. Their results

shows 97% accuracy in successfully identifying the target data.

However the major Short comings of the paper includes the following

1) The assumption that multiple data records will be homogenous fails as data records in

web pages can have different attributes because of the missing values.

2) Requires a trained user that can infer rules to extract actual data records.

3) Their assumption that target data will be under the same parent node fails for large

number of web pages as there is no necessity in HTML5 after using the block tags to section

web pages.

4) Does not propose any strategy to overcome noise or unnecessary data.

5) Their use of binary suffix trees only produces exact matches is a huge drawback because

of the missing attribute values in data records.

6) Did not discuss about the heterogeneity of the web data such as the Images and their

extraction process.

K J L M O P

K J L X O P

K J L X O -

Figure 9: Sample String

Alignment

17

 2.1.2 STALKER: A Hierarchical Approach to Wrapper Induction

(Muslea, Minton, & Knoblock, A hierarchical approach to wrapper induction, 1999)

This is a supervised approach for data extraction, where the user labels some sample pages

from which the system generates the extraction rules. There by data in web pages having

similar structure can be extracted by matching those rules. It performs a hierarchical data

extraction by using embedded catalog formalism. The Major Contributions of the paper

includes 1) Introducing the concept of hierarchical data extraction using embedded

catalogue tree in which leaves are the attributes and internal node are the tuples.2) web

content can be extracted by some consecutive tokens called landmarks that enable the

wrapper to locate data x with in a data region p. 3) Multiple scans are performed to handle

missing values and multiple permutations. The Stalker proposed to represent a web page as

typical embedded catalogue tree where each leaf node contains the target data and the

internal nodes form the list of K tuples. Again the items in k tuples can be a leaf node l or

another list L. Each edge of the tree is associated with an extraction rule in order to extract

x from p.

For example consider the Restaurant description as given below

1:<p> Name: Yala <p> Cuisine: Thai <p><i>

2:4000 Colfax, Phoenix, AZ 85258 (602) 508-1570

3:</i>
 <i>523 Vernon, Las Vegas, NV 89104 (702) 578-2293

4:</i>
 <i>403 Pica, LA, CA 90007 (213) 798-0008</i>

18

Figure 10:EC tree for LA weekly

Data is extracted by using 2 rules the start rule and the End rule.For the above given

example in order to identify the name of restaurant the start rule is SkipTo(and the end

rule would be SkipTo(). Thus for each data item an extraction rule is associated and

the wrapper has to generate it automatically. The SkipUntil() and NextLand mark () rules

can also be used.

The Extraction rules can also be expressed as landmark automata where each transaction is

labelled by a transaction. Disjunct rules can be used in extraction process.

List (Restaurant)

Name Address Review List(credit cards)

Credit card

 Figure 11: Description of LA weekly

19

Example: 2

El: 513 Pica, Venice, Phone: I-800/b>-555-1515

E2: 90 Colfax, Palms , Phone: (818) 508-22222

E3: 523 1st St., LA , Phone: l-mk-578-2293

Ed: 403 Vernon, Watts , Phone: (310) 798-0008

The stalker inductive algorithm generates extraction rules to capture each data item by

taking as input the set of sequence of prefix tokens. User identifies the start of x from the

sample page using the GUI. For instance consider that the user has marked the area codes

then the sequential covering algorithm starts by generating linear l, As it then covers all the

examples and generates disjuncts. In the fore mentioned example algorithm initially

generates SkipTo(() it matches E2 and E4 but does not match E1, E3. While in the second

iteration algorithm considers only uncovered examples and generates SkipTo(phone) and

SkipTo(). The fig 1 represents the slg that accepts both the rules. Thus Stalker tries to

generate slg that accepts all the positive examples and reject all the negative ones. The

algorithm contains a function called learnDisjuncts() generates all the candidates repeatedly

selects and refines the best candidate until it finds a perfect disjunct which only accepts the

positive pages. In order to find best disjunct stalker searches for a disjunct that accepts the

largest number of positive examples. Another function Refine() obtains netter disjuncts()

by making its landmarks more specific or by adding new states to the automata. Followed

by the GetTokens() which gives out the tokens that have appeared at least once. Their

 Phone

S1 (

Figure 12: A slg for the start of area

S0 S2

20

experimentation proves that their methodology achieves 97% accuracy. But Short comings

of the paper are 1) Their algorithm requires Multiple passes over the input data to extract

the target data. 2) The performance of the algorithm entirely depends on the sample training

pages given, making the system dependent on a trained user. 3) Their Technique is

scientifically complex and time consuming that it cannot be used in real time applications.

4) Maintaining wrapper is another huge dis-advantage of this system, every time new

presentation structure arrives the wrapper has to be updated.

2.1.3 The WebOMiner : Towards Comparitive Mining Of Web Documents Using NFA

(Ezeife & Mutsuddy, 2012)

Ezefie and Titas proposed a framework for orject oriented web scema extraction and their

integration as a two level mining process. They liad paths for the extraction of

heterogeneous web data by a unified approach using NFA. Major Contributions of Paper

are 1)Proposes an architechture with 4 modules for web Data extraction and storage, this

involves eliminating noise to enter the database. 2) Identifies data blocks and data records

by defininig the seperator. 3) An NFA for each content type is generated such that target

data can be extracted from dom trees. 4)Associates leaf level tags with contents as it

consists of imortant information about the associated content. In order to identity data

region and data block they have constructed the DOM tree T represents the entire web page

then data regions are subtrees of T, Also author argues that data region and block can be

with in any tags such as <div>,<table>,<tr>, and this list is not complete. They

observe that data regions are embedded in between <div> and <table > tags and they used

“{,}” to represent a data a data region. They define data block as a tuple when it is

decomposed to a flat structure this is accomplished by the schema. To identify tuple

fromation and data block they identified 6 types of content blocks in a business 2 customer

domain, They are Product data block, list data block , form,text, decorative/singleton,noise.

But the target is the product data block which is usually of the form {< image >,{< title >,

< number >, . . .,< brand >, < price >}} , some pages may also be like {< image >,< title

>, < brand >, < price >}. This is the information that has to be identified and extracted.

Inn order to Extract content tuple types they used NFA. NFA is a non-deterministic finite

state automata, where each pair of states and a nput there is a next state. In order to build

21

amNFA that can extract target data from all the porduct list pages author observes a

comprehensive list of schemas. Some of them are as follows,

Product (title:string, image:image-file,prodNum:string, brand:string, price:long);

Product (title:string, image:image-file,prodNum:string, price:long);

Thus, the NFA should be able to identify any of the scema and extract the data tuples and

send them to product content object class. The case is similar with list, form, text and image

contents as well.

 Author proposed an architechture with 6 modules called sequentially by the main

algorithm and always output of the previous module is input to the next one. Each modul

is described as follows. They proposed a mini crawler algorithm that takes input as a url, it

crawl the web fetches the page nad stores it in a local directory. It discards the comments

from the document. Followed by the cleaner module. Their reason for using a cleaner is

that the web data is usaully dirty. Data cleaninig has to be performed to avoid any missing

tags or in approporiate ones because DOM tree is built based on these tags, ao it is importan

to have quality tags. After the cleaning is done content Etractor Module is called.The task

of this module is to take the clean html file to build a DOM tree and assign respective class

object class and push objects into content array list.Each data block is seperated by the

seperator object. Then the algorithm calls Mine contentObject.Identifytuple() which

extracts diffetent tuple types and places them in corresponding containers This algorithm

generates Seed NFA pattern for data blocks from positive pages. It extracts objects of all

tuples by matching them with the refined NFAs and storing identical tuples(e.g., product

Figure 13: Data block contents

22

record object tuples, list tuples) into appropriate TupleList. A count check is performed to

verify if all the tuples wre extracted. Tuple squeezing is used to generalize tuples of the

same data block. so that pattern of any tuple containing varying length pattern can be

represented in the same category. In order to Create Data base table the data ware house star

schema approach is used to form the fact and dimentional tables from the tuple array list

along with the company name. They have achieved an accuracy of 100% and recall of 96%.

Major Short Comings Of The paper includes 1) Matching each tuple in the ArrayList with

NFA sequentially is a hard matching technique, can not be applicable to large web sites

2)Wrapper Maintenance : has to be updated every time a new structure is encountered

2.1.4 RoundRunner: Towards Automatic Data Extraction From Large Websites

(Crescenzi, Mecca, & MerialdO, 2001)

Automatically generates wrapper for extracting data from html pages by comparing pages

based on their similarities and dissimilarities. Given a set of sample html pages of the same

class finds the nested type of source data set and extract the source data set from which the

pages have been generated. The Major Contributions of the Paper are 1) Wrappers are

generated in an automated way no user interaction is needed neither any training examples

are necessary. 2) Capable of handling any data records either nested or flat and no prior

knowledge of schema is required. 3) Pattern discovery is based on similarity and

dissimilarity between two web pages. Here, miss matches are used to identify relevant

content. 4)According to the Paper a regular grammar is generated and it is used to parse the

page, in this case identifying such grammar only by positive pages does not yield good

results. 5) A lattice-Theoretic approach is proposed, this is based on a close correspondence

between nested types and union free regular expression. According to the Author, Website

generation is a process of encoding original data sources into html tags now extracting

information must be a decoding process. As the nested structure of web pages is

hierarchical representing them in union free regular expressions and there by finding the

minimum UFRE by iteratively computing the least upper bounds of the RE lattice to

generate a common wrapper is the solution for finding web page schema. Here the html

tags are the input strings S1,S2,…..Sk.

23

A Matching algorithm called ACME, Align, Collapse under mismatch, and extract is

proposed the input to this algorithm are the list of prepared html tokens and two web pages

in which initially considered as a version of wrapper and progressively will be transformed

into a wrapper that extracts from similar pages. The wrapper is generalized whenever a

mismatch has occurred. According to this Paper, two mismatches can take place String

mismatch and the tag mismatch.String mismatches are nothing but the different values to

the attributes so they can be commonly generalized by replacing #PCDATA. In the

mentioned example strings “john smith” , “Paul jones” there is string mismatch which can

be overcome by replacing them with #PCDATA. However the tag mismatch is not as easy

 Figure 14: matching two book web pages

to handle as string mismatch. In this case the optional are used. The algorithms tries to find

out the repeated pattern once there a mismatch it considers that attribute as optional. For

instance in the example a mismatch occurs at token 6 due to the presence of an tag

in page 2 then the algorithms performs cross matching and considers tag as optional

24

finally finding the repeated pattern with the next tag.when a mismatch occurs due

to the cardinality of the data values it can be solved by identifying the squares and

generalizing the wrapper accordingly. Algorithm initially finds where the minimum

cardinality exists whether in the sample or in the wrapper, then finds the terminal tag. There

by explores the possibility of candidate square of form <UI>…… in the wrapper

which is a fail and next in the sample …….. it succeeds here. Therefore it

concludes that the sample contains candidate occurrence of tokens from 20 to 25.Now that

the algorithm found square s the wrapper has to be generalized as S+ by continuously

searching the wrapper for repeated occurrences.

Figure 15: complex mismatch

25

But the problem arises when we try to resolve a mismatch and it results in more internal

mismatches. A variant of pages about author is showcased in example 2, parsing stops at

line 15 due to tag mismatch when the algorithm tries to find the candidate tokens by

matching upward from the terminal string it results in more and more mismatches. This

situation can be handled by considering each internal mismatch as another tag mismatch

try to solve it in the same way as external mismatch. In the example internal mismatch

involves tokens 23, 9 after solving it leads to the list of editors and the second mismatch is

treated as an optional pattern <I>Special!</I>. Hence from all the above cases the algorithm

Match can be summarized as follows, Input to the algorithm is a wrapper w and a sample

page s it tries to generalize the wrapper by finding the mismatches occurred. Therefore

finding a solution to the match (w,s) is a visit to AND-OR tree in fact the solution is finding

solution to every mismatch that has occurred in the process of parsing the tree and will

involve adding a node or searching for one. Short coming of the Paper are 1) Manual

labelling the fields after extraction is necessary as they are anonymously named (like a,b,c,d

etc.,) 2) The algorithm has exponential time complexity with respect to input lengths so it

cannot be used in real time. 3) It requires more than one training page and is semi-

supervised approach.

2.2 Comparison Based Approaches:

These approaches find commonalities to identify data records by making comparisons

between the page fragments considering the web page as a tree and by performing tree edit

distance, string edit distance. These kind of systems are explained in detail as follows.

2.2.1 DEPTA: Data Extraction Based On Partial Tree Alignment

(Zhai & Liu, 2005)

This paper handles the problem of data extraction by using the tree alignment technique. It

compares adjacent substrings with starting tags having the same parent node instead of

comparing all suffixes. Their Major contributions include 1) Using a vision based approach

for building the Dom tree and identifying the data records. 2) Nested structure of data

records is not lost due to the tree alignment method used in extraction process. 3) Irrelevant

substrings are not compared to avoid unnecessary computations.

26

Author argues that data records may not be contiguous and in a nested structure it can begin

from the middle of any other record as well. Also he states that trees based on tag

information does not always guarantee correctness so vision based tag trees are reliable.

Based on these observations he proposes a novel tree alignment method on vision based

trees.

Building a vision based HTML tag tree involves Each HTML element being represented

as a rectangle. A Tag tree is constructed based on the nested rectangles by finding the 4

boundaries of the rectangle and by detecting the containment Relationship between the

rectangles. Instead of immediately mining data records author proposes to mine data

regions first then followed by data records. A data region is found by performing the string

edit distance. A generalized node is used to indicate a subtree. Unlike the other methods

author says that data records may not be contiguous but generalized nodes are contiguous.

The data records are identified by the fact that the distance between the data records in a

data region are less than the distance between any gaps with in a data record. There can be

a case in which a data region can have more than one generalized node or even two or more

data regions from multiple generalized node such cases can be handled by the algorithm.

Data extraction is performed by creating a rooted tag tree for each data record, once all the

data records are identifies the subtrees of all the data records are re-arranged into a single

subtree. Then the tag trees of all the data records are in each data region are aligned using

partial alignment method based on tree matching. In this approach author aligns multiple

left right top bottom

100 300 200 400

100 300 200 300

100 200 200 300

200 200 200 400

100 300 300 300

200 300 300 400

100 300 300 400

Table <table>

 <tr>

 <td>….</td>

 <td>…….</td>

 <tr>

 <td>…..</td>

 <td>…</td>

 </tr>

</table>

td td

tr tr

td td

Figure 16: Vision tree
Figure 17: Sample HTML code and Coordinates rendered

27

tag trees by progressively growing a seed tree Ts, here the seed tree is tree which has a

maximum child nodes. For each Ti the algorithm tries to find out for each node in Ti a

matching node in Ts . If a match is found then a link is created between those nodes if not,

a node is inserted into the seed tree. In that case where to insert a new node or a set of

unmatched sibling nodes uniquely is a question. In such case it is added to R set flag to

true, whenever a new alignments are found iteratively R is compared for matching. The

procedure is explained by using an example as follows

Figure 18: Iterative tree alignment with two iterations

28

There are 3 trees T1, T2, T3 and consider T1 as the seed as it has more number of child nodes.

Algorithm assigns Ts to the seed tree which is T1 now. The rest of the two trees are compared

to the seed tree for alignments. Ts and T2 produce one match, node b. Nodes n, c, k and g

are not matched to Ts. So, it attempts to insert them into Ts. However none of the nodes n,

c, k and g in T2 can be inserted into Ts because no unique location can be found. Then it

inserts T2 into R, which is a list of trees that may need to be further processed. In when

matching T3 with Ts, all unmatched nodes c, h and k can be inserted into Ts. Thus, T3 will

not be inserted into R set “flag = true” to indicate that some new alignments/matches are

found or some unmatched nodes are inserted into Ts. When the algorithm encounters S=∅

and flag=”true” it understands that there are no more trees in S but there are some new

alignments and insertions took place. If there is any data still unprocessed it will be placed

into a single column in the database table. Thus all the data records are extracted and stored

in the database. The results showed that their approach has yielded 99% of recall and

accuracy. Short comings of the Paper includes 1) This approach does not work nor cannot

be extended with the pages having single data record such as the detail page 2) Nested data

records cannot be extracted using this approach.

2.2.2 DEBYE: Data Extraction By Example

(Laender, Ribeiro-Neto, & da Silva, DEByE–data extraction by example, 2002)

A supervised learning system where user marks example pages there by the structure is

learnt from the pages through patterns and from it structures can be extracted by comparing

the new data records with previous one. The Major contributions of the paper involves 1)

This paper proposes Object oriented content extraction without loss of relationship between

the data items. 2) It extracts atomic components first and then it assembles them into

objects. 3) Uses pattern matching to identify the similar tokens for extraction. In this paper

each piece of data is considered as an object in the mentioned example of 4 four authors

and some of their books,

29

each piece of data is represented by an object. There exists multilevel objects they term

these as complex objects

Debye has 2 modules The Graphical interphase and The Extractor. An object is denoted as

a pair O= <T, V> such that V є domain (T) where V is a type of O. thus O is an instance of

T. domain(T)={a1,a1,a3….an}(n>=1).Instances of A-types are termed as atoms. The pair

<T, ai> is termed as attribute value pair User has to highlight the target data from the web

page using the GUI. This target data is treated as objects. Such assembled objects are used

to generate oe_patterns in xml. These patterns are used to extract data from the new web

pages. The initial and final positions of occurrence of data are indicated by ipos, fpos

respectively. Attribute value pair patterns are described as <T,ai>, a local syntactic context

is associated to each avp it is the tokens surrounded by avp. Using this context information

avp patterns are built. In the given example in order to identify avp pattern for type price

would be as expressed in (a) that the value should be prefixed by Spre =“A deadly lie--$” in

particular and suffixed by

Ssuf = “;dead online”.so it strictly extracts only specific values. A more generalized pattern

is indicated by (b) it denotes that price value is prefixed by “$” and followed by “;” and

“*” indicates any value in that place.

Author

Name

Book

Title Price

Agatha c

{(The Adventure of the

Christmas pudding, 5.95$),

(The hound

of death, 8.95$)}

Figure 19: Snap shot of a web page and hierarchical structure for the object

30

Figure 20: Extracted object in xml

Figure 21: The execution of bottom up

31

OE patterns represent the structure of the data that the user needs to extract, its internal

nodes form another OE tree or type nodes (like price, book) and leaves are avp patterns.

There are two extraction strategies specified, the bottom up and the top down strategy. The

Top down strategy is a straight forward, the oe patterns are assembled for each example

object and using these patterns to discover new objects. This procedure is repeated based

on the number of example pages provided. Here the whole object is demolished into

components thus called a top down approach. This approach does not work well if the page

is variable structure.

In the Bottom up strategy the avp’s are priory recognized and extracted. For this approach

objects are represented as triple O = <T,V,L> where t is the type of the object, v is the value

and l is the index. The last row of circles indicate the avps. Each is avp is associated with a

label li. Contiguous pairs of title, price are formed as book instances. The values in L9 are

in reverse order and L11 does not have the price component, such cases can be handled by

the bottom up strategy. The list of objects assembled after the first step are indicated in 2nd

row. Further the book instances are grouped up as list of book instances. From the example

l1 is combined with l2 and l8 is combined with l9. Thus the data can be extracted from similar

pages. Major Short Comings are 1) Extraction precision falls low in case of missing

attributes or multi-ordered attributes. 2) Multiple scan of input page is needed to extend

each atomic attribute.

2.2.3 Information Extraction From Web pages:

The paper presents techniques to extract data from web pages in any format, if the page

contains multiple records it proposes an ontology based tecnique, if it is a detailed page

then comparision with template takes place. Major Contributions of the paper are 1)

Presents web data as objects and data extractoin as the process of object attribute values

extraction. 2) Ontology based extraction mechanism for list pages and tree matching based

approach for detail pages are proposed. 3)Extraction rules are discovered based on the

positions of differences in the dom tree. In Their approach author treats web pages as 2

types 1) Master page 2) Detail page A master page is the one having list of taeget data

32

for example list of products in a e-commerce environment.When ever user clicks on a

particular product all the inforamtion appeers in a detail page. Most of all the techniques

proposed so far treat web page either as a list or as adetail page but it not the actual case.A

web page is crawled as a DOM tree and the nodes are classified by their weight, performing

prune operation on nodes with weight 0. Now that the web page is modelled as a dom tree,

the search for the data records is Breadth first search. Finds the repeated similar sub trees

by comparing the text similarity of nodes by string edit distance. In the tree text nodes are

tokenized by considering the html, special characters and conjunctions as seperators. In

order to Identifying attribute values from master page the attribute values are obtained from

ontology, They may be atomic or non-atomic sometimes even both. However we have to

match the tokens to the attribute values which is obtained with the help of the ontology.

The leverage of ontology allows us to detect the structure of data records, the cardinality of

extracted attribute values and possibly the relationships between them. The extraction

precision can be improved by the onyology extraction which can specify the attribute

labels, regular expression or key words. But certain data values can not be extracted from

domain, for example data record which has to be extracted a student name has an infinate

domain. To Identify attribute values from detail pages data extraction from detail page is

based on the observation that, web page is a template generated by embedded values form

the underlying databases. Thus they represent web page as a HTML page with variables.

These variables are in the process of template evaluation merged with the data model

having the attributes of products. Author believes that dissimilarity between web pages

<table>

<tr>

<td
>

<td
>

<tr>

<td
>

<td>

<table>

<tr
>

<td> <td
>

<tr>

<td>

Figure 22: Sample DOM tree with 2 sub trees Figure 23: Sample Dom tree

33

occurs 3 places 1) Difference between the structure of DOM tree and the Structure of Sub

trees in the web page. Below given sample dom trees to represent the similar structure but

the sub strees are not similar as their number of child trees differ. 2)Difference between the

HTML attributes or values. Because, Not that every data record will have the same

attributes. 3)Differences in text nodes , representing different values to nodes. By

identifying the differences, author proposes extraction as, Initailly retrieving the HTML

source code of 2 detail pages is performed, then apply diff algorithm to retrieve all the

different spots. Followed by finding the nearest HTML element which contains different

spot in the sub tree. If the different spot is in the child node it s clear that the pages have

the same structure except variations in values, so declare the entire next node as candidate

to be extracted. But if the difference is in HTML atrribute simply ignore it. If it is the other

case then the web pages does not have the similar structure hence pass it to other extraction

process. Thus data can be extracted from detailed and list pages by identifying their

diffrences. Short comings of the Paper include 1)Ontology is largley a manual process and

expensive often not compatable. 2)certain attributes can be of infinite domain. Such as the

product names.

2.3 Vision Based Approaches:

2.3.1 LIXTO: Visual Web Info Extraction:

(Baumgartner, Flesca, & Gottlob, 2001)

Lixto is an interactive tool for data extraction built with a logic based language called Elog.

Elog uses a data log like logical syntax and semantics. Which translates relevant html

strings into XML. The LIXTO system provides a user interface to select the data of user’s

interest. Thus selected data is translated into xml. There is no necessity for the user to have

an idea over ELOG the underlying language. Elog is wrapper programming language, it

generates wrappers for data extraction by taking input as the user selected data from the

web page. It is a collection of data-log like rules containing special extraction conditions in

their bodies. Once a wrapper is generated it can be automatically extract relevant

information from a permanently changing page. The lixto system associates the user

selected instance with a generalized tree path in the HTML parse tree, there by identifies

similar rules. For example, user selects pattern <ITEM> followed by sub pattern <PRICE

34

>, this sub pattern relationship expresses that an instance of <PRICE> should occur within

a pattern <ITEM>. Then the system searches for such occurred patterns. User can also add

conditions like after/before/ not after/range etc. Setting such filters can fetch perfectly

desired information. Pattern creation is done by User explicitly providing the patterns their

parents, can specify any attributes required then highlights all the objects in the provided

example already. For example if the user selects a <TALBE> as a pattern, LIXTO searches

for the occurrence this tag in the entire documents also highlights the <TR> tags. A rule is

constructed for generating a rule to extract all the target data items. The patterns generated

along with the hierarchical relationships are translated to XML by using their names as

default <XML> tags. Extraction language Mechanisms is as follows, Head predicates are

defined in Elog as record(S, X) where S indicates the parent pattern for instance <TABLE>

in our running example. X looks for the sub elements that qualify as S. Thus defined head

predicates are the patterns that Elog defines and extracts data according to the web page.

Lixto offers two mechanisms of data extraction- string extraction and tree extraction. In the

tree extraction mechanism elements are identified by their tree paths. An example of tree

path can be *table.*.tr here * indicates can be called a wildcard, it indicates anything can

occur. For correctly extracting only target data, attribute conditions can be applied. An

attribute condition is a triple specifying a required name, value and a corresponding regular

expression. The second extraction method is based on strings. In the parse tree leaf nodes

indicate the stings. Regular expressions are used to capture them. Elog atoms correspond

to special predicates with well-defined semantics as follows, In Elog the function mapping

a given source S to a set of elements matching an epd is treated as relation subelem(S, epd,

X). Subelem(s, epd, x) evaluates to true iff s is a tree region, epd is an element path

definition and x is a tree region contained in s where the root of x matches epd. The

extraction definition predicates specify a set of Extraction instances, the context condition

predicates specify that some other sub tree or text must (not) appear after / before a desired

extraction pattern. For example, on a page with several tables, the final table could be

identified by an external condition stating that no table appears after the desired table. The

internal condition predicates are semantic conditions like isCountry(x) or Date(x). Another

class of predicates are the pattern predicates that indicates to patterns and their relationship

their parents. A standard rule in Elog is as quoted here New(S, X) ← Par (-, S), Ex(S, X),

35

Co(S, X, . . .)[a, b], where S is the parent instance variable, X is the pattern instance

variable, Ex (S, X) is an extraction definition atom, and the optional Co(S, X) are further

imposed conditions. A set of such rules form a pattern. All the rules in a pattern uses the

same information like the name of the pattern, its parent etc. Such patterns form an

extraction program which can be applied to similar pages. For Example, A wrapper for the

above quoted example every item is stored in its own table extracted by <record> , all such

patterns are defined in the same record. The price attribute uses concept attribute, namely

isCurrency which matches with the string like $ and the bids pattern uses a reference to

price. The final two patterns are strings.

2.3.2 Simultaneous record detection and attribute labeling in web data extraction

(Zhu, Nie, Wen, Zhang, & Ma, 2006)

This paper proposes a method called hierarchical conditional labeling, A novel graphical

approach to mutually optimize record recognition and attribute naming. Major

contributions of the paper involves 1)This approach extracts data from list web pages as

well as detail web pages. 2) Uses a vision based tree construction mechanism. 3) The

problem data record detection is viewed as assigning data record labels to the block in the

vision tree. Attributes labeling is considered as assigning labels to leaf blocks, and both the

tasks can be performed simultaneously. 4) Efficiently incorporates all useful features and

their importance weights. Web pages are represented as vision trees by using page layout

features such as font, color, size separators are the horizontal and vertical lines that do not

cross any node visually. A block in a web page is represented as a node in the vision tree

Conditional Random Fields are markov random fields, If x, y are 2 random variables then

G= (V, E) where x=label over observation

Figure 25: A sample HTML page
Figure 24: HTML parse tree for the page

36

to be labelled and y is the variables over corresponding labels. Here, y could be a linear

chain.

Now the problem of web data extraction can be narrowed as finding the maximum

conditional probability of y over x, where x are the features of all blocks , y are the possible

label assignments.

Based on the hierarchical representation of data a model can be constructed by denoting

inner nodes as rectangles and leaf nodes as ellipses. A random variable Y is associated with

each label. Based on the model graph a junction tree is constructed by mapping ellipses a

clique nodes and rectangles as separators. Then the algorithm selects the arbitrary clique

node as a root node. The figure 2 represents the junction tree of the aforementioned

example. The value in each internal node are the values of that particular node along with

Figure 26: Piece of data from sample web page

Figure 27: Junction tree for the subgraph starting from 0

37

its child nodes. The value in the root is thus {0,1,2}.This is followed by two phases. Using

HCRFmodel for web extraction it is necessary to define the leabel spaces followed by

seperation between the variables at leaf nodes and those at inner nodes, because we need

to extract the attribute value of the laf node where a for the inner node has to be identified

wether it is a data record or not. There is a necessity to explicitly define lef label space and

inner label space each for its own pupose. Forexample the leaf label space for the extraction

of products data can be {Product name, product id, prcice, description etc}.

 How ever inner label space has 2 partitons object _type independent an dobject tpe

dependent.There are certain labels like page head, nav bar , page tail etc, that links to

different parts of web page. Such objects are independent of Object_type. The intermediate

labels such as data reocrs are dependent on Object_type. The feaures of Elements and

Blocks in HCRFS are for each element , the algorithm extracts both vision and content

features, all the information can be obtained form the vision tree features. The tree distance

of two blocks is defined as the edit distance of their corresponding sub-trees. To exploit the

similaruty between blocks the shape an dtype distamce can also be computed.They alo

consice that rpeated information in web pages odes not give useful information, as an

example they quote that the “add to cart” button and such types occur repeatedly in each

page which are not useful.

38

CHAPTER 3 : PROPOSED SYSTEM THE WEBOMINER_S

Problem Definition :

Given any Business Customer website W of a domain d consists of several product list

pages that are generated by a common templae T from the underlying data bases with

Schema S with tuples α. Identifying S from the webpage there by extracting α to store in a

database and further in a datwarehouse for comparative mining.

As discussed in 2.1.4 (Ezeife & Mutsuddy, 2012) proposes object-oriented data model for

extraction and mining of heterogeneous web contents. They gave the framework for extracting web

data in a B2C webpage and an algorithm (called WebOMiner) for extraction of web objects. Though

it achieved the purpose it was very complex and their wrapper have to be updated in case it

encounters a new structure. We studied their work and propose two-level mining process for

knowledge discovery. This thesis develops the architecture (we call it WebOMiner_S) for web

content and structure mining using object-oriented model. It develops, extends and modifies

necessary algorithms for WebOMiner_S system. It also discovers database schema and gives

guidelines for data integration in the second phase. This thesis addresses the following problems in

(Ezeife & Mutsuddy, 2012) work towards development of WebOminer_S System.

3.1 Problems Addressed

1. In the WebOMiner system they have divided the input web page into 3 zones the

header, body and the footer zone using the series 1 and series 2 pointers created by their

observation that a set of five or more sibling <a> tags mark the start of the body zone

marked by series 1 while the last set of 5 or more <a> tags indicates the end of body

zone recorded by series 2 pointer. This was done in order to eliminate the noise and

narrow down the search for target data which is the product data to the body zone. This

Assumption might not always work as expected since every web site has it’s own way

of design and presentation. We have eliminated this whole process by identifying the

repeated block level tags.

2. They have classified the data on the web page into 6 types of content objects, product,

list, form, text, noise and singleton. They have discovered structures for each and built

NFA’s to identify them, this is very time consuming and semi-supervised because their

Product NFA has to be trained before identifying the new data. We have overcome this

tedious process with our frequent structure finder algorithm in chapter 3.

39

3. In their work (Ezeife & Mutsuddy, 2012) has used NFA’s to identify similar tuples,

however the web data is very susceptible to change so with time many new structures

of product data records might evolve and their NFA has to update the new structure

every time. We have overcome this problem in chapter 3.

4. They have proposed the framework to extract and store in database but the discovery

of schema has been pending, we have addressed this in our work in chapter 3.

 3.2 Problem Domain

For the specific domain of B2C websites, we have selected to mine all the data rich web pages, i.e.,

the product list page.). From the common B2C webpage structure shown in figures 05 and 06 (page

20 and 21), product list webpage is commonly a data rich page. We observed that, a product list

page usually contains brief list of all or specific types of products. There is a set of product list

pages in a B2C website. We define a product list page as follows:

Definition 1: If ‘w’ is a B2C website and ‘p’ is a webpage in ‘w’ such that
n

j
jpw

1
 ,

then a page pjw where j≥1, is a product list page iff ‘pj’ contains a set of tuples τ of type α, where

α ≥ 1, having distinct instance type.

Definition 2: The data block contains specific information about the specific product such

as product name, price, brand, size, etc.

If ‘p’ is a web page it consists of different sets of tuples ‘t’ of type α, where each α is a set

of similar list of objects and each object having a finite set of attributes r, then each object with its

corresponding attributes forms a data block.

Example : In the figure shows a web page p it consists of different sets of tuples of type

product, advertisements, navigations, header etc., and each type has a similar list of objects like

the product type has 8 objects with a set of attributes like price, color, brand, hard disk etc.,

 These data blocks has to be stored into a database as a data tuple. In the html Dom tree a

data block is a sub-tree of the Dom tree having the same or different parent node. The tags that are

used to form a data block are <div>,<table>,<tr>,<td> etc., as per w3 consortium.

Definition 3: All the data bocks in the webpage together form the data regions and a

webpage can have a finite set of data regions depending on the type of data it presents.

If ‘p’ is a web page it consists of a set of data regions of type β where each β is a set of data

blocks and are finite.

40

Example: In the figure given p is a web page and it consists of a set of data regions of type

product, navigational, header, advertisements et., where each has a set of data blocks. The product

data region is formed by the 8 data blocks that are similar with common attributes.

When extracted a data region into a relational database forms a product data base table

with each product’s information as a data tuple. In the html Dom tree a data region is a group of

similar data blocks with same parent node and are siblings.

With Such web pages having several data regions with data blocks there is no easy way to pick our

target information which is the product data. Also, this set of key information is similar for almost

every product list pages but their schemas may be different. On observing various B2C websites

we have proposed our automatic web data extraction system based on these observations.

Observation 1: All the B2C websites present and style their content using External CSS (discussed

in section 1.4). Where all the product data blocks belong to the same category displayed in a page

are styled similar by grouping them using the <div> tag and assigning same styles from the CSS

file using the class attribute.

We made use of this observation to recognize the product data regions without performing laborious

calculations and classifications on the page which makes the whole task inapplicable.

However, now that we have recognized all the data regions one of the other hard job is to identify

the product data region among them.

Observation 2: In the Dom tree representation of web page, the most repeated set of tags are the

product data block tags. i.e., the underlying html source code of a product rich web page consists

of tags that represents all the data that is being displayed and in them we have observed that the

tags that are used to represent the product data blocks are similar to each other except the change

in the content.

Thus identifying the set of continuous tags as a structure all over the web page narrows down our

search for the product data region.

Observation 3: The Structure of the product data blocks is the most repeated set of html tags with

maximum length all over the web page.

Thus our final observation lead us to pointing the product data region with all the product blocks.

However we do not assume that all the data blocks are continuous thus we only look for blocks that

41

use the same class name but we do not compare all the tags to each other like most of the existing

systems did.

3.3 Proposed WebOMiner_S Architecture and Algorithm:

 We have developed the architecture for extracting product data records from B2C websites

automatically, we address it WebOMiner_Simple which is as shown in the figure 30 below:

Figure 28: WebOMiner_S Architecture

The architecture in the figure 31 has 5 modules 1) The Crawler Module 2) The Cleaner Module 3)

The Parser Module 4) The Frequent Structure Miner Module 5) The Schema Extractor Module. All

of these modules are called sequentially by our main algorithm WebOMiner_S as shown in figure

30

42

Algorithm WebOMiner_S()

Input: Web addresses of two or more product listpages (Weburls).

Output: Set of Table Schemas (S) for each Web document.

Other: Set of HTML files (WDHTMLFile) of web documents,

WDHTMLFile# (set of clean HTML files),TempXMLFile, tagoccur file

Begin

(A) for each web address (Weburls)

Begin

(1) WDHTMLFile = Call the Crawler() to extract webpage (Weburls) HTML into local

directory.

(2) WDHTMLFile_ = Call HTMLCLEANER-2.2 to clean-up HTML code

(3) Call the Parser() to first create temporary XML file of WDHTMLFile_ as Temp XML

File, and next use the regular expressions on Temp XML File to summarize all tags’s

number of occurrence in a tagoccur file

(4) Call the Frequent Structure() finder to first create a DOM tree with

DocumentBuilderFactory() using clean html file WDHTMLFile_ . Then, it uses the

tagoccur file with the DOM tree to identify block tags and its class attribute which has

the most frequent similar repeating sequence of tags.

(5) Call Schema Extractor() which uses the frequent structure and the DOM tree to

associate each data retrieved with data type and to create the discovered table schema

in a database and insert data into it.

End for

End

Figure 29: WebOMiner_S Main Algorithm

43

Working of the algorithm and all the modules will be discussed and explained below.

3.3.1 The Crawler Module:

Our crawler module is responsible for extracting the HTML source code of the given product web

page from the World Wide Web (WWW). This module takes as its input the web page address

(URL), using which it extracts and stores its HTML source code in a file in the local computer

directory as uncleaned.html. Our crawler module is similar to the WebOMiner’s . They (the

WebOMiner system) have proposed a mini-crawler algorithm which crawls through the WWW to

find targeted web page, streams entire web document including tags, texts and image contents and

it then creates a mirror of original web document in the local computer directory. It dumps the

comments from the html document. Figure 34 shows a sample input web page to our crawler, which

is a product rich web page from the bestbuy.ca website of the URL www.bestbuy.ca/laptops.html

Algorithm Crawler()

Input: Web addresse of a product list page (Weburl).

Output: Html page of the input URL as uncleaned.html in local directory

Begin

(1) URL url = new URL(inputUrl) //Create URL object and assign the input url

(2) URLConnection urlConnection = url.openConnection() //Create a url connection

object

(3) BufferedReader bufferedReader = new BufferedReader(new

InputStreamReader(urlConnection.getInputStream()))

//Wrap the url connection in a buffered

reader

(4) while ((line = bufferedReader.readLine()) != null)

 {

 content.append(line + "\n")

 }

//Read the URL connection via buffered

reader

(5) BufferedWriter writer = new BufferedWriter(new FileWriter(uncleaned.html)

If writer is not NULL

 Writer.write(content)

//Write content into file uncleaned.html using bufferedwriter

(6) Save File uncleaned.html.

End
Figure 30: Algorithm crawler

http://www.bestbuy.ca/laptops.html

44

which is the input to our crawler module. Our algorithm creates a URL object and assigns the input

URL to it and then creates a URLConnection object to establish connection to the server using the

method OpenConnection(). As the server responds to the connection with the html page our

algorithm wraps it into a buffered reader and reads all the contents received from the server into a

variable and finally writes it into a file called uncleaned.html saving it in the local directory. With

this step we have our html source code to process. Figure 35 shows the html source code of the

input web page starting from the tag <html> and ends with </html> in between all the contents of

the web page are in respective tags.

45

Figure 31: Input web page

46

<html>

 <head>

 <title>bestbuy</title>

 </head>

 <body>

 ……………

 ……………………..

 <li class="top-lvl menu-item parent-item parent-services"><a href="javascript:void(0)" class="link-
top link- services">SERVICES

 <ul class="sub-nav mega-menu menu-list">

 <li class="menu-item">

 <div class="services-content">

 <ul class="column-4">

 <li class="menu-item first">

 <a class="icon icon-gs" href="/en-
CA/GeekSquad.aspx?NVID=Services;Geek%20Squad;im;en">Geek Squad

 <p>From computer glitches to smartphone mishaps, Geek Squad can save the day.
Our Agents are ready and waiting to set up, support, protect and repair.</p>

 <a href="/en-CA/category/geek-
squad/22042a.aspx?NVID=Services;Geek%20Squad;im;en">Learn more >

 <div class="prod-saving">

 ……………..

 ……………………..

 ……………………………….

 ………………………………………

 ……………………………………………..

 </body>

</html>

Figure 32: uncleaned.html

47

3.3.2 The Cleaner Module:

Html is not a structured language, tags not being closed or missing tags, improper ordering are very

common in the html source code of web pages. It is not possible to build Dom tree from ill-formatted

html code, so the raw html source code in the local directory as uncleaned.html has to be cleaned

before any further processing. The idea of cleaning the source code had been inherited from the

WebOMiner, however we have used a much advanced cleaner for this purpose. JTidy is an open

source html parser in java that is used to clean the malformed html to insert missing tags, reorder

tags, attributes or text, remove comments and convert it into a well formed Xhtml.

Figure 33: Clean Html File

48

The input to the cleaner module is the uncleaned.html file, it is processed by JTidy according to the

properties set and the cleaned Xhtml file will be saved in the local directory as cleaned.xhtml. Figure

36 highlights the snippet cleaned Xhtml file that has been generated after cleaning the source html

file.

3.3.3: The Parser Module:

There is need to convert our clean html file from step 2 to a temporary XML file containing only

block level tags so that we can evaluate the tags to retrieve their number of occurrences. The parser

module takes as input the cleaned html file from the previous module. A temporary xml file (such

as Figure 39) is created by recording all the block level tags such as <div>, <table>, <tr>, ,

, etc., from the input html page. In the running example, tags such as

 <div class="welcome" id =”servecesgiven”>, <div class=”deal”>etc., from the cleaned.xhtml file

are recorded into temporary xml file. While creating the temporary xml file, all the attributes in

these block level tags like “id”, “src” etc., were excluded and only the class attribute is retained

such as <div class="welcome">, in the running example as the class attribute holds the information

regarding which particular class of CSS is being used by this tags which indeed helps us find the

block that has been occurring frequently with the same style. Figure 39 shows the temporary xml

file for the sample input page from the previous modules, where all the block tags were recorded

with only class attributes. The algorithm now calls the search_string() method which uses java

regular expression parsing to check the occurrence of each tag with the corresponding class attribute

in the entire temporary xml file. Thus, the summary of found repeated tags (those occurring at least

3 times since it is uncommon to have B2C web sites listing less than 3 products) along with the

number of occurrences are stored into a tag occurrence file. In the running example <div

class="welcome"> has occurred 1 time, the tag >div class= “banner”> has occurred 2 times in the

temp.xml file followed by the other repeated tags. Figure 40 shows the tag occur file for the running

example with all the block tags and their occurrences.

49

Algorithm parser()

{

Input cleaned html file

Output Temporary xml file with block tags

 Occurrence Data file with count of tag occurrences

Begin

1) Arraylist occurnodelist[]

2) For each line in cleaned html file

3) IF line is a block tag

4) Write line into temporary xml file

5) End IF

6) End For

7) For each line in temporary xml

8) Call function searchString() by passing temporary xml file and line as parameter

9) it returns no of occurrences of that line

10) If occurnodelist[] does not contain line

11) Add line to occurnodelist[]

12) Write line and its number of occurrences into a file occurrence.data

13)End For

End

Figure 34: Algorithm parser

50

Algorithm Searchtring()

Input: line from temporary xml file

Output: no of occurrences of the given line

Begin

1) Create object to Java regular expression pattern matcher()

2) Create a matcher object

3) For each line in temporary xml

4) If Line not in occurnodelist[]

5) Using matcher object check if the current line in temporary xml

Matches the input line

6) Increment count

7) End If

8) Return count;

9) End

Figure 35: Algortihm search_string

51

Figure 36: Temporary Xml file

Figure 37: Occurrence data file

<divclass=“welcome">
<divclass=“bannar">
<divclass="supporting-info">
<divclass=“product”>
<divclass=“deal”>
<divclass= “prodwrap”>
<divclass=“prod-im”>
<divclass=“p-img”>
………..
………..
………..
<divclass=“review”>

<divclass=“product">1
<divclass=“bannar">2
<divclass="supporting-info">4
<divclass=“welcome”>1
<divclass=“deal”>4
<divclass= “prodwrap”>12
<divclass=“prod-im”>12
<divclass=“p-img”>12
………..
………..

……….
………..
<divclass=“review”>9

52

3.3.4: The Frequent Structure Finder Module

The aim of the frequent structure finder module is to find the most frequently repeated blocks with

more number of children in the web page that are styled similar. These features are represented in

html source code as finding the frequently repeated block tags with same class name in the entire

Dom tree which are our product data blocks. The nodelist struct_list is used to hold the candidate

product blocks, nodelength holds the number of occurrences of the candidate product block, no of

childs holds the number of children for the product block and initially both the values are zero. The

NodeList data_tuples holds the Final Product block. First, Dom tree is built from the cleaned.xhtml

file generated in the second module. This Dom is the tree representation of the entire html source

code discussed in section 1.6 and a model Dom tree is used to present the algorithm in an

understandable way in figure 41. Another input to the fs_finder algorithm is the tag occur file from

the parser. The tag occur file holds all the block tags with their class name and number of

occurrences.

Figure 38: Dom tree

For every tag in the tag occur file that has number of occurrences at least 3(assuming a product list

web page has at least 3 products), a dynamic Xpath expression is generated and the Dom tree is

queried to find the occurrences of this tag. For the running example the tag <divclass=“product">

53

is omitted as its count is less than 3, so is <div class= “welcome”>. The tag <div class=” supporting-

info”> has occurred 4 times, as it satisfied the condition the Xpath expression is generated as path

= "//div[@class='supporting-info']" and every occurrence of this tag all over the Dom tree is found

and assigned into a nodelist(figure 42) to find the number of occurrences using the method

getlength() and number of child nodes using the method getchildnodes() while they are assigned to

nodelength =4 and no_of_childs= 1 respectively. Note that tag <div class= “supporting-info”> has

occurred 4 times all over the Dom tree, as we cannot show the entire tree only 1 occurrence of it is

visible in the snippet Figure 43

<div class=

” supporting-info”>

<div class=

” supporting-info”>

<div class=

” supporting-info”>

<div class=

” supporting-info”>

Figure 39: Nodelist struct_List

The next tag <divclass=“deal”> is also processed in the same way, by generating an Xpath

expression path = "//div[@class='deal']" every occurrence is stored in a NodeList and the values of

nodelength is 4 while number of childs is 4 (as shown in figure 44) these values are greater than the

previous so the data_tuples is updated to <div class= “deal”>. The next tag is <divclass=

“prodwrap”> has nodelength= 12 and number of childs= 5 (figure 45) so the data_tuples is now

updated to <div class= “prodwrap”>. The next is <divclass=“prod-im”> with nodelength=12,

number of childs = 1 our condition that product block should have maximum children and should

be repeated maximum number of times will not be satisfied with this tag because though the number

occurrences in nodelength is equal the number of childs is lower so this tag is not considered and

values are not updated. The same process continues until the end of tag occur file thus finding the

most frequently repeated block with more number of children and the discovered product block in

the NodeList data_tuples. In the running example the product block discovered by the algorithm is

<div class=”prodwrap”> having 5 Childs and occurrences 12.

54

Figure 40: Dom tree <div class=”supporting-info”>

55

Figure 41: Dom tree <div class="deal">

56

Figure 42: Dom tree with <div class= "prodwrap">

Using the parent tag its complete block is retrieved from the Dom tree, in our running example the

tag <div class=”prodwrap”> all of its children are retrieved and stored in NodeList to discover

schema of the product block.

57

For the product parent tag <div class= “prodwrap”> all of its children are retrieved in depth first

search are as the Dom tree structure represented in figure 47 and are saved in NodeList.

Figure 43: Dom tree product blocks

58

Algorithm FSfinder()

Input: occurrence data file (occur), cleaned html file (clean)

Output: Nodelist frequent structure (FRS)=null(for product blocks names), data tuples(for product blocks
values)

other: Domtree: file

FINAL nodelength = 0, no of childs = 0, final childs = 0

xmlnodetag: string (for complete block node),

xpathExpression expr: string, path : string

previous product block: integer

Nodelist Tagstructure, struct list, data tuple, product block

xmlnodetag IDCount = 0, nodes length: integer

Packages:Java DOM, Java Xpath, Java transformer

begin

1. Domtree = Call DocumentBuilderFactory(clean)

2. Create object xpath for xpathfactory() to use its methods to retrieve all nodes that match the

path expression from Dom tree.

3. for each xml tag in tag occurrence file occur,

3.1 Retrieved xml is stored into xmlnodetag

3.2 path = “//div[@class=’“+xmlnodetag+”’]”; (The class attribute in xmlnodetag is assigned to

the variable dynamically in each loop)

3.3 xpathExpression expr =xpath.compile(path)

3.4 struct list= xpath.evaluate(Domtree,

XPathConstants.NODESET)

// This retrieves all the nodes that match the path expression using xpath

object for this xml

3.5 node length = struct list.getlength()

3.6 no of childs= struct list(0).getchildnodes().getlength()

3.7 If (node length >= FINAL nodelength and no-of-childs > final childs)

3.7.1 product block = xmlnodetag

3.7.2 FINAL nodelength=node length

3.7.3 final childs = no of childs

59

3.7.4 data tuple=struct list

end for

4. if product block has child

5. for each child node in product block

Begin

5.1 FRS = FRS append child node to the frequent structure

5.2 Read next node

end For

6. Return data tuple

end

Figure 44: Algorithm fs_finder

< divclass = “prodwrap′′ >

 <h4 class="prodTitle">
 <a
id="ctl00_CP_ctl00_C3_ctl00_LT_SL_ctl01_ctl00_CalltoAction"
href="http://www.bestbuy.ca/en-CA/amd-a-series.aspx">Asus 5’6
laptop
 < divclass = “prodImage′′ >

 < divclass = “prod − image′′ >

 < /div > < /div >

< divclass = “prodDetails′′ >

 <h4 class=“prod-Ram”>500GB</h4>

 <h4 class=“prod-HDD”>4GB</h4>

 <h4 class=“operat”>Windows 10</h4> < /div >

 < divclass = “ProdPrice′′ >

 <h1>$678”</h1> < /div >

 < /div > < divclass = “clear′′ > . . . < /div > < /div >

Figure 45: Frequent Structure

60

3.3.5 The Schema Extractor Module:

This module performs the task of extracting both the table schema and the product tuples from the

frequent structure (sequence of tags). It converts the schema of the database table retrieved by the

FSFinder algorithm to a data warehouse schema by appending an integration attribute called

“storeid”, and a history attribute called “time”. Those two attributes will enable integration of tuples

from different web sites at different timestamps for comparative and historical querying. A product

tuple P is a product with attributes a1, a2, a3, . . ., an. This module takes as input both the frequent

structure pattern and the nodelist data_tuples that has all the product data blocks which has to be

extracted and stored into database. The schema extractor assigns corresponding datatypes based on

the tags to the frequent structure pattern for the table schema. If it is an < img > tag the data type

image will be assigned, if it is any of < p >, < span >, < li >, < a > tags, data type “string” will be

assigned, etc. Finally, the data warehouse schema is discovered from the web page. This can be

used to create and update a database table and further creating a data warehouse when an integrative

attribute “storeid” and a historical attribute “time” are appended to the table schema. Having a data

warehouse schema allows for comparative mining and historical querying. Table 2 shows the table

schema extracted from the running example. Once the database or warehouse schema is defined,

the actual data tuple instances is extracted from the nodelist data_tuples which holds all the product

blocks with their parent nodes. From the Dom tree, each parent node is checked if it has child nodes

and contents are updated into the database/warehouse.

61

Algorithm schemaFinder()

Input: Frequent Structure

Output: Data Base table with product records

Begin

 1) String Web_Schema

2) FOR Each tag IN frequent structure

3) IF tag = img

4) Assign data type blob and add this to web schema

5) ELSE IF tag = text

6) Assign data type varchar and add this to web schema

7) END IF

8) END FOR

9) Create Table web_Schema

End

1) For Each product block in data_tuples

2) For Each Tag in product block

3) If tag = img

4) Content += Retrieve src || data-url

5) Else if tag = text

6) Content += retrived text data

7) End if

8) End For

9) Insert content into database table

10) End For

Figure 46: Schema Extractor

62

Store id Tim

e

Column

_1

Column_

2

Colum

n_3

Colum

n_4

Colu

mn_5

Colum

n_6

Colum

n_7

Colu

mn_8

bestbuy

_1

31-

05-

201

6

11:0

0

Asus

5’6

laptop

bestbuy/1

043.img

I5

process

or

4GB Looks

good

$678 500GB 3

… …. …. …. … … …. … …. ….

Figure 48: Dtabase table generated

Discovered schema for a single page of bestbuyWebsite is below:

Product_table(column_1: String, column_2: String, Column_3: String, Column_4: String,

Column_5: String, Column_6: String, Column_7: String, date : date, store_id: String)

Figure 47: Discovered Schema

63

CHAPTER4: EVALUATION OF WEBOMINER_S SYSTEM

We have performed the implementation of our algorithms and have presented them in the most

robust, scalable and generalized form. More improvement is required in our algorithms of our

system to make them robust enough to handle various kinds of complex commercial websites and

their structures. Our crawler module needs to be automated such that the positive web pages can be

discovered without human intervention. Our system uses JTidy to clean the raw html pages but

developing our own focused cleaner to remove noise and clean the webpage can reduce the overload

on the followed modules in terms of comparisons and IO. However, we have discussed our

preprocessing and limitations in detail in the appendix section 7.0. At this point we have tested our

system on the real time web pages from different websites with different structures and domains to

showcase our robustness and usability.

4.1. Empirical Evaluations

We have tested our system on 50 real time web pages each belonging to a different website having

various products and has different structure. The product data records from each website belong to

different domains such as electronics, music, hardware, travel, apparel, accessories etc. Our system

is implemented in java programming language. We then run our system in 32-bit windows 10

operating system, 8 GB RAM with an Intel core i5 2.60GHz processor Lenovo ThinkPad Machine.

We have used the standard precision and recall to evaluate our system for both number of data

records to be retrieved and also their number of columns in schema retrieved. Precision is measured

as the average in percentage of the number of correct product blocks retrieved to the retrieved

number of product blocks by the system, while the recall is measured as the average in percentage

of the number of correct product blocks retrieved to the actual number of product data blocks in the

web page. Our results were tabulated in the Table 1 below

64

Product web page

Actual Product Data

Values

Extracted Product Data Values

No of

Product

blocks

Schema

fields

Discovered

Product

Blocks

(correct)

Discove

red

Schema

fields

Discovered

Missing

Schema

fields

Discove

red

Irreleva

nt

Schema

fiends

www.bestbuy.ca 32 5 32 7 0 2

www.guess.ca 12 5 12 5 0 0

www.costco.ca 25 7 25 7 0 0

www.tripadvisor.ca 44 6 44 6 0 0

www.musiciansfriend.ca 19 6 19 6 0 0

www.homehardware.ca 15 5 15 5 0 0

www.michaelkors.ca 22 5 22 6 0 1

www.sony.ca 34 8 34 8 0 0

www.toysrus.ca 19 6 19 6 0 0

www.Ebates.ca 7 6 7 6 0 0

www.tobi.com 90 6 90 6 0 0

www.iga.net 20 5 6 6 0 1

www.rietmans.ca 12 6 12 6 0 0

www.shopclues.ca

36 4 36 4 0
0

www.lacoste.com 37 6 37 6 0 0

http://www.michaelkors.ca/
http://www.sony.ca/
http://www.toysrus.ca/
http://www.ebates.ca/
http://www.tobi.com/
http://www.iga.net/
http://www.rietmans.ca/
http://www.shopclues.ca/
http://www.lacoste.com/

65

www.apple.com 15 8 15 10 0 2

www.hollister.ca 27 10 27 11 0 1

www.abercrombie.ca 21 9 21 9 0 0

www.ebags.ca 13 7 13 7 0 0

www.katespade.ca 27 5 27 5 0 0

www.inetvideo.ca 11 10 11 9 0 1

www.shot.tcm.com 25 15 25 16 0 1

www.nationalgeagraphi

c.com/store.com
13 5 13 5 0 0

www.disneystore.com 96 7 96 7 0 0

www.industrykart.com 12 16 12 16 0 0

www.guitarcenter.com 17 9 17 10 0 1

www.votawtool.ca 100 9 100 9 0 0

www.fossil.ca 20 7 20 7 0 0

www.ninewest.ca 49 7 49 7 0 0

www.dkny.ca 12 5 12 5 0 0

www.shop.ca 11 4 11 4 0 0

www.canadacomps.ca 10 6 10 6 0 0

www.evine.com 23 9 23 10 0 1

www.visions.ca 8 7 8 8 0 1

www.shopmyexchange.

com
27 8 27 8 0 0

www.creatronic.com

www.rakuten.com

16 7 16 7 0
0

www.sweetwater.com 37 6 37 6 0 0

http://www.apple.com/
http://www.hollister.ca/
http://www.abercrombie.ca/
http://www.ebags.ca/
http://www.katespade.ca/
http://www.inetvideo.ca/
http://www.shot.tcm.com/
http://www.disneystore.com/
http://www.industrykart.com/
http://www.guitarcenter.com/
http://www.votawtool.ca/
http://www.fossil.ca/
http://www.ninewest.ca/
http://www.dkny.ca/
http://www.shop.ca/
http://www.canadacomps.ca/
http://www.evine.com/
http://www.visions.ca/
http://www.shopmyexchange.com/
http://www.shopmyexchange.com/
http://www.creatronic.com/
http://www.rakuten.com/
http://www.sweetwater.com/

66

4.2 Experimental Results

The purpose of our experiment is to measure the performance of WebOMiner_S system for data

record extraction. Table 1 shows large scale experimental results as performance measure for our

WebOMiner_S system. We have taken one page per each website for experimentation and the

numbers in “Actual data records” column shows the number of product blocks in the web page

including the number of columns in the schema per each web page. The other column “extracted

www.earlymusicshop.co

m
33 9 33 10 0 1

www.1-800-bakery.com 19 7 19 7 0 0

www.eaglemusicshop.c

om
14 7 14 7 0 0

www.albertsonsorders.

mygrocer.com
26 8 26 8 0 0

www.goboplay.com 19 6 19 6 0 0

www.vistek.ca 162 5 162 5 0 0

www.framesdirect.ca 12 5 12 5 0 0

www.ca.oakley.com 23 7 23 7 0 0

www.ethoswatches.com 103 6 103 6 0 0

www.thegadgetshop.ca 11 6 11 6 0 0

www.shurecanada.ca 23 7 23 7 0 0

www.ilookglasses.com 30 7 30 8 0 1

Total 1489 342 1489 358 0 16

Results Precision Recall

Product data records 100% 100%

Schema Fields 95.55% 100%

Table 1: Experimental Results

http://www.earlymusicshop.com/
http://www.earlymusicshop.com/
http://www.1-800-bakery.com/
http://www.eaglemusicshop.com/
http://www.eaglemusicshop.com/
http://www.albertsonsorders.mygrocer.com/
http://www.albertsonsorders.mygrocer.com/
http://www.goboplay.com/
http://www.vistek.ca/
http://www.framesdirect.ca/
http://www.ca.oakley.com/
http://www.ethoswatches.com/
http://www.thegadgetshop.ca/
http://www.shurecanada.ca/
http://www.ilookglasses.com/

67

number of data records” shows the number of records that the system has identified as product data

records and the number columns of data it has extracted. The row total indicates that when there

were 1489 data records the system has extracted all of them exactly and it did not miss out any

target data nor did it extract any noise. While the algorithm has also performed well in extracting

the schemas in out of 342 columns in total it has extracted all of them, however it has extracted 16

irrelevant columns for 14 webpage schemas that does not have much meaning in the product

database.

We observed that the reason for these irrelevant columns is the noise that has been embedded into

the product block in the web page, here noise means textual data in the product block itself that

does not belong as an attribute to the product object. For example, check box below each product

enabling users to compare other products has the text tag value as “comparison”, “select

comparisons” or “quick-view” etc., which is noise bit as it this is inside the product data block we

do not have any methods to remove this detect and remove this noise. For instance as shown in the

figure 50.

Figure 49: noise extracted

68

4.3. Comparison with the WebOMiner

 Our system performs better than the WebOMiner in terms of scalability and extendibility which

are the two key aspects of web data extractors. Scalability is very important to a data extraction

system since the World Wide Web is massive and mining target data from it should be possible in

feasible amount of time also being accurate.

1. The WebOMiner sequentially compares each NFA with the content object in the content object

array and it has 6 types of NFA’s for a single webpage their system is highly complex and takes

computationally more amount of time compared to WebOMiner_S. Also the WebOMiner performs

the unnecessary computations as it does not just extract the product tuples but also the other 5

content type objects which are not at all fetched by our system. We have tested performance of both

the systems on a large e-commerce website (www.bestbuy.ca) which has over 16 categories of

products (baby, electronics, clothing etc.) each category with again 15 subcategory(electronics ->

laptops, cellphones etc.) with an average of 80 products each web page there are around 20,000

products. Our system took 838 milliseconds to identify, extract and create data warehouse table for

a web page of 32 products whereas the WebOMiner took 1276 milliseconds to update already

created database. In the next case to check if

Figure 50: Comparison on system runtime

the presence of more products on one web page increases the run time we have tested both systems

on web page with 96 products, the results have shown only a slight increase in runtime in our system

while almost double increase on WebOMIner runtime. Finally, to test the scalability we have ran

both the systems on an entire large website (www.bestbuy.ca with 20,000 products) proving our

system is highly scalable than the WebOMiner(7.66 minutes) as it takes nearly only half the time

4.00 minutes.

0

5

10

Web page (32
products)

Web Page (96
Products)

Web Site(20,000
products)

Scalability : comparison on system Runtime
WebOMiner_S
WebOMiner

http://www.bestbuy.ca/

69

2. Dependency in the process of extraction, The WebOMiner trains its NFA’s to identify the product

tuples thus creating a dependency between the previously fetched product data and the new ones

which makes it inapplicable to varied domains but the proposed system is completely independent

and dynamic in data extraction.

3. In terms of performance and correctness system has achieved 100% precision and recall in

identifying product data blocks. On the other hand our schema discovered has 95.55% precision

and recall 100% in discovering schema of the web pages where as WebOMiner is not capable of

fetching schema automatically rather their schema is predefined and same for every product.

4.4 Limitations

1. The product tables generated dynamically does not have appropriate column labels or specific

ordering of data columns rather for each web page based on their frequent structure their schema is

discovered. It is limitation because, in order to integrate product data from multiple tables (bestbuy,

Costco) the specific columns are needed (e.g. price from bestbuy and price from Costco) cannot be

discovered automatically to integrate as the system will not know which column is price. In order

to overcome this column names has to be given appropriately. This problem can be solved using

some ad-hoc features such as 1) If all the data items in the column contains “$” sign name the

column as “price” and assign datatype integer. 2) If the length of the data in the column is greater

than 18 name it as “description”. If the data contains one or two digits without any $ sign name it

as “ratings”.

2. Our algorithm retrieves in block noise which is, the information present in the product block that

is not an attribute of product. Example “compare” in bestbuy web page for each product. Such in-

block noise are same for every product data record. Which means for every product data record the

data of the column will be same “compare”. In order to remove this using regular expressions to

compare each data item in that column and if they are same it indicates that this column is noise

and it has to be deleted from the table.

70

CHAPTER 5: CONCLUSION AND FUTURE WORK

This thesis proposes the system WebOMiner_Simple that uses an easy to understand and less

complex technique to improvise the WebOMiner which uses the technique of using NFA’s to

extract product data from b2c websites. Also the WebOMiner could not address the issue of

complete automation in web data extraction systems which the proposed system has solved by

dynamically discovering the schema for each given web page and does not need any training data.

Our architecture has 5 modules, the crawler, cleaner, parser, frequentstructure_finder and the

schema extractor module. We have modified algorithms for crawler initially given by the

WebOMiner, modified freeware software “JTidy” for the cleaner module and have developed

algorithms for the parser, frquentstruture_finder module and the schema extractor module. In this

thesis we have used the web content and web structure mining techniques to find the frequently

repeated blocks of html tags to discover the product data and their schemas. In contrary to the

WebOMiner we propose not to evaluate any of the tag attributes to find the product content instead

finding the frequently repeated set of tags with maximum children and maximum repetition are our

target product data blocks. In order to find this we have used the XPATH language to find out the

block level tags with the same class name occurring all over the Dom tree of the web page. Once

we discover product blocks using the FS_finder our schema extractor now automatically discovers

the schema of the web page and stores in the database by appending the integration and historical

attributes. We are currently working on development of the web application which can answer

complex historical queries and can mine the data by integrating the tables generated which will be

available to the public for performing comparative mining using the GUI.

5.1 Future Work

We feel that our effort of mining the product data records automatically in a simplistic way has a

lot of room for improvement.

1. Our algorithms are only capable of extracting the meta data available on the “product list

page”, it can be modified and extended to extract complete product specifications and

details from the “detail product page”. The detail page can be identified by finding the link

to it(<a> tag that leads to detail page) in the frequent structure generated by our fourth

module and extending our algorithm to extract data from it.

2. Another improvising to our system can be in the crawler module by automatically

identifying the target product page using a focused crawler. Web crawling and target page

identification has its own vast radius in research so developing an automatic product page

crawler would be quite challenging yet very useful. In order to identify the positive product

list web page the number of in links and out links of the page can be counted and the positive

71

page is the one with more number of out links as each represents a detail page of each

product.

3. We are using the open source software JTIDY to clean the raw html this cleaning phase is

more generalized and does not give much scope for us to remove unnecessary noise at this

phase itself, modifying this module to achieve such purposes will lead to further better

system.

4. One of the main limitation of our system is, We have implemented our system on static

html pages to try to achieve the goal of data extraction in simplistic way now this can be

extended to “onclick” and “onload” html pages that are built on the users click using

technologies like ajax and jquery etc., This is one of the major improvement that the system

needs. In order to achieve this an embedded browser component can be used. The

embedded browser can be plugged into the current system it them loads web page

requested by the user including all the java-script and ajax functions, scriplets and the html

code generated after calling the functions can be found from the embedded browser

component. Now this html code can be given as input to our system to extract product data.

Some of the well-known embedded browser components are “web developer toolbar”,

“firebug” etc.,

5. Now that we have created the data warehouse of products further mining and querying

functionalities are to be extended to analyze the database tables and to perform the

comparative analysis and also to discover potentially useful patterns based on the historical

data and thus to make predictions on future data thereby being able to recommend users

with appropriate products on the time.

72

REFERENCES

Adelberg, B. (1998). NoDoSE—a tool for semi-automatically extracting structured and

semistructured data from text documents. ACM Sigmod Record. ACM.

Annoni, E., & Ezeife, C. (2009). Modeling Web Documents as Objects for Automatic Web

Content Extraction-Object-oriented Web Data Model. ICEIS (1), (pp. 91-100).

Arlotta, L., Crescenzi, V., Mecca, G., & Merialdo, P. (2003). Automatic annotation of data

extracted from large Web sites. WebDB (pp. 7-12). Citeseer.

Baumgartner, R., Flesca, S., & Gottlob, G. (2001). Visual web information extraction with lixto.

VLDB, (pp. 119-128).

Bhavik, P. (2010). A survey of the comparison shopping agent-based decision support systems.

Journal of Electronic Commerce Research, 178.

Chakrabarti, S. (2000). Data mining for hypertext: A tutorial survey. ACM SIGKDD Explorations

Newsletter, 1-11.

Chang, C.-H., & Lui, S.-C. (2001). IEPAD: information extraction based on pattern discovery.

Proceedings of the 10th international conference on World Wide Web (pp. 681-688).

ACM.

Chang, C.-H., Kayed, M., Girgis, M., & Shaala, K. (2006). A survey of web information

extraction systems. Knowledge and Data Engineering, IEEE Transactions on, 1411-1428.

Cooley, R., Mobasher, B., & Srivastava, j. (1997). Web mining: Information and pattern

discovery on the world wide web. Tools with Artificial Intelligence, 1997. Proceedings.,

Ninth IEEE International Conference on (pp. 558-567). IEEE.

Crescenzi, V., Mecca, G., & MerialdO, P. (2001). Roadrunner: Towards automatic data extraction

from large web sites. VLDB, (pp. 109-118).

Ezeife, C., & Mutsuddy, T. (2012). Towards comparative mining of web document objects with

NFA: WebOMiner system. International Journal of Data Warehousing and Mining

(IJDWM), 1-21.

73

Hammer, J., McHugh, J., McHugh, J., & Garcia-Molina, H. (1997). Semistructured Data: The

TSIMMIS Experience. In Proceedings of the 1st East-European, 1-7.

Hammer, Joachim, J., McHugh, J., & Garcia-Molina, H. (1997). emistructured Data: The

TSIMMIS Experience. Advances in Databases and Information Systems.

Hogue, A., & Karger, D. (2005). Thresher: automating the unwrapping of semantic content from

the World Wide Web. Proceedings of the 14th international conference on World Wide

Web (pp. 86-95). ACM.

Hsu, C.-N., & Dung, M.-T. (1998). Generating finite-state transducers for semi-structured data

extraction from the web. Information systems, 521-538.

Kosala, R., & Blockeel, H. (2000). Web mining research: A survey. ACM Sigkdd Explorations

Newsletter(1), 1-15.

Laender, A., Ribeiro-Neto, B., & da Silva, A. (2002). DEByE–data extraction by example. Data

& Knowledge Engineering, 121-154.

Laender, A., Ribeiro-Neto, B., da Silva, A., & Teixeira, J. (2002). A brief survey of web data

extraction tools. ACM Sigmod Record, 84-93.

Liu, B. (2007). Web data mining: exploring hyperlinks, contents, and usage data. Springer

Science & Business Media.

Liu, B., & Chen-Chuan-Chang, K. (2004). Editorial: special issue on web content mining. Acm

Sigkdd explorations newsletter, 6(2), 1-4.

Meng, X., Hu, D., & Li, C. (2003). Schema-guided wrapper maintenance for web-data extraction.

Proceedings of the 5th ACM international workshop on Web information and data

management (pp. 1-8). ACM.

Muslea, I., Minton, S., & Knoblock, C. (2001). Hierarchical wrapper induction for semistructured

information sources. Autonomous Agents and Multi-Agent Systems, 93-114.

Muslea, I., Minton, S., & Knoblock, C. (1999). A hierarchical approach to wrapper induction.

Proceedings of the third annual conference on Autonomous Agents (pp. 190-197). ACM.

Novotny, R., Vojtas, P., & Maruscak, D. (2009). Information extraction from web pages.

Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web

74

Intelligence and Intelligent Agent Technology-Volume 03 (pp. 121-124). IEEE Computer

Society.

Srivastava, J., Cooley, R., Deshpande, M., & Tan, P.-N. (2000). Web usage mining: Discovery

and applications of usage patterns from web data. ACM SIGKDD Explorations

Newsletter, 1(2), 12-23.

Valter, C., & Giansalvatore, M. (1998). Grammars have exceptions. Information Systems, 539--

565.

Wang, J., & Lochovsky, F. (2003). Data extraction and label assignment for web databases.

Proceedings of the 12th international conference on World Wide Web (pp. 187-196).

ACM.

Wu, S.-T., Li, Y., Xu, Y., Pham, B., & Chen, P. (2004). Automatic pattern-taxonomy extraction

for web mining. Web Intelligence, 2004. WI 2004. Proceedings. IEEE/WIC/ACM

International Conference on (pp. 242-248). IEEE.

Zaiane, O., & Han, J. (1998). Webml: Querying the world-wide web for resources and

knowledge. Proc. ACM CIKM'98 Workshop on Web Information and Data Management

(WIDM'98). Citeseer.

Zhai, Y., & Liu, B. (2005). Web data extraction based on partial tree alignment. Proceedings of

the 14th international conference on World Wide Web (pp. 76-85). ACM.

Zhu, J., Nie, Z., Wen, J.-R., Zhang, B., & Ma, W.-Y. (2006). Simultaneous record detection and

attribute labeling in web data extraction. Proceedings of the 12th ACM SIGKDD

international conference on Knowledge discovery and data mining (pp. 494-503). ACM.

75

A P PE N D I X – A

76

WebOMiner_S System Manual

Developed by Bindu Peravali

77

Table of Contents

1.0 System Architecture ………………………………………………………… 79

2.0 User Interface ………………………………………………………………….. 80

2.1 How to debug, run the program and get the result……… 81

3.0 Operating System ……………………………………………………………. 83

4.0 Programming Environment ……………………………………………. 83

5.0 Installation of the system………………………………………………. 84

5.1. Installation of Eclipse IDE……………………………………… 84

5.3. Installation of MySql workbench…………………………………….. 85

6.0 Data Base, Schema and File format…………………………………… 86

7.0 Limitations of the software …………………………………………… 86

8.0 Java Tools …………………………………………………………………..….. 88

9.0 Information regarding Web Application ……………………….. 88

78

1.0 System Architecture

Our WebOMiner_S system architecture consists of five modules: Crawler module, Cleaner module,

Parser module, Frequent Structure Finder module and Schema Extractor module. The overall

architecture of the WebOMiner system is shown in figure 1 below:

Figure 51: Architecture of WebOminer_S

Here, the crawler module crawls through the WWW to find the given web page, streams entire web

document creates a mirror of original web document in the local computer. Cleaner module uses

the freeware software JTidy, it first looks for ill-formatted HTML tags and missing end-tags and

insert missing tags at appropriate location. It then filters inline tags to conform structural

relationship of text contents and reorders tags if necessary. The resultant of the cleaner module is a

web page in local directory which is well-formed and cleaned. Parser module generates a temporary

xml file by recording every block level tag into it. From this temporary xml file the occurrence

count of each block tag with the same class name is written into occurrence.data file. This is passed

as input to the frequent structure finder module, this module creates the Dom tree for the cleaned

html file from the second module. Then, a dynamic xpath expression created for every block tag

with the corresponding class name. This Xpath expression is run over the Dom tree to obtain every

occurrence of the block tag with a particular class name in the entire Dom tree. The obtained result

is stored in a NodeList and iteratively compared with the previous NodeList to get the most occurred

block tag with more number of children. Thus found frequent structure is given as input to the next

79

module. The schema extractor module, retrieves the complete block of the frequent structure by

using the parent node. Foe each node in the complete structure, if it is a text node the datatype String

is assigned, if it is an IMG node the source attribute is retrieved and stored. Then, using the schema

a data warehouse star schema table is generated by appending the store id and time followed by

inserting the data values into it.

2.0 User Interface

The GUI allows the user to input URL of the web page he wants to extract. The entered URL is the

only input to the system. The extracted data can be viewed in the database connected to the system.

After the program being successfully imported in the java environment such as eclipse and being

connected to the MySql database the user has to call the URL

“http://localhost:8080/WebOMiner_s/” from a web browser such as google chrome which opens

up the GUI for user is as shown in figure 54.

2.1 How to debug, run the program on windows using ide and get the results:

To debug and run the system we need to confirm the following first:

Figure 52: GUI for the user

http://localhost:8080/WebOMiner_s/

80

1. Conform operating system requirement described in section 3.0.

2. Install java SDK 1.7 or later version and set the class path / path in environment variable. Setting

an environment variable is discussed in “forums.sun.java” in the flowing link:

 http://forums.sun.com/thread.jspa?threadID=5450340

3. For debugging and running the system from IDE we need to down load and install Eclipse IDE

as described in section 5.1.

4. Import “webominers” project in Eclipse IDE by using following steps:

File Import Project General File System select “webominers” from your

computer ok. The “webominers” project will be imported to Eclipse IDE.

5. Install My Sql latest version as described in section 5.3.

6. Connect to mysql using username and password then create two tables blockcount and tablecount

for storing information such as the number of columns in each table and number of tables generated

so far respectively. Using command “CREATE TABLE blockcount (colcount,int (11));” and

“CREATE TABLE tablecount (count ,int (11));

7. Install JDeveloper IDE as described in section 5.4.

8. Make sure all the jar files needed 1. mysql-connector-java5.1.38-bin.jar 2. commons-lang3-3.4.jar

3. commons-lang3-3.4-javadoc.jar 4. guava-16.0.1.jar 5. org-apache-commons-lang.jar` driver file is in

“libraries” folder under “webominers” package.

9. Prior to any experiment or enhance / modification of the system. First set the “FilePath” variable

in the servelet in line 74 to any desired location on your computer for the program to use the

space to create and read/write into files such as the uncleaned.html, cleaned.xhtml,

occurrence.data, temporaray.xml.

10. Go to Debug button in Manu bar of the Eclipse IDE, click it and select and click Debug

(webominers) button as shown in figure 3. If the program is imported properly a new window

will be opened in the web browser prompting the user to enter URL of the product list web

page to extract.

11. To look at the populated database tables,

Go to start Manu All Programs My Sql workbench Connect database Enter username

and password in My Sqlworkbench login

http://forums.sun.com/thread.jspa?threadID=5450340

81

16. After login to MySql database, go to SQL Menu select SQL CommandEnter command.

17. From the new window enter SQL command and click on “Run” button. The results will be

shown in “Results” window below as shown in section 6.0.

2.2 How to compile, run the program on Linux from terminal and get the results:

To debug and run the program we need to confirm the following first:

1. Install java SDK 1.7 or later version as described in section 5.1.1

2. Install Oracle 11g or latest version as described in section 5.3

3. Connect to sqlplus using username and password then create a table tablecount for storing

information such as number of tables generated so far respectively. Using command “CREATE

TABLE tablecount (count int);

4. The project named “webominersunix” is the main folder containing all the jar files needed given

in step 5 and it has two sub folders “src” and “bin”. The src folder contains package folder

“webominersunix” which has the source code .java file “WebominersUnix.java” contains all

the methods sequentially called by the main method inside it.

5. Make sure all the jar files needed are inside the main project folder webominersunix. All the jar

files needed can be downloaded from the web links given in section Java Tools or just by copy

pasting the jar file names in google.

 1. odbc14.jar : In order to connect to database

2. guava-16.0.1.jar : Multimap data structure used in fs_finder function

 3. org-apache-commons-lang.jar: To use StringUtils method in database function

4. commons-lang3-3.4.jar : To support Multimap

5. commons-lang3-3.4-javadoc.jar: Documentation for the library

6. Prior to any experiment or enhance / modification of the system. First set the “FilePath” variable

in the main method in line 74 to any desired location on your computer for the program to use

the space to create and read/write into files such as the uncleaned.html, cleaned.xhtml,

occurrence.data, temporaray.xml.

7. .For the database inorder to connect to your database give valid credentials such as db name, user

id , password in the method datavalues() inline 356 of the java file “WebOminersUnix.java”

82

8. To compile the program use the command javac –cp “.:jarfile1: jarfile2” programname.java

Which will be $ javac -classpath ".:/home/woddlab/WEBOMINER_S/webominersunix/commons-

lang3-3.4.jar:/home/woddlab/WEBOMINER_S/webominersunix/commons-lang3-3.4-

javadoc.jar:/home/woddlab/WEBOMINER_S/webominersunix/guava-

16.0.1.jar:/home/woddlab/WEBOMINER_S/webominersunix/jtidy-

r938.jar:/home/woddlab/WEBOMINER_S/webominersunix/ojdbc14.jar:/home/woddlab/WE

BOMINER_S/webominersunix/org-apache-commons-lang.jar" WebominersUnix.java;

 In order to compile WebominerUnix.java the current directory of the terminal has to be

“src” use cd directory in order to navigate to current directory

9.To run the compiled .class file use the command java –cp . classfilename

Which will be $ java -classpath

".:./home/woddlab/WEBOMINER_S/webominersunix/commons-lang3-

3.4.jar:/home/woddlab/WEBOMINER_S/webominersunix/commons-lang3-3.4-

javadoc.jar:/home/woddlab/WEBOMINER_S/webominersunix/guava-

16.0.1.jar:/home/woddlab/WEBOMINER_S/webominersunix/jtidy-

r938.jar:/home/woddlab/WEBOMINER_S/webominersunix/ojdbc14.jar:/home/woddlab/

WEBOMINER_S/webominersunix/org-apache-commons-lang.jar"

webominersunix.WebominersUnix;

In order to run the class file the current working directory of the terminal should be

the parent directory of the package “webominersunix” which is ” src” for the

system to find both .class file and .java file.

3.0 Operating System

System is developed in 32-bit Windows 10 operating system at Intel i5 2.26 GHz processor, 8.00

GB RAM Lenovo Thinkpad Machine. This system is portable in University of Windsor CDF

Solaris Operating System on Unix environment. In that case, only minor changes from Windows

based syntax to Unix compatible syntax transformation is needed to compile, execute and run the

program.

4.0 Programming Environment

83

The application is programmed and tested in Java 2 Platform Standard Edition version 1.6.0_16,

which is installed in Windows Vista Home Premium edition. The advantages of this environment

are as follows:

 Regular expression capability.

 The improved Java Doc.

 Low coupling and usability.

 Relatively easy implementation of Object-Oriented design pattern.

5.0 Installation of the system

5.1. Installation of Eclipse IDE:

5.1.1. Installing the Software Bundle on Microsoft Windows:

To install the software, we must need to have administrator privileges on our system. The

installer places the Java Runtime Environment (JRE) software in %Program

Files%\Java\jre6, regardless of the specified JDK install location.

Note: This installer does not displace the system version of the Java platform that is

supplied by the Windows operating system.

Before Installation:

1. We need to verify our system to meet or exceed the following minimum hardware

requirements:

o 800MHz Intel Pentium III or equivalent

o 512 MB of RAM.

o 750 MB of free space

Note: The installer uses the %USERPROFILE%\Local Settings\Temp directory to

store temporary files.

2. First need to verify that we have administrator privileges on our system.

3. Then download the jdk-6u21-nb-6_9_1-windows-ml.exe installer file.

Installing the Software:

84

1. We need to double-click the installer jdk-6u21-nb-6_9_1-windows-ml.exe file to run the

installer.

2. At the JDK Installation page specify which directory to install the JDK into and click Next.

3. At the NetBeans IDE Installation page, we need to do the following:

1. Specify the directory for the NetBeans IDE installation.

2. Accept the default JDK installation to use with the IDE or specify another JDK

location.

4. Review the Installation Summary page to ensure the software installation locations are

correct.

5. Click Install to begin the installation. When the installation is complete, we can view the

log file, which resides in the following directory: %USERPROFILE%\.nbi\log.

5.1 Installation of the MySql software using installer:

MySQL Workbench can be installed using the Windows Installer (.msi) installation package. The

MSI package bears the name mysql-workbench-version-win32.msi, where version indicates the

MySQL Workbench version number.

To install MySQL Workbench,

1. right-click the MSI file select the Install option from the pop-up menu, or simply

double-click the file.

In the Setup Type window you may choose Complete or Custom installation. To use all features of

MySQL Workbench choose the Complete option.

6.0 Data Base Schema and format

Our system creates and inserts the product data into tables automatically there is no requirement of

explicit creation schema. The created tables will be in the name of Product_Number, number is a

dynamic variable it increments for each extraction so your first page extraction will be

85

PRODUCT_1 table. The number of columns of each PRODUCT table are also determined the

program and each column will be named column_1,column_2….

7.0 Limitations of the software

Limitations of the current system and future work as identified are stated as below:

Crawler module: Current crawler module can take one URL string at a time for extraction and

mining of web contents. Further improvement is required in future for automatic identification of

positive web pages from the web. Present implementation of this module is designed aiming to

work for basic functionalities as crawler with the functionality to download data stream from the

targeted web pages into the local computer and cleaning or the web page comments from it. For

robustness and scalability, we need to improve the current crawler module to handle all kinds of

situations from the web.

Cleaner module: Currently we are using open source software “JTidy” for cleaning the web pages.

Development of an independent cleaner module may improve the systems performance and

usability in future.

Parser Module:

Figure 53: Product table created

86

The parser module can be improved by removing the necessity to read/write into a file instead the

xml data can be stored into other appropriate data structures to avoid the i/o operations.

Frequent Structure Finder Module:

By discovering the frequently repeated structures in the html code of the web page we are able to

identify the target product data from product list web pages. This technique has to be extended to

detail pages because they have the complete product information unlike the product list pages

having only meta-data. To do that the web link(<a> having the URL to detail page) that lead to the

detail page has to be discovered in the frequent structure found in the fourth module and a new

algorithm has to be designed to identify contents from it.

Schema Extractor module:

The only disadvantage in our schema extractor module currently is that it assigns data type varchar

to all the text tags, as price is also embedded in the text tag itself in html it assigns varchar to price

also. The algorithm has to be further improved to assign correct datatype based on the content of

the text tag.

8.0 Java Tools

We used a set of java tools for the development of WebOMiner system. Table - A list some

important java tools we used for the development of the system and their reference URL’s for future

developer’s reference.

9.0 Web Application

The entire application of WebOMiner_S is available at miner.newcs.uwindsor.ca. To access it as

user just type the URL “miner.newcs.uwindsor.ca” in your web browser.

To access it as administrator in order to modify/ improve the existing work login with user name

“peraval” and password “changeme” using ssh or ask the network administrator to add you as “sudo

user” to the server, so that you can access the contents from your login.

87

Table – A

Java Tools

Reference URL

BufferedInputStream http://download.oracle.com/javase/1.4.2/docs/api/java/io/Buffer

edInputStream.html

Class http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Clas

s.html

File http://download.oracle.com/javase/1.4.2/docs/api/java/io/File.ht

ml

Multimap https://docs.oracle.com/javase/tutorial/collections/interfaces/ma

p.html

HttpURLConnection http://download.oracle.com/javase/1.4.2/docs/api/java/net/HttpU

RLConnection.html

InputStream http://download.oracle.com/javase/1.4.2/docs/api/java/io/InputSt

ream.html

InputStreamReader http://download.oracle.com/javase/1.4.2/docs/api/java/io/InputSt

reamReader.html

javax.xml.parsers.Documen

tBuilder

http://download.oracle.com/javase/1.4.2/docs/api/javax/xml/pars

ers/DocumentBuilder.html

javax.xml.parsers.Documen

tBuilderFactory

http://download.oracle.com/javase/1.4.2/docs/api/javax/xml/pars

ers/DocumentBuilderFactory.html

NodeList http://download.oracle.com/javase/1.4.2/docs/api/org/w3c/dom/

NodeList.html

org.w3c.dom.traversal.Docu

mentTraversal

http://download.oracle.com/javase/1.5.0/docs/guide/plugin/dom/

org/w3c/dom/traversal/package-tree.html

org.w3c.dom.traversal.Node

Filter

http://download.llnw.oracle.com/javase/1.5.0/docs/guide/plugin/

dom/org/w3c/dom/traversal/class-use/NodeFilter.html

org.w3c.dom.traversal.Node

Iterator

http://download.oracle.com/javase/1.5.0/docs/guide/plugin/dom/

org/w3c/dom/traversal/class-use/NodeIterator.html

commons-lang3-3.4.jar http://download.oracle.com/javase/1.4.2/docs/api/java/lang/Proc

ess.html

guava-16.0.1.jar http://www.science.uva.nl/ict/ossdocs/java/jdk1.3/docs/api/java/

lang/Runtime.html

mysql-connector-java-

5.1.38-bin.jar

http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Strin

g.html

org-apache-commons-

lang.jar

http://download.oracle.com/javase/6/docs/api/java/sql/package-

summary.html

StringTokenizer http://download.oracle.com/javase/1.4.2/docs/api/java/util/Strin

gTokenizer.html

URL http://download.oracle.com/javase/6/docs/api/java/net/URL.htm

l

http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Class.html
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Class.html
http://download.oracle.com/javase/1.4.2/docs/api/java/io/File.html
http://download.oracle.com/javase/1.4.2/docs/api/java/io/File.html
https://docs.oracle.com/javase/tutorial/collections/interfaces/map.html
https://docs.oracle.com/javase/tutorial/collections/interfaces/map.html
http://download.oracle.com/javase/1.4.2/docs/api/java/net/HttpURLConnection.html
http://download.oracle.com/javase/1.4.2/docs/api/java/net/HttpURLConnection.html
http://download.oracle.com/javase/1.4.2/docs/api/java/io/InputStream.html
http://download.oracle.com/javase/1.4.2/docs/api/java/io/InputStream.html
http://download.oracle.com/javase/1.4.2/docs/api/java/io/InputStreamReader.html
http://download.oracle.com/javase/1.4.2/docs/api/java/io/InputStreamReader.html
http://download.oracle.com/javase/1.4.2/docs/api/javax/xml/parsers/DocumentBuilder.html
http://download.oracle.com/javase/1.4.2/docs/api/javax/xml/parsers/DocumentBuilder.html
http://download.oracle.com/javase/1.4.2/docs/api/javax/xml/parsers/DocumentBuilderFactory.html
http://download.oracle.com/javase/1.4.2/docs/api/javax/xml/parsers/DocumentBuilderFactory.html
http://download.oracle.com/javase/1.4.2/docs/api/org/w3c/dom/NodeList.html
http://download.oracle.com/javase/1.4.2/docs/api/org/w3c/dom/NodeList.html
http://download.oracle.com/javase/1.5.0/docs/guide/plugin/dom/org/w3c/dom/traversal/package-tree.html
http://download.oracle.com/javase/1.5.0/docs/guide/plugin/dom/org/w3c/dom/traversal/package-tree.html
http://download.llnw.oracle.com/javase/1.5.0/docs/guide/plugin/dom/org/w3c/dom/traversal/class-use/NodeFilter.html
http://download.llnw.oracle.com/javase/1.5.0/docs/guide/plugin/dom/org/w3c/dom/traversal/class-use/NodeFilter.html
http://download.oracle.com/javase/1.5.0/docs/guide/plugin/dom/org/w3c/dom/traversal/class-use/NodeIterator.html
http://download.oracle.com/javase/1.5.0/docs/guide/plugin/dom/org/w3c/dom/traversal/class-use/NodeIterator.html
http://download.oracle.com/javase/1.4.2/docs/api/java/lang/Process.html
http://download.oracle.com/javase/1.4.2/docs/api/java/lang/Process.html
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/String.html
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/String.html
http://download.oracle.com/javase/6/docs/api/java/sql/package-summary.html
http://download.oracle.com/javase/6/docs/api/java/sql/package-summary.html
http://download.oracle.com/javase/1.4.2/docs/api/java/util/StringTokenizer.html
http://download.oracle.com/javase/1.4.2/docs/api/java/util/StringTokenizer.html

VITA AUCTORIS

NAME: Bindu Peravali

PLACE OF BIRTH:

Andhra Pradesh, India

YEAR OF BIRTH:

1993

EDUCATION:

Vignan High School, Guntur, AP, 2010

Bapatla Women’s Engineering College, B.Tech.,

Guntur, AP, 2014

University of Windsor, M.Sc., Windsor, ON, 2016

	University of Windsor
	Scholarship at UWindsor
	2016

	Comparative Mining of B2C Web Sites by Discovering Web Database Schemas
	Bindu Peravali
	Recommended Citation

	WebOMiner_Simple for Mining Multiple Web Data Sources

