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ABSTRACT 

With the emergence of technology in our daily lives, robots are being increasingly used for 

coverage tasks which were earlier considered too dangerous or monotonous to be performed 

by humans such as interplanetary exploration and search & rescue. Out of all the multi-robot 

coverage approaches, the frontier based approach is one of the most widely used. Most of 

the coverage approaches developed so far, face the issue of frontier duplication and require 

access to the maps of the environment prior to coverage. In this work, we have developed a 

new frontier based approach for multi-robot coverage in unknown environments. This new 

approach is scalable to multiple robots and does not require prior access to the maps. This 

approach also uses a new frontier allocation and robot coordination algorithm, which 

reduces the frontier duplication in the robots and improves the efficiency of robot coverage. 
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Chapter 1 

INTRODUCTION 

The field of robotics has very much evolved far since 1921 when the term robot was 

introduced in the play R.U.R by the Czech writer, Karel Capek [1]. Since then, robots have 

been slowly but steadily moved from the realm of science fiction to reality. One of the major 

fields of robotics research is using robots for exploration of areas which are inaccessible to 

or dangerous for humans or for activities which are considered too monotonous for humans 

[6].  

After the Fukushima disaster in 2011 in Japan, robots were used to explore the nuclear plant 

as any operation by humans would have been dangerous due to high radiation levels. The 

robots provided useful data about the temperature and radiation levels inside the reactor 

buildings. NASA also uses robots such as Curiosity and Opportunity to explore the surface 

of Mars. Other applications include search and rescue [2], floor cleaning [3], ocean floor 

mapping [4], and battlefield reconnaissance [5]. 

Robots can be categorized into two major categories: remote controlled robots and 

autonomous robots. Remote controlled robots do not have the ability to analyze their 

surroundings and then take decisions on their own. They always require humans to provide 

them with continuous instructions. In contrast to them, autonomous robots are capable of 

performing their tasks without human intervention. Autonomous robots sense their 

environments, analyze the data and then respond back. The major advantage of autonomous 

robots over remote controlled ones is that they do not have to spend a lot of time and 

energy asking humans what to do and then wait for the response, and this results in benefits 

in terms of cost and time [7]. 
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The main focus of this work would be on using autonomous robots. Most of the 

applications discussed so far require the robot to maximize the area covered in the 

environment. All of these applications are derivatives of the coverage problem, which is a 

subset of robot exploration [12]. The coverage problem is related to the “covering salesman 

problem,” where the goal is to find the shortest length path covering all the given nodes [8]. 

Robotics literature is filled with numerous exploration approaches [9, 10, 11, 12, 13], with a 

focus on using multiple robots to explore known environments.  

Using multiple robots instead of one provides multiple benefits, such as the following [14]: 

 Improved Performance: multiple robots working in parallel are usually able to 

complete a task faster than a single robot. 

 Increased Fault tolerance: using multiple robots increases the redundancy of the 

overall system, so that even if one robot fails, others are still able to finish the task. 

 Efficient Localization:  multiple robots exchange information about their position 

leading to more efficient localization. 

But, these advantages come with several issues which arise due to the use of multiple robots. 

To overcome these problems, the system requires the following [15, 16]: 

 A dedicated communication network for inter-robot coordination. 

 Coordination strategy, so that robots cooperate, rather than compete with each 

other. 

 Increased budget due to extra hardware costs. 

The environments covered by the robots can be categorized into two categories: known 

environments and unknown environments. Known environments are the environments for 



3 
 

which maps are already available to the robots, but unfortunately, it is not practical to have 

precise and updated maps for every case. This is especially true in the case of applications to 

search and rescue, where every second of delay can cause the loss of human lives, and time 

taken to create a map can be fateful. Robots working in such applications should have the 

ability to work in unknown environments and perform coverage in them. Coverage of 

unknown environments requires [6]: 

 Simultaneous Localization and Mapping (SLAM) modules for individual robots. 

 Map Merging module algorithms to create a global map from individual maps of 

each robot. 

Due to the nature of applications in which robot coverage is employed, time taken to cover 

the whole environment is the most important evaluation criterion. Another key evaluation 

criterion needed to measure the performance of robot coverage is the amount of overlap in 

the robots’ coverage. In an ideal scenario, there should be no overlap in the area covered by 

all the individual robots. But in real life, while performing their individual tasks, robots can 

overlap areas already explored by other robots. In our proposed approach, the main aim is to 

minimize the time taken by the robots as well as their overlap during area coverage. 

1.1 Motivation 

As robots are being increasingly used for a variety of applications, the robotic hardware is 

changing at a rapid pace. Robots are now equipped with a wide array of sensors such as 

laser, temperature, pressure, light, sound, altitude and radar [17]. Moreover, as the 

application and the environment changes, the challenge for software developers becomes to 

design a system which works on a wide cluster of robotic hardware. To solve this problem, 

robotic frameworks have been introduced, to create shared functionalities in order to allow 
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code to be reused rather than writing core functionalities from scratch for every new 

platform [18].  

For example, Robot Operating System (ROS) is an open source framework consisting of a 

collection of tools, libraries, and conventions that aim to simplify the task of creating 

complex and robust robot behavior across a wide variety of robotic platforms [19]. ROS 

already has implementations for algorithms such as SLAM, Map Merging, robot localization 

and robot navigation. However, not many algorithms exist for multi-robot coverage in 

unknown environments. 

Between the year 1994 and 2013, an average of 68000 people died globally every year in 

natural disasters [20]. Many of these lives could have been saved if search and rescue had 

been promptly delivered. In many of these cases, the delay was caused because it was still 

unsafe to send humans for rescue. Autonomous robots present an opportunity to deliver 

help promptly in these cases. 

All of these aspects have motivated us to develop a new frontier based approach for 

coverage of unknown environments using multiple robots. The robots can start at any 

random point in the environment and then build their own maps by updating them at each 

step. These individual maps are then passed to a map merging module which creates a global 

map. The approach will be tested in a simulator developed through the Stage software 

platform. 

1.2 Problem Statement 

The problem of making search and rescue more efficient can be improved by new robotic 

systems which are faster, more realistic and able to work in unknown environments. Here, 

realistic systems mean systems which operate in a way which is closer to how a human 
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would do the same work in real circumstances. Our main goal is to develop a new multi-

robot coverage strategy for unknown environments which is faster and realistic than earlier 

approaches. Robots will be equipped with laser sensors to gain information about the 

environment and simulations will be developed in Stage for multiple 2D environments.  

In our proposed approach, individual robots will localize themselves using the Monte Carlo 

Localization algorithm and then they will create a map of the area in their field of range 

using SLAM. Robots will then use the frontier technique to choose which direction they 

should proceed without colliding with the obstacles or the environment boundary. The 

performance of the approach will depend upon the number of robots and the nature of the 

environment used for the simulation. 

1.3 Thesis Organization 

The rest of the thesis is organized as follows: Chapter 2 provides an overview of basic 

terminology and concepts related to this work. It also includes a review of some of the 

related work which has been already done in this field. Chapter 3 presents an introduction to 

robotics software frameworks ROS and Stage. In Chapter 4, the proposed multi-robot 

frontier approach for coverage in unknown environments is introduced. Chapter 5 presents 

the performed experiments and showcases the results of comparison between our proposed 

algorithm and of the existing exploration algorithms: Threshold Based and Rank Based. This 

thesis will be concluded in Chapter 6 with few ideas for future work. 
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Chapter 2 

LITERATURE REVIEW 

In order to make this document self-contained, this chapter provides a review of basic 

concepts, terminology, and related work which has been already done in this field. However, 

these explanations are not exhaustive and only serve as a guide for the reader. 

2.1 Exploration and Coverage 

One of the major qualities that distinguishes humans from all other species on this planet is 

our curiosity to discover new areas, information, and resources. From the ancient times, 

civilizations have been exploring the universe with most notable periods such as Age of 

Discovery and Space Race. With the advent of technology, exploration has evolved, with the 

machines now playing an increasing and more cost effective role in exploring areas which 

were inaccessible until now or are considered too dangerous for humans and at a much 

lower cost than humans. 

In robotics, exploration is a fundamental problem where the main goal is to maximize 

robots’ knowledge about the environment [6]. Coverage is a subset of this problem where 

the goal is to completely cover the whole environment. Coverage can be of various types 

based on the type of robots, nature of environment and the purpose of the application. For 

example a floor cleaning robot like iRobot Roomba 980 [21] uses a wide variety of sensors 

like infrared sensor, wall sensor, cliff sensor and a low-resolution camera to clean the whole 

environment [22]. The environment, in this case, is usually static, which means it does not 

change while an agent is deliberating [23]. Another type of coverage can be using a cleaning 

robot to clean a park which is a dynamic environment as people in the park are constantly 

moving. The main problem in these environments is that paths which were believed to be 
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free earlier can become suddenly blocked and vice versa [24]. This causes the robot to 

change the coverage strategy and the path planning frequently as the environment changes. 

2.2 Navigation and Path Planning 

While performing coverage of an unknown environment, we face three major questions 

related to navigation and path planning that need to be solved first in order to perform 

coverage [25]: 

 Where am I?  

 What does my world look like? 

 How should I get to my destination? 

The first question deals with Localization. Before a robot can accomplish any task, it needs 

to know its own location in the environment. Localization is the process of estimating a 

robot’s current position and orientation in a given environment. The second question 

concerns with Mapping. In the case of unknown environments, the robot does not possess 

the map of its environment and, thus, needs to generate a map. Mapping is the process of 

constructing a map of the environment using sensor data from the robots. The third 

question addresses Path Planning. Path Planning is the procedure of finding an optimal path 

between source and destination. 

These three challenges are related to each other and cannot be solved independently [26]. 

While performing localization through the sensor measurements of the robot, in order to 

successfully estimate the position of the robot, we need points of reference to link the sensor 

observations and a map of the environment to estimate the position of the robot relative to 

the map. Simultaneous Localization and Mapping (SLAM) is the process of performing 
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localization and mapping at the same time and is required in unknown environments where 

no map is available and it is difficult to estimate the pose of robot accurately. Path planning 

from the source to the destination requires that the estimation for the robot’s location 

(source) and the information about the environment (destination) are accurate. Active 

localization is a technique of controlling the robot in such a way as to improve the pose 

estimation. Mapping the environment uses sensor observations to map the robot’s local area 

at each step and thus requires accurate path planning techniques and pose estimation. The 

integrated approach to robot coverage works in tandem with all of these three approaches 

simultaneously to present the best results. 

 

Figure 2.1 Processes required to solve challenges associated with robotic coverage [26]. 

Fig 2.1 depicts the relation between these three challenges of robotic coverage, how they 

depend on each other and the processes which lie at the intersections of these processes. 

The three circles represent the three major processes required for coverage and each circle’s 

intersection with another represents a technique to perform both processes at the same time. 
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All of these major processes will be discussed in detail in the next sections. 

2.2.1 Mapping 

In order for a robot to explore, the first critical requirement is that the robot should be able 

to estimate its position with respect to a fixed frame of reference. Maps allow us to read 

sensor measurements from the robot and then plot their positions on the map based on 

various landmarks. 

Formally, a map 𝑚 can be expressed as a list of objects in the environment with their 

respective properties as given by the equation 2.1 [6]: 

𝑚 =  {𝑚1, 𝑚2, 𝑚3, … , 𝑚𝑁}                                         (2.1) 

Here, 𝑁 denotes the total number of objects in the environment and each 𝑚𝑛 with 1 ≤ n ≤ 

N represents a property of an object. There are three main categories of maps: Feature-based 

maps, location-based maps, and Occupancy grid maps. 

2.2.1.1 Feature-based maps 

Feature-based maps, as their name suggests, only represent the features of an environment. 

They specify the location of objects contained in the map but provide no information about 

the free space in the environment [6]. Here, n represents the feature index and mn contains 

the feature’s Cartesian location. These maps are suitable for static environments but do not 

perform well in unstructured environments, where distinguishing individual obstacles is 

difficult [27]. 
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Fig 2.2 displays a sample feature based map of an environment. As can be seen in the figure, 

the map only displays the features of the environment using parametric features such as 

points and lines and leaves the rest of the environment blank. 

 

Figure 2.2 Feature-based map of a sample environment [45]. 

2.2.1.2 Location-based maps 

Location-based maps, also known as topographical maps, are volumetric in nature and 

represent every location on the map. They contain information about both objects and the 

free space on the map [6]. Here, n specifies a particular location in the map. These maps are 

depicted by graphs where a node represents landmarks and edges represent the connecting 

paths. Location-based maps are compact, permit efficient planning and have a lower space 

complexity, but recognition of places can be ambiguous [27].  
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Figure 2.3 Construction of a location-based map [46]. 

Fig 2.3 depicts the comparison between an actual map of an environment and a topological 

map of an environment. As it can be seen in the figure, the topological map is a higher level 

representation of an environment where the nodes represent the information about the 

features, while edges represent the pathways connecting two features. 

2.2.1.3 Occupancy grid maps 

Occupancy grid maps are a classical map representation developed in the mid-eighties by 

Moravec and Elfes at CMU [28]. These maps are suitable for mobile robot navigation and 

work best with range sensors like sonar and laser. They also allow easier path planning [12] 

but are not scalable to large environments, taking map construction time into consideration 

[15]. Occupancy grid maps are represented by cells of the same shape and size. Each of these 

cells has an occupancy value associated with it based on the probability of the occupancy of 

that grid cell. Occupancy value can have one of three values:  

 Free: The grid cell has been explored and has no obstacles 

 Occupied: The grid cell has obstacles 

 Unknown: The grid cell has not yet been explored  
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Fig 2.4 depicts an occupancy grid map for a sample environment. As we can see in the 

figure, the whole environment is divided into cells of same size and shape. This 

decomposition of the whole environment allows the algorithm to count which areas are 

already covered by the robot and thus can provide a measure of the coverage. 

 

 

Figure 2.4 Occupancy grid map of an environment [29]. 

Another major category of maps is hybrid maps which are created by combining other maps. 

We will not be looking into this kind of maps in detail in this work. In the end, the choice of 

the map depends on the task to be performed and the nature of the environment.  

2.2.1.4 Map Merging 

When using multiple robots to perform coverage in an unknown environment, one problem 

is that each robot performs its own mapping and a need arises to combine these individual 

maps to create a global map shared by all the robots. The process of creating a global map 

from multiple individual maps is known as map merging [47]. One of the most fundamental 



13 
 

problems in map merging is to combine duplicate regions – regions which are present in 

multiple maps. The map merging algorithm identifies these regions and then creates a global 

map without duplicating these regions. 

2.2.2 Localization 

Localization is the process of estimating the position and orientation of a robot relative to a 

fixed frame of reference in the given environment. Localization is a fundamental problem in 

mobile robotics, and in order to perform any major task, the robot must be localized first. 

As per [6], the problem of localization can be deduced as a problem of coordinate 

transformation. In any environment, there are two major coordinate systems – the global 

coordinate system and the robot’s local coordinate system. Localization is the process of 

making a connection between the two coordinate systems. 

To establish this connection, the sensor measurements of the robot are analyzed with the 

environment map repeatedly and over a period of time; the probability of the robot’s 

position increases at some points on the map. Fig 2.5 displays the general idea of how 

localization is performed in a sample environment. It plots a graph between the robot’s 

beliefs of its position on the x-axis. The peaks show the estimated position of the robot; the 

higher the peak, the greater the probability of the robot’s position.  

As we can see in the beginning, the robot’s belief is equally distributed, because the robot 

has no idea of his location. But, as the robot moves forward and finds a door, now his belief 

has three small peaks as he can be near any of the doors. As he moves forwards and finds 

the next doors, there is a large peak in his belief that he is near door 2. Thus, the robot has 

now performed localization and has a strong belief about his location on the map. 
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Figure 2.5 Basic idea of robot localization in a sample environment [6]. 

The problem of localization can be categorized into various categories: 

1) Local vs Global Localization: Local localization techniques require an approximate 

estimate of the initial position of the robot. While Global localization can localize a 

robot without any prior knowledge about the position of the robot [30]. 

2) Static vs Dynamic Environment: Static environments are environments where the 

robot is the only object which is moving and thus changing its pose. While in 

dynamic environments, there are other objects than robots which are changing their 

position and pose. Dynamic environments are more difficult to perform coverage on 

than static environments. 
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3) Passive vs Active Approaches: In Passive approach, the localization module is 

limited to only observation of robot’s motion. While in Active approach, the 

localization module has the control over robot’s motion and thus can drive the robot 

in such a way to minimize localization error [6]. 

4) Single Robot vs Multi-Robot Approaches: In single robot systems, localization 

involves taking sensor measurements into account and then estimating robot’s pose 

and position. While in multi-robot systems, we can use robot’s estimates with each 

other to reduce localization error and time required to localize robots’. 

As discussed before, in order to perform localization, some kind of environment mapping 

should be available. There are two types of environments – known and unknown. Known 

environments are environments for which maps are available. Unknown environments are 

those environments for which the robot does not possess any maps. For unknown maps 

there is two ways localization can be performed: 

 First, robots can learn the map in advance in a pre-exploration phase, but is time-

consuming 

 The second option is to use SLAM, where robots perform both localization and 

mapping of the environment simultaneously. 

2.2.2.1 Simultaneous Localization and Mapping (SLAM) 

SLAM is often compared with the chicken-or-egg problem because a map is needed for 

localization and an estimate of robot’s pose is required in order to perform the mapping. 

SLAM can be categorized into two forms: First is online SLAM which estimates the 

posterior of robot’s pose over the momentary pose along with the map only for time t as 

depicted in equation 2.2 [6] 
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p(xt, m |z1:t , u1:t)                                                      (2.2) 

Here, xt denotes the pose of the robot at time 𝑡, m is the map and z1:t and u1:t are the 

measurement and control readings for time 1 to t. Whereas Full SLAM calculates the 

estimate of robot’s pose posterior over the entire path x1:t along with the map instead of 

just the current pose xt as depicted in equation 2.3 [6] 

p(x1:t, m |z1:t , u1:t)                                                      (2.3) 

There are three main paradigms of SLAM:  

 Extended Kalman Filters (EKF) SLAM 

 Graph-Based SLAM  

 Particle-Based SLAM 

In this thesis, the particle-based SLAM is being used to localize the robots and map the 

unknown environment. 

2.2.3 Path Planning 

Path Planning is the process of finding a path for the robots to travel from the current 

position to the goal without any collisions. Path Planning can be divided into two major 

categories: local path planning and global path planning. As per [31], in the case of global 

path planning, robots have the map of environment available to them and thus, have prior 

knowledge about the environment and its obstacles. Another requirement for global path 

planning is that the environment is static. Due to all these constraints, the path planning 

algorithm is able to plan the path from source to destination even before the robot starts 

motion. 
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In the case of the local path planning, the environment is unknown to the robots in the 

beginning and thus, there are no maps available. Due to this, the robot is not able to plan the 

path in advance and the path planning gets updated at every step as the mapping and 

localization information changes through SLAM [31]. 

A number of path planning algorithms exist in the literature and the choice of algorithm will 

depend upon the nature of the environment, mapping and the application of the system. 

One of the most heavily used algorithms for path planning is the A* search algorithm. 

Equation 2.4 shows the A* algorithm where g(n) denotes the total cost from the start node 

to node n and h(n)  is the heuristic cost from node n to goal node [32]. 

                                           𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)                                                     (2.4) 

A* algorithm maintains two lists – the open list and the closed list. At the beginning of the 

algorithm, the open list contains the start node and the closed list is empty. The algorithm 

starts expanding the nodes from the open list and then selects the one with minimum cost. 

The closed list keeps track of nodes which are already visited. The algorithm stops when the 

goal node is expanded. The A* algorithm is used extensively in the research community 

because it provides fast results with a low memory cost. 

2.3 Multi-Robot Coverage 

The next logical step after performing coverage with a robot is to scale the problem to 

multiple robots. As discussed before, using multiple robots for coverage provides us with 

advantages like increased performance and robustness; but these benefits come at a price 

with increased costs, required dedicated communication network and a coordination 

strategy. In addition to these new modules, using multiple robots also requires changes in 
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existing modules like path planning, localization, and mapping. In this section, some of these 

additional changes will be discussed. 

2.3.1 Communication Network 

Using multiple robots in a project requires a communication network over which the robots 

can communicate and follow a coordination strategy. The choice of the network depends on 

the developer’s choice, but the most common ones are 802.11g Wi-Fi network, Bluetooth, 

and infrared systems. Out of these, the infrared systems works only on line of sight (LOS) 

paths; while other two works even outside LOS paths but in a specified range. 

2.3.2 Coordination Strategy 

A coordination strategy is required because it provides a guidance to each and every robot 

for what actions it should take. Without a coordination strategy, it may happen that rather 

than working cooperatively with each other, robots may start competing with each other 

leading to sub-optimal resource utilization. There are two major coordination strategies that 

can be employed by multiple robots: centralized approach and distributed approach. 

2.3.2.1 Centralized Coordination Approach 

This coordination approach is a kind of master-slave configuration. One robot is termed as 

master and acts like the central controller. The master robot interacts with all of the robots 

and assigns them the navigational goals [15]. Master robot is responsible for making sure 

there are minimum overlaps and no collisions between robots. This type of systems are 

easier to implement and perform well for smaller systems. But as the system size increases, it 

becomes difficult to scale this approach due to increased load on the master system and 

induced latency. 



19 
 

Another major problem with this approach is a single point of failure. As the master robot is 

responsible for all the coordination and communication between all the robots; once the 

master robot fails, the whole system stops working. 

2.3.2.2 Distributed Coordination Approach 

In distributed coordination approach, every robot is self-sustained. Each robot performs its 

own calculations and decides its navigational goal independently [15]. In this type of systems, 

all the robots communicate with each other rather than just a master robot as is the case 

with a centralized approach.  This system is a bit more complex than the centralized 

approach but it is more robust as the system will keep on working even if all but one robot 

fail. Another disadvantage of distributed systems is that they are less secure than centralized 

systems. 

2.3.3 Path Planning 

In the case of multiple robots, path planning becomes more complex as now the module has 

to plan the paths for multiple robots such that the robots should not collide with obstacles 

or other robots. As the number of robots increase in an environment, centralized 

approaches become impractical and a decentralized path planning approach is preferred [33]. 

2.4 Coverage Strategies 

Even after performing localization and mapping, a key question that still remains in robot 

coverage is that where should the robot move next in order to perform coverage of 

environment in minimum time? This problem corresponds to the travelling salesman 

problem for known graph like environments and is an NP-hard problem [14]. In this 

section, some strategies which have been used to cover the environment effectively will be 

discussed. 
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2.4.1 Traditional Coverage Strategies 

Traditional coverage strategies include randomized and heuristic approaches. These 

approaches had the advantage that they were easy to implement and had lower 

computational cost. But they do not provide any guarantee whether the coverage will be 

successful or not. 

2.4.1.1 Randomized Approach 

In the randomized approach, robots select any random points as their next goal. This 

algorithm is easy to implement and does not requires costly sensors, but also does not 

provides the guarantee that complete coverage will be successful [12]. Another major 

problem with this approach is that in the worst case the robot can keep selecting points that 

are in an already explored area or in obstacles. Due to these disadvantages, a smarter version 

of this approach has been created in which the robot will randomly pick a point from an 

unexplored area in each iteration. 

Heuristics Approach 

The randomized approach provides a simple and easy to implement a strategy for coverage. 

But, using randomized approach can lead to situations where the robot never finishes 

coverage or can take a long time; in such situations, heuristics comes to our rescue. The 

main idea behind heuristics is to use practical techniques, which often provide us a good 

solution, but cannot guarantee an optimal solution. In heuristics approach, robots follow 

simple rules of thumbs like follow the wall and repel from each other [12].  

But, these approaches also do not provide us a guarantee that the coverage will be 

completed successfully.  
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2.4.2 Cellular Decomposition 

In order to provide some form of guarantee, cellular decomposition was introduced. Cellular 

decomposition is the process of breaking a large area into smaller parts. Then, by taking into 

account how many smaller parts have been covered, we can get an estimate whether the 

complete coverage has been achieved or not. 

There are three types of cellular decomposition: 

 Approximate Cellular Decomposition 

 Semi-Approximate Cellular Decomposition 

 Exact Cellular Decomposition 

2.4.2.1 Approximate Cellular Decomposition 

Approximate Cellular Decomposition is a type of cellular decomposition in which the area is 

divided in such a way that all cells are of same size and shape whose union only 

approximates the total area of the region [12]. In this decomposition, typically the size of a 

cell is equal to the footprint of the robot and coverage is assumed to be completed, when a 

robot visits a cell [12]. Thus, the complete coverage is achieved when all the cells are visited 

once by the robot. 

Occupancy Grids as displayed in Fig 2.6 is one of the most common forms of approximate 

cellular decomposition used in research community due to its ease of use. Here, the whole 

map is divided into cells of same size and shape. 
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2.4.2.2 Semi-Approximate Cellular Decomposition 

In semi-approximate cellular decomposition, the area is divided into smaller cells in such a 

way that the width of cells is fixed, but the length of each cell varies. This technique allows 

us to explore the map recursively. A robot using this technique can start at any arbitrary 

point and then completely explore the environment by zigzagging along parallel grid lines 

[12]. This technique is usually used for environments which are of irregular shapes. Fig 2.7 

displays a typical environment with semi-approximate cellular decomposition.  

 

 

 

 

 

 

As we can see in the above figure, the environment is divided into cells equal width. The zig-

zag line shows the path taken by a robot to cover the environment, while 𝑑1 and 𝑑2  

represents the inlet points of the environment. 

Fig 2.6 Occupancy Grid [35]. 

Figure 2.7 Path of a robot in an environment with semi-approximate 
cellular decomposition [48]. 
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2.4.2.3 Exact Cellular Decomposition 

Exact cellular decomposition is a type of cellular decomposition in which the given 

environment is divided into a set of non-intersecting cells, which can be covered by the 

robot using simple back and forth motions and whose union forms the entire environment 

[12]. One of the most widely used types of exact cellular decomposition is trapezoidal 

decomposition [12], in which the given environment is divided into cells shaped like 

trapezoids and triangles. In this scenario, the whole area can be easily covered using back 

and forth motions through each cell. Fig 2.8 shows an environment with start and goal 

points and non-intersecting cells. The robot can completely cover this environment by 

covering all of these non-intersecting cells with simple back and forth motions. 

 

Figure 2.8 Trapezoidal Exact Cellular Decomposition [36]. 

2.4.3 Multi-Robot Coverage Strategies 

The traditional coverage strategies discussed in previous sections were also applicable to 

multiple robot systems, but they do not utilize the full potential of all the robots. Some of 

the most popular coverage strategies discussed below [9], are designed for with multiple 

robots in mind and thus provide better performance than the traditional strategies. 
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2.4.3.1 Potential Fields 

The Potential field’s strategy of multi-robot coverage combines electrostatics, a fundamental 

concept of physics with robotic coverage. As we know from high school physics, like 

charges repel each other and opposite charges attract each other. This strategy uses this 

concept to create fields in the environment in such a way that robots and obstacles repel 

robots away; ultimately forcing the robots to spread out throughout the given environment 

[37]. The force with which robots’ and obstacles repel the robots away is analogous to the 

inverse square law of electrostatic potentials. 

The advantages of this approach are that there is no need for a centralized control and 

coordination strategy, localization or even inter-robot communication, leading to easy scaling 

to large environments [37]. But the major disadvantage of this approach is that it does not 

guarantee that complete coverage of the environment will be successful. It can happen that 

the robots reach a stage of equilibrium before the environment is fully covered. This issue 

can be solved with a slight variation in strategy where the particles in unexplored space 

attract the robots towards them. But in this case, robots can get trapped in local minima [15]. 

2.4.3.2 Graph Methods 

As with most of the problems in computer science, graphs can be used to transform this 

problem from abstract form to graphs and then find new approaches to solving them. In our 

case, this environment can be transformed to a graph where the edges represent the paths 

and the nodes represent the intersection of these paths. Once the problem is transformed to 

a graph, any classic graph traversal problems like travelling salesman can be used to perform 

coverage [9]. 
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The main advantage of this approach is that it allows us to compute the path of each robot 

before the program actually starts. But, this approach does not work as efficiently in cases 

where the environment in unknown or dynamic and SLAM is being used to update the map 

in each turn. In these cases, as the map changes, the path needs to be computed again. 

Moreover, in cases where one of the robots fails, or an unknown obstacle appears in the 

system, this approach does not behave in a robust way [9]. 

2.4.3.3 Frontier Based 

In his landmark paper published in 1997 [38], Yamauchi introduced the concept of frontiers. 

Since then frontiers have become one of the most widely used coverage strategies. The map 

is represented by an occupancy grid where each cell can have one out of three values – free, 

occupied and unknown. Frontiers are the cells which lie at the boundary of unexplored and 

explored areas. When a robot moves to a frontier cell, it gains new information about the 

unexplored space [38]. Thus, the problem of coverage can be stated as the problem of 

selecting successive frontiers in such a way that the robot increases its knowledge about the 

environment at each step. 

There are three main components of frontier based coverage: 

 Frontier Detection 

 Frontier Selection 

 Frontier Navigation 

Frontier Detection is the technique of detecting which cells are frontiers out of all the cells 

in an environment. To detect the boundaries between explored and unexplored space, 

techniques of edge detection and region extraction are used [38]. Once this boundary has 
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been detected, free cells lying adjacent are marked as frontier cells. Fig 2.9 below shows the 

process of frontier detection. 

 

Figure 2.9 Frontier Detection Process (a) evidence grid (b) frontier edge segments (c) frontier regions [38]. 

Another common technique for frontier detection is Wavefront Frontier Detection (WFD) 

technique which uses a variant of breadth-first search algorithm to create a wave which starts 

from the current position of the robot and grows until it reaches the goal position [9]. The 

major disadvantage of WFD technique is that it can become costly as for each iteration of 

frontier detection, the full map has to be scanned. 

In the case of multiple robots, each robot maintains its own version of the environment and 

perform frontier detection and frontier selection in that local version. After this process, this 

local map is merged with the global map and broadcasted to every other robot. 
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Once the frontiers have been detected, the key question arises which frontiers should be 

chosen in order to maximize the coverage in minimum time; this process is called Frontier 

Selection. There are multiple techniques like nearest based, greedy based, rank based, 

threshold based which are developed to solve this problem. These techniques will be 

discussed in detail in Chapter 4. 

The last component of frontier-based exploration is Frontier Navigation which deals with 

how to navigate the robot to the chosen frontier. This part is taken care by the path planning 

module. 

2.5 Summary 

In this chapter, various techniques and processes required to perform multi-robot coverage 

in an unknown environment were discussed. Each technique has its own 

advantages/disadvantages and the decision to choose a strategy depends upon the nature of 

the environment, application and robot design. The user should keep these in mind while 

choosing the strategy for their system. 
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Chapter 3 

ROBOT OPERATING SYSTEM (ROS) 

As robotics is becoming more important in our lives, the scale and size of robots are 

increasing rapidly.  Robot hardware and designs change according to the tasks for which 

they are employed. This causes a major problem for code reusability. ROS is an open-source 

framework consisting of tools, libraries, and conventions which simplify the creation of 

complex robotic applications [19], by allowing developers to reuse the existing 

implementations of algorithms such as map merging, vision, and navigation. ROS can be 

used with both physical and simulated robots. Stag is another open source 2D robot 

simulation software. Stage provides a virtual environment where we can create various 

robots with a variety of sensors to test our algorithms [39]. This chapter provides a brief 

overview about ROS, Stage, and their architecture. 

3.1 Overview 

ROS was developed in 2007 at Stanford Artificial Intelligence Laboratory (SAIL). It started 

as a service for inter-module messaging, but later after continuous upgrades became a 

framework. ROS is upgraded through distributions which are a set of ROS packages similar 

to Linux distributions. In this document wherever we are using ROS, we are referring to 

ROS Indigo released in 2014. 

ROS acts as a meta-operating system and provides users with a range of services such as 

inter-process communication, hardware abstraction, multi-lingual development, rapid testing, 

and distributed computing [40]. ROS provides novice users with the capability to use the 

existing libraries and develop robotic systems at a much faster rate, without worrying about 
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various hardware. ROS divides the major functionalities of a system into a distributed system 

of modules and then uses messaging to pass information between them. 

Other major alternatives to ROS are Player, Microsoft Robotics Developer Studio (MRDS), 

Orocos, Open RTM and YARP. But out of all these ROS has achieved major support and is 

by far the most popular robot development platform as of now with the biggest developer 

community. 

3.2 Architecture 

At architectural level, ROS can be divided into three major categories [40]: 

 Filesystem Level 

 Computation Graph Level 

 Community Level 

3.2.1 Filesystem Level 

The Filesystem level provides the details about the internal structure of the software and the 

core functionalities without which it cannot work. Some major functionalities of filesystem 

level are packages, stacks, services and messaging. Fig 3.1 displays the components of the 

Filesystem level, their hierarchy and how they interact with each other.  

3.2.1.1 Packages 

Packages are the most basic unit of ROS, which provides functionalities in easy to use 

modules. A package is a module with some functionality in it; it may contain runtime 

processes, library or configuration files. Packages are the smallest individual thing we can 

build in ROS and are channel for software release [41]. ROS provides the command line tool 

“roscreate-pkg” to create a new package. 
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3.2.1.2 Stacks 

Stacks are combinations of several packages which together provide a functionality. For 

example, navigation stack takes information from robots’ sensors, processes them and then 

sends commands to robot’s actuators to perform navigational tasks. Navigation stack is 

composed of packages like amcl, costmap_2d, move_base and many more. The main 

advantage of using stacks is that they make code sharing much easier. ROS even provides 

“roscreate-stack” which is a command line tool to create stacks manually. 

 

Figure 3.1 Architecture of ROS Filesystem Level [40]. 

3.2.1.3 Messages 

Messages are tools in ROS to define data values which are exchanged between various 

processes. A Message in ROS is composed of two fields – fields and constants. Fields define 

the data type and constants define the field name. ROS allows many standard types like int, 

bool, float, time and string. In addition to these, there is a special type called Header. Header 

allows us adding frameID’s and timestamp. ROS provides a command tool “rosmsg” which 

can print out information about message definition and files using a specific message type. 
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Fig 3.2 provides an example of a message in ROS, where the first field is of type String with 

field name first_name. 

 

Figure 3.2 StudentGrades.msg [49]. 

3.2.1.4 Services 

Messages provide many-to-many communication in ROS, where processes publish specific 

messages and other processes can access them on specific channels. But this kind of 

communication is not efficient in cases, where we want reply interactions, which are often 

required in distributed systems [42]. Services are based on a client/server model and allow 

client nodes to request information from other nodes, which then provide a response back 

to these nodes. ROS provides us two major command line tools to work with services: 

 rossrv – provides information about  services and the source files using a specific 

service 

  rosservice – can list and query specific ROS services 

3.2.2 Computation Graph Level 

Computation Graph Level creates a network where all processes connect with each other; 

which is accessible to all the processes in the system [40]. This allows processes to 

communicate and exchange information with each other. The major functionalities provided 

by ROS at this level are nodes, master, messages, services, and topics. Fig 3.3 displays the 

components of computation graph level and how they interact with each other. 
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Figure 3.3 Architecture of ROS Computation Graph Level [40]. 

3.2.2.1 Nodes 

In ROS, a node is a process where computation is performed [50]. Nodes are designed in 

such a way that each node is responsible for a small task. A simple robotic system usually 

contains a number of nodes. For example, in a simple system for robot navigation, one node 

will be responsible for laser sensor, one for robot localization, one for robot motion and so 

on. The usage of multiple nodes increases the robustness of the system and reduces code 

complexity in comparison to a system where a single node performs all the functions. ROS 

nodes are written in client libraries like roscpp (for C++) and rospy (for Python). ROS 

provides us with various command tools to interact with nodes such as rosnode info node, 

rosnode kill node, and rosnode list. 

3.2.2.2 Master 

ROS Master is the central core module of a ROS system which provides naming and 

registration services to the rest of the nodes in ROS system [51]. ROS Master allows nodes 

to find other nodes and then communicate with them. The master is run using the roscore 

command tool provided by ROS. ROS master is the first node which has to be executed 

when an ROS system is brought up. 
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3.2.2.3 Topics 

Topics are the buses on which ROS nodes transmit data. Topics allow decoupling of data 

production and consumption as data can be transmitted between nodes, even if there is no 

connection between them [40].  Each topic has a data type and only that specific type of data 

can be transmitted on that specific topic. Any node which wants to listen to a specific type 

of data can subscribe to its equivalent topic. ROS allows both TCP and UDP based 

transmission on topics. It also provides us command tools such as rostopic echo /topic, 

rostopic list and rostopic info /topic to work with topics. 

3.2.2.4 Parameter Server 

A Parameter Server is a multivariable dictionary that is accessible to all the nodes where they 

can store and retrieve parameters during runtime [40]. Parameters server is a component of 

ROS Master and is widely used for configuration parameters so that system configuration 

can be viewed by any node. 

3.2.3 Community Level 

Community Level is the last level of ROS resources that allow various communities of 

people to exchange information, resources and functionalities [40]. These include resources 

like Distributions and repositories. Distributions are collections of stacks. A new distribution 

for ROS is released every year in May. The latest distribution of ROS is Kinetic Kame. 

ROS repositories are a network of online code repositories which allow different 

communities to develop and publish their software packages.  
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3.3 ROS Development Tools 

ROS provides a number of command tools that help developers in debugging their 

applications and visualize critical information about the system. In this section, we will look 

at the three major tools: rviz, rqt_console, and rqt_graph. 

3.3.1 rviz 

rviz is a visualization tool that integrates an OpenGL interface and represents the data 

collected from the sensors in a modeled environment. ROS has a lot of options for the kind 

of data to be displayed such as Grid, Laser-Scan, Maps, Markers and many more. The user 

can choose the display type and then perform various configurations on it such as color, 

size, decay time etc. Fig 3.4 displays rviz tool configured for multi-robot coverage. Here, the 

red dot represents the robot and the white area represents the area explored by the robot. 

 

Figure 3.4 Environment visualization through rviz. 
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3.3.2 rqt_console 

‘rqt_console’ is a message viewer in ROS that allows users to see the messages published to 

the topic rosout in real time. ROS allows the user to filter out messages, so if the user only 

wants to see the most critical error, he/she can apply a filter on message severity to ‘Error’. 

Fig 3.5 depicts a sample ‘rqt_console’ depicting various messages generated during 

operation. In addition, to the messages, the tool also displays the name of the node which 

published the message, timestamp and the topic where the message was published. 

 

Figure 3.5 rqt_console displaying messages. 

3.3.3 rqt_graph 

rqt_graph provides a GUI plugin in order to visualize the ROS computation graph [52]. This 

tool allows us to create a graph with all the running nodes and the publisher-subscriber 

connections between them [52]. Fig 3.6 displays the nodes in the system and how they 

communicate with each other. 
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Figure 3.6 ROS computation graph. 
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3.4 Important ROS Stacks 

As we discussed earlier, stacks are a collection of packages which together provide a major 

functionality. Each stack has an associated version and can have dependencies on other 

stacks. In this section, we will go through an overview of some of the major stacks used in 

our work. 

3.4.1 Navigation Stack 

The navigation stack of ROS takes input from the odometry, sensor streams, and a goal pose 

and provides velocity commands to the mobile base of the robot as output [53]. The velocity 

commands make sure that the navigation is collision free.  

Navigation stack has some specific requirements that a robot must satisfy in order to use 

navigation stack [40]: 

 The robot should have differential drive and holonomic wheels 

 The robot’s shape should be either square or rectangle 

 The robot should publish all the information about the relationship between all the 

joints and sensors’ position 

 The robot should send messages with both linear and angular velocities 

 The robot should possess a planar laser in order to proceed with map and 

localization 

Fig 3.7 depicts the typical organization of the navigation stack. This diagram is depicting 

three types of nodes. The white nodes are the packages/stacks which are provided by default 

by ROS. While gray nodes are the ones that are not necessary, but provide some extra 



38 
 

functionality. The nodes with dotted paths are the one which needs to be developed based 

on the platform on which we are using navigation stack. 

 

Figure 3.7 Organization of Navigation Stacks [40]. 

In order to work successfully, the navigation stack requires the map of the environment. In 

order generate a map, we need to perform SLAM. We can use the package gmapping for 

this. gmapping creates a node ‘slam_gmapping’ which takes input from robots’ laser sensor 

and creates a 2-d occupancy grid map from laser data and pose information. 

Other important packages in navigation stack are: 

 amcl – amcl is a probabilistic localization system which performs localization for a 

2D robot using Monte-Carlo localization approach [54] 

 costmap_2d – this package creates a 2D costmap which takes sensor data as input 

as produces an occupancy grid map with each cell having values free, occupied or 

unknown. 
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 robot_pose_ekf – this package is used to estimate the 3D pose of a robot using 

extended kalman filters while taking measurements from multiple sources. 

 

3.4.2 Actionlib Stack 

Actionlib stack provides a standardized interface which allows us to interface with 

preemptive tasks [40]. Here, preemptive tasks are tasks which may take a long time to 

execute and the user may want in such cases to get a feedback about the status of the task or 

cancel the tasks in between. Some examples of such tasks are using robot’s sensor to get 

environment data, object detection, robot motion from a source to destination. Actionlib 

works on a client/server model. Fig 3.8 displays the client-server interaction in the actionlib 

stack. The ROS is responsible for communication between client and server application. 

 

Figure 3.8 Client Server Model in actionlib Stack [61]. 

3.5 Stage 

Stage is an open source simulation software which simulates a set of robots with their 

sensors in a 2D environment. Stage interfaces with the robots and receives sensor data from 
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the ROS and then moves the robots in the simulated environment in accordance with real 

robots’ behavior. Fig 3.9 shows Stage software being used for multi-robot coverage 

simulation. The two red dots here represents the robots in the system. 

 

Figure 3.9 Multi-robot simulation in Stage. 

Stage creates the simulated environment as per the configurations in a “.world” file. In this 

.world file, we provide all the details about the environment such as resolution, dimensions, 

number of robots and many more. Fig 3.10 shows a sample .world file with various 
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parameters such as starting location of all the robots in the environment, the number of 

robots etc. 

 

Figure 3.10 Sample world file 
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Chapter 4 

PROPOSED REMEMBER-ALL FRONTIER BASED 

MULTI-ROBOT COVERAGE APPROACH 

In Chapter 2, the problem of multi-robot coverage and various approaches that can be 

employed to solve that problem were discussed. Out of all the coverage approaches 

discussed so far, the frontier based approach is one of the most popular in the research 

community. This chapter will focus on the existing frontier based multi-robot coverage 

approaches and the proposed Remember-All multi-robot coverage approach in detail. 

4.1 Background 

One of the major problems in multi-robot coverage is to decide where the robots should 

move next, in order to complete the coverage of the environment in minimum time. The 

frontier based coverage approach attempts to provide a solution to this problem. In the 

frontier based approach, the map is decomposed into cells of same size and shape using an 

occupancy grid. Each cell in this grid is then provided a state value – free, occupied, and 

unknown. The cells which lie at the boundary of explored and unexplored areas are known 

as frontier cells. Once the robots have identified frontier cells in the grid, frontier allocation 

strategy is used to allocate one frontier to each robot. The robots then move towards their 

respective frontiers. This process is repeated again until no new frontiers can be found. 

In this chapter a new Remember-All frontier coverage approach, which is an extension of 

the Rank Based frontier coverage approach is proposed in order to improve the 

performance of robot coverage in terms of runtime and overlap. This proposed coverage 

approach has the following major features: 
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 Multi-Robot coverage of unknown environments 

 A new frontier allocation strategy – “Remember-All” frontier allocation strategy 

 Robots can start coverage from random points within environment 

 New communication policy 

 Improved coordination strategy 

4.2 Assumptions 

The proposed approach for multi-robot coverage is easily scalable to multiple robots and 

could be deployed on various types of environments irrespective of their shape and size. But, 

in order to narrow the scope of the implemented system, few assumptions have been made. 

First, it is assumed that a communication network for inter-robot communication is available 

over the entire environment. In any case, if a robot loses its connection with the network 

and is not able to communicate with the other robots, it is assumed that the robot has failed.  

Second, robots are equipped with a fixed laser sensor, which does not move during the 

process, leading to easier mapping and localization. Third, it is assumed that the 

environments are static and there will be no change in them while the robots are 

deliberating. This assumption constraints our scope to non-dynamic environments only. 

Fourth, in this work, experiments are conducted using two and three robot systems. But, the 

proposed approach can be easily extended to systems with more than three robots. 

The above assumptions are similar to the assumptions made in previous robotics literature 

[9, 15] and do not diminish the challenges of multi-robot coverage in unknown 

environments in comparison to previous works. 
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4.3 Proposed Coverage Approach 

The process of multi-robot coverage starts with multiple robots placed at random locations 

in an unknown environment. Unlike some other approaches [59, 60], where the starting 

locations of the robot remain same for every case, the proposed coverage approach is able to 

work in situations where the robots start at random locations on the map. 

The proposed multi-robot coverage approach can be divided into six major steps to be 

completed by each robot: 

1) Localize the robot and map the environment using SLAM 

2) Create a global map through merging individual robot maps 

3) Update the occupancy grid map using individual sensor measurements 

4) Identify frontiers 

5) Allocate frontier to the robot 

6) Navigate the robot towards the selected frontier 

Fig 4.1 displays the steps of the proposed Remember-All approach for multi-robot coverage 

in unknown environments. The steps 1 to 6 are executed continuously and concurrently for 

each robot in a serial manner till the robot is unable to find any new frontiers. Each of these 

modules will be discussed in detail in the following sections. The above-mentioned steps are 

similar to the robot coverage approaches followed in [9, 13, 15]. But in the proposed 

approach there is a major change in step 5, which demonstrates a new frontier allocation 

strategy. 
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Merge Individual Maps to 
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Fig 4.1 Steps for Multi-Robot Coverage in Unknown Environments using 
the proposed approach 
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4.3.1 Localization and Mapping 

The ‘Localization and Mapping’ module in step 1, uses the ROS package ‘gmapping’ to 

localize the robot and create a map of environment simultaneously using SLAM. This 

package creates a node ‘slam_gmapping’ which takes sensor data from robot’s laser sensor 

and pose data from the ‘amcl’ package [53]. It then uses this set of data to create a 2-D 

occupancy grid map of the explored environment. ‘amcl’ is an ROS package which 

implements a particle filter-based localization technique. 

In this technique, the whole map of the environment is filled with a large number of 

particles (in our experiments, we used 10,000 particles). Each of these particles is then 

simulated to behave as an actual robot. The particles are given the same ‘move’ commands 

which are provided to the robot and then their laser measurements are compared with the 

actual robot’s measurements. The particles with similar measurements as the robot are 

retained while others are replaced with new particles. These steps are repeated over and over 

until we have a concrete estimate of the location of the robot in the environment. 

4.3.2 Map Merging 

The second step in the proposed approach is to take individual maps of each robot and 

merge them together to create a global map of the explored environment. The map merging 

module uses an ROS package ‘map_merger’ which keeps track of the changes to the local 

maps of each robot and then automatically distributes them to the other robots [54]. Once 

the maps are distributed to the other robots, the robots then merge their own maps with the 

maps of other robots to create a global map of the explored environment.   

In order to merge maps from the multiple robots, the package performs coordinate 

transformations between the multiple local coordinate systems of each robot and the global 
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coordinate system using the ROS package ‘tf’. The ‘map_merger’ package solves this 

problem by identifying the overlapped regions in the maps, which then provides it with the 

transformation points [54]. Once the coordinate transformations are completed, the 

algorithm performs sanity checks to remove any merging errors. It is observed that the 

environments having repetitive structures are usually more prone to merge errors.  

It may also happen in few cases that, no transformation can be performed due to lack of 

sufficient overlapping regions. In such cases, the ‘map_merger’ package stores the map and 

checks it in the next iteration. If the transformation is possible in the next iteration the map 

is merged with other maps otherwise, it is stored for another iteration. The map merging 

algorithm is scalable to multiple robots, with no theoretical limit to the number of robots; 

but it is observed that the quality of global map generally decreases with the increase in the 

number of robots being used [54]. In the author’s view, this proposed approach will work 

with a practical number of robots. But in cases where a swarm of robots is being used, a new 

map-merging algorithm is required to maintain the desired quality of the global map. 

4.3.3 Update Occupancy Grid 

Once a map of the environment has been created through map merging of individual maps, 

the occupancy grid is updated to associate occupancy values (free, occupied and unknown) 

with the cells in step 3.  The module uses ROS package ‘costmap_2d’ which takes sensor 

readings from the robot sensors and then performs coordinate transformations to convert 

them as per the global map coordinates [55]. In order to perform the transformations from 

local coordinate frames to the global coordinate frame ROS package ‘tf’ is used. After this, 

the sensor readings are used to associate values with all the cells. 
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4.3.4 Identify Frontiers 

Once we have updated the cell values in occupancy grid based on the sensor measurements, 

the next step (step 4) is to identify the frontier cells. Frontier cells are the cells which lie at 

the boundary of unknown and known areas. In our approach, we have used the wavefront 

propagation technique from the ROS package ‘nav2d_exploration’ to identify frontiers, 

which is quite popular in the robotics community [56]. In this technique, we create a wave 

which traverses all the cells from the robot’s current location, until it hits the unexplored 

area.  

The underlying algorithm for this technique uses breadth-first search to propagate the wave 

forward. In order to improve the performance of the overall approach, the algorithm creates 

clusters from the adjacent frontiers. The ‘nav2d_exploration’ package creates a ‘nav2d’ node 

which gets the information about the map by subscribing to the topic /map and then 

publishes the cells identified as frontiers over the topic /frontiers [57].  

4.3.5 Allocate Frontiers 

A number of strategies exist for allocating frontiers to the robots. In this work, we propose a 

new frontier allocation strategy, which is an extension of Rank based frontier allocation 

strategy [9]. The proposed allocation strategy is compared with some of the existing frontier 

allocation strategies: Nearest [38], Greedy [14], Rank [9] and Threshold [15]. This section will 

provide an overview of the existing and the proposed allocation strategies. All of these 

strategies have underlying algorithms which are used for their implementation. In this work, 

the words ‘strategy’ and ‘algorithm’ are used interchangeably whenever no confusion arise. 
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4.3.5.1 Nearest Based Frontier Allocation 

In this strategy, the algorithm first calculates the Euclidean distance between each of the 

frontiers identified in the frontier identification step and the corresponding robot. The robot 

is then allocated the nearest frontier to that robot. This strategy has the advantage that it is 

simple and is easy to implement. But, one of the major disadvantages of this technique is 

that one frontier may get allocated to multiple robots, leading to increase in robot overlap 

and under-utilization of resources, inducing a lower runtime performance. 

 

 

 

 

 

 

 

Fig 4.2 Nearest Based frontier allocation. 

Example 1: Consider Fig 4.2, which displays an example of the Nearest Based frontier 

allocation strategy. The figure shows a sample environment with four frontiers (F1, F2, F3, 

and F4) and three robots (1, 2 and 3). The algorithm first calculates the Euclidean distance 

between the robot 1 and the frontiers identified by the robot 1 in the current iteration. In 

this example, let us suppose robot 1 identifies two frontiers – F1 and F2.  
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The algorithm then calculates the Euclidean distance of the frontiers to robot 1 and allocates 

the frontier F2 to robot 1 as it is closest to the robot. Similarly, the robot 2 is allocated the 

frontier F3. In the case of robot 3, the algorithms calculate the distance between the robot 

and the frontiers F1, F2, F3, and F4. 

 After this, the algorithm allocates the frontier F2 to robot 3, even though it was previously 

allocated to robot 1 because it is the closest frontier to the robot.                 ▲ 

4.3.5.2 Greedy Based Frontier Allocation 

The Greedy Based frontier allocation strategy is similar to Nearest Based frontier allocation 

strategy, as it also calculates the Euclidean distance between the frontiers and uses it as a 

deciding factor for allocating frontiers. But rather than allocating the nearest frontier to the 

robot, as was the case in Nearest Based Allocation, the Greedy Based frontier allocation 

allocates the nearest unassigned frontier to the robot. 

This makes sure that a single frontier is not allocated to multiple robots and thus provides 

better performance than the Nearest Based frontier allocation strategy. But the major 

disadvantage of this strategy is that it may lead to situations where robots do not spread 

evenly in an environment and keep on getting allocated with the frontiers of the same 

region. This leads to reduced runtime performance of the overall coverage strategy. 

Example 2: Consider Fig 4.3, which displays an example of the Greedy Based frontier 

allocation. The figure shows a sample environment with four frontiers (F1, F2, F3, and F4) 

and three robots (1, 2 and 3). The algorithm first calculates the Euclidean distance between 

the robot 1 and frontiers F1 and F2. It then allocates the frontier F2 to the robot 1, as it is 

the nearest frontier to the robot. Similarly, the robot 2 is allocated the frontier F3. In the 
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case of robot 3, the algorithms calculate the distance between the robot and the frontiers F1, 

F2, F3, and F4. The nearest frontier to the robot 3, in this case, is frontier F2, but it is 

already allocated to robot 1. Therefore, the next nearest frontier F1 is allocated to the robot 

3.          ▲ 

 

 

 

 

 

 

 

 

Fig 4.3 Greedy Based Frontier Allocation. 

4.3.5.3 Rank Based Frontier Allocation 

The rank based frontier allocation strategy, first proposed in [9], focuses mainly on the idea 

that better performance in coverage could be achieved if each robot is allocated to a frontier 

with fewer robots in its direction [13]. This strategy allocates frontiers based on two main 

criteria – distance to the robots and number of robots near a frontier. Each frontier is then 

assigned a rank by all the robots based on the number of robots near to that frontier; higher 

the number of robots near the frontier, the higher its rank.  
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Each frontier is then allocated to the robot with the lowest rank for that frontier. In an ideal 

scenario, there would be only one robot which is best suited for a specific frontier. But, in 

reality, it may happen that there is a tie between multiple robots for a frontier. In that case, 

the tie is resolved by taking into account the distance between the robot and the frontier. 

The Rank Based algorithm first creates a cost matrix 𝐶, where each element 𝐶𝑖𝑗 represents 

the distance between the robot 𝑅𝑖 and the frontier 𝐹𝑗 . Then, a position matrix P is created, 

where each element 𝑃𝑖𝑗 represents the rank of the robot 𝑅𝑖 for the frontier 𝐹𝑗 and is 

calculated through the following equation [9]:     

                            (4.1) 

 

Example 3: Consider Fig 4.4, which displays an example of the Rank Based frontier 

allocation strategy. The figure shows a sample environment with four frontiers (F1, F2, F3, 

and F4) and three robots (1, 2 and 3). The Rank Based algorithm first calculates the 

Euclidean distance between each robot and its frontiers to create a cost matrix C.  

Table 4.1 represents the cost matrix for this example. In table 4.1 below, it can be seen that 

the Euclidean distance between the frontier F1 and robot 1 is 20. A value of 0 in the cost 

matrix denotes that the particular frontier is not identified by the robot; as is the case for the 

frontier F1 and robot 2.  

Table 4.2 represents the position matrix P for this example, which represents the rank of the 

frontiers for each robot. This matrix is created using the Cost Matrix C in Table 4.1 and the 

equation 4.1. As it can be observed from the Table 4.2, the frontier F3 has rank 1(lowest 

rank) for robot 2 as in the cost matrix it is the only frontier identified by the robot. But, in 

the case of robot 1, both frontiers F1 and F2 have rank 1. This is due to the fact that the 
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robot 1 has identified both frontiers F1 and F2, and both of these frontiers have two robots 

near them. As there is a tie, the frontier with the least distance to the robot will be allocated 

(in this case F2).  

                Table 4.1: Cost Matrix 

Frontiers Robot 1 Robot 2 Robot 3 

F1 20 0 25 

F2 10 0 15 

F3 0 5 20 

F4 0 0 45 

                 Table 4.2 Position Matrix 

Frontiers Robot 1 Robot 2 Robot 3 

F1 1 0 2 

F2 1 0 2 

F3 0 1 2 

F4 0 0 1 

Similarly, in the case of robot 3, the frontier F4 is allocated to the robot 3 as it has the lowest 

rank for that robot.                 ▲ 

 

  

 

 

 

 

 

 

 

 

Fig 4.4 Rank Based Frontier Allocation. 
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4.3.5.4 Threshold Based Frontier Allocation 

Threshold Based frontier allocation strategy is an extension of the Rank Based Strategy [15]. 

In this strategy, the frontiers are allocated using Rank Based approach, but unlike the Rank 

Based strategy, all of the frontiers which lie within a pre-defined threshold limit of a robot 

are marked for allocation. All of these marked frontiers are then allocated to the robot in a 

serial manner of their ranks – from lowest to the highest. Once, all the marked frontiers are 

allocated to the robot, the algorithm moves on to the next step. 

Example 4: Consider Fig 4.5, which displays an example of the Threshold Based frontier 

allocation. The figure shows a sample environment with four frontiers (F1, F2, F3, and F4) 

and three robots (1, 2 and 3). The dashed circle around the robot 1 represents its threshold 

radius (assumed for the simplicity of the example); all the frontiers in this circle (F1 and F2) 

would be marked and explored by robot 1 (in order of their ranks) first, before moving on 

new frontiers. In this case, the robot 1 first goes to frontier F1 and then navigates back to 

frontier F2.                  ▲ 
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Fig 4.5 Threshold Based Frontier Allocation. 
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One of the major advantages of this approach is that it keeps track of the frontiers within 

the threshold range of a robot and thus makes sure no identified frontiers are neglected by 

the robot. But, this approach often leads to large amounts of overlap in situations where a 

large number of frontiers are present in the threshold range of a robot, leading to increased 

run time. 

4.3.6 Navigate Robots 

Once the robot has been assigned a frontier, ROS navigation stack is used to plan a path 

from the robot’s current position to the destination. The navigation stack takes as input 

sensor data and the goal position; it then calculates the optimum path for the robot [41].  

This information is then sent to ROS ‘move_base’ package which interacts with the robot’s 

mobile base to actually move the robot. 

4.4 Proposed “Remember-All” Frontier Allocation Strategy 

All of the frontier allocation strategies discussed so far only store information of the 

allocated frontiers [15]. Each robot is allocated one frontier based on the frontier allocation 

strategy being used and the rest of the frontiers are discarded. Moreover, these unallocated 

frontiers may very well be rediscovered in future iterations. This action of discarding 

unallocated frontiers can lead to loss of valuable information about the prospective frontiers 

for future frontier allocation iterations. 

The threshold based frontier allocation strategy tried to tackle this problem by marking all 

the frontiers in a predefined threshold range. But, it forces the robots to cover all of these 

marked frontiers first before moving on to new frontiers in the next iteration [15]. This 

compulsion to cover all the marked robots first often leads to a large amount of overlap as 

the robot moves through the same area repeatedly while covering these marked frontiers.  
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The proposed Remember-All frontier allocation strategy aims to maintain all the information 

about the unassigned frontiers and use this information in the future frontier allocation 

iterations. This measure will reduce the robot overlap during coverage, thereby leading to 

improved performance of the overall strategy, as to be demonstrated in the next Chapter.   

Another major advantage of the proposed Remember-All frontier allocation strategy is that, 

as the robots are storing the information of unallocated frontiers, it ensures that the robots 

do not miss any unallocated frontiers that were identified in previous iterations. 

In the proposed strategy, each robot maintains three individual lists over the course of the 

program: 

 ‘identified_frontiers’ 

 ‘explored_frontiers’ 

 ‘unallocated_frontiers’ 

The ‘identified_frontiers’ list is reset at the beginning of each iteration while the other two 

lists retain information till the end of the program. At the beginning of the program, all three 

lists are empty. 

The proposed Remember-All frontier allocation strategy can be summarized through the 

following set of steps: 

1) Before the process of frontier allocation takes place, each robot uses frontier 

identification technique to identify frontier cells in the explored map. The identified 

frontier cells are stored in the robot’s individual ‘identified_frontiers’ list. The 

‘identified_frontiers’ list is then compared with the robot’s ‘explored_frontiers’ list to 

remove any identified frontiers which are already explored.  
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Consider Fig 4.6 which shows a sample environment with three robots – 1, 2 and 3 and six 

frontiers – F1 to F6. The gray areas represent the obstacles in the environment. Before the 

frontier allocation process begins, each robot identifies frontier cells and stores them in its 

individual ‘identified_frontiers’ list.  

 

 

 

 

 

 

 

 

Robot 1 (‘identified_frontiers’) F1 F2 F3   

Robot 2 (‘identified_frontiers’) F2 F3 F4 F5 F6 

Robot 3 (‘identified_frontiers’) F5 F6    

 

Fig 4.7 ‘identified_frontiers’ list for all the three robots 

Fig 4.7 displays ‘identified_frontiers’ lists for each of the three robots at this step of the 

process. Both of the other lists – ‘unallocated_frontiers’ and ‘explored_frontiers’ are empty 

for all the three robots at this moment, as the process of frontier allocation has not yet 

started. But in the future iterations, these two lists may have frontiers. 

Fig 4.6 Sample environment for proposed Remember-All Based Frontier Allocation 
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2) Frontiers are allocated to each robot using the Rank based frontier allocation strategy 

This step of the proposed frontier allocation strategy ranks the frontiers, identified in the 

previous step, based on the Rank Based strategy. As the ‘unallocated_frontiers’ list is empty 

at this point, the frontiers used for ranking are only taken from the robot’s 

‘identified_frontiers’ list. But in the future iterations, the algorithm will use a number of 

frontiers (configurable) from the ‘unallocated_frontiers’ list, in addition to the 

‘identified_frontiers’ list. This will be explained in detail in the below steps. 

As it can be observed from Fig 4.6, if the robot 1 identifies three frontiers – F1, F2, and F3 

in the frontier identification step, the Rank Based strategy will rank all these frontiers. In this 

case, the frontier F1 will be ranked lowest for robot 1 and thus, gets allocated to robot 1. 

Similarly, frontier F4 will be allocated to robot 2 and frontier F5 will be allocated to the 

robot 3. The frontiers allocated to the robots in this step are highlighted in Fig 4.7 

3) All of the unallocated frontiers from the ‘identified_frontiers’ list of a robot are 

copied in the robot’s ‘unallocated_frontiers’ list 

Before each robot navigates to its allocated frontier, all the unallocated frontiers from the 

‘identified_frontiers’ list of the robot are copied to the robot’s ‘unallocated_frontiers’ list. Fig 

4.8 displays the ‘unallocated_frontiers’ list for all the three robots at this step of the frontier 

allocation process.  
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Robot 1 (‘unallocated_frontiers’) F2 F3    

Robot 2 (‘unallocated_frontiers’) F2 F3 F5 F6  

Robot 3 (‘unallocated_frontiers’) F6     

 

Fig 4.8 ‘unallocated_frontiers’ list for all the three robots 

As robot 1 was allocated frontier F1 in the first step, frontiers F2 and F3 are added to robot 

1’s ‘unallocated_frontiers’ list. Similarly, robot 2 adds frontiers – F2, F3, F5, and F6; while 

robot 3 adds frontier F6 to its list. 

4) Each robot then broadcasts the frontier allocated to it, to all other robots. All the 

robots then add this frontier to their ‘explored_frontiers’ list and remove it from 

their ‘unallocated_frontiers’ list, in case this frontier is already present in it. 

In the case of the example discussed in Fig 4.6, robot 1 will broadcast to all other robots that 

frontier F1 is explored. All the other robots will then add frontier F1 to their 

‘explored_frontiers’ list and will check if F1 exists in their ‘unallocated_frontiers’ list. If F1 

does exists in any robots’ ‘unallocated_frontiers’ list, then F1 will be removed from the list. 

This is done to make sure that robots do not rank an explored frontier in the future frontier 

allocation iterations.  

Similarly, when robot 3 is allocated frontier F5, it is broadcasted to all other robots that 

frontier F5 is already explored. It can be observed from the Fig 4.8 that robot 2’s 

‘unallocated_frontiers’ list contains frontier F5. Therefore, robot 2 will remove F5 from its 

‘unallocated_frontiers’ list.  
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Fig 4.9 represents the ‘unallocated_frontiers’ list maintained by each robot at the end of this 

step. As it can be observed from the below figure, at the end of this step, the 

‘unallocated_frontiers’ list only contains the frontiers which were identified by the respective 

robot but were not allocated to any of the robots till this iteration. 

 

Robot 1 (‘unallocated_frontiers’) F2 F3   

Robot 2 (‘unallocated_frontiers’) F2 F3 F6  

Robot 3 (‘unallocated_frontiers’) F6    

 

Fig 4.9 ‘unallocated_frontiers’ list for all the three robots 

Fig 4.10 represents the ‘explored_frontiers’ list maintained by each robot at the end of this 

step. As it can be observed from the below figure, the ‘explored_frontiers’ list of each robot 

will have the exactly same values.  

Robot 1 (‘explored_frontiers’) F1 F4 F5  

Robot 2 (‘explored_frontiers’) F1 F4 F5  

Robot 3 (‘explored_frontiers’) F1 F4 F5  

 

Fig 4.10 ‘explored_frontiers’ list for all the three robots 

This measure makes sure that every robot has the information about which frontiers have 

been explored till any point of time and thus, allowing lower frontier duplication among the 

robots. 
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5) In the next iterations of frontier allocation using the ‘Remember-All’ frontier 

allocation strategy, once the frontier identification step has been completed, a 

number (configurable) of frontiers from the ‘unallocated_frontiers’ list of the robot 

will be added to the robot’s ‘identified_frontiers’ list.  

The usage of this combination of frontiers (consisting of the frontiers identified in the 

current frontier identification iteration and a fixed number of the frontiers from the list 

of unallocated frontiers maintained by the robot) allows the algorithm to allocate a 

frontier from a wider pool of prospective frontiers. In comparison to this, the Threshold 

Based frontier allocation strategy coerces the robot to cover all the marked robots first, 

even if they are not the best frontier at that step. 

The number of frontiers added in the ‘identified_frontiers’ list in this step is configurable 

at the beginning of the program. The main reason for using only a fixed number of 

frontiers rather than all of the unallocated frontiers stored in the list is that, as the robot 

covers an environment, the list of unallocated frontiers grows rapidly. Using all these 

unallocated frontiers can cause a performance overhead to the algorithm. Therefore, in 

order to maintain the good performance of the algorithm only a limited number of 

unallocated frontiers are used in each frontier allocation iteration.  

The frontiers to be added to the ‘identified_frontiers’ list of a robot are selected from the 

robot’s ‘unallocated_frontiers’ list in LIFO (Last in First Out) order. Thus, only most 

recent frontiers are used first. Fig 4.11 displays the changes in the sample environment 

discussed in Fig 4.6 after the proposed frontier allocation strategy has reached the 

current step. As it can be observed from the below figure, all the three robots have 

navigated to the respective frontiers allocated to them. 
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Fig 4.11 Sample environment for proposed Remember-All Based Frontier Allocation 

For the example in Fig 4.11, let us suppose that the number of unallocated frontiers 

which can be added to the ‘identified_frontiers’ list is configured at two. In the next 

frontier allocation iteration, if there is a dead end after frontier F1, robot 1 will find no 

more new frontiers in step 0. The ‘identified_frontiers’ list, in this case, will consist of 

only the unallocated frontiers from the previous frontier allocation for robot 1 – F2 and 

F3.  

In the case of robot 2, if it finds a new frontier F7, its ‘identified_frontiers’ list will 

consist of F7, F6, and F3. Similarly, in the case of robot 3, its ‘identified_frontiers’ list 

will consist of only frontier F6. Once the algorithm has added frontiers to the 

‘identified_frontiers’ list of a robot from its ‘unallocated_frontiers’ list, it will check the 

‘explored_frontiers’ list to remove any frontiers which are already explored. Fig 4.12 
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displays the ‘identified_frontiers’ list for all the three robots at this step of the proposed 

frontier allocation strategy. 

Robot 1 (‘identified_frontiers’) F2 F3   

Robot 2 (‘identified_frontiers’) F7 F6 F3  

Robot 3 (‘identified_frontiers’) F6    

 

Fig 4.12 ‘identified _frontiers’ list for all the three robots 

6) The algorithm now uses the Rank Based frontier allocation strategy to allocate one 

frontier for each robot from the robot’s individual ‘identified_frontiers’ list.  

The above-mentioned steps are repeated over and over again until the robots are not able to 

find any more new frontiers in the frontier identification step and there are no more 

frontiers in the ‘unallocated_frontiers’ of the robots. 

There is also a special case in the above strategy where, if there are no frontiers identified in 

step 0 and there are also no frontiers available in the robot’s ‘unallocated_frontiers’ list. In 

this particular case, the robot will contact another robot which is nearest to its current 

position (let’s say Robot X). Then, a number of recent frontiers (configurable) will be copied 

from the robot X’s ‘unallocated_frontiers’ list to the robot’s ‘identified_frontiers’ list. 

4.5 Proposed Communication Policy 

The proposed Remember-All frontier based multi-robot coverage approach is implemented 

as a distributed system, where all robots perform their tasks individually. All robots localize 

themselves and create a map of their environment independently. The robots then 

communicate and exchange information in step 2 as displayed in Fig 4.1, when they create a 
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global map of the explored environment by combining the individual maps of the robots 

[54].  

After each robot is allocated a frontier using the proposed frontier allocation strategy, each 

robot broadcasts the allocated frontier to all the other robots. The robots then add this 

broadcasted frontier to their individual lists of explored frontiers – ‘explored_frontiers’ and 

check if the broadcasted frontier exists in their individual lists of unallocated frontiers – 

‘unallocated_frontiers’. If the broadcasted frontier exists in the latter list, it is removed from 

the list. 

This measure aims to avoid re-allocation of explored frontiers to the robots. This type of 

distributed communication model, where each robot maintains its own individual lists of 

explored and unallocated frontiers, leads to increased robustness. In this model, failure of 

one robot would not lead to failure of the overall system due to the presence of additional 

redundancies and will make sure that duplication of frontiers is minimum. 

4.6 Proposed Coordination Strategy 

The coordination strategy of a robotic system guides the robots to work with each other 

cooperatively. In the proposed ‘Remember-All’ frontier based coverage approach, each 

robot maintains its own list of unexplored frontiers, allowing other robots to use this 

information when they don’t have any frontiers of their own. As the proposed frontier 

allocation strategy uses a combination of frontiers (consisting of frontiers identified in the 

current step and few unassigned frontiers from the robot’s ‘unallocated_frontiers’ list), even 

if a robot is unable to identify any new frontiers in the current iteration, the 

‘identified_frontiers’ list will contain few frontiers from the robot’s ‘unallocated_frontiers’ 

list. 
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It may also happen that a situation arises, where a robot finds no new frontiers and the 

‘unallocated_frontiers’ list of the robot is also empty. In this case, the robot will be allocated 

the nearest frontier from the n recent frontiers in the nearest robot’s ‘unallocated_frontiers’ 

list; where n is the configurable limit of frontiers allowed to be added from 

‘unallocated_frontiers’ list to the ‘identified_frontiers’ list. 

4.6.1 Proposed Buddy Approach 

In [44], the authors proposed a unique bidding-based approach for frontier allocation, where 

the robots bid for the frontiers based on the cost of navigating to a frontier, and the robot 

with the best bid is allocated that frontier. They also introduced a problem that in cases 

where the number of frontiers becomes fewer than the number of robots, the coverage can 

come to a halt as robots may start believing that coverage is already completed.   

But, it may happen that this decrease in the number of frontiers is temporary, and once the 

robots move into the next region, the frontiers increase again. This scenario usually takes 

places in maps which contain narrow corridors linking rooms. If multiple robots enter a 

narrow corridor, only the robot at the front is able to identify new frontiers. All other robots 

believe that as there are no more frontiers, the coverage is completed and stop their 

operation. This scenario can cause a huge performance drop as few robots will stop their 

operation, leading to under-utilization of resources. 

In this proposed approach, this problem is tackled through the Buddy Approach (name 

inspired from [62]). When the number of frontiers becomes fewer than the number of 

robots, the robots with no new frontiers will start following a robot with a frontier at a safe 

distance. This process will be repeated until any new frontiers are found or the leading robot 

has no more frontiers. If the leading robot finds new frontiers, they will be shared with the 
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buddy robots; however, if no new frontiers are found by the leading robot, coverage will be 

stopped. The Buddy Approach is especially useful in the environments where narrow 

corridors connect various regions of the map. 

4.7 Comparison of Frontier Allocation Strategies 

In this section, various frontier allocation strategies are compared with the proposed 

Remember-All approach. 

a) Nearest Based Frontier Allocation Strategy 

Advantages: 

 Easy to understand and easy to implement 

Disadvantages: 

 Multiple robots may get allocated to a single frontier, leading to under-

utilization of resources 

b) Greedy Based Frontier Allocation Strategy 

Advantages: 

 Easy to understand and easy to  implement 

 Improved performance in comparison to Nearest Based strategy 

Disadvantages: 

 Robots usually get confined to the same region 

 

c) Rank Based Frontier Allocation Strategy 

Advantages: 

 Improved performance in comparison to the above approaches 
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 Robots are dispersed in a larger region as compared to previous approaches, 

leading to a better area coverage 

Disadvantages: 

 Works only in known environments 

 No storage of unallocated frontiers often causes frontier duplication and 

increased robot overlap 

d) Threshold Based Frontier Allocation Strategy 

Advantages: 

 Improved performance in comparison to the above approaches 

 All the frontiers in the robot’s threshold radius are marked and explored first, 

ensuring that the robots do not miss any unallocated frontiers that were 

identified in previous iterations. 

Disadvantages: 

 May lead to excessive overlap of the same area. 

 Robot coverage may stop prematurely in cases where number of frontiers 

become fewer than the number of robots in the environment 

e) Remember-All Based Frontier Allocation Strategy 

Advantages: 

 Improved performance in comparison to the above approaches 

 Reduced frontier overlap 

 Able to work in situations where number of frontiers are fewer than number 

of robots  
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 Storage of unallocated frontiers ensures that the robots do not miss any 

unallocated frontiers that were identified in previous iterations. 

Disadvantages: 

 Extra computation is required to avoid frontier duplication 

4.7.1 Comparison with the Enhanced Frontier Based Approach 

The enhanced frontier based approach in [43] also tried to solve the problem of robot 

coverage through the storage of unassigned frontiers. This approach also stored the 

unassigned frontiers for each robot individually and then, used this storage pool of frontiers 

to get frontiers in case no new frontiers are found.  But, as it can be observed this approach 

has several shortcomings, which the proposed ‘Remember-All’ approach endeavors to 

resolve. Some of the major shortcomings of the Enhanced Frontier Based approach are as 

following [43]: 

 The Enhanced Frontier Based approach uses the unallocated frontiers in only those 

cases where no more frontiers are found and thus does not take full advantage of the 

stored unassigned frontiers. In the proposed ‘Remember-All’ approach, a 

combination of identified and unallocated frontiers is used to take full advantage of 

the stored frontiers 

 The Enhanced Frontier Based approach uses a combination of Closest Frontier 

Obstacle Distance (CFOD) [58] and Euclidean distance as a parameter to choose 

frontiers. This may lead to extra overhead for the algorithm and may not be efficient 

in environments with wide corridors. In the proposed approach, the Euclidean 

distance is used 
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 Usage of CFOD also confines the robots starting at a similar location to a similar 

region, leading to uneven diffusion of the robots in an environment. The proposed 

approach uses the number of robots near a frontier in addition to the Euclidean 

distance for frontier allocation. This makes sure that the robots are allocated 

frontiers with fewer robots in the same direction, leading to improved diffusion. 

 This approach may provide reduced performance in obstacle-rich environments as 

the strategy needs to perform extra calculations for CFOD 

 Does not performs well in cases where the number of frontiers in an environment 

may become fewer than the number of robots, as the robots may stop prematurely. 

The proposed approach uses Buddy Approach to tackle this scenario 
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Chapter 5 

EXPERIMENTS AND RESULTS 

The proposed multi-robot coverage approach was tested extensively through a number of 

experiments performed in several environments and in various conditions. This chapter 

presents the results of these experiments and shows how the proposed approach stands in 

comparison to other existing approaches. 

5.1 Experimental Setup 

The experiments were performed on simulations of robot environments created through 

Stage 2D [39]. The simulated robots were configured with a hokuyo laser [63] scanner with 

an 180-degree field of view and a range of 6 meters. The experiments were performed on a 

personal computer with 4GB of RAM and an Intel Core i3 processor. The robots were 

tested in three different types of environments, which were unknown to the robots at the 

beginning of the experiments. Fig 5.1 displays the three different types of custom-built maps 

used to create the environments and conduct experiments. In the maps, the white color 

represents free space, while black color represents obstacles or boundaries. All three maps 

are rectangular, with dimensions of 34 x 30 meters. 

Fig 5.1(a) depicts a map of the hallway with an open area in the center and small linked 

spaces on the sides. This map is an introductory map to test the basic capabilities of the 

multi-robot system. Fig 5.1(b) represents a map of an asymmetric room containing 

numerous obstacles. This map is much more complex and tests the behavior of the system 

in an obstacle-rich environment. Fig 5.1(c) depicts the map of an office environment with 

long and narrow corridors and multiple cubicles. This map tests the behavior of the system 
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in an environment where the number of frontiers may become fewer than the number of 

robots frequently.  

         

(a) Hallway map                                          (b) Asymmetric room map

 

(c) Office Map 

Fig 5.1 Custom-built maps for the coverage experiments. 

5.2 Coverage Results 

This section presents the coverage results of the experiments performed in three 

environments using the maps in Fig 5.1. It is demonstrated from the experiments conducted 

in [9], [13] and [15], that the Rank Based and the Threshold Based coverage approaches are 

superior to the Nearest Based and the Greedy Based approaches in most of the situations. In 

addition to this, the implementation details of Enhanced Frontier Based coverage approach 

were obscure and required extra time and effort to implement from the start. Therefore, the 
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experiments were performed for three coverage strategies only, i.e., the Rank Based 

approach, the Threshold Based approach, and the proposed Remember-All Based approach. 

For each map, ten experiments were conducted with each of the three selected strategies.  

The comparison parameters for these results are runtime, the percentage of duplicate 

frontiers and frontiers coverage percentage among individual robots. Runtime is the amount 

of time taken by the robots to perform coverage in a given environment. For example, if the 

coverage process of a robot using Rank Based approach in a map takes 200 seconds, then 

the runtime of Rank Based approach for that map is 200.  

In the occupancy grid, created in ROS each frontier has a unique id associated with it. By 

comparing the id of an allocated frontier with that of already explored frontiers, the 

algorithm can detect if an already explored frontier is explored again by any robot. The 

percentage of duplicate frontiers metric denotes how many explored frontiers were explored 

again by the robots. The value of duplicate frontiers % is calculated through the formula 

depicted below in equation 4.2. 

      (4.2) 

For example, if in a given map the robot has explored 100 frontiers and out of all these 

frontiers, 20 frontiers are already explored. Then, the percentage of duplicate frontiers will 

be 20 %. The third comparison metric is the Individual frontier coverage percentage which 

depicts the percentage of individual contribution by each robot. The formula used to 

calculate this metric for each robot is depicted below in equation 4.3. In the below sections 



73 
 

Robot X Frontiers % denote the percentage share of robot X out of all the covered 

frontiers, where the value of X can be 1 , 2 or 3. 

            (4.3) 

In an ideal scenario, both of the robots in a two-robot system should explore 50% each of 

the total explored frontiers. But, this number varies depending upon the nature of the map 

and the coverage strategy being used. 

5.2.1 Coverage Results for Two-Robot Systems 

This section displays the coverage results in all three environments using two robots. The 

two robots start near the center of the map, within close proximity of each other, and then 

proceed depending on the coverage strategy being used.  

Hallway Map 

Table 5.1 displays the comparison of Rank Based, Threshold Based and the proposed 

Remember-All Based approach for the hallway map. All the results in this table are averages 

of the set of values calculated over ten runs of experiments performed. 

Table 5.1 Comparison of Coverage Strategies for the Hallway map 

Frontier Strategy 
Runtime  
(in seconds) 

Duplicate 
Frontiers (%) 

Robot 1 
Frontiers (%) 

Robot 2 
Frontiers (%) 

Remember-All 
Based 

160.2 0 57.98 42.02 

Rank Based 166 25.66 65.30 34.70 

Threshold Based 224.7 31.54 40.38 59.62 
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As it can be observed from the above table, the proposed Remember-All Based approach 

has an average run time of 160.2 seconds, which is better than that both of the other two 

coverage approaches. The proposed approach is faster than the Threshold Based approach 

by 28.5 % and 3.4% faster than the Rank Based approach. Even, in terms of percentage of 

duplicate frontiers, the Remember-All Based approach gives the best performance, with no 

duplicate frontiers.  

 

Fig 5.2 Graph of robot coverage run-time in the hallway map. 

The Remember-All Based approach performs better than the Threshold Based approach 

because the lower percentage of duplicate frontiers in the Remember-All Based approach 

reduces the robot overlap, leading to faster coverage of the environment.  

Fig 5.2 represents the runtime of the robots for each coverage strategy over ten runs. As we 

can see from the graph, the maximum individual time is taken by the Threshold Based 

approach for run 3, when it covered the hallway map in 285 seconds. In comparison to this, 

the minimum individual time is 132 seconds for Rank Based approach in run 7. 
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Fig 5.3 Graph of percentage of frontier coverage by individual robots in the hallway map. 

Fig 5.3 represents the average frontier coverage percentage by the individual robots in the 

hallway environment over the course of ten runs. As it can be observed from the below 

figure, the share of explored frontiers is higher in the case of robot 1 in the proposed 

Remember-All Based and the Rank Based approach. While, in the case of Threshold Based 

approach, robot 2 has more share of explored frontiers than robot 1. Out of all the three 

approaches, Rank Based approach has the highest difference in the individual frontier 

coverage % (15.30 %), while the proposed Remember-All Based approach has the least 

difference (7.98%) in the individual frontier coverage %. 

Asymmetric Room Map 

This map is overall asymmetric in nature, but is obstacle rich and has few symmetric regions 

which can cause confusion in the robots. Table 5.2 displays the comparison of the Rank 

Based, the Threshold Based and the proposed Remember-All Based approach for the 

asymmetric map. All the results in this table are averages of the set of values calculated over 

the ten runs of experiments performed.  
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As it can be observed from the below table, the proposed Remember-All Based approach 

has the best performance with the average run time of 228.9 seconds and a duplicate frontier 

percentage of 0%. In comparison, the Threshold Based approach has the worst performance 

with the average run time of 286.9 seconds (20.2 % higher) and a duplicity percentage of 

26.83%.  

The threshold based strategy performs worst here as it has a large number of duplicate 

frontiers (already explored frontiers, which are again explored by the robots) and it forces 

the robot to first explore all the marked frontiers rather than choosing best frontiers at each 

step. 

Table 5.2 Comparison of Coverage Strategies for the Asymmetric room map 

Frontier Strategy 
Runtime 
(in seconds) 

Duplicate 
Frontiers (%) 

Robot 1 
Frontiers (%) 

Robot 2 
Frontiers (%) 

Remember-All 
Based 

228.9 0 54.26 45.74 

Rank Based 249.1 27.99 48.17 51.83 

Threshold Based 286.9 26.83 42.05 57.95 

 

Fig 5.4 represents the run time of the robots with each coverage strategy over ten runs. As 

we can see from the graph, the maximum individual time is taken by the Threshold Based 

approach for run 7, when it covered the asymmetric map in 381 seconds. In comparison to 

this, the minimum individual time is 164 seconds for Rank Based approach in run 2. 
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Fig 5.4 Graph of robot coverage run-time in the asymmetric room map 

 

Fig 5.5 Average frontier coverage by individual robots in the asymmetric hall map 

Fig 5.5 represents the average of individual frontier coverage of both the robots in the 

asymmetric room map over the course of ten runs. As it can be observed from the below 

figure, the share of explored frontiers is higher in the case of robot 1 in the proposed 

Remember-All Based approach. While, in the case of the other two approaches, robot 2 has 
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more share of explored frontiers than robot 1. Out of all the three approaches, Threshold 

Based approach has the highest difference in the individual frontier coverage % (7.95 %), 

while the proposed Rank Based approach has the least difference (1.83 %) in the individual 

frontier coverage %. 

Office Map 

This map is a simulation of an office environment with long narrow corridors, obstacles and 

cubicles. This map tests the behavior of the robots and the coverage strategies in a situation 

where the number of frontiers may become fewer than the number of robots. Table 5.3 

displays the comparison of Rank Based, Threshold Based and proposed Remember-All 

Based approach for the office map. All the results in this table are averages of the set of 

values calculated over the ten runs of experiments performed.  

Table 5.3 Comparison of Coverage Strategies for the Office map 

Frontier Strategy 
Runtime (in 
seconds) 

Duplicate 
Frontiers (%) 

Robot 1 
Frontiers (%) 

Robot 2 
Frontiers (%) 

Remember-All 
Based 

230.3 0 60.43 39.57 

Rank Based 264.1 30.7 56.19 43.81 

Threshold Based 284.2 29.91 60.40 39.60 

 

As it can be perceived from the above table, the proposed Remember-All Based approach 

performs best with the average run time of 230.3 seconds and a duplicate frontier percentage 

of 0%. The best performance of Remember-All Based approach here, can be related to the 

robots with no frontiers following the robots with one frontier in cases where the number of 

frontiers becomes fewer than the number of robots. This case is especially true in the narrow 
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corridors where the lack of adequate frontiers, forces the algorithm to activate buddy 

approach. 

Fig 5.6 represents the run time of the robots with each coverage strategy over ten runs. As 

we can see from the graph, the maximum individual time is taken by the Threshold Based 

approach for run 9, when it covered the asymmetric map in 429 seconds. In comparison to 

this, the minimum individual time is 172 seconds for the proposed Remember-All Based 

approach in run 7.  

 

Fig 5.6 Graph of average run-time for robot coverage in the office map 
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Fig 5.7 Average frontier coverage by individual robots in the office map 

Fig 5.7 represents the average of individual frontier coverage of both the robots in the office 

map over the course of ten runs. As it can be observed from the below figure, robot 1 has 

higher individual frontier coverage percentage than the second robot in all the three 

approaches. Out of all the three approaches, Remember-All Based approach has the highest 

difference in the individual frontier coverage % (10.43 %), while the Rank Based approach 

has the least difference (6.19 %) in the individual frontier coverage %. 

5.2.2 Coverage Results for Three Robot Systems 

This section displays the coverage results of the robots in all three environments using three 

robots. All the three robots start near the center of the map, within close proximity of each 

other, and then proceed depending upon the coverage strategy being used.  

Hallway Map 

Table 5.4 displays the comparison of Rank Based, Threshold Based and proposed 

Remember-All Based approach for the hallway map with a three-robot system. All the 
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results in this table are averages of the set of values calculated over the ten runs of 

experiments performed. 

As it can be observed from the below table, the proposed Remember-All Based approach 

has an average run time of 155 seconds which is better than both of the other coverage 

approaches. 

Table 5.4 Comparison of Coverage Strategies for the Hallway map 

Frontier 
Strategy 

Runtime (in 
seconds) 

Duplicate 
Frontiers (%) 

Robot 1 
Frontiers (%) 

Robot 2 
Frontiers (%) 

Robot 3 
Frontiers (%) 

Remember-All 
Based 

155 0 59.25 23.13 17.62 

Rank Based 159.1 31.45 65.00 15.00 20.00 

Threshold Based 189.9 34.29 47.00 20.00 33.00 

 

While, in terms of percentage of duplicate frontiers, the Remember-All Based approach 

gives the best performance with 0% duplicate frontiers. The table also displays the individual 

frontier coverage percentage of the three robots in the map. 

Fig 5.8 displays the run times of the three robot system for the hallway map over the course 

of ten runs. As we can see from the graph, the maximum individual time is taken by the 

Threshold Based approach for run 6, when it covered the hallway map in 286 seconds. In 

comparison to this, the minimum individual time is 132 seconds for the proposed 

Remember-All Based approach in run 7.  
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Fig 5.8 Graph of robot coverage run-time in the hallway map 

 

Fig 5.9 Average frontier coverage by individual robots in the hallway map 

Fig 5.9 represents the average of individual frontier coverage of both the robots in the 

hallway map over the course of ten runs. As it can be observed from the below figure, in all 

the three approaches robot 1 has highest individual frontier coverage percentage than other 

two robots. Out of all the three approaches, Rank Based approach has the highest difference 
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in the individual frontier coverage with robot 1 covering 65 % of the total frontiers. In 

comparison, the proposed Threshold Based approach has the least difference with robot 1 

covering 47 % of the total frontiers. 

Asymmetric Room Map 

This map is overall asymmetric in nature, but is obstacle rich and has few symmetric regions 

which can cause confusion in the robots. Table 5.5 displays the comparison of Rank Based, 

Threshold Based and proposed Remember-All Based approach for the asymmetric map. All 

the results in this table are averages of the set of values calculated over the ten runs of 

experiments performed.  

Table 5.5 Comparison of Coverage Strategies for the Asymmetric map 

Frontier 
Strategy 

Runtime (in 
seconds) 

Duplicate 
Frontiers (%) 

Robot 1 
Frontiers (%) 

Robot 2 
Frontiers (%) 

Robot 3 
Frontiers (%) 

Remember-All 
Based 

215.4 0 44.04 30.96 25 

Rank Based 226.6 32.02 48 35 17 

Threshold Based 248.7 29.74 44 29 27 

 

As it can be noted from the above table the proposed Remember-All Based coverage 

approach provides the best performance with the average run time of 215.4 seconds. In 

comparison to this, the threshold based approach has an average run time of 248.7 seconds. 

The Remember-All Based approach also has the least percentage of duplicate frontiers of all 

three coverage strategies with 0 % duplicate frontiers. 
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Fig 5.10 Graph of average run-time for robot coverage in the asymmetric room map 

Fig 5.10 displays the run times of all the runs performed in the three robot system. As we 

can see from the above graph, the worst run time performance record is with the Threshold 

Based approach which took 339 seconds for coverage in the run 10. In comparison to that, 

the Rank Based approach has the lowest run time of 142 seconds in the run 3. 

 

Fig 5.11 Average frontier coverage by individual robots in the asymmetric room map 
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Fig 5.11 represents the average frontier coverage by the individual robots over the course of 

ten runs in the asymmetric room map. As it can be observed from the below figure, in all the 

three approaches robot 1 has highest individual frontier coverage percentage than other two 

robots. Out of all the three approaches, Rank Based approach has the highest difference in 

the individual frontier coverage with robot 1 covering 48 % of the total frontiers. In 

comparison, the proposed Threshold Based approach has the least difference with robot 1 

covering 44 % of the total frontiers. 

Office Map 

Table 5.6 displays the comparison of Rank Based, Threshold Based and proposed 

Remember-All Based approach for the office map within a three robot system. All the 

results in this table are averages of the set of values calculated over the ten runs of 

experiments performed. 

Table 5.6 Comparison of Coverage Strategies for the Office map 

Frontier 
Strategy 

Runtime (in 
seconds) 

Duplicate 
Frontiers (%) 

Robot 1 
Frontiers (%) 

Robot 2 
Frontiers (%) 

Robot 3 
Frontiers (%) 

Remember-All 
Based 

222.5 0 55.51 19.64 24.85 

Rank Based 253.8 32.27 36 33 31 

Threshold Based 277.6 29.43 25 30 44 

 

As it can be perceived from the above table, the Remember-All Based Approach provides 

the best performance with the average run time of 222.5 seconds and a frontier duplication 

of just 0 %. In comparison to this, the Threshold Based approach performs worst with the 

average run time of 277.6 seconds and frontier duplication of 29.43%. 
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Fig 5.12 Graph of individual robot run-time in the office map 

Fig 5.12 represents the run times of all the runs of experiments conducted in the three robot 

systems. As we can see from the below graph, the worst individual run time performance 

record is with the Rank Based approach which took 362 seconds for coverage on the run 4. 

In comparison to that, the Remember-All Based approach has the lowest run time of 172 

seconds in the run 2. 
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Fig 5.13 Average frontier coverage by individual robots in the office map 

Fig 5.13 represents the average frontier coverage by the individual robots over the course of 

ten runs in the office map. As it can be observed from the below figure, robot 1 has higher 

individual frontier coverage percentage than other two robots in the proposed Remember-

All Based approach and the Rank Based approach.  

Out of all the three approaches, Rank Based approach has the least difference in the 

individual frontier coverage with robot 1 covering 27.11 % of the total frontiers. In 

comparison, the proposed Threshold Based approach has the highest difference with robot 

1 covering 55.11 % of the total frontiers. 

5.2.3 Coverage Results for Two Robot System (with Distant Starting 

Locations) 

This section displays the coverage results of the robots in all three environments using two 

robots. Both the robots start at distant locations on the map and then proceed depending 

upon the coverage strategy being used.  
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Hallway Map 

Table 5.7 displays the comparison of Rank Based, Threshold Based and proposed 

Remember-All Based approach for the hallway map within a two-robot system where the 

robots start at locations distant from each other. All the results in this table are averages of 

the set of values calculated over the ten runs of experiments performed. 

Table 5.7 Comparison of Coverage Strategies for the Hallway map 

Frontier Strategy 
Runtime (in 
seconds) 

Duplicate 
Frontiers (%) 

Robot 1 
Frontiers (%) 

Robot 2 
Frontiers (%) 

Remember-All 
Based 

161.2 0 69.35 30.64 

Rank Based 164.4 24.1 75.36 24.64 

Threshold Based 210 28.59 78.42 21.58 

 

As it can be observed from the above table, the Remember-All Based approach performs 

better than the Rank Based and Threshold Based approaches with an average run time of 

161.2 seconds and the frontier duplication of 0 %. The frontier duplications for the other 

two approaches in this result set are lower than the frontier duplications in Table 5.1, as now 

the robots are starting at distant locations. 

Fig 5.14 represents the individual run times of all the runs of experiments conducted in the 

two robot systems when the robots are starting at distant locations. As we can see from the 

graph below the best individual performance is in run 1, when the proposed Remember-All 

Based approach performed coverage in 137 seconds. In comparison to this, the Rank Based 

approach has the record for the worst individual performance of 362 seconds in the fourth 

run. 
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Fig 5.14 Graph of robot run-time comparison in the hallway map 

Fig 5.15 represents the average of individual frontier coverage of both the robots in the 

hallway map over the course of ten runs. As it can be perceived from the below figure, the 

robot 1 has in all the cases outperformed robot 2 in terms of individual frontier coverage 

percentage. The main reason for this behavior is that as the robots now start in distant 

locations, the time taken for localization of robot 2 increases as the presence of another 

robot helps the robot to get localized faster. 

Out of all the three approaches, Threshold Based approach has the highest difference in the 

individual frontier coverage with robot 1 covering 78.42% of the total frontiers. In 

comparison, the Rank Based approach has the least difference with robot 1 covering 75% of 

the total frontiers. 
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Fig 5.15 Average frontier coverage by individual robots in the hallway map 

Asymmetric Room Map 

Table 5.8 displays the comparison of the Rank Based, Threshold Based and proposed 

Remember-All Based approach for the asymmetric map within a two-robot system where 

the robots start at locations distant from each other. All the results in this table are averages 

of the set of values calculated over the ten runs of experiments performed. 

Table 5.8 Comparison of Coverage Strategies for the Asymmetric Room map 

Frontier Strategy 
Runtime (in 
seconds) 

Duplicate 
Frontiers (%) 

Robot 1 
Frontiers (%) 

Robot 2 
Frontiers (%) 

Remember-All 
Based 

194.7 0 60.8 39.11 

Rank Based 206.8 21.19 69.17 30.83 

Threshold Based 243.8 25.72 68.86 31.14 

 

As we can see from the above table, the Remember-All Based approach has the best average 

run time of 194.7 seconds and also the lowest percentage of duplicate frontiers – 0 %. The 

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

Remember-All Based Rank Based Threshold Based

Fr
o

n
ti

er
s 

C
o

ve
re

d
 %

Coveage Strategy

Individual Frontiers Coverage

Robot 1 % Robot 2 %



91 
 

Threshold Based approach performs worst with the average run time of 243.8 seconds and 

25.72 % duplicate frontiers. The Rank Based performance lies in between the other two 

approaches. Fig 5.16 represents the individual run times of thirty runs performed in the 

asymmetric room map with the three coverage strategies. 

 

Fig 5.16 Graph of robot run-time comparison in the asymmetric room map 

As it is clear from the above graph, the Remember-All Based approach has the best 

individual performance in run 4 with the run time of 158 seconds. In comparison to that, the 

worst individual performance is given by the Threshold Based Approach which has the run 

time of 354 in run 9.  
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Fig 5.17 Average frontier coverage by individual robots in the asymmetric room map 

Fig 5.17 represents the average individual frontier coverage of both the robots over the 

course of ten runs. As we can observe the frontier coverage % of the robot 1 decreases a bit 

in comparison to Fig 5.15. The main reason for this is that this environment is highly rich is 

obstacles, which help the robot 2 to get localized a bit faster. As it can be perceived from the 

above figure, the robot 1 has in all the cases outperformed robot 2 in terms of individual 

frontier coverage percentage. 

Out of all the three approaches, Rank Based approach has the highest difference in the 

individual frontier coverage with robot 1 covering 69.17 % of the total frontiers. In 

comparison, the proposed Remember-All Based approach has the least difference with robot 

1 covering 60.89% of the total frontiers. 

Office Map 

Table 5.9 displays the comparison of the three coverage strategies - Rank Based, Threshold 

Based and proposed Remember-All Based approach for the office map within a two-robot 
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system. All the results in this table are averages of the set of values calculated over the ten 

runs of experiments performed. 

Table 5.9 Comparison of Coverage Strategies for the Office map 

Frontier Strategy 
Runtime (in 
seconds) 

Duplicate 
Frontiers (%) 

Robot 1 
Frontiers (%) 

Robot 2 
Frontiers (%) 

Remember-All 
Based 

239.30 0 62.30 37.69 

Rank Based 286.30 28.17 71.43 28.57 

Threshold Based 281.90 29.35 65.87 34.13 

 

As it can be observed from the above table, the proposed Remember-All Based approach 

provides the best performance with an average run time of 239.30 seconds and a frontier 

duplication percentage of 0 %. The Threshold Based approach provides the worst 

performance with an average run time of 281.90 seconds and the frontier duplication 

percentage of 29.35 %. The Remember-All Based approach is having a higher performance 

as a result of storage of performance and usage of buddy approach in cases where the 

number of frontiers becomes fewer than the number of robots.   

Fig 5.18 represents the individual run times of the robots through all the runs in a graphical 

manner. As we can see from the graph below, the worst individual performance is given by 

Rank Based approach in run 10, with the run time of 409 seconds. In contrast to this, the 

best performance is given by the Remember-All Based approach in run 3, with the run time 

of 195 seconds. 
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Fig 5.18 Graph of robot run-time comparison in the office map 

 

Fig 5.19 Average frontier coverage by individual robots in the office map 

Fig 5.19 represents the individual average of frontier coverage of the robots in the office 

environment in a graphical manner. As it can be perceived from the above figure, the robot 

1 has in all the cases outperformed robot 2 in terms of individual frontier coverage 

percentage. Out of all the three approaches, Rank Based approach has the highest difference 
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in the individual frontier coverage with robot 1 covering 71.43 % of the total frontiers. In 

comparison, the Remember-All Based approach has the least difference with robot 1 

covering 62.30% of the total frontiers. 

All of the results data obtained from the experiments is available for reference in Appendix 

A. The data consists of values of runtime, count of duplicate frontiers and individual 

frontiers coverage of robots for ten iterations for each experiment set. The iterations here 

denote a complete run from start to end of the program. 

5.3 Summary 

This chapter discussed the various experiments and their results using a variety of frontier 

based coverage approaches. The experiments were performed on three kinds of custom built 

maps – hallway, asymmetric room, and office. Based on the results of the above 

experiments, following conclusions can be drawn: 

 The proposed Remember-All approach has the zero percentage of duplicate frontiers 

in all the three environments 

 The proposed Remember-All approach performs better than the Threshold Based 

approach and the Rank Based approach in in all the three environments  

 The performance of the coverage approaches improves when the number of robots 

is increased from two robots to three robots 

 The performance of the coverage approaches generally deteriorates if the robots are 

started at distant locations to each other. This is due to the fact that, as the robots 

are away from each other, the time for localization increases 

 

 



96 
 

Chapter 6 

CONCLUSION AND FUTURE WORK 

In this thesis, concepts of multi-robot exploration are explained and a new frontier-based 

approach for multi-robot exploration is presented for unknown environments using ROS 

framework. This implementation is built on already available open source implementations 

of algorithms in ROS, such as Map Merging, SLAM and Localization. The proposed 

coverage approach was tested rigorously in a 2D open source robot simulator called Stage. 

6.1 Conclusion 

The proposed Remember-All Based approach was tested in three custom-built environments 

– hallway, asymmetric room and office. The performance of the approach was compared 

with already existing coverage approaches – Rank Based and Threshold Based – on the 

parameters of runtime, the percentage of duplicate frontiers and individual coverage 

percentage by each of the robots.  

In a two-robot system, where the two robots started in close proximity to each other, the 

proposed approach outperformed the Threshold Based approach in all the three maps with 

an 18-28.5% improvement in runtime. While in comparison to the Rank Based approach, 

the proposed approach provides an improvement of 3.3 – 12.7 % in runtime. 

In the next set of experiments called three-robot systems, one additional robot was added to 

the environment to see how the coverage was affected. In all three environments, the 

runtime for coverage was reduced in comparison to the two-robot system. However, the 

percentage of duplicate frontiers increased in each case due to the presence of more robots. 

In this set of experiments, the proposed Remember-All Based approach outperformed the 
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Threshold Based approach in all three maps with a runtime improvement of 13.3 – 19.8 %. 

The proposed approach also improved its runtime in comparison to the Rank Based 

approach by 2.5 – 12.3%. 

In the last set of experiments, the coverage strategy was tested in a two-robot environment 

where the robots started in locations far away from each other, making localization difficult. 

In this scenario, the proposed Remember-All Based approach outperformed the Threshold 

Based approach in all the three maps with a runtime improvement of 14.8 – 23.2 %. The 

proposed approach also outperformed the Rank Based approach with a runtime 

improvement of 1.8 – 16.2%. 

In this particular scenario, the individual area coverage of the first robot outpaces that of the 

second robot by a higher margin than in comparison to other experiment sets, due to the 

increased time taken for the localization of robot 2. In all the three experiments, the 

proposed Remember-All Based approach has the lowest frontier duplication percentage.  

In the end, we can conclude that the proposed coverage approach provides a good 

alternative to the existing coverage strategies to perform multi-robot coverage in unknown 

environments. 

6.2 Future Work 

One of the major areas for the future work can be the implementation of the proposed 

approach for the physical robots. The use of robot simulators allows the researchers to test 

their algorithms/strategies at a much rapid pace and at a relatively low cost. A simulator 

allows us to quickly make changes in the code and see how the simulated robots react to the 

change. But, testing this strategy on physical robots presents a good case for future work as 

the simulation is a controlled environment and does not take into account external factors 
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which are not thought by the developer. Implementing this coverage strategy for the physical 

robots such as ‘Turtlebot’ will allow us to see how the proposed approach behaves in the 

real world scenarios. 

It was discovered from the analysis of the results that the performance of proposed 

approach is lower in small and relatively open environments such as the hallway map in 

comparison to the other two maps. This behavior presents a good case for further 

investigation. In the future, the proposed approach could be tested on special custom built 

environments to see how the proposed approach behaves in the open environments in 

comparison to congested areas. 
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APPENDICES 

Appendix A: RESULT DATA 

This appendix section contains the results data obtained from the experiments performed in 

a tabular format.  
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Three-Robot System (Room) 
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Three-Robot System (Office) 
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Two-Robot System with Distant Starts (Hallway) 
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Two-Robot System with Distant Starts (Room) 
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Two-Robot System with Distant Starts (Office) 
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