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ABSTRACT

Academic networks derived from research papers, in particular citation and co-

author networks, have been studied widely. Although networks in an individual

discipline particularly physics have been studied substantially, the difference across

different disciplines remains unclear. This thesis shows that networks generated in

computer science differ greatly the networks in Physics. The data used in our exper-

iment contain more than two million papers in DBLP and half a million papers in

Physical Review journals. We observe that both citation networks can be classified

as scale-free networks. Papers in DBLP has a shorter life than PR. And physicists

collaborate more closely than computer scientists in both citation and co-author net-

works. Collaborations evolve over time in both disciplines. For the ranking of papers,

we find that the traditional PageRank algorithm is not appropriate for citation net-

works. We investigate the small-world characteristics in both kinds of networks in

terms of small average shortest path.
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CHAPTER I

Introduction

Large number of academic papers are available through various sources. Bibliomet-

rics is developed to study the papers and their connections. One topic in this area

is the study of citation networks and co-author network. Although networks in an

individual discipline especially physics have been studied widely[29][10][26], the dif-

ference between different areas is still unclear. The goal of this thesis is to analyze

academic networks of citation and co-author in two disciplines, computer science and

physics. We construct these networks based on the data from DBLP and Physical

Review journals. Then, we analyze and compare them by computing network proper-

ties such as the degree distribution, connected component, clustering coefficient and

pagerank. Our goal is to find the commonalities and differences between these two

fields. Considering of the long time period of these two datasets, we also investigate

the trends of citation and collaboration in both disciplines.

Citation network and co-author network are two kinds of social networks that can

be extracted from academic research papers. In a citation network, a node represents

a paper, and a directed edge is a citation link if paper A cites paper B. The citation

network that is established from a collection of 6 papers(Table 1) is given in Fig. 1.

It is a directed graph, and mostly acyclic because a paper normally cites those papers

that have been published earlier. In a co-author network, nodes are authors and an

undirected edge represents the collaborations between two authors if they co-author

a paper. The co-author network of authors of the collection of 6 papers is shown

is Fig. 2. Compared with citation network, it is undirected. Both kinds of network

have been studied substantially and can reveal the patterns of academic research. For

1



I. INTRODUCTION

instance, citation network can help us understand the connections among papers and

co-author network can shed light on the the patterns of collaboration among authors.

Paper Year Authors References

A 1997 x, y -

B 2012 y A, C, D

C 1997 y, z -

D 2003 e, f, g C

E 2003 g, h -

F 2012 g D, E

TABLE 1: A collection of 6 papers

A

C

D

B

F

E

FIGURE 1: An example of citation net-

work

x y z

e f

g h

FIGURE 2: An example of co-author net-

work

1 Main results in citation networks

In citation network of PR and DBLP, we studied their degree distributions, life cycle of

the papers, clustering coefficient, path length, and PageRank. We find that in both

2



I. INTRODUCTION

PR and DBLP, their in-degree distributions have a long tail that resembles power

laws with similar exponent that is close to 2.5. The inequality of citations is larger

in DBLP: 28% of the citations in DBLP go to top 1% of the papers, compared with

19%inPR. Out-degrees resemble log-normal distributions in both PR and DBLP.

Papers attract more citations in their young age. The citation count decreases in

an exponential speed. The average life expectancy of a paper is 6.5 years in DBLP

and 8 years in PR, papers in DBLP has a shorter life than PR.

Clustering coefficient is an important metric for social network, and often a criteria

to judge whether a network is a social network. Contrary to the believe that citation

networks have high CC, we find that in both PR and DBLP, their CCs are rather low

(0.023 for PR and 0.012 for DBLP). The higher CC in PR indicates that papers in

PR knit closer than papers in DBLP.

Both DBLP and PR papers form a small world. In both data sets, their degree

of separations are close to six, which is also the degree of separation between people

in real life [21]. Their degree of separations are significantly larger than online so-

cial network such as Twitter(4.12), Facebook(4.7), and Weibo(3.44) from [16]. The

diameter in PR almost doubles that of DBLP.

PageRank algorithms on these two datasets are also explored. We find that the

direct application of the PageRank algorithm with damping factor 0.85 lead the large

bias in favor of old papers. Changing damping factor to 0.5 can ameliorate the

problem.

2 Main results in co-author network

In co-author network, we studied their degree distributions, component distributions,

clustering coefficient, and path length. Unlike citation network, the degree distribu-

tion of co-author network in PR and DBLP are very different. Although networks

have long tail distributions that resemble a power law, their slopes differ greatly. The

average degree in PR is 119.978, which is 15 times higher than that of DBLP (7.807).

In both PR and DBLP, the most frequent pattern is authors working with two authors

3



I. INTRODUCTION

(17.5% in DBLP and 11% in PR).

For the distribution of network components, both networks have a single large

component, whose size is 88% for DBLP and 95% for PR. There are some small

isolated components. Notably there are 24,744 isolated pairs in DBLP and 3,258 in

PR, and 11,125 isolated triples in DBLP and 1,523 in PR. CS community has more

isolated small components than PR.

Their CC is also very different in two networks. The average CC of the entire

PR co-author network is 0.738, and 0.718 in DBLP. The higher CC in PR indicates

that authors in PR cluster much tightly than authors in DBLP. Both high CC value

indicates that the co-author networks are social networks.

More collaborations happen in physicists than computer scientists in terms of

the degree distribution and clustering coefficients. However, for both PR and DBLP,

collaborations evolve over time. The number of co-authors per author and the number

of authors per paper has risen significantly over the past century. The productivity

of scientists in physics is higher than computer science, but we should notice that

the author name in PR data contains the last name and the initial of the first name.

Thereby many names with the same initials are aggregated as the same person, while

authors of DBLP have first name. Both co-author networks show the small-world

effect in terms of the average shortest path length.

4



CHAPTER II

Review of The Literature

This chapter reviews the existing works of the analysis of citation and co-author

networks. Section 1 reviews two papers that build and analyze the citation network.

Section 2 reviews one paper that address the construction and analysis of co-author

network. Section 3 reviews two papers which combine both kinds of networks together.

1 Citation Network

1.1 How popular is your paper? An empirical study of the

citation distribution

According to Redner [28] states that, the problem is how to analyze the citation

distribution of scientific publications so that people can have the basic insight about

the popularity of publications.

Dataset

Redner used two relatively large data sets, one is the collection of 783,339 papers

published in 1981 that have been cataloged by the Institute for Scientific Information.

This dataset is ranging from 1981 to 1997. The second is the corpus of 24,296 papers,

which have 20 years of publications in volumes 11 to 50 of Physical Review D, from

1975 to 1994.

5



II. REVIEW OF THE LITERATURE

Experiment

The author plotted the number of papers as a function of x citations, namely, the

citation distribution. The author found that the number of papers is decreasing with

the citations but can not be described by a single function over the whole range of

citations. And Redner found that the asymptotic tail of citation distribution for two

datasets appears to follow the power law, N(x) ∼ x−α, with α almost equal to 3.

Result and conclusion

The author analyze the citation distribution based on two large datasets, which can

provide a measure of popularity of scientific publications. And the number of papers

with x citations, has a large-x power law decay, with exponent almost 3.

1.2 Citation Statistics From More Than a Century of Phys-

ical Review

Redner [29] studied the statistics of the complete sets of citations of all publications

that published in Physical Review from 1893 to 2003.

Dataset

According to the author, the data was provided by the Physical Review Editorial

Office. There are a total of 353,268 publications and 3,110,839 citations. The number

of publications have at least one citation is 329,847. This dataset is special for its

long time history so that people can examine the time evolution of citations.

Experiment

The author analyzed the citation distribution, the attachment rate, age characteristics

of citations and citation histories of individual publications.

• The citation distribution: the author examined the growth of citations in time,

that is the total number of citations (received and made) over each year; showed

6



II. REVIEW OF THE LITERATURE

the citation distribution for entire dataset and the citations from 50 to 300

follows a power law with exponent 2.55.

• The attachment rate: the author found that the attachment rate is a linear

function of the number of citations.

• Age characteristics of citations: the author analyzed the average citation age

versus total citations, the distribution of citation ages from citing and to cited

publications.

• Citation histories of individual publications: the author states that the citation

histories of individual publications show great diversity.

Result and conclusion

The author observed how citations evolve and how individual publication influence

the research in this paper. The author found that the citation distribution can be

described by linear preferential attachment, and the age distribution of citations to a

paper follows a slow power-law decay.

2 Co-author Network

2.1 Scientific collaboration networks. I. Network construc-

tion and fundamental results

Newman [22] studied the co-author network in three disciplines, physics, biomedical

research and computer science.

Dataset

The author used bibliographic data collected from four public databases of papers.

• The physics data from Los Alamos e-Print Archive starting from 1992 to the

present. This database contains subdomains within physics, such as condensed

matter and high-energy physics.

7



II. REVIEW OF THE LITERATURE

• A database of articles on biomedical research from Medline, ranging from 1961

to the present.

• A corpus of papers in high-energy physics(theoretical and experimental) from

Stanford Public Information Retrieval System (SPIRES), from 1974 to the

present.

• A database of papers in computer science from Networked Computer Science

Technical Reference Library (NCSTRL).

Since the coverage provided by both the Los Alamos Archive and the NCSTRL

database is relatively poor before 1995, and the author want to make comparison

of collaboration patterns among these different disciplines, the time period should be

the same. Thus the author construction co-author networks using data from 1995 to

1999 inclusive.

Experiment

The author provided some basic measures to compare these co-author networks.

• The number of authors

• The number of papers per author

• The number of authors per paper

• The number of collaborators per author

• Size of the giant component

• Clustering coefficient

Result and conclusion

The author compare and study the co-author networks among three disciplines from

different aspects. And he found that the distribution of the number of papers per

author, the number of authors per paper and the number of co-authors per author

8



II. REVIEW OF THE LITERATURE

roughly follow a power law. Also for all networks, there exists a giant component in

which any two authors can be connected by a path.

As to the differences, researchers in experimental disciplines have more collabora-

tors on average than those in theoretical disciplines, and high-energy physicists have

the largest number of co-authors. The author also found that the degree of network

clustering in biomedical research is lower than other fields.

3 Citation and Co-authorship Network

Rather than focus solely on either citation or co-authorship networks, as most previous

studies have done, this section reviews two papers that studied both kinds of networks.

3.1 Co-authorship and citation patterns in the Physical Re-

view

Martin et al. [19] constructed citation and co-author networks based on a large dataset

Physical review to explore the temporal changes in citation and collaboration over the

whole time period of the data. The author also studied the correlation and interaction

between the two.

Dataset

The authors states that the Physical Review dataset derived from American Physi-

cal Society(APS), which consists of bibliographic and citation data for the physical

journals from 1893 to 2009. Besides, the authors preprocessed this dataset, first they

disambiguate the authors’ name, then remove those papers with 50 or more authors.

Experiment

The author made a variety of analyses to this dataset, such as authorship and co-

authorship patterns, citation patterns, interactions between citation and co-authorship,

self-citation and co-author citation and transitivity.

9



II. REVIEW OF THE LITERATURE

• Authorship patterns: a cumulative distribution function for the number of pa-

pers an author published, the changes in the number of papers, the number of

authors, the number of authors per paper and co-authors per author over time.

• Citation patterns: the average number of citations received and made by a

paper over time, testing the aging of papers.

• Interactions between citation and co-authorship: the author divided citations

into three kinds, self-citation, co-author citation and distant citation and then

plot the fraction of citations (three kinds) as a function of year.

• Self-citation and co-author citation: gave the percentage of papers that make

or receive self-citation and co-author citation.

• Transitivity: calculate the clustering coefficient that the percentage of the pair

of authors have a common co-author but didn’t collaborate previously and write

a paper later together.

Result and conclusion

In this paper, the authors studied both networks together and the changes in citation

and collaboration patterns. And they found that the Physical Review grows exponen-

tially, as well as the number of citations per paper. The percentage of self-citations

and co-author citations are more constant than distant citations over time. Authors is

more likely to cite their own papers than their co-authors’, and who in turn cite more

often than non-coauthors. They also observed a phenomenon that one author cite

another’s paper often receive a citation in return later, especially happens between

co-authors. And two authors who have a common co-author but never collaborated

before have only a small chance,3.5% of collaborating later.

10
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3.2 The structure and analysis of nanotechnology co-author

and citation networks

Onel et al. [23] built the co-author network to study the patterns of collaboration

and analyzed the citation network to study the structure of information flow in nano

science.

Dataset

The authors constructed these networks by extracting information from the scientific

literature database, ”Web of Science”. The time spans from year 1993 to 2008. They

collected those papers that contain the word ”nano” in their abstract, keywords or

title to build the citation and co-author network in nano science, the total is 30,550

records of papers.

Experiment

The authors measured some statistics of citation and co-author networks to interpret

their significance in nano science.

• Network demographics:

Co-author network Citation network

#nodes 62,664 580,073

#edges 238,580 871,130

#isolated nodes 689 0

#weakly connected com-

ponent

3,415 901

#nodes of the giant com-

ponent

46,429 565,958

#edges of the giant com-

ponent

207,464 857,711

TABLE 2: Basic statistics of both networks

11
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• Degree distributions: the co-author network has an average degree of 7.7 and

3.004 for citation network.

• Giant component: the giant component of co-author network contains 74% of

all scientists, and 98% for citation network.

• Average shortest path length: 5.92 for co-author network, 7.79 for citation

network.

• Diameter: 21 for co-author network, 23 for citation network.

• clustering coefficient: 0.84 for co-author network, 0.012 for citation network.

Result and conclusion

The authors analyzed the undirected collaboration network and directed citation

network in nano science. And they found that the distribution of degree for both kinds

of networks follow a power law form. Both networks have small-world characteristics,

and co-author network is highly clustered. The citation network has a low clustering

coefficent compared to other real-world networks.

4 Summary

In this chapter, we reviewed five previous works that related to citation and co-

author networks. Previous works [28] and [29] analyzed the citation network by the

same author S. Redner based on the same dataset. Newman [22] built the co-author

network in three different disciplines. Previous works byMartin et al. [19] and Onel

et al. [23] analyze both kinds of networks in single area.

Meanwhile, there are some existing works in Physical Review dataset [26],[25],[10]

and works in DBLP dataset [15],[18],[27],[8],[35]. In this thesis, we use the tool gephi

and igraph to help us analyze the basic properties of networks. And the previous

works about gephi:[20],[7],[12],[14],[4] and about igraph: [13],[9],[30],[17].

12
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Some previous works combined citation and co-author network together, however

the dataset just come from a single field. Other previous works did not provide a

complete analysis of network, situations can be summarized as follows, one or more

can met in those previous works.

• just analyze one of citation and co-author networks.

• did not provide a view of citation or co-author patterns over time.

• only focus on a short time window.

• did not make basic analysis of networks (the properties of network).

13



CHAPTER III

Dataset

This thesis analyzes academic networks of citation and co-authorship generated in

computer science and physics. The first dataset refers to computer science called

DBLP, the other data about physics is Physical Review. In this thesis, graph prop-

erties including PageRank, clustering coefficient and connected components are cal-

culated by using Gephi; shortest path and diameter are calculated by using igraph,

a collection of network analysis tools programmed in Python. The experiments are

conducted on iMac machine with Core i5 2.7GHz CPU and 16 GB memory. And all

the figures are plotted using Matlab.

1 DBLP

DBLP is a computer science bibliography provided by University of Trier in Germany

[1]. It contains meta-data for different types of publications, including journal articles,

thesis, and conference papers and so on. The meta-data includes authors, date of

publications, titles, and venues. Unfortunately, DBLP itself does not include citation

data. Since our goal is to study the citation network of computer science, we used

a citation network provided by ArnetMiner[37][34][33][35][36], which covers a subset

of DBLP. They extract the citation relation for DBLP papers from ACM and other

sources. There are progressive developments for the data. The data used in this

thesis is the one released in May, 2014 that consists of 2,146,341 papers and 4,191,677

references. The papers were published in the years ranging from 1936 to 2013. In the

rest of our discussion, we will use DBLP to denote this enhanced DBLP data with

14
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citation network[2].

2 Physical Review(PR)

Physical Review dataset is a repository for physical publications which consists of 12

kinds of journals and is available from APS (American Physical Society)[3]. Table

3 lists the number of papers in each journal and the total number of papers in PR

is 541,447. This dataset contains citation and bibliographic data that covers a long

time period, spanning more than 100 years from 1893 to 2013. Each paper has a

unique numerical label as identification. And data for each paper include title, year,

authors, affiliations of authors and so on.

Journals Papers

Physical Review(PR) 47,939

Physical Review A(PRA) 65,170

Physical Review B(PRB) 161,257

Physical Review C(PRC) 34,443

Physical Review D(PRD) 69,481

Physical Review E (PRE) 46,009

Physical Review X(PRX) 214

Physical Review Series I(PRI) 1,469

Reviews of Modern Physics(RMP) 3,139

Physical Review Letters(PRL) 110,080

Physical Review Special Topics - Physics Education Re-

search(PRSTPER)

251

Physical Review Special Topics - Accelerators and Beams(PRSTAB) 1995

Total 541,447

TABLE 3: Number of papers in each journal of PR
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3 Comparison of two datasets

A comparison between PR dataset and DBLP dataset is listed in Table 4. The DBLP

dataset contains more than 2 million papers, and PR has half a million papers. Both

datasets provide two data, i.e., citation and metadata, and cover a long time period.

The metadata of PR and DBLP includes authors, year, title, venue and citation. Both

PR and DBLP do not contain abstract. DBLP has no data on authors affiliation.

These two datasets are useful for two reasons: the length of time it spans and

it contains citation and co-authorship in the same body of papers which allow us to

study and compare the changes in both citation and collaboration patterns over time.

Physical Review DBLP(ArnetMiner)

#Papers 541,447 2,146,341

#Citations 6,039,994 4,191,677

Time span 1893 - 2013 1936 - 2013

Areas Physics Computer Science

Metadata: authors
√ √

year
√ √

title
√ √

venue
√ √

citation
√ √

affliation
√

X

abstract X
√

TABLE 4: Comparison of the two datasets
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Citation Network

1 Degree Distribution

In citation network, we remove those isolated nodes that have no citation links. The

number of remaining nodes in PR is 531,480, and 781,108 in DBLP. These two net-

works are of similar size in terms of nodes (see in Table 5). However, the number of

edges are very different: the average degree of PR is almost twice of DBLP. Since the

citation graph is directed, vertices have both an inbound degree, or in-degree and an

outbound degree, or out-degree. That is, the in-degree/out-degree of a node is the

number of incoming/outgoing edges connected to it. For better understanding the

difference between two networks, we will look deep into the basic properties of them

in the following sections.

Physical Review DBLP

Time span 1893 - 2013 1954 - 2013

Number of Edges 6,039,994 4,191,677

Number of Nodes 531,480 781,108

Number of papers that have been cited 459,796 (87%) 528,263(68%)

Number of papers that have citations 516,163(97%) 564,705(72%)

Average Degree 11.364 5.366

TABLE 5: Statistics of citation network

Networks with power-law degree distribution are called scale-free networks. The

power-law degree distribution was first observed by Barabási and Albert[6]. Firstly,
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they argued that most real networks grow by the addition of new nodes and edges.

Secondly, real-world networks exhibit preferential attachment, that is the probability

of connecting to a node depends on the node’s degree. For instance, a new paper

prefers to cite well-known papers thus have more citations than less cited papers.

Based on this two theories, the Barabási-Albert model has been proposed which led

to the power-law distribution.

The algorithm of Barabási-Albert model can be described as two steps[5]:

1) Growth: Starting from a small number of nodes N, add a node at each time

step with N0(≤ N) edges link to N0 nodes already in the network.

2) Preferential attachment: We assume that the probability P of a new node

connected to node i depends on the degree ki of node i, the formula is as follows:

Pi =
ki∑
j

kj
(1)

Here, j presents all pre-existing nodes. The degree distribution resulting from this

model is scale free, the probability of a node has k edges follows a power law with the

exponent 3.

1.1 In-degree distribution

In our citation network, the in-degree of a node can also be seen as the number of

citations this paper received. Figure 3 shows the in-degree distribution, the proportion

of papers as a function of the number of cited values. The middle section of the data

appears to be described by a power law, N(x) ∼ x−α, with α ≈ 2.5(see the green

line). And as S. Redner examined in[28], the citations distribution of 24,296 papers

in Physical Review D has a large-x power law decay, with exponent -3. We can see

from the figure, PR and DBLP have a similar slope. Due to it’s a log-log plot, the

percentage of papers with 0 cited value hasn’t be shown. However, our results show

that 32% papers in DBLP never been cited and 13% in PR. Also around 70% papers

in DBLP have been cited less than 4 times, 40% in PR. These all means that papers

in DBLP have been cited less than PR in average.
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FIGURE 3: Indegree distribution of PR and DBLP. About 10 percent of papers are

cited only once in both DBLP and PR.

The degree distribution plot in Fig. 3 is good for inspecting low degrees, but the

popular papers with high citations are not discernible. So we plot the degree against

ranking in Fig. 4, where the citation is plotted a function of its rank. The figure

shows that the top cited paper in PR has been cited 6291 times, 2758 in DBLP. We

also list the top10 cited papers of PR and DBLP respectively (Table 6 and Table

7) for reference. The top 1% papers’ citations in DBLP accounts for 28% of the

whole citations, 19% of PR. In both DBLP and PR, citations concentrated in the top

papers. However, in the community of computer science, mega stars attract more

citations than physics (28% vs 19%).
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FIGURE 4: Citation count as a function of ranking. The top paper is cited 6291

times in PR and 2785 in DBLP.

Physical Review

Rank # cites Title Author Journal Year

1 6291 Self-Consistent Equations Inclucing Exchange and

Correlation Effects

W. Kohn, L. J. Sham PR 1965

2 5763 Generalized Gradient Approximation Made Sim-

ple

John P. Perdew, Kieron Burke,

Matthias Ernzerhof

PRL 1996

3 5035 Inhomogeneous Electron Gas P. Hohenberg, W. Kohn PR 1964

4 4159 Efficient Iterative Schemes for ab initio Total-

energy Calculations Using a Plane-Wave Basis Set

G. Kresse, J. Furthmuller PRB 1996

5 3860 Self-interaction Correction to Density-functional

Approximations for Many-Electron Systems

J. P. Perdew, Alex Zunger PRB 1981

6 3640 Special Points for Brillouin-zone Integrations Hendrik J. Monkhorst, James

D. Pack

PRB 1976

7 3097 Ground State of the Electron Gas by a Stochastic

Method

D. M. Ceperley, B. J. Alder PRL 1980

8 2940 Projector Augmented-Wave Method P. E. Blochl PRB 1994

9 2868 From Ultrasoft Pseudopotentials to the Projector

Augmented-Wave Method

G. Kresse, D. Joubert PRB 1999

10 2481 Efficient Pseudopotentials for Plane-Wave Calcu-

lations

N. Troullier, Jose Luriaas Mar-

tins

PRB 1991

TABLE 6: Top10 cited papers in PR
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DBLP

Rank # cites Title Author Journal Year

1 2785 Distinctive Image Features from Scale-Invariant

Keypoints

David G. Lowe International

Journal of

Computer

Vision

2004

2 2678 Fast Algorithms for Mining Association Rules in

Large Databases

Rakesh Agrawal, Ramakrish-

nan Srikant

VLDB 1994

3 2224 Mining Association Rules between Sets of Items in

Large Databases

Rakesh Agrawal, Tomasz

Imielinski, Arun N. Swami

SIGMOD

Conference

1993

4 1935 The Anatomy fo a Large-Scale Hypertextual Web

Search Engine

Sergey Brin, Lawrence Page Computer

Networks

1998

5 1811 Chord: A Scalable Peer-to-Peer Lookup Service

for Internet Applications

Ion Stoica, Robert Morris,

David R. Karger, M. Frans

Kaashoek, Hari Balakrishnan

SIGCOMM 2001

6 1724 A Method for Obtaining Digital Signatures and

Public-Key Cryptosystems

Ronald L. Rivest, Adi Shamir,

Leonard M. Adleman

Commun.

ACM

1978

7 1722 Graph-Based Algorithms for Boolean Function

Manipulation

Randal E. Bryant IEEE Trans.

Computers

1986

8 1656 Bagging Predictors Leo Breiman Machine

Learning

1996

9 1577 Genetic Programming - on the Programming of

Computers by Means of Natural Selection

John R. Koza Complex

adaptive

systems

1993

10 1563 Induction of Decision Trees J. Ross Quinlan Machine

Learning

1986

TABLE 7: Top10 cited papers in DBLP

1.2 Out-degree distribution

The out-degree of a node is the number of papers citing the given paper and the

out-degree distribution is shown in Fig. 5. It plots the proportion of papers as a

function of the number of citing values. Like the in-degree distribution, the out-

degree distribution also shows preferential attachment characteristics in the middle

section of data (green line with slope -3.8), although the initial segment deviates

significantly from power law distribution. Since it’s a log-log plot, it didn’t show the

percentage of papers with 0 citing value. Actually, 28% papers in DBLP never cite

any paper, 3% in PR. And around 17% papers cite more than 10 papers in DBLP,

43% in PR. Papers in DBLP citing less papers than PR in average. Also papers in

DBLP have been cited less than PR, that’s why the average degree of PR is greater
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than DBLP.
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FIGURE 5: Outdegree distribution of PR and DBLP

Figure 6 plots the citing value as a function of its rank to focus on the papers

which citing large number of papers. The top paper cites 607 papers in PR, 339 in

DBLP. And we list the papers that have top10 citing values of PR in Table 8 and of

DBLP in Table 9 respectively for reference.

FIGURE 6: Ranking of #citing papers
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Physical Review

Rank # cites Title Author Journal Year

1 607 Electrodynamics of Correlated electron materials D.N. basov, Richard D.

Averitt, Dirk van der Marel,

Martin Dressel, Kristjan Haule

RMP 2011

2 582 Metal-insulator Transitions Masatoshi Imada, Atsushi Fuji-

mori, Yoshinori Tokura

RMP 1998

3 530 Table of Isotopes G. T. Seaborg, I. Perlman RMP 1948

4 517 Energy Levels of Light Nuclei. III W. F. Hornyak, T. Lauritsen,

P. Morrison, W. A. Fowler

RMP 1950

5 477 Spintronics: Fundamentals and Applications Igor Zutic, Jaroslav Fabian, S.

Das Sarma

RMP 2004

6 449 Electronic Properties of Two-dimentional Systems Tsuneya Ando, Alan B. Fowler,

Frank Stern

RMP 1982

7 448 Quantum Entanglement Ryszard Horodecki, Pawel

Horodecki, Michal Horodecki,

Karol Horodecki

RMP 2009

8 447 Energy Levels of Light Nuclei. V F. Ajzenberg, T. Lauritsen RMP 1955

9 432 Many-body Physics with Ultracold Gases Immanuel Bloch, Jean Dal-

ibard, Wilhelm Zwerger

RMP 2008

10 419 Energy Levels of Light Nuclei(Z=11 to Z=20) P. M. Endt, J. C. Kluyver RMP 1954

TABLE 8: Papers have top10 citing value of PR
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DBLP

Rank # cites Title Author Journal Year

1 339 Algorithm Engineering: Bridging the Gap between

Algorithm Theory and Practice

Matthias Muller-Hannemann,

Stefan Schirra

Algorithm En-

gineering

2010

2 279 A Brief Survey of Program Slicing Baowen Xu, Ju Qian, Xiao-

fang Zhang, Zhongqiang Wu,

Lin Chen

ACM SIG-

SOFT Software

Engineering

Notes

2005

3 242 Location-dependent Query Processing: Where we

are and where we are heading

Sergio Ilarri, Eduardo Mena,

Arantza Illarramendi

ACM Comput.

Surv.

2010

4 240 Agent-Oriented Programming, From Prolog to

Guarded Definite Clauses

Matthew M. Huntbach, Graem

A. Ringwood

Lecture Notes

in Computer

Science

1999

5 240 Modern Development Methods and Tools for Em-

bedded Reconfigurable Systems: A Survey

Lech Jozwiak, Nadia Nedjah,

Miguel Figueroa

Integration 2010

6 232 Query Evaluation Techniques for Large Databases Goetz Graefe ACM Comput.

Surv.

1993

7 224 Learning Bayesian Networks: Approaches and Is-

sues

Ronan Daly, Qiang Shen, J.

Stuart Aitken

Knowledge

Eng. Review

2011

8 221 Research Frontiers in Object Technology Salvatore T. March, Charles A.

Wood, Gove N. Allen

Information

Systems Fron-

tiers

1999

9 219 Synopses for Massive Data: Samples, Histograms,

Wavelets, Sketches

Graham Cormode, Minos N.

Garofalakis, Peter J. Haas,

Chris Jermaine

Foundations

and Trends in

Databases

2012

10 218 A Survey on Content-centric Technologies for the

Current Internet: CDN and P2P solutions

Andrea Passarella Computer

Communica-

tions

2012

TABLE 9: Papers have top10 citing value of DBLP

2 Life Cycle of Papers

Now we look deep into the time dimension to see the citation received distribution

over the whole time.

Fig. 7 shows the average number of citations received per paper. We can make

several observations that are common for both DBLP and PR. First, recent papers

receive less citations in average. The older the paper is, the more citation it receives.

This trend grows almost linearly for about 13 years from year 2013 to 2000. The

trend does not continue beyond 13 years. When papers are 13 years or older, their

average citation number do not grow. This corroborates the theory that the life cycle

of a paper is roughly 10 years as reported in [38]. For papers older than 13 years,
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they receive few new citations.

Secondly, the plateau spans almost 40 years from the sixties to the year 2000.

During this time period, papers receives 13 citations on average for PR, and 8 for

DBLP.

Thirdly, for papers that are more than 50 years old, their citation numbers taper

off gradually to zero. It is interesting that the plateau does not extend beyond 50

years. That can be explained by the fact that there are very few papers in that age.
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FIGURE 7: Average number of citations received per paper

Figure 8-9 show for each year the total number of citations and the number of

papers. Fig. 8 illustrates the trends of total citations are consistent for PR and DBLP,

increasing first and dropping then. This maybe related to the productivity of the

entire field of physics and computer science over time. Figure 9 shows the total number

of papers published over the whole time period of PR and DBLP respectively. For

Physical Review, the number of papers are increasing steadily over time and slightly

dropping since year 2012. This accounts for the increasing of citations received, and

the dropping of citations in recent years maybe caused by these papers are too recent

to be cited. As for DBLP, we can see that the number of papers increase drastically
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since year 1980, however the growth in number of papers do not continue to the end

of time, since DBLP dataset we obtained does not include so many recent papers.

Hence we expect a drop in the citations as seen in the figure 8. The other reason

should also be that recent papers have less opportunity to be cited. We can also see

that computer science area develop faster than Physics from Fig. 9.
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FIGURE 8: Total number of citations received
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FIGURE 9: Number of papers in every year
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Figure 10 shows the total number of citations made each year. We can see that

the total number of citations of PR is increasing steadily, but there is a dip in around

year 2010 in the blue curve. Combining with the figure 9, it maybe because the total

number of papers decreasing from this year due to the incompletion of DBLP dataset.

We can not tell the citation(made) trends just from this figure, so we plot Fig. 11.

It shows the average number of citations made per paper over the whole time period.

These two curves show steady increase over time, which means that authors used to

cite fewer papers and tend to cite more papers in recent times. Maybe the reason is

the increase in the volume of publications available to be cited.
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FIGURE 10: Total number of citations made
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FIGURE 11: Average number of citations made per paper

3 The Large Component

In the theory of complex network, most of the nodes in a network tend to be connected

in a large component, regardless of the density of the graph. In citation networks,

papers also form a large component. In PR, 99.8% of the nodes are connected in

one large component. In DBLP, 98.1% are connected despite diverse areas covered

by DBLP and its low average degree. In addition to the large component, we need

to know what are the remaining component. This can be typically described using

the size distribution of all the components. In directed graphs, a distinction is often

made between weakly and strongly connected components. In a weakly connected

component(WCC), determination of connectivity ignores edge direction, whereas in

a strongly connected component(SCC), the direction is considered. An SCC is a

component where every node can reach every other node in the component. A WCC

is a component where each node can reach every other node when the direction is

ignored.
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3.1 Weakly connected component

In this experiment, we treat the citation networks as undirected graphs and find the

size of each weakly connected component. Figure 12 shows the size distribution of

weakly connected components in the citation graph. One can see that for both PR

and DBLP, there is a single large component that dwarfs the other components in

size. The citation network of PR is comprised of 330 WCC; the largest component

consists of 530,681 nodes, which occupy 99.8% of all papers (Table 10). And the

citation network of DBLP contains 6027 WCC, 98.1% of all the papers are in the

largest component of 766,128 nodes. The size of the second largest component in

two networks are 11 and 22 respectively, which are far less than the largest. There

are about four thousands WCC in DBLP that contain two nodes only, two hundreds

WCC in PR.
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FIGURE 12: Distribution of WCC

29



IV. CITATION NETWORK

#nodes(PR) #nodes(DBLP)

Citation network 531,480 781,108

The largest component 530,681(99.8%) 766,128(98.1%)

2nd largest component 11 22

TABLE 10: The first two largest WCC

3.2 Strongly connected component

Now we turn to the strongly connected component of citation networks as directed

graphs. Figure 13 and Table 11 show that the largest SCC of PR citation network

contains 42% of all the papers, which is 225,618 nodes. The second largest connected

component has size 6, four orders of magnitude smaller. Of the remaining vertices

not in this largest component, the majority are completely disconnected because

they contain no edges at all, they default to component sizes of one. In contrast, the

largest SCC in DBLP just occupy 0.003% of all nodes, which can be ignored. And

the disconnected nodes accounts for 99% of all nodes, which is 774,737.

It is a very interesting difference between these two networks. Actually, the ci-

tation network should be acyclic graph, that means the SCC should not exist. One

may now ask: why almost half of nodes in the largest SCC of PR? The answer to this

question reveals some fascinating details in PR dataset; to expose this, we investigate

deeply into the largest SCC in PR.
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FIGURE 13: Distribution of SCC

#nodes(PR) #nodes(DBLP)

Citation network 531,480 781,108

The largest component 225,618(42%) 25(0.003%)

2nd largest component 6 19

TABLE 11: The fisrt two largest SCC

3.3 The largest SCC in PR

The largest strongly connected component in PR contains 225,618 papers, ranging

from 1923 to 2010. There must exist a path between every pair of nodes in the largest

SCC, so we find one path that from the earliest paper to the latest paper to see what

happens. Take one path from 1923 to 2010 for example:

1923: 10.1103/PhysRev.22.333 →

1922: 10.1103/Physics.2.15 →
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1994: 10.1103/PhysRevLett.72.4129 →

1992: 10.1103/PhysRevB.46.15233 →

1986: 10.1103/RevModPhys.58.323 →

1972: 10.1103/PhysRevB.6.3189 →

1969: 10.1103/PhysRev.179.690 →

1968: 10.1103/PhysRev.171.515 →

1967: 10.1103/Physics.3.27 →

2010: 10.1103/PhysRevLett.104.137001

We can see there is an unnormal citation relation between the second paper(10.1103/

Physics.2.15) and the third paper(10.1103/PhysRevLett.72.4129); the second last

paper(10.1103/Physics.3.27) and the last paper(10.1103/PhysRevLett.104.137001).

Other papers all cite paper backwards in time except these two edges. Then we ex-

tract these papers and the papers citing 10.1103/Physics.2.15 and 10.1103/Physics.

3.27 and list in Table 12.

Journal Title Author Year

PhysRev.22.333 On the Motions of Electrons in Gases K. T. Compton 1923

Physics.2.15 - Hertz 1922

Physics.2.15 A View from the Edge H. Fertig 2009

PhysRevLett.72.4129 Randomness at the edge: Theory of quantum

Hall transport at filling v=2/3

C. L. Kane, Matthew P. A. Fisher,

and J. Polchinski

1994

PhysRev.171.515 Theory of s − d Scattering in Dilute Magnetic

Alloys with Spin- Impurities

H. J. Spencer 1968

Physics.3.27 - H. Suhl and D. Wong 1967

Physics.3.27 Viewpoint: Dirac cone in iron-based supercon-

ductors

M. Zahid Hasan and B. Andrei

Bernevig

2010

PhysRevLett.104.

137001

Observation of Dirac Cone Electronic Disper-

sion in BaFe2As2

P. Richard, K. Nakayama, T. Sato, M.

Neupane, Y.-M. Xu, J. H. Bowen, G.

F. Chen, J. L. Luo, N. L. Wang, X.

Dai, Z. Fang, H. Ding, and T. Taka-

hashi

2010

TABLE 12: The unnormal citing papers in PR

Checking with the references of PhysRev.22.333 from website, Physics.2.15 of

1922 is one of the references. Notice that Physics journal is not included in the PR

metadata, but appear in citation graph, that’s why we can not find the title of this

paper. The year and authors of Physics.2.15 are obtained from the references list

32



IV. CITATION NETWORK

of PhysRev.22.333. Similarly, we check the citing papers of PhysRevLett.72.4129

that citing this paper from website, Physics.2.15 of 2009 cite it. And we can see

that Physics.2.15 of 1922 and Physics.2.15 of 2009 have the same id but different

authors. Maybe these two papers are different papers but the citation graph just

record Physics.2.15 in 1922. And the other possible explanation is PhysRev.22.333

cited Physics.2.15 of 1922, and after many years Physics.2.15 has been republished by

H.Fertig in 2009 and cite PhysRevLett.72.4129 of 1994. As for the other unnormal

citing papers, PhysRev.171.515, Physics.3.27 and PhysRevLett.104.137001, we found

the reason is the same, Physics.3.27 is not the unique id. To understand the citation

graph structure better, let’s take a look at the life cycle of papers in PR in the next

section.

4 Life cycle of papers

People tend to cite recent papers, because recent papers reflect new developments in

the area. Papers have their high probability being cited when they are young. With

time passes by, they are barely cited, become irrelevant, and practically dead. Fig.

14 plots such life cycle of papers for PR and DBLP. Newly born papers are most

energetic, attracting more citations. Their energy drops exponentially over years, as

evidenced by the straight line in fig of the log-scale plot.

Despite the commonalities shared by two disciplines, there is a striking difference

between them as depicted in Panel (d): papers in physics tend to cite more recent

papers. About 13% citations refer to papers published in one year before in Physics,

while in computer science first year citation only accounts for slightly above 10%.

The majority of the citings are made in the second year-about 12%. This is rather

surprising, given that DBLP contains many conference papers, and CS is normally

regarded as a discipline that evolves in a faster pace.
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FIGURE 14: Citation year gap

Panel (a) also shows the negative citation year gap in X-axis, which represents

the unnormal citation relationship. There are some papers cite the papers have yet

to be written, we extract one citation which citation year gap is -49 for example.

This citation is from PhysRev.91.699(1953) to RevModPhys.74.1(2002). And we

list their metadata in Table 13, searching from the website, we find that the paper

RevModPhys.74.1 of 1951 is in the references list of PhysRev.91.699, but in the

citation graph, the id PevModPhys.74.1 represents the paper that published in 2002.

So the unnormal citation relation maybe due to the duplicate id.
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Journal Title Author Year

PhysRev.91.699 Photoneutron Production Exci-

tation Functions to 320 Mev

Lawrence W. Jones

and Kent M. Ter-

williger

1953

RevModPhys.74.1 - Barschall, Rosen,

Taschek, and

Williams

1951

RevModPhys.74.1 Optical simulations of electron

diffraction by carbon nanotubes

A. A. Lucas, F.

Moreau, and Ph.

Lambin

2002

TABLE 13: The papers whose citation year gap is -49 in PR

We also extract one citation which citation year gap is -19 in figure 14. This

citation is from paper ”1123623”(1980) to paper ”891982”(1999). And we list their

metadata in Table 14, searching from the website, we find that the paper ”Applicabil-

ity of Software Validation Techniques to Scientific Programs” of 1980 cite the paper

”Design and Code Inspections to Reduce Errors in Program Development” of 1976.

After 23 years, the author republished the paper ”Design and Code Inspections to

Reduce Errors in Program Development” in 1999. Thus it has been recorded in the

citation graph as ”1123623”(1980) citing ”891982”(1999).

ID Title Author Year

1123623 Applicability of Software Validation

Techniques to Scientific Programs

W. E. Howden 1980

891982 Design and Code Inspections to Reduce

Errors in Program Development

Michael E. Fagan 1999

TABLE 14: The papers whose citation year gap is -19 in DBLP

Conclusions: citation number of a paper decreases exponentially over years. The

average life expectancy of a PR paper is 8 years, and 6.5 years for DBLP paper, that

is, papers in DBLP has a shorter life than PR.

35



IV. CITATION NETWORK

5 Clustering Coefficient

The clustering coefficient, along with the average shortest path length, can indicate

a ”small-world” effect. Clustering coefficient(CC) is an important measure for the

network connectivity[39]. Three versions of this measure exist: local CC, average CC

of entire network and global CC. The local CC is a measurement of the connectivity

of a specific node, it indicates how nodes are embedded in their neighborhood. And

the formula of local CC of a node is as follows:

Ci =
#triangles connected to i

#triples centered on i
(2)

The average CC of entire network is the average local CC of all nodes in the network,

it gives an overall indication of the clustering in the network and the formula is as

follows:

C̄ =
1

n

n∑
i=1

Ci (3)

The global CC gives an indication of clustering in the network. The global CC formula

is defined as:

C =
3×#triangles in the network

#connected triples of vertices
(4)

Any two edges connected to node i can be seen as a triple centered on i. And the global

CC measures the fraction of triples that have their third edge filled in to complete the

triangle. Each triangle forms three triples, that’s why the factor of three multiplied

in the numerator(see Fig. 15).

Here, we treat the citation networks as undirected graphs, and Fig. 16 plots

the local CC as a function of degree. As we can see, Ci falls off with degree ki

approximately as k−1i , which has been observed in[32]. They found that the clustering

coefficient as a function of the degree of the nodes often follows a power law: C(k) ∝

k−α for scale-free networks. The value of α is close to 1. The average CC of PR

is 0.239 and global CC is 0.023, as for DBLP, the average CC is 0.142 and global

is 0.012. The clustering coefficient value of these two citation networks are rather a

high value compared to those of many real-world networks.
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FIGURE 15: Illustration of the definition of CC, Eq.(2)(3)(4). There are 2 triangles
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FIGURE 16: Clustering coeffcient of papers as a function of their degree

Conclusions: We find that these two citation networks are not social networks

considering extremely small global CC even when their directions are ignored. The

global CC is 0.023 for PR and 0.012 for DBLP. This data also shows that CS papers
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cluster more loosely than papers in physics, almost half in terms of CC.

6 Small World and Average Shortest Path Length

The small-world network was originally proposed by Duncan Watts and Steven Stro-

gatz in 1998[39]. It’s a class of random graphs in which most of the node-pairs are

connected by a short path, this characteristic is called the small-world effect. The

small-world networks can be highly clustered, yet have small average-shortest path

length. Many real-world networks, such as World Wide Web and neural network, are

shown to be small-world networks. In order to explore our citation network belongs

to small-world network or not, we investigate the average shortest path length of

citation networks.

The average shortest path length of a connected network is defined as the average

of the shortest paths for all possible pairs of nodes in the network. It measures the

efficiency of information transfer in a network. It is given by

l =
1

N(N − 1)

∑
i 6=j

d(vi, vj) (5)

N is the number of nodes in the network, d(vi, vj) denotes the shortest distance

between nodes vi and vj, d(vi, vj) = 0 if vj can not be reached from vi.

We convert the citation networks into undirected networks and calculate the av-

erage shortest path length between all pairs of papers in the citation networks. Here

we ignore the direction-otherwise many nodes can not be reached and the average

path length would be infinitely long.

We found that the average shortest path between all pairs of PR papers is about

5.09, and 5.88 for DBLP. For instance, that means it takes five steps on average

when information transfer from one physical review paper to another physical review

paper, while it needs almost 6 steps between DBLP papers. Thus it proves that the

PR citation network is more tight than DBLP citation network. In the study of Shi

et al.[31], the average shortest path is 7.60 for ACM and 6.29 for CiteSeer citation

networks.
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The diameter of a network is defined as the longest shortest paths between any

pair of nodes in a network. It is another measurement of network graphs, it represents

the linear size of network. Treating the citation networks as undirected networks, we

calculate the shortest path length from every paper to all other papers, and we find

the diameter of PR citation network is 31 and 18 in DBLP citation network, which

indicates that there is an order of at most 31 links connecting any two PR publications

and 18 links for DBLP respectively.

Conclusion: According to the small average shortest path length of PR and DBLP

citation networks, both networks can be classified as small-world network.

7 PageRank

PageRank was originally used to measure the importance of website pages and pro-

posed by Larry Page[24]. It is a link analysis algorithm that assigns a numerical

weighting to each element/vertex. In our citation network, the vertex is academic

paper and link(directed) is citation relations between papers. So the PageRank mea-

sures the importance of papers based on the citation relations. The basic idea of how

to calculate page rank is to use power iteration to calculate page rank score for each

paper several times. The page rank for the k + 1th node is defined by the recursion

formula (5):

rk+1 = (βM + (1− β)
1

n
e · eT )rk (6)

Here, n is the number of papers in the citation graph, rk is n-dimensional vector

represents each paper’s page rank value in kth iteration. Based on the equation, we

iteratively calculate the r until the stop criteria has been met. M is n × n column

stochastic matrix and used to represent the connection probability of each node to

any node. The ith column represent the probability of jumping to all the other papers

from paper i(Random Walk). If there is a directed edge from i to j, then

M [j][i] =
1

#papers that i pointing to
(7)

In Fig.17, let’s take paper 3 for example. There are two papers, P1 and P4, that
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P3 cite or point to. So the M [1][3] and M [4][3] should be equal 1/2. And there is no

link from P3 to P2 and itself, so M [2][3] and M [3][3] are 0, like the 3th column shows

and the M is the following matrix:

M =


0 0 1/2 0

0 0 0 1/2

1 1 0 1/2

0 0 1/2 0

 (8)

P1

P3P2

P4

FIGURE 17: Example

However, a trap usually occurs in a citation network (just like the P1 and P3

in Fig. 17), paper can not jump out of the loop. To prevent this situation, we

use 1 − β in Eq. (5) to control the probability of randomly restarting the paper-

selecting(random walk). Now the calculation is not based on the citation links, there

is equal probability, 1/n, that jumping to all the other nodes in the graph. So for Fig.

17, the probability of jumping to any of the papers is 1/4 and the
1

n
e · eT matrix is:

1

n
e · eT =


1/4 1/4 1/4 1/4

1/4 1/4 1/4 1/4

1/4 1/4 1/4 1/4

1/4 1/4 1/4 1/4

 (9)

So the PageRank calculation process can be described as 3 steps:
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• Initialize n-dimensional vector r0 = (1/n, 1/n, ......, 1/n)T

• Start power iteration: rk+1 = (βM + (1− β)
1

n
e · eT )rk

• Stop criterion: When |rk+1 − rk| < ε

The first step of PageRank is to initialize the page rank value for each node. Then

start the power iteration, we will gradually get the latest r value, and the r value

tends to become stable if the times of iteration is enough. Finally, the parameter ε

is used to set the stop criterion, if the differences between r vector in two iterations

smaller than ε, then output the latest r vector as a page rank for each node.

7.1 PageRank when damping factor is 0.85

Here, we set the parameters damping factor β to be 0.85, 1 − β to be 0.15 and ε to

be 0.001. Fig. 18 shows the average page rank value for papers with k citations(in-

degree) as a function of k. For both dataset, there are many papers have the same

number of citations received when k is small. The average page rank value increases

with k, which means the more citations received, the higher pagerank of this paper.
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FIGURE 18: Average Pagerank versus #citations k
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However, for large k, there is only one paper with k citations. Thus we plot

the individual pagerank as a function of k citations when k greater than 100(Fig.

19). There are many outliers compared with Fig. 18, and we list the top10 ranked

papers in PR and DBLP based on their page rank value in Table 15 and Table 16

respectively. Also given in these two table are the number of citations, paper title,

author, journal and year. While those papers have high number of citations appear

on this list, several papers have low number of citations have been ranked highly

according to PageRank algorithm, for instance, the articles ”Cohesion in Monovalent

Metals” in PR and ”A Computer System for Inference Execution and Data Retrieval”

in DBLP. The third ranked paper in DBLP just has been cited 13, and we found an

interesting phenomenon that this paper was cited by the second ranked paper ”A

Relational Model of Data for Large Shared Data Banks” with 1170 citations. That

means citations from more important papers make more contribution to the rank of

this cited paper, which way the PageRank algorithm implement in. The PageRank

algorithm is a good measure to rank those papers high although not cited often but

important when 1− β = 0.15.
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FIGURE 19: Individual PageRank as a function of citation count when damping

factor is 0.85.
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Physical Review

PageRank # cites Title Author Journal Year

1 134 The Theory of Complex Spectra J. C. Slater PR 1929

2 40 Cohesion in Monovalent Metals J. C. Slater PR 1930

3 209 On the Consititution of Metallic Sodium E. Wigner, F. Seitz PR 1933

4 1915 Theory of Superconductivity J. Bardeen, L. N.

Cooper, J. R. Schrieffer

PR 1957

5 794 Crystal Statistics. I. A Two-Dimensional

Model with an Order-Disorder Transition

Lars Onsager PR 1944

6 759 On the Interaction of Electrons in Metals E. Wigner PR 1934

7 6291 Self-Consistent Equations Inclucing Exchange

and Correlation Effects

W. Kohn, L. J. Sham PR 1965

8 66 Electronic Energy Bands in Metals J. C. Slater PR 1934

9 1402 Can Quantum-Mechanical Description Physi-

cal Reality Be Considered Complete?

A. Einstein, B. Podolsky,

N.Rosen

PR 1935

10 182 Statistics of the Two-Dimentional Ferromagnet H. A. Kramers, G. H.

Wannier

PR 1941

TABLE 15: The top 10 pagerank publications when 1− β = 0.15 in PR

DBLP

PageRank # cites Title Author Journal Year

1 1724 A Method for Obtaining Digital Signatures and

Public-Key Cryptosystems

Ronald L. Rivest, Adi

Shamir, Leonard M.

Adleman

Commun.

ACM

1978

2 1170 A Relational Model of Data for Large Shared

Data Banks

E. F. Codd Commun.

ACM

1970

3 13 A Computer System for Inference Execution

and Data Retrieval

Roger E. Levien, M. E.

Maron

Commun.

ACM

1967

4 163 Programming Semantics for Multiprogrammed

Computations

Jack B. Dennis, Earl C.

Van Horn

Commun.

ACM

1966

5 658 The Complexity of Theorem-Proving Proce-

dures

Stephen A. Cook STOC 1971

6 74 Secure Communications over Insecure Chan-

nels

Ralph C. Merkle Commun.

ACM

1978

7 307 Database Abstractions: Aggregation John Miles Smith, Diane

C. P. Smith

Commun.

ACM

1977

8 18 Riemann’s Hypothesis and Tests for Primality Gary L. Miller STOC 1975

9 239 Illumination for Computer Generated Pictures Bui Tuong Phong Commun.

ACM

1975

10 104 A Characterization of Ten Hidden-Surface Al-

gorithm

Ivan E. Sutherland,

Robert F. Sproull,

Robert A. Schumacker

ACM

Comput.

Surv

1974

TABLE 16: The top 10 pagerank publications when 1− β = 0.15 in DBLP
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When inspecting the top papers in CS, we can find that some of the highly ranked

papers have very few citations. The one ranked number 3 and 8 have 13 and 18

citations, respectively. This is caused by the almost acyclic structure of the network:

papers normally cite backwards to older papers, therefore there are almost no links

pointing forward. The flow of random walks are directed to older papers, as evidenced

by the table that all the top 10 papers are published in the sixties and seventies. This

bias towards old papers need to be corrected.

In Web data, it is empirically decided that it is optimal to have damping factor

set as 0.85[24]. This value also has an intuitive interpretation that models the way

people surfing the Web: one surfs the Web by following randomly 6 hyperlinks on

average. Correspondingly, there is a probability 1 − β = 1/6 ≈ 0.15 that jumps to

a random page. When researchers read academic papers, they may not follow this

pattern. P. Chen et. al. [11] proposed that, for surfing the citation network, people is

more likely to follow 2 citation links, making 1−β = 0.5 more appropriate for citation

network. On the other hand, the more links to be followed, the high probability that

the much older paper will get a high page rank value(see Fig. 20(A)). And we can see

the top100 pagerank papers in PR are relatively early papers(Fig. 20(B)), in order to

find those relatively recent important papers, we do experiments in the next section

by choosing the parameter 1− β to be 0.5.
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FIGURE 20: PageRank vesus year

7.2 PageRank when damping factor is 0.5

Figure 21 shows the average pagerank as a function of number of citations. Comparing

with Fig. 18, the plot of average pagerank versus k is smooth and still increases with

k. And the dispersion in pagerank is smaller when 1−β = 0.5 than 1−β = 0.15. Here

we introduce one definition, Pearson correlation coefficient(PCC), that is a measure

of the linear correlation between two variables. It’s ranging from +1 to -1, 1 is total

positive correlation, -1 is total negative correlation and 0 is no correlation. Table

17 lists PCC value between pagerank value and the number of citations for PR and

DBLP when 1− β is 0.15 and 0.5 respectively. When changing the parameter value,

both PCC value for PR and DBLP is increasing, which means the larger 1 − β, the

more correlate between pagerank and citations, thus indicating that citations and

PageRank are similar measures of importance.
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FIGURE 21: Average Pagerank versus #citations k

PCC(1− β = 0.15) PCC(1− β = 0.5)

PR 0.4704 0.8210

DBLP 0.6163 0.8723

TABLE 17: Pearson correlation coefficient

We also plot the individual pagerank as a function of number of citations k when

k ≥ 100(see Fig. 22), and the dispersion is smaller compared to Fig. 19. We extract

the top10 pagerank papers of PR and DBLP in Table 18 and Table 19, and more high-

cited and recent papers appear on the lists, which proves that PageRank algorithm

can choose more recent important papers by increasing 1− β value.

Conclusions: We demonstrate that in citation network, PageRank algorithm with

damping factor 0.85 leads to significant bias in favor of old papers. When damping

factor is adjusted to 0.5, more recent papers are ranked higher.
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FIGURE 22: Individual Pagerank vesus #citations k

Physical Review

PageRank # cites Title Author Journal Year

1 6291 Self-Consistent Equations Inclucing Exchange and

Correlation Effects

W. Kohn, L. J. Sham PR 1965

2 5035 Inhomogeneous Electron Gas P. Hohenberg, W. Kohn PR 1964

3 1915 Theory of Superconductivity J. Bardeen, L. N.

Cooper, J. R. Schrieffer

PR 1957

4 5763 Generalized Gradient Approximation Made Sim-

ple

John P. Perdew, Kieron

Burke, Matthias Ernzer-

hof

PRL 1996

5 1402 Can Quantum-Mechanical Description Physical

Reality Be Considered Complete?

A. Einstein, B. Podolsky,

N.Rosen

PR 1935

6 3860 Self-interaction Correction to Density-functional

Approximations for Many-Electron Systems

J. P. Perdew, Alex

Zunger

PRB 1981

7 779 Stochastic Problems in Physics and Astronomy S. Chandrasekhar RMP 1943

8 1707 Absence of Diffusion in Certain Random Lattices P. W. Anderson PR 1958

9 794 Crystal Statistics. I. A Two-Dimensional Model

with an Order-Disorder Transition

Lars Onsager PR 1944

10 1476 A Model of Leptons Steven Weinberg PRL 1967

TABLE 18: The top 10 pagerank publications when 1− β = 0.5 in PR

47



IV. CITATION NETWORK

DBLP

PageRank # cites Title Author Journal Year

1 1724 A Method for Obtaining Digital Signatures and

Public-Key Cryptosystems

Ronald L. Rivest, Adi

Shamir, Leonard M.

Adleman

Commun.

ACM

1978

2 1170 A Relational Model of Data for Large Shared Data

Banks

E. F. Codd Commun.

ACM

1970

3 1577 Genetic Programming - on the Programming of

Computers by Means of Natural Selection

John R. Koza Complex adap-

tive systems

1993

4 2678 Fast Algorithms for Mining Association Rules in

Large Databases

Rakesh Agrawal, Ra-

makrishnan Srikant

VLDB 1994

5 2224 Mining Association Rules between Sets of Items in

Large Databases

Rakesh Agrawal,

Tomasz Imielinski,

Arun N. Swami

SIGMOD Con-

ference

1993

6 1563 Induction of Decision Trees J. Ross Quinlan Machine Learn-

ing

1986

7 929 A Theory for Multiresolution Signal Decomposi-

tion: The Wavelet Representation

Stephane Mallat IEEE Trans.

Pattern Anal.

Mach. Intell

1989

8 658 The Complexity of Theorem-Proving Procedures Stephen A. Cook STOC 1971

9 1396 Support-Vector Networks Corinna Cortes,

Vladimir Vapnik

Machine Learn-

ing

1995

10 2785 Distinctive Image Features from Scale-Invariant

Keypoints

David G. Lowe International

Journal of

Computer

Vision

2004

TABLE 19: The top 10 pagerank publications when 1− β = 0.5 in DBLP
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CHAPTER V

Co-author Network

We construct co-author network of authors in which an edge between two authors

is established if they collaborate one paper together. We extract co-authors from

541,447 papers in PR and 2,146,341 in DBLP(see Table. 20). That’s why the num-

ber of authors of DBLP is far greater than PR, however the number of edges of

DBLP co-author network is far less than PR. The degree of a node is the number of

edges connected to it, also the number of co-authors. Since the co-author network is

undirected, the average degree should be the twice of #edges
#nodes

. The average number of

co-authors of PR is almost 120, but 8 of DBLP, which means the collaborations in

PR are much higher than DBLP at first sight. Thus we check this from more aspects

in next several sections.

Physical Review DBLP

Time span 1893 - 2013 1936 - 2013

Number of Papers 541,447 2,146,341

Number of Edges 22,787,959 4,542,331

Number of Nodes 379,869 1,163,723

Average Degree 119.978 7.807

TABLE 20: Statistics of co-author network

1 Degree Distribution

The figure 23 shows the degree distribution, the proportion of authors as a function of

the number of co-authors value. From our result data, we get that 72% authors have
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V. CO-AUTHOR NETWORK

less than 6 co-authors in DBLP, 51% in PR. More authors in PR have large number

of co-authors than DBLP. Hence in average, authors in PR have more co-authors

than in DBLP. However, the authors who have large number of co-authors are not

recognizable in this figure.

We plot the number of co-authors as a function of its rank to focus on the top

authors in Fig. 24. The top 10000 authors in PR have surprisingly large number of

co-authors, which are above a thousand. After these top 10000 authors, the co-author

number drops quickly. This is probably caused by the name abbreviation in PR data:

an author name in PR data contains the last name and the initial of the first name.

Thereby many names with the same initials are aggregated as the same person. We

list the top10 ranked authors in Table 21 to explore that. Notice that authors of

DBLP have first name.
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FIGURE 23: Degree distribution of PR and DBLP
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FIGURE 24: Ranking of #coauthors

PR DBLP

Rank # co-authors Author # co-authors Author

1 11804 J. Zhang 1864 Wei Wang

2 11617 Y. Liu 1346 Wei Li

3 11408 H. Liu 1308 Wei Zhang

4 11178 J. Wang 1171 Lei Zhang

5 11143 L. Zhang 1155 Lei Wang

6 10446 Y. Chen 1083 Li Zhang

7 10223 H. Kim 936 Yang Liu

8 10217 M. Weber 929 Wei Chen

9 9347 M. Jones 924 Jun Wang

10 9040 Z. Zhang 914 Jun Zhang

TABLE 21: Top10 ranked authors in PR and DBLP

51



V. CO-AUTHOR NETWORK

2 Author and co-author trends over time

Figure 25 shows the total number of authors over the whole time period. In both

PR and DBLP, the number of authors increases exponentially. In DBLP, the author

number drops in the most recent two year probably because of the incompleteness of

the data. DBLP manually collects publications in the past, and there is a delay in

including publications from some venues. For PR, year 2012 has the most authors,

which is 360,144 (the highest point in Fig. 25).

This trend is consistent with the increase of paper numbers as depicted in Fig.

26. An interesting observation is the dip in the 1940s, which may coincide with the

second world war[19], also appears in DBLP. Moreover, we can see that the number

of authors of DBLP increase drastically since the year of 1940s. The general trend of

number of papers over time and of number of authors over time are pretty much the

same by comparing Fig. 25 and Fig. 26.
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FIGURE 26: Number of papers for each year

An alternative view of degree distribution is given in Fig. 27, which shows the

number of co-authors an author has, on average, in every year. As the figure 27(A)

shows, this number has risen significantly over the past century, from a little over one

to more than 300 today in PR. And the number of co-authors per author of PR is far

greater than DBLP, but the value is not discernible, thus we plot the log figure 27(B)

instead of Fig. 27(A). We can see that the trends of co-authors per author is similar

and increasing in general. Obviously, the collaborations among PR authors are more

than DBLP, but are all increasing over time in both fields.
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FIGURE 27: Number of coauthors per author
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3 Weakly Connected Component

Since the co-author network is undirected, we just talk about the weakly connected

component(WCC) here. Figure 28 shows the size distribution of weakly connected

components in co-author graph. The co-author network of PR is composed of 6,336

WCC, the large component encompasses 95% of all the physics area authors(Table

22). And 88% of all authors of DBLP are in the largest component of 1,025,555

nodes. We can infer that 95% of authors in PR and 88% in DBLP are engaged in

collaborations. The size of second largest component in two datasets is far smaller

than the largest, which shows the co-author network is highly connected.
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FIGURE 28: Distribution of WCC

#nodes(PR) #nodes(DBLP)

Co-author network 379,869 1,163,723

The largest component 360,477(95%) 1,025,555(88%)

2nd largest component 25 38

TABLE 22: The first two largest WCC
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4 Clustering Coefficient

The clustering coefficient in co-author network refers to the probability that two

authors collaborate if they have a common co-author. Figure 29 plots the average

local clustering coefficient as a function of degree. For DBLP, the local CC value is

dropping off with degree, that means if one author has more neighbors, the probability

of interaction and collaboration between them is less. But for PR, the local CC value

is increasing from degree 20 and very high, we can infer from this fact that when

the degree is larger than 20, the collaborations between its neighbors are tight. The

average CC of the entire PR co-author network is 0.738, and 0.718 in DBLP. This

indicates that a pair of authors in both fields has an over 70% chance of collaborating if

they collaborated with a common third author. This high clustering coefficient implies

that it is highly likely that any two friends of a person are also friends themselves.

And the high clustering coefficient can be expected in two aspects: the three authors

write one common paper or every two authors write one paper.
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FIGURE 29: The clustering coeffcient of authors as a function of their degree
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5 Small World and Average Shortest Path Length

The average shortest path length between a pair of PR authors in terms of collabo-

ration links is about 5.06, and 5.99 for DBLP. This implies that any author in both

areas can reach any other authors in the according field through a relatively small

number of intermediary collaborators. Stanley Milgram proposed the concept of six

degrees of separation[21], he found that the average shortest path length of the social

network of people in US is 6, that means any two people can be connected through

the chain of ”friend’s friend” in a maximum of six steps.

Conclusion: The lower average shortest path and higher clustering coefficient of

PR co-author network indicate that the collaboration network of PR is more tight

than DBLP. However, both co-author networks show the small-world characteristics

with a high clustering coefficient and a small average shortest path length.

We have also calculated the greatest distance among pairs of authors for both

networks. For PR co-author network, the diameter is about 18; 24 for DBLP. It

means that the length of the chain of co-authors links connecting any two PR authors

is less than or equal to 18. And in DBLP co-author network, the length is less than

or equal to 24.

6 Authors and Papers

Figure 30 shows a complementary cumulative distribution function for the number

of papers an author writes, aggregated over the entire data set. That is, this figure

shows the proportion of authors that wrote more than a given number of papers, the

x-axis and y-axis in the figure are logarithmic. As can be seen in the figure, the red

curve includes all the literatures in Physical Review, when Y-axis equal to 0.01, the

value of X-axis equal to 100, which means 1% of the authors of PR published more

than 100 papers, just 0.4% in DBLP from the blue curve. Also we can see that the

percentage that an author write more than one paper is 1 for both curves, because

one author write at least one paper, and the plot of percentage versus the number
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of papers n decreases with n. And also we notice an interesting thing, there are

two irregular drops in red curves, first is between the range of 70 and 80 in x-axis,

second is around 500 and 600. This significant dip is perhaps because there are more

authors between these ranges than other ranges. In order to check this, rather than

just counting up all the papers an author was listed on, we can instead find out the

relationship between the number of paper and number of authors. As we can see in

Fig. 31, there are some outliers in the same range of the two drops for PR in Fig. 30.

These outliers have significantly more number of authors than the neighbor nodes,

that means these outliers contribute to the high percentage of the two ranges, which

is according with our predict. From these two figures, we can infer that the scientific

productivity in physics is higher than DBLP.
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FIGURE 30: Proportion that an author wrote more than a given number of papers.
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FIGURE 31: Number of authors who wrote a given number of papers

The above figures are good for the crude scientific productivity, however, the

individual is not recognizable. In order to focus on the most productive authors, we

plot the number of papers that an author writes versus his rank in figure 32. As the

figure shows, the most productive author in both fields write almost 1000 papers,

which is amazing, thus we list the top10 authors in Table 23 with their name and the

number of papers. The reason that authors write so many papers can be summarized:

the author is truly famous and elite in his field, like Philip S. Yu in computer science;

the authors’ name are duplicate, such as the universal name Wei Wang in DBLP; or

due to the initial of their first name, like D. N. Brown in PR.
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FIGURE 32: The ranking of #papers an author publish

Physical Review DBLP

Rank Author #Papers Author #Papers

1 D. N. Brown 951 Wei Wang 1293

2 M. S. Alam 942 Wei Zhang 856

3 J. Zhang 889 Lei Zhang 842

4 W. T. Ford 866 Wei Li 805

5 J. G. Smith 854 H. Vincent Poor 735

6 R. Kass 841 Jun Wang 717

7 G. Eigen 829 Philip S. Yu 711

8 J. Li 829 Wen Gao 707

9 K. Hara 826 Thomas S. Huang 691

10 D. Strom 819 Lei Wang 690

TABLE 23: Most productive authors in two datasets

Now let’s turn to the trend of the number of authors per paper, the size of collab-

orative groups. Figure 33 shows the mean number of authors per paper as a function
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of time. From figure 33(A) and figure 33(B), we can see that there is a clear increas-

ing trend for authors per paper throughout the whole physical Review time period,

with the average size of a collaborative group rising from one a century ago to about

16 today. Although the number of authors per paper in DBLP has not increased

drastically, increased steadily in general. That means huge collaborations become

more and more prevalent recently. Also, more collaborations happen in physics than

computer science.
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FIGURE 33: Number of authors per paper
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CHAPTER VI

Conclusion

In this thesis, we make a comparative study of academic networks in computer science

and physics. We construct citation and co-author networks based on the data from

DBLP and Physical Review journals. Then we analyze and compare them from

several aspects such as, the degree distribution, connected component, clustering

coefficient and pagerank. In terms of the long time period of these two datasets, we

also investigate the trends of citation and collaboration in both disciplines to find

the commonalities and differences between these two fields. The results show that

both kinds of networks generated in computer science differ greatly the networks in

Physics.

In citation network of PR and DBLP, we find that in both PR and DBLP, their

in-degree distributions follow a power-law form and out-degrees resemble log-normal

distributions, which show the characteristics of scale-free network. Also we observe

that the productivity in both areas is growing over time, and a higher rate of growth

in computer science than physics. The papers in the middle section of time period

in both areas have more citations received than early and recent years that’s because

papers in early age and recent have less opportunity to be cited. Papers attract more

citations in their young age. The citation count decreases in an exponential speed.

The average life expectancy of a paper is 6.5 years in DBLP and 8 years in PR,

papers in DBLP has a shorter life than PR. Another interesting difference between

these two citation networks is a large SCC in PR, which related to the dataset-self.

The higher CC in PR indicates that papers in PR knit closer than papers in DBLP.

Both citation networks show the characteristics of ”small-world” according to the
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small average shortest path length. We also find that the direct application of the

PageRank algorithm with damping factor 0.85 lead the large bias in favor of old

papers. Changing damping factor to 0.5 can ameliorate the problem.

In co-author network, we find that unlike citation network, the degree distribution

of co-author network in PR and DBLP are very different. Although networks have

long tail distributions that resemble a power law, their slopes differ greatly. Their

CC is also very different in two networks. The higher CC in PR indicates that PR

co-author network cluster more tightly than DBLP. Thus we can infer that physicists

collaborate more closely than computer scientists in terms of the degree distribution

and clustering coefficients. For instance, physicists collaborate on average with 120

others, while computer scientists collaborate with only 8. For both PR and DBLP,

collaborations evolve over time. The productivity of scientists in physics is higher

than computer science, this maybe caused by the difference of records of name in

two datasets. Both co-author networks show the small-world effect in terms of the

average shortest path length.
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