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ABSTRACT

Prediction of protein-protein interactions (PPIs) is a difficult and important problem

in biology. Although high-throughput technologies have made remarkable progress, the

predictions are often inaccurate and include high rates of both false positives and false neg-

atives. In addition, prediction of Calmodulin Binding Proteins (CaM-binding) is a problem

that has been investigated deeply, though computational approaches for their prediction are

not well developed. Short-linear motifs (SLiMs), on the other hand, are being effectively

used as features for analyzing PPIs, though their properties have not been used in high-

throughput interactions. We propose a new method for prediction of high-throughput PPIs

and CaM-binding proteins based on counting SLiMs in protein sequences with specific

scoring functions. The method has been tested on a positive dataset of 50 protein pairs ob-

tained from the PrePPI database, and a negative dataset of 38 protein pairs obtained from

the Negatome-PDB 2.0 database, and 387 proteins from the CaM database. We have used

Multiple EM for Motif Elucidation (MEME) to obtain motifs for each of the positive and

negative datasets. Our method shows promising results and demonstrates that information

contained in SLiMs is highly relevant for accurate prediction of high-throughput PPIs and

CaM-binding proteins. In addition to efficient prediction, individual SLiMs bring extra

information on patterns that may be linked to specific roles in protein function.
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CHAPTER 1

Introduction

1.1 Protein-protein Interaction

Comprehensive analysis of protein-protein interactions (PPIs) has been regarded as very

significant for the understanding of underlying mechanisms involved in cellular processes

[25]. PPIs are crucial for all biological processes [36]. While many proteins perform their

functions when they interact with other proteins, understanding and studying PPIs is very

important in almost all biological processes taking place in the cell, and help predict the

function of unknown proteins [2].

PPIs networks provide a valuable framework for a better understanding of the func-

tional organization of the proteome [36], and summarize large amounts of protein-protein

interaction data, both from individual, small-scale experiments and from automated high-

throughput screens [8]. Therefore, compiling PPI networks may provide new insights into

protein function [36].

Common high-throughput experimental techniques for predicting PPIs such as Yeast

two-hybrid (Y2H) [44] and Tandem Affinity Purification (TAP) [19] have enabled the pro-

duction of large amounts of PPI data [20]. Nevertheless, these techniques are expensive,

labor-intensive, suffering from insufficient coverage [45] and usually lead to high false-

positive and false-negative rates [2]. Thus, developing reliable computational approaches

to predict PPIs is of great significance.

1



1. INTRODUCTION

1.2 Calmodulin Binding Proteins

Calmodulin (CaM) is a calcium-binding protein that is a major transducer of calcium sig-

naling [37]. It has no enzymatic activity on its own but rather acts by binding to and altering

the activity on a panel of cellular protein targets. Its targets are structurally and function-

ally diverse and participate in a wide range of physiological functions including immune

response, muscle contraction and memory formation.

Figure 1.2.1 is a typical of calcium-dependent protein interaction, where the two halves

of CaM bind to opposite sides of the target peptide (the four calcium molecules are green

spheres). Identifying CaM target proteins and CaM sites is an important and ongoing re-

search problem because of the great diversity of conformations it uses in its target interac-

tions. This diversity cannot be captured by a single amino acid sequence motif, but instead

CaM-binding sites are commonly divided into four or more motif classes with different

sequence characteristics [43]. Current algorithms struggle to identify novel CaM-binding

proteins.

FIGURE 1.2.1: Structure of CaM (green) interacting with its binding domain from cal-
cineurin (blue).
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1. INTRODUCTION

1.3 Motifs

A motif is a sequence pattern of nucleotides in a DNA sequence or amino acids in a protein

[42]. Motifs are patterns widespread over a group of proteins that are related by function

or may have other biological features in common. Given a set of sequences, motifs are

common subsequences, which appear the most among these sequences. Usually, each motif

contains a sequence pattern of 3-20 amino acids [29].

FIGURE 1.3.1: An amino-acids motif pattern.

1.3.1 Short Linear Motifs

Short-linear sequence motifs (SLiMs) or minimotifs in protein sequences are short patterns

of 3-10 amino acids that have been found to be interesting [5], because of their capacity to

encode functional aspects, bind to important domains and enrichment in intrinsically dis-

ordered regions of protein sequences [28]. They help regulate many cellular processes, by

being interaction sites for other SLiMs containing proteins. SLiM-mediated interactions

are often transient interactions or utilize additional interaction domains to co-operatively

produce stable complexes. Therefore, prediction and analysis of PPIs and CaM-binding

proteins using SLiM profiles has the potential to develop better models for cellular pro-

cesses such as modulation and regulation of proliferation and apoptosis [18].

3



1. INTRODUCTION

1.3.2 Tools for Finding Motifs

Motifs may be indistinguishable from random artifacts, therefore, discovering biological

motifs in a set of sequences is a difficult task [6], and hence several approaches have been

proposed for improving motif discovery [6], such as using auxiliary data, PSP approach

and Gibbs Sampling.

From different accessible SLiM discovering tools such as SLiMFinder [12], SLiM-

Search [13], Minimotif Miner (MnM) [33], and MEME (Multiple EM for Motif Eluci-

dation) [4], MEME can discover SLiMs through an unsupervised approach and turns out

to be a very efficient and successful algorithm for discovering new SLiMs with different

number of occurrences in a set of protein sequences. It discovers motifs by optimizing the

statistical parameters of the model using the Expectation Maximization (EM) algorithm,

and a statistical sequence model to determine the positions and the width of the motif sites

in the sequences [6].

MEME provides both a Web server online and a stand-alone application that can be

dowloaded and installed locally on Unix or Linux platforms. The MEME Suite Web server

provides a unified portal for online discovery and analysis of sequence motifs representing

features such as DNA binding sites and protein interaction domains. The popular MEME

motif discovery algorithm is now complemented by the GLAM2 algorithm which allows

discovery of motifs containing gaps. Three sequence scanning algorithms MAST, FIMO

and GLAM2SCAN allow scanning numerous DNA and protein sequence databases for mo-

tifs discovered by MEME and GLAM2 [3]. Figure 1.3.2 shows the Motif-based sequence

analysis tools in the MEME Suite Website.

For this thesis, we downloaded MEME version 4.10.1 and installed it on Unix platform.

First we obtained the protein sequences and placed them in a FASTA format [38] file in

order to make it as an input file for MEME. In the shell script command line, we can set

the input file name, output folder name, the number of the motifs and the length range of

the motifs.

4



1. INTRODUCTION

FIGURE 1.3.2: The MEME Suite. Figure obtained from meme-suite.org.
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1. INTRODUCTION

1.4 Tools for score processing

After we obtained the SLiMs from the protein datasets, we applied score processing for

obtaining the score matrices for experiments. For processing the scores and the matrices,

we use Python and Matlab for programming and matrix operations.

1.4.1 Python

Python is a popular programming language for scientific computing. It provide state-of-

the-art implementations of many well known machine learning algorithms, and maintains

an easy-to-use interface. Therefore, the need grows for statistical data analysis by non-

specialists in the software and Web industries, as well as in fields outside of computer-

science, such as biology or physics [26].

There are plenty of data analysis libraries and tools for Computational Biology writ-

ten in Python, which can be downloaded for free from http://www.biopython.org, such as

Biopython [11]. Biopython includes modules for reading and writing different sequence

file formats and multiple sequence alignments, dealing with 3D macro molecular struc-

tures, interacting with common tools such as BLAST, ClustalW and EMBOSS, accessing

key online databases, as well as providing numerical methods for statistical learning [11]

For this thesis, we chose Python for programming, because it has an XML library El-

ementTree, which is very convenient for parsing XML trees. We downloaded the XML

files for the proteins in the datasets from UniProt, which is a freely accessible database of

protein sequence and functional information, then used Python XML parser to obtain the

protein sequences. After we obtained the SLiMs of the proteins, we use Python regular ex-

pression to find the sites in the protein sequences (The sites for corresponding proteins are

output by MEME, then we use regular expression to find sites in other protein sequences

which in other datasets). At the end, we also use Python to process the scores and create

the output matrices.

6



1. INTRODUCTION

1.4.2 Matlab

Matlab is a data analysis and visualization tool that has been designed with support for

matrices and matrix operations. Matlab has excellent graphics capabilities, and its own

powerful programming language. One of the reasons that Matlab has become such an

important tool is through the use of sets of Matlab programs designed to support a particular

task [22].

In this thesis, we use Matlab to devide the elements in one matrix by the elements in

another matrix, where that elements are in the same position in their own matrix.

1.5 Machine Learning

Learning processes include the acquisition of new declarative knowledge, the develop-

ment of motor and cognitive skills through instruction or practice, the organization of new

knowledge into general, effective representations, and the discovery of new facts and the-

ories through observation and experimentation [9]. As one of the most challenging goal in

artificial intelligence, researchers have been striving to implant such capabilities in com-

puters and make the machines learn new knowledge. This field is called Machine Leaning

(ML).

1.5.1 Tool for classification: WEKA

Waikato Environment for Knowledge Analysis (Weka) is a collection of ML algorithms for

data mining tasks. The algorithms can either be applied directly to a dataset or called from

other Java programs [17].

Weka provides a general-purpose environment for automatic classification, regression,

clustering and feature selection and common data mining problems in bioinformatics re-

search. It contains an extensive collection of machine learning algorithms and data pre-

processing methods complemented by graphical user interfaces for data exploration and the

experimental comparison of different machine learning techniques on the same problem.

Weka can process data given in the form of a single relational table. Its main objectives are

7



1. INTRODUCTION

to (a) assist users in extracting useful information from data and (b) enable them to easily

identify a suitable algorithm for generating an accurate predictive model from it [14].

Weka is a flightless bird with an inquisitive nature, it is found only on the islands of

New Zealand. The name is pronounced like this, and the bird sounds like the one shown in

Figure 1.5.1, which shows the logo of the Weka software.

FIGURE 1.5.1: WEKA software logo.

1.5.2 Classification algorithms

Weka provides many classification methods such as BayesNet, NaiveBayes, LibSVM with

linear/polynomial/radial basis function (RBF) kernel, RBFNetwork, Multilayer Perceptron,

k-Nearest Neighbor (kNN), Random Forest and Decision Tree, etc. In this thesis, we used

different classifiers: LibSVM + Polynomial, LibSVM + RBF, Random Forest, kNN, Deci-

sion Tree and Multilayer Perceptron.

LibSVM is a library for Support Vector Machines (SVM) [10]. It is a powerful, state-of

the art algorithm that can guarantee the lowest true error due to increasing the generalization

capabilities [34]. LibSVM + linear was considered for our classification, as shown in Figure

1.5.2. Here, there are many possible linear classifiers that can separate the data, but there

is only one that maximizes the margin (maximizes the distance between it and the nearest

data point of each class). This linear classifier is termed the optimal separating hyperplane.

Intuitively, we would expect this boundary to generalise well as opposed to other possible

boundaries [15].

However, since the datasets are non-linear models, it is better to choose SVM + Poly-

nomial or RBF kernel. The Polynomial kernel represents the similarity of vectors (training

samples) in a feature space over polynomials of the original variables, allowing learning of

8



1. INTRODUCTION

FIGURE 1.5.2: Optimal Separating Hyperplane [15].

non-linear models [41]. The RBF kernel is also commomly used in classifing non-linear

models.

In SVM + Polynomial or RBF kernel, the gamma parameter defines how far the influ-

ence of a single training example reaches, with low values meaning far and high values

meaning close. The gamma parameters can be seen as the inverse of the radius of influence

of samples selected by the model as support vectors. The C parameter trades off misclassi-

fication of training examples against simplicity of the decision surface. A low C makes the

decision surface smooth, while a high C aims at classifying all training examples correctly

by giving the model freedom to select more samples as support vectors. In order to find the

best parameters when using SVM classifier, we implied grid search with different C and

gamma.

Random Forest (RF) is a classifier that is based on a combination of many decision

tree predictors such that each tree depends on the values of a random vector sampled inde-

pendently and with the same distribution for all trees in the forest [34]. RF has excellent

accuracy among current classification algorithms. It also has an effective method for esti-

mating missing data and maintains accuracy when a large proportion of the data is missing

[34].
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K-nearest-neighbor (kNN) is one of the most fundamental and simple classification

methods and should be one of the first choices for a classification study when there is little

or no prior knowledge about the distribution of the data. kNN was developed from the need

to perform discriminant analysis when reliable parametric estimates of probability densities

are unknown or difficult to determine [27].

Decision tree (DT) classifier is one of the possible approaches to multistage decision

making. It is a way of representing a series of rules that lead to a class or value [34].

The basic idea involved in any multistage approach is to break up a complex decision into

a union of several simpler decisions, hoping that the final solution obtained in this way

would resemble the intended desired solution [31].

A multilayer perceptron (MLP) is a feedforward artificial neural network model that

maps sets of input data onto a set of appropriate outputs. An MLP consists of multiple lay-

ers of nodes in a directed graph, with each layer fully connected to the next one. Except for

the input nodes, each node is a neuron (or processing element) with a nonlinear activation

function. MLP utilizes a supervised learning technique called backpropagation for training

the network. MLP is a modification of the standard linear perceptron and can distinguish

data that are not linearly separable [40].

1.5.3 Feature selection

During the last decade, the motivation for applying feature selection (FS) techniques in

bioinformatics has shifted from being an illustrative example to becoming a real prereq-

uisite for model building. In particular, the high dimensional nature of many modelling

tasks in bioinformatics, going from sequence analysis over microarray analysis to spectral

analyses and literature mining has given rise to a wealth of FS techniques being presented

in the field [30].

Wrapper methods embed the model hypothesis search within the feature subset search.

In this setup, a search procedure in the space of possible feature subsets is defined, and

various subsets of features are generated and evaluated. The evaluation of a specific subset

of features is obtained by training and testing a specific classification model, rendering this

10
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approach tailored to a specific classification algorithm [30]. In this thesis, we applied the

wrapper approach with RF for FS followed by classification using different algorithms.

1.5.4 Evaluation method

The K-fold cross validation refers to testing procedure where the dataset is randomly di-

vided into K disjoint blocks of objects. Then the data mining algorithm is trained using k

- 1 blocks and the remaining blocks is used to test the performance of the algorithm. This

process is repeated k times. At the end, the recorded measures are averaged. It is common

to choose k=10 or any other size depending on the size of the original dataset [34]. In this

thesis, since the datasets are all not very large, we chose k=3 for evaluation.

We used the following performance measures: Accuracy, Recall and Matthews correla-

tion coefficient (MCC) in order to assess the predictive capability of our approach, because

the the accuracy of random classifiers is 50% for balanced distributions [32] and a co-

efficient of +1 represents a perfect prediction, 0 no better than random prediction and 1

indicates total disagreement between prediction and observation [39].

Accuracy =
TP + TN

TP + FP + TN + FN
(1.5.1)

Recall =
TP

TP + FN
(1.5.2)

MCC =
TP × TN − FP × FN√

(TP + FN)(TP + FP )(TN + FP )(TN + FN)
(1.5.3)

where TP is the number of True Positives, FP is the number of False Positives; TN is the

number of True Negatives, and FN is the number of False Negatives. CaM-binding proteins

are positive while Mitochondrial proteins are negative.
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1.6 Motivation of this Thesis

Prediction of protein-protein interaction (PPI) is a difficult and important problem in biol-

ogy. Although high throughput technologies have made remarkable progress, the predic-

tions are often inaccurate and include high rates of both false positives and false negatives.

Meanwhile, prediction of Calmodulin-binding (CaM-binding) proteins plays a very impor-

tant role in the fields of biology and biochemistry, because Calmodulin binds and regulates

a multitude of protein targets affecting different cellular processes.

Short-linear motifs (SLiMs) in protein sequences have being effectively used as fea-

tures for predicting and analyzing obligate protein interactions, several computational ap-

proaches have been used for prediction of high-throughput PPIs, though their properties

have not been used in the prediction of CaM-binding proteins, and none of them has ex-

ploited the power of SLiMs. In this thesis, we propose five new methods for prediction

of PPIs and CaM-binding proteins based on counting scores of SLiMs between pairs of

protein sequences with specific scoring functions.

The extracted features are new SLiMs derived from MEME. Two different approaches

have been used to discover new motifs using MEME: (a) find SLiMs from each of the pos-

itive and negative datasets separately (SM) and (b) find SLiMs from the combined positive

and negative datasets (CM).

As for prediction of PPIs, given two initial datasets of PPI pairs and non-PPI pairs, we

first pre-processed the datasets into new smaller datasets as 50 PPI pairs and 38 non-PPI

pairs for obtaining the SLiMs using MEME. We have used MEME to obtain 50 motifs for

each of the positive and negative datasets, separately, obtaining a set of 100 motifs (the

SM approach). Similarly, we generated 50 motifs from the combined negative and positive

datasets (the CM approach).

For prediction of CaM-binding proteins, the dataset has been manually curated with

194 CaM-binding proteins as a positive dataset and 193 Mitochondrial proteins as a nega-

tive dataset. We have used MEME to obtain 50 motifs for each of the positive and negative

datasets, separately, obtaining a set of 100 motifs (the SM approach). Similarly, we gener-

ated 100 motifs from the combined negative and positive datasets (the CM approach).
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Predictions of CaM-binding proteins have been performed in the Waikato Environment

for Knowledge Analysis (WEKA) using k nearest neighbor (k-NN), Support support vector

machine (SVM), random forest (RF), decision tree (DT) and Multilayer Perceptron (MP)

classifiers, on a 3-fold cross-validation setup. Moreover, the wrapper criterion with Ran-

dom Forest for feature selection (FS) has been applied followed by classification using

different algorithms mentioned above.

Our method shows itself to be very promising and demonstrates that information con-

tained in SLiMs is highly relevant for accurate prediction of PPIs and CaM-binding pro-

teins. In addition to efficient prediction, individual SLiMs may bring extra information on

meaningful patterns linked to specific roles in protein function.

In the following chapters, we discuss about related works of prediction of PPIs and

motifs in chapter 2, and we describe the datasets and method used in this thesis in Chapter

3. After that, we show the classification results and the analysis in Chapter 4, and we

concludes the whole work in chapter 5.
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CHAPTER 2

Review of the Literature

Recent studies have focused on the approaches of prediction of PPIs, the discovery of new

SLiMs, and the prediction of protein interactions using SLiMs. In this chapter, we review

the previous research and publications on prediction of Protein-protein interactions and

research on Short Linear Motifs.

2.1 Approaches for Prediction of PPIs

In this section, we review two papers related to prediction of protein interactions using

protein sequence informations. The first paper proposes a codon pair usage-based PPI pre-

diction method. The second paper proposes a new method based on animo acid defferences

between pairs of protein sequences.

2.1.1 Prediction of PPIs using information from simple condon pairs

The authors of [45] analyze the relatiionship between codon pair usage and PPIs in yeast,

and show that codon pair usage of interacting protein pairs deffers significantly from ran-

domly expected. This motivates the development of a novel approach for predicting PPIs,

CCPPI, with codon pair frequency defference as input to a SVM classifier. The results

show that CCPPI performs better than other sequence-based encoding schemes.

Previous work and shortcomings by others referred to by the authors

The authors state that it have been revealed so far that using high-throughput experimental

techniques like yeast two-hybrid screening and tandem-affinity purification coupled with
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2. REVIEW OF THE LITERATURE

mass spectrometry, miniatures of the interactomes of a few model organisms. However, the

authors note that the experimental methods mentioned above are relatively expensive and

labor intensive and suffering from insufficient coverage.

The new idea that the authors proposed

The authors proposed a codon pair usage-based PPI prediction method termed as CCPPI

(Codon Combination-based Protein-Protein Interaction predictor) under the Support Vector

Machine (SVM) framework. Their analyses show that codon pair usage of interacting

protein pairs is significantly different from that of random protein pairs.

Materials and methods

They downloaded protein sequences and the corresponding coding sequences of yeast from

the SGD database. They used three kinds of combined datasets of 4156 DIP positives and

equal number of non-interacting protein pairs. The first kind of datsets that contains ran-

domly selected non-interacting protein pairs as negatives are termed as “DIP + Random”.

The second kind (“DIP + RSS Negative”) contains “RSS Negative” without known similar

functions or subcellular localizations. The “RSS Negative” datasets were randomly se-

lected protein pairs whose RSS (Biological Process) and RSS (Cellular Component) were

less than 0.4. With respect to the third kind of datasets (“DIP + Homogeneous”), the nega-

tives were generated by randomly rewiring the DIP positives.

They calculated the difference in a feature between a pair of proteins in specific scoring

functions. They compared two previously published encoding schemes with their encoding

schemes, CT encoding and AC encoding. They used the two encoding schemes to concate-

nate feature vectors for a pair of proteins instead of calculating the differences between

them.

SVM predictors trained with codon pair frequency differences and other encodings

were tested by 10-fold cross-validation using the three kinds of combined datasets which

mentioned above. All SVM models were constructed with the RBF kernel using the LIB-

SVM package. The parameter C was preliminarily optimized to 10 and the other SVM

parameters were set to their default values. All the the three encoding schemes (CCPPI,
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CT encoding and AC encoding) perform better with C = 10 than the default C. They use

the following four perfomance measures for evaluating the results: accracy, precision, sen-

sitivity and MCC. The definition of precision and sensitivity are:

precision =
TP

TP + FP
(2.1.1)

sensitivity =
TP

TP + FN
(2.1.2)

Results and discussion

The authors claim to have compared codon pair frequency differences between 4,380 inter-

acting protein pairs from the DIP database and randomly selected protein pairs, which are

19-fold larger than the former. In total, there are 61× 61 = 3721 codon pairs under inves-

tigation. Compared with randomly selected protein pairs, 1551 out of 3721 codon pairs in

the interacting protein pairs were observed to have significantly similar frequencies. At the

same significance level, the frequencies of 619 codon pairs in interacting protein pairs tend

to be dissimilar. Moreover, there is a considerable fraction (41.7%) of codon pairs that do

not have any significant difference. In contrast, 57 out of 61 codons in the interacting pro-

tein pairs show similar frequencies, which is consistent with previous observations based

on a different dataset. They also claim that a predictor based on codon pair frequency dif-

ferences may perform better in distinguishing interacting protein pairs from random protein

pairs.

They also compared the performance of CCPPI and the other sequence-based encod-

ing schemes through 10-fold cross-validation tests under the same SVM framewor, for a

fair comparison of the performance of CCPPI and other different encoding schemes. The

comparison results show that the codon frequency difference encoding outperformed the

amino acid frequency difference encoding. Besides, CCPPI achieved a better performance

than the amino acid pair frequency difference encoding. Moreover, they also compared the

performance of CCPPI with other encoding schemes: CT encoding and AC encoding, and

the accuracies for these two encodings are about 5-10% lower compared with CCPPI.
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Their results indicate that the developed codon pair based method CCPPI is capable of

predicting protein-protein interactions, with a favorable or at least competitive performance

in comparing with several well-known sequence-based encoding schemes.

2.1.2 Prediction of PPIs using information from protein sequences

[21] describes our previous research related to prediction of PPIs based on amino acid

differences between pairs of protein sequences. Our finding suggests that amino acid dif-

ferences of interacting protein pairs are relevant to the prediction of PPIs and hence provide

important imformation on sequence-based encoding schemes.

Previous work and shortcomings by others referred to by the authors

We state that the methods only using the information of protein sequences are more uni-

versal than those that depend on some additional information or predictions about the pro-

teins. Paper [16] achieved acceptable performance on the yeast dataset using AC encoding

of physicochemical features derived from spaced amino acid pairs. Paper [35] proposed a

CT encoding scheme based on the calculation of tri-peptide frequencies, and it was shown

to achieve good results in the human PPI dataset. However, though several sequence-based

methods have shown that the information of amino acid sequences alone may be sufficient

to identify novel PPIs, the highest prediction accuracy of these methods is only 80%. The

information of the interactions which occurs in the discontinuous amino acids segments in

the sequence may be able to further improve the prediction ability of the existing sequence-

based methods.

Materials and methods

The positive reference set used in our dataset is obtained from the PrePPI (structure-based

prediction of protein-protein interactions) database, from which we downloaded the New

Human Protein Interaction Set and then randomly selected 4,000 positive pairs from the

set. The negative reference set is obtained from the Negatome Database version 2.0, which

is a repository of non-interacting pairs of proteins, and then we also randomly selected
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4,000 negative pairs from the Protein Data Bank (PDB) in the Negatome Database. We

downloaded the protein sequences from Uniprot.

After obtaining the positive and negative protein sequences datasets we calculated the

difference of the counting of different amino acids between each positive pair and each

negative pair of proteins, and used the difference of each amino acid as the features for

each pair of proteins.

Experiments and analysis

We applied Naive Bayes, kNN, DT, RF and SVM with different kernels (Linear, Poly-

nomial and RBF) classifiers on our datasets using WEKA. 10-fold cross-validation is the

method we used for validating all the classifiers. We used the following performance mea-

sures in order to assess the predictive capability of our approach: accuracy, recall, FP rate,

precision, F-measure and MCC.

We used the wrapper approach with mRmR (Minimum Redundancy and Maximum

Relevance) which is available in WEKA. Random Forest was used within this wrapper for

evaluating the accuracy of a feature subset.

Results that the authors claim to have achieved

The accuracy results of the classifiers on the original full dataset and on the reduced dataset

(after FS) are, respectively, 87.2% and 86.3% for kNN, 89.3% and 89.4% for Random

Forest, and 91.7% and 90.3% for SVM-RBF (see Figures 2.1.1, 2.1.2, 2.1.3, and 2.1.4).

The ROC curve for SVM-RBF is shown in Figures 2.1.5.

We have shown that this simple encoding of protein pairs as difference vectors of

amino-acid frequencies between protein pairs yield excellent results when using kNN, RF

or SVM-RBF classifiers. Our results also show that FS is not necessary with this simple

encoding. After these experiments, we considered to investigate complex but more dis-

criminative encoding of protein pairs, such as counting the differences of multiple-gram

amino acids rather than just counting the difference of 1-gram amino acid between pairs

of proteins. Thus, we considered using SLiMs instead of 1-gram amino acid in our future

works.
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FIGURE 2.1.1: The results of classifying the original dataset using 1NN, SVM-RBF (Cost
= 10 and Gamma = 5000), and Random Forest classifiers.

FIGURE 2.1.2: Using 1NN, SVM-RBF (Cost = 10 and Gamma = 5000), and Random
Forest to classify the dataset obtained after applying feature selection.
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FIGURE 2.1.3: Results of using SVM-RBF classifier (with Gamma fixed to 5000) based
on accuracy on both original and selected feature datasets.

FIGURE 2.1.4: Results of using SVM-RBF classifier (Cost fixed to 10) based on accuracy
on both original and selected feature detasets.
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FIGURE 2.1.5: ROC curve for SVM-RBF (Gamma = 0.01, 0.1, 1, 10, 100, 1000, 5000,
10000, 20000, 100000 and Cost = 10). The blue star represents the best result, SVM-RBF
(Gamma = 5000 and Cost = 10), with Area under ROC = 0.9165.

2.2 Prediction of Protein Interactions Using SLiMs

In this section, we review a papers related to prediction of protein interactions using SLiMs.

The paper has proposed a model that uses SLiMs as properties to predict obligate and non-

obligate protein interaction complexes.

2.2.1 Predict obligate and non-obligate protein interaction complexes

using SLiMs

The authors of [29] have modeled the prediction problem using SLiMs to extract informa-

tion contained in the protein sequences to distinguish between obligate and non-obligate

PPIs. The authors focus on the problem of determing the transitions from non-obligate

(less stable, or transient) to obligate (more stable) complexes. Obligate interactions are

permanent, while non-obligate interactions can be permanent or transient [24]. The model

delivers classification accuracies as high as 99% on two well-known datasets. Analysis and
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cross-dataset validation show that the information contained in the training sequences is

crucial for prediction and determination of stability in PPIs.

Previous work and shortcomings by others referred to by the authors

The authors state that characterizing the properties of protein interaction types can be done

by studying their sequence or structural information. The most effective approaches for

prediction of PPIs use mainly structural information of protein complexes to calculate the

feature values, and the PDB is the main source of the molecular structures of protein com-

plexes.

However, models based on structural information from the PDB are not perfect yet and

are time comsuming. In addition, the small number of proteins and their interactions from a

small number of structures in PDB are very small compared to the number of possible pro-

tein interactions available in high-throughput protein and PPIs databases such as UniProt.

Moreover, models based on protein structures are limited to availability of structural infor-

mation. Overall, the authors gained the motivation of a model that can replace the use of

structural properties.

The new idea which the authors invented

In that paper, the authors proposed a model that uses SLiMs as properties to predict ob-

ligate and non-obligate protein complexes. The model uses k-NN, linear dimensionality

reduction (LDR) and SVM as the classifiers to predict these types. Their prediction results

for two well-known datasets show prediction accuracy of more than 99%, which implies an

increase of at least 7% from previous approaches, even beter than the state-of-art structure-

based methods and using only sequence information.

Materials and methods

The authors use two pre-classified datasets of obligate and non-obligate protein complexes

from the studies of [46] and [23] as ZH and MW datasets respectively. The ZH dataset

contains 75 obligate and 62 non-obligate complexes, and the MW dataset contains 115
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obligate and 212 non-obligate complexes.

The authors chose MEME to find independent sets of SLiMs for the two datasets. They

optimized the parameters of MEME to find 1,000 SLiMs in both the ZH and MW datasets.

They set the length of the SLiMs to 3-10 and 2-7, the minimum number of sites to 8 and

the maximun number of sites to 200. Based on the two length ranges of the SLiMs and the

two datasets, four SLiM sets were compiled.

The authors indicate that for each complex in the dataset, its sequences are divided into

overlapping l-mer, which are the sites of motifs in the training set. Given a sequence X of

length L, let us consider an l-mer a in the sequence, where l is the length of each SLiM.

The scoring function they used for processing the scores of the motifs is shown in Formula

2.2.1:

I(a| X) = −
l∑

i=1

P (ai)× log(P (ai)) (2.2.1)

where X is the profile sequence, P (ai) is the probability (of the ith residue of a) from

that profile. Since P (ai) ≤ 1,
∑l

i=1 P (ai) is very small for large sites, -log gives a more

meaningful measure.

Equation (2.2.1) implies that that larger the site is, the larger the information content is.

Thus, in that paper, they also divide the total information content by the length of the site,

l in order to erase the effect. Then the information content of a site a of length l is defined

as:

Î(a| X) = −1

l
×

l∑
i=1

P (ai)× log(P (ai)) (2.2.2)

Since log(1) = 0, for any P (ai) =1, a small threshold is subtracted from P (ai) as fol-

lows:
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logP (ai) =


log(0.99) if P (ai) = 1

log(P (ai)) otherwise
(2.2.3)

Experiments and analysis

They used two validation approaches for classification. (1) Leave-one-out validation with

a k-NN classifier, (2) a cross-dataset validation for testing the accuracy and significance of

the newly proposed features. They also chose SVM and LDR for cross-dataset validation

classification because the power of generalization of the scheme in prediction of new com-

plexes is provided by SVM and LDR. They used LibSVM with a linear kernel with default

parameters for SVM.

Results that the authors claim to have achieved

As for the results of leave-one-out validation with k-NN, the highest accuracy is 98.54%

for k = 35 and the lowest is 95.62% for k = 5 when l = 10. This scheme yields the highest

accuracy of 99.27% when l = 9, 7, 6, 5. For the ZH dataset, the highest accuracy is 99.27%

for different values of l and k. For l = 7, and all the values of k, the accuracy is 99.27%. As

for the results of cross-dataset validation, the scheme yields the highest accuracy of 97.81%

and 99.27% for l = 5,4 respectively using SVM and different LDR for the ZH dataset with

the MW SLiMs for training. As in [46], they predicted obligate and non-obligate complexes

with 88.32% accuracy.

The authors note the importance of using SLiMs in prediction of obligate and non-

obligate complexes. According to their experiments and results, we considered using

SLiMs in prediction of PPIs and CaM-binding proteins. The scoring method here to deter-

mine each short subsequence as potential site of the motif, rather than using the sites output

by MEME. We use this scoring method in one of our scoring method variance, which is

discussed in next chapter, and we call this method “Sliding Window Scoring”. We also

chose SVM for classification, since SVM yields the highest accuracies in our study.
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2.3 Inspiration from the Previous Works

From the first paper of prediction of PPIs using simple codon pairs, we were inspired by

the idea of prediction of PPIs using information in the protein sequences, and thus we

experimented predicting PPIs using the difference of single amino acids between pairs of

proteins. As a result, we not just focus on single amino acids, as we considered 1-gram.

We have the idea of enlarging the gram to 2-grams, 3-grams, or even n-grams, and hence,

after the consideration, we used SLiMs. Especially in the paper [29], it showed a strong

power of SLiMs in prediction of obligate and non-obligate proteins.

Since in the second paper, the simple encoding of protein pairs as difference vectors of

amino-acid frequencies between protein pairs yield excellent accuracy results when using

kNN, RF or SVM-RBF classifiers, we also chose these classifiers in the experiments pre-

sented in this thesis. We chose the same positive and negative protien datasets as mentioned

in the paper for prediction of PPIs, although we only randomly chose small parts of them

because MEME runs very slow when the input datasets are large.

We use the scoring functions mentioned in the paper [29] for scoring the sites in three

scoring method in this thesis because the functions make the position-specific possibility

value of each amino acid in the SLiMs has more meaning, also it helps to obtain high

accuracies. We also tried the scoring method in our fifth method.

In the three papers, they all chose cross-validation when doing classification. Therefore,

in this thesis, we also use cross-validation. Since we deal with much smaller datasets

compared to the datasets in the papers, we use 3-fold cross-validation.
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CHAPTER 3

Materials and Methods

In this chapter, we describe the datasets and method for the experiments in this thesis.

Figure 3.0.1 shows a schematic diagram that depicts our method. First of all, we obtain

the positive and negative datasets from the protein databases, and download the protein

sequences on Uniprot. Then, we obtain the SLiMs in two different ways, CM and SM,

and thereafter we use scoring method with different scoring functions for scoring the sites.

Finally we apply Feature Selection and classification to the score matrices and analyze the

results.

3.1 Datasets

3.1.1 Datasets for prediction of PPIs

For training the classifiers using machine learning methods we collected positive interac-

tion pairs as well as negative ones. The positive reference set used in our dataset was ob-

tained from the PrePPI (structure-based prediction of protein-protein interactions) database,

from which we downloaded the New Human Protein Interaction Set to create the positive

class. The negative reference set was obtained from the Negatome Database version 2.0

[7], which is a repository of non-interacting pairs of proteins. The corresponding protein

sequences were downloaded from Uniprot.

Since MEME runs slow on large datasets, we randomly chose 50 protein pairs from

the positive reference set as the positive dataset, and 38 protein pairs from the negative

reference set as the negative dataset. All these sequences contain low similarity with other

sequences in each dataset.
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FIGURE 3.0.1: Diagram of the proposed model.
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3.1.2 Datasets for prediction of CaM-binding proteins

Our manually curated dataset, which contains 194 CaM-binding proteins collected from

the Calmodulin Target Database [43], is used as the positive dataset and 193 Mitochondrial

proteins obtained from the Uniprot database as the negative dataset. No major biochemical

function has been demonstrated for CaM in the mitochondria. This suggests that the num-

ber of CaM-interacting proteins that are localized in the mitochondria will be small relative

to other sub-cellular locations. Therefore, we chose proteins that are localized to the mi-

tochondria as our negative dataset. To obtain a more refined list of mitochondrial proteins

to use as a negative dataset, all 7,433 proteins that were under the cellular component term

Mitochondrion (GO:0005739) and had human taxonomy were downloaded. After filtering

out non-reviewed proteins and any proteins with Golgi and Nucleus, 886 proteins were ob-

tained that are strictly mitochondrial as far as GO annotations are concerned. From those

remaining Mitochondrial proteins, 193 proteins were selected randomly as the negative

dataset, yielding a balanced dataset.

3.2 SLiMs Finding Approaches

We have used MEME to find SLiMs for the datasets. Two different approaches have been

used to discover new motifs using MEME: (a) find SLiMs from each of the positive and

negative datasets separately (SM) and (b) find SLiMs from the combined positive and neg-

ative datasets (CM).

For obtaining the SLiMs datasets for prediction of PPIs, we applied SM using MEME

to find 50 SLiMs for each of the positive and negative datasets, separately, obtaining a set

of 100 motifs. Similarly, we applied CM to generate 50 SLiMs from the combined positive

and negative datasets. The length of the SLiMs were set to a minimum of 3 and a maximum

of 10.

As for the SLiMs datasets for prediction of CaM-binding proteins, in the SM approach,

we have used MEME to find 50 SLiMs for each of the positive and negative datasets and

built a totally 100 SLiMs dataset for the experiments. In the CM approach, we obtained

100 SLiMs from the combined positive and negative datasets. The length of the SLiMs
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were also set to a range from 3 to 10.

3.3 Scoring the Sites

Once the SLiM sets are obtained, MEME outputs files that contain patterns of the SLiMs,

sites found in the protein sequences and their positions, and the probability matrix of the

features of each SLiM. Figure 3.3.1 shows SLiM No.29 found in the CM dataset as output

by MEME with the sites found in the sequences and the corresponding protein names.

Table 1 shows the Position-specific probability matrix (PSPM) of this SLiM. The columns

represent the 20 amino acids, while the rows correspond to the scores of the features in this

SLiM.

We propose five different scoring method variances in this section. Counting sites with

different scoring functions and a new approach for defining sites, which we call Sliding

Window Scoring method.

FIGURE 3.3.1: SLiM No.29 found in the CM dataset.

3.3.1 Scoring method variance 1: Counting sites

The first method variance we applied for obtaining the score matrices of proteins is sim-

ply counting the numbers of the sites of the correspongding SLiMs appear in the protein
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TABLE 3.3.1: Position-specific probability matrix of SLiM No.29.

A C D E F G H I K L M N P Q R S T V W Y

0 0 0 0 0 0 0 0 0 0 ˙0.6 0 0 0 0 0 0 0 ˙0.3 0

0 0 0 0 0 0 0 0 0 ˙0.6 0 0 0 0 0 0 0 ˙0.3 0 0

0 0 0 0 0 0 0 0 1.0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 ˙0.6 0 0 0 0 0 ˙0.3

0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 ˙0.6 0 0 0 0 0 ˙0.3 0 0 0

0 ˙0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ˙0.3

sequences. As shown in Figure 3.3.2 , Motif 5 appears three times on the sequence of

protein A0JLT2 as three sites being output by MEME, and hence the score of Motif 5 for

A0JLT2 is set to 3. Similarly, Motif 16 appears once in the sequence of the same protein

as a site, so the score of Motif 16 for A0JLT2 is set to 1. We applied this scoring method

for every protein from the prediction of PPIs.

3.3.2 Scoring method variance 2: Counting sites with I formula

After obtaining good experimented results from the scoring method variance 1 mentioned

above, we consider using scoring functions instead of simply counting the SLiMs. Rueda

et al. [29] used SLiMs as properties for prediction of obligate and non-obligate protein

interaction complexes. Their prediction results for two datasets showed an impressive ac-

curacy of more than 99% based on classifiers such as k-NN, LDR and SVM. In that paper,

the authors indicate that given a sequence X of length L, they consider an l-mer a in the

sequence as a potential site, where l is the length of each SLiM. The scoring function they

used for processing the scores of the motifs is as follows, which we call I formula. Thus,
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FIGURE 3.3.2: Example of obtaining scores using method variance 1 (Counting SLiMs).

we consider to use this I formula as the scoring function for processing the scores of our

SLiMs.

I(a| X) = −
l∑

i=1

P (ai)× log(P (ai)) (3.3.1)

where X is the profile sequence, P (ai) is the probability (of the ith residue of a) from

that profile. Since P (ai) ≤ 1,
∑l

i=1 P (ai) is very small for large sites, so they take -log for

a more meaningful measure [29].

Since log(1) = 0, for any P (ai) =1, a small threshold is subtracted from P (ai) as follows

[29]:

logP (ai) =


log(0.99) if P (ai) = 1

log(P (ai)) otherwise
(3.3.2)

Figure 3.3.3 shows an example of obtaining scores using this method variance in our

method. Given a sequence profile of protein Q9UQL6, one site of the SLiM No.29 that has

been found by MEME is MLKHQCMC. Based on the position-specific probability matrix,
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we can score this site using the I formula. In the position-specific probability matrix, each

line indicates the scores of corresponding features on each position. Therefore, the score

of site MLKHQCMC can be calculaed as I = −(0.6 × log(0.6) + 0.6 × log(0.6) + 1 ×

log(0.99)+ 0.6× log(0.6)+ 1× log(0.99)+ 0.6× log(0.6)+ 0.6× log(0.6)). We applied

this scoring method variance for every protein from the prediction of PPIs.

FIGURE 3.3.3: Example of obtaining scores using method variance 2 (Counting SLiMs
with I formula).

3.3.3 Scoring method variance 3: Counting sites with Î formula

Equation (3.3.1) implies that that larger the site is, the larger the information content is.

Thus, in [29], the authors also divide the total information content by the length of the site,

l in order to erase that effect. Then the information content of a site a of length l is defined

as:

Î(a| X) = −1

l
×

l∑
i=1

P (ai)× log(P (ai)) (3.3.3)

We also set the threshold using Equation (3.3.2) to avoid the log(1) = 0 effect. We
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applied this scoring method for every protein from both of the prediction of PPIs and pre-

diction of CaM-binding proteins.

3.3.4 Scoring method variance 4: Counting sites with Î formula /

counting of sites

We consider the length of the sites in the scoring method variance 3, and after we obtained

all the scores using this scoring method, we infer that the counting of the sites may affect.

In order to see the influence of the counting of the sites using the Î formula, we divided

the Î formula by the counting of corresponding SLiM. Since we already obtained the score

matrix of the counting of sites, here we divide the element in the matrix, which obtained by

method variance 3, by the element in the other matrix, which obtained by method variance

1, in the same position in their own matrix. We applied this scoring method for every

protein from both of the prediction of PPIs and prediction of CaM-binding proteins.

3.3.5 Scoring method 5: Sliding Window Scoring method

After we obtained all of the score matrices using different scoring method variances men-

tioned above, we thought about a new way to define a site. Thus, we did not consider

the sites in the sequences found by MEME. In contrast, we consider every possible sub-

sequence (l-mer) in a sequence as a potential site for a motif of the training set. Each se-

quence is divided into overlapping l-mers. We designed a Sliding Window Scoring (SWS)

method for scoring these sites. Figure 3.3.4 shows an example of SWS based on SLiM

No.29 along with its position-specific probability matrix. Let us consider l-mer a in a se-

quence of length L. We divide the sequence into all possible overlapping l-mers of length

W , where l is the length of each SLiM, and deliver a total of {L−W + 1} l-mers. Then,

Equation (3.3.4) is used to calculate the information contained in l-mer a, given a profile

X of length L, and a SLiM m of length W :
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P (a| X) =
W∑
i=1

P (ai) (3.3.4)

where X is the profile of the sequence, P (ai) is the probability of the amino acid in

that profile. Since P (a| X) may be 0 or very small if the SLiM and the site have very low

similarity, we set a threshold to 60% for P (a| X). Thus, we do not consider this site and

remove the P (a| X) score as well. Once the scores for all possible l-mers in profile X

are obtained, we use Equation (3.3.5) to add up all the scores of the l-mers as the score of

SLiM m for profile X:

P (m| X) =
L−W+1∑

i=1

P (a| X) (3.3.5)

Equation (3.3.5) implies that the more likely a is a site, the larger the information con-

tent is. Thus, in order to erase this effect, we also divide the total information content by

the number of sites in the sequence, N 6 L −W + 1, since we removed some site with

scores lower than 60%):

P̂ (m| X) =
1

N
×

L−W+1∑
i=1

P (a| X) (3.3.6)

Then, we calculate P (m| X) and P̂ (m| X) for all the SLiMs obtained from both CM

and SM datasets for each protein sequence. We applied this scoring method for every

protein from both the prediction of PPIs and prediction of CaM-binding proteins.

3.4 Score Processing

After we obtained all the score matrices, we need to process the scores seperately since the

proteins for prediction of PPIs are in pairs, while the proteins for prediction of CaM-binding
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FIGURE 3.3.4: Example of the SWS method based on SLiM No.29 along with its position-
specific probability matrix.
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are single proteins. Figure 3.4.1 shows an example of score processing for prediction of

PPIs and CaM-binding proteins.

FIGURE 3.4.1: Example of score processing for prediction of PPIs and CaM-binding pro-
teins.

3.4.1 Score processing for prediction of PPIs

For prediction of PPIs using the SWS method, considering we are given a protein pair (Pi,

Pj), si1 to sin are the P (m| X) scores of each SLiM in sequence Pi, while sj1 to sjn are

the P (m| X) scores of each SLiM on sequence of protein Pj , n is the number of SLiMs,

so Pi = si1, si2, ... , sin and Pj = sj1, sj2, ... , sjn. Also, we use the P̂ (m|X) values of each

SLiM on sequences Pi and Pj respectively to generate ti1 to tin and tj1 to tjn, where Pi =

ti1, ti2, ... , tin and Pj = tj1, tj2, ... , tjn. Thus, pair (Pi, Pj) is transformed into two total

score vectors of length n as follows:

Sij = (si1 + sj1, ..., sin + sjn)

Tij = (ti1 + tj1, ..., tin + tjn)
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where Sab and Tab are the P (m| X) and P̂ (m| X) scores of SLiM b of the sequence of

protein Pa, Sij is the total score matrix of P (m| X) scores for n SLiMs in each protein

sequence pair, and Tij is the total score matrix of P̂ (m|X) scores for the same n SLiMs in

each protein sequence pair. We call the matrices S score matrix and T score matrix for Sij

and Tij respectively. This transformation is applied to each positive pair and each negative

pair in the training set with the SLiMs obtained from both CM and SM approaches.

Similarly, for prediction of PPIs using method variance 1 to method variance 4, , we

also add up the scores between pairs of proteins as the score for each SLiM, and applied

this transformation to each pair with the SLiMs obtained from both CM and SM.

3.4.2 Score processing for CaM-binding proteins

As for prediction of CaM-binding proteins using the SWS method, since they are single

proteins, we determine that si1 to sin are the P (m| X) scores of each SLiM on every

sequence of the protein, while ti1 to tin are the P̂ (m| X) scores of each SLiM on every

sequence of the protein, where n is the frequency of SLiMs. Thus, each protein sequence

is transformed into two total score vectors of length n as follows:

Sij = (si1, si2, ..., sin)

Tij = (ti1, ti2, ..., tin)

where Si and Ti are the P (m| X) and P̂ (m| X) scores of SLiM for n SLiMs on each

protein sequence. We call the matrices S score matrix and T score matrix for Si and Ti

respectively. This transformation is also applied to each positive pair and each negative

pair in the training set with the SLiMs obtained from both the SM and CM approaches.

Similarly, we applied the same score processing for prediction of CaM-binding using

method variances 3 and 4.

3.5 Machine Learning Method Using for Classification

We applied SVM-Polynomial kernel, RF, kNN, DT and MP classifiers on our dataset using

WEKA ver. 3.7.11 software [1]. We applied all these classifiers with default parameters: k
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= 1 for k-NN and Gamma(g) = 0 and Cost(c) = 1 for SVM + Polynomial kernel.

We also applied FS, and used RF for evaluating the accuracy of a feature subset. 3-

fold Cross-Validation is the method we used for training and evaluating all the classifiers.

We used Accuracy, Recall and MCC to assess the predictive capability of our approach as

mentioned in Chapter 1.
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CHAPTER 4

Results

We have applied five different scoring methods for prediction of PPIs and CaM-binding

proteins, but the results among all of them are quite similar, thus, in this chapter, we analyze

and discuss only one scoring method variance, the SWS method, which obtains the best

results. We select the best results among all of the results with 5 different classifiers:

SVM-Polynomial with C = 1 and gamma = 0 (c = 1, g = 0), RF, 1-NN, DT, MP.

4.1 Results

As for the SWS method, we have performed eight sets of experiments for both the predic-

tion of PPIs and CaM-binding proteins: classifying the (1) S and (2) T score matrices with

SLiMs obtained from SM, classifying the (3) S and (4) T score matrices using the feature

subset selected by FS with SLiMs obtained from SM, classifying the (5) S and (6) T score

matrices with SLiMs obtained from CM and classifying the (7) S and (8) T score matrices

using the feature subset selected by FS with SLiMs obtained from CM.

4.1.1 Classification results of prediction of PPIs

Table 4.1.1 shows the classification results for the score matrices with SLiMs obtained from

the CM dataset while Table 4.1.2 shows the classification results for the score matrices with

SLiMs obtained from the SM dataset.

By observing Tables 4.1.1 and 4.1.2, it is noticed that for the SLiMs obtained from

the CM dataset, the classification accuracies range from 67.0% to 84.1% among all of the

classification experiments, SVM-Polynomial on the T score matrix subset after FS yields
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TABLE 4.1.1: Prediction of PPIs classification results for the score matrices with SLiMs
obtained from the CM approach.

Dataset for
Classification

Classifier Accuracy
(%)

Recall (%) MCC

S score

SVM-Polynomial
(c = 1, g = 0)

76.1 76.1 0.525

Random Forest 76.1 76.1 0.509
k-NN (k = 1) 75.0 75.0 0.488

matrix Decision Tree 64.8 64.8 0.270
Multilayer
Perceptron

79.5 79.5 0.586

T score

SVM-Polynomial
(c = 1, g = 0)

79.5 79.5 0.583

Random Forest 73.9 73.9 0.462
k-NN (k = 1) 81.8 81.8 0.651

matrix Decision Tree 67.0 67.0 0.331
Multilayer
Perceptron

78.4 78.4 0.557

S score

SVM-Polynomial
(c = 1, g = 0)

78.4 78.4 0.562

Random Forest 79.5 79.5 0.580
matrix subset k-NN (k = 1) 80.7 80.7 0.611
selected by FS Decision Tree 75.0 75.0 0.499

Multilayer
Perceptron

79.5 79.5 0.591

T score

SVM-Polynomial
(c = 1, g = 0)

84.1 84.1 0.675

Random Forest 81.8 81.8 0.629
matrix subset k-NN (k = 1) 81.8 81.8 0.636
selected by FS Decision Tree 79.5 79.5 0.581

Multilayer
Perceptron

79.5 79.5 0.583
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TABLE 4.1.2: Accuracies of prediction of PPIs classification for the score matrices with
SLiMs obtained from the SM approach.

Dataset for
Classification

Classifier Accuracy
(%)

Recall (%) MCC

S score

SVM-Polynomial
(c = 1, g = 0)

73.9 73.9 0.492

Random Forest 72.7 72.7 0.439
k-NN (k = 1) 72.7 72.7 0.439

matrix Decision Tree 58.0 58.0 0.146
Multilayer
Perceptron

81.8 81.8 0.632

T score

SVM-Polynomial
(c = 1, g = 0)

56.8 56.8 0.000

Random Forest 78.4 78.4 0.564
k-NN (k = 1) 77.3 77.3 0.533

matrix Decision Tree 63.6 63.6 0.244
Multilayer
Perceptron

70.5 70.5 0.390

S score

SVM-Polynomial
(c = 1, g = 0)

70.5 70.5 0.392

Random Forest 78.4 78.4 0.558
matrix subset k-NN (k = 1) 72.7 72.7 0.453
selected by FS Decision Tree 77.3 77.3 0.537

Multilayer
Perceptron

77.3 77.3 0.545

T score

SVM-Polynomial
(c = 1, g = 0)

56.8 56.8 0.000

Random Forest 75.0 75.0 0.486
matrix subset k-NN (k = 1) 79.5 79.5 0.587
selected by FS Decision Tree 75.0 75.0 0.491

Multilayer
Perceptron

80.7 80.7 0.604
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the highest classification accuracies, ranging from 76.1% to 84.1%. For the SLiMs ob-

tained from the SM dataset, Multilayer Perceptron on the S score matrix yields the highest

classification accuracy, 81.8%.

4.1.2 Grid search for SVM-polynomial (prediction of PPIs)

We applied grid search using SVM Polynomial on prediction of PPIs for four kinds of

matrices datasets as shown in Tables 4.1.3 and 4.1.4 with SLiMs obtained from SM and

CM separately, with different values of parameter C = 1, 10, 100, 1000, gamma = 0.01,

0.1, 0, 1, 10, 100, 1,000. We chose 3-fold cross-validation for evaluation.

Observing to Tables 4.1.3 and 4.1.4, we find that after applying grid search for SVM-

Polynomial kernel with different values of C and gamma, the accuracy goes up to 84.1%

with SLiMs obtained from the CM dataset and it reaches 86.4% with SLiMs obtained from

the SM dataset. This means that the value of the parameters plays an important role in our

approach.

4.1.3 Classification results of prediction of CaM-binding proteins

Table 4.1.5 shows the classification results for the score matrices with SLiMs obtained from

SM while Table 4.1.6 shows the classification results for the score matrices with SLiMs

obtained from CM of CaM-binding proteins using the SWS method.

By observing Tables 4.1.5 and 4.1.6, it is noticed that for the SLiMs obtained from SM,

1-NN on the S score matrix yields the highest classification accuracy of 80.6%. For the

SLiMs obtained from CM, the classification accuracies range from 57.6% to 80.1% among

all of the classification experiments. RF on the S score matrix subset after FS yields the

highest classification accuracies, ranging from 69.3% to 80.1%.
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TABLE 4.1.3: Accuracies (%) of prediction of PPIs using SVM-Polynomial (C = 1, 10,
100, 1000, gamma = 0.01, 0.1, 0, 1, 10, 100, 1000) with SLiMs obtained from SM.

C=1 C=10 C=100 C=1,000
gamma=0 61.4 61.4 61.4 61.4

gamma=0.01 61.4 61.4 61.4 61.4
S score gamma=0.1 61.4 61.4 61.4 61.4

gamma=1 61.4 61.4 61.4 61.4
matrix gamma=10 61.4 61.4 61.4 61.4

gamma=100 61.4 61.4 61.4 61.4
gamma=1,000 61.4 61.4 61.4 61.4

gamma=0 56.8 56.8 60.2 71.6
gamma=0.01 56.8 56.8 60.2 71.6

T score gamma=0.1 56.8 60.2 71.6 76.1
gamma=1 59.1 71.6 76.1 71.6

matrix gamma=10 71.6 76.1 72.7 70.5
gamma=100 78.4 78.4 79.5 79.5

gamma=1,000 62.5 63.6 63.6 63.6
gamma=0 61.4 61.4 61.4 61.4

gamma=0.01 63.6 63.6 63.6 63.6
S score gamma=0.1 61.4 61.4 61.4 61.4

matrix subset gamma=1 61.4 61.4 61.4 61.4
selected by FS gamma=10 61.4 61.4 61.4 61.4

gamma=100 61.4 61.4 61.4 61.4
gamma=1,000 61.4 61.4 61.4 61.4

gamma=0 56.8 56.8 58.0 69.3
gamma=0.01 56.8 56.8 56.8 56.8

T score gamma=0.1 56.8 56.8 56.8 69.3
matrix subset gamma=1 56.8 56.8 69.3 78.4
selected by FS gamma=10 56.8 69.3 84.1 83.0

gamma=100 72.7 84.1 79.5 78.4
gamma=1,000 75.0 76.1 68.2 65.9
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TABLE 4.1.4: Accuracies (%) of prediction of PPIs using SVM-Polynomial (C = 1, 10,
100, 1000, gamma = 0.01, 0.1, 0, 1, 10, 100, 1000) with SLiMs obtained from CM.

C=1 C=10 C=100 C=1,000
gamma=0 76.1 76.1 76.1 76.1

gamma=0.01 76.1 76.1 76.1 76.1
S score gamma=0.1 76.1 76.1 76.1 76.1

gamma=1 76.1 76.1 76.1 76.1
matrix gamma=10 76.1 76.1 76.1 76.1

gamma=100 76.1 76.1 76.1 76.1
gamma=1,000 76.1 76.1 76.1 76.1

gamma=0 79.5 78.4 77.3 77.3
gamma=0.01 68.2 79.5 76.1 77.3

T score gamma=0.1 77.3 77.3 77.3 77.3
gamma=1 77.3 77.3 77.3 77.3

matrix gamma=10 77.3 77.3 77.3 77.3
gamma=100 77.3 77.3 77.3 77.3

gamma=1,000 77.3 77.3 77.3 77.3
gamma=0 78.4 78.4 78.4 78.4

gamma=0.01 78.4 78.4 78.4 78.4
S score gamma=0.1 78.4 78.4 78.4 78.4

matrix subset gamma=1 78.4 78.4 78.4 78.4
selected by FS gamma=10 78.4 78.4 78.4 78.4

gamma=100 78.4 78.4 78.4 78.4
gamma=1,000 78.4 78.4 78.4 78.4

gamma=0 84.1 84.1 86.4 84.1
gamma=0.01 56.8 56.8 60.2 85.2

T score gamma=0.1 85.2 84.1 85.2 86.4
matrix subset gamma=1 86.4 80.7 78.4 77.3
selected by FS gamma=10 79.5 79.5 79.5 79.5

gamma=100 75.0 75.0 75.0 75.0
gamma=1,000 79.5 79.5 79.5 79.5
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TABLE 4.1.5: Prediction of CaM-binding proteins classification results for the score ma-
trices with SLiMs obtained from SM.

Dataset for
Classification

Classifier Accuracy
(%)

Recall (%) MCC

S score

SVM-Polynomial
(c = 1, g = 0)

72.6 72.6 0.453

Random Forest 73.1 73.1 0.463
k-NN (k = 1) 80.6 80.6 0.612

matrix Decision Tree 72.9 72.9 0.466
Multilayer
Perceptron

76.0 76.0 0.533

T score

SVM-Polynomial
(c = 1, g = 0)

55.0 55.0 0.105

Random Forest 68.5 68.5 0.375
k-NN (k = 1) 59.7 59.7 0.275

matrix Decision Tree 68.2 68.2 0.364
Multilayer
Perceptron

75.7 75.7 0.518

S score

SVM-Polynomial
(c = 1, g = 0)

56.1 56.1 0.122

Random Forest 77.8 77.8 0.556
matrix subset k-NN (k = 1) 77.0 77.0 0.542
selected by FS Decision Tree 74.2 74.2 0.495

Multilayer
Perceptron

76.2 76.2 0.545

T score

SVM-Polynomial
(c = 1, g = 0)

64.9 64.9 0.297

Random Forest 69.3 69.3 0.385
matrix subset k-NN (k = 1) 66.4 66.4 0.330
selected by FS Decision Tree 66.7 66.7 0.334

Multilayer
Perceptron

68.0 68.0 0.360
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TABLE 4.1.6: Prediction of CaM-binding proteins classification results for the score ma-
trices with SLiMs obtained from CM.

Dataset for
Classification

Classifier Accuracy
(%)

Recall (%) MCC

S score

SVM-Polynomial
(c = 1, g = 0)

72.6 72.6 0.453

Random Forest 74.7 74.7 0.494
k-NN (k = 1) 78.3 78.3 0.566

matrix Decision Tree 71.3 71.3 0.436
Multilayer
Perceptron

76.5 76.5 0.553

T score

SVM-Polynomial
(c = 1, g = 0)

57.6 57.6 0.213

Random Forest 69.3 69.3 0.395
k-NN (k = 1) 58.1 58.1 0.261

matrix Decision Tree 65.1 65.1 0.303
Multilayer
Perceptron

71.3 71.3 0.436

S score

SVM-Polynomial
(c = 1, g = 0)

62.0 62.0 0.240

Random Forest 80.1 80.1 0.603
matrix subset k-NN (k = 1) 78.6 78.6 0.571
selected by FS Decision Tree 72.1 72.1 0.455

Multilayer
Perceptron

77.0 77.0 0.560

T score

SVM-Polynomial
(c = 1, g = 0)

60.2 60.2 0.210

Random Forest 70.5 70.5 0.415
matrix subset k-NN (k = 1) 68.7 68.7 0.382
selected by FS Decision Tree 68.7 68.6 0.379

Multilayer
Perceptron

68.5 68.5 0.370
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4.1.4 Grid search for SVM-polynomial (prediction of CaM-binding

proteins)

Similarly, we applied grid search with different values of parameter C = 1, 10, 100, 1000,

gamma = 0.01, 0.1, 0, 1, 10, 100, 1000 on prediction of CaM-binding proteins for the score

matrices using SVM-polynomial as shown in Tables 4.1.7 and 4.1.8 with SLiMs obtained

from SM and CM separately. We chose 3-fold cross-validation for evaluation.

TABLE 4.1.7: Accuracies (%) of prediction of CaM-binding proteins using SVM-
Polynomial (C = 1, 10, 100, 1000, gamma = 0.01, 0.1, 0, 1, 10, 100, 1000) with SLiMs
obtained from SM.

C=1 C=10 C=100 C=1,000
gamma=0 72.6 72.6 72.6 72.6

gamma=0.01 72.6 72.6 72.6 72.6
S score gamma=0.1 72.6 72.6 72.6 72.6

gamma=1 72.6 72.6 72.6 72.6
matrix gamma=10 72.6 72.6 72.6 72.6

gamma=100 72.6 72.6 72.6 72.6
gamma=1,000 72.6 72.6 72.6 72.6

gamma=0 55.0 69.8 75.2 73.6
gamma=0.01 55.0 70.3 75.5 73.4

T score gamma=0.1 73.4 70.5 68.0 68.7
gamma=1 68.7 68.7 68.7 68.7

matrix gamma=10 68.7 68.7 68.7 68.7
gamma=100 68.7 68.7 68.7 68.7

gamma=1,000 68.7 68.7 68.7 68.7
gamma=0 45.0 45.0 45.0 45.0

gamma=0.01 42.4 69.3 61.5 61.5
S score gamma=0.1 62.8 62.8 62.8 62.8

matrix subset gamma=1 45.0 45.0 45.0 45.0
selected by FS gamma=10 49.9 49.9 49.9 49.9

gamma=100 48.3 48.3 48.3 48.3
gamma=1,000 56.1 56.1 56.1 56.1

gamma=0 53.0 62.5 62.5 62.5
gamma=0.01 53.0 53.0 53.0 53.0

T score gamma=0.1 53.0 62.5 62.5 62.5
matrix subset gamma=1 63.0 66.9 67.2 64.6
selected by FS gamma=10 66.7 66.4 66.9 65.4

gamma=100 64.3 63.6 58.4 64.3
gamma=1,000 58.7 66.4 64.1 61.8
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4. RESULTS

TABLE 4.1.8: Accuracies (%) of prediction of CaM-binding proteins using SVM-
Polynomial (C = 1, 10, 100, 1000, gamma = 0.01, 0.1, 0, 1, 10, 100, 1000) with SLiMs
obtained from CM.

C=1 C=10 C=100 C=1,000
gamma=0 72.6 72.6 72.6 72.6

gamma=0.01 72.6 72.6 72.6 72.6
S score gamma=0.1 72.6 72.6 72.6 72.6

gamma=1 72.6 72.6 72.6 72.6
matrix gamma=10 72.6 72.6 72.6 72.6

gamma=100 72.6 72.6 72.6 72.6
gamma=1,000

gamma=0 57.6 71.3 72.9 71.3
gamma=0.01 57.6 71.8 72.9 71.3

T score gamma=0.1 71.3 68.5 70.3 70.3
gamma=1 70.3 70.3 70.3 70.3

matrix gamma=10 70.3 70.3 70.3 70.3
gamma=100 70.3 70.3 70.3 70.3

gamma=1,000 70.3 70.3 70.3 70.3
gamma=0 62.0 62.0 62.0 62.0

gamma=0.01 44.7 44.7 44.7 44.7
S score gamma=0.1 52.7 52.7 52.7 52.7

matrix subset gamma=1 49.1 49.1 49.1 49.1
selected by FS gamma=10 66.9 66.9 66.9 66.9

gamma=100 55.3 55.3 55.3 55.3
gamma=1,000 33.6 33.6 33.6 33.6

gamma=0 60.2 63.3 64.6 65.6
gamma=0.01 58.1 58.1 58.1 60.2

T score gamma=0.1 60.2 63.3 64.6 65.6
matrix subset gamma=1 65.6 69.5 73.9 73.1
selected by FS gamma=10 70.8 66.7 68.5 69.5

gamma=100 71.8 69.8 67.4 69.8
gamma=1,000 66.4 65.6 65.9 63.8
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Observing Tables 4.1.7 and 4.1.8, we find that after applying grid search for SVM-

Polynomial kernel with different values of C and gamma, the accuracy goes up to 72.9%

with SLiMs obtained from CM and it reaches 75.5% with SLiMs obtained from SM. Com-

pared with the results by SVM-Polynomial with C = 1, gamma = 0, the grid search does

not improve the classification results.

4.2 Comparison

4.2.1 Comparison between results of prediction of PPIs

Following the classification results shown in Tables 4.1.1 and 4.1.2, we plot all the accura-

cies among the classification results for the four matrices with SLiMs obtained from CM

as shown in Figure 4.2.1. From Figure 4.2.1, we observe that the T score matrix subset

selected by FS obtained the highest accuracies on SVM-Polynomial with C = 1 and gamma

= 0, Random Forest and Decision Tree classifiers. The original T score matrix achieves

the highest accuracy on 1-NN. Most of the accuracies obtained from the T score matrix

are higher than the accuracies obtained from the S score matrix among different classifiers.

The classifiers perform better after FS on both of the S and T score matrices.

We also compare all the accuracies among the classification results for the four matrices

with SLiMs obtained from SM as shown in Figure 4.2.2. The S score matrix yielded the

highest accuracies on Multilayer Perceptron, and the T score matrix subset selected by FS

also obtained accuracy which is above 80%.

4.2.2 Comparison between results of prediction of CaM-binding pro-

teins results

Similarly, following the classification results shown in Tables 4.1.5 and 4.1.6, we plot all

the accuracies among the classification results for the four matrices with SLiMs obtained

from CM as shown in Figure 4.2.3. From Figure 4.2.3, we observe that the T score ma-

trix subset selected by FS yielded the highest accuracies on Random Forest. Most of the

accuracies obtained from S score matrices are higher than the accuracies obtained from T
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4. RESULTS

FIGURE 4.2.1: Accuracies for prediction of PPIs for matrices with SLiMs obtained from
CM.

FIGURE 4.2.2: Accuracies for prediction of PPIs for matrices with SLiMs obtained from
SM.
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score matrices among different classifiers. The classifiers perform better after FS on most

of both of the S and T score matrix.

We also compare all the accuracies among the classification results for the four matrices

with SLiMs obtained from SM as shown in Figure 4.2.4. The S score matrix obtained the

highest accuracies on 1-NN, while all of the accuracies obtained from S score matrices are

higher than the accuracies obtained from T score matrices among different classifiers.

FIGURE 4.2.3: Accuracies for prediction of CaM-binding for matrices with SLiMs ob-
tained from CM.

Table 4.2.5 shows the comparison of prediction of CaM-binding proteins between re-

sults of SM and CM, using the 1-NN classifier. Both S and T score matrices yield higher

accuracies with SM than the matrices with CM using 1-NN classifier, while after FS, both

S and T score matrices yield higher accuracies with CM.

4.2.3 Classification VS Classification + FS

We compared classification results between non-FS and FS, using the classifier that per-

forms generally the best in either prediction of PPIs or prediction of CaM-binding proteins.

Thus, here we chose 1-NN and RF classifiers for the comparison.
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FIGURE 4.2.4: Accuracies for prediction of CaM-binding for matrices with SLiMs ob-
tained from SM.

FIGURE 4.2.5: Comparison of prediction of CaM-binding proteins accuracies between
classification results by 1-NN for matrixes with SLiMs obtained from SM and matrixes
with SLiMs obtained from CM.
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4. RESULTS

FIGURE 4.2.6: Comparison of accuracies of classification results on PPIs by 1-NN (left)
and Random Forest (right) for original matrices obtained from SM and CM, with the results
for matrices after feature selection.

Observing Figure 4.2.6 we find that, only the results with FS are equal to the results

without FS for the results on the T score matrix with CM and the S score matrix with SM.

Other classification all perform better with FS than non-FS using either 1-NN or RF for

prediction of PPIs.

FIGURE 4.2.7: Comparison of accuracies of classification results on CaM-binding proteins
by 1-NN (left) and Random Forest (right) for original matrixes obtained from SM and CM,
with the results for matrixes after feature selection.

Figure 4.2.7 indicates the non-FS VS FS results for CaM-binding proteins. When using

the 1-NN classifier, classification + FS achive higher accuracies on the S score matrix

using CM, the T score matrix using CM and T score matrix with SM. Only on the S score

matrix using SM, the non-FS obtained better results than FS. When using the RF classifier,

classification + FS achieves better results on all score matrices.
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CHAPTER 5

Conclusion and Future Work

5.1 Contributions

We propose one method with five different variances for prediction of high-throughput

protein-protein interactions and prediction of Calmodulin Binding proteins using short lin-

ear motifs. Our method shows promising results and demonstrates that information con-

tained in SLiMs is highly relevant for accurate prediction of high-throughput PPIs and

CaM-binding proteins. The Sliding Window Scoring method is useful for scoring the sites

and obtaining the datasets for classification.

As for prediction of PPIs, most of the classifiers perform better on the scores divided by

the number of SLiMs. The classification experiments yield good results on the datasets with

SLiMs obtained from both of the CM and SM approaches. The classification experiments

yielded 86.4% accuracy when using SVM-Polynomial classifier on the scores divided by

the number of the SLiMs with the SLiMs yielded from the CM dataset, which is the highest

accuracy among all of the experimented results in this research. Our results also show that

feature selection is necessary when using SVM-Polynominal, Random Forest, 1-NN and

Decision Tree classifiers for these datasets.

For predicition of CaM-binding proteins, the classification experiments yield good re-

sults on the datasets with SLiMs obtained from both of the SM and CM approaches. The

classification experiments obtained 80.6% accuracy when using 1-NN as a classifier on the

total scores obtained from SM, which is the highest accuracy among all of the experiments.

Moreover, feature selection plays a key role in classification process on both prediction

of PPIs and CaM-binding proteins. Most classifiers perform better after feature selection.
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5.2 Future Work

Possible extensions of this work include investigating the SWS method on prediction of

other types of protein-protein interactions. Also, possible extension to this work is to in-

vestigate the motifs obtained by MEME and relate them to existing families of calcium-

binding motifs, possibly discovering new motifs of families. Finally, another extension to

this work is to combine structural and SLiM data in order to provide a better insight of the

location of the motifs on the interface, role on the interaction and other aspects.
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