Washington University in St. Louis

Washington University Open Scholarship

Engineering and Applied Science Theses &

Diseertations Engineering and Applied Science

Winter 12-15-2014

Accelerating Heuristic Search for Al Planning

You Xu
Washington University in St. Louis

Follow this and additional works at: http://openscholarship.wustl.edu/eng etds
& Dart of the Engineering Commons

Recommended Citation

Xu, You, "Accelerating Heuristic Search for Al Planning" (2014). Engineering and Applied Science Theses & Dissertations. 67.
http://openscholarship.wustl.edu/eng_etds/67

This Dissertation is brought to you for free and open access by the Engineering and Applied Science at Washington University Open Scholarship. It has
been accepted for inclusion in Engineering and Applied Science Theses & Dissertations by an authorized administrator of Washington University Open

Scholarship. For more information, please contact digital@wumail.wustl.edu.

http://openscholarship.wustl.edu?utm_source=openscholarship.wustl.edu%2Feng_etds%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openscholarship.wustl.edu/eng?utm_source=openscholarship.wustl.edu%2Feng_etds%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=openscholarship.wustl.edu%2Feng_etds%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openscholarship.wustl.edu/eng_etds/67?utm_source=openscholarship.wustl.edu%2Feng_etds%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

WASHINGTON UNIVERSITY IN ST. LOUIS
School of Engineering and Applied Science

Department of Computer Science and Engineering

Thesis Examination Committee:
Yixin Chen, Chair
Lee Benham
Jeremy Buhler
Chenyang Lu
Yinjie Tang
Weixiong Zhang

Accelerating Heuristic Search for Al Planning
by
You Xu

A dissertation presented to the School of Engineering
of Washington University in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

December 2014
Saint Louis, Missouri

(© 2014, You Xu

Contents

List of Figures
List of Tables
Acknowledgments
Abstract
1 Introduction
1.1 AIPlanning
1.2 Motivationo
1.2.1 Limitations of Heuristic Search
1.3 Contributions
1.4 Dissertation Outline oL
2 Background and Related Works
2.1 SAS+ Planning
2.2 Heuristic Search for Planning
2.2.1 Notable Heuristics
2.2.2 Helpful Actions and Multiple Heuristics
2.3 Notable Non-heuristic Techniques
3 Accelerating Heuristic Search with Stratified Planning
3.1 Imtroductiono
3.2 Stratified Planningo
3.2.1 Stratification of Planning Problems
3.2.2 Stratified Planning Algorithm
3.2.3 Theoretical Analysis
3.3 Experimental Results
3.4 Discussions and Summary

4 Accelerating Heuristic Search with Partial Order Reduction
4.1 Partial Order Reduction Theory for Planning
4.1.1 Space Reduction for Planning
4.1.2 Stubborn Set Theory for Planning
4.1.3 Commutativity in SAS+ planning
4.1.4 Determining Commutativity

1

17
18
20
21
24
27
29
30

4.2 Stubborn-Set Theory for Existing POR Algorithms 43

4.2.1 Explanationof EC 44
4.2.2 Explanationof SPo o000 48
4.3 A New POR Algorithm for Planning 52
4.3.1 SACvs. EC 58
4.4 System Implementation L. 59
4.5 Experimental Results oL 61
4.6 Summary 74
Accelerating Heuristic Search with Random Walks 75
5.1 Background 76
5.2 Local Properties of Search Space 7
5.2.1 Approaches for Accelerating Plateau Exploration 82
5.3 Random Walk Assisted Best-First Search 82
5.3.1 Algorithm Framework 83
5.3.2 Performance Analysis 85
5.3.3 Parameter Settings 90
5.4 Experimental Results 0L 91
5.4.1 Part I: Results on IPC 6 (2008) Domains 91
5.4.2 Part II: Results on IPC 7 (2011) Domains 95
5.5 SUMMArY 103
Accelerating Heuristic Search with Cloud Computing 105
6.1 Background 106
6.1.1 Parallel Computing 106
6.1.2 Cloud Computing 107
6.1.3 Parallel Search Algorithms 107
6.1.4 Stochastic Search 108
6.1.5 Portfolio Search 0L 108
6.2 Portfolio Stochastic Search Framework 108
6.2.1 Monte-Carlo Random Walk (MCRW) 109
6.2.2 Variability in MCRW Searches 110
6.2.3 Portfolio Stochastic Search (PoSS) Algorithm 111
6.2.4 Enhanced PoSS with Dovetailing 113
6.3 System Implementation. 00000 114
6.4 Experimental Results L. 117
6.4.1 Results for Parallel Computing 118
6.4.2 Evaluation in Windows Azure 121
6.5 Summary 124
Conclusion 126
7.1 Future Works 127
7.1.1 Symmetry in State Space 127

11

7.1.2 Helpful Actions 127
7.1.3 Probabilistic Models for Random Walks Guided by Heuristics 128
7.1.4 Cloud-Based Deterministic Search 128

References 129

v

List of Figures

1.1

3.1
3.2

4.1

4.2
4.3

4.4

4.5
4.6

0.1
5.2

5.3
5.4

5.9

Number of generated nodes by the FastDownward planner on the
Driverlog domain

The causal graph, contracted causal graph and stratification of Truck-02.

The CCGs of some instances of several planning domains. Each SCC is
labelled by x<y>, where “z” is the index for the SCC and “y” is the number
of state variables in the SCC. The SCCs that contain goals are in a darker
color. . .. L e e e

Mlustration of condition A1 in Definition 5. The big circle on the left
stands for the set of all applicable actions at state s, while the small
circle stands for the stubborn set T'(s) of s. Action b € T(s) can
always be swapped to the beginning of a path consisting of b;s without
affecting the final state.
[Mlustration of commutative set.
A SAS+ task with four DTGs. The dashed arrows show preconditions
(prevailing and transitional) of each edge (action). Only dashed arrows
between DTGs are shown. Actions are marked with letters a to f. We see
that b and e are associated with more than one DTG.
The search spaces for a simple SAS+ planning task with two state variables
and four states when using SP and EC. SP (on the left) expands all four
states while EC (on the right) only expands three. The dashed link on the
left graph is the action that is not expanded by SP. Gray nodes are the goal
states. . . . L Lo e e e e
Search spaces of EC and SAC
System architecture of FD and SAC

Random exploration as a concatenation of random advancements.

Number of problem instances that are solvable by LAMA, RW-BFS;, and
RW-BFS, in 300 seconds.
Structure of Roamer-p. oo
Number of problems solved and quality score over time for Roamer, Lama
2008 and Arvand. The x-axis is shown on a logarithmic scale.
Number of problems solved and quality score over time for multi-core plan-
ners. The x-axis is shown on a logarithmic scale.

22

23

38
41

44

52
99
60

84

92
97

99

6.1

6.2

6.3
6.4

The run-time distribution of 500 MCRW runs with different random seeds

on six planning problems. 111
The average running time of the MCRW algorithm with different parameter

settings on problem Airport-17.o 114
System architecture for PoSS in Windows Azure. 115

A simple Web UI for users to submit planning tasks to PoSS running in
Windows Azure. 116

vi

List of Tables

3.1

3.2

4.1
4.2

4.3

4.4

5.1

5.2

5.3

5.4
5.5

Comparison of Fast Downward and two stratification strategies. We give the
number of generated nodes and CPU time in seconds. “-” means timeout
after 300 seconds. Lo
Comparison of Fast Downward and two stratification strategies. We give the

W

number of generated nodes and CPU time in seconds. means timeout

after 300 seconds.

Supplementary table for Figure 4.3: list of actions and related DTGs.
Comparison of FD, EC, and SAC using A* with h,,,, heuristic on IPC
domains. We show numbers of expanded and generated nodes. “-”
means timeout after 300 seconds. For each problem, we also high-
light the best values of expanded and generated nodes among three
algorithms, if there is any difference.
Comparison of FD, EC and SAC with no-preferred operators on IPC’s do-
mains. We show numbers of expanded and generated nodes. “-”
timeout after 1800 seconds. For each problem, we also highlight the best

means

values of expanded and generated nodes among three algorithms if there is
any difference. oL oL
Comparison of SP and SAC to FD on IPC domains without preferred op-
erators. We show ratios in the table for SP and SAC compared to FD. We
use 2-stratification for SP. Numbers in the parentheses after domain names
are the number of problems in that domain that we ran experiments on.
Smaller values in the table indicate better performance. Domains marked
with a * are not stratifiable, which causes SP to roll back to FD.

List of parameters used in RANDOM EXPLORATION
Comparison of the search time (“T”), solution length (“L”), number of
heuristic evaluations (“E”) of LAMA, RW-BFS,; and RW-BFS,. For RW-
BFS,, “E” is the total number of heuristic evaluations of all threads.

Number of solved instances for three planners on IPC 6 domains (Time limit
i 300S).
A comparison of Roamer and Roamer-p for IPC 7..
Results of IPC 7 for all planners in the sequential satisficing track.
Domain names are shortened to fit the table in a page.

vii

32

33
45

64

67

73
85

93

5.6

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

Results of IPC 7 for all planners in the multi-core satisficing track after
applying the strict plan validating rule. Domain names are shortened
to fit the tableinapage.

A comparison between Random Exploration and MCRW.
The mean (p), the variance (02) and the standard deviation (o) of 500
MCRW runs with different random seeds on six planning problems.
Comparison of MCRW and PoSS in different number of processors and
strategies for the Airport domain. Problems with super linear speedups are
highlighted.
Comparison of MCRW and PoSS in different number of processors and
strategies for the Pipesworld Tankage domain. Problems with super linear
speedups are highlighted. oo
Comparison of MCRW and PoSS in different number of processors and
strategies for the Pipesworld NoTankage domain.
Comparison of MCRW and PoSS in different number of processors and
strategies for the Philosophier domain. Problems with super linear speedups
are highlighted. oo o
Comparison of MCRW and PoSS in different number of processors and
strategies for the Satellite domain.
Comparison of MCRW and PoSS in different number of processors and
strategies for the Power Supply Restoration domain. Problems with super
linear speedups are highlighted.
Comparison of the running time and cost of PoSS algorithms using different
number of nodes in Windows Azure. “T” is the running time in seconds,
“S” is the speedup and “C” is the average total cost in US cents.

viil

122

Acknowledgments

First of all, I would like to thank my advisor, Yixin Chen. He convinced me to
pursuit a Ph.D. in computer science when I was perplexed by the uncertainty ahead.
It was the best decision I have ever made. 1 will forever be thankful to all his
guidance, kindness and encouragement that make my Ph.D. experience productive
and stimulating.

We have a wonderful research group working on Al planning here at Dr. Chen’s lab.
I’d like to thank my friends and colleagues, Ruoyun Huang, Qiang Lu, Guohui Yao,
Jianxia Chen, Guobin Zou and all other members in our research group for providing
an incredible environment for me to work in. Our research group has always been a
source of insights and enthusiasm for my research.

I would also like to thank Xueyang Feng, Abusayeed Saifullah, Yinjie Tang, Chengyang
Lu and other researchers I have collaborated with. They have broadened my scope
and reminded me that intellectual curiosity has no boundary.

I want to express my heartfelt thank you to my better half, Rachel. Her love for life
has made me a better person.

You Xu

Washington University in Saint Louis
December 2014

1X

Dedicated to my grandparents.

ABSTRACT OF THE DISSERTATION

Accelerating Heuristic Search for Al Planning
by
You Xu
Doctor of Philosophy in Computer Science
Washington University in St. Louis, 2014

Professor Yixin Chen, Chair

Al Planning is an important research field. Heuristic search is the most commonly
used method in solving planning problems. Despite recent advances in improving the
quality of heuristics and devising better search strategies, the high computational
cost of heuristic search remains a barrier that severely limits its application to real
world problems. In this dissertation, we propose theories, algorithms and systems to

accelerate heuristic search for Al planning.

We make four major contributions in this dissertation.

First, we propose a state-space reduction method called Stratified Planning to ac-
celerate heuristic search. Stratified Planning can be combined with any heuristic
search to prune redundant paths in state space, without sacrificing the optimality

and completeness of search algorithms.

Second, we propose a general theory for partial order reduction in planning. The

proposed theory unifies previous reduction algorithms for planning, and ushers in

x1

new partial order reduction algorithms that can further accelerate heuristic search by

pruning more nodes in state space than previously proposed algorithms.

Third, we study the local structure of state space and propose using random walks
to accelerate plateau exploration for heuristic search. We also implement two state-
of-the-art planners that perform competitively in the Seventh International Planning

Competition.

Last, we utilize cloud computing to further accelerate search for planning. We propose
a portfolio stochastic search algorithm that takes advantage of the cloud. We also
implement a cloud-based planning system to which users can submit planning tasks

and make full use of the computational resources provided by the cloud.

We push the state of the art in Al planning by developing theories and algorithms that
can accelerate heuristic search for planning. We implement state-of-the-art planning

systems that have strong speed and quality performance.

xii

Chapter 1

Introduction

Planning is an integral part of human intelligence. It is the conscious process of
organizing activities to achieve certain goals. As part of the human cognitive pro-
cess, planning serves as a fundamental connection between goal setting and action.
Through planning, actions are organized toward a clear objective. Acting without
planning, to a degree, is no different than monkeys trying to type Shakespeare’s

Hamlet by hitting random keys on a typewriter.

The ability to plan is also a direct measurement of the intelligence of a machine.
In fact, any intelligent machine that exhibits rational behaviors to outside observers
must possess planning abilities, for without which actions and behaviors become less

purposeful and rational.

There are an abundance of planning problems in our daily life. On a personal level,
we plan for activities throughout the day. Modern society also relies on the solutions
to various planning problems to function. Our fire department, police and postal
services all rely on transportation planning to arrange routes efficiently. Airports,
buses and assembly lines also depend on our ability to plan and schedule tasks in
complicated systems. Planning has also been applied to many small to medium
scale real-world problems, including controlling autonomous robots and unmanned
vehicles, scheduling space telescope observations, modeling interventions of biological

processes, and scheduling individual and organizational activities [59, 9, 19, 13, 65, 61].

1.1 Al Planning

In Artificial Intelligence (AI) research, planning is formulated as the process of ar-
ranging a course of actions (sometimes called activities) to achieve certain goals under
given constraints. Solving planning problems requires taking into account constraints,

action orders, dependencies and plan efficiencies.

While the correct action sequence is easy to get for simple problems, large-scale
planning tasks are daunting and sometimes not feasible to tackle without the help
of modern computers, as the scale of the problem is beyond our cognitive ability.
Specifically, real-world planning problems oftentimes involve complex constraints and
tangled action dependencies, rendering intuition and reasoning inadequate. Large-
scale real-world problems can also easily lead to combinations that are beyond simple

enumeration or intuitive guessing.

Planning problems (especially classic planning problems) can be formulated in a way
that is particularly amiable for computers, as modern computers are capable of enu-
merating and checking rules and states quickly. Once a planning problem is formu-
lated and represented in the way that computers can process, Al planners can leverage

the computational power of modern computers to find solutions efficiently.

Domain knowledge has proven to be helpful in problem solving. However, unlike
human planners, Al planners usually do not have a prior knowledge about the problem
domain. While there are approaches that have domain experts in the problem-solving
loop, in this thesis, we focus on automated planning, a family of planning approaches
that automatically solve general planning problems without requiring problem-specific

domain knowledge or human intervention.

Automated planning remains a challenging problem for Al researchers. For instance,
classic planning, (i.e. problems without temporal constraints), one of the simplest
categories of planning problems, has been proven to be PSPACE-complete. As the
problem size grows, the computational resources required to solve the planning prob-

lems can grow exponentially.

Automated planning is at the core of Al research. Many important Al problems, such

as the discrete time scheduling problem, the constraint satisfactory problem (CSP)

2

and the general state space search problem, can be formulated as planning problems.
Accordingly, solving automated planning problems efficiently would help advancing
other AI fields as well. Thus, it is critical to solve automated planning problems

efficiently.

1.2 Motivation

Much research on classical planning has focused on the design of better heuristic func-
tions. Despite the success of using domain-independent heuristics for classic planning,
state-of-the-art heuristic planners still face scalability challenges for large-scale plan-
ning problems, due to the limitation of deterministic search and heuristic functions.
As shown by recent work, search even with almost perfect heuristic guidance may still
lead to very high search cost [37] for optimal planning. Therefore, it is important to
improve other components of heuristic search that are orthogonal to the development

of heuristics.

1.2.1 Limitations of Heuristic Search

Heuristic search is an important and pervasive technique for Al planning. Using
heuristic search, an automated planning problem is mapped to a search problem
guided by heuristics. Under this mapping, the initial state of the planning problem
becomes the starting state of a search process. Starting from the initial state, the
search algorithm would iteratively examine states that are reachable by applying

actions to existing states, and terminating when a goal state is found.

Figure 1.1 shows the size of the search space with respect to the number of states in a
planning domain called Driverlog. Problems in this domain model the route planning
of delivery trucks. We used Fast Downward, a state-of-the-art heuristic search planner
to generate Figure 1.1. As we can see from the figure, heuristic search would explore
millions of nodes as the problem size increases. For real-world applications, heuristic

search would become prohibitively expensive once the problem reaches certain size.

1e+83

Generated Nodes
by the FD Planner

1e+487 + {Donain: Driverlog}

le+86

1688688 -

Generated Nodes
{log=zcale}

18e88 -

16688

1688
a 2 4 6 8 18 12 14 16 18 28

Problen Size

Figure 1.1: Number of generated nodes by the FastDownward planner on the Driver-
log domain

Bloated State Space

Heuristic search algorithms map states in planning tasks to states in search space.
Under this mapping, states that are inherently equivalent can be mapped to different
states, leading to an excessive amount of equivalent states in the state space. This can
be illustrated by the Gripper domain in the Third International Planning Competition
(IPC 3) [1]. In these problems, a robot with two hands can move balls between two
rooms. In many of the problems, balls are symmetric in terms of initial state and
goal conditions. For example, if the goal is to have n balls in room 2, and the initial
state is to have all n balls in room 1, then any intermediate states with £ < n balls in
room 1 are effectively equivalent from the perspective of the robotic hand. However,
when the problem is mapped to state space search, this equivalent class maps to (Z)
states in state space, such that ball 1 in room 1 and ball 2 in room 2 is different than

ball 1 in room 2 and ball 2 in room 1.

The bloated search space resulting from the equivalent states poses a fundamental

challenge for state space search. Large-scale planning problems have similar structures

4

that can be exploited to reduce the size of the search space. In this thesis, [will study
a family of space reduction techniques called partial order reduction that utilizes the
relation between states, such that heuristic search only needs to examine one state
i each equivalent class. The partial order reduction techniques presented in this
thesis would accelerate heuristic search by pruning out states that do not need to be

examined by heuristic search.

Imperfect Heuristics

Heuristic functions, in essence, estimate distances from any state to goal. Many
heuristic functions have been proposed for solving automated planning problems.
In general, heuristics that estimate distances more accurately lead to smaller search
spaces. In the ideal case, the perfect heuristic function can guide the search procedure
to goal states directly since it reveals the best successor to visit at each state along the
path to goal. However, it is practically unattainable to construct the perfect heuristic
function for general planning problems, as finding the perfect heuristic function for

any state in the search space is equivalent to solving the planning problem itself.

It is a well-known phenomena that the number of states examined by heuristic search
grow exponentially with the problem size when imperfect heuristics are used. As we
take a closer look at the search process, we find that heuristic search does not progress
at an even speed towards the goals. Instead, heuristic search hits plateau when
heuristic functions are not informative. The resulted plateau exploration constitutes
most computation in heuristic search, and that leads to high computational costs in

heuristic search.

If we can reduce the amount of computation spent on plateau exploration during
heuristic search, we can reduce the overall computational cost of heuristic search and
accelerate heuristic search. In this thesis, I will study approaches to accelerate plateau
exploration for heuristic search, such that the overall computational cost for heuristic

search is reduced.

Hight Computational Costs

The high computational cost heuristic search severely limits its applicability to large-
scale problems. A natural way to improve the efficiency of heuristic search is to
utilize advanced, more powerful computing platforms. To this end, parallel heuristic
search algorithms that are suitable for parallel and multi-core machines have been
long and extensively studied. However, expensive computing infrastructures, such as
supercomputers and large-scale clusters, are traditionally available to only a limited
number of projects and researchers. As a result, many users with access to only
commodity computers and clusters cannot benefit from the efficiency improvements of

high-performance heuristic search algorithms to solve large-scale planning problems.

Cloud computing provides an attractive, highly accessible alternative to other tradi-
tional high-performance computing platforms. In cloud computing, resources can be
leased from large data centers on a pay-as-you-go basis. This allows small teams and
even a single user to routinely have access to the same large-scale computing facilities

used by large companies and organizations.

Given the high accessibility of cloud computing and the fact that combinatorial search
is ubiquitous in engineering and in various applications involving decision making, if
we can significantly improve the efficiency of heuristic search in the cloud, the cloud-
based algorithms can be routinely used by all users and may fundamentally change the
landscape of Al planning applications. In this thesis, I will study search algorithms
that take advantage of cloud computing. I will also implement tools and systems for
solving planning problems in the cloud such that users and planning researchers can

take advantage of the cloud computing infrastructure.

1.3 Contributions

This thesis is based on the premise that we do not have the perfect heuristic functions
in heuristic search. By recognizing the imperfection of heuristic functions, we focus

on techniques to reduce the size of the search space in heuristic search. Search-space

reduction (i.e. space reduction) approaches proposed in this thesis can be classi-
fied into two categories: partial order reduction techniques that takes advantage of
the overall problem structure, and local space reduction techniques that utilizes the

heuristic information in a local region.

In this thesis, we study the equivalence relation between states, based on partial order
analysis of actions and of states. Partial order analysis enables search algorithms to
explore only a subset of states, without compromising the completeness or optimality
of search. We propose theories and algorithms that can automatically discover the
partial order relations between states, even before search starts. During the heuris-
tic search process, we utilize these partial order relations to impose orders between
states and their corresponding actions, such that only a subset of the search space
is explored, regardless of the heuristic functions used. We show that the proposed
approaches can prune search space efficiently and effectively, without sacrificing the

completeness of search nor the quality of the final solutions.

To reduce the search space in a local region during heuristic search, we study the
behavior of heuristic search in local regions when heuristic functions are not infor-
mative. We propose a random walk based search framework that can work together
with any existing deterministic search to escape from local plateau. Using the pro-
posed algorithms, we participated in the Seventh International Planning Competition
(IPC 7), with results showing that our algorithms perform competitively among other

state-of-the-art heuristic search planners.

Finally, we present the portfolio stochastic search framework that takes advantage of
cloud computing. Cloud typically has an abundance of computing cores but has high
communication latency between nodes. We implement the portfolio stochastic search
algorithm in both a local cluster, as well as the Windows Azure cloud platform. We
show that our algorithms achieve superior, in many cases super linear, speedups in
the cloud platform. We also show that our scheme is accessible and economically

sensible for planning users and researchers.

This dissertation contains material from, and extends, the following publications:

e Y. Chen, Y. Xu, and G. Yao, Stratified Planning, Proc. International Joint
Conference on Artificial Intelligence (IJCAI-09), 2009.
7

- I refined the algorithm, implemented all the code and proved the completeness

of the algorithm. I also conducted the experiments and gathered the results.

e Y. Xu, Y. Chen, Q. Lu, and R. Huang, Theory and Algorithms for Partial
Order Based Reduction in Planning, CoRR, abs/1106.5427, 2011.

e Y. Xu, Partial Order Reduction for Planning, Master’s Thesis, Washing-
ton University in St. Louis, 2010.

e Q. Lu, Y. Xu, R. Huang, and Y. Chen, The Roamer Planner: Random
Walk Assisted Best-First Search, Proc. International Planning Competi-
tion (IPC-2011), 2011
- I implemented the random walk part of the algorithm, the communication
mechanism between the deterministic search and random walk, and pair-programmed

with Lu during the development process.

e Y. Xu, Q. Lu, R. Huang, and Y. Chen, The Roamer-p Planner, Proc. In-
ternational Planning Competition (IPC-2011), 2011.

e Y. Xu, Q. Lu, R. Huang, and Y. Chen, Enhancing Heuristic Search for
Planning by Stochastic Plateau Escape, in preparation, 2014.

e Q. Lu, Y. Xu, R. Huang, Y. Chen, and G. Chen, Can Cloud Computing be
Used for Planning? An Initial Study, Proc. IEEE CloudCom (CloudCom-
11), 2011.

- I implemented the algorithm in Windows Azure and conducted all experiments

for Azure.

1.4 Dissertation Outline

This dissertation is organized as follows.

In Chapter 2, we give a brief introduction to the background and terminology. In
particular, we introduce the SAS+ formalism for classic planning problems, as well

as domain transition graphs.

In Chapter 3, we introduce Stratified Planning, one of the first attempts to conduct
partial order reduction for planning. We explain the stratified planning algorithm as
well as the correctness of it in pruning search spaces. In Chapter 4, we go further
and introduce a general theory for conducting partial order reduction for planning.
We establish the connections between the existing partial order reduction techniques
for planning and the stubborn set theory for model checking. We also present a new
algorithm based on the new theory, and show its effectiveness in accelerating heuristic

search for planning through experimental results.

In Chapter 5, we focus on accelerating heuristic search when it is stuck on plateau
exploration. We employ random walks as a way to assist heuristic search in escaping
from traps or blocks during search. Competition results from the Seventh Inter-
national Planning Competition are also presented to show the effectiveness of our

algorithms.

In Chapter 6, we apply the sequential stochastic search algorithms to the cloud envi-
ronment, and discuss the advantages of dovetailing parameter settings in the portfo-
lio stochastic search algorithm. We also present our system implementations in the
Windows Azure platform and report the experimental results by running the portfolio

search algorithm using up to 120 computational nodes in the cloud.

Chapter 2

Background and Related Works

2.1 SAS+ Planning

This thesis is focused on solving classic planning problems. Classical planning is
the most fundamental form of planning, which deals with only propositional logic.
In addition to classical planning, there are temporal planning (problems with tem-
poral conditions) and probabilistic planning (problems with probabilistic instead of

deterministic action effects).

We work on the SAS+ formalism [42] of classical planning. SAS+ formalism has
recently attracted attention due to a number of advantages it has over the traditional
STRIPS [24] formalism for classic planning. In the following, we review this formalism

and introduce the notations used in this thesis.

Definition 1 A SAS+ planning task 11 is defined as a quintuple
II={X,0,8,5, s%}.

o X ={xy, -+ ,xn} is a set of multi-valued state variables, each with an asso-
ciated finite domain Dom(z;).

o O is a set of actions and each action o € O is a tuple (pre(o), eff(0)), where both
pre(o) and eff(o) define some partial assignments of state variables in the form

x; = v, v; € Dom(x;).

10

e S is the set of states. A state s € S is a full assignment to all state variables.
s’ € S is the initial state. s is a partial assignment that defines the goal. A

state s is a goal state if s9 C s.

For a SAS+ planning task, a given state s and an action o, when all variable assign-
ments in pre(o) are met in state s, action o is applicable in state s. After applying
o to s, the state variable assignment will be changed to a new state s’ according to
eff(o): the state variables that appear in eff{o) will be changed to the assignments in
eff(o) while other state variables remain the same. We denote the resulting state after
applying an applicable action o to s as s’ = apply(s,0). apply(s,o) is undefined if o
is not applicable in s. The planning task is to find a path, or a sequence of actions,

that transition the initial state s’ to a goal state that includes s9.

An important structure for a given SAS+ task is the domain transition graph (DTG)

defined as follows:

Definition 2 For a SAS+ planning task, each state variable x; (i =1,--- ,N) cor-
responds to a domain transition graph (DTG) G;, a directed graph with a vertex
set V(G;) = Dom(z;) Uy, where vy is a special vertez, and an edge set E(G;) deter-

mined by the following.

o [f there is an action o such that (z; = v;) € pre(o) and (x; = v)) € eff(o),
then (v;,v}) belongs to E(G;) and we say that o is associated with the edge
e; = (v;,v)) (denoted as o & e;). It is conventional to call the edges in DTGs

transitions.

o [f there is an action o such that (z; = v}) € eff(o) and no assignment to x; is

/

in pre(o), then (v, v}) belongs to E(G;) and we say that o is associated with

the transition e; = (vg,v}) (denoted as ot e;).

Intuitively, a SAS+ task can be decomposed into multiple objects, each corresponding

to one DTG, which models the transitions of the possible values of that object.

11

2.2 Heuristic Search for Planning

As mentioned in the previous chapter, heuristic search is one of the most popular
approaches to automated planning. A heuristic function h that maps any state to
a real number is used in search to estimate the distance from a state to goal. In
other words, for any state s, its heuristic value h(s) is an approximation for d(s), the
distance from state s to goal. Namely, h(s) ~ d(s), or h(s) = d(s) + w where w is a
random variable whose distribution €2 is solely determined by the heuristic algorithm.
A heuristic function is admissible if and only if A(s) < d(s) for any s, or w < 0 for all

win 2 .

For a classical planning task, its state space is a directed graph 8 in which each
state s is a vertex and each directed edge (s,s’) represents an action. There is an
edge (s,s') if and only if there exists an action o such that s’ is the resulting state

after applying action o to s. State s’ is also called a successor state of s.

Heuristic search uses heuristic functions to guide the exploration of search space to
arrive at goal states. A data structure called the open list, usually implemented as
a priority queue, is used to store any states that are ready to be explored. At the
beginning of a search, the initial state sp, along with its heuristic value h(sg), is
inserted into the open list. At each step of the heuristic search, the state with the
smallest heuristic value is explored, meaning it is removed from the open list to check
if it is a goal state. If not, all of its successors, along with their heuristic values, are
inserted into the open list for later exploration. The state itself is inserted into the

closed list.

Algorithm 1 shows the general framework of heuristic search. In this algorithm,
heuristic function is used to decide which state REMOVE-FIRST should yield. For
instance, the above algorithm becomes best-first search if nodes in the open list are
sorted by their heuristic values. Algorithm 1 becomes A* search when the heuristic
function is admissible and nodes in the open list are stored by f(s) = g(s) + h(s),
where g is the distance from the initial state to s, and h(s) is the heuristic value for

state s.

12

Algorithm 1: Heuristic Search Procedure

Input: problem, open
Output: found or failure
closed <+ 0 ;
insert INITIAL STATE to open ;
while True do

if open is empty then

return failure
end
node <— REMOVE-FIRST (open) ;

if node is GOAL then
return found

end
if node is not in closed then
add node to closed ;
insert SUCCESSOR(node) and their heuristics to open ;
end
end

2.2.1 Notable Heuristics

Most of the award-winning planners of the International Planning Competitions
(IPCs) are using the heuristic search framework. The success of heuristic search
planners is largely linked to the development of high quality heuristic functions, here

follows a brief overview.

Deletion Relaxation

In SAS+ planning tasks, when an operator o is applied to state s, it changes the value
of state variable x; from v; to v} according to eff(0o). By allowing state variable z; to
be both v; and v} after applying o, planning task II(s) is relaxed to a new task IT*(s)
such that every solution to II(s) is also a solution to I1*(s). This way, the optimal
solution cost of TI*(s), denoted by h*(s), can thus be used as an admissible heuristic
for TI(s). However, calculating h™ itself is NP-hard and thus impractical. Heuristic
functions such as h,gg and h,,., approximate h™ by estimating the cost of achieving

certain goals [10]. The heuristic function used in the Fast Forward [39] planner, hy/,

13

approximates ht by extracting an explicit solution. Other heuristic functions based

on deletion relaxation include additive hy,q, [21] and hrpyr—cur [34].

Causal Graph Relaxation

The h4 heuristic used in the Fast Downward planning system utilizes a data structure
called causal graph for heuristic calculation [33]. It relaxes the planning task from
II(s) to l.4(s) by ignoring certain dependencies between state variables, such that
the final causal graph is acyclic. Similar to hyy, the goal distance at s is estimated by
finding a plan for the relaxed task II.(s). An improved version of h.g, hgeq, is able
to handle causal graphs with cyclic links. Since both heuristics assume that the cost
function is additive when multiple goals are present, they are not guaranteed to be

admissible.

Landmark Relaxation

The landmark counting heuristic used in the LAMA planner [63], hyy, relies on the
counting of landmarks that have not been visited so far. Heuristic Ay, is inadmissible
and path-dependent because it relies on the path so far to determine the number of
landmarks that have not yet been reached. An admissible version of h;, is proposed
by Karpas et al. [43], which uses action cost partitioning. Yet another admissible
heuristic called “merge-and-shrink” was developed based on abstraction of domain

transitions [36], which dominates the admissible landmark heuristics [35].

2.2.2 Helpful Actions and Multiple Heuristics

Heuristics such as hy; and he, not only give estimations of goal distances, but also
provide solutions to the relaxed problems. It is likely that actions appearing in
the solution to the relaxed problems are also part of the solution to the original
problems. Search algorithms can use these actions as extra information to improve
search efficiency. Applicable actions that are part of the solution are considered helpful

actions and can be given preference during search. This technique is used in both

14

Fast Forward and Fast Downward planners. Helpful actions are extremely useful for
non-optimal planners [62], and they are helpful when heuristic calculation is deferred
to when the state is explored [40, 33].

Since the debut of Fast Downward, it has also become commonplace for planners
to utilize multiple heuristics during search. The premise is that certain heuristics
may become uninformative in certain regions of the search space. By having multi-
ple open lists ordered using different heuristics, when a heuristic function becomes

uninformative or misleading, search can still make progress using other heuristics.

2.3 Notable Non-heuristic Techniques

In this section we review techniques that are orthogonal to the design of better heuris-

tics.

Symmetry. Symmetry detection is a way to reduce search space [25]. It finds
symmetric objects (DTGs in SAS+ formalism) and actions that are indistinguishable
with respect to initial state and goal. However, this method proposed by Fox and
Long [25] can only detect symmetry from the specification of initial and goal states,

and may miss many symmetries.

Factored planning. Factored planning [6, 11, 44] is a class of search algorithm that
exploits the decomposition of state space. Factored planning finds all the subplans
for each individual subgraph and tries to merge them. There are some limitations of
factored planning. The most notable is that search becomes prohibitively expensive
when there are many subplans in each subgraph, and not every subgraph has goal
states. Although factored planning has shown potential on some domain-dependent
studies, its practicality for general domain-independent planning has not been estab-
lished yet.

Partial order reduction. Partial order reduction (POR) is a way to reduce the
search cost for classical planning [17, 18]. Tt allows a search to explore only part of
the entire search space while still maintaining completeness and/or optimality. The

idea is to enforce partial orders between states during search. POR algorithms have

15

been extensively studied for model checking [74, 20], which also requires examining
a state space in order to prove certain properties. Model checking is not practical
without POR due to its time complexity [27, 28, 76, 26, 58, 41].

Stochastic search. An alternative to deterministic search is stochastic search. One
representative stochastic search algorithm is called the “Monte-Carlo Random Walk
algorithm (MCRW)”. A random walk in state space is a trajectory of states that are
linked by random actions. An MCRW starts from a known state, usually the initial
state, by applying random actions to known states, generates a random walk in the
search space, and terminates when a goal state is found in the walk. Stochastic search
has been used by some of the leading planners in the Seventh International Planning
Competition (IPC 7) [56, 52, 77].

16

Chapter 3

Accelerating Heuristic Search with
Stratified Planning

Most planning problems have strong structures. They can be decomposed into sub-
domains with causal dependencies. The idea of exploiting the domain decomposi-
tion has motivated previous work such as hierarchical planning and factored planing.
However, these algorithms require extensive backtracking and lead to few efficient
general-purpose planners. On the other hand, heuristic search has been a successful
approach to automated planning. The domain decomposition of planning problems,

unfortunately, is not directly and fully exploited by heuristic search.

We propose a novel and general framework to exploit domain decomposition. Based
on a structure analysis on the SAS+ planning formalism, we stratify the sub-domains
of a planning problem into dependency layers. By recognizing the stratification of
a planning structure, we propose a space reduction method that expands only a
subset of executable actions at each state. This reduction method can be combined
with state-space search, allowing us to simultaneously employ the strength of domain
decomposition and high-quality heuristics. We prove that the reduction preserves
completeness and optimality of search and experimentally verify its effectiveness in

space reduction.

17

3.1 Introduction

We have witnessed significant improvement of the capability of automated planners in
the past decade. Heuristic search remains one of the key, general-purpose approaches
to planning. The performance improvement is largely due to the development of
high-quality heuristics. However, as shown by recent work, only developing better
heuristics has some fundamental limitations [37]. Heuristic planners still face scala-
bility challenges for large-scale problems. It is important to develop new, orthogonal
ways to improve the efficiency, among which domain decomposition has been an at-

tractive idea to planning researchers.

A representative work based on domain decomposition is the automated hierarchical
planning method [46, 49] that utilizes hierarchical factoring of planning domains.
However, it typically does not scale well since it requires extensive backtracking across
subdomains. Another work is the factored planning approach [6, 11, 44] that finds
subplans for each subproblem before merging some of them into one solution plan.
However, the method requires either enumerating all subplans for each subproblem,
which is very expensive, or extensive backtracking. Also, it faces difficulties involved
with the length bound of the subplans. It is yet to be investigated if factored planning

can give rise to a practically competitive approach for general-purpose planning.

In this chapter, we propose a novel way to utilize the domain structure. Our key
observation is that normally a planning problem P can be stratified into multiple
sub-domains P;, Ps,..., P, in such a way that, for ¢ < j, the actions in P, may
require states in P; as preconditions, but not vice versa. We then investigate the
intriguing problem: given a stratification of a planning problem, can we make the

search faster?

We develop a completeness-preserving space reduction method based on stratification.
Our observation is, in standard search algorithms, each state is composed of the states
of the sub-domains P, ..., Py, and the search will expand the applicable actions in all
the sub-domains P, ..., P, which is often unnecessary. We propose a fundamental
principle for systems that can be stratified into layers of sub-domains. Due to the
oneway-ness of the dependencies across the stratified layers, the search can expand

only those actions in a subset of the sub-domains. In principle, if the preceding action

18

a of a state is at layer j, 1 < j < k, we only expand actions at layer j to k and those
actions that have direct causal relations with a at other layers. We prove that such a
reduced expansion scheme preserves completeness (and consequently, optimality) of

search algorithms.

The proposed scheme has a number of advantages. The reduction method is embed-
ded inside a heuristic search. Therefore, 1) since most domains can be stratified, the
method can effectively prune a lot of redundant paths, leading to significant reduction
of search costs; 2) in the worst-case when the method cannot give any reduction (such
as when all the subdomains are in one dependency closure and cannot be stratified),
the search will expand the same number of nodes as the original search; 3) the method
leverages the highly sophisticated heuristic functions. Thus, this scheme seems more
practical than those methods that explicitly use a decomposition-based search, such
as factored planning and hierarchical planning. It combines the strength of both

heuristic search and domain decomposition and adapts to the domain structure.

In summary, our main contributions are:

e We propose an automatic and domain-independent stratification analysis that

gives vital structural information of a planning problem.

e We tackle the problem of reducing search cost from a novel perspective. We
propose a space reduction method that can be embedded seamlessly to existing
search algorithms. Our approach is orthogonal to the development of more

powerful search algorithms and more accurate heuristics.

e We prove that a search algorithm combined with our reduction method is com-
plete (respectively optimal) if the original search is complete (respectively op-

timal).

e We show that two implementations of the proposed framework can improve the

search efficiency on various planning domains.

19

3.2 Stratified Planning

For a given state s and an action o, when all variable assignments in pre(o) are met
in state s, action o is applicable at state s. After applying o to s, the state variable
assignment will be changed to a new state s’ according to eff(o). We denote the

resulting state of applying an applicable action o to s as s’ = apply(s, o).

For a SAS+ planning task, for an action o € O, we define the following:

e The dependent variable set dep(o) is the set of state variables that appear

in the assignments in pre(o).

e the transition variable set trans(o) is the set of state variables that appear
in both pre(o) and eff{0).

e the affected variable set aff(0) is the set of state variables that appear in the

assignments in eff(o).

Note that trans(o) might be), and it is always true that trans(o) C dep(o) and
trans(o) C aff(o).

Definition 1 Given a SAS+ planning task 11 with state variable set X, its causal
graph (CG) is a directed graph CG(11) = (X, E) with X as the vertex set. There
is an edge (xz,x") € E if and only if x # ' and there exists an action o such that
x € aff(o) and ' € dep(o), or, x € aff(0) and x' € aff(0).

Intuitively, the nodes in the CG are state variables and the arrows in C'G describe
the dependency relationships between variables. If the CG contains an arc from z;
to x;, then a value change of z; will possibly affect the applicability of some action o
that involves a transition of x;. Figure 3.1a shows the CG of an instance (Truck-02)
of the Truck planning domain used in the 5th International Planning Competition
(IPC5) [3]. State variables that define the goal state are in a darker color.

20

3.2.1 Stratification of Planning Problems

Now we propose our stratification analysis. Given a SAS+ task, usually its C'G is not
acyclic, which leads to cyclic causal dependencies among some of (but often not all)

the state variables. We propose a strongly connected component analysis on C'G.

A directed graph is called strongly connected if there is a path from each vertex
in the graph to every other vertex. For a directed graph, a strongly connected
component (SCC) is a maximal strongly connected subgraph. A directed graph
can be uniquely decomposed into several SCCs. A partition of a set X is a set of
nonempty subsets of X such that every element x in X is in exactly one of these

subsets.

Definition 2 (Component Set) Given a SAS+ planning task 11 and its causal
graph CG(I) = (X, E), the component set M(II) is the partition of X such that
all the elements in each m € M(II) are in the same SCC of CG(II).

Definition 3 (Contracted Graph) Given a directed graph G = (V,E), a con-
tracted graph of G is a directed graph G' = (V', E"), where each v' € V' is a subset of
V and V' is a partition of V. There is an arc (v',w') € E' if and only if there exist
vev andw € w' such that (v,w) € E.

Definition 4 (Contracted Causal Graph (CCG)) Given a SAS+ planning task
I1, its contracted causal graph CCG(I1) = (V, E) is a contracted graph of CG(II) such
that V- = M(II).

Figure 3.1b shows the corresponding CCG of Figure 3.1a. Each vertex in the CCG
may contain more than one state variable. Intuitively, given the CG of a graph, we
find its SCCs and contract each SCC into a vertex. The resulting graph is the CCG.
Figure 3.2 shows the CCG of some other domains. The CCG plays the central role

in our structural analysis. It has an important property.

Proposition 1 For any SAS+ planning task 11, CCG(II) is a directed acyclic graph
(DAG).
21

(b) Contracted causal graph (CCG) (c) Stratification

Figure 3.1: The causal graph, contracted causal graph and stratification of Truck-02.

22

The above statement is true because if the CCG contains a cycle, then all the ver-
tices on that cycle are strongly connected and should be contracted into one SCC.
Therefore, we see that although there are dependency cycles in the CG, there is no
cycle after we contract each SCC to one vertex. A topological sort on the CCG gives
an list of the SCCs, ordered by dependency relations. Stratification can be viewed as

a generalization of topological sort.

Figure 3.2: The CCGs of some instances of several planning domains. Each SCC is labelled
by x<y>, where “z” is the index for the SCC and “y” is the number of state variables in
the SCC. The SCCs that contain goals are in a darker color.

Definition 5 (Stratification) Given a« DAG G = (V, E), a stratification Str(G) of
G is a tuple (U, L), where U = {uy,- - ,ux} is a partition of V.. W satisfies that there
do not exist i,5,1 < i < j <k, v; € u;, and v; € u; such that (vj,v;) € E. The
function L : V +— NT is called the layer function. L(v) = k for any v € V and

V€ Ug.

The stratification of a DAG G = (V, E) is not unique. A stratification Str(G) =
(U, L) is called a k-stratification if |{U| = k. The upper bound of k is |V|. When
k = |V], U must be a topological sort of V.

23

Definition 6 (Stratification of a SAS+ Task) Given a SAS+ planning task 11,
a stratification of 11, denoted by Str(11), is a stratification of CCG(II).

Intuitively, a stratification of a CCG gives the flexibility to cluster state variables
while pertaining to the topological order. There can be one-way dependency or no
dependency, but no two-way dependency, between any two state variables at different

layers under a stratification.

Figure 3.1c shows an example of stratification of the Truck-02 problem. Each SCC
in Figure 3.1b is now assigned a layer and the topological order is maintained in the
stratification. Basically, the requirement is that there is no arrow pointing from a

larger-numbered layer to a smaller-numbered one.

The stratification defines the layer function for any state variable x € X. Based on

that, we can define the layer function £ (o) for each action o € O.

Definition 7 (Action Layer) For a SAS+ task 11, given a stratification Str(Il) =
(U, L), for an action o € O, L(o) is defined as L(x), for an arbitrary x € trans(o),

if trans(o) is nonempty; and L(0) = oo if trans(o) = 0.

We prove that £(o0) is well-defined by showing that all x € trans(o) has the same
L(x), for any action o € O.

Proposition 2 For a SAS+ task 11, for an action o € O with trans(o) # (), we have
L(x;) = L(xj),Va;, z; € trans(o).

Proof. Since z; € trans(o) C dep(o) and x; € trans(o), by Definition 1, there is an
arc from z; to z; in CG(II). Similarly, x; € trans(o) C dep(o) and z; € trans(o), an
arc exists from z; to z; in CG(II). This implies that z; and z; are strongly connected
in CG(II) and are elements in the same vertex of CCG(II). By Definition 5, we have
L(z;) = L(x;). |

3.2.2 Stratified Planning Algorithm

24

© 00 N O ks W N

T
N = O

Algorithm 2: Stratified Planning(II, Str(II))

Input: A SAS+ planning task II and a stratification Str(Il) = (U, £)
Output: A solution plan
closed <— an empty set;
insert the initial AS pair (no-op,ss) to open;
while open is not empty do
(a,s) < REMOVE-FIRST(open);
if s is a goal state then return solution;
if s is not in closed then
add s to closed,
U(a, s, L) = STRATIFIED-EXPANSION(a, s, L) ;
open < openU V(a, s, L);
end

end

Now we propose Stratified Planning in Algorithm 2. In fact, it is not a stand-alone
algorithm but rather a space reduction method that can be combined with other
search algorithms. It reduces the number of actions that need to be expanded at
each state. The input of Algorithm 2 is a SAS+ task II and a stratification Str(II).
It is a general framework where the open list can be implemented as a stack, queue
or priority queue. The open list contains a list of states that are generated but not

expanded.

Definition 8 For the purpose of stratified planning, for each generated state s, we
record an action-state (AS) pair (a,s) in the open list, where a is the action that

leads to s during the search. a is called the leading action of s.

Each time during the search, a REMOVE-FIRST operation fetches one AS pair (a, s)
from the open list, checks if the state s is a goal state or is in the closed list. If
not, the STRATIFIED-EXPANSION operation will generate a set of AS pairs (b, s") to

be inserted to the open list, where s’ is the resulting state of applying b to s, i.e.

s' = apply(s,b).

The difference between stratified planning and a standard search is that, in standard
search, we will expand all the actions that are applicable at s, while STRATIFIED-
EXPANSION may not expand every applicable action.

25

© 0 N O Uk N =

[y
(=}

Algorithm 3: Stratified Expansion(a, s, L)

Input: An AS pair (a,s) and the £ function
Output: The set ¥(a, s, L) of successor AS pairs
U+ 0;
foreach applicable action b at s do
if £(b) > L(a) then

compute s = apply(s,b);

U« VuU{(bs)};
Ise if a > b then

compute s = apply(s, b);

U« U U{(bs)};

@

end
return ¥ ;

Since the initial state s; has no leading action, a special action no-op is defined as its

leading action and its layer is defined as 0.

Definition 9 (Follow-up Action) For a SAS+ task I1, for two actions a,b € O, b
is a follow-up action of a (denoted as a > b) if aff(a)Ndep(b) # O or aff(a)Naff(b) # 0.

Any action is a follow-up action of no-op.

Given this definition, we can describe the STRATIFIED-EXPANSION operation, shown
in Algorithm 3. Given a stratification Str(II) = (U, £), the procedure of STRATIFIED-
EXPANSION is quite simple. For any AS pair (a, s) to be expanded, for each action

b € O that is applicable at s, we consider two cases.

o If £L(b) > L(a), we expand b.

o If L(b) < L(a), we expand b only if b is a follow-up action of a (a > b).

For any AS pair (a, s), all the AS pairs expanded by STRATIFIED-EXPANSION forms
the set ¥(a, s, L).

26

3.2.3 Theoretical Analysis

Here, we show that stratified planning search preserves the completeness and opti-
mality properties of the original search strategy, decided by the implementation of
the open list and the evaluation function. For example, if the open list is a priority
queue and the evaluation function is admissible, then the original search, with a full

expansion at each state, is both complete and optimal.

Definition 10 (Valid Path) For a SAS+ task Il and a state sy, a sequence of ac-
tions p = (01,...,0,) is a valid path if, let s; = apply(si—1,0:),i = 1,...,n, 0; is
applicable at s;_1 for i = 1,...,n. We also say that applying p to s results in the

state s,,.

Definition 11 (Stratified Path) For a SAS+ task I, for a stratification str(Il) =
(U, L) and a state sy, a sequence of actions p = (01,...,0y) is a stratified path if it
is a valid path and, let s; = apply(s;_1,0;),i =1,...,n, (0;,8;) € V(0;_1, S;-1,L) for

1=1,...,n, where oy = no-op.

Intuitively, a stratified path is a sequence of actions that can possibly be generated

by the stratified planning search.

Lemma 1 For path p = (ay,...,a,) that is a valid path but not a stratified path,

(ai,s;) & V(a;_1,8-1,L). Since p is not a stratified path, such an i must exist. Now

we perform a swapping operation and obtain a path

/
p = (a’h ceey @2, Ay A1, Qg 1,5 - - - ,Cln).

We show that p' is also a valid path from sq.

Proof. According to Algorithm 3, We must have that £(a;) < L£(a;—;) and that qa;

is not a follow-up action of a;_;. Since a; is not a follow-up action of a;_1, according

to Definition 9, eff(a;—1) contains no assignment in pre(a;). Therefore, since a; is

applicable at s;_1, which is apply(s;_2, a;—1), we know a; is also applicable at s;_.
27

Since £(a;) < £(a;—1), the SCC in CCG(II) that contains a;—; has no dependencies
on the SCC that contains a;. Therefore, eff(a;) contains no assignment in pre(a;_1).
Since the variable assignments in pre(a;—1) is satisfied at s;_o, it is also satisfied at

s' = apply(s;_2,a;). Hence, a;_; is applicable at s'.

From the above, we see that (a;, a;_1) is an applicable action sequence at s; 5. Further,
since a; is not a follow-up action of a;_1, we have that aff{a;) N aff{a;—1) = (. Hence,
applying (a;, a;_1) to s;_o leads to the same state as applying (a;_1,a;), which is s;.

Therefore, p’ is a valid path from sg. [|

Theorem 1 Given a SAS+ planning task 11 and a stratification Str(Il), for any

state so and any valid path p, = (ai,...,a,) from sq, there exists a stratified path
po = (b1,...,by) from sy such that p, and py result in the same state when applied to
S0-

Proof. We prove by induction on the number of actions. When n = 1, since the only
action in the path p is a follow-up action of no-op, p is also a stratified path. Now we

assume the proposition is true for n = k, k > 1 and prove the case when n = k + 1.

For a valid path p® = (ay,...,a;.1), by our induction hypothesis, we can permute
the first & actions to obtain a stratified path (af,...,a3).

Now we consider a new path p' = (a1, ..., a},ars1). If we have L(ap1) < L(a}), or
L(apy1) > L(ap) and ap,; is a follow-up action of a}, then p' is already a stratified
path.

Now we focus on the case where £(agy1) > £(a}) and ajq is not a follow-up action
of a}. Consider a new path p? = (af,...,a; ;,ar41,a;). From Lemma 1, we know

that p? is a valid path leading to the same state as p' does.

By our induction hypothesis, we can permute the first & actions of p* to obtain a
2 1

stratified path (a?,...,a:). Define p* = (a?,...,a3,qa}).

Comparing p? and p?®, we know that L(ar.1) > £(a}), namely, the level of the last

action in p? is strictly larger than that in p®. We can repeat the above process to

generate pt, p° -+ as long as p/, (j € ZT) is not a stratified path. For each p?, the
28

first k actions is a stratified path. Also, every p’ is a valid path that leads to the

same state as p°

Since we know that the level of the last action in p’ is monotonically decreasing as
j increases, such a process must stop in a finite number of iterations. Suppose it
stops at p™ = (ai,...,a},a;,,.,),m > 1. We must have that L(a;) < L(a}), or
L(ay,,) > L(ay) and aj,, is a follow-up action of aj,. Hence p™ is a stratified path

and we prove the induction step. [|

Theorem 2 For a SAS+ task, a complete search is still complete when combined
with STRATIFIED- EXPANSION, and an optimal search is still optimal when combined
with STRATIFIED-EXPANSION.

Proof. For any search algorithm, we define its search graph as a graph where each
vertex is a state and there is an arc from s to s if and only if ¢ is expanded as a
successor state of s during the search. For a complete search, if it can find a solution
path p in the original search graph, then according to Theorem 1, there is another
path p’ in the search graph of the stratified search. Therefore, the complete search
combined with STRATIFIED-EXPANSION will find p'.

If a search is optimal, then when it is combined with STRATIFIED-EXPANSION, it
will find an optimal path p’ in the search graph of the stratified search. According to
Theorem 1, if the length of the optimal path in the original search graph is n, there
must exist a path in the search graph of the stratified search with length n. Hence,

the length of p’ is n and the new search is still optimal. [

3.3 Experimental Results

We test on STRIPS problems in the recent International Planning Competitions
(IPCs). We implement our stratification analysis and stratified search on of top the
Fast Downward planner [33] which gives SAS+ encoding of planning problems. We
still use the causal graph heuristic h., and only modify the state expansion part. On
a PC with a 2.0 GHz Xeon CPU and 2GB memory, we set a time limit of 300 seconds
for all problem instances.

29

In practice, how to determine the granularity of stratification is an important is-
sue. We test two extreme cases in our experiments. On one extreme, we test oo-
stratification, which performs a topological sort on the CCG and treats each SCC as
a layer. This represents the finest granularity of stratification. On the other extreme,
we test 2-stratification, which partitions the CCG into two layers and represents
the coarsest granularity of stratification. We also implement a factor 7,0 < v < 1 for
2-stratification, which specifies the ratio of the number of state variables in Layer 1
to the total number of state variables. We topologically sort the CCG and find the

dividing point that gives a ratio closest to 7. We use v = 0.7 in our experiments.

The results are shown in Tables 3.1 and 3.2. We did not include certain domains, such
as Pipesworld and Freecell, where the CG is only one SCC and cannot be stratified.
We can see that both oo-stratification and 2-stratification can give reduction for most
problem instances. The reduction of the number of generated nodes can be more than
an order of magnitude. Comparing oo-stratification to 2-stratification, we see that
they give similar performance. Despite the reduction in number of generated nodes,
the CPU time reduction is more modest. This is due to the fact that our preliminary
implementation is not efficient. For example, we check whether an action is a follow-
up action of another one at each state, although a preprocessing phase will save much

time. We will develop more efficient implementations in our future work.

3.4 Discussions and Summary

The idea of stratified planning can be explained by looking at a simple 2-stratification.
In a 2-stratification, all the state variables are divided into two groups, U; and Us,
where U; depends on U;y. Therefore, during the search, whenever we expand an action
a in Us, there are only two purposes: to transform a state in Us; to a goal state, or
to provide a precondition for an action in U;. Therefore, we allow to further expand
actions in U, but do not allow actions in U; except those directly supported by a. In
other words, we do not expand any action in U; that is not a follow-up action of a

because it is a "loose” partial order that can be pruned.

30

From the above, we see that stratified search can avoid redundant orderings between
ancestor/offspring SCCs. Besides that, another source of reduction is that strati-
fied planning imposes certain partial orders between sibling SCCs. For example, in
Figure 3.1a, the SCCs numbered 1 to 5 are siblings in the CCG. However, after we
stratify the CCG as in Figure 3.1c, we impose certain partial orders. For example,
we are forced to place actions in SCC 1 before SCC 5 whenever possible. Such a

reduction can be significant for many domains.

Stratified search may also incorporate symmetry removal in some situations. For
example, if three trucks 71,72, 73 are symmetric and can support the delivery of
a package. If the stratification places the three trucks at different layers, then it
effectively provides symmetry removal since we will try using 7T'1 before T2 and before
T3 whenever possible. Also, stratified search seems to have an advantage in that it
does not require the three objects to be absolutely symmetric for all the states and
can adjust dynamically to the situation. For example, if at certain state 72 has to
be used due to certain constraints, stratified search will find such a solution since it

is completeness preserving.

In summary, we have proposed stratified planning, a reduction method that exploits
the domain structure. We have defined the stratification of a SAS+ task on top of
its contracted causal graph. We have then proposed a space reduction method that
exploits the oneway-ness of the dependencies between stratified layers and proved that
the reduction method is optimality and completeness preserving. Our experimental
results on recent IPC domains show that search can be made more efficient when the

search space can be stratified into dependency layers.

31

Fast Downward|oco-stratification| 2-stratification

D Nodes |[Time| Nodes | Time | Nodes | Time
zenotravell 10 0 0 0
zenotravell | 122 0 0 0
zenotravel3 723 0 0 0
zenotraveld 455 0 194 0 194 0
zenotravel5 | 884 0 0 0
zenotravel6 | 1895 | 0 | (785 0 0
zenotravel7 | 1468 | 0 0 0
zenotravel8 0.04 | 1828 | 0.02 | 1828 | 0.02
zenotravel9 0.04 | 2938 | 0.04 | 2938 | 0.04

zenotravellO| |4218 0.05 | 8708 0.04 8708 | 0.04
zenotravelll| 3485 0.02 | 3429 0.02 3429 0.02

zenotravel12 0.06 | 7671 | 0.04 | 7671 | 0.04
zenotravell3| 9654 | 0.07 0.12 0.12
zenotravell4| 495266 | 0.26 0.18 0.18
zenotravell5| 23853 | 0.52 | [1254) | 0.39 | (1254] | 8.45
drivelogl | 355 0 0 152 0
drivelog2 | 1450 | 0 | (633) | 0.01 | 743 | 0.01
drivelog3 | 774 0 0.01 | 433 | 0.01
drivelogd | 4692 |0.01| [1549) | 0.03 | 3454 | 0.02
drivelogs | 2879 | 0.01 0.01 | 957 | 0.01
drivelog6 | 2394 | 0 | (577 0 | 1442 | 0.01
drivelog? 0.02 | 4341 | 0.03 | 1948 | 0.01
drivelog8 0 | 57006 | 0.35 | 4372 | 0.02
drivelog9 | 18920 | 0.02 0.03 | 26991 | 0.24
drivelogl0 | 10356 | 0.02 0.04 | 8965 | 0.07
drivelogll | 3755 |0.05| [2435) | 0.04 | 3616 | 0.06
drivelogl2 | 64714 |0.31 0.28 | 135518 | 2.18
drivelogl3 | 10995 |0.13 | [5659) | 0.14 | 9333 | 0.22

drivelogl4 | 14344 | 0.06
drivelogls | 140305 | 1.25

drivelogl6 || 1554010 (44.49

drivelogl?7 | 2218657 |51.33

0.1 7388 | 0.21

1.39 0.79

29.39 - -
33.81 |3986057|167.69

Q| =
|0 oW
oo Lo
= e
gE 2l

Table 3.1: Comparison of Fast Downward and two stratification strategies. We give the
number of generated nodes and CPU time in seconds. “-” means timeout after 300 seconds.

w
[\

Fast Downward | oo-stratification | 2-stratification
Nodes | Time Nodes Time Nodes Time

depotsl | 117 [0.01 001 | 46 | 0.01
depots2 | 1647 | 0.02 0.02 | 432 | 0.02
depots3 | 150297 | 3.28 | 42363 | 3.13 2.65
depotsd | 295799 | 6.16 537 | 185819 | 13.2
depots5 | 1754366 79.46 9.98 | 70296 | 7.39
depots7 | 926076 | 21.79 5.09 | 223034 |10.32

211.1 | | 27737 1.08

ID

depots10 -
tpp3 40 0 17 0
tpp4 67
tppd 139
tpp6 1081

tpp7 12444
tpp8 20536
tpp9 24641
tppl0 298225
truck3 6676
truck4d | 991625
truckb 13313
truck6 | 238523
truck? | 612647
truck8 22827
truck9 -
truck10 -
truckl11l -
truckl12 -
satellite01| 226
satellite02| 512
satellite03| 1551
satellite04| 5036
satellite05| 7455
satellite06 | 20452
satellite07| 52902
satellite08| 54250
satellite09 | 104051
satellitel0| 318621
roverQ1 228
rover(02 263
rover03 617
rover(04 225

rover05 2106 0.01
rover06 | 419655 11.16 11.86
roverQ7 3659 0.03 0.05

0.06 6003 0.71
0.04 29477 0.72

0.41 19024 0.38

Table 3.2: Comparison of Fast Downward and two stratification strategies. We give the
number of generated nodes and CPU time in seconds. “-” means timeout after 300 seconds.

rover0O8 20480
rover(09 -
rover10 49789

33

Chapter 4

Accelerating Heuristic Search with
Partial Order Reduction

Stratified Planning discussed in the last chapter is a type of partial order based
reduction (POR) technique for search. Stratified Planning, together with the Expan-
sion Core [18] algorithm, showed a new direction of research where we can reduce
the search space that is an orthogonal and complementary approach to improving

heuristics. POR has shown promise in speeding up heuristic searches.

Partial order reduction has been extensively studied in model checking research and
is a key technique for enabling scalability of model checking systems. Although the
POR theory has been extensively studied in model checking, it has never before been
developed systematically for planning. In addition, the conditions for POR in the
model checking theory are abstract and not directly applicable in planning. Previous
works on POR algorithms for planning did not establish the connection between these

algorithms and existing theory in model checking.

In this chapter, we develop a theory for POR in planning. The new theory we develop
connects the stubborn set theory in model checking to POR methods in planning. We
show that previous POR algorithms in planning can be explained by the new theory.
Based on the new theory, we propose a new, stronger POR algorithm. Experimental
results using the new algorithm show further search cost reduction in various planning

domains.

34

4.1 Partial Order Reduction Theory for Planning

In this section, we will first introduce the concept of search reduction. Then, we
will present a general POR theory for planning, which gives sufficient conditions that

guide the design of practical POR algorithms.

4.1.1 Space Reduction for Planning

We first introduce the concept of search reduction that previously has been informally
introduced [18, 17] . A standard search algorithm, such as breadth-first search, depth-
first search, or A* search, needs to explore a state space graph. A reduction algorithm
is an algorithm that reduces the state space graph into a subgraph, so that a search
will be performed on the subgraph instead of the original state space graph. We first
define the state space graph. In our presentation, for any graph G, we use V(G) to
denote the set of vertices and E(G) the set of edges. For a directed graph G, for any
vertex s € V(G), a vertex s’ € V(G) is its successor if and only if (s,s") € E(G).

For a SAS+ planning task, its original state space graph is a directed graph G in
which each state s is a vertex and there is a directed edge (s, s') if and only if there

exists an action o such that apply(s,0) = s'. We say that action o marks the edge

(s,5).

Definition 3 For a SAS+ planning task, for a state space graph G, the successor
set of a state s , denoted by succg(s), is the set of all the successor states of s. The

expansion set of a state s, denoted by expandg(s), is the set of actions

expandg(s) = {o | o marks (s,s'), (s,s') € E(9)}.

Intuitively, the successor set of a state s includes all the successor states that shall
be generated by a search upon expanding s, while the expansion set includes all the

actions to be expanded at s.

In general, a reduction method is a method that maps the original state space
graph G for a planning task to a subgraph of G called the reduced state space
35

graph. POR algorithms remove edges from G. More specifically, each state s is only
connected to a subset of all its successors in the reduced state space graph. We note
that, by removing edges, a POR algorithm may also reduce the number of vertices that
are reachable from the initial state, hence reducing the number of nodes examined
during the search process. The decision as to whether a successor state s’ would
still be a successor in the reduced state space graph can be made locally by checking
certain conditions related to the current state and some precomputed information.

Hence, a POR algorithm can be combined with various search algorithms.

For a SAS+ planning task, a solution sequence in its state space graph G is a pair

(s°, p), where

e s is a non-goal state,

e p=(ay,...,ax) is a sequence of actions, and,

o let s = apply(s™t,a;),i = 1,...,k, (s s) is an edge in G for 1 = 1,...,k

and s* is a goal state.

We now define a property of reduction methods.

Definition 4 For a SAS+ planning task, a reduction method is completeness-
preserving if for any solution sequence (s°,p) in the state space graph, there also

exists a solution sequence (s°,p') in the reduced state space graph.

Similarly, a reduction method is optimality-preserving if, for any solution sequence
(s°,p) in the state space graph, there also exists a solution sequence (s°,p') in the
reduced state space graph satisfying that p’ has the same objective function value as
p does. In addition, a reduction method is action-preserving if, for any solution
sequence (s°,p) in the state space graph, there also exists a solution sequence (s°,p/)
in the reduced state space graph satisfying that the actions in p’ are a permutation

of the actions in p.

(Clearly, being action-preserving is a sufficient condition for being completeness-preserving.

When the objective function is action set invariant (such as optimizing plan length

36

or total action cost), being action-preserving is also a sufficient condition for be-
ing optimality-preserving. As a result, we prove the completeness-preserving or

optimality-preserving attributes of POR algorithms by proving they are action-preserving.

4.1.2 Stubborn Set Theory for Planning

Among the many variations of POR methods in model checking, a popular and rep-
resentative POR algorithm is the stubborn set method [67, 68, 69, 72, 70, 71]. We
briefly introduce the idea of stubborn set and stubborn set method in model checking
without distracting readers with technical details. In model checking, a stubborn set

is a subset of applicable transitions for a state that satisfies a set of conditions.

For each state, a stubborn set method finds the stubborn set of each state and expands
only the actions in the stubborn set during search. Conditions that define stubborn
sets guarantee that important properties (such as deadlock preserving) are preserved
under reduction. By expanding a small subset of applicable actions in each state,
stubborn set methods can reduce the search space without compromising correctness
for model checking. Since planning also examines a large search space, we develop a
stubborn set theory for planning. To achieve this, we need to handle various subtle
issues arising from the differences between model checking and planning. We first
adapt the definition of stubborn set in model checking and define the concept of

stubborn sets for planning.

Definition 5 (Stubborn Set for Planning) For a SAS+ planning task, a set of

actions T(s) is a stubborn set at a non-goal state s if and only if

A1) For any action b € T(s) and actions by,--- b, ¢ T(s), if (b1,--- ,bg,b) is a
prefix of a path from s to a goal state, then (b, by, - ,by) is a valid path from s
and leads to the same state that (by,--- ,bg,b) does; and

A2) Any valid path from s to a goal state contains at least one action in T(s).

The above definition is schematically illustrated in Figure 4.1. Once we define the
stubborn set 7T'(s) in each state s, we in effect reduce the state space graph to a
37

O——0—=—0 - O——0

b

bj by bi goal
OO0+ « « O -0

Figure 4.1: Illustration of condition A1l in Definition 5. The big circle on the left
stands for the set of all applicable actions at state s, while the small circle stands for
the stubborn set T'(s) of s. Action b € T'(s) can always be swapped to the beginning
of a path consisting of b;s without affecting the final state.

subgraph: only the edges corresponding to actions in the stubborn sets are kept in
the subgraph. Also note that conditions for the stubborn set do not directly lead
to an efficient procedure to decide whether a given set is a stubborn set or not. For
instance, given a planning task and a state s, unless we have more information about

paths from s to a goal state, we cannot verify condition A2 in the above definition.

Definition 6 For a SAS+ planning task, given a stubborn set T'(s) defined at each
state s, the stubborn set method reduces its state space graph G to a subgraph G, such
that V(G,) = V(G) and there is an edge (s,s’) in E(S,) if and only if there exists an
action o € T'(s) such that s = apply(s, o).

A stubborn set method for planning is a reduction method that reduces the
original state space graph G to a subgraph §, according to Definition 6. In other
words, a stubborn set method expands actions only in a stubborn set in each state.
We will now show that such a reduction method preserves actions, hence, it also

preserves completeness and optimality.

Lemma 2 Any stubborn set method for planning is action-preserving.

Proof: We prove that for any solution sequence (s’,p) in the original state space
graph G, there exists a solution sequence (s°,p') in the reduced state space graph G,
resulting from the stubborn set method, such that p’ is a permutation of actions in

p. We prove this fact by induction on £, the length of p.

38

When k£ = 1, let a be the only action in p, according to the second condition in
Definition 5, a is in T'(s?). Thus, (s° p) is also a solution sequence in G,. Thus, a

stubborn set method is action-preserving in the base case.

When £ > 1, the induction assumption is that any solution path in G with length
less than or equal to kK — 1 has a permutation in G, that leads to the same final
state. Now we consider a solution sequence (s°,p) in G: p = (ay,...,a). Let s' =
apply(s™=,a;),i=1,... k. If a; € T(s), we can invoke the induction assumption for

the state s' and prove our induction assumption for .

We now consider the case where a; ¢ T'(s). Let a; be the first action in p such that

a;j € T'(s). Such an action must exist because of condition A2 in Definition 5.

Consider the sequence p* = (aj,a1, -+ ,a;-1,aj11,- - ,a;). According to condition
Al in Definition 5, (a;,a1,--- ,a;_1) is also a valid sequence from s° which leads to
the same state that (a1, ,a;) does. Hence, we know that (s, p*) is also a solution
path. Therefore, let s’ = apply(s°, a;), we know (as,--- ,a;_1) is an executable action
sequence starting from s'. Let p** = (a1, -+ ,aj_1, 041, -+ ,ax), (5, p**) is a solution
sequence in §. From the induction assumption, we know there is a sequence p’ which
is a permutation of p**, such that (s', p’) is a solution sequence in §G,.. Since a; € T(s°),
we know that a; followed by p’ is a solution sequence from s and is a permutation of
actions in p*, which is a permutation of actions in p. Thus, the stubborn set method

is action-preserving. [|

Since being action-preserving is a sufficient condition for being completeness-preserving
and optimality-preserving, when the object function is action set invariant, we have

the following theorem.

Theorem 3 A stubborn set method for planning is completeness-preserving. In

addition, it is optimality-preserving when the objective function is action set invariant.

4.1.3 Commutativity in SAS+ planning

Theorem 3 shows that we can use a stubborn set method to reduce the search space.
However, as we mentioned earlier, conditions for stubborn sets defined in Definition 5
39

are only necessary for a given stubborn set. These conditions do not directly lead
to efficient algorithms for finding stubborn sets. In turn, we want to find efficient
procedures for finding stubborn sets that facilitate state space search algorithms. In
the following, we define several concepts that can lead to sufficient conditions for

stubborn sets.

Definition 7 (State-Dependent Commutativity) For a SAS+ planning task, an
ordered action pair (a,b),a,b € O is commutative in state s, if (a,b) is a valid path at
s implies that (b,a) is also a valid path at s that ends at the same state. We denote

such a relationship by s : b = a.

Definition 8 (State-Independent Commutativity) For a SAS+ planning task,
an ordered action pair (a,b),a,b € O is commutative if, for any state s, it is true that

s:b=a. We denote such a relationship by b = a.

The order in the notation b = a suggests that we should always try only (b, a) during
the search instead of trying both (a,b) and (b,a). Also, not every state-dependent
commutative action pair is state-independent commutative. For instance, in a SAS+
planning task with three state variables {x1, z2, z3}, action a with pre(a) = {x; = 0},
eff (a) = {z2 = 1} and action b with pre(b) = {xs = 1,23 = 2}, eff (b) = {3 = 3}
are commutative in state s' = {z; = 0,25 = 1,73 = 2} but not in state s* = {z; =
0,75 = 0,23 = 2} as b is not applicable in state s*>. That is to say, b = a is only true

in state s' but not in state s2.

Although the conditions for state-independent commutativity are stronger, they greatly
simplify the derivation of sufficient conditions for finding stubborn sets. Our ultimate
results, however, only need to assume the state-dependent commutativity of action

pairs.

Definition 9 (State-Independent Commutative Set) For a SAS+

planning task, a set of actions T'(s) is a commutative set at state s if and only if

L1) For any action b € T(s) and any action a € O — T(s), if there exists a valid
path from s to a goal state that contains both a and b, then it is the case that
b= a; and

40

s b by bk b goal

O——O0—"—0 + « « O—0—=0----0

b=—=>b; b oal
S 1 by b by g

: O——0—"—0 + +» « O—0—+0-----0

b— by s b b . bk_1 bk goal
O——O0——0 + +» « O—0—=0----0

s, b by bk-1__ bk goal
O——0——=0 + « « O—0—=0----0

In this diagram, the left part plots the condition L1 in Definition 9 and the right
part plots the strategy in the proof to Theorem 4. We swap action b with each b;
during the constructive proof.

Figure 4.2: Mlustration of commutative set.

A2) Any valid path from s to a goal state contains at least one action in T(s).

Theorem 4 For a SAS+ planning task, for a state s, if a set of actions T(s) is a

state-independent commutative set, then it is also a stubborn set.

Proof: We only need to prove that L1 in Definition 9 implies A1 in Definition 5.
The proof strategy is schematically shown in Figure 4.2.

For an action b € T'(s) and actions by, --- , by & T(s), if (by,--- , b, b) is a prefix of a
path from s to a goal state, then according to L1, we see that b = b;, fori=1,--- | k.
According to the definition of commutativity, we see that by and b can be swapped
and that the resulting path (by,--- ,b,by) is still a valid path that leads to the same
state that (by,---,bg,b) does. We can subsequently swap b with by, ---, and b,
to obtain equivalent paths, before finally obtaining (b,bq,--- ,bg), as shown in the
schematic illustration in the right part of Figure 4.2. Hence, we have shown that if
p= (b, ,bg,b) is a prefix of a path from s to a goal state, then p’ = (b,by,- -+, bx)
is also a valid path from s that leads to the same state that p does, which is exactly
condition A1l in Definition 5. [

From the proof above, we see that the requirement of state-independent commuta-

tivity in Definition 9 is unnecessarily strong. Instead, only certain state-dependent

commutativity is necessary. In fact, when we change (by,- - ,bg,b) to (by,--- , b, bg),

we only require s’ : b = b, where ¢’ is the state after by_; is executed. Similarly, when
41

we change (by, -+ ,bg,b) to (by,- -+ ,b,bg_1,bx), we only require s” : b = by_; where
s” is the state after by_o is executed. Based on the above analysis, we can refine the

sufficient conditions.

Definition 10 (State-Dependent Commutative Set) For a SAS+

planning task, a set of actions T'(s) is a commutative set at state s if and only if

L1°) For any action b € T(s) and actions by, -+ by & T(s), if (by, -+ ,bg,b) is a
prefiz of a path from s to a goal state, then s’ : b = by, where s’ is the state

after (by, -+ ,by_1) is executed; and

A2) Any valid path from s to a goal state contains at least one action in T'(s).

We only need to slightly modify the proof to Theorem 4 in order to prove the following

theorem.

Theorem 5 For a SAS+ planning task, for state s, if a set of actions T(s) is a

state-dependent commutative set, it is also a stubborn set.

The above result gives sufficient conditions for finding stubborn sets in planning. The
concept of state-dependent commutative sets requires a less stringent condition than
the state-independent commutative set. Such a nuance actually leads to different
previous POR algorithms with varying performances. Therefore, it will result in
smaller T'(s) sets and stronger reduction. Next, we present our algorithm for finding

such a set at each state to satisfy these conditions.

4.1.4 Determining Commutativity

Theorem 5 provides a key result for POR. However, the conditions in Definition 7
are still abstract and not directly implementable. The key issue is to efficiently
find commutative action pairs. Now we give necessary and sufficient conditions for
Definition 7 that can practically determine commutativity and facilitate the design
of reduction algorithms.

42

Theorem 6 For a SAS+ planning task, for a valid action path (a,b) in state s, we
have s : b= a if and only if pre(a) and eff(b), pre(b) and eff(a), eff(a) and eff(b) are
all conflict-free and b is applicable at s.

Proof: First, from the definition of s : b = a, we know that action b is applicable in
state apply(s,a). This implies that pre(b) and eff (a) are conflict-free. Symmetrically,
since action a is applicable in state apply(s,b), pre(a) and eff (b) are also conflict-
free. Now we prove eff (a) and eff(b) are conflict-free by contradiction. If eff(a)
and eff (b) are not conflict-free, without loss of generality, we can assume that eff(a)
contains z; = v; and eff(b) contains x; = v] # v;. Thus, the value of z; is v; for
state s = apply(apply(s,a),b) and v} for state s** = apply(apply(s,b),a), i.e., s? is
different than s®. This contradicts our assumption that a and b are commutative.
Thus, eff(a) and eff(b) are conflict-free.

Second, if b is applicable in s, apply(s,b) is well-defined, and a is also applicable in
state apply(s,b) as pre(a) and eff (b) are conflict-free. Hence, (b, a) is a valid path at
s. Also, for any state variable x;, its value in states s = apply(apply(s,a),b) and
sb = apply(apply(s,b),a) are the same, because eff (a) and eff (b) are conflict-free.

ab _

Therefore, we have s s®. Hence, we have s : b = a. |

Theorem 6 gives necessary and sufficient conditions for deciding whether two actions
are commutative or not. Based on this result, we later develop practical POR algo-

rithms that find stubborn sets using commutativity.

4.2 Stubborn-Set Theory for Existing POR Algo-

rithms

Previously, we have proposed two POR algorithms for planning: expansion core
(EC) [18] and stratified planning (SP) [17], both of which showed good performance
in reducing the search space. However, we did not have a unified theoretical back-
ground for them. We now explain how these two algorithms can be explained by our

theory.

43

Dependency closure

G3

G4

s=(s1, s2, s3, s4) Potential Dependency Graph PDG(v)

Figure 4.3: A SAS+ task with four DTGs. The dashed arrows show preconditions (prevail-
ing and transitional) of each edge (action). Only dashed arrows between DTGs are shown.

Actions are marked with letters a to f. We see that b and e are associated with more than
one DTG.

4.2.1 Explanation of EC

Expansion core (EC) algorithm is a POR-based reduction algorithm for planning.
We will see that, in essence, the EC algorithm exploits the SAS+ formalism to find a
commutative set for each state. To describe the EC algorithm, we need the following

definitions.

Definition 11 For a SAS+ task, for each DTG G;,i = 1,...,N, for a vertexr v €
V(G;), an edge e € E(G;) is a potential descendant edge of v (denoted as v <e)
if 1) Gy is goal-related and there exists a path from v to the vertex that stands for a
goal assignment in G; that contains e; or 2) G; is not goal-related and e is reachable

from v.

Definition 12 For a SAS+ task, for each DTG G;,i = 1,...,N, for a vertexr v €
V(G;), a vertex w € V(G;) is a potential descendant vertex of v (denoted as
v<aw) if 1) G; is goal-related and there exists a path from v to the goal vertex in G;

that contains w; or 2) G; is not goal-related and w is reachable from v.

Definition 13 For a SAS+ task, given a state s = (s1,--- ,sn), forany 1 < i,j <
N,i # j, we call s; a potential precondition of the DTG G; if there exist o € O

44

Action | Associated with | Preconditions in
a G1
b G1, G G, G
C G2 Gg
d Gs
[§ Gg, G4 G4, G3
f Gy

Table 4.1: Supplementary table for Figure 4.3: list of actions and related DTGs.
and e; € E(G;) such that

s;<ej, okej, ands; € pre(o) (4.1)

Definition 14 For a SAS+ task, given a state s = (sq,...,sn), for any 1 < i,5 <
N,i # j, we call s; a potential dependent of the DTG G; if there exists o € O,
e; = (s4,8;) € E(G;) and w; € V(G;) such that

(4.2)

s; <w;, oF e, andw; € pre(o)

Definition 15 For a SAS+ task, given a state s = (s1,...,Sn), its potential de-
pendency graph PDG(s) is a directed graph in which each DTG G;,i = 1,--- | N
corresponds to a vertex, and there is an edge from G; to G;, © # j, if and only if s; is

a potential precondition or potential dependent of G.

Figure 4.3 illustrates the above definitions. The dashed arrows on the left side of
the figure are preconditions of each action. We show the DTGs where each actions
preconditions are in in Table 4.1. For each action, by having arrows from the third
columns of Table 4.1 to the second column, we obtain the PDG(s). It is shown on the
right side of the figure. PDG(s) intuitively shows the dependencies between DTGs.
For instance, G3 has an arrow to (G5 in this graph, meaning actions associated with Gz
may affect the actions in Gi5. It is true because action d associated with G3 will render
action c associated with G5 not applicable. However, since there is no arrow from Go
to G3, we know that any actions associated with G will not affect the applicability

of actions associated with G3, as we can indeed tell from this example.

45

Definition 16 For a directed graph H, a subset C of V(H) is a dependency clo-
sure if there do not exist v € C and w € V(H) — C such that (v,w) € E(H).

Intuitively, a DTG in a dependency closure may depend on other DTGs in the clo-
sure but not those DTGs outside of the closure. In Figure 4.3, G; and G5 form a
dependency closure of PDG(s).

The EC algorithm is defined as follows:
Definition 17 (Expansion Core Algorithm) For a SAS+ planning task, the EC

method reduces its state space graph G to a subgraph G, such that V(G,) = V(G) and
for each vertex (state) s € V(9), it expands actions in the following set T(s) C O:

T(s) = U {0 o € exec(s) Nol Gi}, (4.3)
1€C(s)
where exec(s) is the set of applicable actions in s and C(s) C {1,--- , N} is an index

set satisfying:

EC1) The DTGs {G;,i € C(s)} form a dependency closure in PDG(s); and

EC2) There exists i € C(s) such that G; is goal-related and s; is not the goal vertex

Intuitively, the EC method can be described as follows. To reduce the original state-
space graph, for each state, instead of expanding actions in all the DTGs, it only
expands actions in DTGs that belong to a dependency closure of PDG(s) under the
condition that at least one DTG in the dependency closure is goal-related and not at

a goal state.

The set C(s) can always be found for any non-goal state s since PDG(s) itself is
always a dependency closure. If there is more than one such closure, theoretically
any dependency closure satisfying the above conditions can be used in EC. In practice,
when there are multiple such dependency closures, EC picks the one with fewer actions
in order to get stronger reduction. EC has adopted the following scheme to find the
dependency closure for any state s:

46

Given a PDG(s), EC first finds its strongly connected components (SCCs). If each
SCC is contracted to a single vertex, the resulting graph is a directed acyclic graph
8. Note that each vertex in & with a zero out-degree corresponds to a dependency
closure. It then topologically sorts all the vertices in & to get a sequence of SCCs:
S1, 92, ++, and picks the smallest m such that S,, includes a goal-related DTG that
is not in its goal state. It chooses all the DTGs in Sy,---,S,, as the dependency

closure.

Now we explain the EC algorithm using the POR theory we developed in Section 4.1.
We show that the EC algorithm can be viewed as an algorithm for finding a state-

dependent commutative set in each state.

Lemma 3 For a SAS+ planning task, the EC algorithm defines a state-dependent

commutative set for each state.

Proof: Consider the set of actions T'(s) expanded by the EC algorithm in each
state s, as defined in (4.3). We prove that T'(s) satisfies conditions L1’ and A2 in
Definition 10.

Consider an action b € T'(s) and actions by, --- , by ¢ T(s) such that (by,--- ,0bg,b) is
a prefix of a path from s to a goal state, we show that s’ : b = by, where s’ is the

state after (by,--- ,bx_1) is applied to s.

Let C(s) be the index set of the DTGs that form a dependency closure, as used in
(4.3). Since b € T'(s), there must exist m € C(s) such that b - G,,. Let the state after
applying (by, - -+ ,bx) to s be s*. We see that we must have s’ = s,,, because otherwise
there must exist a b;,1 < j < m that changes the assignment of state variable z,,.
However, that would imply that b, € T'(s). Since b is applicable in s*, we see that
Sm = St € pre(b).

If there exists a state variable x; such that an assignment to z; is in both eff (b) and
pre(b), then G, will point to the DTG G; as s,, is a potential dependent of G;, forcing
G, to be included in the dependency closure, i.e. i € C(s). However, as by - G, it will
violate our assumption that b, ¢ T'(s). Hence, none of the precondition assignments
of bis added by bg. Therefore, since b is applicable in apply(s’, by), it is also applicable
in s

47

On the other hand, if by has a precondition assignment in a DTG that b is associated
with, then G,, will point to that DTG since s, is a potential precondition of by,
forcing that DTG to be in €(s), which contradicts the assumption that by ¢ T'(s).
Hence, b does not alter any precondition assignment of b,. Therefore, since by is

applicable in §', it is also applicable in the state apply(s’,b).

Finally, if there exists a state variable x; such that an assignment to z; is altered by
both b and by, then we know b - G; and b, - G;. In this case, G,, will point to G;
since s, is a potential precondition of G;, making by € T'(s), which contradicts our
assumption. Hence, eff (b) and eff (by) correspond to assignments to distinct sets of

state variables. Therefore, applying (bx, b) and (b, by,) to s’ will lead to the same state.

From the above, we see that b is applicable in §', by is applicable in apply(s’,b), and
hence (b, by) is applicable in s'. Further we see that (b, b;) leads to the same state
that (by, b) does when applied to s’. We conclude that s’ : b = b, and T'(s) satisfies
L1

Moreover, for any goal-related DTG G; and a state s, if its assignment s; is not the
goal vertex in G;, then some actions associated with G; have to be executed in any
solution path from s. Since T'(s) includes all the actions in at least one goal-related
DTG G;, any solution path must contain at least one action in T'(s). Therefore, T'(s)

also satisfies A2 and it is indeed a state-dependent commutative set. [|
From Lemma 3 and Theorem 5, we obtain the following result, which shows that EC

fits our framework as a stubborn set method for planning.

Theorem 7 For any SAS+ planning task, the EC algorithm defines a stubborn set

in each state.

4.2.2 Explanation of SP

The stratified planning (SP) algorithm is also a POR-based reduction algorithm that
exploits commutativity of actions directly [17]. To describe the SP algorithm, we

need the following definitions first.

48

Definition 18 Given a SAS+ planning task 11 with state variable set X, the causal
graph (CG) is a directed graph CG(11) = (X, E) with X as the vertex set. There is
an edge (z,x') € E if and only if x # 2’ and there exists an action o such that eff(o)

has an assignment to x and either pre(o) or eff(o) has an assignment to z'.

Definition 19 For a SAS+ task 11, a stratification of the causal graph CG(I1) as
(X, E) is a partition of the node set X: X = (Xy,---, Xg) in such a way that there
ezists no edge e = (x,y) where v € X;,y € X; and i > j.

By stratification, each state variable is assigned a level L(x), where L(z) = i if
x € X;,1 <i < k. Subsequently, each action o is assigned a level L(0), 1 < L(o) < k.
L(0) is the level of the state variable(s) in eff (0). Note that all state variables in the

same eff (0) must be in the same level. Hence, L(0) is well-defined.

Definition 20 (Follow-up Action) For a SAS+ task I, an action b is a follow-up
action of a (denoted as a > b) if eff(a) Npre(b) £ O or eff(a) N eff(b) # 0.

The SP algorithm can be combined with standard search algorithms, such as breadth-
first search, depth-first search, and best-first search (including A*). During the search,
for each state s that is going to be expanded, the SP algorithm examines the action a
that leads to s. Then, for each applicable action b in state S, SP makes the following

decisions.

Definition 21 (Stratified Planning Algorithm) For a SAS+ planning task, in
any non-initial state s, assuming a is the action that leads directly to s, and b is
an applicable action in s, then SP does not expand b if L(b) < L(a) and b is not a
follow-up action of a. Otherwise, SP expands b. In the initial state s°, SP expands

all applicable actions.

The following result shows the relationship between the SP algorithm and our new
POR theory.

Lemma 4 If an action b is not SP-expandable after a, and state s is the state before
action a, then s : b= a.
49

Proof: Since b is not SP-expandable after a, following the SP algorithm, we have
L(a) > L(b) and b is not a follow-up action of a. According to Definition 20, we
have eff(a) N pre(b) = eff(a) N eff(b) = 0. These imply that eff (a) and pre(b) are
conflict-free, and that eff (a) and eff(b) are conflict-free. Also, since b is applicable in
apply(s,a) and eff (a) and pre(b) are conflict-free, b must be applicable in s (otherwise
eff (a) must change the value of at least one variable in pre(b), which means eff (a)

and pre(b) are not conflict-free).

Now we prove that pre(a) and eff (b) are conflict-free by showing pre(a) N eff(b) = 0.
If their intersection is non-empty, we assume a state variable x is assigned by both
pre(a) and eff (b). By the definition of stratification, z is in layer L(b). However, since
x is assigned by pre(a), there must be an edge from layer L(a) to layer L(z) = L(b)
since L(a) # L(b). In this case, we know that L(a) < L(b) from the definition of
stratification. Nevertheless, this contradicts with the assumption that L(a) > L(b).
Thus, pre(a) N eff(b) = 0, and pre(a) and eff (b) are conflict-free.

With all three conflict-free pairs, we have s : b = a according to Theorem 4. [|

Although SP reduces the search space by avoiding the expansion of certain actions,
it is in fact not a stubborn set based reduction algorithm. We have the following

theorem for the SP algorithm.

Definition 22 For a SAS+ planning task S, a valid path p, = (a1, ,a,) is an
SP-path if and only if p, is a path in the search space of the SP algorithm applied
to S.

Theorem 8 For a SAS+ planning task S, for any initial s° and any valid path p, =
(ay,-+- ,a,) from s, there exists a path p, = (by, -+ ,b,) from s° such that p, is an
SP-path, and both p, and py lead to the same state from s°, and p, is a permutation

of actions in p,.

Proof: We prove by induction on the number of actions.

When n = 1, since there is no action before s’, any valid path (a;) will also be a valid
path in the search space of the SP algorithm.
50

Now we assume this proposition is true for n = k,k > 1 and prove the case when

n =k + 1. For a valid path p° = (ay,--- ,ag, ars1), by our induction hypothesis, we
can rearrange the first k& actions to obtain a path (ai,ad, - ,a}).
Now we consider a new path p' = (al, - ,a},ar1). There are two cases. First, if

L(agy1) < L(at), or L(apy1) > L(at) and agy is a follow-up action of ay, then p' is
already an SP-path. Otherwise, we have L(ax11) > L(a;) and aj,; is not a follow-up
action of a}. In this case, by Lemma 4, path p'" = (al,---,ai_,,ars1,ap is also a

valid path that leads s to the same state as p, does.

By the induction hypothesis, if p'’ is still not an SP-path, we can rearrange the first
k actions in p' to get a new path p? = (a2,--- ,a?,a}). Otherwise we let p*> = p'’.
Comparing p' and p?, we know L(aj.1) > L(a)), namely, the level value of the last
action in p! is strictly larger than that in p?>. We can repeat the above process to
generate p®,--- ,p™, .-+ aslong as p’(j € ZT) is not an SP-path. Our transformation
from p’ to p’*! also ensures that every p’ is a valid path from s and leads to the same

state that p, does.

Since we know that the layer value of the last action in each p; is monotonically
decreasing as j increases, such a process must stop after a finite number of iterations.
Suppose it finally stops at p™ = (a}, a5, - - ,ay,a,,,, we must have that L(aj,) <
L(a},) or L(aj,) > L(a;,) and aj_, is a follow-up action of ay. Hence, p™ now is an

SP-path. We then assign p™ to p, and the induction step is proved. [|

Theorem 8 shows that the SP algorithm cannot inherently reduce the number of states
expanded in the search space. The reason is as follows: for any state in the original
search space that is reachable from the initial state s’ via a path p, there is still an
SP-path that reaches s. Therefore, every reachable state in the search space is still
reachable by the SP algorithm. In other words, SP reduces the number of generated

states, but not the number of expanded states.

SP is not a stubborn set based reduction algorithm. We illustrate this using Fig-
ure 4.4. Assuming a SAS+ planning task S that contains two state variables z; and
xo9, where both 2 and x5 have domain {0, 1}, with the initial state as {z; = 0,29 = 0}
and the goal as {z1 = 1,29 = 1}. Actions a and b are two actions in S where pre(a)

is {1 = 0} and eff(a) is {z1 = 1} and pre(b) is {z2 = 0} and eff (b) is {zy = 1}. It is

o1

b

Figure 4.4: The search spaces for a simple SAS+ planning task with two state variables
and four states when using SP and EC. SP (on the left) expands all four states while EC
(on the right) only expands three. The dashed link on the left graph is the action that is
not expanded by SP. Gray nodes are the goal states.

easy to see that a and b are not follow-up actions of each other, and that zq, x5 will
be in different layers after stratification. Without loss of generality, we can assume
L(a) = L(x1) > L(x9) = L(b). Therefore, we know that action b will not be expanded
after action a in state s : {x; = 1,29 = 0}. However, apply(s,b) is the goal state.
Not expanding b in state s violates condition A2 in Definition 5 where any valid path

from s to a goal state has to contain at least one action in the expansion set of s.

Assuming we are using best-first search for solving the above example problem, and
the heuristic function values of the initial state s°, apply(s’, a), apply(s’,b) and the
goal state are all the same. In this case, the search space explored by SP contains
four states: namely, the initial state s”, apply(s’, a), apply(s’,b) and the goal state.
Meanwhile, under the EC algorithm, in state s’, the DTGs for ; and x5 are not in
each other’s dependency closures. This implies that in s°, EC expands either action
a or b, but not both. Therefore, EC expands three states while SP expands four.
This illustrates our conclusion in Theorem 8 that the SP algorithm cannot inherently

reduce the number of expanded states, if used with best-first search.

4.3 A New POR Algorithm for Planning

We have developed a POR theory for planning and explained two previous POR
algorithms using the theory. Now, based on the theory, we propose a new POR

algorithm that leads to stronger reductions than the previous EC algorithm.

Our theory shows in Theorem 5 that the condition for enabling POR reduction is

strongly related to commutativity of actions. In fact, constructing a stubborn set

o2

can be reduced to finding a commutativity set. As we show in Theorem 7, the EC
algorithm follows this idea. However, the basic unit of reduction in EC is DTG (i.e.,
either all actions in a DTG are expanded or none of them are), which is not necessary
according to our theory. Based on this insight, we propose a new algorithm that

operates with the granularity of actions instead of DTGs.

Definition 23 For a state s, an action set L is a landmark action set if and only

if any valid path starting from s to a goal state contains at least one action in L [60].

Definition 24 For a SAS+ task, an action a € O is supported by an action b if
and only if pre(a) N eff(b) # 0.

Definition 25 For a state s, its action support graph (ASG) at s is defined as
a directed graph in which each vertex is an action, and there is an edge from a to b if

and only if a is not applicable in s and a is supported by b.

The above definition of ASG is a direct extension of the definition of a causal graph.
Instead of having domains as basic units, here we directly use actions as basic units.
We utilize this action support graph to define the action closure that exhibits helpful

attributes for our later algorithm design.

Definition 26 For an action a and a state s, the action closure of a at s, denoted
by Cs(a), is the set of actions that are in the transitive closure of a in ASG(s). The
action closure for a given set of actions A is the union of action closures of every

action in A.

The above definition also gives a straightforward way to find action closure given an
action — finding a transitive closure on the ASG. In addition, action closure has the

following attributes.

Lemma 5 For a state s, if an action a is not applicable in s and there is a valid path

p starting from s whose last action is a, then p contains an action b,b # a,b € Cy(a).

23

Proof: We prove this by induction on the length of p.

In the base case where |p| = 2, we assume p = (b,a). Since a is not applicable in
s, it must be supported by b. Thus, b € Cs(a). Suppose this lemma is true for
2 < |p| < k—1, we prove the case for |p| = k. For a valid path p = (o4, ..., 0x), again
there exists an action b before a that supports a. If b is applicable in s, then b € Cs(a).
Otherwise, we consider the subpath p’ = (01,...,b) of p, with 2 < |p/| < k — 1. Since
b is not applicable, and according to our inductive assumption, there is an action ¢’ in
p’ that is also in Cy(b), which is a subset of Cs(a), according to Definition 25 and 26.
Thus, our proposition is true for |p| = k. By induction principle, our lemma is true

for any path p. [|

We give some remarks here to motivate our later discussion. In the assumption of
this lemma, if there is an nonempty action path p from s such that a is applicable at
apply(s, p), we say a is eventually applicable in s. The above lemma essentially ensures
that for any eventually applicable action a in s, there is at least one corresponding

applicable action b in both the path to a and the action closure C(a).

Though the actual conditions are more complicated, informally, we can say that
actions in Cs(a) are the only actions of interest as far as the eventual applicability of
a is concerned. For instance, if we have a valid action path p = (¢,b,a) in s where
both b and ¢ are applicable in s, b € Cs(a) and ¢ ¢ Cs(a), we can easily see that
p' = (b,a) is still a valid path in s as ¢ doesn’t provide any effects or preconditions for
a or b (otherwise ¢ would be in Cs(a)). That is to say, the eventual applicability of
a is unaffected if we ignore ¢, regardless of its applicability in s. A search procedure
can take advantage of this and choose not to expand action ¢ in s. However, two
questions arise naturally: 1) how can we ensure the chosen subset of applicable actions
are sufficient in terms of not ignoring certain paths to a goal? 2) how can we pick
the initial starting point a such that the resulting applicable action set is small? We
address these two questions in the following sections. Specifically, we introduce the
concept of action core as an amendment to action closure to address question 1, and

adopt action landmarks to address question 2.

o4

Definition 27 Given a SAS+ planning task 11 with O as set of all actions O, for
a state s and a set of actions A, the action core of action set A at s, denoted by
ACS(A), satisfies the following conditions:

o AC,(A) is a subset of O and a superset of Cs(A), the action closure of A;

e for any applicable action a € AC(A) at s and any action b € O\AC(A), eff(a)
and eff(b) are conflict-free and

o if pre(b) C S, eff(a) and pre(b) are conflict-free.

Intuitively, given a set A as a “seed”, actions in action core ACs(A) can be executed
without affecting the completeness and optimality of search. Specifically, because any
applicable action in ACs(A) and any action not in AC,(A) will not assign different
values to the same state variable, for action a € AC(A) and action b € O\ AC(A)
at s, path (a,b) will lead to the same state that (b,a) does. Additionally, because
pre(b) and eff(a) are conflict-free when pre(b) C s, executing action a will not affect
the applicability of action b in the future. Therefore, actions in ACs(A) can be safely

expanded first during the search, while actions outside it can be expanded later.

A simple procedure, shown in Algorithm 4, can be used to find the action core for a

given action set A.

The new POR algorithm, called stubborn action core (SAC), works as follows: at any

given state s, the expansion set E(s) of state s is determined by Algorithm 5.

There are various ways to implement the FIND-LANDMARKS procedure for finding
landmarks. Richter [63] and Porteous [60] both gave in-depth discussions on the
technical details of finding landmarks. Here we give one example that is used in our
current implementation. To find a landmark action set L at s, we utilize the DTGs
associated with the SAS+ formalism. We first find a transition set that includes
all possible transitions (s;,v;) in an unachieved goal-related DTG G; where s; is the
current state of G; in s. It is easy to see that all actions that mark transitions in this
set make up a landmark action set, because G; is unachieved and at least one action

starting from s; has to be performed in any solution plan.

95

Algorithm 4: A procedure to find the action core of an action set.

input : A SAS+ task with action set O, an action set A C O, and a state s
output: An action core ACs(A) of A

AC(A) < Cy(A);

repeat

foreach action a in ACs(A) applicable in s do

foreach action b in O\AC(A) do

if pre(b) Ns # 0 and pre(b) and eff(a) are not conflict-free then
| AC,(A) + AC,(A) U {b} ;

end

if eff(b) and eff(a) are not conflict-free then
| ACL(A) « ACL(A) U {b} ;

end

end

end
until AC(A) is not changing;
return ACs(A) ;

Algorithm 5: The SAC algorithm

input : A SAS+ planning task and state s
output: The expansion set F(s)

L < FIND-LANDMARKS(S) ;
Call Algorithm 4 to find the action core of L as AC(L) ;
return AC(L);

o6

There are also other ways to find a landmark action set. For instance, the pre-
processor in the LAMA planner [63] can be used to find landmark facts, and all

actions that lead to these landmark facts also make up a landmark action set.

Theorem 9 For a state s, the expansion set FE(s) defined by the SAC algorithm is a

stubborn set at s.

Proof: We first prove that our expansion set E(s) satisfies condition Al in Defini-
tion 5, namely, for any action b € F(S), and actions by, - -+ , by & E(s),if (by, -+, bg, b)
is a valid path from s, then (b,by,- - ,bx) is also a valid path, and leads to the same
state that (b, -, bx,b) does.

To simplify this proof, we can treat action sequence (by,--- ,bx) as a “macro” action
B where an assignment x; = v; in pre(B) if and only if x; = v; is in the precondition
of some b; € B and z; = v; is not in the effects of a previous action b;(j < 7), and
an assignment x; = v; is in eff(B) if and only if x; = v; is in the effect set of some
b; € B, and x; is not assigned to any value other than v; in the effects of later action

bj(j >). In the following proof, we use the macro action B in place of the path
(b1, br).

To prove Al, we only need to prove that if (B,b) is a valid path, then s : b = B.
According to Theorem 6, s : b = B if and only if the following four propositions are

true.

a) Action b must be applicable in s. We prove this by contradiction. Let s’ =
apply(s, B), if b is not applicable in s, but applicable in s, then B supports b. Since
all effects of B are from actions in the path (by,--- ,by), there exists an action b; €
{b1,- -+ , by} such that b; supports b. However, according to Definition 26, b; is in the
transitive closure of b in ASG(s). According to our algorithm, b; should be in E(s).
This contradicts with our assumption that b; ¢ E(s). Thus, b must be applicable at

S.

b) pre(B) and eff(b) are conflict-free. We prove this proposition by contradiction.
If pre(B) and eff(b) are not conflict-free, we assume that pre(B) has x; = v; that

conflicts with an assignment in eff(b). According to the way we define B, there exists

57

an action b; € (by,---,bg), such that z; = v,. Also, since B is applicable in s, we
know that x; takes the value v; at s also. Therefore, we know that pre(b;) and eff(b)
are not conflict-free. However, according to Definition 27 and Algorithm 4, b; is in
E(s). This contradicts with our assumption that b; is not in E(s). Thus, pre(B) and
eff(b) are conflict-free.

c¢) eff (B) and eff(b) are conflict-free. The proof of this proposition is very similar to
the one above. If they are not conflict-free, we must have action b; € (by,--- ,bg),
such that eff(b) and eff(b;) are not conflict-free. However, according to Definition 27
and Algorithm 4, b; is in E(s). This contradicts with our assumption that b; is not
in F(s). Thus, ef(B) and eff(b) are conflict-free.

d) pre(b) and eff(B) are conflict-free. This proposition is true as we assumed in
condition Al that (B,b) is a valid path from s.

Thus, from Theorem 6, we see that s : b = B and that condition Al in Definition 5

is true.

Now we verify condition A2 by showing that any solution path p from s contains at
least one action in E(s). From the definition of landmark action sets, we know that
there exists an action [€ L such that p contains [. From Lemma 5 we know that
AC4(1l) contains at least one action, applicable in s, in p. Thus, F(s) indeed contains

at least one action in p.

Since E(s) satisfies conditions Al and A2 in Definition 5, E(s) is a stubborn set in
state s. n

4.3.1 SAC vs. EC

SAC results in stronger reduction than the previous EC algorithm, since it is based on
actions, which have a finer granularity than DTGs do. Specifically, SAC causes more
reduction than EC for two reasons. First, applicable actions that are not associated
with landmark transitions, even if they are in the same DTG, are expanded by EC

but not by SAC. Second, applicable actions that do not support any actions in the

o8

a) A SAS+ task c) Search space of SAC

Figure 4.5: Search spaces of EC and SAC

landmark action set, even if they are in the same DTG, are expanded by EC but not
by SAC.

To give an example, in Figure 4.5a, G1, G2, G3 are three DTGs. The goal assignment
is marked as an unfilled circle in G1. a, b, ¢, d, e are actions. Dashed arrows denote the
preconditions of actions. For instance, the lower dashed arrow means that b requires

a precondition z3 = w.

In this example, according to EC, G1 is a goal DTG and G2 and G3 are in the
dependency closure of G1. Thus, before executing a, EC expands every applicable
action in G1, G2 and G3 at any state. SAC, on the other hand, starts with a singleton
set {a} as the initial landmark action set and ignores action e. Applicable action ¢
is also not included in the action closure in state s since it does not support a.
The search graphs are compared in Figure 4.5 and we see that SAC gives stronger

reduction.

4.4 System Implementation

We adopt the Fast Downward (FD) planning system [33] as our code base. The overall
architecture of FD is described in Figure 4.6. A complete FD system contains three
parts corresponding to three phases in execution: translation, knowledge compilation
and search. The translation module will convert planning tasks written in PDDL
to a SAS+ planning task. The knowledge compilation module will generate domain

transition graphs and causal graph for the SAS+ planning task. The search module
59

The Fast Downward System

= Translation => Knowledge Lt gearch =

Compilation
- Normalization -DTGs - CG heuristic
- Invariant - Causal graph - FF heuristic
- Grounding - Successor generator - Best-first search
- Translation - Axiom evaluator

The SAC Extension

- Commutativity analysis - Space reduction

Figure 4.6: System architecture of FD and SAC

implements various state-space-search algorithms as well as heuristic functions. All

these three modules communicate by temporary files.

We make two additions to the above system to implement our SAC planning system,
as shown in Figure 4.6. First, we add a “commutativity analysis” module into the
knowledge compilation step to identify commutativity between actions. Second, we
add a “space reduction” module to the search module to conduct state space reduc-
tion. The commutativity analysis module is used to build commutativity relations
between actions and build the action support graph. It reads action information from
the output of knowledge compilation module and determines the commutativity rela-
tions between actions according to conditions in Theorem 5. In addition, this module
also determines if one action is supported by another and builds the action support
graph defined in Definition 25. The reduction module for search is used to generate
a stubborn set of a given state. We implement the SAC algorithm in this module.
Starting from a landmark action set L as the target action set, we find the action
closure AC,(L) by iteratively adding actions that support actions in the target action
set to the target action set until it is not changing. We then use the applicable actions
in the action closure as the set of actions to expand at s. In other words, in our SAC
system, during the search, for any given state s, instead of using the successor gener-
ator provided by FD to generate a set of applicable operators, we use the reduction

module to generate a stubborn set in state s and use it as the expansion set.

60

It is easy to see that the overall time complexity of determining commutativity rela-
tionships between actions is O(]AJ?) where |A| is the number of actions. We imple-
ment this module in Python. Since the number of actions |A| is usually not large,
in most of the cases, the commutativity analysis module takes less than 1 second to
finish. This module only runs once for solving a planning problem. Therefore, the
commutativity analysis module amounts to an insignificant amount of overhead to the
system. Theoretically, the worst case time complexity for finding the action closure
is O(JAJ*) where |A] is the number of actions. However, in practice, by choosing the
landmark action set L that is associated with transitions in an unarchived goal-related
DTG starting from the current state, the procedure of finding action closure termi-
nates quickly after about 4 to 5 iterations. Therefore, adding the reduction module
does not increase the overall search overhead significantly either. We implement this

module in C++4 and incorporate it into the search module of FD.

4.5 Experimental Results

We tested our algorithm on problems in the recent International Planning Competi-
tions (IPCs): IPC 4 and IPC 5. We implemented our algorithm on top of the Fast
Downward (FD) planner [33]. We only modified the state expansion part.

We have implemented our SAC algorithm and tested it along with Fast Downward and
its combination with the EC extension on a Red Hat Linux server with 2GB memory
and one 2.0GHz CPU. The admissible HSP A4, heuristic [10] and the inadmissible

Fast Forward (FF) heuristic [40] are used in our experiments.

First, we applied our SAC algorithm to A* search with the HSP h,,,, heuristic [10].
We also turned off the option of preferred operators [33] since it compromises the
optimality of A* search. Table 4.2 shows the detailed results on node expansion and
generation during the search. We also compare the solving times for these three algo-
rithms. As we can clearly see from Table 4.2, the numbers of expanded nodes using
the SAC-enhanced A* algorithm are consistently lower than those for the baseline
A* algorithm and the EC-enhanced A* algorithm. There are some cases where the

number of generated nodes for the SAC-enhanced algorithm are slightly larger than

61

those for the baseline A* or EC-enhanced A* algorithm. This is possible due to the

tie-breaking of states with equal heuristic values during search.

We can also see that the computational overhead of SAC is low. For instance, in
the feecell domain, the running time of the SAC-enhanced algorithm is only slightly
higher than the baseline and lower than that of the EC-enhanced algorithm, despite

their equal number of expanded and generated nodes.

Aside from the A* algorithm, we also tested SAC on best-first search algorithms.
Although POR preserves completeness and optimality, it can also be combined with
suboptimal searches such as best-first search to reduce their search space. In this
comparison, we turned off the option of preferred operators (also called helpful ac-
tions) in our experiment for FD. Preferred operator is another space reduction method
that does not preserve completeness, and using it with EC or SAC will lead to worse
performance. We will investigate how to find synergy between these two approaches
in our future work. We summarize the performance of three algorithms, original Fast
Downward (FD), FD with EC, and FD with SAC, in Table 4.3 by presenting the
number of problem instances in a planning domain that can be solved within 1800
seconds by each solver. We also ignore small problem instances with solving time
less than 0.01 seconds. All three solvers use the inadmissible Fast Forward (FF)
heuristic. As we can see from Table 4.3, when combined with a best-first-search algo-
rithm, SAC can still reduce the number of generated and expanded nodes compared
to the baseline FD algorithm and the EC-enhanced algorithm. In many problems
(e.g. pipesworld18, tpp15, truckl3), the reduction in the number of expanded nodes

can be of orders of magnitude.

Based on their performances, we can divide the test domains into three groups. The
first group of domains exhibits strong commutativity between actions and also some
level of interdependency between DTGs. Compared to FD, EC can reduce the number
of expanded nodes for these domains, while SAC can reduce the number of expanded
nodes even further. Example domains in this group include pipesworld and tpp. The
second group of domains has some commutativity between actions. However, these
commutativity relationships cannot be reflected by dependency analysis on the DTG
level. On these domains, EC will perform similarly to or sometimes even worse than

FD due to high runtime overhead. Our proposed SAC algorithm, on the other hand,

62

can reduce the number of expanded nodes with less runtime overhead. Thus, on these
domains, SAC is clearly better than both FD and EC. Example domains in this group
include driverlog and trucks. The rest are domain groups that have few commutativity
between actions. Neither SAC or EC can reduce much of the search space compared
to FD. POR techniques are not effective for these domains. Example domains in this
group include airport, stroage, and rovers. We can see that the performance of SAC

on domains in this group is still comparable to FD, despite the computation overhead
of SAC.

Aside from Table 4.3, we also compare performances of SP and SAC in Table 4.4.
As we discussed in Section 4.2, SP is not a stubborn set method. Moreover, since
SP cannot inherently reduce the number of nodes in optimal searches, our results are
based on non-optimal search. We again use the FF heuristics for both SP and SAC
with no preferred operators, and compared their performances against their common
root, the Fast Downward planner, using the same heuristic function. The set of
planning domains used in Table 4.4 is identical to the one we reported in Table 4.3.
We pick the first N problems in each domain to conduct the experiment where N is
the number indicated in the parentheses after the domain name. For instance, we test
the first 25 problems in the airport domain. The numbers reported for each domain

are average values for each individual problem in that domain.

We see from Table 4.3 that SAC out-performs SP on a set of domains including
driverlog, freecell, pipesworld, tpp, trucks, and pathway. It is worth noting that the
state-independent causal graphs for problems in freecell, pipesworld, and pathway are
all strongly connected, resulting in no stratification of these problems. In these cases,
SP rolls back to FD. SAC, on the other hand, can still reduce the search space by
finding state-dependent commutative action pairs. SP can also lead to expanding
many more states than FD, as illustrated in the trucks domain. We investigated this
further and found that SP can prune goal paths when the search is very close to
a goal, resulting a detour in search. Neither EC nor SAC would prune goal paths

during the search.

63

oged 1xou uo penuryuod

2070 186 6ST 200 0001 6ST 10°0 0001 6ST 130dop
970 (¥e1c) (€67) 761 962S 7061 69°0 0726 0161 | graaodire
19°0 (00.2) (929) 71°C 72€9 el e 78°0 PITTT 00gc | p1atodire
80°0 (L81) (92) L0°0 & 76 10°0 6 48 ¢13r0dare
90°0 61 (08) L0°0 611 0T €0°0 8¢ cel g130dare
10°0 (€2) & 10°0 8T r&é 10°0 8T & [1310dare
10°0 (81) 61 10°0 02 61 10°0 02 61 01310dre
98'¢ (¥¥are) (€c6¥) | S€9T Lg06E G00TT 99°F 85009 G00TT | GHodie
950 (098¢ (669) €6'T 1299 796G €L0 06TTT 051G gyaodire
G6FL (GL660L) (106Tgg) | L0T6 TP9S0€G LS6TgE | ©O'T8 T¥9S08G L86Tge | Liodire
90°0 (c0g) (98) L0°0 06 02T 10°0 Gee 8eT 9j10dare
10°0 (€2) & 10°0 8T e 0 8T e gyaodare
10°0 (02) 1% 10°0 1% 1¢ 0 1% 1¢ pprodare
10°0 (€7) (Lg) 10°0 06 Ge 0 201 8¢ ¢jaodare
0 LT 91 0 LT 91 0 L1 91 giiodire
0 6 6 0 6 6 0 6 6 T30dare
QWILT, pojeIdUuar) popuedxy | owWIL], pojeIdULY) popuedXy | sWI], pojRIdUY) popurdxy
OVS olc| ag Ureto(y

"QOUIOPIP AUR ST 919(} JI ‘SWILIOS[R 9211} SUOWR SOPOU POJRIdUIS puv

popuedxo Jo sonfea 3soq o1} JYSIYSIY os[e om ‘wo[qold [oed 10 ‘SPU0IDS ()¢ IojJe

noouwiry suesur

«

"SOpOoU PoajeIsuasd pur papurdxo JO SIOQUINU MOYS dA\ "SUTRTOP

DdI uo onsunay My um L,y susn HyS pue ‘DY ‘qq jo uosureduwo)) 7§ o[qel,

64

o8ded 1xou WO pPoNUIIUOD

¢E€91 GGlIcl 100¢ 4]} GGlIcl 100¢ L 44! 100¢ 61[09991]
9971 groct G891 1291 groct G891 899 aroct G891 S[[99991)
a0V LVES 6CV1T ¢¢ LVES 6Cv1T g'c LVES 6CV 1 LI[9999g
8EC V€8¢ 0€y 6€°€ V€8¢ €y 880 V€8¢ 0€y 9[[09991]
I8T 0€6¢ 9¢s I8T 0€6¢ 9¢s 670 0€6¢ 9¢¢ G[[e2991]
9L'1 G9.LV G6L Gee G9.LY ¢6.L geo G9.LY G6L P1[99991]
9¢0 9611 91 LE0 9611 91 L0°0 9411 91 €[[09991]
€0 €091 ¢le 8T°0 €091 [qré 90°0 €091 [qré G[99991]
€00 LOV €9 10°0 L0V €9 10°0 L0V €9 [[9999

€L89T ¥8G9GTee (LS9EF6T) | ¢F'c0T (0650T15g) 880070T | 98°29T €10¥eehe L86LLOG | GSOPALIp
698z (GLLFVOOF) (SPIPIF) | 8€°GE 8EGCLIV TPEOFP | €8°T€ €0886LF LTLO9F | FSO[eALIp
€10 (¥LL61) (z892) | 910 LT 8687 ¢1’0 €696 ¢86T | €Bo[eALIp
¢y (voosce) (velgg) ce VEEE6E L8EGS CE'T 6LILTY 08LGG | gSO[ALID
0 €81 (0g) 0 cee LG 0 €LE LG [30[eALIp

891G (07L€66T) (LSTELT) | 809 60L666T ¥SIELT | ST'OF 60L6661 ¥RIELT | sj0dop

eL1 09716 8596 68T G6.L16 ¢L96 18°0 G6.L16 ¢L96 Lrodep

65

LO'E 88E6IT 96061 ¢TIy 88E6IT 96061 Ce'T S8E6IT 960€T ¢jodop
cey (esspog) (e9eer) | 80L 68699¢ CEVLY 80'G 68699€¢ Geve prodop
920 8911T 6365 €0 (¥2L0T) 63€C c0 TLITT 63€C ¢jodop
ve0 (POF91) V62C cqo0 V68LT 01€3 10°0 €08LT 7683 gyodop
QWILT, pojeIdUuar) popuedxy | owWIL], pojReIdUaY) popuedXy | sWI], pojRIdUY) popurdxy

OvS Od ag ureto(]

o8ed snoraoid woIy ponurjuod

16T (0L5¢T1) (1¥789) | LL71 LLTGT 6.8 LLT 9808ST 66LLE pon
€0T (86077) (L616) | @81 IST8LT 916 ¢’ IS¥8LI 916 e
170 (cere) (c¥6) ¢10 CIeeT €76 10°0 c1eel £v6 & BUN!
70°0 (SPIT) 06¢ €00 90€¥ 06¢ €00 90¢F 06¢ T3y
10c (Lggl8e) (eLl¥e) | 186G 6986LTc 0ST9ST | 79 6986L1¢ 0GT9ST L10801
8701 (8L6L6¥%) (9L816T) - - - - - - 919401
¢ (Pee601) (698S6) | €26 PSSPILG FOTFEE | @9 PSSPILG Y0Ghee GI9AOT
0 (L6€) (6L) 10°0 66£C 16 0 66£C 162 10401
100 (2002) (06¢) 7070 PELS €98 100 LS €98 £10A01
0 65C (79) 0 6101 191 0 6101 191 g1oA01
0 (859) (¥11) 10°0 10T e 0 €v0e e [10401
peee €sevl €G61 LGTE €8eFI €G61 99°TT €8€eFT €G6T | OTI[P9997]
QWILT, pojeIdUuar) popuedxy | owWIL], pojReIdUaY) popuedXy | sWI], pojRIdUY) popurdxy
OVS eolc| ag Ureto(y

o8ed snoraoid woIy ponurjuod

66

9ded 1xou WO pPonUIIUOD

2070 798) 900 798 6L g0 96€9 €8¢ €TSOMIoALID
€10 GL81 0GT 700 k& (¥9) 00 6501 8L ¢ TSOTOALID
00 676 18 200 182 Ve 100 78z Ve [T80[0ATID
PT9T (98199) TSL8T - - - G6'9SC 60TL61 1GLE¢€ Ggyrodare
801 709 I11 8G°0L 6ShL 2061 PIl 838 991 pgirodare
16T (00¢) 691 €09 19¢ 691 18°0 029 691 egpodare
a1 (02€) 671 7ee 60¢ 0ST 160 (68 671 ggytodare
960 €61 01 1871 96C 201 ¥20 LT 01 Tgiodire
8G'ec (8FIONI 9695 | TE'6S6 966TLTT 9T80CT | F6'EE L8YESI (LL£5T) 0g31odare
GGl (€G1LT) (1705) | oI'sp 08¥49 12901 L0761 66259 79501 61310dare
8L'8L (¥Ig9L) CIL8T | LG6T¢ 199559 L0028 ey 18CCVT (£59831) g1310dre
I'c GIET 608 9T TOT 96FOVT 6181 ¢TIl 897 q18 L1310dare
290 0rL 01¢ G0'T 6VCT GT¢ €0 8291 01¢ 91310dre
AN0 (171) (¥9) ¢0 €91 99 900 (& L9 ERCIIE
ero (191) 0L 61°0 661 0L 2070 |£43 8L p1310dare
00 (89) ¢y 800 o1 9p €00 901 (€7 g130dare
QWIL], PpojeIdUr) popuedxy | OWIL], pojeIdUdr) popuedxy | oWL], pojeldudr) popuedxy
OVS 04 ad Surewo(]

"9OURISYIP AUe SI 9197} JI SWHLIOS[R 9911}

Fuowe sopou pPajeIsuss pue popurdxd JO soneA 189 oY} WSIYSIY 0s[e oM ‘wo[qoad yoes 104

"Spu029s (JORT I9IJe JNOSWI) SUBIUW -, "SOPOU PajeIsUasd pue papuedxs JO SIOQUINT MOYS A\

‘surewop s, HJJ uo s1orerodo poarmejord-ou yam HyS pue HH ‘(14 Jo uostredwo)) ¢°F o[qR],

67

oded 1xou WO ponUIIUOD

vIL (eel1) (128) L8°01 18€7 607 8Q'EVT ELIIE 818¢ 91199991
1281 (L61T) (8¥¢) 77Ge 6.7 1€S TLOvT cro8 €161 GT[[99991)
98’8 095 (82) 96°6¢ 760G 6E¢€ LT1E VLTt L8% 1109991
9T'€ET 9662 269 926 968C 689 1201 (9992 (e17) £T[[9290Y
¢ 167 96 8G°C 0¥ (8¢) 9°G G801 61 (GUIEERRY
127 L6 811 L0V 029 611 N3 0€S 02T T T[990
67°C L6¢ 41 €e'LTc €8I LGO07 6L°0G £v0g L6 0T[[22901]
e 61 cal €6°¢ L99 a8 9 (00¢g) (89) 6[00001
€Tt 10¢ & €8°0 9¢¥ (12) c0'T 00. 90T 811099991
€C°C (¥18) (s1e) €6'1 788 €ee 97 7681 a8z LI[9999
L0 (¥8¢) (89) 1L°0 6% L6 7.0 01¢ 86 9[[00001]
€0 (9¢2) (€9) 280 899 a 290 0TS 88 6199991
LT°0 (8¢€2) (sg) 92°0 107 19 6570 897 87 QICREER
€10 LT1 0% P10 (ceT) (61) €0 iaal 0% EI100991]
10°0 (001) L1 10 N LT 10 ! L1 Cl199991
80°0 (B 01 60°0 €9 I R0°0 6¢ 01 [[[99901]
61°¢ (sorT) (€29) LE°), Saial xd) LL6 90%9¢ %8 61S0[ToALIP
Le8eT (090L£S) (089ST) | L0€STT 6T8CT0OS 8E66FT | 670c 9TIFO8 0987 LTS0[0ALID
TTerT (9e8L6L) (9728€) | T6°0TT TGglIOT GG80G | TE'OVI €6TIEET 1L679 9T90[1oALID
€00 (91%)) L0°0 €38) €10 8LEE S P 180[10ALID
QWIL], pojeIdULY) popuedxy | OWIL], pojeIdUuar) popuedxy | oOWIL], pojelsusr) popuedxy
OVS O adq SUTRTO(]

o8ed snoraoid woIy ponuryuod

68

oded 1xou WO pPoNUIIUOD

89F (c1289) (g5S7) 6V°C £100. 7aGe 89 06916 LGLL ¢1ddy
961 (62520) (L¥61) 88°€ G08E9 8889 L L9T6ET &l g1ddy
CLT (92287) (8292) 86T 889€€ GT8¢ 12 91289 7629 rrddy
V10 98TV (4iii ST'T T6LLE 6L9€ ero T98¢ G8S o1ddy
620 86001 PRIT 820 0€7L 096 600 (6€8€) 0.S 6ddy
91°0 GELY I8¢ 71°0 (¥es¢g) 0LS ¢10 L86T GL9 gddy
8¢'8 (c1v?) (968) - - - €vee 70562 987F | Tgpliomsedid
667965 (6970€) LT7T - - - - - - ogpriomsadid
9187 (8¥62) 16¥ 6z 08 L80¢ 167 E'6FOT LG0T 7911 | STPHoMsadid
90°0%T (961¥c€) 69166 | €6'881 €esFee (68868) | 66'¢6C €T619S €6L9GT | LTppomsadid
7o91e (009208) (02€E6) | FOGOPT 98L9L.C 69819¢ | ¢8F8CT 881¢6LC T6189¢ | GTpriomsodid
99°01 990€1 G187 €8y (20e1T) (0z5e) 109 G991 ¢Ive | pIpromsadid
91°9 (cre0g) (cle¥) | vFOF ¢0aTS €808 - - - ¢Tprromsodid
i 359 G191 LL6GY TOG89TE COLISy | ¥€0 0.6 L61 TTpomsadid
7L 7897 89T ANE ceee GIT e6C (gLeT) (09) | oTpPEOoMsadid
pLG (966F) 991 1€°9 c00¢) ¢0°01 L628 61¢ 6promsodid
6.0 €S a1 7.0 (€L7) cl 6.0 056 a1 gprromsadid
110 689 €1 €L°0 689 el 611 689 €1 Lpriomsadid
69FLT 9LV6I (9€0€) | 17989 60%cE 6909 | e¥¥ee (€9¢L1) 087¢€ STI[9999]
66701 (o72) (¥01) 29°€T 678 Ve 161 dijg 9vC LT1199991
QWIL], pojeIdULY) popuedxy | OWIL], pojeIdUuar) popuedxy | oOWIL], pojelsusr) popuedxy
OVS elc| ad SUreuo]

o8ed snoraoid woIy ponuryuod

69

oded 1xou WO pPoNUIIUOD

96T THOVST 06€¢€ G6°C THOTST 06€€ 18T THOPST 06€¢€ i BlIRE!
L1°0 (86.) (L52) €20 L126 00 720 L126 00€ SRR
e’8 (G8508) P16€C 926 990G5S E16€T 726 990G¢C €16 LSy
2070 56T (17) 600 cesl Ly 800 & Ly 9syp1T
600 (¥¥¢) (s¢) G0°0 erd L 600 erdi L sy
200 (Leg) 1] €00 1€6 N 200 166 0¥ pSYonL
€00 (8¥1) (v€) 0°0 L9 Ge €00 ¢L9 ¢e Sy
€00 86¢ €11 L0°0 vevy L2 00 Very L2¢ &> US|
100 (72) e 100 062 e 100 0€2 e [Syony

LE'6T9 08€9EPT GTPEET | L9209 €8€TFPT TLLEET | 8VF6S (0819gFT) (TLIEET) | GTodeIogs
e (0vg) (97¢) 981 €L19 o8y 891 8295 19¢ gT08e109s
el £CSY 6€¢€ LLO 087¥ L€¢€ €9°0 (8¢1¥) (80€) L108e10)s
e 0 LG¢€ (92) 120 AN |53 g0 169 s 91081098
8T°0 629 (99) €10 ce9 6 €10 (€09) LG GTo8eI109s
920 (6281) (eL1) 610 LETT ¢Ie 0 L2LT 92 progeIo)s
89°0 G79G 7e9T g0 L09¥ GeT 8T°0 (9097) (egeT) g1o5e10)s

816061 (F0SE0ST) (9218LT) - - - - - - 0zddy
7019 (0869S%) (808LT) | ¥R9LT T0SGESL 67487 - - - 91ddy
e8F (0969¢) (671€) | To6c 9LII8I 88LET CIST 6IEell €026 Grddy
208 (T199L) (¥509) | 96Tc SEILIC 00LGT | 8061 8LGGOLT 16221 prddy
QWIL], pojeIdULY) popuedxy | OWIL], pojeIdUuar) popuedxy | oOWIL], pojelsusr) popuedxy

OVS elc| ad SUreuo]

o8ed snoraoid woIy ponuryuod

70

oded 1xou WO pPoNUIIUOD

10°0 (0L1) 6¢ 10°0 TLT 6€ 10°0 L1 6€ gypeysuado
LLY (8L801T) (T08Y) 7'€9 6965EGT 066.L€ 187G 6960EST 066.¢ TSI0A0L
(AN0 (61¢7) (cl1) PG 0 11891 Shy - - - LTS10A01
00 (TLL1) (€01) 150 GP6ET GhG jicall CP6ET S 9TSI0A0I
LT°0 (0g8¢ST) (667) 62°0 L8691 0LS €0 L8691 0LS GTSIOAOI
90°0 Veve ¢1 70°0 GL0% 18 €0°0 GL0T 18 PISToA0T
10 (89¢) 161 ero €ecy GLT 60°0 oSy GL1 £1S10A01
10°0 (8¢¥) 9z 10°0 1€G 9z 10°0 1§38 9z Z]SI0AOI
c1o (FPeLl) (817) Ge0 GeVve 7.01 820 GeVve V.01 [TSI9A0T
€00 (981T) (18) g10 149 cee 600 149 444 0TSI0A0T
00 (8711 (e1T) 110 67€8 89€ 90°0 G986 18 6S19A0T
10°0 (vS9) (82) 200 998 9¢ 10°0 998 9¢ 8810401
10°0 (vee) (0¢) 10°0 FoV o€ 10°0 FOF 08 JSI0A0T
e0'€eqs ¢E6CSY 619651 - - - - - - LTssonry
8.9 (9888¥T) (¥89LS) | 9878 8TTYGET 65965 6'6L 8TEIGET 65965 GsonI
89°9¢ (866967) (€1L08) | 9€°LF €PGE98 08€.LE €97 €PGe98 08€LE pIsypnn
€7'67e (120869) (92868¢) | 6V'Z8TT GT986GLE L96GTS | €LTISTT GT986GLT L96GES eIsPn)
68'8TG (SE0890T) 06L0T€ | T8TSET €6661T0& C9L0T€ | 6C'LGET €6661T0¢ S9L0TE cIsspn
8€'8 (¥7¥0c1) (9zs¥) | <ce¥l 6LOVHE GTLY 68°€T 6LOFPE SILY A BUN!
ov'or (92681%) (£6698) | 62°98T GOOTTIS 9T¥6ET | 60°6LT GOOTTI® 9TIVGET 0TSYPNI}
QWIL], pojeIdULY) popuedxy | OWIL], pojeIdUuar) popuedxy | oOWIL], pojelsusr) popuedxy
OVS O adq SUTRTO(]

o8ed snoraoid woIy ponuryuod

71

61°0 (51¢) (1¢1) 66T 6£9€T 1954 - - - GAeatyed
ce'1e (oTlily) 8806€ - - - €6FC TLISSS (L0STT) gAemrged
8z LT (¥8eees) LVTIC 1%Ly 81L0CL JAante 9.0 8LL0SL LVTIC LAemyyed
700 (929) (89) 820 2079 elete aro 2079 ceg gkemyyed
c00 (T9071) (Lg) €00 9621 Ly c0°0 9621 Ly cAemtyed
10°0 (¥29) (19) €0°0 9z) 10°0 9z 9. pAemyyed
10°0 @ @ T0°0 Ve 8¢ 10°0 e QG clemyyed
60°0 L9 00T 90°0 €9 00T 00 €19 001 J3peystado
80°0 4 601 900 4y 60T 600 4 60T 93peisuado
QWIL], pojeIdULY) popurdxy QWIL], PpojRIoUSY) popuedxy | OWIL], pojRIdULLY) popurdxy

VS o adq SUrewo(J

o8ed snoraoid woIy ponuryuod

72

(660) 8L0 (060) | 00T 00T 00T (0T) xAemiyed
(620) 9¥0 (¢90) | L0@ e o el (91)sponny
6T'T 16°0 90T | (4L0) 90 LU0 (0z)oBe109s
(6e0) ¥€0 (1€0) | 150 650 170 (0g)ddy
(6L0) 190 (L80) | o1 0T 07 (12)«PrIomsodid
E 16°0 740 01 0T 0T (02) 4102901
(660) 8.0 (620) | 8T 66'T 92T (81)B010A12D
6¢'1 60T ST | (870 €1 (17°0) (01)30dop
(LL0) 990 (690) |(LL0) 190 820 (gz)1odare
OWILT, PojRIoUOr) popurdxy | oWI], PojRIoULY) popurdxy

a4 03 DVS Jo oney . 0% d§ Jo orey SUreto(g

‘(I 09 Yorq [[01 03 JS S9SN YIIYM ‘O[qRYIIRIIS JOU oI . ® [[IIM PI[IRU SUTRTIO(]
"oouRTLIONIOd 19719 9)RITPUIL S[([RY) S} UI SON[RA IS[[RWS U0 SJUdWLIOdXe URl oM JeT) UTRTIOD
1Rt} Ul swo[qold JO Ioquunu oY) oI SoWRU UIRWIOP I9)e sosoyjuared oy} Ul SIOqUNN ‘S
I0J UOI)eOUIJRIIS-Z 9STL 9A\ (T4 03 poredwiodo HYS pur JS JIOJ d[(R) 9} UL SOIIRI MOUS OA\
's101e10d0 podrsjord InoyIIm surewiop HJL Uo (4 01 DVS pue J§ Jo uosuredwo)) §'§ o[qR],

73

4.6 Summary

Previous work in both model checking and Al planning has demonstrated that POR is
a powerful method for reducing search costs. POR is an enabling technique for model
checking, which would not be practical without POR due to its high complexity.
Although POR has been extensively studied for model checking, its theory has not
been developed for AI planning. In this chapter, we developed a new POR theory for
planning that is parallel to the stubborn set theory in model checking.

In addition, by analyzing the structure of actions in planning problems, we derived a
practical criterion that defines commutativity between actions. Based on the notion
of commutativity, we developed sufficient conditions for finding stubborn sets during
search for planning. Furthermore, we applied our theory to explain two previous
POR algorithms for planning. The explanation provided useful insights that lead
to a stronger and more efficient POR algorithm called SAC. Comparing to previous
POR algorithms, SAC finds stubborn sets based on a finer granularity for checking
commutativity, leading to stronger reduction. We compared the performance of SAC
to the previously proposed EC algorithm on both optimal and non-optimal state
space searches. Experimental results showed that the proposed SAC algorithm led to

stronger node reduction and less overhead.

74

Chapter 5

Accelerating Heuristic Search with
Random Walks

Partial order reduction techniques proposed in the previous chapters are approaches
that leverage the overall structure of search space. In this chapter, we study the
local structure of state space as defined by heuristic functions to accelerate heuristic
search. In particular, we study the behaviors of heuristic search in local regions where

heuristic functions are not informative.

A well-observed phenomenon in heuristic search is that the search algorithm may
explore a large number of states without reducing the heuristic function value. This
phenomenon, called “plateau exploration”, has been extensively studied in satisfia-
bility (SAT) and constraint satisfaction problems (CSP). In heuristic search, plateau
exploration takes up the majority of the search time. Therefore, to accelerate heuristic

search, it is important to study ways to accelerate plateau exploration.

In this chapter, we introduce a random walk assisted search algorithm framework. We
also establish a theoretical model to analyze the conditions under which random walk
is helpful to heuristic search in finding plateau exits. We show the effectiveness of
the proposed algorithm by presenting experimental results from recent IPC domains

and the Seventh International Planning Competition [5].

5

5.1 Background

In heuristic search, the number of states explored depends largely on the quality of
the heuristic function. In the ideal case, a search with the perfect heuristic function
that accurately calculates the distance from any state to goal state would only expand
O(L) states, where L is the distance from the initial state to goal. In reality, heuristic
search usually explores an exponential number of states as the problem size grows.
Heuristic search, even with almost perfect heuristic guidance, may still lead to high

search cost for optimal planning [37].

To further understand the impact of heuristics for state space search, we view the
search procedure from another perspective— as an optimization procedure that aims
to find a state that minimizes the heuristic function value. Here we assume that
the heuristic function takes value 0 if and only if it is at some goal state. From
this perspective, an immediate insight is that a search is making progress if the best
heuristic value found so far is decreasing. To measure this kind of progress, we
monitor the incumbent heuristic value h. Intuitively, during search, for any state s
that is removed from the open list, the incumbent heuristic value ﬁ(s) is the smallest

heuristic value of all states explored up to s.

For any heuristic search, its incumbent heuristic value decreases monotonically during
search and finally reaches 0 when a goal is found. In a typical search where the number
of explored states is much larger than the solution length, most consecutive states
removed from the open list have the same incumbent heuristic value. When heuristic
functions are not informative, search can halt on the same incumbent heuristic value

for a long time. We call this phenomenon plateau exploration.

Inspired by the work of Nakhost et al. [56] on using Monte-Carlo Random Walk
in solving planning problems, we propose to use random walk procedures to assist
heuristic searches. Specifically, we invoke an episode of random walks within a heuris-
tic search when a plateau is encountered (i.e., when the search cannot improve the

incumbent heuristic value for an extended period of time).

In this study, we find three advantages of using random walks to assist heuristic

search for planning. First, a random walk has the potential to quickly find a state

76

that reduces the incumbent heuristic value, by jumping out of local minima or jumping
over a local maxima with respect to the heuristic function. In contrast, a deterministic
heuristic search will have to explore all possible states around the local minima or
before the local maxima. Second, compared to heuristic search in which heuristic
functions are evaluated at each state, the random walk algorithm can skip heuristic
evaluations of most intermediate states during exploration, making space exploration
more efficient. Third, random walks require little memory, and therefore do not add
space complexity to the original heuristic search. One limitation of using random
walks is that the solution found by random walk is no longer guaranteed to be optimal
even if it is combined with A* search. For this reason, we focus on accelerating best-
first search, a heuristic search procedure that finds satisfying plans while trying to

minimize plan cost.

5.2 Local Properties of Search Space

Unlike local search which always explores neighbor states next (subject to backtrack-
ing), heuristic search always fetches the next state from the open list ordered by the
heuristic function, regardless of whether it is the immediate successor of the current
state. To facilitate our study of the local plateau structure of search space, we base

our discussion on a local region of the state space.

Definition 28 (Neighbors in a State Space) Given a state space 8 and a state
s € 8, an l-neighbor N(s,1) of s, where | is a positive integer, is a set of all states
that can be reached from s within | steps in 8. A special neighbor N(s, 00) is the set

of all states that are reachable from s.

For heuristic search in the complete state-space, the objective of heuristic search is to
find states that can reduce the current incumbent heuristic value. When discussion
is limited on a local region N(s,l) where s is the starting point, we use h(s) as
the incumbent heuristic value in analysis. Namely, h(s) = h(s). A heuristic search
procedure can be viewed as a multi-phase search where the objective of each phase
is to find a state s, in some [-neighbor N(s,[) of s such that h(s.) < h(s). We define
state s. as an exit state of N(s, () if h(s.) < h(s). A region P C N(s,[) is a plateau if
7

every state s, € P has h(s,) > h(s). Note that the definition of s, is dependent on ,

the size of the [-neighbor. In the following discussions, we assume [is predetermined.

Similar to the heuristic search conducted on the search space, heuristic search con-
ducted on N(s,1) exploring states in orders that are determined by both the topo-
logical structure of N(s,1) and the heuristic function. We introduce the following

definitions to capture these orders.

Definition 29 (Order of States) Given a heuristic search procedure Ay in an [-
neighbor N(s,1) of s, the sequence of states in N(s,l) explored by Ay, denoted by L,
1s an ordered list. A relation < can be defined between states in L = s1,--- , S, where

for any s;,s; € £, s; < s; if and only if © < j.

We would like to point out that the order of states for heuristic search A, depends on
the local topology of the search space as well as the heuristic function. To understand
the interactions between these two, we define the natural order and heuristic order of

states.

Definition 30 (Natural Order of States) Given a state sy and two states s1, so €
N(so,1), s1 is naturally ordered before sy if any path from sqg to sy contains s;. In

other words, to reach sy from sqy, search has to reach sy first.

Natural order between states is a well-defined partial order relation. We can show
this by validating the reflexivity, antisymmetry and transitivity of this relation. We
denote this relation by s; <,, so if s; is naturally ordered before s,, and s; <,, so if

s1 <, S and s # So.

Note that reflezivity holds for any state s because any path from sy to s contains
state s itself. Antisymmetry is also straightforward to verify. For any two states a
and b, such that a <, b and b <,, a, we show a = b. Without loss of generality, we
assume the shortest path from sy to a and b is a path from sy to b, of length m. Since
we have a <,, b, by definition a is on the path from sy to b. However, since b <, a,
b is also on the path from sy to a. This can only happen when a = b, because if a
and b are different, then the subpath from sy to a is shorter than m, contradicting
78

our assumption that sg to b is shorter than sg to a. Transitivity also holds for natural
orders. If we have s; <, so and sy <,, s3, then any path from sg to s3 would include
s9, and every path from sy to ss includes s;. This implies any path from sy to s3

includes sq, or s; <,, s3.

Natural order is the topological order of states that any search process must obey.
Heuristic function works on top of natural order to order all states according to their

heuristic function values.

Definition 31 (Heuristic Order of States) Given a state s and two states sy, s €
N(s,l) that neither sy <, so nor sy <, si is true, we have relation s; <j sg if
h(s1) < h(sz2), or if h(s1) = h(s2) and a tie-breaking process puts s, before sy when

they are retrieved from the open list.

In Definition 31, we assume there is a tie-breaking process that gives orders to states
that share the same heuristic value in the open list. How tie breaking is conducted is
not essential to our discussion here. We can safely assume that there is a deterministic

tie-breaking process for heuristic search.

It is intuitive to see how the order of state exploration in a heuristic search is related
to natural order and heuristic order. For instance, if we have two different states
s1, So such that s; <,, sy holds, a heuristic search procedure would explore s; before
sg. If both s; and sy are in the open list during a heuristic search, and s; < s
holds, a heuristic search would explore s; before s,. We formalized and extend this

observation in Theorem 10.

Theorem 10 Given a state sg and two different states sy, sy in N(so, 1), and their
common ancestor s,, a heuristic search A on N(so,l) explores state sy before sy (i.e.

s1 < s9) if and only if one of these two conditions holds:

C1 S1 <n S2,

C2 there exists a state s3 such that s, <, S3 <,, So and s; <j S3.

79

Proof: Under the assumption that heuristic search explores s; before sy, we first
examine the natural order between s; and sy. It is easy to see that we have either
s1 <pn S2 (C1), or the natural order between s; and s, is not defined. It is not possible

to have sy <,, s1 because heuristic search would explore s, before s;.

When the natural order between s; and sy are not defined, we look at the set of states
S._2 on the path from their least common ancestor s, to s,, excluding s,. This set

is well-defined. At least one element, s, is in S, ,o because sy # s,.

For any state s € S,_,2, we have either s; < s or s < s;. Note that among all states
s in S,_.9 such that s; < s, we pick the state that has the minimal natural order and
denote it by s3. State sz exists because there is at least one state, sy € S, 2, such

that s; < ss.

Now we consider the immediate predecessor of s, s;. Since s3 has the minimal
natural order among all states that are explored after sy, s§ must be explored before
s1, whereas s3 is explored after s; in heuristic search. In other words, we have

sy < 51 < 3.

Note that when heuristic search explores s}, s3, an immediate successor of sj, is
inserted into the open list by heuristic search. This means s3 <j s; holds. Otherwise,
s3 would be explored before s; by heuristic search. Hence, there exists a state s3 €

Sa_2, such that s, <, s3 <, s9 and s <p S3.

On the other hand, if condition C1 is true, by definition s; < so. If C2 holds, we have

s1 < 83 <,, So. Therefore, s1 < ss. |

It is intuitive to understand that inaccurate heuristic values often lead to inefficient
heuristic search. Theorem 10 provides a direct interpretation on why heuristic search
can be ineffective in a local region. The necessary and sufficient conditions in Theo-

rem 10 directly translate to the following two scenarios.

Scenario 1: Local minima (traps). Local minima (traps) are states where all

other states in the neighbor have higher heuristic value.

80

Let us assume there is a path sg, s1, -+, s;_1, S, from state sy to an exit state s, €
N(sg,1). Ideally, heuristic search from sy would advance towards s, in i steps. Ac-
cording to Theorem 10, when a state s; is in the open list, any state s’ in the open
list that satisfies s’ <; s; would be explored before s;. If s’ is not part of any exit
path, then heuristic search is trapped at s’ instead of advancing the search along the

exit path.

To make this worse, when heuristic function underestimates, it tends to underestimate
a set of connected states in a local region, as they may share a similar relaxation.
These states would be ordered before s; according to Theorem 10, and therefore be
explored before s.. These states trap the heuristic search into local minima regions

before the search can explore states along the exit path.

It is worth pointing out that heuristic underestimation is not the only cause for
trapping . Recall that Theorem 10 only requires s’ <;, s; when s’ is explored before
s;. Even if heuristic function is almost perfect in that it does not underestimate the
goal distance most of the time, and does make the heuristics of s; and s’ the same,
the tie breaking process could still order s’ before s;. These cases can lead to an
exponential number of states explored as the search progress for optimal search. This

tragic scenario is demonstrated in [37].

Scenario 2. Local maxima (blocks). Local maxima (blocks) are states on an exit

path that has heuristic values larger than neighbor states.

This scenario arises from the overestimation of heuristic values on the goal path.
Ideally, states along the exit path would have monotonically decreasing heuristic
values (h(sg) > h(sy) > --- > h(s.)). If h(s;) on the exit path is a local minima
and s; is in the open list, then any state s’ in the open list, including the neighbor
states of s;, would get explored before s; as s’ <j, s;. If s; is naturally ordered before
Se, it becomes a block on the exit path, because the heuristic search would have to
explore every state s’ such that s’ <; s;. Even when heuristics are accurate for all

other states, a block on the exit path still leads to inefficient searches.

81

Modern heuristic functions such as Fast Forward (hss), Landmark Count (hy,) and
Fast Downward h., utilize problem relaxation and satisfiable plan extraction to cal-
culated heuristics. More often than not, these inadmissible heuristics create traps

and blocks in the search space, leading to plateau exploration during search.

5.2.1 Approaches for Accelerating Plateau Exploration

Several lines of work are available for accelerating plateau exploration in heuristic

search.

First, multiple heuristic functions can be used to sort states in the open list in different
orders [33]. Since different heuristic functions lead to different heuristic orders of
states, when one heuristic function encounters traps or blocks on a plateau, other
heuristics may give informative guidance and find exits from a plateau. However,
extra heuristic function calculations and extra open lists can increase the overall time

and space complexity of the search algorithm.

Second, Monte-Carlo Random Walk (MCRW) algorithms are capable of escaping
from local minima, and have been used to solve planning problems with good perfor-
mance [56]. However, planners using solely stochastic search strategies are generally
slower than deterministic heuristic search planners. Stochastic search also does not

perform well on problems with many dead end states.

5.3 Random Walk Assisted Best-First Search

The natural order of states are defined by the state space, while heuristic order is
defined by heuristic function. At first glance, there is not much we can do to accelerate

heuristic search unless we improve the quality of the heuristic functions themselves.

In the local search region, however, we can devise techniques to accelerate plateau
exploration by avoiding traps and blocks. Our proposed search framework is inspired
by both the MCRW approach [56] and the multiple heuristic search [33] approach.

We use a best-first search procedure to conduct heuristic search most of the time, as

82

best-first search gives good performance when the heuristic functions are accurate.
In addition, when a plateau is detected, a random walk procedure is invoked to assist

the best-first search, with an aim of quick escape from the plateau.

5.3.1 Algorithm Framework

We use random walk as the main technique to enhance heuristic search for planning.

We start from the definition of random walk.

Definition 32 (Random Walk in State Space) Given a state space 8 and a states
s € 8, a random walk is a path in 8 such that: each state (other than the first state
s) in the path is a randomly chosen successor of the state before it. The length of
the path is defined as the length of the random walk, and the first/last state in the
path are called the start/end of the random walk. A random walk starting from s with
length | is denoted by w(s,1).

In solving planning problems, examining one random walk is hardly useful in finding
a goal state. We introduce random advancement, which consists of a group of random
walks with the same starting state. Random advancement is a procedure that invokes
multiple random walks to find the best possible state in the local neighbor of a state.

Formally, we define it as follows.

Definition 33 (Random Advancement) Given a state space 8, a state s € 8§
and a heuristic function h, a RANDOM ADVANCEMENT(S,l,n), where | and n are
positive integers, consists of n random walks w(s,l) and returns the end state s* with

the mintmum heuristic value.

Algorithm 6 illustrates the details of conducting a random advancement on state s.
Given parameter n, [and the starting state s, a RANDOM ADVANCEMENT(s,(,n)
invokes n random walks from s with length [and selects the end state with the
minimum heuristic function value (Line 10-12). Note that heuristic functions are not
evaluated for the intermediate states in random walks. As a result, the heuristic
function is evaluated only n times in RANDOM ADVANCEMENT(s, [, n).

83

© 000 N O oA W N =

e e e s I)
Uk W N = O

Algorithm 6: RANDOM ADVANCEMENT
input : a state s, the parameter [, the parameter n
c+0;
s <+ s
hmin — 00
for ¢ < 1 ton do
for j < 1 to [do /*inner loop for a random walk*/
o < a random action applicable to s ;
s' < APPLY (5',0) ;
end
h' « h(s') ;
if W’ < h,in then
Smin < 8

hmin — h/ ;
end

end
return s,,;, ;

Random Advancement Random Advancement Random Advancement

Random Exploration

Figure 5.1: Random exploration as a concatenation of random advancements.

Definition 34 Given a state space S, states s,s' € 8, positive integers [, t,n, a RAN-
DOM EXPLORATION procedure, as described in Algorithm 7, first determines the value
of I, n, and t and then uses these values to conduct t consecutive RANDOM ADVANCE-
MENTSs, each using the end state of the previous one as the start state. A random
exploration moves the current state from s to the end state of the last random ad-

vancement.

A random exploration moves the current state s to a new state s’ that is tl steps

away, by applying t consecutive random advancements. Figure 5.1 illustrates the

84

b =R L NI VR

Algorithm 7: RANDOM EXPLORATION
input : a state s

c+0;

s <+ s

determines parameter ¢, n, and [;

for c+ 1 tot do

\ s’ <~ RANDOM ADVANCEMENT(s',[,n) ;

end
return s’ ;
Parameters Mnemonics Definitions
t steps number of advancements in a random exploration
n number of walks number of walks in a random advancement
[length length of a single random walk

Table 5.1: List of parameters used in RANDOM EXPLORATION

concatenation of random advancements into a random exploration. We use ¢ consec-
utive random advancements (each with length [) over a single random advancement
of length t/ such that random walk is biased towards states with smaller heuristic
values. This exploitation-exploration tradeoff can be tuned by changing the value of
t and [. For now, we assume a procedure is given to determine the values of ¢, [and

n. We list the definitions of these parameters in Table 5.1.

Based on random explorations, we present our random walk assisted best-first search
(RW-BFS) algorithm in Algorithm 8. It is a variant of the standard best-first search
procedure. In addition to the original best-first search algorithm, RW-BFS adds
a DETECT PLATEAU check after expanding a new state (Line 15). If a plateau is
detected, a RANDOM EXPLORATION procedure is called to explore the search space
in order to find a state that can reduce h*. Meanwhile, h*, the incumbent heuristic

value, is updated whenever a state with a smaller heuristic value is found (Lines 6-7).

5.3.2 Performance Analysis

In this section, we propose quantitative analysis of the expected cost of a random
exploration in finding an exit state on various space topologies. Based on the quan-
titative measure, we can also tell if random exploration procedures are beneficial in

85

© 00 N O Uk W N

e e S T T = T = T =
© 00 N & A W N = O

Algorithm 8: THE RW-BFS FRAMEWORK

input : Initial state s
open < S ;
h* h(S()) ;
while open is not empty do
node < REMOVE-FIRST(open);
if node is GOAL then
‘ return found ;
end
if node is not in closed then
add node to closed,
insert SUCCESSOR(S) to open ;
end
if h(node) < h* then
| h* < h(node) ;
end
if DETECT PLATEAU then
| open <~ RANDOM EXPLORATION (s);
end

end
return no solution

certain cases, since using them incurs additional overhead to the best-first search

procedure.

Definition 35 (Plateau Graph) Given a planning task T and a positive integer d,
a plateau graph G4 = (V, E) of state s is a simple directed graph (no multi-edges or
loops) with V= N(s,d) satisfying: 1) there is an edge (s;, s;) € E if and only if there
is an action that leads s; to s;; 2) for all states s in V', h(s") > h(s), and there are no
dead end states in V. An exit state of G4 is a state s, ¢ Gg such that h(s.) < h(s).
Here d is called the radius of the plateau graph Gjg.

For a given plateau graph (G4, in the following analysis, we compare the number of
heuristic evaluations required to escape from G4 for both best-first search and the
random exploration algorithms, as heuristic evaluation takes up most of the time
for both algorithms. To simplify our analysis, we assume that the random walk is

unbiased, meaning that instead of picking the best state among all n cases shown

86

in line 11-12 in Algorithm 6, a random state s’ is chosen with probability 1/n to be
Smin- We further simplify the structure of G4 as a graph where nodes have the same
in- and out-degrees. Without loss of generality, we assume that every node in G4 has
p successors and ¢ parents, where p > ¢ € Z*. We first consider the case where G4

is a tree, in which case p > ¢ = 1.

Tree Search

We provide the following result for best-first search when Gy is a tree.

Lemma 6 Given a plateau graph G4 of s that is a tree, if s, is an exit state of Gq
and s. € N(s,d + 1)\N(s,d), a best-first search procedure, in the worse case where

every state in N(s,d) has to be explored before finding s., will evaluate the heuristic
d+1_1
pp_l

function value of states.

The proof for Lemma 6 is straightforward. For each ¢ from 1 to d, the number of states

in N(s,i)\N(s,i — 1) is p’. The total number of heuristic evaluations for best-first
d+171
p—1 °

P

search, in the worst case, is ¥ p*, or

For an unbiased random walk in N(s,tl), we have the following result.

Theorem 11 Given a plateau graph Gy of s that is a tree, let R be an an unbiased
random walk that explores the search space with length tl, and E be the number of
exit states of Gq in N(s,tl)\N(s, tl — 1), if the heuristic function is evaluated every l

steps in R, the expected number of heuristic evaluations before R finds an exit state

18 %.

Proof: Since G, is a tree, starting from s, R explores states that are exactly tl steps
away from s. Since R is unbiased, the probability of hitting an exit state of G4 is
therefore z%' That is to say, the expected number of random walks to find an exit of
Gy is 2% Since there are ¢ heuristic evaluations on each path, the total number of

E

.. . . tptt
expected heuristic evaluations is %-. [|

87

We see from Lemma 6 and Theorem 11 that an unbiased random walk can assist
best-first search finding plateau exit with fewer heuristic evaluations when

d+1

T T

p—1 — FE
One sufficient condition for the above inequality is that d < tI < d + log, £ —
log, t. If E'is on the magnitude of p? and t is relatively small, the above condition is
approximately:

d<tl <2d.

The above analysis is for unbiased random walks. In practice, random walks can be
more helpful since it is not unbiased; it is biased towards good states with lower h.
One insight drawn from this is that ¢/ should be neither too small or too large for the
random walk exploration to be helpful. However, since the precious d is unknown, it
is helpful to try different ¢/ values when doing random exploration in Algorithm 7.

For this reason, we use a set of different ¢/ values in the implementation.

We can also see from the above analysis that when p and d are relatively small, it
is better to use best-first search to explore every state in G4. This prompts us to
be conservative on plateau detection. We discuss the parameter settings for plateau

detection in detail in the next section.

Graph Search

Now we extend the above discussion to the case where (G4 is a graph. Namely, we

consider the case where ¢ > 1.

Theorem 12 Given a plateau graph G4 of s where every node in Gy4 has an in-
degree of ¢ > 1, if there exists a state s, € N(s,d + 1) such that h(s.) < h(s), a
best-first search procedure, in the worst case, will have to evaluate the heuristic value

for p(/;/ L states before finding s..

Proof: We prove this by using mathematical induction. It is easy to see that this
proposition is true when d = 0,1, where we have 1 and 1 + %’ states, respectively.
88

Assuming this proposition is true for all d < k, we have |Gj_1| = ((i ;Z))k:l; and |Gy_2| =
%. Thus, there are (p/q)*~! states that are exactly k — 1 steps away from z.
Since G is a simple graph, according to our assumption, there are p(p/q)*~'/q =

(p/q)* states that are k steps away from a. Thus, we have

(p/g)* -1 p_ (/9 -1
|G| = +(p/9)" = :
(p/a) — 1) (p/q) — 1)
Thus this proposition is also true for d = k. [|

On the other hand, it is easy to see that the structural change of G does not affect
the expected number of heuristic evaluations for an unbiased random walk R, as it
does not maintain any information on whether a state has been visited. In this case,
Theorem 11 still holds for ¢ > 1.

We can see that R can help best-first search in finding an exit of G if

(p/)™" =1 _ "
(p/q) —1 -

il

ol
We can derive a necessary condition for the above inequality by replacing the left side
with (p/q)™. In this case, any ¢t/ must satisfy d <t < d+log, E — (d + 1)(1 —
log,q) — log,t. It is easy to see that that as ¢ increases from 1 to p, random walk
becomes less effective. The insight is that RW-BFS is more effective when there are

not many paths (g is smaller compared to ¢) that can lead to the same state.

Impacts of the dead ends and loops in G;. So far, we assumed there are no dead
ends nor loops in G4. For best-first search, because of the closed list, having dead
ends or loops in G4 does not change the number of heuristic evaluations for best-first

search. In other words, Theorem 12 still holds in this case.

However, for an unbiased random walk R, loops and dead ends in G4 would decrease
the probability of random walk visiting exit states outside G4. In other words, F, the
number of exit states that random walk can reach, becomes smaller in the presence
of dead ends and loops. Formally, dead end states and loops are evenly distributed
in G4, the probability that R can find an exit to G4 is lower than z% where FE is the

number of exit states in N(s,tl). The above analysis shows that random walk is more

89

helpful on problems where there are few loops and dead ends than problems where

dead ends and loops are common.

5.3.3 Parameter Settings

In the previous section, we have shown that under certain conditions the expected
number of heuristic evaluations in a random exploration can be smaller than that of
a deterministic search in finding plateau exits, and therefore it makes sense to switch
to random explorations when deterministic search is not making progress. Now we

investigate parameter settings related to random exploration.

Plateau detection. In Algorithm 8, a PLATEAU DETECTION procedure is invoked
during search to decide whether random exploration should be invoked. Our analysis
in the previous section shows that the plateau detection test cannot be too sensi-
tive nor too unresponsive. If it is too sensitive, random exploration will be invoked
frequently and the progress of the best-first search may be hindered by constant
interruption. This is especially important in the sequential implementations of Algo-
rithm 8. On the other hand, if this detection is unresponsive, our designed random
walks cannot help the best-first search as desired. Therefore, a balanced plateau

detection mechanism is needed.

Here we can take into consideration both the topological structure of local search, as
well as the progress made on heuristic search. Particularly, we maintain a history of
incumbent heuristic values h and the size of the closed list when h is decreased. We
run a linear regression and calculate r, the average number of states explored when
h is reduced by one. A random advancement process is triggered when the value of

h* is not reduced for r consecutive states.

To bypass potential blocks during deterministic search, we also maintain a moving
average h of heuristic values for m most recent states (excluding dead-end states).
Search switches to random advancement if h > iL(l +0). In our implementations m
is set to r/2 and ¢ is set to 0.2.

Length of a walk. The choice of [affects the efficiency of the random advancement.

The computational cost of generating a walk grows linearly with [, so it is desired that

90

[is short. We also want [/ to be long enough to walk over blocks in N to reach an exit
state. However, knowing how far away the block and exit states are is as difficult as
finding a path to the exit state. As we discussed in the last section, we can estimate
tl using d (d < tl < 2d), the radius of the plateau graph. We have found through
comprehensive experimentation that d is typically from 1 to 30 for the hy; heuristic
we use in random exploration. Given the large range of d, in our implementation, we

use four different [values in random advancement: 1, 4, 7 and 10.

Number of walks. Parameter n controls number of random walks conducted in a
random advancement and subsequently the number of heuristic evaluations in each
advancement. We select n by estimating the state coverage of random walks in N (s, ().
During the walk, the branch factor at each state is recorded by counting the number
of successor states. The average branch factor b is then calculated by taking a moving
average of the recorded branch factors. We pick n to be the min(2000, b'). This way,
when small [s such as 1 or 4 are used, n is accordingly smaller such that repetitively
random walks in small local regions such as N(s, 1) and N(s,4) are avoided. We also
cap the number of walks at 2000 to guarantee that random exploration returns to

deterministic search in a finite time.

5.4 Experimental Results

We report results in two parts. In the first part, we report our experimental results
on two variants of RW-BFS, namely, the sequential version (RW-BFS;) and the par-
allel version (RW-BFS,). In the second part, we report results from the Seventh
International Planning Competition held in 2011.

5.4.1 Part I: Results on IPC 6 (2008) Domains

The baseline in our comparison is LAMA [63], a best-first search planner that is
used as the base planner for deterministic search in RW-BFS; and RW-BFS,,. In our
experiment, all three planners use the same settings and same heuristic functions for

the best-first search part.

91

250

N

o

=]
T

-
v
o

=

=
o
o

number of solved instances

v
=]

- LAMA
-~ RW-BFS,
— RW-BFS,

0 50 100 150 200 250 300
search time (seconds)

Figure 5.2: Number of problem instances that are solvable by LAMA, RW-BFS;, and
RW-BFS,, in 300 seconds.

Parameters for random explorations are set according to our discussion in the previous
section. The number of advancements is set to 4. Both RW-BFS; and RW-BFS,, use

the same set of parameters.

In RW-BF'S,, line 16 in Algorithm 8 are running in parallel using 4 separate threads.
RW-BFS; runs the random exploration procedure inside Algorithm 7 sequentially.
For both algorithms, the open list is shared by random exploration and best-first
search so that possible exit states discovered by random exploration can be inserted

into the open list directly.

We test all domains in IPC 6 [4], including Elevators (elevator), Woodworking (wood),
PARC Printer (parc), Sokoban (sokoban), Openstack (open6a), Peg solitaire (peg),
Scanalyzer-3D (scan) and Transport (trans). All experiments are conducted on a
quad core workstation with a 2.4GHz CPU and 2GB memory. The running time

limit for each instance is set to 300 seconds.

Figure 5.2 shows the number of problem instances solved by the three planners. Both
RW-BFS; and RW-BFS, solve more problem instances than LAMA, the baseline
best-first search planner. In total, they solve 233, 210, and 204 instances, respectively.
We would like to point out that problems that LAMA cannot solve within 300s are

92

LAMA RW-BFS, RW-BFS,

P Total RW Total RW
T L E T [L E | T [& T L E | L
elevator-18 | - - - 9.9 | 151 | 17276 | 3.8 | 14 | 7319 | [1.94] [(138]] 11588 | 10
elevator-19| 5.8 | 183 | 8796 | 6.1 |[177)| 9820 | 1.5 | 9 | 2905 186 | 7039 | 4
elevator-20 162 | 9739 | 10.3 | 163 | 15799 | 2.9 | 13 | 5027 | 6.68 |(147)| 9422 | 31
elevator-23 | 14.3 | 161 | 17165 | 13.4 |[139]| 16744 | 5.8 | 24 | 7713 | (2.47) | 140 | 402 | 10
elevator-24 | 68.1 |(188)] 68344 231 | 33167 | 12.0 | 17 | 13385 | 93.58 | 191 | 90455 | 27
clevator-25 | - - - 268 | 41555 | 11.4 | 18 | 11596 | 57.63 51071 | 13
elevator-26 | - - - 59.1 |[261]| 51712 | 21.5 | 36 | 20086 | (30.81) | 265 | 17723 | 25
elevator-27 | 44.5 | 310 | 31249 | 42.4 | 353 | 31434 | 124 | 24 | 10220 1280 | 15
elevator-28 | - - - 25.0 | 276 | 16895 | 6.2 | 9 | 4407 | [14.23 12068 | 10
elevator-29 | 21.4 | 311 | 12797 |[11.3]] 308 | 7007 | 0.9 | 1 | 666 | 13.82 1641 | 24
elevator-30 | - - - | 104.3 | 306 | 63671 | 32.3 | 27 | 21124 12651 | 21
wood-3 4728 35 | 957 | 0.1 | 4| 603 1.4 106 | 1
wood-4 16731 | 18.5 | 94 | 64827 | 17.4 | 22 | 63017 | 14.48 | 102 | 60928 | 38
wood-7 32049 | 24.1 | 95 | 39638 | 22.3 | 14 | 37686 | (7.98) | 103 | 13132 | 20
wood-8 21623 16082 | 8.8 | 10 | 15443 | 1242 | 181 | 10423 | 10
wood-10 23544 | 87.7 | 168 | 85329 | 83.3 | 58 | 82607 164 | 21460 | 15
wood-14 15982 47 | 1808 | 0.3 | 9 | 1404 | 6.6 | 47 | 1418 | 81
wood-16 15592 | 23.6 | 179 | 51161 | 22.4 | 77 | 49425 | (1.17) | 178 | 5511 | 48
wood-17 37879 87 | 16655 | 6.3 | 14 | 15741 | 22.59 | 111 | 29709 | 20
wood-18 15128 | 317 | 102 | 52833 | 20.7 | 22 | 51333 98 | 31192 | 13
wood-19 17742 |(23.4 34498 | 21.8 | 22 | 33182 | 33.64 | 95 | 48797 | 10
w00d-20 - 50.3 50335 | 47.7 [102 | 48587 | (22.42] | 242 | 21465 | 110
wo0d-23 6013 15076 | 1.8 | 7 | 14740 | 41.11 95400 | 1
wood-26 19221 16312 | 4.9 | 13 | 15269 | 12.12 | 97 | 12305 | 15
wood-28 - 28.6 32746 | 27.9 | 24 | 32224 | (11.16] | 137 | 14005 | 91
wo0d-29 46700 | 54.9 67946 | 52.0 | 25 | 65589 | (39.60] | 144 | 32093 | 25
parc-17 5205 1765 | 6.4 | 1 | 154 93 | 1842 | 12
parc-24 6657 | 156.9 8546 | 129 | 1 | 301 20 | 4533 | 15
sokoban-14 100431 | 262.1 637299 | 152.1 | 13 | 124196 890 | 74000 | 120
sokoban-15 - 66.3 262600 | 11.9 | 2 | 9561 . 277 | 3784 | 10
sokoban-16 37963 | 99.7 324803 | 46.0 | 18 | 39134 | 63.27 |(222)[149122| 3
sokoban-17 243203 | 3.8 21339 | 1.0 | 1 | 1499 |(31.34] | 232 | 10346 | 14
sokoban-18 1007158 - - - - - - - - - -
sokoban-21 132057 | 103.9 | 411 |339820| 37.9 | 10 | 39425 410 | 95404 | 12
sokoban-22 667481 | - - - - |- - 713 | 172216 0

sokoban-23 30485 | 9.5 | 230 | 63234 | 1.7 | 2 | 4040 | 6.14 | 258 | 65120
sokoban-24 367882 312 [173380| 14.3 | 4 | 8915 | 161.41 | 313 |466868| 3
sokoban-25 35097 | 31.1 | 391 [122051| 5.7 | 5 | 5159 | 17.36 | 245 |105773| 12
sokoban-26 - | 109.4 | 417 | 450086 | 47.5 | 10 | 84417 583 | 128279 | 22
sokoban-27 482420 158 | 21916 | 1.4 | 4 | 2441 | 14.27 | 157 | 10719 | 1
sokoban-28 82203 | 54.1 | 436 |139494| 8.6 | 0 | 17230 465 | 6197 | 11
peg-29 37097 | 20.7 | 45 [161200| 11.8 | 0 |123121 45 | 13611 | 0
peg-30 395509 | 104.3 | 55 |499095| 31.2 | 0 |188839| 97.71 | 55 | 707 | 0
scan-29 3715 | 278.8| 81 | 3816 | 100 | 0 | 98 81 | 3403 | 0
trans-19 26068 | 214.6 | 331 | 67386 |127.8| 0 | 40901 | 89.35 | 331 | 26337 | 0

Table 5.2: Comparison of the search time (“T”), solution length (“L”), number of heuristic
evaluations (“E”) of LAMA, RW-BFS; and RW-BFS,. For RW-BFS,, “E” is the total
number of heuristic evaluations of all threads.

93

problems where there is a large plateau for it to explore. Both RW-BFS,; and RW-
BF'S, solve more problems due to the fact that some plateau exploration are avoided

during search.

In Table 5.2, we give detailed comparisons of three planners on all IPC-6 problems
for which random exploration is invoked. Problems in which random exploration is
never invoked are omitted from our comparison because in this case three algorithms

are essentially identical.

To show the contribution and overhead brought by random walk in RW-BFS,, we
also report the time spent in random walk (T7), the length of the sub-path found
by random exploration in the final solution path (L’), and the number of heuristic
evaluations in random exploration procedure. For RW-BFS,,, we report the length of
the sub-path (L) in the final solution path. We omit the time spent in random walk
and the number of heuristic evaluations in random exploration procedure for RW-
BF'S, as these two metrics are proportional to the runtime of the best-first search in
RW-BFS,, and do not reflect the efficiency of random walks.

We summarize three findings from Table 5.2.

First, these results show that for problems LAMA cannot solve within 300s, e.g.,
elevator-18, elevator-25, elevator-26, RW-BFS,; and RW-BFS, can successfully find
solutions in which substantial portions of the paths are generated by random walks.
Problems in Elevators and Woodworking domains usually have plateaus. Thus, best-
first search is frequently stuck on plateaus, which results in costing more search time
or even failing to find a solution. Experimental results on these domains clearly show

that random walk can assist best-first search to escape from plateaus.

Second, comparing the performance of two sequential planners LAMA and RW-BFS;
to RW-BF'S,, we see that the overhead brought in by alternating between random
walk and best-first search can be mitigated by using a parallel implementation, at
the cost of using more computing cores. For domains such as Elevator, RW-BFS,, can

reduce the solving times by half or more.

Third, according to our performance analysis, if the state space has ¢ > 1, the random

walk procedure may not be helpful. A closer look at problems in the Pegsol domain

94

Domain | LAMA | RW-BFS, | RW-BFS,
elevator 25 29

wood 28
parc 23 23

sokoban 24 24
openba 30 30 30
peg 30 30 30
scan 30 30 30
trans 30 30 30
Total | 220 227 (233)

Table 5.3: Number of solved instances for three planners on IPC 6 domains (Time limit is
300s).

reveals that they indeed have ¢ > 1. In the peg solitaire game, there can be multiple
moves at each state and there can be multiple action paths arriving at the same state.
Results on peg-29 and peg-30 confirmed our analysis that a random walk exploration
would not assist the best-first search much when ¢ is close to p. One the other hand,
problems in the Sokoban domain are well-known to have many loops and dead ends.
In this domain, RW-BFS, did not outperform LAMA, as random exploration is less

effective in finding exit states.

5.4.2 Part II: Results on IPC 7 (2011) Domains

Overview of the Seventh International Planning Competition (IPC 7)

The International Planning Competition is an event organized in the context of the
International Conference on Planning and Scheduling (ICAPS). The competition has
a set of goals, including, providing an empirical comparison of the state of the art of
planning systems, highlighting challenges to the Al Planning community, proposing
new directions for research and new links with other fields of Al, and providing new

data sets to be used by the research community as benchmarks [5].

The competition is organized into different tracks, including the deterministic track,

the learning track and the uncertainty track. We participated in the deterministic

95

track. This track covers classical planning problems with actions having associated
non-negative costs (not necessarily uniform). Apart from solving the problems within
reasonable time, the goal of the track is to find low-cost plans, where the cost is defined

as the sum of the costs of each plan’s actions.

There is no domain specific knowledge in all participant planners. In fact, bench-
mark problems were revealed after planner submission was completed. There are 14
domains in the benchmark. Each domain contains 20 problems. Each planner gets a
score from 0.00 to 1.00 for each solved task in every domain based on solution quality.
All planners are run on the same machine with a 6 GB RAM, 750 GB HD and a 30

minute time limit.

Roamer and Roamer-p Planners in IPC 7

As a team, we participated in the Seventh International Planning Competition (IPC
7) in 2011 with two planners, Roamer and Roamer-p. Both planners are based on

Algorithm 8. A detailed comparison of these two planners is presented in Table 5.4.

Roamer Roamer-p
algorithm RW-BFS; RW-BFS,
track sequential satisficing | multi-core satisficing
rank 5/28 4(2)/8
contributor(s) Lu and Xu Xu

Table 5.4: A comparison of Roamer and Roamer-p for IPC 7.

Roamer is a random walk assisted best-first search planner. At the core, Roamer uses
the sequential version of Algorithm 8 to accelerate best-first search. It is developed
on top of the LAMA planner [63]. Roamer participated in the sequential satisficing
sub-track under the deterministic track of IPC 7.

Plateau detection in Roamer is adaptive. Roamer keeps track of the number of
plateaus found during search as n, (reset to 0 when h is changed). If the value of
h is not decreased after m = 3000 + (np, — 1) % 1000 states, n, is increased by one,

and random explorations are triggered. Roamer would pause best-first search, and

96

invokes four rounds of random explorations, each with different parameters, to find an
exit to the plateau. States found by random exploration that have heuristics smaller

than h get inserted back to the open list for best-first search.

The Roamer planner is a joint work of Lu and I. I implemented the random exploration

logic for Roamer. Lu incorporated it with the base planner and tuned the parameters.

PDDL-SAS+ Translator

First Round
Best-
First Random Random Random
Search Walk Walk Walk
(LAMA)

Communication Queues

Second Round
(Weighted A*)

Figure 5.3: Structure of Roamer-p.

The Roamer-p Planner

Roamer-p is a multi-core planner that runs best-first search and random walks in
parallel. It is independently developed by me, with helpful suggestions from Lu.
Roamer-p participated in the multi-core satisficing sub-track under the deterministic
track of IPC 7.

Like Roamer, Roamer-p is also based on the LAMA planner. However, its architec-
ture is significantly different than a traditional sequential planner such as LAMA or

Roamer.

Figure 5.3 presents the structure of the Roamer-p planner. It first uses the PDDL-
SAS+ translator from LAMA to convert PDDL-encoded planning problems to SAS+
formalisms. Then, it adopts a multi-round search strategy to find solution paths.
The first-round search runs one thread of best-first search adapted from the LAMA
planner [63] and three threads of random walks. By the rules of IPC 7, all planners in

97

the multi-core track run on quad-core Linux boxes. Thus, we let Roamer-p use four
threads in the first-round search, three of them being random walk threads. Roamer-p

can be used with any number of random walk threads.

Random walk and best-first search threads run in parallel in Roamer-p. Roamer-
p uses two queues for the communication between random walks and the best-first
search. A shared queue @, is used for the best-first search thread to send states to
three random walk threads. Whenever a plateau is detected, a state on the plateau

is pushed to Q,., for random walks to explore.

For a random walk starting from s, when a new state is found with heuristic value
less than h(s), all states along the path from s to the new state are inserted into
another shared communication queue Q)rs. Best-first search fetches paths from Qyys,
evaluates heuristic values of states in those paths (as random walk would skip heuristic
evaluations for intermediate states along the path), and inserts all these states into
the open list. It is easy to prove that this communication mechanism preserves the

completeness of search.

For Roamer-p, the synergy between threads is vital to its performance. During the
search, there are cases where random walks are making slow progress while the best-
first search is advancing quickly (or vice versa). In these cases, we force threads to
check @, or Qs periodically. When the local best heuristic value is far behind the

global one, we force the thread to restart from a better state.

Roamer-p terminates when a goal state is found. States in the goal path may come
from different threads. States found by random walk are not necessarily in the closed
list, so Roamer-p re-assembles path segments together to report the complete goal
path.

IPC 7 Results for Roamer

Table 5.5 shows the final score of all planners in the sequential satisficing track. We
highlight domains where Roamer performs significantly better than the base planner
(lama-2008). These domains are woodworking (wood), elevators (elev) and barman.

These three domains all have large plateaus with few dead ends. The IPC 7 results

98

220 200
roamer

lama-2008 ——
arvand

roamer
lama-2008 ——
arvand

200 180 |

180 160 |
160
140 |
140
120 |
120
100 |

Quality score

100

80
80

MNumber of solved problems

60 60 r

40 40 ¢

20 20

1 10 100 1000 10000 1 10 100 1000 10000
Time (seconds) Time (seconds)

(a) Number of problems solved (b) Quality score

Figure 5.4: Number of problems solved and quality score over time for Roamer, Lama 2008
and Arvand. The x-axis is shown on a logarithmic scale.

have confirmed our analysis that RW-BFS works best on domains with few or no dead
ends. Roamer also outperforms Arvand, a stochastic search planner that inspired us
to conduct random walks during best-first search. Arvand relies solely on random
walks to solve the planning problems. While Arvand performs well on a number of
domains, it falls short on domains such as sokoban and parking (park), two domains
with many loops in the search space. We highlight the domains in which Roamer

outperforms Lama 2008 or Arvand in Table 5.5.

As we can see, by combining the best of two worlds, Roamer outperforms both Lama-
2008 and Arvand. In Figure 5.4, we show the number of problems solved and the
quality score over time by Roamer, Lama 2008 and Arvand. It is clear that Roamer
not only solves more problems than the other two over time, but consistently outper-

forms Lama 2008 and Arvand in terms of solution quality.

99

oged e ur o[qe)

9} }7J O} POULDIIOYS dIk SOWRU UTRWO(] "YorI} Sumysiyes [erjyuenbas o1y ur swouue[d e 10] ., DJT JO SHNSNY :G'C d[qR],

16°89 I8VST CL VLT 9V LBIVE 661 9L°C0C P €0C ST°S0C SS'TTIC TO'ETC 8C'9IC IR IVC LC 09T S9°€TE 1e30}
8G'IT | 0000 000 8%'0 0000 000 000 000 000 000 000 000 000 000 OTIT guerdooe
€6°IT | 0000 000 8¥'0 0000 000 000 000 000 000 000 0000 000 000 G¥'IT uerdooe
89°9T | 0000 000 000 000 000 €¥0 000 000 ¥9€ 0070 000 ¢cv 000 6€8 Iqeeteys
¢9'tc | 0000 000 000 000 00€ 000 000 000 000 000 000 86'TIT 97 8€C o-wuerdyes
6¥v'¢cy | 000 000 000 000 I8€E€T 000 000 000 000 000 8F'ST LT'IT €0¢ 000 pydo
L.y | 0000 000 000 000 98¢l 000 000 T20 000 000 00T ¥¥iT G689 88 TedseSepeut
0L6%v | L9°0 0070 L9'T 10¢ 9L¢ ¥9°9 000 000 000 €97 ¢l'c ¢e0l <1l L9¥ gjdod
09'v9 | 000 000 000 000 ¢Sr¢r 000 ¥60 669 000 9T 00T L< 70CT 8¢l | d-reoseSepew
LT'TL [T S9T L9T LLS @8F L0TT 000 000 99°0T €8 000 6L°G €20l SIT0I d3dady
1908 | 0000 000 y6 000 <¢9¢ <09 96 L9¢l 8I<CI €66 9%'0 08¢ €9T 9V'II dqo
G8°'I8 | 8¢'G 8¥'¢ ¢yl 000 99°L 000 8¢l 000 000 00°0 19y GqI'er 676 LT0T dsye£-sep
L9°68 | 0000 000 y6 000 <¢9¢ T¢6 8¢l TL¢l 69¢l 6€0I 69°'T 08¢ €9T 90¢I gdqo
99'¢6 | OV % LG9 8C'AT ¥I'9 €€9 000 Oc¥l 000 000 000 Ge'6 99vI ST0T 0.8 gdsqek
0486 | €69 GL'8 €L I¢€¢ 68L 000 ¥I¥L 000 000 000 Teel LL8 C6'8 GLOT jur-gdsyed
9G°GITI | S6¢ L9GI G9°¢ G¢9 GI'v 8E9T O0ETI OT'ST €8¢ 199 0S'T 8BEE TOVI VLTI 119
CG'LET | VO'C 000 €6'¢ 0Lc ¢<¢O09T T19¢l SGror v9¥IL 9911 LLT LECT OV'€l 8091 €L8I puea.e
C6°LET | €T ¢0¢ ET'€l €0GT 949 LgG 8I'V ¢6C€T €091 LSVI 09CT 790 69¢l P98I plempued
90°0ST | I6'T ¢0°¢ 006 €08T AT0T I88® 186 9F¥I ¥c'GT €9¢l 8ECEL 8LT 9YET T16°GIT JTeure]
QQ'TIST | 8.8 €EF 86'T €89 6991 <¢€Sl 199 €ET€Cl TL9T <CEVI 9¢6 8Y0I ¥.0I 8G9 | g-eunjoine-pjg
V9'IST | 0¢'c 99'€¢ L9LT LOGT GTOT LS¥% 6L°LT 980T 8G'ST 66°€CI €8 Ly'0 80F%I ST'AT 800¢-eure]
0L°LST | &7 68°€ 96'c G9'GT I¥F'8 8691 ¥€9 9VIT GO¥I 6691 9¢9T <C6'€l G¢0T 0791 uLIojrun3.Ioy
68°C9T | €¢F 8IVI G¢¢ LT'GT 048 TI1T'€T 006 &8¢l P8¢l 90°LT 6TCT ¥9¥lL OT'€T O0T¢l L[-SSpJ
16°69T | 86'T |9€°CI GL'8 |CCGT| G998 |ELPI) 9691 8€CI Ve¥I |[GLVI] |9GCT) L8E €967 P9VI Jotaeo.
Y0'cLT | €09 1891 98°'0 O08'€l 8I'L 8LGT 688 660 LLET 6VLAT 0€ST 9891 ¥PO¥L TI¢¥l | [-ounjojne-pj
OT'08T | 199 ¢Vl 0¢'c GLGT 9¢6 L9°LT L9% OVED TC¢€T 8991 OVST ¥¢'GT TSl LLET ¢SSP}
L8'F8T | ¢0F OV'61 ILLT TC€T SE€V LLET 99°€T <¢89T GC6 IevT 8F'8T €L8 S€9T 00°6T eqoad
1G°L0C | 8LF ¥6°LT C€GT ¢GAT 998 0991 <¢69T L0¢l LTAT $OLT ¥PST €0°LT LL'ST 9291 LT0g-rvure]
[e10], |I0o0ph ueuwreq [[epsiA aed sAwiou A’ sueia} Api} uado ueqoxos poom Odred ueds IJad Jouue[J

100

oged © ur o[qrY) 9} J1J 0] POUSLIOYS SI€ SOUIRU UTRTHO(]
‘o[n guryeptrea ueld ou1ys o) Surd[dde 1o9je yorI) SUDYSIYRs 9I00-1) N o) Ul siouure[d [[e 10J), D] JO SHNSAY :9°C d[qR],

0C'FI 68°LE 8B'IF PL'0S PCEI6LESTIGSGTE TICT 99 L9°89 BE'EL 00°SLC6°LL LE'C8 &30}
or'6 | 0000 000 00°0 00’0 000 000 000 000 000 000 000 OV6 000 000 uerdooe
08'8¢ | 0000 000 00°0 000 000 000 G20 000 000 00T €ELIT 00€ e8¥ 0GLI Tedsedepeut
¥6°8S | 0000 000 8G°T 000 000 000 L6 €€T 000 00T S88IT 069 €701 €8°LT | d-TedseSepewr

6V VIT | 00°L 00°0¢ 00°0 0S'TT 0000 000 000 ¥&9T €0°GT €8¢l SGI'6 ¢v'G €L6 894 Jur-gdsyed
GG'€cl | 0¢’'Cc 8T8 0’6 €49 BEII GL'8 8LFI €47 €29 098 88L €LVI ¢L8 001 d-ioureox
GC'TET | 09T 080 0L 000 000 L6°8T OVP'9T €T°L SL8T 00'6T €8'EC 8L CYLT GE€CI Psuyd
6S°cE€T | OV'T 000 LETI 0L°GT LT'AT ¢LL 000 99°LT GE€'IT 00'IT 8O'¢lI L06 8V0I &V uepdosrede

96°80¢ | 00'C 188 E8TI 00°2T 6961 S€E8T ¥9°GT SO'GT FO'GT €E€GT 89T LI9'8T CC¢'9I oGSl pJoypueadte
[e30], | 1I00Q [[e3}isia urqoyos ueurreq uodo Ao[d ApI} suea) yred poom sAwou Jod ueos oged Jouue[d

101

250 250
arvandherd

roamer-p ——
ayalsoplan

phsff
yahsp2-mt

arvandherd
roamer-p ——
ayalsoplan
phsff
yahsp2-mt

200 200

150

Quality score

100

MNumber of solved problems

50

1 10 100 1000 10000 1 10 100 1000 10000

Time (seconds) Time (seconds)

(a) Number of problems solved (b) Quality score

Figure 5.5: Number of problems solved and quality score over time for multi-core planners.
The x-axis is shown on a logarithmic scale.

IPC 7 Results for Roamer-p

Roamer-p solved 184 problems and achieved a quality score of 165 in IPC 7, ranking
the second among all 8 participating planners . We present the final score and ranking
of all 8 participants in the multicore satisficing track of IPC 7 in Table 5.6. Among
all 8 participants, Roamer-p ranked the 4th place, after Arvandherd, Ayalsoplan and
Phsft.

One interesting thing to notice is that Roamer-p has different performance charac-
teristics than other planners. Figure 5.5 shows the number of problems solved and
quality score over time for the top 5 participants in the multi-core track. Notice that
x-axis is on a logarithmic scale. It is expected that the curve for the number of prob-
lems solved versus time is linear for typical heuristic search planners, as computational
time grows exponentially with problem size. What is unusual in Figure 5.5(a) is that
Roamer-p solves more problems in the [1000, 1800) interval, whereas other planners

make slow progress during the same period.

'Roamer-p did not receive points in 39 different problems in the following domains (the number of
problems affected shown between parenthesis): nomystery (1), barman (7), parking (6), scanalyzer
(1), sokoban (7), tidybot (3), transport(1), visitall (4) and woodworking (9), even though it suc-
cessfully solved these problems. A strict IPC 7 rule was enforced that gives zero points to planners
that write intermediate invalid plans despite the final plan being valid. If Roamer-p’s intermediate
invalid plans had not been counted against it, Roamer-p would have ranked the second [51].

102

This peculiar behavior is rooted in the inert behavior of random exploration. Recall
that random exploration is most effective in accelerating best-first search when search
is stuck on plateau exploration. In practice, plateau exploration typically happens in
later stages of search, where there are many blocks and traps in the open list. Because

of that, Roamer-p scales well with problem size.

One would expect Roamer-p to perform even better if it is given more time, since the
cutoff time for IPC is at 1800 seconds. We have conducted a different experiment
and validated this hypothesis on a multi-core machine with 2.4GHz CPU and 4GB of
memory. Given a time limit of 3600s, Roamer-p can solves 246 problems out of 280
problems, whereas the winner of the multi-core tracker, ArvandHerd, can solve 247
problems within an hour. This result, together with the results for IPC 7, show that

Roamer-p is a competitive, state-of-the-art planner.

To sum up, we have presented the experimental results on both IPC 6 and IPC 7
domains. The experimental results show that random walk is an efficient scheme in
accelerating heuristic search, especially in places where heuristic search are making
slow progress. The overhead brought in by random walk is well paid off by the
ability of jump out of traps and jump over blocks that occurred in heuristic search.
The results from IPC 7 also validated that the RW-BFS algorithm framework we
proposed in this chapter can lead to competitive, state-of-the-art planning systems

such as Roamer and Roamer-p.

5.5 Summary

Inspired by the Monte-Carlo Random Walk planner and the observation that heuris-
tic search spends most of its time doing plateau exploration, we have developed an

algorithm framework that can accelerate heuristic search using random walk.

By analyzing the structure of the local region in the search space, we have iden-
tified scenarios where random walk can accelerate heuristic search efficiently, and
proposed a random walk assisted best-first search algorithm framework. We have
also implemented two planners, Roamer and Roamer-p, and participated in the Sev-

enth International Planning Competition in 2011. Both of our planners performed

103

well in the competition. The results we gathered from a wide spectrum of testing
domains have proven that the proposed framework can accelerate heuristic search for

Al planning.

104

Chapter 6

Accelerating Heuristic Search with

Cloud Computing

We have looked at ways to accelerate heuristic search by analyzing the problem struc-
ture in Chapter 3 and 4, and ways to escape from traps and blocks in the search space
by using random walk in Chapter 5. In this chapter, we focus on improving the effi-
ciency of search by developing new search algorithms and search strategies that can

utilize advanced, more powerful computing platforms, such as cloud computing.

Cloud computing is emerging as a prominent computing model. It provides an inex-
pensive, highly accessible alternative to other traditional high-performance comput-
ers. It allows small teams and even individual users to routinely have access to the
same large-scale computing facilities used by large companies and organizations, such

as Amazon, Google, and Microsoft.

Cloud computing architectures have the potential to make heuristic search much
more efficient. However, there are also some key challenges that need to be ad-
dressed. For instance, cloud platforms typically provide communication mechanisms
that are designed for distributed web applications. These mechanisms have high la-
tency compared with the high-speed communication in computing infrastructures like

supercomputers and large-scale clusters.

To address these challenges, we propose a portfolio search algorithm. In particular, we
run Monte-Carlo Random Walk (MCRW), a stochastic search algorithm for classical
planning [56]. Our key observation is that some stochastic algorithms, such as MCRW,

exhibit high variability of their running time. This means when running with different

105

random seeds, MCRW may have very different running times. Such a variability is
attractive for cloud computing because even a simple scheme that launches parallel
independent runs can have high (sometimes superlinear) speedup without requiring

much inter-processor communication.

In addition to the simple algorithm, we also develop an enhanced portfolio search
algorithm with multiple parameter settings. In MCRW, the parameters can greatly
impact the search performance. By running a portfolio of searches with varying
parameter settings, our scheme greatly enhances the possibility of getting the param-
eter value to perform well. Our experimental results show this scheme significantly

improves efficiency and solution quality.

We further implement our algorithms in Windows Azure, a representative commercial
cloud whose potential for scientific research remains largely unexplored. We study the
performance characteristics of Windows Azure, and then develop a scalable Azure-
based scheme for stochastic search algorithms. We report experimental results to
show the advantages of the proposed scheme, including high speedup, scalability,
and reduced running time variance. We also show that our scheme is economically

sensible.

6.1 Background

6.1.1 Parallel Computing

Parallel computing is a form of computation in which the computations are carried
out simultaneously, usually on many computational nodes. A computational node is
usually a processor (e.g. a CPU) associated with memory and other components.
Nodes can carry out computations independently, and can communicate with other
nodes. Here are the relevant characteristics of parallel computing. First, for an exe-
cution with n computational nodes, the speedup S, is defined as S, = T;/T,,, where T}
is the sequential runtime and 7}, is the execution time of the parallel program. Sec-
ond, the efficiency is defined as E, = S,/n, which measures how well the computing
resources are utilized. Third, the overhead is O, = W,/W defined as the ratio of

106

the work performed by parallel formulation (W,) to that by sequential formulation
(W).

Search algorithms that are suitable for parallel and multi-core machines have been
extensively studied [48, 22, 64, 7, 77]. However, expensive computing infrastructures,
such as supercomputers and large-scale clusters, are traditionally available to only a
limited number of projects and researchers. As a results, most Al applications, with
access to only commodity computers and clusters, cannot benefit from the efficiency

improvements of high-performance parallel search algorithms.

6.1.2 Cloud Computing

A cloud is a type of parallel and distributed system consisting of a collection of inter-
connected and virtualized computers that are dynamically provisioned and presented
as one or more unified computing resources [15, 73]. Cloud computing platforms
have been used for scientific applications. For instance, AzureBlast [53] studied the
applicability of the Windows Azure cloud to the BLAST algorithm using a trivial
parallelization with little communication due to the high communication latency.
There is a work [55] that compared the utility of a supercomputer to that of public
clouds, and analyzed the service times prior to actual execution. The conclusion
is that while the supercomputer might be much faster, the turnaround time might
actually be much better for the cloud because of the elapsed time from submission to

the completion of execution, which gives another reason for our research.

6.1.3 Parallel Search Algorithms

Early work on parallel search is surveyed in [31]. For shared memory systems, syn-
chronized schemes such as layer synchronization and delayed duplicate detection, do
not scale to very large amounts of processors; results with up to eight cores have been
reported in [80]. For distributed memory architectures, inter-processor communica-
tion is generally needed to ensure efficiency and correctness [64]. Recently, the HDA*

algorithm [45], based on asynchronous MPI communication, scales well to up to 128

107

processing cores. These parallel algorithms are not suitable for the cloud environment

which has high latency in inter-process communication and instance failures.

6.1.4 Stochastic Search

As another major class of search algorithms, stochastic search has also been studied
for its parallelization. A recent work studied the parallelization of WalkSAT [54],
which shows promising results for both a simple scheme that launches multiple in-
dependent runs and a scheme with asynchronous sharing of learned clauses. As an
important stochastic search method, Monte-Carlo Random Walk, has been studied
and applied to several areas of automated planning, such as sampling possible trajec-
tories in automated planning [23, 56], probabilistic planning [12] and robot motion

planning [50].

6.1.5 Portfolio Search

A portfolio of algorithms is a collection of different algorithms and/or different copies
of the same algorithm running in parallel on different processors or interleaved on
one processor [29]. The portfolio idea has been applied to automated planning [66],
SAT solver [32] and SMT solver [75]. Theoretical and experimental analyses show
that portfolio search can significantly decrease variances of heavy-tailed distributions

associated with SAT and constraint satisfaction solvers [30].

6.2 Portfolio Stochastic Search Framework

In this section, we present a portfolio stochastic search (PoSS) algorithm designed to
take advantage of the cloud platform while steering away from high-latency commu-

nication and node failure problems of cloud platforms.

108

© 0 N o ok WN =

e O T~ T T e =
© 00 N & A W N = O

Algorithm 9: MCRW(II)

Input: a classical planning problem II
Output: a solution plan
S <4 Sr;
hmin — h(SI) ;
counter <— 0 ;
while s does not satisfy sq do
if counter > ¢™ or dead-end(s) then
S < Sr;
Ronin < h(sp) ;
counter <— 0 ;
end
s <= RandomW alk(s,1I) ;
if h(s) < hpin then
Ronin < h(8);
counter <— 0;
end
else
‘ counter <— counter + 1;
end

end
return plan;

6.2.1 Monte-Carlo Random Walk (MCRW)

Our algorithm framework is based on the Monte-Carlo Random Walk (MCRW)
method. MCRW is a sequential stochastic search method for planning [56]. It uses a
random exploration of the local neighborhood of a search state for selecting a promis-

ing action sequence.

MCRW achieves comparable, and sometimes superior, performance to the best de-
terministic search algorithms in a number of testing domains [2]. It benefits from its
exploration strategies. The method is robust in the presence of misleading heuristic
estimates, since it obtains information from the local neighborhood. Also, the random

exploration can effectively escape from local minima.

Algorithm 9 shows the framework of MCRW in detail. Given a SAS+ planning
problem II, MCRW builds a chain of states s; — s; — -+ — s, such that s; is the

109

Random Exploration MCRW
objective plateau exploration finding goal state
usage when search is stuck replaces heuristic search
restarting policy | no restarting policy with restarting policy
termination terminate in finite time | no guarantee on termination

Table 6.1: A comparison between Random Exploration and MCRW.

initial state, s, is a goal state, and each transition s; — s;11 uses an action sequence
found by random walk in the neighborhood of the last state (Line 10). MCRW search
fails to find a solution when the minimum obtained h-value does not improve after
n trials, or a dead-end state is encountered (Line 6). In this case the MCRW search
simply restarts from s; (Line 7), and resets the counter to 0. The algorithm returns
a solution plan which contains a sequence of actions changing state from s; to a goal

state s¢ that includes all intermediate paths found by random walks (Line 15).

Note that MCRW and the RANDOM EXPLORATION procedure we used to assist best-
first search in the last chapter both use the same inner loop for conducting random
walks in the state space. The difference is that MCRW is a full-featured stochastic
search method that can find a complete plan from the initial state to a goal state,
whereas RANDOM EXPLORATION is used as a subroutine to find plan segments dur-
ing heuristic search. We list the differences between these two in Table 6.1. RANDOM
EXPLORATION has no builtin restarting policy, whereas MCRW restarts the random
walk from the initial state when a dead-end state is encountered. The running time
of RANDOM EXPLORATION is intentionally capped to guarantee a predictable per-
formance. On the other hand, MCRW may not terminate if it cannot find a better

state (in terms of heuristic value) to move to.

6.2.2 Variability in MCRW Searches

MCRW search often exhibits a remarkable variability in the solving time of any par-
ticular problem instance, which can be exploited by parallel search algorithms to
accomplish short runs. Figure 6.1 shows the run-time distribution of MCRW algo-
rithm on six planning problems from the Fourth International Planning Competition
(IPC 4) [2]. Table 6.2 gives the mean, the variance and the standard deviation of the

110

(d) Philosopher 13 (e) Satellite-30 (f) PSR-large-24

Figure 6.1: The run-time distribution of 500 MCRW runs with different random seeds on
six planning problems.

distribution. We can see that many shorter runs take much less time than the average
run-time (shown as the green line in Figure 6.1). Such a large variability can actually
benefit a parallel scheme that makes multiple independent runs and terminate as soon

as one run finds a solution.

airport-47 | tankage-40 | notankage-50 | philosopher-13 | satellite-30 | psr-large-24
1 9288.6 1242.2 279.8 5036.9 1995.7 1445.7
o? 7.8e7 1.4e6 1.3eb 2.9e7 1.2e6 1.9e6
o 8856.7 1196.2 357.4 5355.4 1104.1 1388.3

Table 6.2: The mean (p), the variance (02) and the standard deviation (o) of 500 MCRW
runs with different random seeds on six planning problems.

6.2.3 Portfolio Stochastic Search (PoSS) Algorithm

We propose a Portfolio Stochastic Search algorithm framework designed to take ad-

vantage of the short runs to get substantial speedup.

Algorithm 10 shows the framework of Portfolio Stochastic Search (PoSS). It simply
calls N processes to run the MCRW procedure simultaneously and independently
111

N N

9]

Algorithm 10: PoSS(II)

Input: a classical planning problem II
Output: a solution plan
for each processor P;,1 <1 < N do
plan < MCRW(II);
if plan is a solution then
send solution to controller;
// controller would abort all other processors
end

end

7 return plan;

(Line 2). The node that finds the solution would send the solution to a central
controller (Line 4). The central controller would then abort all processes. We use
asynchronized communication between nodes and the central controller. There is no
direct communication between computing nodes, which makes Algorithm 10 perfectly
suitable for cloud computing architecture. PoSS also can tolerate the failure of pro-
cessors since the search of each individual processor is independent where failures on

one computational would not affect other processors.

When the communication time between each MCRW and the central controller is
minimized, the running time of PoSS is the minimal solving time of N independent
runs of MCRW.

We denote the running time of sequential MCRW and PoSS searches by random
variable T, and T*, and the probability of running time shorter than ¢ for MCRW
and PoSS searches by p,,(z < t) and p*(z < t) , respectively. Given N MCRW

searches in a portfolio, we have:

T* = {t|t = min{ty,te, -+ ,tn},t; € Trn}
p*(z < t) = pp(min{ty, ta, -+ ty} < 1)
=1 —=pulti > O)pn(ta > 1) pultn > t)
=1 —pm(z>t)Y
=1—(1—pu(z<t)".

112

For instance, suppose p,,(z < t) = 0.3 and N = 8, we have p*(z < t) = 1—(1-0.3)% =
0.95. This means if 30% of the time an MCRW search terminates within ¢ seconds,
the corresponding portfolio stochastic search would terminate within ¢ seconds at a
probability of 0.95. Thus, even though the probability of short runs is relatively small
in sequential MCRW search, the probability of hitting those short runs is large when
we have a portfolio of MCRW searches.

Another insight we can draw from the above analysis is that we can drastically increase
p*(z < t) if py(x < t) is increased. For the most part, the probabilistic distribution
Pm is determined by the efficiency of MCRW search itself. That in turn, is determined
by the problem structure and the parameters for MCRW. With the problem struc-
ture fixed, we focus on finding proper parameter configurations to accelerate MCRW

search.

6.2.4 Enhanced PoSS with Dovetailing

The MCRW algorithm has a few parameters affecting its performance, among which
n (number of walks) and [(length of walk) are the most important, since they directly
control the process of escaping from local minima and plateaus. If n and [are too
small, the local search method is greedy as it tries to immediately exploit their local
knowledge instead of exploring the neighborhood of current state. On the other hand,
if they are too large, the search may take a long time on exploring the neighborhood
of the current state. This exploitation—exploration tradeoff has long been observed
in local search [8, 47].

As noted in the last chapter, setting the best parameter values for the random walk
procedure can be challenging because we do not have complete information about the
state space. MCRW by default sets n = 2000 and [= 10, which are tuned offline and
give good average performance. However, there is no guarantee that this setting will
perform well on each individual problem. As an example, we test different parameter
values on a randomly selected problem: Airport-17. For each parameter setting,
we run MCRW 10 times to get the average running time. The results presented in
Figure 6.2 show that the performance with the default setting can be improved by

arranging some other parameter settings.

113

4000 T T T T T T T 40000

35001 35000

w
o
S
S

30000

N
@
o
S

25000

20001 20000

-
173
o
S
T

15000

=
o
S
S
T

10000

Running time (seconds)
Running time (seconds)

X
50001 x

o

o

S
T

o

L L L H L H L H L H
500 1000 1500 2000 2500 3000 3500 4000 00 5 10 15 20

L

o

(a) Number of walks vs running time (b) Length of walk vs running time

Figure 6.2: The average running time of the MCRW algorithm with different parameter
settings on problem Airport-17.

Dovetailing is a procedure that performs search with multiple parameter settings and
algorithms simultaneously [66]. Tt takes as its input a set of pairs of search algorithms
and configurations A = {(ao, co), (a1,¢1), -, (an,c,)} where ¢; is a configuration for
algorithm a;. The set A is also called an algorithm portfolio. Each computational

node takes parameter settings from a candidate configuration set C' = {cg, ¢1, -+ , ¢}

The dovetailing version of PoSS, PoSS?, adopts the following configurations. We set
two general ranges for n and [, where n is from 200 to 3200, and [is from 1 to
15. These two ranges are set based on our empirical studies on planning domains.
They are general enough to cover a vast range of planning domains in International
Planning Competitions. In PoSS? each processor would perform an independent
MCRW search with a set of parameters drawn uniformly from the aforementioned

range.

6.3 System Implementation

We have implemented PoSS, PoSS? in both parallel and cloud computing environ-
ments. For the parallel computing environment, we used MPI message passing for
node communication. The Azure implementation is proven to be technologically

challenging. We record our experiences here.

114

Y

/ Job Control Queue

»

Web Portal
(Web role)
v . RS
Results Queue A
« ...

Figure 6.3: System architecture for PoSS in Windows Azure.

Windows Azure is a representative cloud computing system [16]. It provides a
Windows-based cloud computing environment for running applications and storing
data on servers in Microsoft data centers. Windows Azure offers web roles and worker
roles that can be used for web hosting and computation respectively. It also provides
communication mechanisms like Queue which web and worker roles can use to com-
municate with each other using asynchronized APIs. It is important to note that
the latency of communication using Azure Queue is high. On average, adding or
retrieving a message of 512 bytes in the queue requires as long as 20 ms, as measured
in [38]. We also performed some tests by ourselves and found that Windows Azure
Queue can support at most 100 message insertions and retrievals using its RESTful
API. Therefore, it is not practical to use parallel algorithms that are designed for high
performance clusters with low latency communication infrastructure. Instead, we run

MRW algorithms in parallel with very limited communication in Windows Azure .

The system architecture that we use to implement PoSS and PoSS? in Windows Azure
is presented in Figure 6.3. We use an Azure web role to provide a web portal for users
to submit jobs. The web role dispatches jobs to worker roles using a job control queue.
For the PoSS algorithm with N processors, a web role will insert N messages into the
job control queue, each containing a job ID, a set of initial parameters and a pointer
to the planning problem. We have stored all IPC planning problems in a distributed

file system in Azure so workers do not need to retrieve them from the web role.

Worker roles listens to the task queue. If a worker role is not currently working on
any planning jobs, and there is a new job in the control queue, the worker role would
consume the message and start the MCRM search. Parameters in the message are
used to initialize the MCRW search. Once the MCRW search on a worker role finds

a solution, it sends a done message, alone with the job ID, to the job control queue.

115

Other worker roles that are working on the same planning problem, identified by
the job ID, listening to the job control queue asynchronously, will then terminate

promptly once the done message is posted.

The finished worker role will also send its solution and running time to the result
queue for result collection. We separate the result queue and the job control queue
because we would not want workers to be burdened by result messages, which usually
contain a large amount of data and performance statistics. Such a design also leads to
minimum communication, while still giving prompt termination of the PoSS algorithm

once a solution plan is found.

Portfolio Stochastic Search Planning
System on Azure

Email address

Choose your problem instance | Airport 01 3

Domain pddl file
_Choose File | No file chosen
Problem pddi file

Choose File | NoO file chosen

* email youxu@wustl.edu for bugs.
_| Use dovetailing

Submit

Figure 6.4: A simple Web UI for users to submit planning tasks to PoSS running in
Windows Azure.

We have ported the MCRW planner, which is originally developed in C++ on a Linux
environment, onto a managed .NET environment in Windows Azure. We have also
implemented our own APIs written in C++ for MCRW to access the queues and blob
services provided by Windows Azure. Although there are APIs on the .NET platform
provided by the Azure SDK to operate the Azure queues and blobs, these existing

APIs are not easily accessible from native codes.

116

Hence, we write our own APIs, which use the RESTful APIs and plain stateless HT'TP
protocols to access and operate the tables, queues and blobs. Our APIs implement
the base64, SHA256 and HMAC algorithm for authentication and HTTP requests
using the cUrl library. We plan to open source the PoSS planning system as well as

the C++ APIs for Azure cloud after some code cleanup.

Along with the APIs, we also provide a simple Web Ul (Figure 6.4) where users who
are interested in solving planning problems can use our system as a service. Users can
submit planning jobs by submitting standard PDDL files for domains and problems.
Alternatively, users can choose from pre-loaded IPC domains. The solutions are

emailed to users as an email attachment.

It is worth noting that both the APIs and the web UI we developed can be extended
to work with other planners running in Azure. We believe that this work would
ease the way for planning researchers to experiment with new research ideas in cloud
platforms such as Windows Azure. They would make planning more accessible to
users who are not necessarily familiar with or do not have access to state-of-the-art

planners.

6.4 Experimental Results

We present our experimental results in two parts by evaluating the performance of
MCRW, PoSS and PoSS? in a parallel computing cluster provided by Washington
University and in Windows Azure cloud. Our experiments are conducted for problem
domains from the Fourth International Planning competition (IPC 4) [2]. These do-
mains are Airport (air), Pipesworld Tankage (tank), Pipesworld NoTankage (notank),
Dining Philosophers (phi), Satellite (sate) and Power Supply Restoration-PSR Large
(psr). We pick the most challenging problems (usually with larger problem indices)

in each domain for the experiments.

117

6.4.1 Results for Parallel Computing

Here we run all experiments in a cluster with two computing nodes where each node
has 8 Dual Core AMD Opteron Processors (2.15GHz) and 26GB memory. We test
the parallelism with 8 and 16 MCRW instances in PoSS and PoSS?. The time limit,
for all the instances, is set to 3600 seconds. Intra-node communication for PoSS and

PoSS? are implemented using the MPI message passing library.

MCRW PoSS PoSS?
Problems 1 8 16 8 16
T [#| T [S[#| T [S[#| T S [#| T S [#
air-38 246.1 10| 128.1 |1.9/10| 115.9 [2.1]10| 28.7 |[8.6]| 10| 29.4 | 8.4 | 10
air-39 2228.6 | 5 [1046.8/2.1|10| 493.2 |4.5|10| 319.4 | 7.0 |10 |257.3 | 8.7 |10
air-40 1287.0 | 8 | 515.6 |2.5/10| 350.0 [3.7/10{ 252.5 | 5.1 | 10| 145.6 | 8.8 |10
air-41 1262.2 |10| 232.7 |5.4]10| 202.8 [6.2]10] 49.0 |[25.7] 10| 55.0 10
air-42 708.9 | 1|704.6 |1.0| 8| 930.8 [0.8/10| 502.6 | 1.4 | 10| 285.7| 2.5 |10
air-43 1643.6 | 1| 980.1 |1.7/10] 730.6 |2.2]10| 411.6 | 4.0 | 10| 305.0 | 5.4 |10
air-44 726.9 (10| 394.5 [1.8]10] 313.1 2.3]10| 90.0 10]102.2] 7.1 |10
air-45 1606.8 | 9| 511.8 |3.1]10| 451.5 |3.6]10| 176.5 10 [167.4| 9.6 |10
air-46 2069.5 | 1 |2163.6|1.4| 7 |1116.6/2.7|10| 718.7 | 4.1 |10 | 734.7| 4.0 | 10
air-47 1649.2 | 2 12912.4|0.6| 3 |2118.7]0.8| 7 [1543.8| 1.1 | 10]1030.5| 1.6 |10
Summary |14328.9]57(9590.0(1.5(88(6823.2(2.1[97(4092.9] 3.5 [100[3112.9] 4.6 [100

Table 6.3: Comparison of MCRW and PoSS in different number of processors and strategies
for the Airport domain. Problems with super linear speedups are highlighted.

For each domain, we choose the 10 hardest problem instances (measured by the
average running time of 10 independent MCRW runs). Due to the statistic nature of
these algorithms, we run algorithms on each instance 10 times and report the average
running time here. Tables 6.3, 6.4, 6.5, 6.6, 6.7 and 6.8 give the results of MCRW,
PoSS and PoSS? algorithms in IPC-4 domains. In these tables, “T”, “S” and “#”
represent the average running time, the speedup and the number of runs when an

algorithm successfully finds a solution within the time limit.

From these tables, we can see that both PoSS and PoSS? largely reduce the running
time and provide substantial speedups. For instance, in problems such as air-41, tank-
32, tank-33 and psr-17, they achieve super linear speedups. Super linear speedup

means we achieve a speedup of more than n with n processors. These results show

118

MCRW PoSS PoSS?
Problems 1 8 16 8 16

T [#] T [S[#| T[S T[#| T[] S [#| T S [#
tank-32 | 278.5 10| 38.1 | 7.3 |10 [12.9 |[21.6] 10 | 10.8 |[25.8] 10 | 10.9 |[25.6]| 10
tank-33 |1432.1/10| 164.7 10| 35.1 10| 71.8 10 | 54.6 10
tank-34 | 262.2 10| 55.2 | 4.8 |10 [29.4 | 8.9 |10 |21.4 10 | 25.7 | 10.2 | 10
tank-35 | 526.0 10| 169.1 | 3.1 | 10 [82.6 | 6.4 | 10[60.2| 8.7 |10|70.0| 7.5 |10
tank-36 [1231.9/10| 296.4 | 4.2 | 10 [161.1| 7.6 | 10 [125.2 10 |137.7| 8.9 |10
tank-37 [871.3 | 9| 155.4 | 5.6 | 10 | 78.4 | 11.1 | 10 | 74.1 10 [88.7] 9.8 |10
tank-38 |1054.3/10| 409.3 | 2.6 | 10 [132.1| 8.0 | 10 |107.4 10 |144.2| 7.3 |10
tank-39 | 467.1 |10| 200.6 | 2.3 | 10 [114.9| 4.1 |10 [123.2| 3.8 |10 |9L.7 | 5.1 |10
tank-40 | 861.4 |10| 326.4 | 2.6 | 10 [187.3| 4.6 | 10 [281.6| 3.1 |10 [152.1| 5.7 |10
tank-41 | 114.6 |10 21.8 | 5.3 |10 | 11.2|10.3 |10 | 17.5| 6.6 | 10| 12.2| 9.4 |10
Summary |7099.6]99[1837.0[3.9 [100[844.9] 8.4 [100[893.2] 7.9 [100/787.9] 9.0 [100

Table 6.4: Comparison of MCRW and PoSS in different number of processors and strategies
for the Pipesworld Tankage domain. Problems with super linear speedups are highlighted.

MCRW PoSS PoSS?
Problems 1 8 16 8 16

T |#] T S|#| T S|#| T S|#| T S |#
notank-40 24.6 10| 13.8 |1.8]10| 14.9 |1.6|10| 5.7 [4.3|10| 8.0 [3.1]|10
notank-41 8.5 |10| 4.1 |2.1{10| 4.4 |1.9/10| 1.6 |5.3]10| 2.0 |4.3|10
notank-43 616.8 652.5 [0.9/10| 487.2 [1.3|10(1144.2|0.5|10| 339.5 |1.8|10
notank-44 |2436.0| 1 |2091.9|1.2| 6 [1910.8|1.3| 8 |1638.5|1.5| 7 |1010.6|2.4|10
notank-45 410.0 [10| 90.9 |4.5]10| 126.1 |3.3|10| 92.7 [4.4|10| 55.0 |7.5|10
notank-46 |1676.8| 4 | 514.7 |3.3|10| 574.5 |2.9]10|1277.3|1.3|10| 309.3 |5.4|10
notank-47 [1097.9] 2 |1225.6|0.9| 8 | 487.7 [2.3] 9 {1105.0{1.0| 9 [1365.6/0.8| 9
notank-48 |1636.1| 1 |{1038.4|1.6| 9 | 571.3 |2.9]10|1180.4|1.4|10| 529.8 |3.1|10
notank-49 81.9 [10| 42.0 |1.9]10| 47.0 |1.7|/10| 13.1 [6.2|10| 22.8 [3.6/10
notank-50 165.9 |10] 77.1 |2.2|10| 83.6 |2.0{10| 28.2 |5.9|10| 48.8 |3.4|10
Summary [8154.5[60|5751.1|1.4|93[4307.3]1.9/97|6486.7|1.3/96(3691.3|2.2199

Table 6.5: Comparison of MCRW and PoSS in different number of processors and strategies
for the Pipesworld NoTankage domain.

119

MCRW PoSS PoSS?
Problems 1 8 16 8 16
T [#] T [S [# T [S[# T [ST#| T S [#
phi-6 46.1 |10| 5.7 |[(8.1)[10[1.3 [[35.0]j10] 3.3 [13.8]{10| 1.1 |[43.8]] 10
phi-7 14.0 (10| 2.6 | 5.5 [10| 1.3 |10.5[10| 0.5 10| 0.7 10
phi-8 67.6 |10| 10.0 | 6.8 |10 4.0 010 3.5 10| 1.9 10
phi-9 41.2 |10| 7.2 | 5.7 |10| 1.9 |21.4]/10 3.3 10| 2.4 10
phi-10 [1006.4|10| 181.1 | 5.6 |10| 42.7 |(23.6)|10| 16.5 10| 8.3 10
phi-11 130.8 10| 11.1 |(11.8]{10] 12.4 | 10.6 |10 17.9 | 7.3 [10| 10.4 | 12.5 | 10
phi-12 929.7| 8| 94.3 10/ 120.5 | 7.7 |10] 20.9 10 | 30.0 10
phi-13 |1747.5/ 6 | 573.1 | 3.0 |10/ 194.0 | 9.0 |10 85.3 |(20.5) 10 | 61.9|(28.3]|10
phi-14 - |0]1768.9] - |7|1215.0] - |5|486.1| - [10[208.5 - |10
phi-15 - |0]939.4] - |4/13055] - |8|751.0| - [10[522.9] - |10
Summary |3983.3[74[3593.5| 1.1 [91]2898.7| 1.4 [93[1388.4] 2.9 [100/848.1] 4.7 [100

Table 6.6: Comparison of MCRW and PoSS in different number of processors and strategies

for the Philosophier domain. Problems with super linear speedups are highlighted.

MCRW PoSS PoSS?
Problems 1 8 16 8 16
T [#| T [S[#| T [S[#| T [S[#]| T [S|#
sate-21 17.1 10| 11.5 |1.5/10| 104 (1.6|/ 10| 6.1 |2.8{10| 5.8 |2.9|10
sate-22 43.6 | 10| 23.2 [1.9|/ 10| 20.6 |2.1| 10| 11.5 |3.8] 10| 12.6 |3.5| 10
sate-23 272.1110| 76.2 |3.6/ 10| 61.4 |4.4| 10| 54.3 [5.0/ 10| 58.2 [4.7| 10
sate-24 972.3 110 | 302.5 (3.2 10| 223.3 |4.4| 10 | 375.8 |2.6] 10 | 246.6 [3.9| 10
sate-25 1474.5| 10 | 359.8 |4.1| 10 | 364.4 {4.0| 10 | 558.6 |2.6| 10 | 301.7 |4.9| 10
sate-26 1298.7] 10 | 474.9 |2.7| 10 | 324.7 (4.0 10 | 624.6 |2.1| 10 | 318.6 |4.1| 10
sate-27 1239.2| 10 | 426.5 [2.9| 10 | 364.4 {3.4| 10 | 248.3 |5.0| 10 | 246.3 |5.0| 10
sate-28 475.51101|223.1 |2.1| 10| 215.4 |12.2] 10 | 153.8 |3.1| 10 | 141.7 |3.4| 10
sate-29 822.1 10| 388.9 (2.1| 10| 349.2 |2.4| 10 | 211.1 {3.9| 10 | 224.5 |3.7| 10
sate-30 1753.8/ 10 | 701.8 |2.5| 10 | 677.9 {2.6]| 10 | 390.3 |4.5| 10 | 358.0 |4.9| 10
Summary |8368.9/100|2988.5|2.8|100(2611.6|3.2{100|2634.6|3.2|/100{1913.9|4.4|100

Table 6.7: Comparison of MCRW and PoSS in different number of processors and strategies

for the Satellite domain.

120

MCRW PoSS PoSSs?
Problems 1 8 16 8 16
T [#] T | S[#| T | S [#| T] S [#| T S [#
psr-16 0.9 [10] 0.8 [1.0[10] 03 [27 [10| 02| 46 [10| 0.2 | 5.4 |10
psr-17 64.0 |10 6.8 |[9.4)|10| 3.3 |[19.6]| 10| 1.2 10| 1.6 10
psr-18 117.7 |10| 33.4 | 3.5 |10| 6.3 10| 2.9 10| 1.9 10
psr-19 17.1 [10| 7.7 [2.2]10] 2.2 | 7.8 [10| 0.9 10| 0.5 10
pst-20 [1154.5|3 | 479.4 | 2.4 | 8]302.6 | 3.8 |10(283.3] 4.1 [10|272.9| 4.2 |10
psr-21 55.3 |10] 28.9 | 1.9{10| 5.4 |10.2|10| 3.2 10| 1.2 |(45.6]| 10
psr-22 224.2 10| 79.1 | 2.8 [10| 26.3 | 8.5 |10 |19.5|(11.5)| 10 | 34.3 | 6.5 | 10
psr-23 [1542.0| 2 [1027.4| 1.5 | 9| 640.4 | 2.4 |10(330.8] 4.7 |10 |167.1| 9.2 |10
psr-24 [1114.0(10| 351.7 | 3.2 | 9| 116.2 | 9.6 | 10|267.8] 4.2 |10|110.1|(10.1]| 10
psr-25 39.6 |10| 60.2 | 0.7 [10| 10.3 | 3.9 | 10| 4.7 | 84 | 10| 3.2 [[12.2] 10
Summary [4329.2(85(2075.4| 2.1 [96[1113.1] 3.9 [100[914.3] 4.7 [100[593.1] 7.3 [100

Table 6.8: Comparison of MCRW and PoSS in different number of processors and strate-
gies for the Power Supply Restoration domain. Problems with super linear speedups are

highlighted.

that it is advantageous to use PoSS and PoSS? over MCRW even when we factor in

the overhead of running on multiple processors.

We would also like to point out that PoSS and PoSS? largely reduce the standard

derivation of running time, which makes them a much more predictable and hence

favorable choice over the original MCRW.

6.4.2 FEvaluation in Windows Azure

121

G'C |6'1T| C9 |V1|8¢C|69C|80|9¢C |68 |€0(|9€| ¢0C | OV |¥L|00T|G0|€L|TOT|[90|G9€E| 80C |V0|9C| ¢8C |€0| LEL gg-1sd
VLT |80V | 9°€V | L€ |P'ST| T0L | €L|G9|T'GLT|€9(8€E|L0LY | 68T |98 €LY |0C|68T|0F6|CG|T6|TG6T|L9(9€ T'66V|6G|96LLT| ¥g-isd
L' |€8GL| 89 | 0°L|S6€|9°0€T| 7S |S°GC|T°C0C|COT|L 9| €L9L | G°GS |G'LE|L'SET|S 98|V OT| T L67|6°LT| L'L | L'699 |€CT|9°G| 616 |G 'LT|L991G| €1-yd
8L | VIL|¥6T|ST|C60SLY|8T|802|L99|LC |69 €661|0T9|1°6|9TST|STT|F9 (0918 €L |0G|ETLE|89 (LT 990G |9%|0¢8eT| gI-Tud
G'GCT| 0L |8CIE|8TC| L'V |9°997|8°0C| 8'C [9°6LL|S'TT|S°C| 8°998 | 88T |€°97| T'L¥ |8'GT| €L |6°96C|C'¢C| 9°C | €TEY [1'CL|V'C| 8606 |L&'L| G'I81C | 0€-9%es
¢'08| €9 [9°00¢C|€°0C| € V'08E|09T| T'C |S'T09| 08 [T'C| S'TO9 | €G |T'C6| V'ET | L'€|0°8T| 989 [G°CT|9°C| 0697 | 06 |8T|09L9 [CTT| GTVECT | 6C2¥es
69 |V'IC|CLL|LC|VL|L6V|0C|6T|SGVL|ET|LE T8 [E1°CC|99|€CS|TE€|VI|VLG|0C|8F| V9L |ST|€€ 60IT|ECT| 92L9¢ |0G-3{uejou
V9| T9 |6GT 0T |0G|S6T|L0|9€|G9C|L0]|0¢| T'6V [SCIT|V'E|T8C|€TC|CTC|LEV|TT|€C| cCy |80|9T| €65 |€0| L96 |6P>{uejou
T°€ | 89 | 8L |6°0|0€|LLT|VO|9€C|6FI|€0|EC| GCC | C9 |VE|TST|LT|LT|LTIE|60|SGT| 9G9E |¥'0|8T| 88C [8T'0f 0°€S Ty-ue}
8'€V | L'CT [V'60T|T'GT| 6V |C'€8C| 6°G | €9 |9°0CC| 7'9 |6°C| 08V | 8'¢¥ |0°€T|6'90T| "9 |€'TT|CCCT| ¥'9 | L'G | V'IVC | 89 |L'C| 8'CLS [¢9T| V'G8ET | OF3{ue)
C'TE |9°8ET| 0'8L |G'9C|8'1C|€ 96V |L VC|L TT|€'LC6|0°GT |8 G|V 8LBT |8 ELT|6'VC|SVEV|T IV|0FT|L 69L|V'8C|T'OT|T'990T |8 LE|RE|S TERT|T9E|SG'CIROT| Ly-II®
SVC |CVIT| €19 |SET|9°LC|V'E€SC| '8 [8'1C|S'0CE |8 CI €L 0°CI6 | 9'8F |G'LG|L'TCT|0°9€|V'0T|9°GLI|T'EE| 9°C [C'OVCT|T'EC|0T|T"EELT|EET| L6669 | 9p-IIe
) S L O[S L O[S L O[S L o) S L [D[S L [D[S L O[S L o) L
021 9T 8 i 021 9T 8 ¥ ! d
pSSod ssod MUDIN

"STURD Q[UI 1800 [R)0) dFRIoAR O} ST), pur dnpoods ayj st G, ‘SPUOIDS UL oW} SUIUUILL 9} ST
Ly "OINZY SMOPUIA\ UL SOPOU JO IOQUINU JUSISHIP SUISN SWILIOS[® GSOJ JO 1800 pue duwl} Suruuni o) jo uostreduwo)) 69 a[qr],

122

We also evaluate both PoSS and PoSS™* using Windows Azure, one of the major
commercial cloud computing platforms [16]. For the following evaluation, we request
up to 120 processors in Windows Azure. The experiments are conducted on the two
hardest problems from each domain. For each instance and setting, we make 10 runs

and report the average time and cost.

Financial cost is a major concern for cloud users. Cloud computing adopts a pay-as-
you-go model for computational resources. Therefore, although theoretically we can
employ a large number of processors for our algorithm portfolios, it is necessary to
consider the tradeoff between speedup and cost. We report the running time (T),
speedup (S) and monetary cost in US cents (C) in Table 6.9. The running time for
PoSS and PoSS? is measured as the delta between when web role issues messages to
the job control queue and when the web role gets the solution from the result queue.
In other words, it factors in all the communication overheads of the Azure platform.
The cost is calculated based on a unit cost of $0.12 per hour per CPU core, which is

the standard rate for small instances in Windows Azure.

From Table 6.9, we see that the performance of running PoSS and PoSS? in Windows
Azure are similar to the results reported from the local cluster. Despite the overhead
brought in by the job control and message passing mechanism we used in the Azure
implementation, we have achieved substantial speedups in Windows Azure. Super
linear speedups are observed for problems such as air-46, sate-29 and psr-25. Super
linear speedup is especially beneficial when we factor in costs. For example, for phi-13
with 120 processors, not only can PoSS™* achieve a great speedup, the financial charge
(2.7 US cents) is also the lowest among all reported Ns. Hence, for this problem, it

is economical to use 120 processors instead of fewer processors.

For other problems, our scheme also achieves good tradeoff. For example, for air-47
and psr-25, to increase the number of processors from 16 to 120 only increases the total
charge by less than 50%), but improves the speedup almost 4 times. Therefore, using
more processors is still desirable when users are willing to trade a slightly higher cost
for a significant speedup. After all, the total charge in a cloud is not very expensive
using our algorithm. For the different numbers of processors we tested, it takes less

than a US dollar to solve most instances. Both the speedup results and the cost

123

analysis show that cloud computing is an attractive platform for solving planning

problems.

Finally, we point out that, our algorithm is robust under processor failures, which are
commonly seen in cloud environments. For PoSS and PoSS?, a failed run does not
affect other parallel runs since they are independent and do not require communica-
tion. Previous parallel planning algorithms requiring intricate coordination are much

more vulnerable to processor failures in the cloud environment.

6.5 Summary

In summary, we propose a parallel stochastic search (PoSS) algorithm designed to take
advantage of the short runs in thus distribution which can improve substantially. Our
PoSS algorithm uses low frequency communication between computing nodes, which
is perfectly suitable for cloud computing architecture. It also can tolerate the failure of
processors since the search of each individual processor is totally independent, where
one processor’s failure won’t affect other processors. We also present a parallel dove-
tailing technique, which is a procedure that performs search with multiple parameter
settings simultaneously, to dramatically improve the efficiency of our algorithm. In

summary,

e We show that the run-time distribution of Monte Carlo Random Walk (MCRW)
algorithm in planning has a remarkable variability and propose a PoSS algo-

rithm which takes advantage of short runs in this distribution.

e We use parallel dovetailing to solve the parameter tuning issue. In MCRW algo-
rithm, the parameters can greatly impact the search performance. In practice,
it usually can only find the setting with the best average performance, while
there is no guarantee that this setting will perform well on each individual prob-
lem. In our parallel algorithm, each processor is assigned a unique parameter
configuration chosen randomly from a value range, which is pre-decided through
a large number of experiments. Thus, for each certain problem, each proces-

sor has the potential to get the parameter value that performs the best. Our

124

experimental results show that it dramatically reduces the search time of our

algorithm.

We implement two versions of parallel random walk algorithms on Windows
Azure. The Windows Azure platform represents a new computing model and
its potential for scientific research and applications remains largely unexplored.
We study the performance characteristics of Windows Azure, and then develop
scalable Azure-based schemes for stochastic search algorithm. We also imple-
ment scaffolding for deploying planning algorithms into the cloud environment,

as well as a scheme that can launch multiple workers in Windows Azure.

125

Chapter 7

Conclusion

This dissertation proposed a set of techniques that can accelerate heuristic search for

Al planning.

We have developed Stratified Planning, a straightforward and efficient technique for
reducing the search space for heuristic search. Based on the insights gained from
Stratified Planning and Expansion Core, we have developed a general partial or-
der reduction framework for planning. We have established, for the first time, the
connections between existing partial order reduction techniques in planning and the
stubborn set theory in model checking. These techniques are orthogonal to heuristics,

and therefore can be combined with any heuristics to accelerate search.

In addition to the study of the problem structure, we have studied the local structure
of the search space. Based on the observation that heuristic search spends most of
its time in plateau exploration, we proposed using random walks to assist heuristic
search. The proposed methods have significantly accelerated heuristic search, as

shown by results from IPC domains.

Last, we have taken the idea of stochastic search to the cloud computing platform.
We have analyzed the advantages and shortcomings of the cloud computing platform,
and proposed portfolio stochastic search algorithms that are amicable to the cloud
platform. We have applied dovetailing techniques to the portfolio stochastic search
scheme and further improved the efficiency of stochastic search. We have implemented

the system in Windows Azure and reported super linear speedups in some problems.

126

7.1 Future Works

Heuristic search is a pervasive and important technique for Al. It occurs in a wide
varity of engineering and scientific applications such as planning, scheduling, con-
straint satisfaction, game playing, VLSI technology, engineering design, power grid
design, and computational sustainability. Accelerating heuristic search. therefore,
has a broad impact on all of these applications. Here we point out some of the

interesting directions for future work.

7.1.1 Symmetry in State Space

Symmetry detection is another way to reduce the search space [25]. Tt is different
than partial order reduction as it explores the isomorphic relations between subgraphs
in the search space. For example, consider a domain with three domain transition
graphs Ay, A, and B, where A; and A, are symmetrical (isomorphic), and actions
associated with B have no conflict with any actions associated with A; or A,. In this
case, symmetry removal will expand actions associated with (A; and B) or (Ay and
B). This technique is different than partial order reduction proposed in this thesis.
Future work here includes exploring the connections between symmetry and partial

order reduction to see if the search space can further be pruned.

7.1.2 Helpful Actions

Helpful action (also called preferred operator) is one of the non-complete space reduc-
tion approaches [40, 33]. Generally speaking, helpful actions are applicable actions
that are deemed to be helpful in solving a planning problem. A typical way of acquir-
ing helpful actions is through heuristic evaluation. Certain heuristic functions such
as Fast Forward and Fast Downward rely on solving a relaxed planning problem to
calculate the heuristic function value of a state. It is likely that actions appearing
in the solution to the relaxed problem are also part of the solution to the original

planning problem.

127

Random exploration algorithms can use these actions as extra information to improve
search efficiency. However, there is an exploration-exploiting tradeoff here. Helpful
action is local information that can be misleading when the heuristic function is
uninformative. It will be interesting to see the interaction of helpful action with

random walk assisted heuristic search.

7.1.3 Probabilistic Models for Random Walks Guided by

Heuristics

We have used a graph model to analyze when random walk is beneficial in heuristic
search. The model we proposed is effective at explaining why random walk works
well on some problem domains. There are some existing graph models that predict
the hitting time of random walks without the influence of heuristic functions [57].
Similar to our model, these models can be used to analyze the performance of pure
random walks on simple problem domains. It would be interesting to see if there is
a probabilistic model for random walks guided by heuristics, so we can have better
understanding of when to use random walk and how to select parameters for random

walk.

7.1.4 Cloud-Based Deterministic Search

Most cloud platforms, including Windows Azure, are not optimized for low latency
communication between processes. On the other hand, many parallel search al-
gorithms require extensive inter-process communication. We have proposed to use
stochastic search to utilize cloud computing wherein performance is not significantly
affected by the high communication latency. There is some existing work to design
a hash function that maps states to processors such that communication is local-
ized between computational nodes [78, 79, 80, 14]. It would be interesting to see
if techniques like these can be used to parallelize deterministic search in the cloud

environment with relatively high communication latency.

128

References

1]

[11]

[12]

IPC 3. The third international planning competition. http://planning.cis.
strath.ac.uk/competition/, 2002.

IPC 4. The fourth international planning competition. http://www.tzi.de/
~edelkamp/ipc-4/, 2004.

IPC 5. The fifth international planning competition. http://zeus.ing.unibs.
it/ipc-5/, 2006.

IPC 6. The sixth international planning competition. http://ipc.informatik.
uni-freiburg.de/, 2008.

IPC 7. The seventh international planning competition. http://ipc.
icaps-conference.org/, 2011.

E. Amir and B. Engelhardt. Factored planning. In Proc. IJCAI 2003.

K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands, K. Keutzer, D. Pat-
terson, W. Plishker, J. Shalf, S. Williams, and K. Yelick. The landscape of par-
allel computing research: a view from berkeley. Technical Report UCB/EECS-
2006-183, EECS Department, University of California, Berkeley, Dec 2006.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. Gambling in a rigged
casino: The adversarial multi-armed bandit problem. In FOCS, pages 322-331,
1995.

A. Benaskeur, F. Kabanza, and E. Beaudry. CORALS:a real-time planner for
anti-air defense operations. ACM Transactions on Intelligent Systems and Tech-
nology, 1(2):1-20, 2010.

B. Bonet and H. Geffner. Planning as heuristic search. Artificial Intelligence,
Special issue on Heuristic Search, 129(1), 2001.

R. Brafman and C. Domshlak. Factored planning: how, when, and when not. In
Proc. AAAI 2006.

D. Bryce, S. Kambhampati, and D. Smith. Sequential monte carlo in probabilistic
planning reachability heuristics. In ICAPS, pages 233-242, 2006.

129

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[20]

[27]

D. Bryce, M. Verdicchio, and S. Kim. Planning interventions in biological net-
works. ACM Transactions on Intelligent Systems and Technology, 1(2), 2010.

E. Burns, S. Lemons, R. Zhou, and W. Ruml. Best-first heuristic search for
multi-core machines. In Proc. IJCAI pages 449-455, 2009.

R. Buyya, C.S. Yeo, S. Venugopal, et al. Cloud computing and emerging I'T
platforms: Vision, hype, and reality for delivering computing as the 5th utility.
Future Generation Computer Systems, 25(6):599-616, 2009.

D. Chappell. Introducing the Windows Azure platform. ttp://go.microsoft.
com/?1inkid=9752185, 2010.

Y. Chen, Y. Xu, and G. Yao. Stratified planning. In Proc. IJCAI 20009.

Y. Chen and G. Yao. Completeness and optimality preserving reduction for
planning. In Proc. IJCAI, pages 1659-1664, 2009.

M. Cirillo, L. Karlsson, and A. Saffiotti. Human-aware task planning: an applica-
tion to mobile robots. ACM Transactions on Intelligent Systems and Technology,
1(2), 2010.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
2000.

A. Coles, M. Fox, D. Long, and A. Smith. Additive-disjunctive heuristics for
optimal planning. In Proc. ICAPS, 2008.

S. Dutt and N. Mahapatra. Scalable load balancing strategies for parallel A*
algorithms. Journal of Parallel and Distributed Computing, 22(3):488-505, 1994.

A. Fern, S. W. Yoon, and R. Givan. Learning domain-specific control knowledge
from random walks. In ICAPS, pages 191-199, 2004.

R. Fikes and N. Nilsson. Strips: A new approach to the application of theorem
proving to problem solving. In Proc. IJCAI pages 608—620, 1971.

M. Fox and D. Long. The detection and exploitation of symmetry in planning
problems. In Proc. IJCAI, 1999.

R. Gerth, R. Kuiper, D. Peled, and W. Penczek. A partial order approach to
branching time logic model checking. In Proc. of ISTCS, 1995.

P. Godefroid. Using partial orders to improve automatic verification methods. In
Proc. of International Workshop on Computer Aided Verification, London, UK,
1990.

130

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

P. Godefroid and D. Pirottin. Refining dependencies improves partial-order veri-
fication methods. In Proc. of Computer Aided Verification, pages 438449, 1993.

C. Gomes and B. Selman. Algorithm portfolios. Artificial Intelligence, 126:43-62,
2001.

C. Gomes, B. Selman, Nuno Crato, and Henry A. Kautz. Heavy-tailed phe-
nomena in satisfiability and constraint satisfaction problems. J. of Automated
Reasoning, 24(1):67-100, 2000.

A. Grama and V. Kumar. State-of-the-art in parallel search techniques for dis-
crete optimization problems. TKDE, 11(1):28-35, 1999.

Y. Hamadi and L. Sais. ManySAT: a parallel SAT solver. JSAT, 6:245-262,
2009.

M. Helmert. The Fast Downward planning system. Journal of Artificial Intelli-
gence Research, 26:191-246, 2006.

M. Helmert and C. Domshlak. Lm-cut: Optimal planning with the landmark-cut
heuristic. In The Seventh International Planning Competition, 2009.

M. Helmert and Carmel Domshlak. Landmarks, critical paths and abstractions:
What’s the difference anyway? In Proc. ICAPS, 2009.

M. Helmert, P. Haslum, and J. Hoffmann. Flexible abstraction heuristics for
optimal sequential planning. In Proc. ICAPS, pages 176-183, 2007.

M. Helmert and G. Roger. How good is almost perfect? In Proc. AAAIL 2008.

Z. Hill, J. Li, M. Mao, A. Ruiz-Alvarez, and M. Humphrey. Early observations on
the performance of windows azure. In Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing, pages 367-376, 2010.

J. Hoffmann. FF: The fast-forward planning system. Al magazine, 22:57-62,
2001.

J. Hoffmann and B. Nebel. The FF planning system: Fast plan generation
through heuristic search. JAIR, 14:253-302, 2001.

G. J. Holzmann. The model checker SPIN. IEEFE Trans. on Software Engineering,
23:279-295, 1997.

P. Jonsson and C. Backstrom. State-variable planning under structural restric-
tions: Algorithms and complexity. Artificial Intelligence, 100(1-2):125-176, 1998.

131

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

E. Karpas and C. Domshlak. Cost-optimal planning with landmarks. In Pro-
ceedings of the 21st international jont conference on Artifical intelligence, pages
1728-1733. Morgan Kaufmann Publishers Inc., 2009.

E. Kelareva, O. Buffet, J. Huang, and S. Thiébaux. Factored planning using
decomposition trees. In Proc. IJCAI 2007.

A. Kishimoto, A. Fukunaga, and Adi Botea. Scalable, parallel best-first search
for optimal sequential planning. In ICAPS, 2009.

C. Knoblock. Automatically generating abstractions for planning. Artificial
Intelligence, 68:243-302, 1994.

L. Kocsis and C. Szepesvri. Bandit based monte-carlo planning. In Proc. of
FEuropean Conference on Machine Learning, pages 282-293, 2006.

V. Kumar, K. Ramesh, and V. Rao. Parallel best-first search of state-space
graphs: A summary of results. In Proc. AAAI pages 122-127. Press, 1988.

A. Lansky and L. Getoor. Scope and abstraction: two criteria for localized
planning. In Proc. AAAI 1995.

S. M. LaValle. Planning algorithm. In Cambridge University Press, Cambridge,
U.K., 2006.

C. Lépez, S. Jiménez, and A. Garcia Olaya. The deterministic part of the seventh
international planning competition. Submitted to AI Journal, 2015.

Q. Lu, Y. Xu, R. Huang, and Y. Chen. Roamer planner random-walk assisted
best-first search. In The Seventh International Planning Competition, 2011.

W. Lu, J. Jackson, and R. Barga. AzureBlast: A Case Study of Developing
Science Applications on the Cloud. In Proceedings of the First Workshop on
Scientific Cloud Computing, ScienceCloud 2010. ACM, 2010.

A. McDonald. Parallel WalkSAT with Clause Learning. Data Analysis Project
Papers, Carnegie-Mellon University, 2009.

F. Michael. Slow Moving Clouds Fast Enough for HPC. HPC' Wire, August 10,
2009.

H. Nakhost and M. Miiller. Monte-carlo exploration for deterministic planning.
In Proc. IJCAI pages 1766—1771, 2009.

H. Nakhost and M. Miiller. A theoretical framework to study random walk
planning. In Fifth Annual Symposium on Combinatorial Search, 2012.

132

[58]

[59]

D. Peled. Partial order reduction: linear and branching temporal logics and
process algebras. In Proceedings of the DIMACS workshop on Partial order
methods in verification, pages 233-257, 1997.

J. Porteous, M. Cavazza, and F. Charles. Applying planning to interactive sto-
rytelling: Narrative control using state constraints. ACM Transactions on Intel-
ligent Systems and Technology, 1(2):111-130, 2010.

J. Porteous, L. Sebastia, and J. Hoffmann. On the extraction, ordering, and

usage of landmarks in planning. In Proc. European Conf. on Planning, pages
37-48, 2001.

I. Refanidis and N. Yorke-Smith. A constraint based approach to scheduling an
individual’s activites. ACM Transactions on Intelligent Systems and Technology,
1(2), 2010.

S. Richter and M. Helmert. Preferred operators and deferred evaluation in sat-
isficing planning. In ICAPS, 20009.

S. Richter, M. Helmert, and M. Westphal. Landmarks revisited. In Proc. AAAI,
pages 975-982, 2008.

J. Romein, A. Plaat, H. Bal, and J. Schaeffer. Transposition table driven work
scheduling in distributed search. In Proc. AAAI pages 725-731, 1999.

K. Talamadupula, J. Benten, S. Kambhampati, P. Schermerhorn, and
M. Scheutz. Planning for human-robot teaming in open worlds. ACM Transac-
tions on Intelligent Systems and Technology, 1(2), 2010.

R. Valenzano, N. Sturtevant, J. Schaeffer, K. Buro, and A. Kishimoto. Simulta-
neously searching with multiple settings: an alternative to parameter tuning for
suboptimal single-agent search algorithms. In Proc. ICAPS, 2010.

A. Valmari. State Space Generation: Efficiency and Practicality. PhD thesis,
Tampere University of Technology, 1988.

A. Valmari. Stubborn sets for reduced state space generation. In Proceedings
of the 10th International Conference on Applications and Theory of Petri Nets,
1989.

A. Valmari. A stubborn attack on state explosion. In Proceedings of the 1990
International Workshop on Computer Aided Verification, 1990.

A. Valmari. Stubborn sets of coloured petri nets. In Proceedings of the 12th
International Conference on Application and Theory of Petri Nets, pages 102—
121, 1991.

133

[71]

[77]

78]

[79]

[80]

A. Valmari. On-the-fly verification with stubborn sets. In CAV ’93: Proceedings
of the 5th International Conference on Computer Aided Verification, pages 397—
408, London, UK, 1993. Springer-Verlag.

A. Valmari. The state explosion problem. Lectures on Petri Nets I: Basic Models,
Lecture Notes in Computer Science, 1491:429-528, 1998.

L. Vaquero, L. Rodero-Merino, and J. Caceres. A break in the clouds: towards a
cloud definition. ACM SIGCOMM Computer Communication Review, 39(1):50—
55, 2008.

K. Varpaaniemi. On stubborn sets in the verification of linear time temporal
properties. Formal Methods in System Design, 26(1):45-67, 2005.

C. Wintersteiger, Y. Hamadi, and L. De Moura. A concurrent portfolio approach
to SMT solving. In CAV, pages 715-720, 20009.

P. Wolper and P. Godefroid. Partial-order methods for temporal verification. In

Proceedings of the 4th International Conference on Concurrency Theory, pages
233-246, 1993.

Y. Xu, Q. Lu, R. Huang, and Y. Chen. The roamer-p planner. In The Seventh
International Planning Competition, 2011.

R. Zhou and E. Hansen. Structured duplicate detection in external-memory
graph search. In Proc. AAAIL pages 683-689, 2004.

R. Zhou and E. Hansen. Domain-independent structured duplicate detection. In
Proc. AAAI pages 683-688, 2006.

R. Zhou and E. Hansen. Parallel structured duplicate detection. In Proc. AAAI
pages 1217-1223, 2007.

134

	Washington University in St. Louis
	Washington University Open Scholarship
	Winter 12-15-2014

	Accelerating Heuristic Search for AI Planning
	You Xu
	Recommended Citation

	Eric Xu PhD Thesis submitted to PubMed revised order

