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ABSTRACT OF THE DISSERTATION

Accelerating Heuristic Search for AI Planning

by

You Xu

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2014

Professor Yixin Chen, Chair

AI Planning is an important research field. Heuristic search is the most commonly

used method in solving planning problems. Despite recent advances in improving the

quality of heuristics and devising better search strategies, the high computational

cost of heuristic search remains a barrier that severely limits its application to real

world problems. In this dissertation, we propose theories, algorithms and systems to

accelerate heuristic search for AI planning.

We make four major contributions in this dissertation.

First, we propose a state-space reduction method called Stratified Planning to ac-

celerate heuristic search. Stratified Planning can be combined with any heuristic

search to prune redundant paths in state space, without sacrificing the optimality

and completeness of search algorithms.

Second, we propose a general theory for partial order reduction in planning. The

proposed theory unifies previous reduction algorithms for planning, and ushers in

xi



new partial order reduction algorithms that can further accelerate heuristic search by

pruning more nodes in state space than previously proposed algorithms.

Third, we study the local structure of state space and propose using random walks

to accelerate plateau exploration for heuristic search. We also implement two state-

of-the-art planners that perform competitively in the Seventh International Planning

Competition.

Last, we utilize cloud computing to further accelerate search for planning. We propose

a portfolio stochastic search algorithm that takes advantage of the cloud. We also

implement a cloud-based planning system to which users can submit planning tasks

and make full use of the computational resources provided by the cloud.

We push the state of the art in AI planning by developing theories and algorithms that

can accelerate heuristic search for planning. We implement state-of-the-art planning

systems that have strong speed and quality performance.
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Chapter 1

Introduction

Planning is an integral part of human intelligence. It is the conscious process of

organizing activities to achieve certain goals. As part of the human cognitive pro-

cess, planning serves as a fundamental connection between goal setting and action.

Through planning, actions are organized toward a clear objective. Acting without

planning, to a degree, is no di↵erent than monkeys trying to type Shakespeare’s

Hamlet by hitting random keys on a typewriter.

The ability to plan is also a direct measurement of the intelligence of a machine.

In fact, any intelligent machine that exhibits rational behaviors to outside observers

must possess planning abilities, for without which actions and behaviors become less

purposeful and rational.

There are an abundance of planning problems in our daily life. On a personal level,

we plan for activities throughout the day. Modern society also relies on the solutions

to various planning problems to function. Our fire department, police and postal

services all rely on transportation planning to arrange routes e�ciently. Airports,

buses and assembly lines also depend on our ability to plan and schedule tasks in

complicated systems. Planning has also been applied to many small to medium

scale real-world problems, including controlling autonomous robots and unmanned

vehicles, scheduling space telescope observations, modeling interventions of biological

processes, and scheduling individual and organizational activities [59, 9, 19, 13, 65, 61].
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1.1 AI Planning

In Artificial Intelligence (AI) research, planning is formulated as the process of ar-

ranging a course of actions (sometimes called activities) to achieve certain goals under

given constraints. Solving planning problems requires taking into account constraints,

action orders, dependencies and plan e�ciencies.

While the correct action sequence is easy to get for simple problems, large-scale

planning tasks are daunting and sometimes not feasible to tackle without the help

of modern computers, as the scale of the problem is beyond our cognitive ability.

Specifically, real-world planning problems oftentimes involve complex constraints and

tangled action dependencies, rendering intuition and reasoning inadequate. Large-

scale real-world problems can also easily lead to combinations that are beyond simple

enumeration or intuitive guessing.

Planning problems (especially classic planning problems) can be formulated in a way

that is particularly amiable for computers, as modern computers are capable of enu-

merating and checking rules and states quickly. Once a planning problem is formu-

lated and represented in the way that computers can process, AI planners can leverage

the computational power of modern computers to find solutions e�ciently.

Domain knowledge has proven to be helpful in problem solving. However, unlike

human planners, AI planners usually do not have a prior knowledge about the problem

domain. While there are approaches that have domain experts in the problem-solving

loop, in this thesis, we focus on automated planning, a family of planning approaches

that automatically solve general planning problems without requiring problem-specific

domain knowledge or human intervention.

Automated planning remains a challenging problem for AI researchers. For instance,

classic planning, (i.e. problems without temporal constraints), one of the simplest

categories of planning problems, has been proven to be PSPACE-complete. As the

problem size grows, the computational resources required to solve the planning prob-

lems can grow exponentially.

Automated planning is at the core of AI research. Many important AI problems, such

as the discrete time scheduling problem, the constraint satisfactory problem (CSP)

2



and the general state space search problem, can be formulated as planning problems.

Accordingly, solving automated planning problems e�ciently would help advancing

other AI fields as well. Thus, it is critical to solve automated planning problems

e�ciently.

1.2 Motivation

Much research on classical planning has focused on the design of better heuristic func-

tions. Despite the success of using domain-independent heuristics for classic planning,

state-of-the-art heuristic planners still face scalability challenges for large-scale plan-

ning problems, due to the limitation of deterministic search and heuristic functions.

As shown by recent work, search even with almost perfect heuristic guidance may still

lead to very high search cost [37] for optimal planning. Therefore, it is important to

improve other components of heuristic search that are orthogonal to the development

of heuristics.

1.2.1 Limitations of Heuristic Search

Heuristic search is an important and pervasive technique for AI planning. Using

heuristic search, an automated planning problem is mapped to a search problem

guided by heuristics. Under this mapping, the initial state of the planning problem

becomes the starting state of a search process. Starting from the initial state, the

search algorithm would iteratively examine states that are reachable by applying

actions to existing states, and terminating when a goal state is found.

Figure 1.1 shows the size of the search space with respect to the number of states in a

planning domain called Driverlog. Problems in this domain model the route planning

of delivery trucks. We used Fast Downward, a state-of-the-art heuristic search planner

to generate Figure 1.1. As we can see from the figure, heuristic search would explore

millions of nodes as the problem size increases. For real-world applications, heuristic

search would become prohibitively expensive once the problem reaches certain size.

3



Figure 1.1: Number of generated nodes by the FastDownward planner on the Driver-
log domain

Bloated State Space

Heuristic search algorithms map states in planning tasks to states in search space.

Under this mapping, states that are inherently equivalent can be mapped to di↵erent

states, leading to an excessive amount of equivalent states in the state space. This can

be illustrated by the Gripper domain in the Third International Planning Competition

(IPC 3) [1]. In these problems, a robot with two hands can move balls between two

rooms. In many of the problems, balls are symmetric in terms of initial state and

goal conditions. For example, if the goal is to have n balls in room 2, and the initial

state is to have all n balls in room 1, then any intermediate states with k  n balls in

room 1 are e↵ectively equivalent from the perspective of the robotic hand. However,

when the problem is mapped to state space search, this equivalent class maps to
�
n

k

�

states in state space, such that ball 1 in room 1 and ball 2 in room 2 is di↵erent than

ball 1 in room 2 and ball 2 in room 1.

The bloated search space resulting from the equivalent states poses a fundamental

challenge for state space search. Large-scale planning problems have similar structures
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that can be exploited to reduce the size of the search space. In this thesis, I will study

a family of space reduction techniques called partial order reduction that utilizes the

relation between states, such that heuristic search only needs to examine one state

in each equivalent class. The partial order reduction techniques presented in this

thesis would accelerate heuristic search by pruning out states that do not need to be

examined by heuristic search.

Imperfect Heuristics

Heuristic functions, in essence, estimate distances from any state to goal. Many

heuristic functions have been proposed for solving automated planning problems.

In general, heuristics that estimate distances more accurately lead to smaller search

spaces. In the ideal case, the perfect heuristic function can guide the search procedure

to goal states directly since it reveals the best successor to visit at each state along the

path to goal. However, it is practically unattainable to construct the perfect heuristic

function for general planning problems, as finding the perfect heuristic function for

any state in the search space is equivalent to solving the planning problem itself.

It is a well-known phenomena that the number of states examined by heuristic search

grow exponentially with the problem size when imperfect heuristics are used. As we

take a closer look at the search process, we find that heuristic search does not progress

at an even speed towards the goals. Instead, heuristic search hits plateau when

heuristic functions are not informative. The resulted plateau exploration constitutes

most computation in heuristic search, and that leads to high computational costs in

heuristic search.

If we can reduce the amount of computation spent on plateau exploration during

heuristic search, we can reduce the overall computational cost of heuristic search and

accelerate heuristic search. In this thesis, I will study approaches to accelerate plateau

exploration for heuristic search, such that the overall computational cost for heuristic

search is reduced.
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Hight Computational Costs

The high computational cost heuristic search severely limits its applicability to large-

scale problems. A natural way to improve the e�ciency of heuristic search is to

utilize advanced, more powerful computing platforms. To this end, parallel heuristic

search algorithms that are suitable for parallel and multi-core machines have been

long and extensively studied. However, expensive computing infrastructures, such as

supercomputers and large-scale clusters, are traditionally available to only a limited

number of projects and researchers. As a result, many users with access to only

commodity computers and clusters cannot benefit from the e�ciency improvements of

high-performance heuristic search algorithms to solve large-scale planning problems.

Cloud computing provides an attractive, highly accessible alternative to other tradi-

tional high-performance computing platforms. In cloud computing, resources can be

leased from large data centers on a pay-as-you-go basis. This allows small teams and

even a single user to routinely have access to the same large-scale computing facilities

used by large companies and organizations.

Given the high accessibility of cloud computing and the fact that combinatorial search

is ubiquitous in engineering and in various applications involving decision making, if

we can significantly improve the e�ciency of heuristic search in the cloud, the cloud-

based algorithms can be routinely used by all users and may fundamentally change the

landscape of AI planning applications. In this thesis, I will study search algorithms

that take advantage of cloud computing. I will also implement tools and systems for

solving planning problems in the cloud such that users and planning researchers can

take advantage of the cloud computing infrastructure.

1.3 Contributions

This thesis is based on the premise that we do not have the perfect heuristic functions

in heuristic search. By recognizing the imperfection of heuristic functions, we focus

on techniques to reduce the size of the search space in heuristic search. Search-space
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reduction (i.e. space reduction) approaches proposed in this thesis can be classi-

fied into two categories: partial order reduction techniques that takes advantage of

the overall problem structure, and local space reduction techniques that utilizes the

heuristic information in a local region.

In this thesis, we study the equivalence relation between states, based on partial order

analysis of actions and of states. Partial order analysis enables search algorithms to

explore only a subset of states, without compromising the completeness or optimality

of search. We propose theories and algorithms that can automatically discover the

partial order relations between states, even before search starts. During the heuris-

tic search process, we utilize these partial order relations to impose orders between

states and their corresponding actions, such that only a subset of the search space

is explored, regardless of the heuristic functions used. We show that the proposed

approaches can prune search space e�ciently and e↵ectively, without sacrificing the

completeness of search nor the quality of the final solutions.

To reduce the search space in a local region during heuristic search, we study the

behavior of heuristic search in local regions when heuristic functions are not infor-

mative. We propose a random walk based search framework that can work together

with any existing deterministic search to escape from local plateau. Using the pro-

posed algorithms, we participated in the Seventh International Planning Competition

(IPC 7), with results showing that our algorithms perform competitively among other

state-of-the-art heuristic search planners.

Finally, we present the portfolio stochastic search framework that takes advantage of

cloud computing. Cloud typically has an abundance of computing cores but has high

communication latency between nodes. We implement the portfolio stochastic search

algorithm in both a local cluster, as well as the Windows Azure cloud platform. We

show that our algorithms achieve superior, in many cases super linear, speedups in

the cloud platform. We also show that our scheme is accessible and economically

sensible for planning users and researchers.

This dissertation contains material from, and extends, the following publications:

• Y. Chen, Y. Xu, and G. Yao, Stratified Planning, Proc. International Joint

Conference on Artificial Intelligence (IJCAI-09), 2009.
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- I refined the algorithm, implemented all the code and proved the completeness

of the algorithm. I also conducted the experiments and gathered the results.

• Y. Xu , Y. Chen, Q. Lu, and R. Huang, Theory and Algorithms for Partial

Order Based Reduction in Planning, CoRR, abs/1106.5427, 2011.

• Y. Xu, Partial Order Reduction for Planning, Master’s Thesis, Washing-

ton University in St. Louis, 2010.

• Q. Lu, Y. Xu, R. Huang, and Y. Chen, The Roamer Planner: Random

Walk Assisted Best-First Search, Proc. International Planning Competi-

tion (IPC-2011), 2011

- I implemented the random walk part of the algorithm, the communication

mechanism between the deterministic search and random walk, and pair-programmed

with Lu during the development process.

• Y. Xu, Q. Lu, R. Huang, and Y. Chen, The Roamer-p Planner, Proc. In-

ternational Planning Competition (IPC-2011), 2011.

• Y. Xu, Q. Lu, R. Huang, and Y. Chen, Enhancing Heuristic Search for

Planning by Stochastic Plateau Escape, in preparation, 2014.

• Q. Lu, Y. Xu, R. Huang, Y. Chen, and G. Chen, Can Cloud Computing be

Used for Planning? An Initial Study, Proc. IEEE CloudCom (CloudCom-

11), 2011.

- I implemented the algorithm in Windows Azure and conducted all experiments

for Azure.

1.4 Dissertation Outline

This dissertation is organized as follows.

In Chapter 2, we give a brief introduction to the background and terminology. In

particular, we introduce the SAS+ formalism for classic planning problems, as well

as domain transition graphs.
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In Chapter 3, we introduce Stratified Planning, one of the first attempts to conduct

partial order reduction for planning. We explain the stratified planning algorithm as

well as the correctness of it in pruning search spaces. In Chapter 4, we go further

and introduce a general theory for conducting partial order reduction for planning.

We establish the connections between the existing partial order reduction techniques

for planning and the stubborn set theory for model checking. We also present a new

algorithm based on the new theory, and show its e↵ectiveness in accelerating heuristic

search for planning through experimental results.

In Chapter 5, we focus on accelerating heuristic search when it is stuck on plateau

exploration. We employ random walks as a way to assist heuristic search in escaping

from traps or blocks during search. Competition results from the Seventh Inter-

national Planning Competition are also presented to show the e↵ectiveness of our

algorithms.

In Chapter 6, we apply the sequential stochastic search algorithms to the cloud envi-

ronment, and discuss the advantages of dovetailing parameter settings in the portfo-

lio stochastic search algorithm. We also present our system implementations in the

Windows Azure platform and report the experimental results by running the portfolio

search algorithm using up to 120 computational nodes in the cloud.
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Chapter 2

Background and Related Works

2.1 SAS+ Planning

This thesis is focused on solving classic planning problems. Classical planning is

the most fundamental form of planning, which deals with only propositional logic.

In addition to classical planning, there are temporal planning (problems with tem-

poral conditions) and probabilistic planning (problems with probabilistic instead of

deterministic action e↵ects).

We work on the SAS+ formalism [42] of classical planning. SAS+ formalism has

recently attracted attention due to a number of advantages it has over the traditional

STRIPS [24] formalism for classic planning. In the following, we review this formalism

and introduce the notations used in this thesis.

Definition 1 A SAS+ planning task ⇧ is defined as a quintuple

⇧ = {X,O, S, sI, sG}.

• X = {x
1

, · · · , x
N

} is a set of multi-valued state variables, each with an asso-

ciated finite domain Dom(x
i

).

• O is a set of actions and each action o 2 O is a tuple (pre(o), e↵(o)), where both

pre(o) and e↵(o) define some partial assignments of state variables in the form

x
i

= v
i

, v
i

2 Dom(x
i

).

10



• S is the set of states. A state s 2 S is a full assignment to all state variables.

sI 2 S is the initial state. sG is a partial assignment that defines the goal. A

state s is a goal state if sG ✓ s.

For a SAS+ planning task, a given state s and an action o, when all variable assign-

ments in pre(o) are met in state s, action o is applicable in state s. After applying

o to s, the state variable assignment will be changed to a new state s0 according to

e↵(o): the state variables that appear in e↵(o) will be changed to the assignments in

e↵(o) while other state variables remain the same. We denote the resulting state after

applying an applicable action o to s as s0 = apply(s, o). apply(s, o) is undefined if o

is not applicable in s. The planning task is to find a path, or a sequence of actions,

that transition the initial state sI to a goal state that includes sG.

An important structure for a given SAS+ task is the domain transition graph (DTG)

defined as follows:

Definition 2 For a SAS+ planning task, each state variable x
i

(i = 1, · · · , N) cor-

responds to a domain transition graph (DTG) G
i

, a directed graph with a vertex

set V (G
i

) = Dom(x
i

)[ v
0

, where v
0

is a special vertex, and an edge set E(G
i

) deter-

mined by the following.

• If there is an action o such that (x
i

= v
i

) 2 pre(o) and (x
i

= v0
i

) 2 e↵(o),

then (v
i

, v0
i

) belongs to E(G
i

) and we say that o is associated with the edge

e
i

= (v
i

, v0
i

) (denoted as o ` e
i

). It is conventional to call the edges in DTGs

transitions.

• If there is an action o such that (x
i

= v0
i

) 2 e↵(o) and no assignment to x
i

is

in pre(o), then (v
0

, v0
i

) belongs to E(G
i

) and we say that o is associated with

the transition e
i

= (v
0

, v0
i

) (denoted as o ` e
i

).

Intuitively, a SAS+ task can be decomposed into multiple objects, each corresponding

to one DTG, which models the transitions of the possible values of that object.
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2.2 Heuristic Search for Planning

As mentioned in the previous chapter, heuristic search is one of the most popular

approaches to automated planning. A heuristic function h that maps any state to

a real number is used in search to estimate the distance from a state to goal. In

other words, for any state s, its heuristic value h(s) is an approximation for d(s), the

distance from state s to goal. Namely, h(s) ⇡ d(s), or h(s) = d(s) + ! where ! is a

random variable whose distribution ⌦ is solely determined by the heuristic algorithm.

A heuristic function is admissible if and only if h(s)  d(s) for any s, or !  0 for all

! in ⌦ .

For a classical planning task, its state space is a directed graph S in which each

state s is a vertex and each directed edge (s, s0) represents an action. There is an

edge (s, s0) if and only if there exists an action o such that s0 is the resulting state

after applying action o to s. State s0 is also called a successor state of s.

Heuristic search uses heuristic functions to guide the exploration of search space to

arrive at goal states. A data structure called the open list, usually implemented as

a priority queue, is used to store any states that are ready to be explored. At the

beginning of a search, the initial state s
0

, along with its heuristic value h(s
0

), is

inserted into the open list. At each step of the heuristic search, the state with the

smallest heuristic value is explored, meaning it is removed from the open list to check

if it is a goal state. If not, all of its successors, along with their heuristic values, are

inserted into the open list for later exploration. The state itself is inserted into the

closed list.

Algorithm 1 shows the general framework of heuristic search. In this algorithm,

heuristic function is used to decide which state Remove-First should yield. For

instance, the above algorithm becomes best-first search if nodes in the open list are

sorted by their heuristic values. Algorithm 1 becomes A⇤ search when the heuristic

function is admissible and nodes in the open list are stored by f(s) = g(s) + h(s),

where g is the distance from the initial state to s, and h(s) is the heuristic value for

state s.
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Algorithm 1: Heuristic Search Procedure
Input: problem, open
Output: found or failure
closed  ; ;
insert initial state to open ;
while True do

if open is empty then
return failure

end
node  Remove-First (open) ;
if node is Goal then

return found
end
if node is not in closed then

add node to closed ;
insert successor(node) and their heuristics to open ;

end
end

2.2.1 Notable Heuristics

Most of the award-winning planners of the International Planning Competitions

(IPCs) are using the heuristic search framework. The success of heuristic search

planners is largely linked to the development of high quality heuristic functions, here

follows a brief overview.

Deletion Relaxation

In SAS+ planning tasks, when an operator o is applied to state s, it changes the value

of state variable x
i

from v
i

to v0
i

according to e↵(o). By allowing state variable x
i

to

be both v
i

and v0
i

after applying o, planning task ⇧(s) is relaxed to a new task ⇧+(s)

such that every solution to ⇧(s) is also a solution to ⇧+(s). This way, the optimal

solution cost of ⇧+(s), denoted by h+(s), can thus be used as an admissible heuristic

for ⇧(s). However, calculating h+ itself is NP-hard and thus impractical. Heuristic

functions such as h
add

and h
max

approximate h+ by estimating the cost of achieving

certain goals [10]. The heuristic function used in the Fast Forward [39] planner, h
ff

,
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approximates h+ by extracting an explicit solution. Other heuristic functions based

on deletion relaxation include additive h
max

[21] and h
LM�cut

[34].

Causal Graph Relaxation

The h
cg

heuristic used in the Fast Downward planning system utilizes a data structure

called causal graph for heuristic calculation [33]. It relaxes the planning task from

⇧(s) to ⇧
cg

(s) by ignoring certain dependencies between state variables, such that

the final causal graph is acyclic. Similar to h
ff

, the goal distance at s is estimated by

finding a plan for the relaxed task ⇧
cg

(s). An improved version of h
cg

, h
sea

, is able

to handle causal graphs with cyclic links. Since both heuristics assume that the cost

function is additive when multiple goals are present, they are not guaranteed to be

admissible.

Landmark Relaxation

The landmark counting heuristic used in the LAMA planner [63], h
lm

, relies on the

counting of landmarks that have not been visited so far. Heuristic h
lm

is inadmissible

and path-dependent because it relies on the path so far to determine the number of

landmarks that have not yet been reached. An admissible version of h
lm

is proposed

by Karpas et al. [43], which uses action cost partitioning. Yet another admissible

heuristic called “merge-and-shrink” was developed based on abstraction of domain

transitions [36], which dominates the admissible landmark heuristics [35].

2.2.2 Helpful Actions and Multiple Heuristics

Heuristics such as h
ff

and h
cg

not only give estimations of goal distances, but also

provide solutions to the relaxed problems. It is likely that actions appearing in

the solution to the relaxed problems are also part of the solution to the original

problems. Search algorithms can use these actions as extra information to improve

search e�ciency. Applicable actions that are part of the solution are considered helpful

actions and can be given preference during search. This technique is used in both
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Fast Forward and Fast Downward planners. Helpful actions are extremely useful for

non-optimal planners [62], and they are helpful when heuristic calculation is deferred

to when the state is explored [40, 33].

Since the debut of Fast Downward, it has also become commonplace for planners

to utilize multiple heuristics during search. The premise is that certain heuristics

may become uninformative in certain regions of the search space. By having multi-

ple open lists ordered using di↵erent heuristics, when a heuristic function becomes

uninformative or misleading, search can still make progress using other heuristics.

2.3 Notable Non-heuristic Techniques

In this section we review techniques that are orthogonal to the design of better heuris-

tics.

Symmetry. Symmetry detection is a way to reduce search space [25]. It finds

symmetric objects (DTGs in SAS+ formalism) and actions that are indistinguishable

with respect to initial state and goal. However, this method proposed by Fox and

Long [25] can only detect symmetry from the specification of initial and goal states,

and may miss many symmetries.

Factored planning. Factored planning [6, 11, 44] is a class of search algorithm that

exploits the decomposition of state space. Factored planning finds all the subplans

for each individual subgraph and tries to merge them. There are some limitations of

factored planning. The most notable is that search becomes prohibitively expensive

when there are many subplans in each subgraph, and not every subgraph has goal

states. Although factored planning has shown potential on some domain-dependent

studies, its practicality for general domain-independent planning has not been estab-

lished yet.

Partial order reduction. Partial order reduction (POR) is a way to reduce the

search cost for classical planning [17, 18]. It allows a search to explore only part of

the entire search space while still maintaining completeness and/or optimality. The

idea is to enforce partial orders between states during search. POR algorithms have
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been extensively studied for model checking [74, 20], which also requires examining

a state space in order to prove certain properties. Model checking is not practical

without POR due to its time complexity [27, 28, 76, 26, 58, 41].

Stochastic search. An alternative to deterministic search is stochastic search. One

representative stochastic search algorithm is called the “Monte-Carlo Random Walk

algorithm (MCRW)”. A random walk in state space is a trajectory of states that are

linked by random actions. An MCRW starts from a known state, usually the initial

state, by applying random actions to known states, generates a random walk in the

search space, and terminates when a goal state is found in the walk. Stochastic search

has been used by some of the leading planners in the Seventh International Planning

Competition (IPC 7) [56, 52, 77].
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Chapter 3

Accelerating Heuristic Search with

Stratified Planning

Most planning problems have strong structures. They can be decomposed into sub-

domains with causal dependencies. The idea of exploiting the domain decomposi-

tion has motivated previous work such as hierarchical planning and factored planing.

However, these algorithms require extensive backtracking and lead to few e�cient

general-purpose planners. On the other hand, heuristic search has been a successful

approach to automated planning. The domain decomposition of planning problems,

unfortunately, is not directly and fully exploited by heuristic search.

We propose a novel and general framework to exploit domain decomposition. Based

on a structure analysis on the SAS+ planning formalism, we stratify the sub-domains

of a planning problem into dependency layers. By recognizing the stratification of

a planning structure, we propose a space reduction method that expands only a

subset of executable actions at each state. This reduction method can be combined

with state-space search, allowing us to simultaneously employ the strength of domain

decomposition and high-quality heuristics. We prove that the reduction preserves

completeness and optimality of search and experimentally verify its e↵ectiveness in

space reduction.
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3.1 Introduction

We have witnessed significant improvement of the capability of automated planners in

the past decade. Heuristic search remains one of the key, general-purpose approaches

to planning. The performance improvement is largely due to the development of

high-quality heuristics. However, as shown by recent work, only developing better

heuristics has some fundamental limitations [37]. Heuristic planners still face scala-

bility challenges for large-scale problems. It is important to develop new, orthogonal

ways to improve the e�ciency, among which domain decomposition has been an at-

tractive idea to planning researchers.

A representative work based on domain decomposition is the automated hierarchical

planning method [46, 49] that utilizes hierarchical factoring of planning domains.

However, it typically does not scale well since it requires extensive backtracking across

subdomains. Another work is the factored planning approach [6, 11, 44] that finds

subplans for each subproblem before merging some of them into one solution plan.

However, the method requires either enumerating all subplans for each subproblem,

which is very expensive, or extensive backtracking. Also, it faces di�culties involved

with the length bound of the subplans. It is yet to be investigated if factored planning

can give rise to a practically competitive approach for general-purpose planning.

In this chapter, we propose a novel way to utilize the domain structure. Our key

observation is that normally a planning problem P can be stratified into multiple

sub-domains P
1

, P
2

, . . . , P
k

in such a way that, for i < j, the actions in P
i

may

require states in P
j

as preconditions, but not vice versa. We then investigate the

intriguing problem: given a stratification of a planning problem, can we make the

search faster?

We develop a completeness-preserving space reduction method based on stratification.

Our observation is, in standard search algorithms, each state is composed of the states

of the sub-domains P
1

, . . . , P
k

, and the search will expand the applicable actions in all

the sub-domains P
1

, . . . , P
k

, which is often unnecessary. We propose a fundamental

principle for systems that can be stratified into layers of sub-domains. Due to the

oneway-ness of the dependencies across the stratified layers, the search can expand

only those actions in a subset of the sub-domains. In principle, if the preceding action
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a of a state is at layer j, 1  j  k, we only expand actions at layer j to k and those

actions that have direct causal relations with a at other layers. We prove that such a

reduced expansion scheme preserves completeness (and consequently, optimality) of

search algorithms.

The proposed scheme has a number of advantages. The reduction method is embed-

ded inside a heuristic search. Therefore, 1) since most domains can be stratified, the

method can e↵ectively prune a lot of redundant paths, leading to significant reduction

of search costs; 2) in the worst-case when the method cannot give any reduction (such

as when all the subdomains are in one dependency closure and cannot be stratified),

the search will expand the same number of nodes as the original search; 3) the method

leverages the highly sophisticated heuristic functions. Thus, this scheme seems more

practical than those methods that explicitly use a decomposition-based search, such

as factored planning and hierarchical planning. It combines the strength of both

heuristic search and domain decomposition and adapts to the domain structure.

In summary, our main contributions are:

• We propose an automatic and domain-independent stratification analysis that

gives vital structural information of a planning problem.

• We tackle the problem of reducing search cost from a novel perspective. We

propose a space reduction method that can be embedded seamlessly to existing

search algorithms. Our approach is orthogonal to the development of more

powerful search algorithms and more accurate heuristics.

• We prove that a search algorithm combined with our reduction method is com-

plete (respectively optimal) if the original search is complete (respectively op-

timal).

• We show that two implementations of the proposed framework can improve the

search e�ciency on various planning domains.
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3.2 Stratified Planning

For a given state s and an action o, when all variable assignments in pre(o) are met

in state s, action o is applicable at state s. After applying o to s, the state variable

assignment will be changed to a new state s0 according to e↵(o). We denote the

resulting state of applying an applicable action o to s as s0 = apply(s, o).

For a SAS+ planning task, for an action o 2 O, we define the following:

• The dependent variable set dep(o) is the set of state variables that appear

in the assignments in pre(o).

• the transition variable set trans(o) is the set of state variables that appear

in both pre(o) and e↵(o).

• the a↵ected variable set a↵(o) is the set of state variables that appear in the

assignments in e↵(o).

Note that trans(o) might be ;, and it is always true that trans(o) ✓ dep(o) and

trans(o) ✓ a↵(o).

Definition 1 Given a SAS+ planning task ⇧ with state variable set X, its causal

graph (CG) is a directed graph CG(⇧) = (X,E) with X as the vertex set. There

is an edge (x, x0) 2 E if and only if x 6= x0 and there exists an action o such that

x 2 a↵(o) and x0 2 dep(o), or, x 2 a↵(o) and x0 2 a↵(o).

Intuitively, the nodes in the CG are state variables and the arrows in CG describe

the dependency relationships between variables. If the CG contains an arc from x
i

to x
j

, then a value change of x
j

will possibly a↵ect the applicability of some action o

that involves a transition of x
i

. Figure 3.1a shows the CG of an instance (Truck-02)

of the Truck planning domain used in the 5th International Planning Competition

(IPC5) [3]. State variables that define the goal state are in a darker color.
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3.2.1 Stratification of Planning Problems

Now we propose our stratification analysis. Given a SAS+ task, usually its CG is not

acyclic, which leads to cyclic causal dependencies among some of (but often not all)

the state variables. We propose a strongly connected component analysis on CG.

A directed graph is called strongly connected if there is a path from each vertex

in the graph to every other vertex. For a directed graph, a strongly connected

component (SCC) is a maximal strongly connected subgraph. A directed graph

can be uniquely decomposed into several SCCs. A partition of a set X is a set of

nonempty subsets of X such that every element x in X is in exactly one of these

subsets.

Definition 2 (Component Set) Given a SAS+ planning task ⇧ and its causal

graph CG(⇧) = (X,E), the component set M(⇧) is the partition of X such that

all the elements in each m 2M(⇧) are in the same SCC of CG(⇧).

Definition 3 (Contracted Graph) Given a directed graph G = (V,E), a con-

tracted graph of G is a directed graph G0 = (V 0, E 0), where each v0 2 V 0 is a subset of

V and V 0 is a partition of V . There is an arc (v0, w0) 2 E 0 if and only if there exist

v 2 v0 and w 2 w0 such that (v, w) 2 E.

Definition 4 (Contracted Causal Graph (CCG)) Given a SAS+ planning task

⇧, its contracted causal graph CCG(⇧) = (V,E) is a contracted graph of CG(⇧) such

that V = M(⇧).

Figure 3.1b shows the corresponding CCG of Figure 3.1a. Each vertex in the CCG

may contain more than one state variable. Intuitively, given the CG of a graph, we

find its SCCs and contract each SCC into a vertex. The resulting graph is the CCG.

Figure 3.2 shows the CCG of some other domains. The CCG plays the central role

in our structural analysis. It has an important property.

Proposition 1 For any SAS+ planning task ⇧, CCG(⇧) is a directed acyclic graph

(DAG).
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(a) Causal graph (CG)

(b) Contracted causal graph (CCG) (c) Stratification

Figure 3.1: The causal graph, contracted causal graph and stratification of Truck-02.
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The above statement is true because if the CCG contains a cycle, then all the ver-

tices on that cycle are strongly connected and should be contracted into one SCC.

Therefore, we see that although there are dependency cycles in the CG, there is no

cycle after we contract each SCC to one vertex. A topological sort on the CCG gives

an list of the SCCs, ordered by dependency relations. Stratification can be viewed as

a generalization of topological sort.

(a) Satellite02 (b) Rover01

(c) TPP11

Figure 3.2: The CCGs of some instances of several planning domains. Each SCC is labelled
by x<y>, where “x” is the index for the SCC and “y” is the number of state variables in
the SCC. The SCCs that contain goals are in a darker color.

Definition 5 (Stratification) Given a DAG G = (V,E), a stratification Str(G) of

G is a tuple (U,L), where U = {u
1

, · · · , u
k

} is a partition of V . U satisfies that there

do not exist i, j, 1  i < j  k, v
i

2 u
i

, and v
j

2 u
j

such that (v
j

, v
i

) 2 E. The

function L : V 7! N+ is called the layer function. L(v) = k for any v 2 V and

v 2 u
k

.

The stratification of a DAG G = (V,E) is not unique. A stratification Str(G) =

(U,L) is called a k-stratification if |U| = k. The upper bound of k is |V |. When

k = |V |, U must be a topological sort of V .
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Definition 6 (Stratification of a SAS+ Task) Given a SAS+ planning task ⇧,

a stratification of ⇧, denoted by Str(⇧), is a stratification of CCG(⇧).

Intuitively, a stratification of a CCG gives the flexibility to cluster state variables

while pertaining to the topological order. There can be one-way dependency or no

dependency, but no two-way dependency, between any two state variables at di↵erent

layers under a stratification.

Figure 3.1c shows an example of stratification of the Truck-02 problem. Each SCC

in Figure 3.1b is now assigned a layer and the topological order is maintained in the

stratification. Basically, the requirement is that there is no arrow pointing from a

larger-numbered layer to a smaller-numbered one.

The stratification defines the layer function for any state variable x 2 X. Based on

that, we can define the layer function L(o) for each action o 2 O.

Definition 7 (Action Layer) For a SAS+ task ⇧, given a stratification Str(⇧) =

(U,L), for an action o 2 O, L(o) is defined as L(x), for an arbitrary x 2 trans(o),

if trans(o) is nonempty; and L(o) =1 if trans(o) = ;.

We prove that L(o) is well-defined by showing that all x 2 trans(o) has the same

L(x), for any action o 2 O.

Proposition 2 For a SAS+ task ⇧, for an action o 2 O with trans(o) 6= ;, we have

L(x
i

) = L(x
j

), 8x
i

, x
j

2 trans(o).

Proof. Since x
j

2 trans(o) ✓ dep(o) and x
i

2 trans(o), by Definition 1, there is an

arc from x
j

to x
i

in CG(⇧). Similarly, x
i

2 trans(o) ✓ dep(o) and x
j

2 trans(o), an

arc exists from x
i

to x
j

in CG(⇧). This implies that x
i

and x
j

are strongly connected

in CG(⇧) and are elements in the same vertex of CCG(⇧). By Definition 5, we have

L(x
i

) = L(x
j

). ⌅

3.2.2 Stratified Planning Algorithm
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Algorithm 2: Stratified Planning(⇧, Str(⇧))

Input: A SAS+ planning task ⇧ and a stratification Str(⇧) = (U,L)
Output: A solution plan

1 closed  an empty set;
2 insert the initial AS pair (no-op,sI) to open;
3 while open is not empty do
4 (a, s)  Remove-First(open);
5 if s is a goal state then return solution;
6 ;
7 if s is not in closed then
8 add s to closed;
9  (a, s,L) = Stratified-Expansion(a, s,L) ;

10 open open[  (a, s,L);
11 end
12 end

Now we propose Stratified Planning in Algorithm 2. In fact, it is not a stand-alone

algorithm but rather a space reduction method that can be combined with other

search algorithms. It reduces the number of actions that need to be expanded at

each state. The input of Algorithm 2 is a SAS+ task ⇧ and a stratification Str(⇧).

It is a general framework where the open list can be implemented as a stack, queue

or priority queue. The open list contains a list of states that are generated but not

expanded.

Definition 8 For the purpose of stratified planning, for each generated state s, we

record an action-state (AS) pair (a, s) in the open list, where a is the action that

leads to s during the search. a is called the leading action of s.

Each time during the search, a Remove-First operation fetches one AS pair (a, s)

from the open list, checks if the state s is a goal state or is in the closed list. If

not, the Stratified-Expansion operation will generate a set of AS pairs (b, s0) to

be inserted to the open list, where s0 is the resulting state of applying b to s, i.e.

s0 = apply(s, b).

The di↵erence between stratified planning and a standard search is that, in standard

search, we will expand all the actions that are applicable at s, while Stratified-

Expansion may not expand every applicable action.
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Algorithm 3: Stratified Expansion(a, s,L)

Input: An AS pair (a, s) and the L function
Output: The set  (a, s,L) of successor AS pairs

1   ;;
2 foreach applicable action b at s do
3 if L(b) � L(a) then
4 compute s0 = apply(s, b);
5    [ {(b, s0)} ;
6 else if a B b then
7 compute s0 = apply(s, b);
8    [ {(b, s0)} ;
9 end

10 return  ;

Since the initial state sI has no leading action, a special action no-op is defined as its

leading action and its layer is defined as 0.

Definition 9 (Follow-up Action) For a SAS+ task ⇧, for two actions a, b 2 O, b

is a follow-up action of a (denoted as a B b) if a↵(a)\dep(b) 6= ; or a↵(a)\a↵(b) 6= ;.
Any action is a follow-up action of no-op.

Given this definition, we can describe the Stratified-Expansion operation, shown

in Algorithm 3. Given a stratification Str(⇧) = (U,L), the procedure of Stratified-

Expansion is quite simple. For any AS pair (a, s) to be expanded, for each action

b 2 O that is applicable at s, we consider two cases.

• If L(b) � L(a), we expand b.

• If L(b) < L(a), we expand b only if b is a follow-up action of a (a B b).

For any AS pair (a, s), all the AS pairs expanded by Stratified-Expansion forms

the set  (a, s,L).
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3.2.3 Theoretical Analysis

Here, we show that stratified planning search preserves the completeness and opti-

mality properties of the original search strategy, decided by the implementation of

the open list and the evaluation function. For example, if the open list is a priority

queue and the evaluation function is admissible, then the original search, with a full

expansion at each state, is both complete and optimal.

Definition 10 (Valid Path) For a SAS+ task ⇧ and a state s
0

, a sequence of ac-

tions p = (o
1

, . . . , o
n

) is a valid path if, let s
i

= apply(s
i�1

, o
i

), i = 1, . . . , n, o
i

is

applicable at s
i�1

for i = 1, . . . , n. We also say that applying p to s results in the

state s
n

.

Definition 11 (Stratified Path) For a SAS+ task ⇧, for a stratification str(⇧) =

(U,L) and a state s
0

, a sequence of actions p = (o
1

, . . . , o
n

) is a stratified path if it

is a valid path and, let s
i

= apply(s
i�1

, o
i

), i = 1, . . . , n, (o
i

, s
i

) 2  (o
i�1

, s
i�1

,L) for

i = 1, . . . , n, where o
0

= no-op.

Intuitively, a stratified path is a sequence of actions that can possibly be generated

by the stratified planning search.

Lemma 1 For path p = (a
1

, . . . , a
n

) that is a valid path but not a stratified path,

(a
i

, s
i

) /2  (a
i�1

, s
i�1

,L). Since p is not a stratified path, such an i must exist. Now

we perform a swapping operation and obtain a path

p0 = (a
1

, . . . , a
i�2

, a
i

, a
i�1

, a
i+1

, . . . , a
n

).

We show that p0 is also a valid path from s
0

.

Proof. According to Algorithm 3, We must have that L(a
i

) < L(a
i�1

) and that a
i

is not a follow-up action of a
i�1

. Since a
i

is not a follow-up action of a
i�1

, according

to Definition 9, e↵(a
i�1

) contains no assignment in pre(a
i

). Therefore, since a
i

is

applicable at s
i�1

, which is apply(s
i�2

, a
i�1

), we know a
i

is also applicable at s
i�2

.
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Since L(a
i

) < L(a
i�1

), the SCC in CCG(⇧) that contains a
i�1

has no dependencies

on the SCC that contains a
i

. Therefore, e↵(a
i

) contains no assignment in pre(a
i�1

).

Since the variable assignments in pre(a
i�1

) is satisfied at s
i�2

, it is also satisfied at

s0 = apply(s
i�2

, a
i

). Hence, a
i�1

is applicable at s0.

From the above, we see that (a
i

, a
i�1

) is an applicable action sequence at s
i�2

. Further,

since a
i

is not a follow-up action of a
i�1

, we have that a↵(a
i

) \ a↵(a
i�1

) = ;. Hence,
applying (a

i

, a
i�1

) to s
i�2

leads to the same state as applying (a
i�1

, a
i

), which is s
i

.

Therefore, p0 is a valid path from s
0

. ⌅

Theorem 1 Given a SAS+ planning task ⇧ and a stratification Str(⇧), for any

state s
0

and any valid path p
a

= (a
1

, . . . , a
n

) from s
0

, there exists a stratified path

p
b

= (b
1

, . . . , b
n

) from s
0

such that p
a

and p
b

result in the same state when applied to

s
0

.

Proof. We prove by induction on the number of actions. When n = 1, since the only

action in the path p is a follow-up action of no-op, p is also a stratified path. Now we

assume the proposition is true for n = k, k � 1 and prove the case when n = k + 1.

For a valid path p0 = (a
1

, . . . , a
k+1

), by our induction hypothesis, we can permute

the first k actions to obtain a stratified path (a1
1

, . . . , a1
k

).

Now we consider a new path p1 = (a1
1

, . . . , a1
k

, a
k+1

). If we have L(a
k+1

)  L(a1
k

), or

L(a
k+1

) > L(a1
k

) and a
k+1

is a follow-up action of a1
k

, then p1 is already a stratified

path.

Now we focus on the case where L(a
k+1

) > L(a1
k

) and a
k+1

is not a follow-up action

of a1
k

. Consider a new path p2 = (a1
1

, . . . , a1
k�1

, a
k+1

, a1
k

). From Lemma 1, we know

that p2 is a valid path leading to the same state as p1 does.

By our induction hypothesis, we can permute the first k actions of p2 to obtain a

stratified path (a2
1

, . . . , a2
k

). Define p3 = (a2
1

, . . . , a2
k

, a1
k

).

Comparing p2 and p3, we know that L(a
k+1

) > L(a1
k

), namely, the level of the last

action in p2 is strictly larger than that in p3. We can repeat the above process to

generate p4, p5, · · · , as long as pj, (j 2 Z+) is not a stratified path. For each pj, the
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first k actions is a stratified path. Also, every pj is a valid path that leads to the

same state as p0

Since we know that the level of the last action in pj is monotonically decreasing as

j increases, such a process must stop in a finite number of iterations. Suppose it

stops at pm = (a0
1

, . . . , a0
k

, a0
k+1

),m � 1. We must have that L(a0
k+1

)  L(a0
k

), or

L(a0
k+1

) > L(a0
k

) and a0
k+1

is a follow-up action of a0
k

. Hence pm is a stratified path

and we prove the induction step. ⌅

Theorem 2 For a SAS+ task, a complete search is still complete when combined

with Stratified-Expansion, and an optimal search is still optimal when combined

with Stratified-Expansion.

Proof. For any search algorithm, we define its search graph as a graph where each

vertex is a state and there is an arc from s to s0 if and only if s0 is expanded as a

successor state of s during the search. For a complete search, if it can find a solution

path p in the original search graph, then according to Theorem 1, there is another

path p0 in the search graph of the stratified search. Therefore, the complete search

combined with Stratified-Expansion will find p0.

If a search is optimal, then when it is combined with Stratified-Expansion, it

will find an optimal path p0 in the search graph of the stratified search. According to

Theorem 1, if the length of the optimal path in the original search graph is n, there

must exist a path in the search graph of the stratified search with length n. Hence,

the length of p0 is n and the new search is still optimal. ⌅

3.3 Experimental Results

We test on STRIPS problems in the recent International Planning Competitions

(IPCs). We implement our stratification analysis and stratified search on of top the

Fast Downward planner [33] which gives SAS+ encoding of planning problems. We

still use the causal graph heuristic h
cg

and only modify the state expansion part. On

a PC with a 2.0 GHz Xeon CPU and 2GB memory, we set a time limit of 300 seconds

for all problem instances.
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In practice, how to determine the granularity of stratification is an important is-

sue. We test two extreme cases in our experiments. On one extreme, we test 1-

stratification, which performs a topological sort on the CCG and treats each SCC as

a layer. This represents the finest granularity of stratification. On the other extreme,

we test 2-stratification, which partitions the CCG into two layers and represents

the coarsest granularity of stratification. We also implement a factor �, 0 < � < 1 for

2-stratification, which specifies the ratio of the number of state variables in Layer 1

to the total number of state variables. We topologically sort the CCG and find the

dividing point that gives a ratio closest to �. We use � = 0.7 in our experiments.

The results are shown in Tables 3.1 and 3.2. We did not include certain domains, such

as Pipesworld and Freecell, where the CG is only one SCC and cannot be stratified.

We can see that both1-stratification and 2-stratification can give reduction for most

problem instances. The reduction of the number of generated nodes can be more than

an order of magnitude. Comparing 1-stratification to 2-stratification, we see that

they give similar performance. Despite the reduction in number of generated nodes,

the CPU time reduction is more modest. This is due to the fact that our preliminary

implementation is not e�cient. For example, we check whether an action is a follow-

up action of another one at each state, although a preprocessing phase will save much

time. We will develop more e�cient implementations in our future work.

3.4 Discussions and Summary

The idea of stratified planning can be explained by looking at a simple 2-stratification.

In a 2-stratification, all the state variables are divided into two groups, U
1

and U
2

,

where U
1

depends on U
2

. Therefore, during the search, whenever we expand an action

a in U
2

, there are only two purposes: to transform a state in U
2

to a goal state, or

to provide a precondition for an action in U
1

. Therefore, we allow to further expand

actions in U
2

but do not allow actions in U
1

except those directly supported by a. In

other words, we do not expand any action in U
1

that is not a follow-up action of a

because it is a ”loose” partial order that can be pruned.

30



From the above, we see that stratified search can avoid redundant orderings between

ancestor/o↵spring SCCs. Besides that, another source of reduction is that strati-

fied planning imposes certain partial orders between sibling SCCs. For example, in

Figure 3.1a, the SCCs numbered 1 to 5 are siblings in the CCG. However, after we

stratify the CCG as in Figure 3.1c, we impose certain partial orders. For example,

we are forced to place actions in SCC 1 before SCC 5 whenever possible. Such a

reduction can be significant for many domains.

Stratified search may also incorporate symmetry removal in some situations. For

example, if three trucks T1, T2, T3 are symmetric and can support the delivery of

a package. If the stratification places the three trucks at di↵erent layers, then it

e↵ectively provides symmetry removal since we will try using T1 before T2 and before

T3 whenever possible. Also, stratified search seems to have an advantage in that it

does not require the three objects to be absolutely symmetric for all the states and

can adjust dynamically to the situation. For example, if at certain state T2 has to

be used due to certain constraints, stratified search will find such a solution since it

is completeness preserving.

In summary, we have proposed stratified planning, a reduction method that exploits

the domain structure. We have defined the stratification of a SAS+ task on top of

its contracted causal graph. We have then proposed a space reduction method that

exploits the oneway-ness of the dependencies between stratified layers and proved that

the reduction method is optimality and completeness preserving. Our experimental

results on recent IPC domains show that search can be made more e�cient when the

search space can be stratified into dependency layers.
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ID
Fast Downward 1-stratification 2-stratification
Nodes Time Nodes Time Nodes Time

zenotravel1 10 0
⇤⇥ ��5 0

⇤⇥ ��5 0

zenotravel1 122 0
⇤⇥ ��23 0

⇤⇥ ��23 0

zenotravel3 723 0
⇤⇥ ��236 0

⇤⇥ ��236 0

zenotravel4 455 0
⇤⇥ ��194 0

⇤⇥ ��194 0

zenotravel5 884 0
⇤⇥ ��479 0

⇤⇥ ��479 0

zenotravel6 1895 0
⇤⇥ ��785 0

⇤⇥ ��785 0

zenotravel7 1468 0
⇤⇥ ��883 0

⇤⇥ ��883 0

zenotravel8
⇤⇥ ��1795 0.04 1828 0.02 1828 0.02

zenotravel9
⇤⇥ ��2017 0.04 2938 0.04 2938 0.04

zenotravel10
⇤⇥ ��4218 0.05 8708 0.04 8708 0.04

zenotravel11 3485 0.02
⇤⇥ ��3429 0.02

⇤⇥ ��3429 0.02

zenotravel12
⇤⇥ ��5002 0.06 7671 0.04 7671 0.04

zenotravel13 9654 0.07
⇤⇥ ��6911 0.12

⇤⇥ ��6911 0.12

zenotravel14 495266 0.26
⇤⇥ ��49623 0.18

⇤⇥ ��49623 0.18

zenotravel15 23853 0.52
⇤⇥ ��1254 0.39

⇤⇥ ��1254 8.45

drivelog1 355 0
⇤⇥ ��51 0 152 0

drivelog2 1450 0
⇤⇥ ��633 0.01 743 0.01

drivelog3 774 0
⇤⇥ ��297 0.01 433 0.01

drivelog4 4692 0.01
⇤⇥ ��1549 0.03 3454 0.02

drivelog5 2879 0.01
⇤⇥ ��576 0.01 957 0.01

drivelog6 2394 0
⇤⇥ ��577 0 1442 0.01

drivelog7
⇤⇥ ��1707 0.02 4341 0.03 1948 0.01

drivelog8
⇤⇥ ��531 0 57006 0.35 4372 0.02

drivelog9 18920 0.02
⇤⇥ ��3808 0.03 26991 0.24

drivelog10 10356 0.02
⇤⇥ ��4317 0.04 8965 0.07

drivelog11 3755 0.05
⇤⇥ ��2435 0.04 3616 0.06

drivelog12 64714 0.31
⇤⇥ ��21252 0.28 135518 2.18

drivelog13 10995 0.13
⇤⇥ ��5659 0.14 9333 0.22

drivelog14 14344 0.06
⇤⇥ ��3195 0.1 7388 0.21

drivelog15 140305 1.25 14371 1.39
⇤⇥ ��14369 0.79

drivelog16
⇤⇥ ��1554010 44.49 180020 29.39 - -

drivelog17 2218657 51.33
⇤⇥ ��860136 33.81 3986057 167.69

Table 3.1: Comparison of Fast Downward and two stratification strategies. We give the
number of generated nodes and CPU time in seconds. “-” means timeout after 300 seconds.
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ID

Fast Downward 1-stratification 2-stratification

Nodes Time Nodes Time Nodes Time

depots1 117 0.01

⇤⇥ ��34 0.01 46 0.01

depots2 1647 0.02

⇤⇥ ��390 0.02 432 0.02

depots3 150297 3.28 42363 3.13

⇤⇥ ��43238 2.65

depots4 295799 6.16

⇤⇥ ��53191 5.37 185819 13.2

depots5 1754366 79.46

⇤⇥ ��67146 9.98 70296 7.39

depots7 926076 21.79

⇤⇥ ��64395 5.09 223034 10.32

depots10 - - 21544464 211.1

⇤⇥ ��27737 1.08

tpp3 40 0

⇤⇥ ��15 0 17 0

tpp4 67 0

⇤⇥ ��24 0 28 0

tpp5 139 0

⇤⇥ ��51 0 52 0

tpp6 1081 0.04

⇤⇥ ��1132 0.02 1949 0.01

tpp7 12444 0.11

⇤⇥ ��1436 0.02 4282 0.08

tpp8 20536 0.19 14060 0.49

⇤⇥ ��7373 0.14

tpp9 24641 0.3

⇤⇥ ��4128 0.21 7926 0.48

tpp10 298225 3.14 175383 2.5

⇤⇥ ��130502 2.12

truck3 6676 0.02

⇤⇥ ��5475 0.04

⇤⇥ ��5475 0.04

truck4 991625 11.66

⇤⇥ ��41066 0.48

⇤⇥ ��41066 0.48

truck5 13313 0.65

⇤⇥ ��6561 0.07

⇤⇥ ��6561 0.07

truck6 238523 3.7

⇤⇥ ��27267 0.30

⇤⇥ ��27267 0.30

truck7 612647 4.89

⇤⇥ ��74485 1.47

⇤⇥ ��74485 1.47

truck8 22827 0.3

⇤⇥ ��37491 0.5 37492 0.5

truck9 - -

⇤⇥ ��5090375 212.26

⇤⇥ ��5090375 132.26

truck10 - -

⇤⇥ ��528454 13.44

⇤⇥ ��528254 11.08

truck11 - -

⇤⇥ ��926217 11.12

⇤⇥ ��926217 8.17

truck12 - -

⇤⇥ ��928489 16.55

⇤⇥ ��928489 12.57

satellite01 226 0 97 0

⇤⇥ ��91 0

satellite02 512 0 240 0

⇤⇥ ��233 0

satellite03 1551 0.01 2168 0.01

⇤⇥ ��744 0.01

satellite04 5036 0.01 2470 0.01

⇤⇥ ��2342 0.01

satellite05 7455 0.02 3674 0.01

⇤⇥ ��3483 0.02

satellite06 20452 0.04 10049 0.02

⇤⇥ ��9681 0.03

satellite07 52902 0.08 26212 0.08

⇤⇥ ��26012 0.04

satellite08 54250 0.11 27118 0.1

⇤⇥ ��26940 0.04

satellite09 104051 0.18

⇤⇥ ��1268 0.12 51173 0.12

satellite10 318621 1.54

⇤⇥ ��129971 1.01 531861 0.78

rover01 228 0

⇤⇥ ��78 0 128 0

rover02 263 0 114 0

⇤⇥ ��102 0

rover03 617 0 218 0

⇤⇥ ��199 0

rover04 225 0

⇤⇥ ��88 0 95 0

rover05 2106 0.01

⇤⇥ ��763 0.01 890 0

rover06 419655 3.84

⇤⇥ ��319500 11.16 572341 11.86

rover07 3659 0.02

⇤⇥ ��1396 0.03 1420 0.05

rover08 20480 0.11

⇤⇥ ��2736 0.06 6003 0.71

rover09 - -

⇤⇥ ��6003 0.04 29477 0.72

rover10 49789 0.3 22023 0.41

⇤⇥ ��19024 0.38

Table 3.2: Comparison of Fast Downward and two stratification strategies. We give the
number of generated nodes and CPU time in seconds. “-” means timeout after 300 seconds.
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Chapter 4

Accelerating Heuristic Search with

Partial Order Reduction

Stratified Planning discussed in the last chapter is a type of partial order based

reduction (POR) technique for search. Stratified Planning, together with the Expan-

sion Core [18] algorithm, showed a new direction of research where we can reduce

the search space that is an orthogonal and complementary approach to improving

heuristics. POR has shown promise in speeding up heuristic searches.

Partial order reduction has been extensively studied in model checking research and

is a key technique for enabling scalability of model checking systems. Although the

POR theory has been extensively studied in model checking, it has never before been

developed systematically for planning. In addition, the conditions for POR in the

model checking theory are abstract and not directly applicable in planning. Previous

works on POR algorithms for planning did not establish the connection between these

algorithms and existing theory in model checking.

In this chapter, we develop a theory for POR in planning. The new theory we develop

connects the stubborn set theory in model checking to POR methods in planning. We

show that previous POR algorithms in planning can be explained by the new theory.

Based on the new theory, we propose a new, stronger POR algorithm. Experimental

results using the new algorithm show further search cost reduction in various planning

domains.
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4.1 Partial Order Reduction Theory for Planning

In this section, we will first introduce the concept of search reduction. Then, we

will present a general POR theory for planning, which gives su�cient conditions that

guide the design of practical POR algorithms.

4.1.1 Space Reduction for Planning

We first introduce the concept of search reduction that previously has been informally

introduced [18, 17] . A standard search algorithm, such as breadth-first search, depth-

first search, or A⇤ search, needs to explore a state space graph. A reduction algorithm

is an algorithm that reduces the state space graph into a subgraph, so that a search

will be performed on the subgraph instead of the original state space graph. We first

define the state space graph. In our presentation, for any graph G, we use V (G) to

denote the set of vertices and E(G) the set of edges. For a directed graph G, for any

vertex s 2 V (G), a vertex s0 2 V (G) is its successor if and only if (s, s0) 2 E(G).

For a SAS+ planning task, its original state space graph is a directed graph G in

which each state s is a vertex and there is a directed edge (s, s0) if and only if there

exists an action o such that apply(s, o) = s0. We say that action o marks the edge

(s, s0).

Definition 3 For a SAS+ planning task, for a state space graph G, the successor

set of a state s , denoted by succG(s), is the set of all the successor states of s. The

expansion set of a state s, denoted by expandG(s), is the set of actions

expandG(s) = {o | o marks (s, s0), (s, s0) 2 E(G)}.

Intuitively, the successor set of a state s includes all the successor states that shall

be generated by a search upon expanding s, while the expansion set includes all the

actions to be expanded at s.

In general, a reduction method is a method that maps the original state space

graph G for a planning task to a subgraph of G called the reduced state space
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graph. POR algorithms remove edges from G. More specifically, each state s is only

connected to a subset of all its successors in the reduced state space graph. We note

that, by removing edges, a POR algorithm may also reduce the number of vertices that

are reachable from the initial state, hence reducing the number of nodes examined

during the search process. The decision as to whether a successor state s0 would

still be a successor in the reduced state space graph can be made locally by checking

certain conditions related to the current state and some precomputed information.

Hence, a POR algorithm can be combined with various search algorithms.

For a SAS+ planning task, a solution sequence in its state space graph G is a pair

(s0, p), where

• s0 is a non-goal state,

• p = (a
1

, . . . , a
k

) is a sequence of actions, and,

• let si = apply(si�1, a
i

), i = 1, . . . , k, (si�1, si) is an edge in G for i = 1, . . . , k

and sk is a goal state.

We now define a property of reduction methods.

Definition 4 For a SAS+ planning task, a reduction method is completeness-

preserving if for any solution sequence (s0, p) in the state space graph, there also

exists a solution sequence (s0, p0) in the reduced state space graph.

Similarly, a reduction method is optimality-preserving if, for any solution sequence

(s0, p) in the state space graph, there also exists a solution sequence (s0, p0) in the

reduced state space graph satisfying that p0 has the same objective function value as

p does. In addition, a reduction method is action-preserving if, for any solution

sequence (s0, p) in the state space graph, there also exists a solution sequence (s0, p0)

in the reduced state space graph satisfying that the actions in p0 are a permutation

of the actions in p.

Clearly, being action-preserving is a su�cient condition for being completeness-preserving.

When the objective function is action set invariant (such as optimizing plan length

36



or total action cost), being action-preserving is also a su�cient condition for be-

ing optimality-preserving. As a result, we prove the completeness-preserving or

optimality-preserving attributes of POR algorithms by proving they are action-preserving.

4.1.2 Stubborn Set Theory for Planning

Among the many variations of POR methods in model checking, a popular and rep-

resentative POR algorithm is the stubborn set method [67, 68, 69, 72, 70, 71]. We

briefly introduce the idea of stubborn set and stubborn set method in model checking

without distracting readers with technical details. In model checking, a stubborn set

is a subset of applicable transitions for a state that satisfies a set of conditions.

For each state, a stubborn set method finds the stubborn set of each state and expands

only the actions in the stubborn set during search. Conditions that define stubborn

sets guarantee that important properties (such as deadlock preserving) are preserved

under reduction. By expanding a small subset of applicable actions in each state,

stubborn set methods can reduce the search space without compromising correctness

for model checking. Since planning also examines a large search space, we develop a

stubborn set theory for planning. To achieve this, we need to handle various subtle

issues arising from the di↵erences between model checking and planning. We first

adapt the definition of stubborn set in model checking and define the concept of

stubborn sets for planning.

Definition 5 (Stubborn Set for Planning) For a SAS+ planning task, a set of

actions T (s) is a stubborn set at a non-goal state s if and only if

A1) For any action b 2 T (s) and actions b
1

, · · · , b
k

/2 T (s), if (b
1

, · · · , b
k

, b) is a

prefix of a path from s to a goal state, then (b, b
1

, · · · , b
k

) is a valid path from s

and leads to the same state that (b
1

, · · · , b
k

, b) does; and

A2) Any valid path from s to a goal state contains at least one action in T (s).

The above definition is schematically illustrated in Figure 4.1. Once we define the

stubborn set T (s) in each state s, we in e↵ect reduce the state space graph to a
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Figure 4.1: Illustration of condition A1 in Definition 5. The big circle on the left
stands for the set of all applicable actions at state s, while the small circle stands for
the stubborn set T (s) of s. Action b 2 T (s) can always be swapped to the beginning
of a path consisting of b

i

s without a↵ecting the final state.

subgraph: only the edges corresponding to actions in the stubborn sets are kept in

the subgraph. Also note that conditions for the stubborn set do not directly lead

to an e�cient procedure to decide whether a given set is a stubborn set or not. For

instance, given a planning task and a state s, unless we have more information about

paths from s to a goal state, we cannot verify condition A2 in the above definition.

Definition 6 For a SAS+ planning task, given a stubborn set T (s) defined at each

state s, the stubborn set method reduces its state space graph G to a subgraph G
r

such

that V (G
r

) = V (G) and there is an edge (s, s0) in E(G
r

) if and only if there exists an

action o 2 T (s) such that s0 = apply(s, o).

A stubborn set method for planning is a reduction method that reduces the

original state space graph G to a subgraph G
r

according to Definition 6. In other

words, a stubborn set method expands actions only in a stubborn set in each state.

We will now show that such a reduction method preserves actions, hence, it also

preserves completeness and optimality.

Lemma 2 Any stubborn set method for planning is action-preserving.

Proof: We prove that for any solution sequence (s0, p) in the original state space

graph G, there exists a solution sequence (s0, p0) in the reduced state space graph G
r

resulting from the stubborn set method, such that p0 is a permutation of actions in

p. We prove this fact by induction on k, the length of p.
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When k = 1, let a be the only action in p, according to the second condition in

Definition 5, a is in T (s0). Thus, (s0, p) is also a solution sequence in G
r

. Thus, a

stubborn set method is action-preserving in the base case.

When k > 1, the induction assumption is that any solution path in G with length

less than or equal to k � 1 has a permutation in G
r

that leads to the same final

state. Now we consider a solution sequence (s0, p) in G: p = (a
1

, . . . , a
k

). Let si =

apply(si�1, a
i

), i = 1, . . . , k. If a
1

2 T (s), we can invoke the induction assumption for

the state s1 and prove our induction assumption for k.

We now consider the case where a
1

/2 T (s). Let a
j

be the first action in p such that

a
j

2 T (s). Such an action must exist because of condition A2 in Definition 5.

Consider the sequence p⇤ = (a
j

, a
1

, · · · , a
j�1

, a
j+1

, · · · , a
k

). According to condition

A1 in Definition 5, (a
j

, a
1

, · · · , a
j�1

) is also a valid sequence from s0 which leads to

the same state that (a
1

, · · · , a
j

) does. Hence, we know that (s0, p⇤) is also a solution

path. Therefore, let s0 = apply(s0, a
j

), we know (a
1

, · · · , a
j�1

) is an executable action

sequence starting from s0. Let p⇤⇤ = (a
1

, · · · , a
j�1

, a
j+1

, · · · , a
k

), (s0, p⇤⇤) is a solution

sequence in G. From the induction assumption, we know there is a sequence p0 which

is a permutation of p⇤⇤, such that (s0, p0) is a solution sequence in G
r

. Since a
j

2 T (s0),

we know that a
j

followed by p0 is a solution sequence from s0 and is a permutation of

actions in p⇤, which is a permutation of actions in p. Thus, the stubborn set method

is action-preserving. ⌅

Since being action-preserving is a su�cient condition for being completeness-preserving

and optimality-preserving, when the object function is action set invariant, we have

the following theorem.

Theorem 3 A stubborn set method for planning is completeness-preserving. In

addition, it is optimality-preserving when the objective function is action set invariant.

4.1.3 Commutativity in SAS+ planning

Theorem 3 shows that we can use a stubborn set method to reduce the search space.

However, as we mentioned earlier, conditions for stubborn sets defined in Definition 5
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are only necessary for a given stubborn set. These conditions do not directly lead

to e�cient algorithms for finding stubborn sets. In turn, we want to find e�cient

procedures for finding stubborn sets that facilitate state space search algorithms. In

the following, we define several concepts that can lead to su�cient conditions for

stubborn sets.

Definition 7 (State-Dependent Commutativity) For a SAS+ planning task, an

ordered action pair (a, b), a, b 2 O is commutative in state s, if (a, b) is a valid path at

s implies that (b, a) is also a valid path at s that ends at the same state. We denote

such a relationship by s : b) a.

Definition 8 (State-Independent Commutativity) For a SAS+ planning task,

an ordered action pair (a, b), a, b 2 O is commutative if, for any state s, it is true that

s : b) a. We denote such a relationship by b) a.

The order in the notation b) a suggests that we should always try only (b, a) during

the search instead of trying both (a, b) and (b, a). Also, not every state-dependent

commutative action pair is state-independent commutative. For instance, in a SAS+

planning task with three state variables {x
1

, x
2

, x
3

}, action a with pre(a) = {x
1

= 0},
e↵ (a) = {x

2

= 1} and action b with pre(b) = {x
2

= 1, x
3

= 2}, e↵ (b) = {x
3

= 3}
are commutative in state s1 = {x

1

= 0, x
2

= 1, x
3

= 2} but not in state s2 = {x
1

=

0, x
2

= 0, x
3

= 2} as b is not applicable in state s2. That is to say, b) a is only true

in state s1 but not in state s2.

Although the conditions for state-independent commutativity are stronger, they greatly

simplify the derivation of su�cient conditions for finding stubborn sets. Our ultimate

results, however, only need to assume the state-dependent commutativity of action

pairs.

Definition 9 (State-Independent Commutative Set) For a SAS+

planning task, a set of actions T (s) is a commutative set at state s if and only if

L1) For any action b 2 T (s) and any action a 2 O � T (s), if there exists a valid

path from s to a goal state that contains both a and b, then it is the case that

b) a; and
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In this diagram, the left part plots the condition L1 in Definition 9 and the right
part plots the strategy in the proof to Theorem 4. We swap action b with each b

i

during the constructive proof.

Figure 4.2: Illustration of commutative set.

A2) Any valid path from s to a goal state contains at least one action in T (s).

Theorem 4 For a SAS+ planning task, for a state s, if a set of actions T (s) is a

state-independent commutative set, then it is also a stubborn set.

Proof: We only need to prove that L1 in Definition 9 implies A1 in Definition 5.

The proof strategy is schematically shown in Figure 4.2.

For an action b 2 T (s) and actions b
1

, · · · , b
k

/2 T (s), if (b
1

, · · · , b
k

, b) is a prefix of a

path from s to a goal state, then according to L1, we see that b) b
i

, for i = 1, · · · , k.
According to the definition of commutativity, we see that b

k

and b can be swapped

and that the resulting path (b
1

, · · · , b, b
k

) is still a valid path that leads to the same

state that (b
1

, · · · , b
k

, b) does. We can subsequently swap b with b
k�1

, · · · , and b
1

to obtain equivalent paths, before finally obtaining (b, b
1

, · · · , b
k

), as shown in the

schematic illustration in the right part of Figure 4.2. Hence, we have shown that if

p = (b
1

, · · · , b
k

, b) is a prefix of a path from s to a goal state, then p0 = (b, b
1

, · · · , b
k

)

is also a valid path from s that leads to the same state that p does, which is exactly

condition A1 in Definition 5. ⌅

From the proof above, we see that the requirement of state-independent commuta-

tivity in Definition 9 is unnecessarily strong. Instead, only certain state-dependent

commutativity is necessary. In fact, when we change (b
1

, · · · , b
k

, b) to (b
1

, · · · , b, b
k

),

we only require s0 : b) b
k

where s0 is the state after b
k�1

is executed. Similarly, when
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we change (b
1

, · · · , b
k

, b) to (b
1

, · · · , b, b
k�1

, b
k

), we only require s00 : b ) b
k�1

where

s00 is the state after b
k�2

is executed. Based on the above analysis, we can refine the

su�cient conditions.

Definition 10 (State-Dependent Commutative Set) For a SAS+

planning task, a set of actions T (s) is a commutative set at state s if and only if

L1’) For any action b 2 T (s) and actions b
1

, · · · , b
k

/2 T (s), if (b
1

, · · · , b
k

, b) is a

prefix of a path from s to a goal state, then s0 : b ) b
k

, where s0 is the state

after (b
1

, · · · , b
k�1

) is executed; and

A2) Any valid path from s to a goal state contains at least one action in T (s).

We only need to slightly modify the proof to Theorem 4 in order to prove the following

theorem.

Theorem 5 For a SAS+ planning task, for state s, if a set of actions T (s) is a

state-dependent commutative set, it is also a stubborn set.

The above result gives su�cient conditions for finding stubborn sets in planning. The

concept of state-dependent commutative sets requires a less stringent condition than

the state-independent commutative set. Such a nuance actually leads to di↵erent

previous POR algorithms with varying performances. Therefore, it will result in

smaller T (s) sets and stronger reduction. Next, we present our algorithm for finding

such a set at each state to satisfy these conditions.

4.1.4 Determining Commutativity

Theorem 5 provides a key result for POR. However, the conditions in Definition 7

are still abstract and not directly implementable. The key issue is to e�ciently

find commutative action pairs. Now we give necessary and su�cient conditions for

Definition 7 that can practically determine commutativity and facilitate the design

of reduction algorithms.
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Theorem 6 For a SAS+ planning task, for a valid action path (a, b) in state s, we

have s : b) a if and only if pre(a) and e↵(b), pre(b) and e↵(a), e↵(a) and e↵(b) are

all conflict-free and b is applicable at s.

Proof: First, from the definition of s : b) a, we know that action b is applicable in

state apply(s, a). This implies that pre(b) and e↵ (a) are conflict-free. Symmetrically,

since action a is applicable in state apply(s, b), pre(a) and e↵ (b) are also conflict-

free. Now we prove e↵ (a) and e↵ (b) are conflict-free by contradiction. If e↵ (a)

and e↵ (b) are not conflict-free, without loss of generality, we can assume that e↵(a)

contains x
i

= v
i

and e↵(b) contains x
i

= v0
i

6= v
i

. Thus, the value of x
i

is v
i

for

state sab = apply(apply(s, a), b) and v0
i

for state sba = apply(apply(s, b), a), i.e., sab is

di↵erent than sba. This contradicts our assumption that a and b are commutative.

Thus, e↵(a) and e↵(b) are conflict-free.

Second, if b is applicable in s, apply(s, b) is well-defined, and a is also applicable in

state apply(s, b) as pre(a) and e↵ (b) are conflict-free. Hence, (b, a) is a valid path at

s. Also, for any state variable x
i

, its value in states sab = apply(apply(s, a), b) and

sba = apply(apply(s, b), a) are the same, because e↵ (a) and e↵ (b) are conflict-free.

Therefore, we have sab = sba. Hence, we have s : b) a. ⌅

Theorem 6 gives necessary and su�cient conditions for deciding whether two actions

are commutative or not. Based on this result, we later develop practical POR algo-

rithms that find stubborn sets using commutativity.

4.2 Stubborn-Set Theory for Existing POR Algo-

rithms

Previously, we have proposed two POR algorithms for planning: expansion core

(EC) [18] and stratified planning (SP) [17], both of which showed good performance

in reducing the search space. However, we did not have a unified theoretical back-

ground for them. We now explain how these two algorithms can be explained by our

theory.
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Figure 4.3: A SAS+ task with four DTGs. The dashed arrows show preconditions (prevail-
ing and transitional) of each edge (action). Only dashed arrows between DTGs are shown.
Actions are marked with letters a to f. We see that b and e are associated with more than
one DTG.

4.2.1 Explanation of EC

Expansion core (EC) algorithm is a POR-based reduction algorithm for planning.

We will see that, in essence, the EC algorithm exploits the SAS+ formalism to find a

commutative set for each state. To describe the EC algorithm, we need the following

definitions.

Definition 11 For a SAS+ task, for each DTG G
i

, i = 1, . . . , N , for a vertex v 2
V (G

i

), an edge e 2 E(G
i

) is a potential descendant edge of v (denoted as v � e)

if 1) G
i

is goal-related and there exists a path from v to the vertex that stands for a

goal assignment in G
i

that contains e; or 2) G
i

is not goal-related and e is reachable

from v.

Definition 12 For a SAS+ task, for each DTG G
i

, i = 1, . . . , N , for a vertex v 2
V (G

i

), a vertex w 2 V (G
i

) is a potential descendant vertex of v (denoted as

v � w) if 1) G
i

is goal-related and there exists a path from v to the goal vertex in G
i

that contains w; or 2) G
i

is not goal-related and w is reachable from v.

Definition 13 For a SAS+ task, given a state s = (s
1

, · · · , s
N

), for any 1  i, j 
N, i 6= j, we call s

i

a potential precondition of the DTG G
j

if there exist o 2 O
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Action Associated with Preconditions in
a G

1

b G
1

, G
2

G
2

, G
1

c G
2

G
3

d G
3

e G
3

, G
4

G
4

, G
3

f G
4

Table 4.1: Supplementary table for Figure 4.3: list of actions and related DTGs.

and e
j

2 E(G
j

) such that

s
j

� e
j

, o ` e
j

, and s
i

2 pre(o) (4.1)

Definition 14 For a SAS+ task, given a state s = (s
1

, . . . , s
N

), for any 1  i, j 
N, i 6= j, we call s

i

a potential dependent of the DTG G
j

if there exists o 2 O,

e
i

= (s
i

, s0
i

) 2 E(G
i

) and w
j

2 V (G
j

) such that

s
j

� w
j

, o ` e
i

, and w
j

2 pre(o) (4.2)

Definition 15 For a SAS+ task, given a state s = (s
1

, . . . , s
N

), its potential de-

pendency graph PDG(s) is a directed graph in which each DTG G
i

, i = 1, · · · , N
corresponds to a vertex, and there is an edge from G

i

to G
j

, i 6= j, if and only if s
i

is

a potential precondition or potential dependent of G
j

.

Figure 4.3 illustrates the above definitions. The dashed arrows on the left side of

the figure are preconditions of each action. We show the DTGs where each actions

preconditions are in in Table 4.1. For each action, by having arrows from the third

columns of Table 4.1 to the second column, we obtain the PDG(s). It is shown on the

right side of the figure. PDG(s) intuitively shows the dependencies between DTGs.

For instance, G
3

has an arrow to G
2

in this graph, meaning actions associated with G
3

may a↵ect the actions in G
2

. It is true because action d associated with G
3

will render

action c associated with G
2

not applicable. However, since there is no arrow from G
2

to G
3

, we know that any actions associated with G
2

will not a↵ect the applicability

of actions associated with G
3

, as we can indeed tell from this example.
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Definition 16 For a directed graph H, a subset C of V (H) is a dependency clo-

sure if there do not exist v 2 C and w 2 V (H)� C such that (v, w) 2 E(H).

Intuitively, a DTG in a dependency closure may depend on other DTGs in the clo-

sure but not those DTGs outside of the closure. In Figure 4.3, G
1

and G
2

form a

dependency closure of PDG(s).

The EC algorithm is defined as follows:

Definition 17 (Expansion Core Algorithm) For a SAS+ planning task, the EC

method reduces its state space graph G to a subgraph G
r

such that V (G
r

) = V (G) and

for each vertex (state) s 2 V (G), it expands actions in the following set T (s) ✓ O:

T (s) =
[

i2C(s)

⇢
o

����o 2 exec(s) ^ o ` G
i

�
, (4.3)

where exec(s) is the set of applicable actions in s and C(s) ✓ {1, · · · , N} is an index

set satisfying:

EC1) The DTGs {G
i

, i 2 C(s)} form a dependency closure in PDG(s); and

EC2) There exists i 2 C(s) such that G
i

is goal-related and s
i

is not the goal vertex

in G
i

.

Intuitively, the EC method can be described as follows. To reduce the original state-

space graph, for each state, instead of expanding actions in all the DTGs, it only

expands actions in DTGs that belong to a dependency closure of PDG(s) under the

condition that at least one DTG in the dependency closure is goal-related and not at

a goal state.

The set C(s) can always be found for any non-goal state s since PDG(s) itself is

always a dependency closure. If there is more than one such closure, theoretically

any dependency closure satisfying the above conditions can be used in EC. In practice,

when there are multiple such dependency closures, EC picks the one with fewer actions

in order to get stronger reduction. EC has adopted the following scheme to find the

dependency closure for any state s:
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Given a PDG(s), EC first finds its strongly connected components (SCCs). If each

SCC is contracted to a single vertex, the resulting graph is a directed acyclic graph

S. Note that each vertex in S with a zero out-degree corresponds to a dependency

closure. It then topologically sorts all the vertices in S to get a sequence of SCCs:

S
1

, S
2

, · · · , and picks the smallest m such that S
m

includes a goal-related DTG that

is not in its goal state. It chooses all the DTGs in S
1

, · · · , S
m

as the dependency

closure.

Now we explain the EC algorithm using the POR theory we developed in Section 4.1.

We show that the EC algorithm can be viewed as an algorithm for finding a state-

dependent commutative set in each state.

Lemma 3 For a SAS+ planning task, the EC algorithm defines a state-dependent

commutative set for each state.

Proof: Consider the set of actions T (s) expanded by the EC algorithm in each

state s, as defined in (4.3). We prove that T (s) satisfies conditions L1’ and A2 in

Definition 10.

Consider an action b 2 T (s) and actions b
1

, · · · , b
k

/2 T (s) such that (b
1

, · · · , b
k

, b) is

a prefix of a path from s to a goal state, we show that s0 : b ) b
k

, where s0 is the

state after (b
1

, · · · , b
k�1

) is applied to s.

Let C(s) be the index set of the DTGs that form a dependency closure, as used in

(4.3). Since b 2 T (s), there must exist m 2 C(s) such that b ` G
m

. Let the state after

applying (b
1

, · · · , b
k

) to s be s⇤. We see that we must have s⇤
m

= s
m

because otherwise

there must exist a b
j

, 1  j  m that changes the assignment of state variable x
m

.

However, that would imply that b
k

2 T (s). Since b is applicable in s⇤, we see that

s
m

= s⇤
m

2 pre(b).

If there exists a state variable x
i

such that an assignment to x
i

is in both e↵ (b
k

) and

pre(b), then G
m

will point to the DTG G
i

as s
m

is a potential dependent of G
i

, forcing

G
i

to be included in the dependency closure, i.e. i 2 C(s). However, as b
k

` G
i

, it will

violate our assumption that b
k

/2 T (s). Hence, none of the precondition assignments

of b is added by b
k

. Therefore, since b is applicable in apply(s0, b
k

), it is also applicable

in s0.
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On the other hand, if b
k

has a precondition assignment in a DTG that b is associated

with, then G
m

will point to that DTG since s
m

is a potential precondition of b
k

,

forcing that DTG to be in C(s), which contradicts the assumption that b
k

/2 T (s).

Hence, b does not alter any precondition assignment of b
k

. Therefore, since b
k

is

applicable in s0, it is also applicable in the state apply(s0, b).

Finally, if there exists a state variable x
i

such that an assignment to x
i

is altered by

both b and b
k

, then we know b ` G
i

and b
k

` G
i

. In this case, G
m

will point to G
i

since s
m

is a potential precondition of G
i

, making b
k

2 T (s), which contradicts our

assumption. Hence, e↵ (b) and e↵ (b
k

) correspond to assignments to distinct sets of

state variables. Therefore, applying (b
k

, b) and (b, b
k

) to s0 will lead to the same state.

From the above, we see that b is applicable in s0, b
k

is applicable in apply(s0, b), and

hence (b, b
k

) is applicable in s0. Further we see that (b, b
k

) leads to the same state

that (b
k

, b) does when applied to s0. We conclude that s0 : b ) b
k

and T (s) satisfies

L1’.

Moreover, for any goal-related DTG G
i

and a state s, if its assignment s
i

is not the

goal vertex in G
i

, then some actions associated with G
i

have to be executed in any

solution path from s. Since T (s) includes all the actions in at least one goal-related

DTG G
i

, any solution path must contain at least one action in T (s). Therefore, T (s)

also satisfies A2 and it is indeed a state-dependent commutative set. ⌅

From Lemma 3 and Theorem 5, we obtain the following result, which shows that EC

fits our framework as a stubborn set method for planning.

Theorem 7 For any SAS+ planning task, the EC algorithm defines a stubborn set

in each state.

4.2.2 Explanation of SP

The stratified planning (SP) algorithm is also a POR-based reduction algorithm that

exploits commutativity of actions directly [17]. To describe the SP algorithm, we

need the following definitions first.
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Definition 18 Given a SAS+ planning task ⇧ with state variable set X, the causal

graph (CG) is a directed graph CG(⇧) = (X,E) with X as the vertex set. There is

an edge (x, x0) 2 E if and only if x 6= x0 and there exists an action o such that e↵(o)

has an assignment to x and either pre(o) or e↵(o) has an assignment to x0.

Definition 19 For a SAS+ task ⇧, a stratification of the causal graph CG(⇧) as

(X,E) is a partition of the node set X: X = (X
1

, · · · , X
k

) in such a way that there

exists no edge e = (x, y) where x 2 X
i

, y 2 X
j

and i > j.

By stratification, each state variable is assigned a level L(x), where L(x) = i if

x 2 X
i

, 1  i  k. Subsequently, each action o is assigned a level L(o), 1  L(o)  k.

L(o) is the level of the state variable(s) in e↵ (o). Note that all state variables in the

same e↵ (o) must be in the same level. Hence, L(o) is well-defined.

Definition 20 (Follow-up Action) For a SAS+ task ⇧, an action b is a follow-up

action of a (denoted as a B b) if e↵(a) \ pre(b) 6= ; or e↵(a) \ e↵(b) 6= ;.

The SP algorithm can be combined with standard search algorithms, such as breadth-

first search, depth-first search, and best-first search (including A⇤). During the search,

for each state s that is going to be expanded, the SP algorithm examines the action a

that leads to s. Then, for each applicable action b in state S, SP makes the following

decisions.

Definition 21 (Stratified Planning Algorithm) For a SAS+ planning task, in

any non-initial state s, assuming a is the action that leads directly to s, and b is

an applicable action in s, then SP does not expand b if L(b) < L(a) and b is not a

follow-up action of a. Otherwise, SP expands b. In the initial state sI, SP expands

all applicable actions.

The following result shows the relationship between the SP algorithm and our new

POR theory.

Lemma 4 If an action b is not SP-expandable after a, and state s is the state before

action a, then s : b) a.
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Proof: Since b is not SP-expandable after a, following the SP algorithm, we have

L(a) > L(b) and b is not a follow-up action of a. According to Definition 20, we

have e↵(a) \ pre(b) = e↵(a) \ e↵(b) = ;. These imply that e↵ (a) and pre(b) are

conflict-free, and that e↵ (a) and e↵(b) are conflict-free. Also, since b is applicable in

apply(s, a) and e↵ (a) and pre(b) are conflict-free, b must be applicable in s (otherwise

e↵ (a) must change the value of at least one variable in pre(b), which means e↵ (a)

and pre(b) are not conflict-free).

Now we prove that pre(a) and e↵ (b) are conflict-free by showing pre(a) \ e↵(b) = ;.
If their intersection is non-empty, we assume a state variable x is assigned by both

pre(a) and e↵ (b). By the definition of stratification, x is in layer L(b). However, since

x is assigned by pre(a), there must be an edge from layer L(a) to layer L(x) = L(b)

since L(a) 6= L(b). In this case, we know that L(a) < L(b) from the definition of

stratification. Nevertheless, this contradicts with the assumption that L(a) > L(b).

Thus, pre(a) \ e↵(b) = ;, and pre(a) and e↵ (b) are conflict-free.

With all three conflict-free pairs, we have s : b) a according to Theorem 4. ⌅

Although SP reduces the search space by avoiding the expansion of certain actions,

it is in fact not a stubborn set based reduction algorithm. We have the following

theorem for the SP algorithm.

Definition 22 For a SAS+ planning task S, a valid path p
a

= (a
1

, · · · , a
n

) is an

SP-path if and only if p
a

is a path in the search space of the SP algorithm applied

to S.

Theorem 8 For a SAS+ planning task S, for any initial sI and any valid path p
a

=

(a
1

, · · · , a
n

) from sI, there exists a path p
b

= (b
1

, · · · , b
n

) from sI such that p
b

is an

SP-path, and both p
a

and p
b

lead to the same state from sI, and p
b

is a permutation

of actions in p
a

.

Proof: We prove by induction on the number of actions.

When n = 1, since there is no action before sI, any valid path (a
1

) will also be a valid

path in the search space of the SP algorithm.
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Now we assume this proposition is true for n = k, k � 1 and prove the case when

n = k + 1. For a valid path p0 = (a
1

, · · · , a
k

, a
k+1

), by our induction hypothesis, we

can rearrange the first k actions to obtain a path (a1
1

, a1
2

, · · · , a1
k

).

Now we consider a new path p1 = (a1
1

, · · · , a1
k

, a
k+1

). There are two cases. First, if

L(a
k+1

) < L(a1
k

), or L(a
k+1

) > L(a1
k

) and a
k+1

is a follow-up action of a1
k

, then p1 is

already an SP-path. Otherwise, we have L(a
k+1

) > L(a1
k

) and a
k+1

is not a follow-up

action of a1
k

. In this case, by Lemma 4, path p1
0
= (a1

1

, · · · , a1
k�1

, a
k+1

, a1
k

is also a

valid path that leads s to the same state as p
a

does.

By the induction hypothesis, if p1
0
is still not an SP-path, we can rearrange the first

k actions in p1
0
to get a new path p2 = (a2

1

, · · · , a2
k

, a1
k

). Otherwise we let p2 = p1
0
.

Comparing p1 and p2, we know L(a
k+1

) > L(a1
k

), namely, the level value of the last

action in p1 is strictly larger than that in p2. We can repeat the above process to

generate p3, · · · , pm, · · · as long as pj(j 2 Z+) is not an SP-path. Our transformation

from pj to pj+1 also ensures that every pj is a valid path from s and leads to the same

state that p
a

does.

Since we know that the layer value of the last action in each p
j

is monotonically

decreasing as j increases, such a process must stop after a finite number of iterations.

Suppose it finally stops at pm = (a0
1

, a0
2

, · · · , a0
k

, a0
k+1

, we must have that L(a0
k+1

) 
L(a0

k

) or L(a0
k+1

) > L(a0
k

) and a0
k+1

is a follow-up action of a
k

0 . Hence, pm now is an

SP-path. We then assign pm to p
b

and the induction step is proved. ⌅

Theorem 8 shows that the SP algorithm cannot inherently reduce the number of states

expanded in the search space. The reason is as follows: for any state in the original

search space that is reachable from the initial state sI via a path p, there is still an

SP-path that reaches s. Therefore, every reachable state in the search space is still

reachable by the SP algorithm. In other words, SP reduces the number of generated

states, but not the number of expanded states.

SP is not a stubborn set based reduction algorithm. We illustrate this using Fig-

ure 4.4. Assuming a SAS+ planning task S that contains two state variables x
1

and

x
2

, where both x
1

and x
2

have domain {0, 1}, with the initial state as {x
1

= 0, x
2

= 0}
and the goal as {x

1

= 1, x
2

= 1}. Actions a and b are two actions in S where pre(a)

is {x
1

= 0} and e↵ (a) is {x
1

= 1} and pre(b) is {x
2

= 0} and e↵ (b) is {x
2

= 1}. It is
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Figure 4.4: The search spaces for a simple SAS+ planning task with two state variables
and four states when using SP and EC. SP (on the left) expands all four states while EC
(on the right) only expands three. The dashed link on the left graph is the action that is
not expanded by SP. Gray nodes are the goal states.

easy to see that a and b are not follow-up actions of each other, and that x
1

, x
2

will

be in di↵erent layers after stratification. Without loss of generality, we can assume

L(a) = L(x
1

) > L(x
2

) = L(b). Therefore, we know that action b will not be expanded

after action a in state s : {x
1

= 1, x
2

= 0}. However, apply(s, b) is the goal state.

Not expanding b in state s violates condition A2 in Definition 5 where any valid path

from s to a goal state has to contain at least one action in the expansion set of s.

Assuming we are using best-first search for solving the above example problem, and

the heuristic function values of the initial state sI, apply(sI, a), apply(sI, b) and the

goal state are all the same. In this case, the search space explored by SP contains

four states: namely, the initial state sI, apply(sI, a), apply(sI, b) and the goal state.

Meanwhile, under the EC algorithm, in state sI, the DTGs for x
1

and x
2

are not in

each other’s dependency closures. This implies that in sI, EC expands either action

a or b, but not both. Therefore, EC expands three states while SP expands four.

This illustrates our conclusion in Theorem 8 that the SP algorithm cannot inherently

reduce the number of expanded states, if used with best-first search.

4.3 A New POR Algorithm for Planning

We have developed a POR theory for planning and explained two previous POR

algorithms using the theory. Now, based on the theory, we propose a new POR

algorithm that leads to stronger reductions than the previous EC algorithm.

Our theory shows in Theorem 5 that the condition for enabling POR reduction is

strongly related to commutativity of actions. In fact, constructing a stubborn set
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can be reduced to finding a commutativity set. As we show in Theorem 7, the EC

algorithm follows this idea. However, the basic unit of reduction in EC is DTG (i.e.,

either all actions in a DTG are expanded or none of them are), which is not necessary

according to our theory. Based on this insight, we propose a new algorithm that

operates with the granularity of actions instead of DTGs.

Definition 23 For a state s, an action set L is a landmark action set if and only

if any valid path starting from s to a goal state contains at least one action in L [60].

Definition 24 For a SAS+ task, an action a 2 O is supported by an action b if

and only if pre(a) \ e↵(b) 6= ;.

Definition 25 For a state s, its action support graph (ASG) at s is defined as

a directed graph in which each vertex is an action, and there is an edge from a to b if

and only if a is not applicable in s and a is supported by b.

The above definition of ASG is a direct extension of the definition of a causal graph.

Instead of having domains as basic units, here we directly use actions as basic units.

We utilize this action support graph to define the action closure that exhibits helpful

attributes for our later algorithm design.

Definition 26 For an action a and a state s, the action closure of a at s, denoted

by C
s

(a), is the set of actions that are in the transitive closure of a in ASG(s). The

action closure for a given set of actions A is the union of action closures of every

action in A.

The above definition also gives a straightforward way to find action closure given an

action – finding a transitive closure on the ASG. In addition, action closure has the

following attributes.

Lemma 5 For a state s, if an action a is not applicable in s and there is a valid path

p starting from s whose last action is a, then p contains an action b, b 6= a, b 2 C
s

(a).
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Proof: We prove this by induction on the length of p.

In the base case where |p| = 2, we assume p = (b, a). Since a is not applicable in

s, it must be supported by b. Thus, b 2 C
s

(a). Suppose this lemma is true for

2  |p|  k� 1, we prove the case for |p| = k. For a valid path p = (o
1

, . . . , o
k

), again

there exists an action b before a that supports a. If b is applicable in s, then b 2 C
s

(a).

Otherwise, we consider the subpath p0 = (o
1

, . . . , b) of p, with 2  |p0|  k � 1. Since

b is not applicable, and according to our inductive assumption, there is an action b0 in

p0 that is also in C
s

(b), which is a subset of C
s

(a), according to Definition 25 and 26.

Thus, our proposition is true for |p| = k. By induction principle, our lemma is true

for any path p. ⌅

We give some remarks here to motivate our later discussion. In the assumption of

this lemma, if there is an nonempty action path p from s such that a is applicable at

apply(s, p), we say a is eventually applicable in s. The above lemma essentially ensures

that for any eventually applicable action a in s, there is at least one corresponding

applicable action b in both the path to a and the action closure C
s

(a).

Though the actual conditions are more complicated, informally, we can say that

actions in C
s

(a) are the only actions of interest as far as the eventual applicability of

a is concerned. For instance, if we have a valid action path p = (c, b, a) in s where

both b and c are applicable in s, b 2 C
s

(a) and c /2 C
s

(a), we can easily see that

p0 = (b, a) is still a valid path in s as c doesn’t provide any e↵ects or preconditions for

a or b (otherwise c would be in C
s

(a)). That is to say, the eventual applicability of

a is una↵ected if we ignore c, regardless of its applicability in s. A search procedure

can take advantage of this and choose not to expand action c in s. However, two

questions arise naturally: 1) how can we ensure the chosen subset of applicable actions

are su�cient in terms of not ignoring certain paths to a goal? 2) how can we pick

the initial starting point a such that the resulting applicable action set is small? We

address these two questions in the following sections. Specifically, we introduce the

concept of action core as an amendment to action closure to address question 1, and

adopt action landmarks to address question 2.
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Definition 27 Given a SAS+ planning task ⇧ with O as set of all actions O, for

a state s and a set of actions A, the action core of action set A at s, denoted by

AC
s

(A), satisfies the following conditions:

• AC
s

(A) is a subset of O and a superset of C
s

(A), the action closure of A;

• for any applicable action a 2 AC
s

(A) at s and any action b 2 O\AC
s

(A), e↵(a)

and e↵(b) are conflict-free and

• if pre(b) ⇢ S, e↵(a) and pre(b) are conflict-free.

Intuitively, given a set A as a “seed”, actions in action core AC
s

(A) can be executed

without a↵ecting the completeness and optimality of search. Specifically, because any

applicable action in AC
s

(A) and any action not in AC
s

(A) will not assign di↵erent

values to the same state variable, for action a 2 AC
s

(A) and action b 2 O\AC
s

(A)

at s, path (a, b) will lead to the same state that (b, a) does. Additionally, because

pre(b) and e↵(a) are conflict-free when pre(b) ⇢ s, executing action a will not a↵ect

the applicability of action b in the future. Therefore, actions in AC
s

(A) can be safely

expanded first during the search, while actions outside it can be expanded later.

A simple procedure, shown in Algorithm 4, can be used to find the action core for a

given action set A.

The new POR algorithm, called stubborn action core (SAC), works as follows: at any

given state s, the expansion set E(s) of state s is determined by Algorithm 5.

There are various ways to implement the Find-Landmarks procedure for finding

landmarks. Richter [63] and Porteous [60] both gave in-depth discussions on the

technical details of finding landmarks. Here we give one example that is used in our

current implementation. To find a landmark action set L at s, we utilize the DTGs

associated with the SAS+ formalism. We first find a transition set that includes

all possible transitions (s
i

, v
i

) in an unachieved goal-related DTG G
i

where s
i

is the

current state of G
i

in s. It is easy to see that all actions that mark transitions in this

set make up a landmark action set, because G
i

is unachieved and at least one action

starting from s
i

has to be performed in any solution plan.
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Algorithm 4: A procedure to find the action core of an action set.
input : A SAS+ task with action set O, an action set A ✓ O, and a state s
output: An action core AC

s

(A) of A

AC
s

(A) C
s

(A);
repeat

foreach action a in AC
s

(A) applicable in s do
foreach action b in O\AC

s

(A) do
if pre(b) \ s 6= ; and pre(b) and e↵(a) are not conflict-free then

AC
s

(A) AC
s

(A) [ {b} ;
end
if e↵(b) and e↵(a) are not conflict-free then

AC
s

(A) AC
s

(A) [ {b} ;
end

end
end

until AC
s

(A) is not changing ;
return AC

s

(A) ;

Algorithm 5: The SAC algorithm
input : A SAS+ planning task and state s
output: The expansion set E(s)

L Find-Landmarks(s) ;
Call Algorithm 4 to find the action core of L as AC

s

(L) ;
return AC

s

(L);
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There are also other ways to find a landmark action set. For instance, the pre-

processor in the LAMA planner [63] can be used to find landmark facts, and all

actions that lead to these landmark facts also make up a landmark action set.

Theorem 9 For a state s, the expansion set E(s) defined by the SAC algorithm is a

stubborn set at s.

Proof: We first prove that our expansion set E(s) satisfies condition A1 in Defini-

tion 5, namely, for any action b 2 E(S), and actions b
1

, · · · , b
k

/2 E(s), if (b
1

, · · · , b
k

, b)

is a valid path from s, then (b, b
1

, · · · , b
k

) is also a valid path, and leads to the same

state that (b
1

, · · · , b
k

, b) does.

To simplify this proof, we can treat action sequence (b
1

, · · · , b
k

) as a “macro” action

B where an assignment x
t

= v
t

in pre(B) if and only if x
t

= v
t

is in the precondition

of some b
i

2 B and x
t

= v
t

is not in the e↵ects of a previous action b
j

(j < i), and

an assignment x
t

= v
t

is in e↵(B) if and only if x
t

= v
t

is in the e↵ect set of some

b
i

2 B, and x
t

is not assigned to any value other than v
t

in the e↵ects of later action

b
j

(j > i). In the following proof, we use the macro action B in place of the path

(b
1

, · · · , b
k

).

To prove A1, we only need to prove that if (B, b) is a valid path, then s : b ) B.

According to Theorem 6, s : b) B if and only if the following four propositions are

true.

a) Action b must be applicable in s. We prove this by contradiction. Let s0 =

apply(s, B), if b is not applicable in s, but applicable in s0, then B supports b. Since

all e↵ects of B are from actions in the path (b
1

, · · · , b
k

), there exists an action b
i

2
{b

1

, · · · , b
k

} such that b
i

supports b. However, according to Definition 26, b
i

is in the

transitive closure of b in ASG(s). According to our algorithm, b
i

should be in E(s).

This contradicts with our assumption that b
i

/2 E(s). Thus, b must be applicable at

s.

b) pre(B) and e↵(b) are conflict-free. We prove this proposition by contradiction.

If pre(B) and e↵(b) are not conflict-free, we assume that pre(B) has x
t

= v
t

that

conflicts with an assignment in e↵(b). According to the way we define B, there exists
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an action b
i

2 (b
1

, · · · , b
k

), such that x
t

= v
t

. Also, since B is applicable in s, we

know that x
t

takes the value v
t

at s also. Therefore, we know that pre(b
i

) and e↵(b)

are not conflict-free. However, according to Definition 27 and Algorithm 4, b
i

is in

E(s). This contradicts with our assumption that b
i

is not in E(s). Thus, pre(B) and

e↵(b) are conflict-free.

c) e↵ (B) and e↵(b) are conflict-free. The proof of this proposition is very similar to

the one above. If they are not conflict-free, we must have action b
i

2 (b
1

, · · · , b
k

),

such that e↵(b) and e↵(b
i

) are not conflict-free. However, according to Definition 27

and Algorithm 4, b
i

is in E(s). This contradicts with our assumption that b
i

is not

in E(s). Thus, e↵(B) and e↵(b) are conflict-free.

d) pre(b) and e↵(B) are conflict-free. This proposition is true as we assumed in

condition A1 that (B, b) is a valid path from s.

Thus, from Theorem 6, we see that s : b) B and that condition A1 in Definition 5

is true.

Now we verify condition A2 by showing that any solution path p from s contains at

least one action in E(s). From the definition of landmark action sets, we know that

there exists an action l 2 L such that p contains l. From Lemma 5 we know that

AC
s

(l) contains at least one action, applicable in s, in p. Thus, E(s) indeed contains

at least one action in p.

Since E(s) satisfies conditions A1 and A2 in Definition 5, E(s) is a stubborn set in

state s. ⌅

4.3.1 SAC vs. EC

SAC results in stronger reduction than the previous EC algorithm, since it is based on

actions, which have a finer granularity than DTGs do. Specifically, SAC causes more

reduction than EC for two reasons. First, applicable actions that are not associated

with landmark transitions, even if they are in the same DTG, are expanded by EC

but not by SAC. Second, applicable actions that do not support any actions in the
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Figure 4.5: Search spaces of EC and SAC

landmark action set, even if they are in the same DTG, are expanded by EC but not

by SAC.

To give an example, in Figure 4.5a, G1, G2, G3 are three DTGs. The goal assignment

is marked as an unfilled circle in G1. a, b, c, d, e are actions. Dashed arrows denote the

preconditions of actions. For instance, the lower dashed arrow means that b requires

a precondition x
3

= w.

In this example, according to EC, G1 is a goal DTG and G2 and G3 are in the

dependency closure of G1. Thus, before executing a, EC expands every applicable

action in G1, G2 and G3 at any state. SAC, on the other hand, starts with a singleton

set {a} as the initial landmark action set and ignores action e. Applicable action c

is also not included in the action closure in state s since it does not support a.

The search graphs are compared in Figure 4.5 and we see that SAC gives stronger

reduction.

4.4 System Implementation

We adopt the Fast Downward (FD) planning system [33] as our code base. The overall

architecture of FD is described in Figure 4.6. A complete FD system contains three

parts corresponding to three phases in execution: translation, knowledge compilation

and search. The translation module will convert planning tasks written in PDDL

to a SAS+ planning task. The knowledge compilation module will generate domain

transition graphs and causal graph for the SAS+ planning task. The search module
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The Fast Downward System

- Normalization
- Invariant
- Grounding
- Translation

- DTGs
- Causal graph
- Successor generator
- Axiom evaluator

- CG heuristic
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- Best-first search

The SAC Extension

- Commutativity analysis - Space reduction

Figure 4.6: System architecture of FD and SAC

implements various state-space-search algorithms as well as heuristic functions. All

these three modules communicate by temporary files.

We make two additions to the above system to implement our SAC planning system,

as shown in Figure 4.6. First, we add a “commutativity analysis” module into the

knowledge compilation step to identify commutativity between actions. Second, we

add a “space reduction” module to the search module to conduct state space reduc-

tion. The commutativity analysis module is used to build commutativity relations

between actions and build the action support graph. It reads action information from

the output of knowledge compilation module and determines the commutativity rela-

tions between actions according to conditions in Theorem 5. In addition, this module

also determines if one action is supported by another and builds the action support

graph defined in Definition 25. The reduction module for search is used to generate

a stubborn set of a given state. We implement the SAC algorithm in this module.

Starting from a landmark action set L as the target action set, we find the action

closure AC
s

(L) by iteratively adding actions that support actions in the target action

set to the target action set until it is not changing. We then use the applicable actions

in the action closure as the set of actions to expand at s. In other words, in our SAC

system, during the search, for any given state s, instead of using the successor gener-

ator provided by FD to generate a set of applicable operators, we use the reduction

module to generate a stubborn set in state s and use it as the expansion set.
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It is easy to see that the overall time complexity of determining commutativity rela-

tionships between actions is O(|A|2) where |A| is the number of actions. We imple-

ment this module in Python. Since the number of actions |A| is usually not large,

in most of the cases, the commutativity analysis module takes less than 1 second to

finish. This module only runs once for solving a planning problem. Therefore, the

commutativity analysis module amounts to an insignificant amount of overhead to the

system. Theoretically, the worst case time complexity for finding the action closure

is O(|A|2) where |A| is the number of actions. However, in practice, by choosing the

landmark action set L that is associated with transitions in an unarchived goal-related

DTG starting from the current state, the procedure of finding action closure termi-

nates quickly after about 4 to 5 iterations. Therefore, adding the reduction module

does not increase the overall search overhead significantly either. We implement this

module in C++ and incorporate it into the search module of FD.

4.5 Experimental Results

We tested our algorithm on problems in the recent International Planning Competi-

tions (IPCs): IPC 4 and IPC 5. We implemented our algorithm on top of the Fast

Downward (FD) planner [33]. We only modified the state expansion part.

We have implemented our SAC algorithm and tested it along with Fast Downward and

its combination with the EC extension on a Red Hat Linux server with 2GB memory

and one 2.0GHz CPU. The admissible HSP h
max

heuristic [10] and the inadmissible

Fast Forward (FF) heuristic [40] are used in our experiments.

First, we applied our SAC algorithm to A⇤ search with the HSP h
max

heuristic [10].

We also turned o↵ the option of preferred operators [33] since it compromises the

optimality of A⇤ search. Table 4.2 shows the detailed results on node expansion and

generation during the search. We also compare the solving times for these three algo-

rithms. As we can clearly see from Table 4.2, the numbers of expanded nodes using

the SAC-enhanced A⇤ algorithm are consistently lower than those for the baseline

A⇤ algorithm and the EC-enhanced A⇤ algorithm. There are some cases where the

number of generated nodes for the SAC-enhanced algorithm are slightly larger than
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those for the baseline A⇤ or EC-enhanced A⇤ algorithm. This is possible due to the

tie-breaking of states with equal heuristic values during search.

We can also see that the computational overhead of SAC is low. For instance, in

the feecell domain, the running time of the SAC-enhanced algorithm is only slightly

higher than the baseline and lower than that of the EC-enhanced algorithm, despite

their equal number of expanded and generated nodes.

Aside from the A⇤ algorithm, we also tested SAC on best-first search algorithms.

Although POR preserves completeness and optimality, it can also be combined with

suboptimal searches such as best-first search to reduce their search space. In this

comparison, we turned o↵ the option of preferred operators (also called helpful ac-

tions) in our experiment for FD. Preferred operator is another space reduction method

that does not preserve completeness, and using it with EC or SAC will lead to worse

performance. We will investigate how to find synergy between these two approaches

in our future work. We summarize the performance of three algorithms, original Fast

Downward (FD), FD with EC, and FD with SAC, in Table 4.3 by presenting the

number of problem instances in a planning domain that can be solved within 1800

seconds by each solver. We also ignore small problem instances with solving time

less than 0.01 seconds. All three solvers use the inadmissible Fast Forward (FF)

heuristic. As we can see from Table 4.3, when combined with a best-first-search algo-

rithm, SAC can still reduce the number of generated and expanded nodes compared

to the baseline FD algorithm and the EC-enhanced algorithm. In many problems

(e.g. pipesworld18, tpp15, truck13), the reduction in the number of expanded nodes

can be of orders of magnitude.

Based on their performances, we can divide the test domains into three groups. The

first group of domains exhibits strong commutativity between actions and also some

level of interdependency between DTGs. Compared to FD, EC can reduce the number

of expanded nodes for these domains, while SAC can reduce the number of expanded

nodes even further. Example domains in this group include pipesworld and tpp. The

second group of domains has some commutativity between actions. However, these

commutativity relationships cannot be reflected by dependency analysis on the DTG

level. On these domains, EC will perform similarly to or sometimes even worse than

FD due to high runtime overhead. Our proposed SAC algorithm, on the other hand,
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can reduce the number of expanded nodes with less runtime overhead. Thus, on these

domains, SAC is clearly better than both FD and EC. Example domains in this group

include driverlog and trucks. The rest are domain groups that have few commutativity

between actions. Neither SAC or EC can reduce much of the search space compared

to FD. POR techniques are not e↵ective for these domains. Example domains in this

group include airport, stroage, and rovers. We can see that the performance of SAC

on domains in this group is still comparable to FD, despite the computation overhead

of SAC.

Aside from Table 4.3, we also compare performances of SP and SAC in Table 4.4.

As we discussed in Section 4.2, SP is not a stubborn set method. Moreover, since

SP cannot inherently reduce the number of nodes in optimal searches, our results are

based on non-optimal search. We again use the FF heuristics for both SP and SAC

with no preferred operators, and compared their performances against their common

root, the Fast Downward planner, using the same heuristic function. The set of

planning domains used in Table 4.4 is identical to the one we reported in Table 4.3.

We pick the first N problems in each domain to conduct the experiment where N is

the number indicated in the parentheses after the domain name. For instance, we test

the first 25 problems in the airport domain. The numbers reported for each domain

are average values for each individual problem in that domain.

We see from Table 4.3 that SAC out-performs SP on a set of domains including

driverlog, freecell, pipesworld, tpp, trucks, and pathway. It is worth noting that the

state-independent causal graphs for problems in freecell, pipesworld, and pathway are

all strongly connected, resulting in no stratification of these problems. In these cases,

SP rolls back to FD. SAC, on the other hand, can still reduce the search space by

finding state-dependent commutative action pairs. SP can also lead to expanding

many more states than FD, as illustrated in the trucks domain. We investigated this

further and found that SP can prune goal paths when the search is very close to

a goal, resulting a detour in search. Neither EC nor SAC would prune goal paths

during the search.
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4.6 Summary

Previous work in both model checking and AI planning has demonstrated that POR is

a powerful method for reducing search costs. POR is an enabling technique for model

checking, which would not be practical without POR due to its high complexity.

Although POR has been extensively studied for model checking, its theory has not

been developed for AI planning. In this chapter, we developed a new POR theory for

planning that is parallel to the stubborn set theory in model checking.

In addition, by analyzing the structure of actions in planning problems, we derived a

practical criterion that defines commutativity between actions. Based on the notion

of commutativity, we developed su�cient conditions for finding stubborn sets during

search for planning. Furthermore, we applied our theory to explain two previous

POR algorithms for planning. The explanation provided useful insights that lead

to a stronger and more e�cient POR algorithm called SAC. Comparing to previous

POR algorithms, SAC finds stubborn sets based on a finer granularity for checking

commutativity, leading to stronger reduction. We compared the performance of SAC

to the previously proposed EC algorithm on both optimal and non-optimal state

space searches. Experimental results showed that the proposed SAC algorithm led to

stronger node reduction and less overhead.
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Chapter 5

Accelerating Heuristic Search with

Random Walks

Partial order reduction techniques proposed in the previous chapters are approaches

that leverage the overall structure of search space. In this chapter, we study the

local structure of state space as defined by heuristic functions to accelerate heuristic

search. In particular, we study the behaviors of heuristic search in local regions where

heuristic functions are not informative.

A well-observed phenomenon in heuristic search is that the search algorithm may

explore a large number of states without reducing the heuristic function value. This

phenomenon, called “plateau exploration”, has been extensively studied in satisfia-

bility (SAT) and constraint satisfaction problems (CSP). In heuristic search, plateau

exploration takes up the majority of the search time. Therefore, to accelerate heuristic

search, it is important to study ways to accelerate plateau exploration.

In this chapter, we introduce a random walk assisted search algorithm framework. We

also establish a theoretical model to analyze the conditions under which random walk

is helpful to heuristic search in finding plateau exits. We show the e↵ectiveness of

the proposed algorithm by presenting experimental results from recent IPC domains

and the Seventh International Planning Competition [5].
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5.1 Background

In heuristic search, the number of states explored depends largely on the quality of

the heuristic function. In the ideal case, a search with the perfect heuristic function

that accurately calculates the distance from any state to goal state would only expand

O(L) states, where L is the distance from the initial state to goal. In reality, heuristic

search usually explores an exponential number of states as the problem size grows.

Heuristic search, even with almost perfect heuristic guidance, may still lead to high

search cost for optimal planning [37].

To further understand the impact of heuristics for state space search, we view the

search procedure from another perspective— as an optimization procedure that aims

to find a state that minimizes the heuristic function value. Here we assume that

the heuristic function takes value 0 if and only if it is at some goal state. From

this perspective, an immediate insight is that a search is making progress if the best

heuristic value found so far is decreasing. To measure this kind of progress, we

monitor the incumbent heuristic value ĥ. Intuitively, during search, for any state s

that is removed from the open list, the incumbent heuristic value ĥ(s) is the smallest

heuristic value of all states explored up to s.

For any heuristic search, its incumbent heuristic value decreases monotonically during

search and finally reaches 0 when a goal is found. In a typical search where the number

of explored states is much larger than the solution length, most consecutive states

removed from the open list have the same incumbent heuristic value. When heuristic

functions are not informative, search can halt on the same incumbent heuristic value

for a long time. We call this phenomenon plateau exploration.

Inspired by the work of Nakhost et al. [56] on using Monte-Carlo Random Walk

in solving planning problems, we propose to use random walk procedures to assist

heuristic searches. Specifically, we invoke an episode of random walks within a heuris-

tic search when a plateau is encountered (i.e., when the search cannot improve the

incumbent heuristic value for an extended period of time).

In this study, we find three advantages of using random walks to assist heuristic

search for planning. First, a random walk has the potential to quickly find a state
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that reduces the incumbent heuristic value, by jumping out of local minima or jumping

over a local maxima with respect to the heuristic function. In contrast, a deterministic

heuristic search will have to explore all possible states around the local minima or

before the local maxima. Second, compared to heuristic search in which heuristic

functions are evaluated at each state, the random walk algorithm can skip heuristic

evaluations of most intermediate states during exploration, making space exploration

more e�cient. Third, random walks require little memory, and therefore do not add

space complexity to the original heuristic search. One limitation of using random

walks is that the solution found by random walk is no longer guaranteed to be optimal

even if it is combined with A⇤ search. For this reason, we focus on accelerating best-

first search, a heuristic search procedure that finds satisfying plans while trying to

minimize plan cost.

5.2 Local Properties of Search Space

Unlike local search which always explores neighbor states next (subject to backtrack-

ing), heuristic search always fetches the next state from the open list ordered by the

heuristic function, regardless of whether it is the immediate successor of the current

state. To facilitate our study of the local plateau structure of search space, we base

our discussion on a local region of the state space.

Definition 28 (Neighbors in a State Space) Given a state space S and a state

s 2 S, an l-neighbor N(s, l) of s, where l is a positive integer, is a set of all states

that can be reached from s within l steps in S. A special neighbor N(s,1) is the set

of all states that are reachable from s.

For heuristic search in the complete state-space, the objective of heuristic search is to

find states that can reduce the current incumbent heuristic value. When discussion

is limited on a local region N(s, l) where s is the starting point, we use h(s) as

the incumbent heuristic value in analysis. Namely, ĥ(s) = h(s). A heuristic search

procedure can be viewed as a multi-phase search where the objective of each phase

is to find a state s
e

in some l-neighbor N(s, l) of s such that h(s
e

) < h(s). We define

state s
e

as an exit state of N(s, l) if h(s
e

) < h(s). A region P ✓ N(s, l) is a plateau if
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every state s
p

2 P has h(s
p

) � h(s). Note that the definition of s
e

is dependent on l,

the size of the l-neighbor. In the following discussions, we assume l is predetermined.

Similar to the heuristic search conducted on the search space, heuristic search con-

ducted on N(s, l) exploring states in orders that are determined by both the topo-

logical structure of N(s, l) and the heuristic function. We introduce the following

definitions to capture these orders.

Definition 29 (Order of States) Given a heuristic search procedure A
h

in an l-

neighbor N(s, l) of s, the sequence of states in N(s, l) explored by A
h

, denoted by L,

is an ordered list. A relation < can be defined between states in L = s
1

, · · · , s
r

where

for any s
i

, s
j

2 L, s
i

< s
j

if and only if i < j.

We would like to point out that the order of states for heuristic search A
h

depends on

the local topology of the search space as well as the heuristic function. To understand

the interactions between these two, we define the natural order and heuristic order of

states.

Definition 30 (Natural Order of States) Given a state s
0

and two states s
1

, s
2

2
N(s

0

, l), s
1

is naturally ordered before s
2

if any path from s
0

to s
2

contains s
1

. In

other words, to reach s
2

from s
0

, search has to reach s
1

first.

Natural order between states is a well-defined partial order relation. We can show

this by validating the reflexivity, antisymmetry and transitivity of this relation. We

denote this relation by s
1


n

s
2

if s
1

is naturally ordered before s
2

, and s
1

<
n

s
2

if

s
1


n

s
2

and s
1

6= s
2

.

Note that reflexivity holds for any state s because any path from s
0

to s contains

state s itself. Antisymmetry is also straightforward to verify. For any two states a

and b, such that a 
n

b and b 
n

a, we show a = b. Without loss of generality, we

assume the shortest path from s
0

to a and b is a path from s
0

to b, of length m. Since

we have a 
n

b, by definition a is on the path from s
0

to b. However, since b <
n

a,

b is also on the path from s
0

to a. This can only happen when a = b, because if a

and b are di↵erent, then the subpath from s
0

to a is shorter than m, contradicting
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our assumption that s
0

to b is shorter than s
0

to a. Transitivity also holds for natural

orders. If we have s
1


n

s
2

and s
2


n

s
3

, then any path from s
0

to s
3

would include

s
2

, and every path from s
0

to s
2

includes s
1

. This implies any path from s
0

to s
3

includes s
1

, or s
1


n

s
3

.

Natural order is the topological order of states that any search process must obey.

Heuristic function works on top of natural order to order all states according to their

heuristic function values.

Definition 31 (Heuristic Order of States) Given a state s and two states s
1

, s
2

2
N(s, l) that neither s

1


n

s
2

nor s
2


n

s
1

is true, we have relation s
1

<
h

s
2

if

h(s
1

) < h(s
2

), or if h(s
1

) = h(s
2

) and a tie-breaking process puts s
1

before s
2

when

they are retrieved from the open list.

In Definition 31, we assume there is a tie-breaking process that gives orders to states

that share the same heuristic value in the open list. How tie breaking is conducted is

not essential to our discussion here. We can safely assume that there is a deterministic

tie-breaking process for heuristic search.

It is intuitive to see how the order of state exploration in a heuristic search is related

to natural order and heuristic order. For instance, if we have two di↵erent states

s
1

, s
2

such that s
1


n

s
2

holds, a heuristic search procedure would explore s
1

before

s
2

. If both s
1

and s
2

are in the open list during a heuristic search, and s
1

<
h

s
2

holds, a heuristic search would explore s
1

before s
2

. We formalized and extend this

observation in Theorem 10.

Theorem 10 Given a state s
0

and two di↵erent states s
1

, s
2

in N(s
0

, l), and their

common ancestor s
a

, a heuristic search A
h

on N(s
0

, l) explores state s
1

before s
2

(i.e.

s
1

< s
2

) if and only if one of these two conditions holds:

C1 s
1

<
n

s
2

,

C2 there exists a state s
3

such that s
a

<
n

s
3


n

s
2

and s
1

<
h

s
3

.
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Proof: Under the assumption that heuristic search explores s
1

before s
2

, we first

examine the natural order between s
1

and s
2

. It is easy to see that we have either

s
1

<
n

s
2

(C1), or the natural order between s
1

and s
2

is not defined. It is not possible

to have s
2

<
n

s
1

because heuristic search would explore s
2

before s
1

.

When the natural order between s
1

and s
2

are not defined, we look at the set of states

S
a!2

on the path from their least common ancestor s
a

to s
2

, excluding s
a

. This set

is well-defined. At least one element, s
2

, is in S
a!2

because s
2

6= s
a

.

For any state s 2 S
a!2

, we have either s
1

< s or s < s
1

. Note that among all states

s in S
a!2

such that s
1

< s, we pick the state that has the minimal natural order and

denote it by s
3

. State s
3

exists because there is at least one state, s
2

2 S
a!2

, such

that s
1

< s
2

.

Now we consider the immediate predecessor of s
3

, s0
3

. Since s
3

has the minimal

natural order among all states that are explored after s
1

, s0
3

must be explored before

s
1

, whereas s
3

is explored after s
1

in heuristic search. In other words, we have

s0
3

< s
1

< s
3

.

Note that when heuristic search explores s0
3

, s
3

, an immediate successor of s0
3

, is

inserted into the open list by heuristic search. This means s
3

<
h

s
1

holds. Otherwise,

s
3

would be explored before s
1

by heuristic search. Hence, there exists a state s
3

2
S
a!2

, such that s
a

<
n

s
3


n

s
2

and s
1

<
h

s
3

.

On the other hand, if condition C1 is true, by definition s
1

< s
2

. If C2 holds, we have

s
1

< s
3


n

s
2

. Therefore, s
1

< s
2

. ⌅

It is intuitive to understand that inaccurate heuristic values often lead to ine�cient

heuristic search. Theorem 10 provides a direct interpretation on why heuristic search

can be ine↵ective in a local region. The necessary and su�cient conditions in Theo-

rem 10 directly translate to the following two scenarios.

Scenario 1: Local minima (traps). Local minima (traps) are states where all

other states in the neighbor have higher heuristic value.
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Let us assume there is a path s
0

, s
1

, · · · , s
i�1

, s
e

from state s
0

to an exit state s
e

2
N(s

0

, l). Ideally, heuristic search from s
0

would advance towards s
e

in i steps. Ac-

cording to Theorem 10, when a state s
i

is in the open list, any state s0 in the open

list that satisfies s0 <
h

s
i

would be explored before s
i

. If s0 is not part of any exit

path, then heuristic search is trapped at s0 instead of advancing the search along the

exit path.

To make this worse, when heuristic function underestimates, it tends to underestimate

a set of connected states in a local region, as they may share a similar relaxation.

These states would be ordered before s
i

according to Theorem 10, and therefore be

explored before s
e

. These states trap the heuristic search into local minima regions

before the search can explore states along the exit path.

It is worth pointing out that heuristic underestimation is not the only cause for

trapping . Recall that Theorem 10 only requires s0 <
h

s
i

when s0 is explored before

s
i

. Even if heuristic function is almost perfect in that it does not underestimate the

goal distance most of the time, and does make the heuristics of s
i

and s0 the same,

the tie breaking process could still order s0 before s
i

. These cases can lead to an

exponential number of states explored as the search progress for optimal search. This

tragic scenario is demonstrated in [37].

Scenario 2. Local maxima (blocks). Local maxima (blocks) are states on an exit

path that has heuristic values larger than neighbor states.

This scenario arises from the overestimation of heuristic values on the goal path.

Ideally, states along the exit path would have monotonically decreasing heuristic

values (h(s
0

) > h(s
1

) > · · · > h(s
e

)). If h(s
i

) on the exit path is a local minima

and s
i

is in the open list, then any state s0 in the open list, including the neighbor

states of s
i

, would get explored before s
i

as s0 <
h

s
i

. If s
i

is naturally ordered before

s
e

, it becomes a block on the exit path, because the heuristic search would have to

explore every state s0 such that s0 <
h

s
i

. Even when heuristics are accurate for all

other states, a block on the exit path still leads to ine�cient searches.
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Modern heuristic functions such as Fast Forward (h
ff

), Landmark Count (h
lm

) and

Fast Downward h
cg

utilize problem relaxation and satisfiable plan extraction to cal-

culated heuristics. More often than not, these inadmissible heuristics create traps

and blocks in the search space, leading to plateau exploration during search.

5.2.1 Approaches for Accelerating Plateau Exploration

Several lines of work are available for accelerating plateau exploration in heuristic

search.

First, multiple heuristic functions can be used to sort states in the open list in di↵erent

orders [33]. Since di↵erent heuristic functions lead to di↵erent heuristic orders of

states, when one heuristic function encounters traps or blocks on a plateau, other

heuristics may give informative guidance and find exits from a plateau. However,

extra heuristic function calculations and extra open lists can increase the overall time

and space complexity of the search algorithm.

Second, Monte-Carlo Random Walk (MCRW) algorithms are capable of escaping

from local minima, and have been used to solve planning problems with good perfor-

mance [56]. However, planners using solely stochastic search strategies are generally

slower than deterministic heuristic search planners. Stochastic search also does not

perform well on problems with many dead end states.

5.3 Random Walk Assisted Best-First Search

The natural order of states are defined by the state space, while heuristic order is

defined by heuristic function. At first glance, there is not much we can do to accelerate

heuristic search unless we improve the quality of the heuristic functions themselves.

In the local search region, however, we can devise techniques to accelerate plateau

exploration by avoiding traps and blocks. Our proposed search framework is inspired

by both the MCRW approach [56] and the multiple heuristic search [33] approach.

We use a best-first search procedure to conduct heuristic search most of the time, as
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best-first search gives good performance when the heuristic functions are accurate.

In addition, when a plateau is detected, a random walk procedure is invoked to assist

the best-first search, with an aim of quick escape from the plateau.

5.3.1 Algorithm Framework

We use random walk as the main technique to enhance heuristic search for planning.

We start from the definition of random walk.

Definition 32 (Random Walk in State Space) Given a state space S and a states

s 2 S, a random walk is a path in S such that: each state (other than the first state

s) in the path is a randomly chosen successor of the state before it. The length of

the path is defined as the length of the random walk, and the first/last state in the

path are called the start/end of the random walk. A random walk starting from s with

length l is denoted by w(s, l).

In solving planning problems, examining one random walk is hardly useful in finding

a goal state. We introduce random advancement, which consists of a group of random

walks with the same starting state. Random advancement is a procedure that invokes

multiple random walks to find the best possible state in the local neighbor of a state.

Formally, we define it as follows.

Definition 33 (Random Advancement) Given a state space S, a state s 2 S

and a heuristic function h, a Random Advancement(s, l, n), where l and n are

positive integers, consists of n random walks w(s, l) and returns the end state s⇤ with

the minimum heuristic value.

Algorithm 6 illustrates the details of conducting a random advancement on state s.

Given parameter n, l and the starting state s, a Random Advancement(s, l, n)

invokes n random walks from s with length l and selects the end state with the

minimum heuristic function value (Line 10-12). Note that heuristic functions are not

evaluated for the intermediate states in random walks. As a result, the heuristic

function is evaluated only n times in Random Advancement(s, l, n).
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Algorithm 6: Random Advancement

input : a state s, the parameter l, the parameter n
1 c 0 ;
2 s0  s ;
3 h

min

 1 ;
4 for c 1 to n do
5 for j  1 to l do /*inner loop for a random walk*/
6 o a random action applicable to s0 ;
7 s0  apply (s0, o) ;
8 end
9 h0  h(s0) ;

10 if h0 < h
min

then
11 s

min

 s0 ;
12 h

min

 h0 ;
13 end
14 end
15 return s

min

;

Figure 5.1: Random exploration as a concatenation of random advancements.

Definition 34 Given a state space S, states s, s0 2 S, positive integers l, t, n, a ran-

dom exploration procedure, as described in Algorithm 7, first determines the value

of l, n, and t and then uses these values to conduct t consecutive random advance-

ments, each using the end state of the previous one as the start state. A random

exploration moves the current state from s to the end state of the last random ad-

vancement.

A random exploration moves the current state s to a new state s0 that is tl steps

away, by applying t consecutive random advancements. Figure 5.1 illustrates the
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Algorithm 7: Random Exploration

input : a state s
1 c 0 ;
2 s0  s ;
3 determines parameter t, n, and l ;
4 for c 1 to t do
5 s0  random advancement(s0, l, n) ;
6 end
7 return s0 ;

Parameters Mnemonics Definitions
t steps number of advancements in a random exploration
n number of walks number of walks in a random advancement
l length length of a single random walk

Table 5.1: List of parameters used in random exploration

concatenation of random advancements into a random exploration. We use t consec-

utive random advancements (each with length l) over a single random advancement

of length tl such that random walk is biased towards states with smaller heuristic

values. This exploitation-exploration tradeo↵ can be tuned by changing the value of

t and l. For now, we assume a procedure is given to determine the values of t, l and

n. We list the definitions of these parameters in Table 5.1.

Based on random explorations, we present our random walk assisted best-first search

(RW-BFS) algorithm in Algorithm 8. It is a variant of the standard best-first search

procedure. In addition to the original best-first search algorithm, RW-BFS adds

a detect plateau check after expanding a new state (Line 15). If a plateau is

detected, a random exploration procedure is called to explore the search space

in order to find a state that can reduce h⇤. Meanwhile, h⇤, the incumbent heuristic

value, is updated whenever a state with a smaller heuristic value is found (Lines 6-7).

5.3.2 Performance Analysis

In this section, we propose quantitative analysis of the expected cost of a random

exploration in finding an exit state on various space topologies. Based on the quan-

titative measure, we can also tell if random exploration procedures are beneficial in
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Algorithm 8: The RW-BFS Framework

input : Initial state s
0

1 open s
0

;
2 h⇤  h(s

0

) ;
3 while open is not empty do
4 node  Remove-First(open);
5 if node is Goal then
6 return found ;
7 end
8 if node is not in closed then
9 add node to closed;

10 insert successor(s) to open ;
11 end
12 if h(node)  h⇤ then
13 h⇤  h(node) ;
14 end
15 if detect plateau then
16 open random exploration (s);
17 end
18 end
19 return no solution

certain cases, since using them incurs additional overhead to the best-first search

procedure.

Definition 35 (Plateau Graph) Given a planning task T and a positive integer d,

a plateau graph G
d

= (V,E) of state s is a simple directed graph (no multi-edges or

loops) with V = N(s, d) satisfying: 1) there is an edge (s
i

, s
j

) 2 E if and only if there

is an action that leads s
i

to s
j

; 2) for all states s0 in V , h(s0) � h(s), and there are no

dead end states in V . An exit state of G
d

is a state s
e

/2 G
d

such that h(s
e

) < h(s).

Here d is called the radius of the plateau graph G
d

.

For a given plateau graph G
d

, in the following analysis, we compare the number of

heuristic evaluations required to escape from G
d

for both best-first search and the

random exploration algorithms, as heuristic evaluation takes up most of the time

for both algorithms. To simplify our analysis, we assume that the random walk is

unbiased, meaning that instead of picking the best state among all n cases shown
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in line 11-12 in Algorithm 6, a random state s0 is chosen with probability 1/n to be

s
min

. We further simplify the structure of G
d

as a graph where nodes have the same

in- and out-degrees. Without loss of generality, we assume that every node in G
d

has

p successors and q parents, where p � q 2 Z+. We first consider the case where G
d

is a tree, in which case p > q = 1.

Tree Search

We provide the following result for best-first search when G
d

is a tree.

Lemma 6 Given a plateau graph G
d

of s that is a tree, if s
e

is an exit state of G
d

and s
e

2 N(s, d + 1)\N(s, d), a best-first search procedure, in the worse case where

every state in N(s, d) has to be explored before finding s
e

, will evaluate the heuristic

function value of p

d+1�1

p�1

states.

The proof for Lemma 6 is straightforward. For each i from 1 to d, the number of states

in N(s, i)\N(s, i � 1) is pi. The total number of heuristic evaluations for best-first

search, in the worst case, is ⌃d

i=1

pi, or p

d+1�1

p�1

.

For an unbiased random walk in N(s, tl), we have the following result.

Theorem 11 Given a plateau graph G
d

of s that is a tree, let R be an an unbiased

random walk that explores the search space with length tl, and E be the number of

exit states of G
d

in N(s, tl)\N(s, tl� 1), if the heuristic function is evaluated every l

steps in R, the expected number of heuristic evaluations before R finds an exit state

is tp

tl

E

.

Proof: Since G
d

is a tree, starting from s, R explores states that are exactly tl steps

away from s. Since R is unbiased, the probability of hitting an exit state of G
d

is

therefore E

p

tl . That is to say, the expected number of random walks to find an exit of

G
d

is p

tl

E

. Since there are t heuristic evaluations on each path, the total number of

expected heuristic evaluations is tp

tl

E

. ⌅
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We see from Lemma 6 and Theorem 11 that an unbiased random walk can assist

best-first search finding plateau exit with fewer heuristic evaluations when

pd+1 � 1

p� 1
� tptl

E
.

One su�cient condition for the above inequality is that d  tl  d + log
p

E �
log

p

t. If E is on the magnitude of pd and t is relatively small, the above condition is

approximately:

d  tl  2d.

The above analysis is for unbiased random walks. In practice, random walks can be

more helpful since it is not unbiased; it is biased towards good states with lower h.

One insight drawn from this is that tl should be neither too small or too large for the

random walk exploration to be helpful. However, since the precious d is unknown, it

is helpful to try di↵erent tl values when doing random exploration in Algorithm 7.

For this reason, we use a set of di↵erent tl values in the implementation.

We can also see from the above analysis that when p and d are relatively small, it

is better to use best-first search to explore every state in G
d

. This prompts us to

be conservative on plateau detection. We discuss the parameter settings for plateau

detection in detail in the next section.

Graph Search

Now we extend the above discussion to the case where G
d

is a graph. Namely, we

consider the case where q > 1.

Theorem 12 Given a plateau graph G
d

of s where every node in G
d

has an in-

degree of q � 1, if there exists a state s
e

2 N(s, d + 1) such that h(s
e

) < h(s), a

best-first search procedure, in the worst case, will have to evaluate the heuristic value

for (p/q)

d+1�1

(p/q�1)

states before finding s
e

.

Proof: We prove this by using mathematical induction. It is easy to see that this

proposition is true when d = 0, 1, where we have 1 and 1 + p

q

states, respectively.
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Assuming this proposition is true for all d < k, we have |G
k�1

| = (p/q)

k�1

(p/q)�1)

and |G
k�2

| =
(p/q)

k�1�1

(p/q)�1)

. Thus, there are (p/q)k�1 states that are exactly k � 1 steps away from x.

Since G is a simple graph, according to our assumption, there are p(p/q)k�1/q =

(p/q)k states that are k steps away from a. Thus, we have

|G
k

| = (p/q)k � 1

(p/q)� 1)
+ (p/q)k =

(p/q)k+1 � 1

(p/q)� 1)
.

Thus this proposition is also true for d = k. ⌅

On the other hand, it is easy to see that the structural change of G does not a↵ect

the expected number of heuristic evaluations for an unbiased random walk R, as it

does not maintain any information on whether a state has been visited. In this case,

Theorem 11 still holds for q > 1.

We can see that R can help best-first search in finding an exit of G
d

if

(p/q)d+1 � 1

(p/q)� 1
� tptl

E
.

We can derive a necessary condition for the above inequality by replacing the left side

with (p/q)d+1. In this case, any tl must satisfy d  tl  d + log
p

E � (d + 1)(1 �
log

p

q) � log
p

t. It is easy to see that that as q increases from 1 to p, random walk

becomes less e↵ective. The insight is that RW-BFS is more e↵ective when there are

not many paths (q is smaller compared to q) that can lead to the same state.

Impacts of the dead ends and loops in G
d

. So far, we assumed there are no dead

ends nor loops in G
d

. For best-first search, because of the closed list, having dead

ends or loops in G
d

does not change the number of heuristic evaluations for best-first

search. In other words, Theorem 12 still holds in this case.

However, for an unbiased random walk R, loops and dead ends in G
d

would decrease

the probability of random walk visiting exit states outside G
d

. In other words, E, the

number of exit states that random walk can reach, becomes smaller in the presence

of dead ends and loops. Formally, dead end states and loops are evenly distributed

in G
d

, the probability that R can find an exit to G
d

is lower than E

p

tl where E is the

number of exit states in N(s, tl). The above analysis shows that random walk is more
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helpful on problems where there are few loops and dead ends than problems where

dead ends and loops are common.

5.3.3 Parameter Settings

In the previous section, we have shown that under certain conditions the expected

number of heuristic evaluations in a random exploration can be smaller than that of

a deterministic search in finding plateau exits, and therefore it makes sense to switch

to random explorations when deterministic search is not making progress. Now we

investigate parameter settings related to random exploration.

Plateau detection. In Algorithm 8, a plateau detection procedure is invoked

during search to decide whether random exploration should be invoked. Our analysis

in the previous section shows that the plateau detection test cannot be too sensi-

tive nor too unresponsive. If it is too sensitive, random exploration will be invoked

frequently and the progress of the best-first search may be hindered by constant

interruption. This is especially important in the sequential implementations of Algo-

rithm 8. On the other hand, if this detection is unresponsive, our designed random

walks cannot help the best-first search as desired. Therefore, a balanced plateau

detection mechanism is needed.

Here we can take into consideration both the topological structure of local search, as

well as the progress made on heuristic search. Particularly, we maintain a history of

incumbent heuristic values ĥ and the size of the closed list when ĥ is decreased. We

run a linear regression and calculate r, the average number of states explored when

ĥ is reduced by one. A random advancement process is triggered when the value of

h⇤ is not reduced for r consecutive states.

To bypass potential blocks during deterministic search, we also maintain a moving

average h̄ of heuristic values for m most recent states (excluding dead-end states).

Search switches to random advancement if h̄ � ĥ(1 + �). In our implementations m

is set to r/2 and � is set to 0.2.

Length of a walk. The choice of l a↵ects the e�ciency of the random advancement.

The computational cost of generating a walk grows linearly with l, so it is desired that

90



l is short. We also want l to be long enough to walk over blocks in N to reach an exit

state. However, knowing how far away the block and exit states are is as di�cult as

finding a path to the exit state. As we discussed in the last section, we can estimate

tl using d (d  tl  2d), the radius of the plateau graph. We have found through

comprehensive experimentation that d is typically from 1 to 30 for the h
ff

heuristic

we use in random exploration. Given the large range of d, in our implementation, we

use four di↵erent l values in random advancement: 1, 4, 7 and 10.

Number of walks. Parameter n controls number of random walks conducted in a

random advancement and subsequently the number of heuristic evaluations in each

advancement. We select n by estimating the state coverage of random walks inN(s, l).

During the walk, the branch factor at each state is recorded by counting the number

of successor states. The average branch factor b is then calculated by taking a moving

average of the recorded branch factors. We pick n to be the min(2000, bl). This way,

when small ls such as 1 or 4 are used, n is accordingly smaller such that repetitively

random walks in small local regions such as N(s, 1) and N(s, 4) are avoided. We also

cap the number of walks at 2000 to guarantee that random exploration returns to

deterministic search in a finite time.

5.4 Experimental Results

We report results in two parts. In the first part, we report our experimental results

on two variants of RW-BFS, namely, the sequential version (RW-BFS
s

) and the par-

allel version (RW-BFS
p

). In the second part, we report results from the Seventh

International Planning Competition held in 2011.

5.4.1 Part I: Results on IPC 6 (2008) Domains

The baseline in our comparison is LAMA [63], a best-first search planner that is

used as the base planner for deterministic search in RW-BFS
s

and RW-BFS
p

. In our

experiment, all three planners use the same settings and same heuristic functions for

the best-first search part.
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Figure 5.2: Number of problem instances that are solvable by LAMA, RW-BFS
s

, and
RW-BFS

p

in 300 seconds.

Parameters for random explorations are set according to our discussion in the previous

section. The number of advancements is set to 4. Both RW-BFS
s

and RW-BFS
p

use

the same set of parameters.

In RW-BFS
p

, line 16 in Algorithm 8 are running in parallel using 4 separate threads.

RW-BFS
s

runs the random exploration procedure inside Algorithm 7 sequentially.

For both algorithms, the open list is shared by random exploration and best-first

search so that possible exit states discovered by random exploration can be inserted

into the open list directly.

We test all domains in IPC 6 [4], including Elevators (elevator), Woodworking (wood),

PARC Printer (parc), Sokoban (sokoban), Openstack (open6a), Peg solitaire (peg),

Scanalyzer-3D (scan) and Transport (trans). All experiments are conducted on a

quad core workstation with a 2.4GHz CPU and 2GB memory. The running time

limit for each instance is set to 300 seconds.

Figure 5.2 shows the number of problem instances solved by the three planners. Both

RW-BFS
s

and RW-BFS
p

solve more problem instances than LAMA, the baseline

best-first search planner. In total, they solve 233, 210, and 204 instances, respectively.

We would like to point out that problems that LAMA cannot solve within 300s are
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P

LAMA RW-BFSs RW-BFSp

Total RW Total RW

T L E T L E T’ L’ E’ T L E L’

elevator-18 - - - 9.9 151 17276 3.8 14 7319

⇤⇥ ��1.94

⇤⇥ ��138 11588 10

elevator-19 5.8 183 8796 6.1

⇤⇥ ��177 9820 1.5 9 2905

⇤⇥ ��4.82 186 7039 4

elevator-20

⇤⇥ ��6.6 162 9739 10.3 163 15799 2.9 13 5027 6.68

⇤⇥ ��147 9422 31

elevator-23 14.3 161 17165 13.4

⇤⇥ ��139 16744 5.8 24 7713

⇤⇥ ��2.47 140 402 10

elevator-24 68.1

⇤⇥ ��188 68344

⇤⇥ ��31.6 231 33167 12.0 17 13385 93.58 191 90455 27

elevator-25 - - -

⇤⇥ ��44.8 268 41555 11.4 18 11596 57.63

⇤⇥ ��249 51071 13

elevator-26 - - - 59.1

⇤⇥ ��261 51712 21.5 36 20086

⇤⇥ ��30.81 265 17723 25

elevator-27 44.5 310 31249 42.4 353 31434 12.4 24 10220

⇤⇥ ��18.49

⇤⇥ ��187 1280 15

elevator-28 - - - 25.0 276 16895 6.2 9 4407

⇤⇥ ��14.23

⇤⇥ ��202 12068 10

elevator-29 21.4 311 12797

⇤⇥ ��11.3 308 7007 0.9 1 666 13.82

⇤⇥ ��213 1641 24

elevator-30 - - - 104.3 306 63671 32.3 27 21124

⇤⇥ ��53.75

⇤⇥ ��227 12651 21

wood-3 2.8 35 4728

⇤⇥ ��0.2 35 957 0.1 4 603 1.4 35 106 1

wood-4

⇤⇥ ��11.7

⇤⇥ ��74 16731 18.5 94 64827 17.4 22 63017 14.48 102 60928 38

wood-7 36.2

⇤⇥ ��91 32049 24.1 95 39638 22.3 14 37686

⇤⇥ ��7.98 103 13132 20

wood-8 33.6 96 21623

⇤⇥ ��9.6

⇤⇥ ��94 16082 8.8 10 15443 12.42 181 10423 10

wood-10 44.5

⇤⇥ ��119 23544 87.7 168 85329 83.3 58 82607

⇤⇥ ��28.55 164 21460 15

wood-14 9.3

⇤⇥ ��46 15982

⇤⇥ ��0.5 47 1808 0.3 9 1404 6.6 47 1418 81

wood-16 19.6

⇤⇥ ��94 15592 23.6 179 51161 22.4 77 49425

⇤⇥ ��1.17 178 5511 48

wood-17 34.6

⇤⇥ ��79 37879

⇤⇥ ��7.1 87 16655 6.3 14 15741 22.59 111 29709 20

wood-18 25.6

⇤⇥ ��80 15128 31.7 102 52833 29.7 22 51333

⇤⇥ ��10.21 98 31192 13

wood-19 28.1

⇤⇥ ��86 17742

⇤⇥ ��23.4 106 34498 21.8 22 33182 33.64 95 48797 10

wood-20 - - - 50.3

⇤⇥ ��219 50335 47.7 102 48587

⇤⇥ ��22.42 242 21465 110

wood-23 2.3

⇤⇥ ��25 6013

⇤⇥ ��1.9 28 15076 1.8 7 14740 41.11

⇤⇥ ��25 95400 1

wood-26 22.3

⇤⇥ ��93 19221

⇤⇥ ��5.6 99 16312 4.9 13 15269 12.12 97 12305 15

wood-28 - - - 28.6

⇤⇥ ��121 32746 27.9 24 32224

⇤⇥ ��11.16 137 14005 91

wood-29 63.7 103 46700 54.9 124 67946 52.0 25 65589

⇤⇥ ��39.60 144 32093 25

parc-17 154.6 81 5205

⇤⇥ ��53.5

⇤⇥ ��75 1765 6.4 1 154 126.14 93 1842 12

parc-24 114.8 29 6657 156.9

⇤⇥ ��28 8546 12.9 1 301

⇤⇥ ��76.40 29 4533 15

sokoban-14 21.5 405 100431 262.1

⇤⇥ ��378 637299 152.1 13 124196

⇤⇥ ��12.88 890 74000 120

sokoban-15 - - - 66.3

⇤⇥ ��276 262600 11.9 2 9561

⇤⇥ ��7.33 277 3784 10

sokoban-16

⇤⇥ ��7.7 287 37963 99.7 443 324803 46.0 18 39134 63.27

⇤⇥ ��222 149122 3

sokoban-17

⇤⇥ ��39.7 212 243203 3.8

⇤⇥ ��148 21339 1.0 1 1499

⇤⇥ ��31.34 232 10346 14

sokoban-18

⇤⇥ ��176.6

⇤⇥ ��297 1007158 - - - - - - - - - -

sokoban-21 30.8

⇤⇥ ��288 132957 103.9 411 339820 37.9 10 39425

⇤⇥ ��26.2 410 95404 12

sokoban-22 115.8

⇤⇥ ��336 667481 - - - - - -

⇤⇥ ��112.78 713 172216 0

sokoban-23

⇤⇥ ��4.2 249 30485 9.5 230 63234 1.7 2 4040 6.14 258 65120 1

sokoban-24 108.4

⇤⇥ ��279 367882

⇤⇥ ��57.6 312 173380 14.3 4 8915 161.41 313 466868 3

sokoban-25

⇤⇥ ��7.5

⇤⇥ ��177 35097 31.1 391 122051 5.7 5 5159 17.36 245 105773 12

sokoban-26 - - - 109.4 417 450086 47.5 10 84417

⇤⇥ ��53.85 583 128279 22

sokoban-27 112.5

⇤⇥ ��81 482420

⇤⇥ ��5.5 158 21916 1.4 4 2441 14.27 157 10719 1

sokoban-28 29.8

⇤⇥ ��450 82203 54.1 436 139494 8.6 0 17230

⇤⇥ ��5.24 465 6197 11

peg-29 8.7 45 37097 20.7 45 161290 11.8 0 123121

⇤⇥ ��9.97 45 13611 0

peg-30

⇤⇥ ��90.9 54 395509 104.3 55 499095 31.2 0 188839 97.71 55 707 0

scan-29 269.6 81 3715 278.8 81 3816 10.0 0 98

⇤⇥ ��246.62 81 3403 0

trans-19

⇤⇥ ��83.1 332 26068 214.6 331 67386 127.8 0 40901 89.35 331 26337 0

Table 5.2: Comparison of the search time (“T”), solution length (“L”), number of heuristic
evaluations (“E”) of LAMA, RW-BFS

s

and RW-BFS
p

. For RW-BFS
p

, “E” is the total
number of heuristic evaluations of all threads.
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problems where there is a large plateau for it to explore. Both RW-BFS
s

and RW-

BFS
p

solve more problems due to the fact that some plateau exploration are avoided

during search.

In Table 5.2, we give detailed comparisons of three planners on all IPC-6 problems

for which random exploration is invoked. Problems in which random exploration is

never invoked are omitted from our comparison because in this case three algorithms

are essentially identical.

To show the contribution and overhead brought by random walk in RW-BFS
s

, we

also report the time spent in random walk (T’), the length of the sub-path found

by random exploration in the final solution path (L’), and the number of heuristic

evaluations in random exploration procedure. For RW-BFS
p

, we report the length of

the sub-path (L’) in the final solution path. We omit the time spent in random walk

and the number of heuristic evaluations in random exploration procedure for RW-

BFS
p

as these two metrics are proportional to the runtime of the best-first search in

RW-BFS
p

, and do not reflect the e�ciency of random walks.

We summarize three findings from Table 5.2.

First, these results show that for problems LAMA cannot solve within 300s, e.g.,

elevator-18, elevator-25, elevator-26, RW-BFS
s

and RW-BFS
p

can successfully find

solutions in which substantial portions of the paths are generated by random walks.

Problems in Elevators and Woodworking domains usually have plateaus. Thus, best-

first search is frequently stuck on plateaus, which results in costing more search time

or even failing to find a solution. Experimental results on these domains clearly show

that random walk can assist best-first search to escape from plateaus.

Second, comparing the performance of two sequential planners LAMA and RW-BFS
s

to RW-BFS
p

, we see that the overhead brought in by alternating between random

walk and best-first search can be mitigated by using a parallel implementation, at

the cost of using more computing cores. For domains such as Elevator, RW-BFS
p

can

reduce the solving times by half or more.

Third, according to our performance analysis, if the state space has q > 1, the random

walk procedure may not be helpful. A closer look at problems in the Pegsol domain
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Domain LAMA RW-BFS
s

RW-BFS
p

elevator 25
⌥⌃ ⌅⇧30 29

wood 28
⌥⌃ ⌅⇧30

⌥⌃ ⌅⇧30
parc 23 23

⌥⌃ ⌅⇧29
sokoban 24 24

⌥⌃ ⌅⇧25
open6a 30 30 30
peg 30 30 30
scan 30 30 30
trans 30 30 30
Total 220 227

⌥⌃ ⌅⇧233

Table 5.3: Number of solved instances for three planners on IPC 6 domains (Time limit is
300s).

reveals that they indeed have q > 1. In the peg solitaire game, there can be multiple

moves at each state and there can be multiple action paths arriving at the same state.

Results on peg-29 and peg-30 confirmed our analysis that a random walk exploration

would not assist the best-first search much when q is close to p. One the other hand,

problems in the Sokoban domain are well-known to have many loops and dead ends.

In this domain, RW-BFS
s

did not outperform LAMA, as random exploration is less

e↵ective in finding exit states.

5.4.2 Part II: Results on IPC 7 (2011) Domains

Overview of the Seventh International Planning Competition (IPC 7)

The International Planning Competition is an event organized in the context of the

International Conference on Planning and Scheduling (ICAPS). The competition has

a set of goals, including, providing an empirical comparison of the state of the art of

planning systems, highlighting challenges to the AI Planning community, proposing

new directions for research and new links with other fields of AI, and providing new

data sets to be used by the research community as benchmarks [5].

The competition is organized into di↵erent tracks, including the deterministic track,

the learning track and the uncertainty track. We participated in the deterministic
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track. This track covers classical planning problems with actions having associated

non-negative costs (not necessarily uniform). Apart from solving the problems within

reasonable time, the goal of the track is to find low-cost plans, where the cost is defined

as the sum of the costs of each plan’s actions.

There is no domain specific knowledge in all participant planners. In fact, bench-

mark problems were revealed after planner submission was completed. There are 14

domains in the benchmark. Each domain contains 20 problems. Each planner gets a

score from 0.00 to 1.00 for each solved task in every domain based on solution quality.

All planners are run on the same machine with a 6 GB RAM, 750 GB HD and a 30

minute time limit.

Roamer and Roamer-p Planners in IPC 7

As a team, we participated in the Seventh International Planning Competition (IPC

7) in 2011 with two planners, Roamer and Roamer-p. Both planners are based on

Algorithm 8. A detailed comparison of these two planners is presented in Table 5.4.

Roamer Roamer-p
algorithm RW-BFS

s

RW-BFS
p

track sequential satisficing multi-core satisficing
rank 5/28 4(2)/8

contributor(s) Lu and Xu Xu

Table 5.4: A comparison of Roamer and Roamer-p for IPC 7.

Roamer is a random walk assisted best-first search planner. At the core, Roamer uses

the sequential version of Algorithm 8 to accelerate best-first search. It is developed

on top of the LAMA planner [63]. Roamer participated in the sequential satisficing

sub-track under the deterministic track of IPC 7.

Plateau detection in Roamer is adaptive. Roamer keeps track of the number of

plateaus found during search as n
p

(reset to 0 when ĥ is changed). If the value of

ĥ is not decreased after m = 3000 + (n
p

� 1) ⇤ 1000 states, n
p

is increased by one,

and random explorations are triggered. Roamer would pause best-first search, and
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invokes four rounds of random explorations, each with di↵erent parameters, to find an

exit to the plateau. States found by random exploration that have heuristics smaller

than ĥ get inserted back to the open list for best-first search.

The Roamer planner is a joint work of Lu and I. I implemented the random exploration

logic for Roamer. Lu incorporated it with the base planner and tuned the parameters.

Figure 5.3: Structure of Roamer-p.

The Roamer-p Planner

Roamer-p is a multi-core planner that runs best-first search and random walks in

parallel. It is independently developed by me, with helpful suggestions from Lu.

Roamer-p participated in the multi-core satisficing sub-track under the deterministic

track of IPC 7.

Like Roamer, Roamer-p is also based on the LAMA planner. However, its architec-

ture is significantly di↵erent than a traditional sequential planner such as LAMA or

Roamer.

Figure 5.3 presents the structure of the Roamer-p planner. It first uses the PDDL-

SAS+ translator from LAMA to convert PDDL-encoded planning problems to SAS+

formalisms. Then, it adopts a multi-round search strategy to find solution paths.

The first-round search runs one thread of best-first search adapted from the LAMA

planner [63] and three threads of random walks. By the rules of IPC 7, all planners in
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the multi-core track run on quad-core Linux boxes. Thus, we let Roamer-p use four

threads in the first-round search, three of them being random walk threads. Roamer-p

can be used with any number of random walk threads.

Random walk and best-first search threads run in parallel in Roamer-p. Roamer-

p uses two queues for the communication between random walks and the best-first

search. A shared queue Q
rw

is used for the best-first search thread to send states to

three random walk threads. Whenever a plateau is detected, a state on the plateau

is pushed to Q
rw

for random walks to explore.

For a random walk starting from s, when a new state is found with heuristic value

less than h(s), all states along the path from s to the new state are inserted into

another shared communication queue Q
bfs

. Best-first search fetches paths from Q
bfs

,

evaluates heuristic values of states in those paths (as random walk would skip heuristic

evaluations for intermediate states along the path), and inserts all these states into

the open list. It is easy to prove that this communication mechanism preserves the

completeness of search.

For Roamer-p, the synergy between threads is vital to its performance. During the

search, there are cases where random walks are making slow progress while the best-

first search is advancing quickly (or vice versa). In these cases, we force threads to

check Q
rw

or Q
bfs

periodically. When the local best heuristic value is far behind the

global one, we force the thread to restart from a better state.

Roamer-p terminates when a goal state is found. States in the goal path may come

from di↵erent threads. States found by random walk are not necessarily in the closed

list, so Roamer-p re-assembles path segments together to report the complete goal

path.

IPC 7 Results for Roamer

Table 5.5 shows the final score of all planners in the sequential satisficing track. We

highlight domains where Roamer performs significantly better than the base planner

(lama-2008). These domains are woodworking (wood), elevators (elev) and barman.

These three domains all have large plateaus with few dead ends. The IPC 7 results
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(a) Number of problems solved (b) Quality score

Figure 5.4: Number of problems solved and quality score over time for Roamer, Lama 2008
and Arvand. The x-axis is shown on a logarithmic scale.

have confirmed our analysis that RW-BFS works best on domains with few or no dead

ends. Roamer also outperforms Arvand, a stochastic search planner that inspired us

to conduct random walks during best-first search. Arvand relies solely on random

walks to solve the planning problems. While Arvand performs well on a number of

domains, it falls short on domains such as sokoban and parking (park), two domains

with many loops in the search space. We highlight the domains in which Roamer

outperforms Lama 2008 or Arvand in Table 5.5.

As we can see, by combining the best of two worlds, Roamer outperforms both Lama-

2008 and Arvand. In Figure 5.4, we show the number of problems solved and the

quality score over time by Roamer, Lama 2008 and Arvand. It is clear that Roamer

not only solves more problems than the other two over time, but consistently outper-

forms Lama 2008 and Arvand in terms of solution quality.
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(a) Number of problems solved (b) Quality score

Figure 5.5: Number of problems solved and quality score over time for multi-core planners.
The x-axis is shown on a logarithmic scale.

IPC 7 Results for Roamer-p

Roamer-p solved 184 problems and achieved a quality score of 165 in IPC 7, ranking

the second among all 8 participating planners 1. We present the final score and ranking

of all 8 participants in the multicore satisficing track of IPC 7 in Table 5.6. Among

all 8 participants, Roamer-p ranked the 4th place, after Arvandherd, Ayalsoplan and

Phs↵.

One interesting thing to notice is that Roamer-p has di↵erent performance charac-

teristics than other planners. Figure 5.5 shows the number of problems solved and

quality score over time for the top 5 participants in the multi-core track. Notice that

x-axis is on a logarithmic scale. It is expected that the curve for the number of prob-

lems solved versus time is linear for typical heuristic search planners, as computational

time grows exponentially with problem size. What is unusual in Figure 5.5(a) is that

Roamer-p solves more problems in the [1000, 1800) interval, whereas other planners

make slow progress during the same period.

1Roamer-p did not receive points in 39 di↵erent problems in the following domains (the number of
problems a↵ected shown between parenthesis): nomystery (1), barman (7), parking (6), scanalyzer
(1), sokoban (7), tidybot (3), transport(1), visitall (4) and woodworking (9), even though it suc-
cessfully solved these problems. A strict IPC 7 rule was enforced that gives zero points to planners
that write intermediate invalid plans despite the final plan being valid. If Roamer-p’s intermediate
invalid plans had not been counted against it, Roamer-p would have ranked the second [51].
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This peculiar behavior is rooted in the inert behavior of random exploration. Recall

that random exploration is most e↵ective in accelerating best-first search when search

is stuck on plateau exploration. In practice, plateau exploration typically happens in

later stages of search, where there are many blocks and traps in the open list. Because

of that, Roamer-p scales well with problem size.

One would expect Roamer-p to perform even better if it is given more time, since the

cuto↵ time for IPC is at 1800 seconds. We have conducted a di↵erent experiment

and validated this hypothesis on a multi-core machine with 2.4GHz CPU and 4GB of

memory. Given a time limit of 3600s, Roamer-p can solves 246 problems out of 280

problems, whereas the winner of the multi-core tracker, ArvandHerd, can solve 247

problems within an hour. This result, together with the results for IPC 7, show that

Roamer-p is a competitive, state-of-the-art planner.

To sum up, we have presented the experimental results on both IPC 6 and IPC 7

domains. The experimental results show that random walk is an e�cient scheme in

accelerating heuristic search, especially in places where heuristic search are making

slow progress. The overhead brought in by random walk is well paid o↵ by the

ability of jump out of traps and jump over blocks that occurred in heuristic search.

The results from IPC 7 also validated that the RW-BFS algorithm framework we

proposed in this chapter can lead to competitive, state-of-the-art planning systems

such as Roamer and Roamer-p.

5.5 Summary

Inspired by the Monte-Carlo Random Walk planner and the observation that heuris-

tic search spends most of its time doing plateau exploration, we have developed an

algorithm framework that can accelerate heuristic search using random walk.

By analyzing the structure of the local region in the search space, we have iden-

tified scenarios where random walk can accelerate heuristic search e�ciently, and

proposed a random walk assisted best-first search algorithm framework. We have

also implemented two planners, Roamer and Roamer-p, and participated in the Sev-

enth International Planning Competition in 2011. Both of our planners performed
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well in the competition. The results we gathered from a wide spectrum of testing

domains have proven that the proposed framework can accelerate heuristic search for

AI planning.
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Chapter 6

Accelerating Heuristic Search with

Cloud Computing

We have looked at ways to accelerate heuristic search by analyzing the problem struc-

ture in Chapter 3 and 4, and ways to escape from traps and blocks in the search space

by using random walk in Chapter 5. In this chapter, we focus on improving the e�-

ciency of search by developing new search algorithms and search strategies that can

utilize advanced, more powerful computing platforms, such as cloud computing.

Cloud computing is emerging as a prominent computing model. It provides an inex-

pensive, highly accessible alternative to other traditional high-performance comput-

ers. It allows small teams and even individual users to routinely have access to the

same large-scale computing facilities used by large companies and organizations, such

as Amazon, Google, and Microsoft.

Cloud computing architectures have the potential to make heuristic search much

more e�cient. However, there are also some key challenges that need to be ad-

dressed. For instance, cloud platforms typically provide communication mechanisms

that are designed for distributed web applications. These mechanisms have high la-

tency compared with the high-speed communication in computing infrastructures like

supercomputers and large-scale clusters.

To address these challenges, we propose a portfolio search algorithm. In particular, we

run Monte-Carlo Random Walk (MCRW), a stochastic search algorithm for classical

planning [56]. Our key observation is that some stochastic algorithms, such as MCRW,

exhibit high variability of their running time. This means when running with di↵erent
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random seeds, MCRW may have very di↵erent running times. Such a variability is

attractive for cloud computing because even a simple scheme that launches parallel

independent runs can have high (sometimes superlinear) speedup without requiring

much inter-processor communication.

In addition to the simple algorithm, we also develop an enhanced portfolio search

algorithm with multiple parameter settings. In MCRW, the parameters can greatly

impact the search performance. By running a portfolio of searches with varying

parameter settings, our scheme greatly enhances the possibility of getting the param-

eter value to perform well. Our experimental results show this scheme significantly

improves e�ciency and solution quality.

We further implement our algorithms in Windows Azure, a representative commercial

cloud whose potential for scientific research remains largely unexplored. We study the

performance characteristics of Windows Azure, and then develop a scalable Azure-

based scheme for stochastic search algorithms. We report experimental results to

show the advantages of the proposed scheme, including high speedup, scalability,

and reduced running time variance. We also show that our scheme is economically

sensible.

6.1 Background

6.1.1 Parallel Computing

Parallel computing is a form of computation in which the computations are carried

out simultaneously, usually on many computational nodes. A computational node is

usually a processor (e.g. a CPU) associated with memory and other components.

Nodes can carry out computations independently, and can communicate with other

nodes. Here are the relevant characteristics of parallel computing. First, for an exe-

cution with n computational nodes, the speedup S
p

is defined as S
p

= T
s

/T
p

, where T
s

is the sequential runtime and T
p

is the execution time of the parallel program. Sec-

ond, the e�ciency is defined as E
p

= S
p

/n, which measures how well the computing

resources are utilized. Third, the overhead is O
p

= W
p

/W defined as the ratio of
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the work performed by parallel formulation (W
p

) to that by sequential formulation

(W ).

Search algorithms that are suitable for parallel and multi-core machines have been

extensively studied [48, 22, 64, 7, 77]. However, expensive computing infrastructures,

such as supercomputers and large-scale clusters, are traditionally available to only a

limited number of projects and researchers. As a results, most AI applications, with

access to only commodity computers and clusters, cannot benefit from the e�ciency

improvements of high-performance parallel search algorithms.

6.1.2 Cloud Computing

A cloud is a type of parallel and distributed system consisting of a collection of inter-

connected and virtualized computers that are dynamically provisioned and presented

as one or more unified computing resources [15, 73]. Cloud computing platforms

have been used for scientific applications. For instance, AzureBlast [53] studied the

applicability of the Windows Azure cloud to the BLAST algorithm using a trivial

parallelization with little communication due to the high communication latency.

There is a work [55] that compared the utility of a supercomputer to that of public

clouds, and analyzed the service times prior to actual execution. The conclusion

is that while the supercomputer might be much faster, the turnaround time might

actually be much better for the cloud because of the elapsed time from submission to

the completion of execution, which gives another reason for our research.

6.1.3 Parallel Search Algorithms

Early work on parallel search is surveyed in [31]. For shared memory systems, syn-

chronized schemes such as layer synchronization and delayed duplicate detection, do

not scale to very large amounts of processors; results with up to eight cores have been

reported in [80]. For distributed memory architectures, inter-processor communica-

tion is generally needed to ensure e�ciency and correctness [64]. Recently, the HDA⇤

algorithm [45], based on asynchronous MPI communication, scales well to up to 128
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processing cores. These parallel algorithms are not suitable for the cloud environment

which has high latency in inter-process communication and instance failures.

6.1.4 Stochastic Search

As another major class of search algorithms, stochastic search has also been studied

for its parallelization. A recent work studied the parallelization of WalkSAT [54],

which shows promising results for both a simple scheme that launches multiple in-

dependent runs and a scheme with asynchronous sharing of learned clauses. As an

important stochastic search method, Monte-Carlo Random Walk, has been studied

and applied to several areas of automated planning, such as sampling possible trajec-

tories in automated planning [23, 56], probabilistic planning [12] and robot motion

planning [50].

6.1.5 Portfolio Search

A portfolio of algorithms is a collection of di↵erent algorithms and/or di↵erent copies

of the same algorithm running in parallel on di↵erent processors or interleaved on

one processor [29]. The portfolio idea has been applied to automated planning [66],

SAT solver [32] and SMT solver [75]. Theoretical and experimental analyses show

that portfolio search can significantly decrease variances of heavy-tailed distributions

associated with SAT and constraint satisfaction solvers [30].

6.2 Portfolio Stochastic Search Framework

In this section, we present a portfolio stochastic search (PoSS) algorithm designed to

take advantage of the cloud platform while steering away from high-latency commu-

nication and node failure problems of cloud platforms.
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Algorithm 9: MCRW(⇧)

Input: a classical planning problem ⇧
Output: a solution plan

1 s s
I

;
2 h

min

 h(s
I

) ;
3 counter  0 ;
4 while s does not satisfy s

G

do
5 if counter > cm or dead-end(s) then
6 s s

I

;
7 h

min

 h(s
I

) ;
8 counter  0 ;
9 end

10 s RandomWalk(s,⇧) ;
11 if h(s) < h

min

then
12 h

min

 h(s);
13 counter  0;
14 end
15 else
16 counter  counter + 1;
17 end
18 end
19 return plan;

6.2.1 Monte-Carlo Random Walk (MCRW)

Our algorithm framework is based on the Monte-Carlo Random Walk (MCRW)

method. MCRW is a sequential stochastic search method for planning [56]. It uses a

random exploration of the local neighborhood of a search state for selecting a promis-

ing action sequence.

MCRW achieves comparable, and sometimes superior, performance to the best de-

terministic search algorithms in a number of testing domains [2]. It benefits from its

exploration strategies. The method is robust in the presence of misleading heuristic

estimates, since it obtains information from the local neighborhood. Also, the random

exploration can e↵ectively escape from local minima.

Algorithm 9 shows the framework of MCRW in detail. Given a SAS+ planning

problem ⇧, MCRW builds a chain of states s
I

! s
1

! · · · ! s
n

such that s
I

is the
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Random Exploration MCRW

objective plateau exploration finding goal state

usage when search is stuck replaces heuristic search

restarting policy no restarting policy with restarting policy

termination terminate in finite time no guarantee on termination

Table 6.1: A comparison between Random Exploration and MCRW.

initial state, s
n

is a goal state, and each transition s
i

! s
i+1

uses an action sequence

found by random walk in the neighborhood of the last state (Line 10). MCRW search

fails to find a solution when the minimum obtained h-value does not improve after

n trials, or a dead-end state is encountered (Line 6). In this case the MCRW search

simply restarts from s
I

(Line 7), and resets the counter to 0. The algorithm returns

a solution plan which contains a sequence of actions changing state from s
I

to a goal

state s
G

that includes all intermediate paths found by random walks (Line 15).

Note that MCRW and the Random Exploration procedure we used to assist best-

first search in the last chapter both use the same inner loop for conducting random

walks in the state space. The di↵erence is that MCRW is a full-featured stochastic

search method that can find a complete plan from the initial state to a goal state,

whereas Random Exploration is used as a subroutine to find plan segments dur-

ing heuristic search. We list the di↵erences between these two in Table 6.1. Random

Exploration has no builtin restarting policy, whereas MCRW restarts the random

walk from the initial state when a dead-end state is encountered. The running time

of Random Exploration is intentionally capped to guarantee a predictable per-

formance. On the other hand, MCRW may not terminate if it cannot find a better

state (in terms of heuristic value) to move to.

6.2.2 Variability in MCRW Searches

MCRW search often exhibits a remarkable variability in the solving time of any par-

ticular problem instance, which can be exploited by parallel search algorithms to

accomplish short runs. Figure 6.1 shows the run-time distribution of MCRW algo-

rithm on six planning problems from the Fourth International Planning Competition

(IPC 4) [2]. Table 6.2 gives the mean, the variance and the standard deviation of the
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(a) Airport 47 (b) Tankage 40 (c) Notankage 50

(d) Philosopher 13 (e) Satellite-30 (f) PSR-large-24

Figure 6.1: The run-time distribution of 500 MCRW runs with di↵erent random seeds on
six planning problems.

distribution. We can see that many shorter runs take much less time than the average

run-time (shown as the green line in Figure 6.1). Such a large variability can actually

benefit a parallel scheme that makes multiple independent runs and terminate as soon

as one run finds a solution.

airport-47 tankage-40 notankage-50 philosopher-13 satellite-30 psr-large-24
µ 9288.6 1242.2 279.8 5036.9 1995.7 1445.7
�2 7.8e7 1.4e6 1.3e5 2.9e7 1.2e6 1.9e6
� 8856.7 1196.2 357.4 5355.4 1104.1 1388.3

Table 6.2: The mean (µ), the variance (�2) and the standard deviation (�) of 500 MCRW
runs with di↵erent random seeds on six planning problems.

6.2.3 Portfolio Stochastic Search (PoSS) Algorithm

We propose a Portfolio Stochastic Search algorithm framework designed to take ad-

vantage of the short runs to get substantial speedup.

Algorithm 10 shows the framework of Portfolio Stochastic Search (PoSS). It simply

calls N processes to run the MCRW procedure simultaneously and independently
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Algorithm 10: PoSS(⇧)

Input: a classical planning problem ⇧
Output: a solution plan

1 for each processor P
i

, 1  i  N do
2 plan MCRW(⇧);
3 if plan is a solution then
4 send solution to controller;

// controller would abort all other processors

5 end
6 end
7 return plan;

(Line 2). The node that finds the solution would send the solution to a central

controller (Line 4). The central controller would then abort all processes. We use

asynchronized communication between nodes and the central controller. There is no

direct communication between computing nodes, which makes Algorithm 10 perfectly

suitable for cloud computing architecture. PoSS also can tolerate the failure of pro-

cessors since the search of each individual processor is independent where failures on

one computational would not a↵ect other processors.

When the communication time between each MCRW and the central controller is

minimized, the running time of PoSS is the minimal solving time of N independent

runs of MCRW.

We denote the running time of sequential MCRW and PoSS searches by random

variable T
m

and T ⇤, and the probability of running time shorter than t for MCRW

and PoSS searches by p
m

(x < t) and p⇤(x < t) , respectively. Given N MCRW

searches in a portfolio, we have:

T ⇤ = {t|t = min{t
1

, t
2

, · · · , t
N

}, t
i

2 T
m

}

p⇤(x < t) = p
m

(min{t
1

, t
2

, · · · , t
N

} < t)

= 1� p
m

(t
1

� t)p
m

(t
2

� t) · · · p
m

(t
N

� t)

= 1� p
m

(x � t)N

= 1� (1� p
m

(x < t))N .
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For instance, suppose p
m

(x < t) = 0.3 and N = 8, we have p⇤(x < t) = 1�(1�0.3)8 =
0.95. This means if 30% of the time an MCRW search terminates within t seconds,

the corresponding portfolio stochastic search would terminate within t seconds at a

probability of 0.95. Thus, even though the probability of short runs is relatively small

in sequential MCRW search, the probability of hitting those short runs is large when

we have a portfolio of MCRW searches.

Another insight we can draw from the above analysis is that we can drastically increase

p⇤(x < t) if p
m

(x < t) is increased. For the most part, the probabilistic distribution

p
m

is determined by the e�ciency of MCRW search itself. That in turn, is determined

by the problem structure and the parameters for MCRW. With the problem struc-

ture fixed, we focus on finding proper parameter configurations to accelerate MCRW

search.

6.2.4 Enhanced PoSS with Dovetailing

The MCRW algorithm has a few parameters a↵ecting its performance, among which

n (number of walks) and l (length of walk) are the most important, since they directly

control the process of escaping from local minima and plateaus. If n and l are too

small, the local search method is greedy as it tries to immediately exploit their local

knowledge instead of exploring the neighborhood of current state. On the other hand,

if they are too large, the search may take a long time on exploring the neighborhood

of the current state. This exploitation–exploration tradeo↵ has long been observed

in local search [8, 47].

As noted in the last chapter, setting the best parameter values for the random walk

procedure can be challenging because we do not have complete information about the

state space. MCRW by default sets n = 2000 and l = 10, which are tuned o✏ine and

give good average performance. However, there is no guarantee that this setting will

perform well on each individual problem. As an example, we test di↵erent parameter

values on a randomly selected problem: Airport-17. For each parameter setting,

we run MCRW 10 times to get the average running time. The results presented in

Figure 6.2 show that the performance with the default setting can be improved by

arranging some other parameter settings.
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(a) Number of walks vs running time (b) Length of walk vs running time

Figure 6.2: The average running time of the MCRW algorithm with di↵erent parameter
settings on problem Airport-17.

Dovetailing is a procedure that performs search with multiple parameter settings and

algorithms simultaneously [66]. It takes as its input a set of pairs of search algorithms

and configurations A = {(a
0

, c
0

), (a
1

, c
1

), · · · , (a
n

, c
n

)} where c
i

is a configuration for

algorithm a
i

. The set A is also called an algorithm portfolio. Each computational

node takes parameter settings from a candidate configuration set C = {c
0

, c
1

, · · · , c
n

}.

The dovetailing version of PoSS, PoSSd, adopts the following configurations. We set

two general ranges for n and l, where n is from 200 to 3200, and l is from 1 to

15. These two ranges are set based on our empirical studies on planning domains.

They are general enough to cover a vast range of planning domains in International

Planning Competitions. In PoSSd, each processor would perform an independent

MCRW search with a set of parameters drawn uniformly from the aforementioned

range.

6.3 System Implementation

We have implemented PoSS, PoSSd in both parallel and cloud computing environ-

ments. For the parallel computing environment, we used MPI message passing for

node communication. The Azure implementation is proven to be technologically

challenging. We record our experiences here.
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Figure 6.3: System architecture for PoSS in Windows Azure.

Windows Azure is a representative cloud computing system [16]. It provides a

Windows-based cloud computing environment for running applications and storing

data on servers in Microsoft data centers. Windows Azure o↵ers web roles and worker

roles that can be used for web hosting and computation respectively. It also provides

communication mechanisms like Queue which web and worker roles can use to com-

municate with each other using asynchronized APIs. It is important to note that

the latency of communication using Azure Queue is high. On average, adding or

retrieving a message of 512 bytes in the queue requires as long as 20 ms, as measured

in [38]. We also performed some tests by ourselves and found that Windows Azure

Queue can support at most 100 message insertions and retrievals using its RESTful

API. Therefore, it is not practical to use parallel algorithms that are designed for high

performance clusters with low latency communication infrastructure. Instead, we run

MRW algorithms in parallel with very limited communication in Windows Azure .

The system architecture that we use to implement PoSS and PoSSd in Windows Azure

is presented in Figure 6.3. We use an Azure web role to provide a web portal for users

to submit jobs. The web role dispatches jobs to worker roles using a job control queue.

For the PoSS algorithm with N processors, a web role will insert N messages into the

job control queue, each containing a job ID, a set of initial parameters and a pointer

to the planning problem. We have stored all IPC planning problems in a distributed

file system in Azure so workers do not need to retrieve them from the web role.

Worker roles listens to the task queue. If a worker role is not currently working on

any planning jobs, and there is a new job in the control queue, the worker role would

consume the message and start the MCRM search. Parameters in the message are

used to initialize the MCRW search. Once the MCRW search on a worker role finds

a solution, it sends a done message, alone with the job ID, to the job control queue.
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Other worker roles that are working on the same planning problem, identified by

the job ID, listening to the job control queue asynchronously, will then terminate

promptly once the done message is posted.

The finished worker role will also send its solution and running time to the result

queue for result collection. We separate the result queue and the job control queue

because we would not want workers to be burdened by result messages, which usually

contain a large amount of data and performance statistics. Such a design also leads to

minimum communication, while still giving prompt termination of the PoSS algorithm

once a solution plan is found.

Figure 6.4: A simple Web UI for users to submit planning tasks to PoSS running in
Windows Azure.

We have ported the MCRW planner, which is originally developed in C++ on a Linux

environment, onto a managed .NET environment in Windows Azure. We have also

implemented our own APIs written in C++ for MCRW to access the queues and blob

services provided by Windows Azure. Although there are APIs on the .NET platform

provided by the Azure SDK to operate the Azure queues and blobs, these existing

APIs are not easily accessible from native codes.
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Hence, we write our own APIs, which use the RESTful APIs and plain stateless HTTP

protocols to access and operate the tables, queues and blobs. Our APIs implement

the base64, SHA256 and HMAC algorithm for authentication and HTTP requests

using the cUrl library. We plan to open source the PoSS planning system as well as

the C++ APIs for Azure cloud after some code cleanup.

Along with the APIs, we also provide a simple Web UI (Figure 6.4) where users who

are interested in solving planning problems can use our system as a service. Users can

submit planning jobs by submitting standard PDDL files for domains and problems.

Alternatively, users can choose from pre-loaded IPC domains. The solutions are

emailed to users as an email attachment.

It is worth noting that both the APIs and the web UI we developed can be extended

to work with other planners running in Azure. We believe that this work would

ease the way for planning researchers to experiment with new research ideas in cloud

platforms such as Windows Azure. They would make planning more accessible to

users who are not necessarily familiar with or do not have access to state-of-the-art

planners.

6.4 Experimental Results

We present our experimental results in two parts by evaluating the performance of

MCRW, PoSS and PoSSd in a parallel computing cluster provided by Washington

University and in Windows Azure cloud. Our experiments are conducted for problem

domains from the Fourth International Planning competition (IPC 4) [2]. These do-

mains are Airport (air), Pipesworld Tankage (tank), Pipesworld NoTankage (notank),

Dining Philosophers (phi), Satellite (sate) and Power Supply Restoration-PSR Large

(psr). We pick the most challenging problems (usually with larger problem indices)

in each domain for the experiments.
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6.4.1 Results for Parallel Computing

Here we run all experiments in a cluster with two computing nodes where each node

has 8 Dual Core AMD Opteron Processors (2.15GHz) and 26GB memory. We test

the parallelism with 8 and 16 MCRW instances in PoSS and PoSSd. The time limit,

for all the instances, is set to 3600 seconds. Intra-node communication for PoSS and

PoSSd are implemented using the MPI message passing library.

Problems
MCRW PoSS PoSSd

1 8 16 8 16
T # T S # T S # T S # T S #

air-38 246.1 10 128.1 1.9 10 115.9 2.1 10 28.7
⇤⇥ ��8.6 10 29.4 8.4 10

air-39 2228.6 5 1046.8 2.1 10 493.2 4.5 10 319.4 7.0 10 257.3 8.7 10
air-40 1287.0 8 515.6 2.5 10 350.0 3.7 10 252.5 5.1 10 145.6 8.8 10

air-41 1262.2 10 232.7 5.4 10 202.8 6.2 10 49.0
⇤⇥ ��25.7 10 55.0

⇤⇥ ��22.9 10
air-42 708.9 1 704.6 1.0 8 930.8 0.8 10 502.6 1.4 10 285.7 2.5 10
air-43 1643.6 1 980.1 1.7 10 730.6 2.2 10 411.6 4.0 10 305.0 5.4 10

air-44 726.9 10 394.5 1.8 10 313.1 2.3 10 90.0
⇤⇥ ��8.1 10 102.2 7.1 10

air-45 1606.8 9 511.8 3.1 10 451.5 3.6 10 176.5
⇤⇥ ��9.1 10 167.4 9.6 10

air-46 2969.5 1 2163.6 1.4 7 1116.6 2.7 10 718.7 4.1 10 734.7 4.0 10
air-47 1649.2 2 2912.4 0.6 3 2118.7 0.8 7 1543.8 1.1 10 1030.5 1.6 10

Summary 14328.9 57 9590.0 1.5 88 6823.2 2.1 97 4092.9 3.5 100 3112.9 4.6 100

Table 6.3: Comparison of MCRW and PoSS in di↵erent number of processors and strategies
for the Airport domain. Problems with super linear speedups are highlighted.

For each domain, we choose the 10 hardest problem instances (measured by the

average running time of 10 independent MCRW runs). Due to the statistic nature of

these algorithms, we run algorithms on each instance 10 times and report the average

running time here. Tables 6.3, 6.4, 6.5, 6.6, 6.7 and 6.8 give the results of MCRW,

PoSS and PoSSd algorithms in IPC-4 domains. In these tables, “T”, “S” and “#”

represent the average running time, the speedup and the number of runs when an

algorithm successfully finds a solution within the time limit.

From these tables, we can see that both PoSS and PoSSd largely reduce the running

time and provide substantial speedups. For instance, in problems such as air-41, tank-

32, tank-33 and psr-17, they achieve super linear speedups. Super linear speedup

means we achieve a speedup of more than n with n processors. These results show
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Problems
MCRW PoSS PoSSd

1 8 16 8 16
T # T S # T S # T S # T S #

tank-32 278.5 10 38.1 7.3 10 12.9
⇤⇥ ��21.6 10 10.8

⇤⇥ ��25.8 10 10.9
⇤⇥ ��25.6 10

tank-33 1432.1 10 164.7
⇤⇥ ��8.7 10 35.1

⇤⇥ ��40.8 10 71.8
⇤⇥ ��20.0 10 54.6

⇤⇥ ��26.3 10

tank-34 262.2 10 55.2 4.8 10 29.4 8.9 10 21.4
⇤⇥ ��12.2 10 25.7 10.2 10

tank-35 526.0 10 169.1 3.1 10 82.6 6.4 10 60.2 8.7 10 70.0 7.5 10

tank-36 1231.9 10 296.4 4.2 10 161.1 7.6 10 125.2
⇤⇥ ��9.8 10 137.7 8.9 10

tank-37 871.3 9 155.4 5.6 10 78.4 11.1 10 74.1
⇤⇥ ��11.8 10 88.7 9.8 10

tank-38 1054.3 10 409.3 2.6 10 132.1 8.0 10 107.4
⇤⇥ ��9.8 10 144.2 7.3 10

tank-39 467.1 10 200.6 2.3 10 114.9 4.1 10 123.2 3.8 10 91.7 5.1 10
tank-40 861.4 10 326.4 2.6 10 187.3 4.6 10 281.6 3.1 10 152.1 5.7 10
tank-41 114.6 10 21.8 5.3 10 11.2 10.3 10 17.5 6.6 10 12.2 9.4 10

Summary 7099.6 99 1837.0 3.9 100 844.9 8.4 100 893.2 7.9 100 787.9 9.0 100

Table 6.4: Comparison of MCRW and PoSS in di↵erent number of processors and strategies
for the Pipesworld Tankage domain. Problems with super linear speedups are highlighted.

Problems
MCRW PoSS PoSSd

1 8 16 8 16
T # T S # T S # T S # T S #

notank-40 24.6 10 13.8 1.8 10 14.9 1.6 10 5.7 4.3 10 8.0 3.1 10
notank-41 8.5 10 4.1 2.1 10 4.4 1.9 10 1.6 5.3 10 2.0 4.3 10
notank-43 616.8 2 652.5 0.9 10 487.2 1.3 10 1144.2 0.5 10 339.5 1.8 10
notank-44 2436.0 1 2091.9 1.2 6 1910.8 1.3 8 1638.5 1.5 7 1010.6 2.4 10
notank-45 410.0 10 90.9 4.5 10 126.1 3.3 10 92.7 4.4 10 55.0 7.5 10
notank-46 1676.8 4 514.7 3.3 10 574.5 2.9 10 1277.3 1.3 10 309.3 5.4 10
notank-47 1097.9 2 1225.6 0.9 8 487.7 2.3 9 1105.0 1.0 9 1365.6 0.8 9
notank-48 1636.1 1 1038.4 1.6 9 571.3 2.9 10 1180.4 1.4 10 529.8 3.1 10
notank-49 81.9 10 42.0 1.9 10 47.0 1.7 10 13.1 6.2 10 22.8 3.6 10
notank-50 165.9 10 77.1 2.2 10 83.6 2.0 10 28.2 5.9 10 48.8 3.4 10

Summary 8154.5 60 5751.1 1.4 93 4307.3 1.9 97 6486.7 1.3 96 3691.3 2.2 99

Table 6.5: Comparison of MCRW and PoSS in di↵erent number of processors and strategies
for the Pipesworld NoTankage domain.
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Problems
MCRW PoSS PoSSd

1 8 16 8 16
T # T S # T S # T S # T S #

phi-6 46.1 10 5.7
⇤⇥ ��8.1 10 1.3

⇤⇥ ��35.0 10 3.3
⇤⇥ ��13.8 10 1.1

⇤⇥ ��43.8 10

phi-7 14.0 10 2.6 5.5 10 1.3 10.5 10 0.5
⇤⇥ ��25.6 10 0.7

⇤⇥ ��20.4 10

phi-8 67.6 10 10.0 6.8 10 4.0 17.0 10 3.5
⇤⇥ ��19.5 10 1.9

⇤⇥ ��35.3 10

phi-9 41.2 10 7.2 5.7 10 1.9
⇤⇥ ��21.4 10 3.3

⇤⇥ ��12.7 10 2.4
⇤⇥ ��16.9 10

phi-10 1006.4 10 181.1 5.6 10 42.7
⇤⇥ ��23.6 10 16.5

⇤⇥ ��61.0 10 8.3
⇤⇥ ��120.9 10

phi-11 130.8 10 11.1
⇤⇥ ��11.8 10 12.4 10.6 10 17.9 7.3 10 10.4 12.5 10

phi-12 929.7 8 94.3
⇤⇥ ��9.9 10 120.5 7.7 10 20.9

⇤⇥ ��44.5 10 30.0
⇤⇥ ��31.0 10

phi-13 1747.5 6 573.1 3.0 10 194.0 9.0 10 85.3
⇤⇥ ��20.5 10 61.9

⇤⇥ ��28.3 10
phi-14 - 0 1768.9 - 7 1215.0 - 5 486.1 - 10 208.5 - 10
phi-15 - 0 939.4 - 4 1305.5 - 8 751.0 - 10 522.9 - 10

Summary 3983.3 74 3593.5 1.1 91 2898.7 1.4 93 1388.4 2.9 100 848.1 4.7 100

Table 6.6: Comparison of MCRW and PoSS in di↵erent number of processors and strategies
for the Philosophier domain. Problems with super linear speedups are highlighted.

Problems
MCRW PoSS PoSSd

1 8 16 8 16
T # T S # T S # T S # T S #

sate-21 17.1 10 11.5 1.5 10 10.4 1.6 10 6.1 2.8 10 5.8 2.9 10
sate-22 43.6 10 23.2 1.9 10 20.6 2.1 10 11.5 3.8 10 12.6 3.5 10
sate-23 272.1 10 76.2 3.6 10 61.4 4.4 10 54.3 5.0 10 58.2 4.7 10
sate-24 972.3 10 302.5 3.2 10 223.3 4.4 10 375.8 2.6 10 246.6 3.9 10
sate-25 1474.5 10 359.8 4.1 10 364.4 4.0 10 558.6 2.6 10 301.7 4.9 10
sate-26 1298.7 10 474.9 2.7 10 324.7 4.0 10 624.6 2.1 10 318.6 4.1 10
sate-27 1239.2 10 426.5 2.9 10 364.4 3.4 10 248.3 5.0 10 246.3 5.0 10
sate-28 475.5 10 223.1 2.1 10 215.4 2.2 10 153.8 3.1 10 141.7 3.4 10
sate-29 822.1 10 388.9 2.1 10 349.2 2.4 10 211.1 3.9 10 224.5 3.7 10
sate-30 1753.8 10 701.8 2.5 10 677.9 2.6 10 390.3 4.5 10 358.0 4.9 10

Summary 8368.9 100 2988.5 2.8 100 2611.6 3.2 100 2634.6 3.2 100 1913.9 4.4 100

Table 6.7: Comparison of MCRW and PoSS in di↵erent number of processors and strategies
for the Satellite domain.
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Problems
MCRW PoSS PoSSd

1 8 16 8 16
T # T S # T S # T S # T S #

psr-16 0.9 10 0.8 1.0 10 0.3 2.7 10 0.2 4.6 10 0.2 5.4 10

psr-17 64.0 10 6.8
⇤⇥ ��9.4 10 3.3

⇤⇥ ��19.6 10 1.2
⇤⇥ ��53.9 10 1.6

⇤⇥ ��38.9 10

psr-18 117.7 10 33.4 3.5 10 6.3
⇤⇥ ��18.8 10 2.9

⇤⇥ ��41.0 10 1.9
⇤⇥ ��61.5 10

psr-19 17.1 10 7.7 2.2 10 2.2 7.8 10 0.9
⇤⇥ ��19.5 10 0.5

⇤⇥ ��35.0 10
psr-20 1154.5 3 479.4 2.4 8 302.6 3.8 10 283.3 4.1 10 272.9 4.2 10

psr-21 55.3 10 28.9 1.9 10 5.4 10.2 10 3.2
⇤⇥ ��17.5 10 1.2

⇤⇥ ��45.6 10

psr-22 224.2 10 79.1 2.8 10 26.3 8.5 10 19.5
⇤⇥ ��11.5 10 34.3 6.5 10

psr-23 1542.0 2 1027.4 1.5 9 640.4 2.4 10 330.8 4.7 10 167.1 9.2 10

psr-24 1114.0 10 351.7 3.2 9 116.2 9.6 10 267.8 4.2 10 110.1
⇤⇥ ��10.1 10

psr-25 39.6 10 60.2 0.7 10 10.3 3.9 10 4.7 8.4 10 3.2
⇤⇥ ��12.2 10

Summary 4329.2 85 2075.4 2.1 96 1113.1 3.9 100 914.3 4.7 100 593.1 7.3 100

Table 6.8: Comparison of MCRW and PoSS in di↵erent number of processors and strate-
gies for the Power Supply Restoration domain. Problems with super linear speedups are
highlighted.

that it is advantageous to use PoSS and PoSSd over MCRW even when we factor in

the overhead of running on multiple processors.

We would also like to point out that PoSS and PoSSd largely reduce the standard

derivation of running time, which makes them a much more predictable and hence

favorable choice over the original MCRW.

6.4.2 Evaluation in Windows Azure
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We also evaluate both PoSS and PoSSms using Windows Azure, one of the major

commercial cloud computing platforms [16]. For the following evaluation, we request

up to 120 processors in Windows Azure. The experiments are conducted on the two

hardest problems from each domain. For each instance and setting, we make 10 runs

and report the average time and cost.

Financial cost is a major concern for cloud users. Cloud computing adopts a pay-as-

you-go model for computational resources. Therefore, although theoretically we can

employ a large number of processors for our algorithm portfolios, it is necessary to

consider the tradeo↵ between speedup and cost. We report the running time (T),

speedup (S) and monetary cost in US cents (C) in Table 6.9. The running time for

PoSS and PoSSd is measured as the delta between when web role issues messages to

the job control queue and when the web role gets the solution from the result queue.

In other words, it factors in all the communication overheads of the Azure platform.

The cost is calculated based on a unit cost of $0.12 per hour per CPU core, which is

the standard rate for small instances in Windows Azure.

From Table 6.9, we see that the performance of running PoSS and PoSSd in Windows

Azure are similar to the results reported from the local cluster. Despite the overhead

brought in by the job control and message passing mechanism we used in the Azure

implementation, we have achieved substantial speedups in Windows Azure. Super

linear speedups are observed for problems such as air-46, sate-29 and psr-25. Super

linear speedup is especially beneficial when we factor in costs. For example, for phi-13

with 120 processors, not only can PoSSms achieve a great speedup, the financial charge

(2.7 US cents) is also the lowest among all reported Ns. Hence, for this problem, it

is economical to use 120 processors instead of fewer processors.

For other problems, our scheme also achieves good tradeo↵. For example, for air-47

and psr-25, to increase the number of processors from 16 to 120 only increases the total

charge by less than 50%, but improves the speedup almost 4 times. Therefore, using

more processors is still desirable when users are willing to trade a slightly higher cost

for a significant speedup. After all, the total charge in a cloud is not very expensive

using our algorithm. For the di↵erent numbers of processors we tested, it takes less

than a US dollar to solve most instances. Both the speedup results and the cost
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analysis show that cloud computing is an attractive platform for solving planning

problems.

Finally, we point out that, our algorithm is robust under processor failures, which are

commonly seen in cloud environments. For PoSS and PoSSd, a failed run does not

a↵ect other parallel runs since they are independent and do not require communica-

tion. Previous parallel planning algorithms requiring intricate coordination are much

more vulnerable to processor failures in the cloud environment.

6.5 Summary

In summary, we propose a parallel stochastic search (PoSS) algorithm designed to take

advantage of the short runs in thus distribution which can improve substantially. Our

PoSS algorithm uses low frequency communication between computing nodes, which

is perfectly suitable for cloud computing architecture. It also can tolerate the failure of

processors since the search of each individual processor is totally independent, where

one processor’s failure won’t a↵ect other processors. We also present a parallel dove-

tailing technique, which is a procedure that performs search with multiple parameter

settings simultaneously, to dramatically improve the e�ciency of our algorithm. In

summary,

• We show that the run-time distribution of Monte Carlo RandomWalk (MCRW)

algorithm in planning has a remarkable variability and propose a PoSS algo-

rithm which takes advantage of short runs in this distribution.

• We use parallel dovetailing to solve the parameter tuning issue. In MCRW algo-

rithm, the parameters can greatly impact the search performance. In practice,

it usually can only find the setting with the best average performance, while

there is no guarantee that this setting will perform well on each individual prob-

lem. In our parallel algorithm, each processor is assigned a unique parameter

configuration chosen randomly from a value range, which is pre-decided through

a large number of experiments. Thus, for each certain problem, each proces-

sor has the potential to get the parameter value that performs the best. Our
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experimental results show that it dramatically reduces the search time of our

algorithm.

• We implement two versions of parallel random walk algorithms on Windows

Azure. The Windows Azure platform represents a new computing model and

its potential for scientific research and applications remains largely unexplored.

We study the performance characteristics of Windows Azure, and then develop

scalable Azure-based schemes for stochastic search algorithm. We also imple-

ment sca↵olding for deploying planning algorithms into the cloud environment,

as well as a scheme that can launch multiple workers in Windows Azure.
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Chapter 7

Conclusion

This dissertation proposed a set of techniques that can accelerate heuristic search for

AI planning.

We have developed Stratified Planning, a straightforward and e�cient technique for

reducing the search space for heuristic search. Based on the insights gained from

Stratified Planning and Expansion Core, we have developed a general partial or-

der reduction framework for planning. We have established, for the first time, the

connections between existing partial order reduction techniques in planning and the

stubborn set theory in model checking. These techniques are orthogonal to heuristics,

and therefore can be combined with any heuristics to accelerate search.

In addition to the study of the problem structure, we have studied the local structure

of the search space. Based on the observation that heuristic search spends most of

its time in plateau exploration, we proposed using random walks to assist heuristic

search. The proposed methods have significantly accelerated heuristic search, as

shown by results from IPC domains.

Last, we have taken the idea of stochastic search to the cloud computing platform.

We have analyzed the advantages and shortcomings of the cloud computing platform,

and proposed portfolio stochastic search algorithms that are amicable to the cloud

platform. We have applied dovetailing techniques to the portfolio stochastic search

scheme and further improved the e�ciency of stochastic search. We have implemented

the system in Windows Azure and reported super linear speedups in some problems.
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7.1 Future Works

Heuristic search is a pervasive and important technique for AI. It occurs in a wide

varity of engineering and scientific applications such as planning, scheduling, con-

straint satisfaction, game playing, VLSI technology, engineering design, power grid

design, and computational sustainability. Accelerating heuristic search. therefore,

has a broad impact on all of these applications. Here we point out some of the

interesting directions for future work.

7.1.1 Symmetry in State Space

Symmetry detection is another way to reduce the search space [25]. It is di↵erent

than partial order reduction as it explores the isomorphic relations between subgraphs

in the search space. For example, consider a domain with three domain transition

graphs A
1

, A
2

, and B, where A
1

and A
2

are symmetrical (isomorphic), and actions

associated with B have no conflict with any actions associated with A
1

or A
2

. In this

case, symmetry removal will expand actions associated with (A
1

and B) or (A
2

and

B). This technique is di↵erent than partial order reduction proposed in this thesis.

Future work here includes exploring the connections between symmetry and partial

order reduction to see if the search space can further be pruned.

7.1.2 Helpful Actions

Helpful action (also called preferred operator) is one of the non-complete space reduc-

tion approaches [40, 33]. Generally speaking, helpful actions are applicable actions

that are deemed to be helpful in solving a planning problem. A typical way of acquir-

ing helpful actions is through heuristic evaluation. Certain heuristic functions such

as Fast Forward and Fast Downward rely on solving a relaxed planning problem to

calculate the heuristic function value of a state. It is likely that actions appearing

in the solution to the relaxed problem are also part of the solution to the original

planning problem.
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Random exploration algorithms can use these actions as extra information to improve

search e�ciency. However, there is an exploration-exploiting tradeo↵ here. Helpful

action is local information that can be misleading when the heuristic function is

uninformative. It will be interesting to see the interaction of helpful action with

random walk assisted heuristic search.

7.1.3 Probabilistic Models for Random Walks Guided by

Heuristics

We have used a graph model to analyze when random walk is beneficial in heuristic

search. The model we proposed is e↵ective at explaining why random walk works

well on some problem domains. There are some existing graph models that predict

the hitting time of random walks without the influence of heuristic functions [57].

Similar to our model, these models can be used to analyze the performance of pure

random walks on simple problem domains. It would be interesting to see if there is

a probabilistic model for random walks guided by heuristics, so we can have better

understanding of when to use random walk and how to select parameters for random

walk.

7.1.4 Cloud-Based Deterministic Search

Most cloud platforms, including Windows Azure, are not optimized for low latency

communication between processes. On the other hand, many parallel search al-

gorithms require extensive inter-process communication. We have proposed to use

stochastic search to utilize cloud computing wherein performance is not significantly

a↵ected by the high communication latency. There is some existing work to design

a hash function that maps states to processors such that communication is local-

ized between computational nodes [78, 79, 80, 14]. It would be interesting to see

if techniques like these can be used to parallelize deterministic search in the cloud

environment with relatively high communication latency.
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