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ABSTRACT OF THE DISSERTATION

Adaptive Middleware for Resource-Constrained Mobile Ad Hoc and Wireless Sensor
Networks
by
Chien-Liang Fok
Doctor of Philosophy in Computer Science
Washington University in St. Louis, 2009

Research Advisors: Professors Gruia-Catalin Roman and Chenyang Lu

Mobile ad hoc networks (MANETS) and wireless sensor networks (WSNs) are two
recently-developed technologies that uniquely function without fixed infrastructure
support, and sense at scales, resolutions, and durations previously not possible. While
both offer great potential in many applications, developing software for these types
of networks is extremely difficult, preventing their wide-spread use. Three primary
challenges are (1) the high level of dynamics within the network in terms of chang-
ing wireless links and node hardware configurations, (2) the wide variety of hard-
ware present in these networks, and (3) the extremely limited computational and
energy resources available. Until now, the burden of handling these issues was put on
the software application developer. This dissertation presents three novel program-
ming models and middleware systems that address these challenges: Limone, Agilla,
and Servilla. Limone reliably handles high levels of dynamics within MANETSs. It
does this through lightweight coordination primitives that make minimal assump-

tions about network connectivity. Agilla enables self-adaptive WSN applications via
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the integration of mobile agent and tuple space programming models, which is crit-
ical given the continuously changing network. It is the first system to successfully
demonstrate the feasibility of using mobile agents and tuple spaces within WSNs.
Servilla addresses the challenges that arise from WSN hardware heterogeneity using
principles of Service-Oriented Computing (SOC). It is the first system to successfully
implement the entire SOC model within WSNs and uniquely tailors it to the WSN
domain by making it energy-aware and adaptive. The efficacies of the above three
systems are demonstrated through implementation, micro-benchmarks, and the eval-
uation of several real-world applications including Universal Remote, Fire Detection

and Tracking, Structural Health Monitoring, and Medical Patient Monitoring.
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Chapter 1

Introduction

Wireless sensor networks (WSNs) and Mobile Ad hoc Networks (MANETS) are two
unique forms of networking that have the potential to make a significant impact
in our daily lives. WSNs consist of a multitude of tiny devices embedded in the
environment that are capable of sensing, computation, and communication. They
revolutionize the capabilities of certain critical applications like tracking and moni-
toring by enabling higher density sensing at significantly lower cost. MANET'S consist
of mobile devices like laptops, netbooks, cellphones, and PDAs that are capable of
wireless communication. MANETS differ from traditional networks in that there is no
hierarchy between devices. Instead, devices opportunistically form peer-to-peer wire-
less links whenever they come within range and break the links whenever they move
out of range. They enable networks to form in situations that would otherwise not
be possible and have many important applications like coordinating first responders
in a disaster scenario where the networking infrastructure is destroyed. As relatively
new and unique technologies, existing software engineering techniques, programming
models, and middleware do not adequately address the many novel and fundamental
challenges presented by these networks. Chief among these are (1) the need for a
lightweight minimalist framework for facilitating the development of reliable applica-
tions in highly dynamic and mobile environments, (2) the need for applications to be
self-adaptive in a changing environment, (3) the need to carefully manage the mini-
mal resources available in WSNs, (3) the need to integrate WSNs with the existing
computer network infrastructure, (4) the need to support device heterogeneity and
network dynamics, and (5) the need for adaptive service provisioning in such resource-

constrained and dynamic environments. Throughout this dissertation, new software



engineering techniques and programming models were developed that specifically ad-
dress each of the above challenges. In addition, middleware frameworks, services, and
application prototypes were implemented to demonstrate the efficacy of our solutions.

Each of these is now presented.

(1) Developing a lightweight coordination middleware for MANETSs. The highly tran-
sient and unpredictable nature of wireless links within MANETSs make reliable appli-
cation development extremely difficult. To address this difficulty, numerous powerful
middleware systems were created that deal with the underlying dynamics within
the network. These systems introduced many interesting and novel constructs that
make network disconnections more predictable, like instituting a “safe zone” smaller
than the actual wireless range, and only communicating with devices within the safe
zone [152]. While these systems had strong theoretical underpinnings and provide
many valuable guarantees, the level of services and guarantees provided were more
than what most MANET applications required. For example, the main motivation
behind instituting the aforementioned safe zone is to enable distributed transactions
among groups of devices. This is not necessary in applications that only involve
communication between at most two users since the wireless link connecting the two
devices form and break atomically. To address this, Limone took a different approach
towards addressing the challenges imposed by MANETS. Instead of trying to provide
powerful consistency and atomicity guarantees in a dynamic environment, Limone
sought to find the minimalist set of constructs that are useful to an application de-
veloper, while making no assumptions about wireless link behavior. Starting with
the most basic assumption that a single round-trip communication with a remote
device is eventually possible, Limone sought to build upon this a middleware that
is adaptive and resilient to unpredictable changes in the underlying network. The
investigation resulted in a new and unique coordination model that was unlike any of
the previously existing models, and was better in the sense of being able to operate

in a wider range of environments.

(2) Supporting Self-Adaptive Applications in WSNs. WSN applications must be
self-adaptive due to the continuously changing environment in which the network is
deployed. Since WSN nodes are embedded and can sense the environment, changes
within the environment impact the network, both in terms of the set of applications

that should execute, and the way the applications should behave. For example, a
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WSN deployed in a forest may initially be used for habitat monitoring. Later, when
the probability of fire is high, the network may be used for fire detection. If a fire
breaks out, the network would best be used to track the fire. Creating software that is
flexible enough to satisfy the diverse requirements of a WSN is challenging, especially
given the limited amount of resources available within a WSN. To address this, Agilla,
a middleware that facilitates self-adaptive WSN applications, was developed. Agilla
is among the first WSN middleware platforms to offer both mobile agent and tuple
space programming models for developing applications. Mobile agents are special
software processes that can explicitly clone or migrate across WSN nodes. They can
do this while maintaining their state, thus elegantly capturing computations that ex-
ecute across multiple WSN nodes. Tuple spaces offer a shared memory space in which
data elements are accessed via pattern matching, allowing independently-developed
mobile agents to freely migrate while still being able to communicate. By merging
these two programming models into a WSN middleware platform, Agilla enabled
WSN applications to restructure themselves in response to a changing environment.
To demonstrate this, we used Agilla to implement a fire detection and tracking ap-
plication that dynamically adjusts itself to maintain a perimeter around a spreading
wildfire. As the wildfire spreads, it disables WSN nodes and eventually breaks the
perimeter. Once broken, the mobile agents adjacent to the breakage clone themselves

around the hole, thus maintaining the integrity of the perimeter.

Tracking is another critical application of WSNs. Tracking is challenging due to
the dynamic nature of the phenomenon being tracked. The application must adapt
whenever the phenomenon moves or changes. Agillas programming model is useful in
developing tracking applications that are able to adapt to changes in the phenomenon
being tracked. To demonstrate this, we used Agilla to implement a cargo container
tracking application. Tracking cargo containers is important for national security and
logistical reasons. It is complex due to the continuous movement, rearrangement,
and exchanging of cargo containers between different administrative domains as they
travel around the world. To secure and track cargo containers, a wireless sensor
network can be deployed such that each shipping container contains a WSN node.
This is demonstrated by an application called AgiTrack, which was implemented
on top of Agilla. Using Agillas flexible programming model, several diverse tasks
are demonstrated including counting the number of containers, searching for items

within the containers, and securing containers. By implementing AgiTrack using
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mobile agents and tuple spaces, it is able to continue to execute seamlessly despite

reconfigurations in the container orientations.

(3) Integration of WSNs and Internet Protocol (IP) Networks. The aforementioned
middleware and applications run within the confines of a single WSN. This typified
many early WSN applications as the new and unique characteristics of WSNs like their
emphasis on energy-efficiency prevented them from being integrated with the existing
network infrastructure like the Internet, which is based on the Internet Protocol (IP).
This is unfortunate since networks like the Internet offer unmatched connectivity,
enabling near-universal access, and tremendous resources in terms of computing and
data storage. Integrating sensor and IP networks into a uniform platform enables
applications to take advantage of the resources available on traditional IP networks
while still receiving sensor data obtained from within a sensor network. Providing
a unified platform that spans both types of networks would also facilitate flexible
application deployment. To this end, we developed a software middleware framework
called Agimone that allows applications to be deployed on a WSN in the form of
mobile agents, which can autonomously discover and migrate to other WSNs using a
common IP backbone as a bridge. Agimone was the first system to allow mobile agents
to migrate between sensor and IP networks. It facilitated data sharing between WSNs
and the IP network through remote tuple space operations. Using this framework,
computationally weak sensing nodes could defer expensive computations to more-
powerful devices. To evaluate Agimone, it was used to re-implement AgiTrack, the
cargo-tracking application described previously. Micro-benchmarks on the latency of

Agimone operations demonstrated feasibility and applicability to many applications.

(4) Supporting Platform Heterogeneity in Wireless Sensor Networks. Another impor-
tant consequence of integrating WSNs and the Internet is that it is only a matter
of time before the diversity of devices that constitute the network grows to enor-
mous proportions. WSN heterogeneity is a major hurdle in the development and
deployment of WSN applications. This is primarily due to the limited resources
available, which require that applications be carefully engineered in platform-specific
ways for maximum efficiency. Explicitly engineering an application in a platform-
specific manner is labor-intensive, error-prone, and unlikely to result in software that

can run on other platforms or optimization techniques that can be applied to other



applications. To solve this problem, a programming model that had yet to be en-
tirely used in WSNs — Service Oriented Computing (SOC) — is used. SOC is a
powerful programming model in that it provides a loose coupling between software
components. This enables software components written by different organizations to
function together seamlessly. SOC principles are applied to WSNs by using them as
a separation between platform-independent application scripts and platform-specific
services. Using SOC, the scripts would be automatically and dynamically bound
to services, based on the specific characteristics of the hardware that is available.
Applications, being platform-independent, could execute anywhere regardless of the
type of hardware available, thus simplifying application development. Services, being
platform-specific, provide access to specialized capabilities of the underlying hard-
ware and are tailored to maximize energy efficiency. The mechanisms for achieving
SOC in WSN were integrated into a new middleware system called Servilla, the first
service-oriented programming framework to function entirely within a WSN. Servilla
integrates aspects of service provisioning and scripting and tailors them to the unique
properties of WSNs to enable applications that are platform-independent and yet able
to access platform-specific functionality. Specifically, scripting enables applications to
be platform-independent by executing within a virtual machine, while service provi-
sioning enables applications to efficiently access platform-specific resources. Through
an evaluation on a heterogeneous WSN consisting of TelosB and Imote2 nodes involv-
ing a structural health monitoring application, Servilla demonstrated the feasibility
of using these programming models within WSNs and the efficacy of using them to
develop platform-independent applications that can still efficiently access platform-

specific resources.

(5) Adaptive Service Provisioning in Wireless Sensor Networks. WSNs are extremely
dynamic systems requiring that the application continuously adapt to a changing
network topology and resource levels. SOC provides a natural decoupling between
applications and resources within the network. Since SOC was already being used in
WSNss for the purpose of handling network heterogeneity, it could be easily modified
to become adaptive to changes in the network. The two key ways in which SOC is
made adaptive within WSNs is in the ability to automatically switch providers if the
current provider fails, and the consideration of energy constraints in the selection of
a new provider. Automatically switching providers is important because it enables

the middleware to address challenges that arise from a changing network topology.
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SOC turns out to be a perfect mechanism for achieving this form of adaptation since
it already decouples service consumers from providers, thus enabling the seamless
switching of providers from the consumer’s perspective. Energy is a fundamentally
scarce resource in most WSNs since nodes are typically powered by battery. Making
service provisioning energy-aware helps conserve energy resources, enabling prolonged

network lifetime.

The above discussion highlights the various forms of software engineering techniques,
programming models, middleware, services, and applications for WSNs and MANETs
that are discussed in this dissertation. The research initially focused on ways to lightly
coordinate MANET applications, but soon focused on how to simplify application de-
velopment, while enabling applications to be more flexible and adaptive. The work
described resulted in the integration of WSNs with each other and the Internet, form-
ing larger and more complex systems consisting of many types of devices and which
multiple applications must share. To this end, new programming models, middleware,
and services were developed that assist developers in creating applications that can
handle device heterogeneity, efficiently allocate resources, and manage the network.
Finally, the most recent activities include investigations into how to address network
dynamics. WSNs are relatively dynamic given their limited resources and exposure
to potentially harsh and continuously changing environments. This dynamic nature
should be reflected in the bindings between applications and services since the set of
services that are available and the wireless link quality between the application and
its services are continuously changing. Adaptive service provisioning is critical since
selecting the correct service provider may result in significant energy savings and im-
provement in quality of service. The key mechanisms for enabling adaptation and
the additional parameters and equations necessary to perform energy calculations are
identified and presented. Furthermore, since service discovery and binding are done
by the middleware, the adaptation mechanisms are hidden from the application, re-

sulting in little to no increase in application complexity.



1.1 Challenges Addressed

The challenges addressed in this dissertation are five-fold. First, the issue of creating
the minimalist useful coordination model for MANETS is addressed. This required
carefully selecting the appropriate set of coordination primitives and operational se-

mantics so as to ensure minimal assumptions about the underlying network.

Second, the issue of facilitating adaptive applications in WSNs is addressed. This
involved implementing, for the first time, support for mobile agents and tuple spaces
within WSNs.

Third, the issue of integrating WSNs with traditional networks is addressed. This
was done by integrating the two aforementioned middleware systems for MANETSs

and WSNs, respectively.

Fourth, the issue of how to adapt to network heterogeneity is addressed. This was
done by bring in to the WSN domain, for the first time, the entire SOC programming
model. Using SOC, applications could be written in a platform-independent manner

while still being efficient.

Fifth, the issue of enabling adaptive energy-aware SOC within WSNs is addressed.
This is important because selecting the “right” set of services within the WSN can

make a big difference in terms of energy consumption.

1.2 Dissertation Overview

The dissertation is organized as follows. Chapter 2 provides background informa-
tion. Chapter 3 presents Limone, the lightweight coordination model for facilitating
adaptive applications in MANETSs. Chapter 4 presents Agilla, the first mobile agent
middleware for WSNs. It demonstrates how WSN applications can be made adaptive
and WSNs can be seamlessly integrated with IP networks using mobile agents and tu-
ple spaces. Chapter 5 presents Servilla, the first middleware to fully utilize the SOC
coordination model within WSNs enabling in-network collaboration between WSN

devices. It describes how SOC is used to handle network heterogeneity by enabling
7



applications to be platform-independent while still able to access platform-specific
functions. Chapter 6 presents how Servilla is extended to increase energy efficiency
by judiciously adjusting the bindings between services and applications, and service
availability by automatically switching providers when connectivity to the current
provider breaks. Future work is presented in Chapter 7. The dissertation ends with

conclusions in Chapter 8.



Chapter 2

Background

2.1 Targeted Network Platforms

The targeted network platforms of the middleware systems described in this dis-
sertation include mobile ad hoc networks (MANETS) and wireless sensor networks
(WSNs). Both these types of networks are made possible by recent advances in tech-
nology, most notably in the areas of device miniaturization, batteries, and wireless
communication. Unlike traditional networks, MANETSs and WSNs are ad hoc, mean-
ing they consist of devices that form peer-to-peer wireless links directly between each
other, rather than through a wireless base station that is part of and connected to the
wired network infrastructure. The advantage of wireless ad hoc networks is the ability
to form without fixed infrastructure support, enabling deployment in situations previ-
ously not possible. WSNs are a special type of MANET in which the network devices
are embedded in and can sense the environment. Each of these types of networks are

now discussed.

2.1.1 Mobile Ad Hoc Networks

Mobile devices with wireless capabilities have experienced rapid growth in recent years
due to advances in technology and social pressures from a highly dynamic society.
These devices include laptops, netbooks, cell phones, PDAs, and even some watches.
In addition to communicating with infrastructure-based networks like cellular and

WiFi hotspots, many of these devices are capable of forming ad hoc networks, which



are networks that form directly between devices with no central coordinator or fixed
infrastructure support. Ad hoc networks are formed opportunistically by the chance
encounter of two devices supporting the same wireless interface. The simple act of
moving within communication range results in a wireless link through which the two
devices may communicate. By eliminating the reliance on the wired infrastructure, ad
hoc networks can be rapidly deployed in disaster situations where the infrastructure
has been destroyed, or in military applications where the infrastructure belongs to
the enemy. Ad hoc networks are also convenient in day-to-day scenarios where the
duration of the activity is too brisk and localized to warrant the establishment of a

permanent network infrastructure.

Applications for ad hoc networks are many. As previously mentioned, a primary
benefit of MANETS is their ability to function without fixed infrastructure support.
Thus, any application in which the fixed infrastructure is damaged or non-existent
is a potential candidate for MANETSs. Typical examples include coordinating first
responders that arrive at a disaster location where the fixed networking infrastructure
is destroyed, enabling peer-to-peer communication among military units deployed in
a hostile region where the infrastructure does not exist, facilitating quick exchange of
data like business contact information among people who are in close physical prox-
imity for short periods of time, and playing multi-player games in which each player
holds a device that communicates with every other device via the ad hoc network,
enabling the players to move about freely while still coordinating their actions. The
number of applications for MANETS is expected to grow as more powerful middle-
ware systems are developed that simplify the creation of applications for mobile ad

hoc networks.

The salient properties of MANETS create many challenges for the application devel-
oper. The inherent unreliability of wireless signals and the mobility of nodes result in
frequent unannounced disconnections and message loss. In addition, mobile devices
have limited battery and computing power. The limited functionality of mobile de-
vices and the peer-to-peer nature of the network lead to strong mutual dependencies
among devices, which have to cooperate to achieve a variety of common goals. This
results in an increased need for coordination support. For example, in a planetary
exploration setting, miniature rovers, each equipped with a single sensor, may need

to perform experiments that demand data from any arbitrary combination of sensors.
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Middleware systems are often used as a mechanism for addressing the challenges of
programming software for environments that would otherwise be difficult to program
in. The three systems presented in this dissertation focus on one aspect of why
developing applications for ad hoc networks is difficult — the level of dynamics present

in such networks.

2.1.2 Wireless Sensor Networks

Wireless Sensor Networks (WSNs) [43] are a special class of MANETS in which the
devices contain sensors that can gather data about the environment and are typically
embedded in the environment for long periods of time (months to years). A WSN
node is remarkably small. Many of them are approximately the size of a matchbox,
through some are significantly smaller [174]. The primary goal of WSNs is to sense

the environment in which they are embedded.

There are many applications for WSNs [113, 30, 17, 108, 183, 75, 104, 6]. They
include habitat monitoring on the Great Duck Island [113] and in the James Re-
serve [30], and microclimate research around redwood trees [17], surveillance, medical
care [108], structural integrity monitoring [183], highway automation [75] and military

operations [104].

Since WSN nodes are embedded, each device is typically small, battery powered, and
communicates over low-power unreliable wireless radios. Most current WSN devices
differ from MANET devices in terms of amount of computation, energy, and network
bandwidth resources available, often by several orders of magnitude. WSNs may
be ad hoc where they autonomously form a network without infrastructure support.
Depending on the application, the network may form routing trees for delivering data

to base stations, or a multi-hop mesh for delivering data amongst themselves.

WSNs also have the same challenges that face MANETSs. Since the devices com-
municate over low power wireless radios, the wireless links with WSNs are also very
dynamic, requiring that nodes adapt to the set of nodes that are within communi-

cation range. In addition, since WSNs are embedded in the environment, a node
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can be easily damaged, stolen, or disabled, further contributing to the dynamic net-
work topology. Another aspect that is particularly acute for WSNs is the amount
of resources available, in terms of computational ability, energy, and wireless band-
width. WSN nodes are physically smaller than typical MANET devices, resulting in
nodes that have very limited processing power, energy, and wireless communication
capabilities. This lack of resources makes developing applications significantly more
difficult, motivating the use of middleware and coordination techniques for simplifying

application development.

2.2 Coordination Techniques

Mechanisms that address the complexities of ad hoc networks include enhancements
to the operating system, specialized languages, and middleware. Among these, mid-
dleware is the most popular. Operating systems are tightly integrated with low-level
communication services and expose too many details that complicate the program-
ming tasks. The development and use of new programming languages is costly and
entails great risks. Middleware, however, provides high-level abstractions while min-
imizing risk by leveraging off the existing software infrastructure. When designed
properly, middleware can divert attention from mundane concerns like low-level pro-

tocol development, to more fruitful areas involving application-specific goals.

Designing a coordination middleware for ad hoc networks is difficult. It must be
lightweight in terms of the amount of power, memory, and bandwidth consumed.
Depending on the application, it may have to operate over a wide range of devices
with different capabilities: some devices, such as a laptop, may have plenty of memory
and processing ability, while others, such as a node in a sensor network, may have
extremely limited resources. A coordination middleware for ad hoc networks must
be flexible in order to adapt to a dynamic environment; for example, in a universal
remote control application, a remote held by the user must interact with a set of
devices within its vicinity, a set that changes as the user moves. Furthermore, wireless
signals are prone to interference from the environment. Thus, the middleware must

be designed to handle unpredictable message loss.
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Coordination middleware facilitates application development by providing high-level
constructs such as tuple spaces [57], blackboards [50], and channels [122, 123], in
place of lower-level constructs such as sockets. Tuple spaces and blackboards are both
shared-memory architectures. Tuple spaces differ from blackboards in that they use
pattern-matching for retrieving data; in a blackboard, the data is generally accessed
by type alone. Channels are similar to sockets in that data is inserted at one end and
is retrieved from the other. They differ in that the end points of a channel may be

dynamically rebound.

These high-level constructs facilitate coordination by providing a layer of decoupling
between nodes. In order to create a socket, the identity of the destination must
be known and remains fixed. This is rather inflexible and complicates application
development, particularly in ad hoc networks where connectivity is dynamic. High-
level constructs, however, do not require the sender and receiver to be aware of each
other. When using a tuple space or blackboard, the node that inserts data need not
know the node that later extracts it. Also, since the shared space is public, multiple
nodes may retrieve the same data. When using a channel, the sender need not know
which node is bound to the receiving end of the channel. This level of decoupling
simplifies application development because changes in connectivity no longer need to

be dealt with explicitly.

2.2.1 Tuple Spaces

Tuple spaces [57] are a form of shared memory in which data elements, called tuples,
are accessed using pattern matching instead of direct memory address. They provide
standard operations like out (insert a tuple), in (remove a tuple), and read (read a
tuple). The main advantage of using tuple spaces is the decoupling it provides among
different communicating software components. For example, one component may
insert a tuple and leave. Later, another component unknown to the first may arrive
and receive the tuple. Thus two components are communicating without actually
being aware of each other’s presence. Using a tuple space, the communication is able
to occur regardless of time and space, a phenomena called spatio-temporal decoupling.
This decoupling is important in networks that are highly dynamic since they enable

communication despite changes in the underlying network topology.
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While a tuple space is logically perceived to be a single shared memory space, it
may in fact be physically distributed among multiple nodes in the network. When a
tuple space is distributed among multiple nodes, it takes the form of a single logical
“federated tuple space” in which the contents appear local but are actually located
on different devices. A key benefit of using tuple spaces is the fact that whether the
tuple space is local or federated is hidden from the applications. This is important be-
cause changes in the underlying network topology can be hidden from the application

developer, thus simplifying applications.

2.2.2 Mobile Agents

Mobile agents are special software processes that have the capability of migrating from
one node to another while maintaining their execution state. This results in the ability
to carry out a sequence of computations that span multiple nodes in the network.
Mobile agents have been used in the Internet [2, 18, 15, 29, 42, 61, 83, 139, 140] and
their potential benefits are well established [94, 112, 182, 148, 168, 169, 181]. Some
systems for the Internet include Agent Tcl [61], Ara [140], Java Aglets [139], Mole [18],
Sumatra [2], TACOMA [83] PEERWARE [42], and MARS [29]. They have been used in
data mining [94], e-commerce [112], and network management applications [15]. Since
these systems are designed to run on Internet servers, where computational resources
are relatively plentiful and the links relatively static, efficient resource utilization is

not their main focus.

A few important aspects of mobile agents are worth mentioning. First, mobile agents
are just like any other software process except for their ability to migrate to a different
host. Thus, they are a unit of execution analogous to a thread or process within an
application. When they migrate, they usually carry with them both their code and
state, enabling them to continue executing where they left off. Mobile agents can
optionally not carry their state, a process called weak migration, which requires that

the agent restart from the initial state upon arriving at the destination.

The ability for mobile agents to migrate across nodes is powerful and enables greater

degrees of flexibility relative to traditional statically-installed code. This flexibility is
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exploited in the design of Limone and Servilla for the purpose of increasing application

adaptability to a changing and highly dynamic environment.

2.2.3 Service-Oriented Computing

Service-Oriented Computing (SOC) [137] is a programming model that consists of
service consumers, providers and a service registry. Its primary advantage stems
from the decoupling of the consumers and providers, enabling them to be developed
by different organizations. Specifically, consumers and providers each submit service
specifications that describe the service required or offered, and are used by the service-

oriented architecture (SOA) to automatically match and bind consumers to providers.

SOC enables loose coupling between service consumers and providers through service
descriptions that can be automatically compared and matched. This decoupling en-
ables independently-developed applications to work together. For example, it enables
an Internet-based application running on a webserver to access data produced by

another application executing within a WSN.

This dissertation uses SOC for a slightly different purpose — to simplify WSN appli-
cations by enabling them to be platform-independent, adaptive, and energy efficient.
Using SOC, WSN applications can be service consumers that are dynamically bound
to services provided by the underlying hardware. This enables platform-independent
applications since platform-specific functionalities can be accessed through services,
simplifying programing. Since services are provided by the hardware, they can be
optimized enabling higher degrees of efficiency. The dynamic binding between service
consumers (the applications) and providers (the hardware) is the key enabler that
one of the middleware platforms presented in this dissertation exploits (Servilla), to

allow WSN applications to handle network heterogeneity.
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Chapter 3

Limone: A Lightweight

Coordination Model for Mobile Ad
Hoc Networks

Limone (Lightly-Coordinated Mobile Networks) is a novel coordination model and
middleware that facilitates application development in MANETS. It targets dynamic
ad hoc networks in which communication links are transient and unpredictable by
using lightweight coordination primitives that make minimal assumptions about the
execution environment. Specifically, no knowledge about when wireless links form or
break is assumed. Instead, the model starts with the premise that a single round-trip
message exchange is possible and, under this minimalist assumption, offers a reason-
able set of lightweight primitives with precise functional guarantees. Using this set of
lightweight primitives, Limone enables MANET applications to be developed quickly
and reliably. The willingness to accommodate a high degree of uncertainty about the
physical state of the system raises important research questions regarding the choice
of coordination style and associated constructs. A minimalist philosophy, combined
with the goal of achieving high levels of performance, led to the emergence of a novel
model whose elements appear to support fundamental coordination concerns. Central
to the model is the organization of all coordination activities around an acquaintance
list that reflects the current local view of the global operating context, and whose
composition is subject to customizable admission policies. From the application’s
perspective, all interactions with other components take place by referring to indi-
vidual members of the acquaintance list. All operations are content-based, but can

be active or reactive. This perspective on coordination, unique to Limone, offers an
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expressive model that enjoys an effective implementation likely to transfer to many
MANET environments. This chapter introduces Limone, explains its key features,
and explores its capabilities as a coordination model. To provide a concrete illustra-
tion of the model and its applications, a universal remote application is used as a

running example.

3.1 Motivation

Mobile devices like cellphones and laptops with wireless capabilities have experienced
rapid growth in recent years due to advances in technology and demands from a highly
mobile society. Many of these devices are capable of forming MANETS, in which they
communicate directly with neighboring devices via peer-to-peer wireless links. By not
relying on a fixed infrastructure like physical wires or wireless base stations, MANETS
can be rapidly deployed in disaster situations where the infrastructure has been de-
stroyed or in search-and-rescue scenarios in remote locations where infrastructure does
not exist. MANETS are also convenient in day-to-day scenarios where the duration
of the activity is too brisk, localized, and transient to warrant the establishment of
a network infrastructure. Applications for MANETSs are important because they are
able to execute in environments in which traditional infrastructure-based applications

cannot.

The salient properties of MANETSs create many challenges for application develop-
ers. The inherent unreliability of wireless signals and the mobility of nodes result in
frequent and unannounced disconnections, which can lead to numerous problems in-
cluding message loss, data loss, and application deadlock. In addition, mobile devices
typically have limited resources in terms of energy, computing capability, and commu-
nication bandwidth. The limited functionality of mobile devices and the peer-to-peer
nature of the network lead to strong mutual dependencies among devices by requiring
them to cooperate to achieve common goals. For example, in a planetary exploration
application, miniature rovers, each equipped with a single sensor or actuator, may
need to perform experiments that demand data from different combinations of sensors
and actuators. The need for different devices to cooperate in a dynamic environment

is the fundamental motivator of enhanced coordination support.

17



Mechanisms that address the complexities of ad hoc networks include enhancements
to the operating system [105, 81|, specialized languages [130, 46], and middleware [41,
29, 126, 42]. Operating systems are tightly integrated with low-level communication
services, platform-dependent, and expose unnecessary details that complicate appli-
cation programming tasks. The development and use of new programming languages
is costly as it requires teaching developers a new language. In contrast, middle-
ware simplifies application development by providing higher-level abstractions, while
minimizing risk by building upon the existing software infrastructure and developer
familiarity with existing programming languages. When designed properly, middle-
ware can divert attention from mundane concerns like low-level protocol development,

to more fruitful areas directly involving application-specific goals.

Designing a coordination middleware for ad hoc networks is difficult. On the one
hand, the middleware must provide higher-l