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ABSTRACT 

While the internet video is gaining increasing popularity and soaring to 

dominate the network traffic, extensive study is being carried out on how to achieve 

higher Quality of Experience (QoE) in its content delivery. Associated with the 

HTTP chunk-based streaming protocol, the Adaptive Bitrate (ABR) algorithms have 

recently emerged to cope with the diverse and fluctuating network conditions by 

dynamically adjusting bitrates for future chunks. This inevitably involves predicting 

the future throughput of a video session. Predicting parameters being part of the 

ABR design, we propose to follow the data-driven approach to learn the best setting 

of these parameters from the study of the backlogged throughput traces of previous 

video sessions. To further improved the quality of the prediction, we propose to 

follow the Decision Tree approach to properly classify the logged sessions according 

to those critical features that affect the network conditions, e.g. Internet Service 

Provider (ISP), geographical location etc. Given that the splitting criterion will have 

to be defined together with the selection among ABR parameter values, existing 

Decision Tree solutions cannot be directly applied. In this thesis, some existing 

Decision Tree algorithm has been properly tailored to help learning the best 

parameter values and the performance of the ABRs with the learnt parameter values 

is evaluated in comparison with the existing results in the literature. The experiment 

shows that this approach can improve the performance of an ABR algorithm by up 

to 8.59%, with 98.38% of the testing sessions performing better than having a fixed 

parameter value, and only 0.8% performing worse. 
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CHAPTER 1  

INTRODUCTION 

 

Live Streaming and video-on-demand (VOD) are becoming the most popular methods to 

watch videos as the internet expands and gets more and more accustomed to our daily life. It was 

estimated that the entire video streaming market is worth of around US$30.29 billion in 2016, and 

will grow up to US$70.05 billion by 2021[1]. Youtube, with one of the most popular video streaming 

platform, reported that the consumption rate of mobile videos is rising 100% every year. Netflix 

reported that 10 billion hours of video was watched per month by its user base [2]. 

In this growing market with a large number of competitors, improving Quality of 

Experience (QoE) for the users when they watch videos is a key factor for any publisher who wants 

to attract and retain its customers. From Livestream and New York Magazine’s survey [2], video 

quality was the most important factor for 67% viewers when they watch a livestream broadcast, 

and about 62% consumers are more likely to have a negative perception of a brand name of a 

company who has the video content delivered with low-quality.  

It is, however, not an easy task to improve video quality, because there are many factors 

that contribute to the users viewing experience. According to a survey by JWplayer in 2016, the 

users are considering many factors that affect their QoE with a streaming service, with 24% 

considering that re-buffering ratio is the most important factor of their experience, and about 12% 

thinking that average bit rate, which is linked directly to the quality of a video, is the most important 

part, and another 12% saying that the most important factor is the time for a video to get started [3]. 

With QoE being such an important factor to the user’s experience, which have a direct 

impact on the revenue of the video streaming companies, researchers have proposed many different 

techniques to improve the QoE for the viewer, with their focus varies from dealing with the 

buffering and the bitrate selection, to handling many other aspects of the video streaming process. 

To demonstrate that their proposed techniques perform well, the implementation needs to be tested 

with a large variety of different settings of the users, ranging from different Internet Service 

Provider (ISP), different devices used for video streaming, different geographical locations, to 

different internet speeds etc. To deal with this problem, one of the possible ways is to formulate 

such impact from different users’ conditions into the program parameters of the ABRs, and try to 

find the best values for these parameters for each future session to be run. However, most, if not 

all, of the existing ABR algorithms come with a set of default parameters that have been tested to 

suit a majority of the user base and are not catered to individual users. In the present thesis, we 

present our data-driven approach to determining ABR parameters. We have modified some existing 

Decision Tree Machine Learning algorithm in order to predict the best values of the parameters. 

With this approach, we can achieve a QoE increase of up to 8.59%, with around 98.38% sessions 

yielding better results than using the traditional method of choosing one parameter set for all 

sessions. 



 

2 

 

CHAPTER 2 

PRELIMINARY WORK 

 

In order to better explain the ultimate goal of the present thesis, first we introduce the key 

terminologies and give a brief introduction on how video streaming works. Then we will give a 

brief overview of recent approaches to improving the QoE of the video viewers. 

 

2.1/ Video Streaming, how does it work? 

 Video Streaming, by definition, is the act of streaming a video over the internet from a 

server to the user. From a more technical perspective, it is a constant data stream of a video kept 

downloaded to the user’s device until either the data has been completely downloaded or the user 

has stopped watching. With the internet growing and video streaming getting more popular, many 

techniques have been developed in order to bring the best video streaming quality to different users. 

Video content now are usually partitioned into small chunks of a few seconds each [4]. Each chunk 

has many different versions stored on the server, encoded with different bitrates. The bitrate is 

essentially the amount of data per second played on a video device. The higher the bitrate of a 

chunk is, the higher the quality of that chunk can be displayed to the user. 

 

Figure 2.1: Model of video stored in server 
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 The purpose of partitioning a video file into chunks like this is to make it easier to 

dynamically switch among different bitrates during a video streaming session. The necessity of 

switching among different bitrates on the go came from the fact that the internet download speed 

does not stay constant throughout an entire viewing session, which is defined by the period from 

the time the user starts watching a video to the time he/she stops watching it. 

 While a player can download in a second more than a second of video data, within that 

same time, the user will only be able to watch one second of the video. Hence, all the chunks 

downloaded but not yet played are saved in a buffer on the client side. Buffer size is the maximum 

amount of data or video chunks a client can hold at a time. It can be calculated using either the 

number of bytes or the number of seconds. We consider the model where a video player will not 

start playing a chunk until it has been completely downloaded, and will not download the next 

chunk until a space big enough for an entire chunk is available in the buffer. 

 In regard to the user experience, there are some terminologies that need to be explained [5]. 

The first one is start time, or join time, which is the period from the time when the user clicks on a 

video for viewing, to the time when the user actually starts watching the video. Usually this amount 

of time is used for the play buffer to get loaded with a few initial chunks. From the user’s viewpoint, 

the lower this time is, the better. The second is re-buffering time, which is the total amount of time 

the video gets stopped or frozen in the middle of a playing session when the play buffer becomes 

empty, and the viewer has to wait for the player to download a new chunk of video. Similar to join 

time, the less this occurs, the better. The third is average bitrate, which is the average of the bitrates 

of all the chunks in a video downloaded over an entire viewing session. This value indicates overall 

how good the video display quality is, and the higher this value is, the better. In addition to these 

three attributes that can be used to determine the QoE, there are some other QoE metrics, for 

example: the number of times re-buffering happens, the number of times bitrate changes etc. Each 

ABR algorithm is designed with a different focus on different aspects of QoE, so there’s no 

universal unique formula to define QoE. For the purpose of this thesis, we will mainly consider 

join time, re-buffering, and average bitrate. 

 

2.2/ Related Work 

 In this section, we will give a brief overview of different ABR algorithms and the related 

techniques proposed in the literature for improving QoE for the video viewers, discuss what 

parameters set by the authors can be improved to suit each individual user, and how it is related to 

the problem we will look into in this thesis. To start with, we need to understand what ABR 

algorithms are. Adaptive Bit-Rate algorithms, or ABR, is the name of a group of algorithms that 

deals with changing the bitrate of a video dynamically while a video viewer is watching, according 

to his/her current network conditions. For example, when someone experiences freezing 

(rebuffering), ABR algorithms will try to lower the bitrate. When someone has a good internet 
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condition while viewing a low bitrate video, ABR algorithms will try to increase the bitrate of that 

video. 

 There exist many different approaches to ABR algorithms. In An Optimized Stall-Cautious 

Adaptive Bitrate Streaming Algorithm for Mobile Network [6], the author divided ABR algorithms 

into three main classes: rate-based algorithms, buffer-based algorithms and optimized streaming 

algorithms. For rate-based class, ELASTIC [7] is a good example. ELASTIC is a client-side 

algorithm using feedback control theory to construct a single controller that will throttle the video 

level (bitrate) to fill up the buffer to a set buffer length to ensure the video playback will not have 

re-buffering. In its formula for the controller:  

 

q(t) and qI(t) are different states of the buffer, and kp and ki are 2 parameters of the controllers that 

are set to 0.01 and 0.001 respectively by default as proposed by the author of this paper.  

For buffer-based class, we have Buffer Base Algorithm (BBA) [8] which uses the buffer 

state of the client’s video player to choose the bitrate of the video. BBA proposed to set up a few 

parameters: the reservoir, upper reservoir and an f(B) function which determines the relationship 

between the bitrate and the buffer state in this algorithm (see figure 2.2). 

 

 

Figure 2.2: Buffer Base Algorithm model 

 

During the 1st iteration of this algorithm BBA-0, the default parameters proposed by the 

author are set so that the reservoir size is 90 seconds, cushion is from 90 to 216 seconds (126 

seconds) and the upper reservoir is 216 to 240 seconds (24 seconds) out of the total of 240 seconds 

buffer size. In other words, the reservoir size is 37.5%, upper reservoir is 10%, and the rest is for 

cushion. A more in depth look at BBA will be given in chapter 3.  
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In the optimized streaming algorithm class, we have MPC algorithm [9]:  

 

Figure 2.3: Video adaptation workflow using MPC 

 

which is based on the assumption that network condition should be reasonably stable and do not 

change too drastically within a short period of time. With that assumption, we can try to look N 

steps ahead and solve a specific QoE maximization problem. Within this algorithm, the look-ahead 

window N is a parameter that can be changed to suit each individual user better. It’s worth noting 

that in this case, while a larger window size N is usually better, it will also negatively impact the 

runtime of the algorithm thus making the algorithm not being able to work efficiently at runtime. 

It’s also worth noting that through the research reported in CS2P [10], we know that some key 

features such as ISP and geographical locations do have serious impacts on the network condition 

of a client, and thus can be used to improve the ABR performance on future sessions.  

Last but not least, we need to introduce Machine Learning and more specifically, Decision 

Tree. Machine Learning is an application of artificial intelligence (AI) that provides systems the 

ability to automatically learn and improve from experience without being explicitly programmed 

[11]. Within the available machine learning techniques, one of the most commonly used is Decision 

Tree, which is a very specific type of probability tree that is constructed from a training set of data 

and can be used to make a decision about some kind of process [12] by tracing a set of conditions.  
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Figure 2.4: Decision Tree example 

There are different approaches to constructing Decision Trees, including binary split, 

where at each node, the tree can only be split into two branches, and multi-way split, where at each 

node, the tree can be split into as many branches as the number of values the chosen feature has [13]. 

A feature chosen to be a splitting criteria usually is determined based on how much information 

gain can be obtained by choosing the considered feature to split the current node. There are also 

different approaches to dealing with the data that was not present in the decision tree, with the two 

popular approaches: (i) the technique used in C4.5[14] by putting the new value into all the branches 

and give each vote from each branch a weight based on how many instances are present in that 

branch. For example, if we have 2 branches with 100 instances and 50 instances respectively, the 

vote got from going down the 1st branch will be given a weight of 1/1.5, while the vote got from 

going down the 2nd branch will be given a weight of 0.5/1.5. (ii) the technique used in CART [15] 

by putting the new value into the branch with the most number of instances [16]. 

In the present thesis, we propose to follow the data-driven approach to use the key features 

to optimize those default parameters present in existing ABR algorithms so that they can have better 

setup for each individual session. Those key features will be used in selecting criteria/feature when 

implementing our modified Decision Tree for classification. 
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CHAPTER 3 

PROBLEM STATEMENT, SOLUTION AND ALGORITHM 

 

3.1/ Problem Statement 

Having reviewed different ABR algorithms and techniques used to improve QoE, we come 

to the realization that the parameters in each algorithm are usually fixed by the authors based on 

testing the algorithm on a large set of data with different user cases and choosing a set of parameters 

that fit well with the users in general. However, it is easy to see that not all users have the same 

viewing condition. Different users have different internet conditions affecting their video viewing 

experience in many ways, leading to some having a vastly different viewing experience compare 

to others who watch the same video on the same server. From the study in CS2P, we learned that 

the key factors that impact the user’s viewing experience are the user’s conditions such as ISP, 

geographical location, and device model. 

Stemmed from that observations, we can easily see that: should we want the existing ABR 

algorithms to serve the user in a better way, the algorithm itself should be adapted to each user 

cases. To do that manually is inefficient, so we turn to Machine Learning for help with this problem. 

With Machine Learning, the computer itself can learn what kind of parameters are most suitable 

for each user and adjust the algorithm accordingly. The key issue here is that in many classes, we 

have a wide variety of possible values. For example, for ISP, we have Bell, AT&T, Verizon etc. 

We choose to use Decision Tree in order to quickly go through a new user’s setting and retrieve 

the suitable parameters setting based on previously learned user cases. However, we cannot directly 

apply the Decision Tree algorithms, due to the following major issues: 

● Decision Tree is usually used for classification problem with only two classes: true 

and false, and in our case, while we can call our problem classification, the 

parameters set we have are not limited to two. 

● The best parameters set for each node and leaf can change when a node is split.  

So, we will need to modify the Decision Tree algorithm to best suit our need for this case. In this 

chapter, we will look more into the problem with the normal Decision Tree algorithm and how we 

make a modification to it. 

Before we present our work on the decision tree, we will explain how an ABR algorithm 

performs under normal condition with the default parameters proposed by the author, how the 

algorithm can be improved and whether the change in parameters make a significant  impact on the 

QoE or not. In order to do so, we have chosen Buffer Based Algorithm (BBA) as an example. First, 

we need to understand exactly how BBA works and how we can modify its parameters. 
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3.2/ BBA algorithm 

BBA algorithm, proposed by Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew 

Trunnell and Mark Watson, is a result of collaboration research between Stanford University and 

Netflix Inc. to develop an ABR algorithm that depends solely on the buffer condition on the client 

side to dynamically change the video bitrate for a better QoE for the users of Netflix. The idea of 

the algorithm is very simple: with a predefined setting of the 3 parameters, i.e. reservoir, upper 

reservoir and an f(B) function which define the cushion area, the ABR algorithm will then only 

need to look at where the current value of the buffer fits into the predefined setting, and set the 

bitrate for the next video chunk accordingly as shown in figure 2.2. 

 In the 1st iteration of this BBA0 algorithm, as the algorithm was designed with a long video 

viewing sessions in the Netflix platform in mind, the buffer size is also set to a very large value of 

240 seconds, with the reservoir size set to 90 seconds, cushion from 90 to 216 seconds, and the 

upper reservoir 216 to 240 seconds. In other words, the reservoir size is 37.5%, upper reservoir is 

10%, and the rest is for cushion. For example, when the buffer has only 40 seconds of video left, 

the BBA algorithm will set the bitrate of the next video chunk to the minimum available bitrate; 

when there are 220 seconds of video currently downloaded in the buffer, the algorithm will keep 

the bitrate to the maximum; when the buffer length is between 90 to 216, the algorithm uses 

function f(B) to calculate a suitable bitrate value accordingly. 

Now let us consider what will happen when we change the parameters of this algorithm. If 

the reservoir is set to a bigger size, the ABR will prefer the bitrate to be at minimum, which will 

definitely help dealing with the re-buffering problem, but will also make the average bitrate of the 

video relatively low. For the f(B) function, if the slope is too high, the bitrate will fluctuate too 

much with even a slight change in the buffer. The algorithm prefers the maximum bitrate, which, 

while increasing the overall average bitrate of the video sessions, will more likely to increase re-

buffering time. If the slope is too low, it may decrease the average bitrate of the video sessions and 

the ABR will not respond to the change in the buffer fast enough.  

Note that we actually do not need to keep track of three separate parameters: reservoir, 

function f(B) and upper reservoir. Keeping track of the reservoir and the slope of the function f(B) 

would be enough for the BBA algorithm to determine the bitrate to choose from, based on the 

current buffer state. Note also that BBA was designed with a large buffer size to work with long 

video viewing sessions. Our data set, which we will explain in chapter 4, consists of shorter video 

sessions. So we will be using a smaller buffer size and as such, the default parameters from the 

BBA-0 algorithm need to be converted into percentage and then converted to the new values for 

our smaller buffer size. By default, the reservoir consists of 37.5% of the maximum buffer size and 

the slope value can be set to: the bitrate range available for a video divided by 52.5% of the buffer 

size.  
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We have followed the BBA0 algorithm on backlogged traces in the data set to get the 

average bitrate and rebuffering ratio of each session. But with multiple QoE metrics, it is hard to 

tell directly how each session performs compared to others, so we will be converting those values 

into a single QoE value. As stated in chapter 2, there is no predefined unique QoE calculation 

formula. As such, in this thesis, we will be using QoE formula defined in the following way: 

𝑄𝑜𝐸(𝑟, 𝑠, 𝑝) =
𝑟 ∗ 𝑟𝑒𝑏𝑢𝑓𝑅𝑎𝑡𝑖𝑜(𝑠, 𝑝) + 1

𝐴𝑣𝑔𝐵𝑖𝑡𝑅𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜(𝑠, 𝑝)
 

Here r is the weight of the rebufRatio, set to 20 by default. This weight r is used to express 

how much we want to emphasis on the rebuffering in our QoE formula. Should we want the 

rebuffering to have a larger role, we increase r, and should we want the rebuffering to be considered 

with less priority, we decrease r. s is session id. p is the parameter value used in the BBA0 algorithm 

to calculate this QoE. AvgBitRateRatio(s,p) is the average bitrate of session s with parameter value  

p over the maximum bitrate available. For example, if the AvgBitRate is 2300kb/s and the 

maximum possible bitrate is 2500kb/s, AvgBitRateRatio will be 2300/2500 or 0.92. The 

rebufRatio(s,p) is the rebuffering Ratio of session s with parameter value p. With this formula, the 

lower the QoE, the better, as QoE will decrease as the AvgBitRateRatio rises, and increase as the 

rebuffering ratio rises. 

With the baseline of how BBA0 performs, we can now move on to change the parameters 

of the BBA algorithm, in order to see how such changes affect the algorithm. There are two 

parameters we can change: the reservoir and the slope. The change in either one will give us a 

different QoE value. So, we can have a table of QoE values from different parameter sets. It’s worth 

noting that for some session with a low throughput rate, it will yield a lower QoE value no matter 

what parameter value is chosen. In order to have the QoE values comparable among all sessions, 

we normalize the results by using the normalization formula below, and Table 3.1 shows some 

sample results.  

𝑛𝑜𝑟𝑚𝑄𝑜𝐸(𝑟, 𝑠, 𝑝) = 1 −
𝑄𝑜𝐸(𝑟, 𝑠, 𝑝) − min⁡{𝑄𝑜𝐸(𝑟, 𝑠, 𝑝𝑖)|𝑝𝑖 ∈ 𝑃}

max{𝑄𝑜𝐸(𝑟, 𝑠, 𝑝𝑖)|𝑝𝑖 ∈ 𝑃} − ⁡min⁡{𝑄𝑜𝐸(𝑟, 𝑠, 𝑝𝑖)|𝑝𝑖 ∈ 𝑃}
 

 

 Here P is the set of all different parameter values we use for BBA0. pi is a parameter 

value within P. Recall that the lower the QoE value we have, the better. So, we need to reverse the 

order using 1 – x in the formula. 
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Before: 

ISP Geolocation ... QoE1 QoE2 QoE3 

Bell Windsor  6 5 4 

Rogers London  2 3 1 

After: 

ISP Geolocation ... QoE1 QoE2 QoE3 

Bell Windsor  0 0.5 1 

Rogers London  0.5 0 1 

Table 3.1: Normalization example 

Now with all the QoE values normalized, we need a way to compare QoE result from one 

parameter set with the one from another parameter set. The way we choose to do this is to take 

average QoE of all the sessions obtained from applying this parameter set, using normQoE formula. 

With that, we can know which one is the best QoE set currently. The reason why we need to know 

this is that this would be the parameter set that would be chosen when we want to select a parameter 

value for the entire user base as it gives the best QoE value according to our QoE formula. More 

details about this will be given in chapter 3.3. The best parameter set calculated from this method 

will be used as our base value to compare with the result we obtained after running Machine 

Learning in order to see how much Machine Learning can improve this value even further. 

𝑄𝑜𝐸(𝑟, 𝑆, 𝑝) = ⁡
1

|𝑆|
∑𝑄𝑜𝐸(𝑟, 𝑠, 𝑝)

𝑠∈𝑆

 

𝑆𝑖𝑛𝑔𝑙𝑒𝐵𝑒𝑠𝑡𝑄𝑜𝐸(𝑟, 𝑆) = max⁡{𝑄𝑜𝐸(𝑟, 𝑆, 𝑝𝑖)|⁡𝑝𝑖 ∈ 𝑃} 

𝑛𝑜𝑟𝑚𝑄𝑜𝐸(𝑟, 𝑆, 𝑝) = ⁡
1

|𝑆|
∑𝑛𝑜𝑟𝑚𝑄𝑜𝐸(𝑟, 𝑠, 𝑝)

𝑠∈𝑆

 

𝑆𝑖𝑛𝑔𝑙𝑒𝐵𝑒𝑠𝑡𝑁𝑜𝑟𝑚𝑄𝑜𝐸(𝑟, 𝑆) = max⁡{𝑛𝑜𝑟𝑚𝑄𝑜𝐸(𝑟, 𝑆, 𝑝𝑖)|⁡𝑝𝑖 ∈ 𝑃} 

 

Here S is a set of sessions. QoE(r,S,p) is QoE of a single parameter set p value throughout 

set S, and SingleBestQoE(r,S) is the best QoE(r,S,pi) for all pi taken from parameter set within P. 

We have the same 2 formula with the same purpose for normalized set as well. 
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3.3/ Comparing parameters set 

For the first part of this thesis, we want to propose a way to systematically compare 

different parameters set to each other. As stated in the previous section, for our testing, we are only 

looking to compare the average bitrate and rebuffering ratio between each data set comprised from 

different parameters set. We can then obtain a table of data of different parameters set with different 

results that will look like table 3.2: 

 

Parameters set 1 2 3 4 

AvgBitrate 2000kb/s 3000kb/s 4000kb/s 2500kb/s 

Rebuffering Ratio 0.01% 0.5% 0.8% 0.5% 

Table 3.2: Comparing parameters set 

 

Through some initial testing, we found out that with different parameters set being tested, 

usually what we obtain is a tradeoff between average bitrate and rebuffering ratio, because when 

average bitrate goes up, the rebuffering ratio usually goes down, and vice versa. So with that 

observation, it is difficult to say that one parameters set is better than every other set unless both 

the average bitrate and rebuffering ratio get improved. As the higher the average bitrate the better, 

and the lower the rebuffering ratio the better, we can define that a parameters set i producing the 

result avgBitratei and rebufi is better than parameters set j that produces the result avgBitratej and 

rebufj if and only if avgBitratei >= avgBitratei and rebufi <= rebufj.  

(𝑎𝑣𝑔𝐵𝑖𝑡𝑟𝑎𝑡𝑒𝑖, 𝑟𝑒𝑏𝑢𝑓𝑖) ≥ ⁡ (𝑎𝑣𝑔𝐵𝑖𝑡𝑟𝑎𝑡𝑒𝑗, 𝑟𝑒𝑏𝑢𝑓𝑗) 

<=> 𝑎𝑣𝑔𝐵𝑖𝑡𝑟𝑎𝑡𝑒𝑖 ≥ 𝑎𝑣𝑔𝐵𝑖𝑡𝑟𝑎𝑡𝑒𝑗⁡&&⁡𝑟𝑒𝑏𝑢𝑓𝑖 ≤ 𝑟𝑒𝑏𝑢𝑓𝑗 

In any other case, if only one of the two values increases and the other decreases, it became 

a tradeoff and that trade off might be desired in certain user case, so we can leave the choice of 

which one to choose up to the one who uses this. So for example, if we look at table 3.2 again, 

parameters set 2 is undoubtedly better than parameters set 4 as the average bitrate of set 2 is better 

and their rebuffering ratio is the same. As for set 1 and 3, we cannot say conclusively any of them 

is better: if the user values rebuffering more, they can go with set 1 with a slight trade off in average 

bitrate; and if the user values average bitrate more, they can go with set 3 with a trade off in 

rebuffering ratio instead. The way the user can define which one they want is through many factors, 

including the QoE formula. As stated in the previous chapter, there’s no unique single QoE formula 

being used by everyone, so by fixing a single QoE formula for a certain use case, we can then look 

at the table and define one single best parameters set that gives that QoE formula the highest value. 

In our case, as we have defined our own QoE formula in chapter 3.2, we can also find our own 
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single best parameters set that is suitable to our need and that will perform better than other 

parameters sets according to our QoE formula.  

One example of another factor that can change the definition of single best parameters set 

is the way we normalize the data. What we are doing right now is local normalization where we 

normalized the data within each session (locally), but on the other hand, we also have global 

normalization. Global normalization works by taking into consideration the entire data set instead 

of just within each session. For example, consider the following table 3.3: 

Parameter set 1 2 3 

Session 1 

QoE 
1 15 20 

Session 2 

QoE 
5 1 20 

Session 3 

QoE 
20 19 20 

Session 4 

QoE 
20 19 20 

Session 5 

QoE 
20 19 20 

Total 66 73 100 

Table 3.3: Example data set (Lower is better) 

If we were to use local globalization, the best parameters set will be set 2 as after local 

normalization, we have the result look like this: 

Parameter set 1 2 3 

Session 1 

QoE 
1 0.26 0 

Session 2 

QoE 
0.79 1 0 

Session 3 

QoE 
0 1 0 

Session 4 

QoE 
0 1 0 

Session 5 

QoE 
0 1 0 

Average 0.358 0.852 0 

Table 3.4: Local normalization (Higher is better) 
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With this, we can see that parameters set 2 is the best one as most of the sessions prefer set 2. 

However, if we were to use global normalization, we got table 3.5: 

Parameter set 1 2 3 

Session 1 

QoE 
1 0.263 0 

Session 2 

QoE 
0.789 1 0 

Session 3 

QoE 
0 0.053 0 

Session 4 

QoE 
0 0.053 0 

Session 5 

QoE 
0 0.053 0 

Average 0.358 0.28 0 

Table 3.5: Global normalization (Higher is better) 

 

With this, parameters set 1 become the best one instead of parameters set 2. But as we have talked 

about in this chapter, global normalization and local normalization are just other ways to define a 

different single best parameters set, which comes with its own tradeoff. Global normalization 

focuses more on the betterment of the overall average QoE, and is willing to sacrifice/allow more 

sessions to have worse QoE as long as the total average QoE increases, while local normalization 

focuses more on the betterment of the number of sessions that perform better, and is willing to 

sacrifice/allow the overall average bitrate to become worse. If we think about it in term of the user, 

global normalization allows for the happy customers to become happier at the cost of more unhappy 

customers, while local normalization allows for more happy customers to exist at the cost of the 

already happy customers become slightly less happy. So local and global normalization therefore 

are just different ways to choose the best QoE. Out of the two, we choose to go with local 

normalization for our testing as our goal with the decision tree is more in line with the advantage 

that local normalization offers.  

In the next chapter, we will discuss how we can improve the result even further using 

Decision Tree learning. 
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3.4/ Decision Tree Training 

First, let’s recap on how normal Decision Tree works. Decision Tree is used to classify 

data, usually into two groups per step, each of them being a class, which is defined based on a 

training data set provided. From the root of the tree, which is the node that contains all the training 

data set, the Decision Tree algorithm will go over all the features of that dataset and try to find 

which feature is the best to be used to split the data set into two (for binary split) or multiple subsets 

(for multiway split). The way Decision Tree algorithm defines the best feature is according to which 

feature gives the best information gain across all the split sets, or in other word, lowest entropy 

among all the split sets. Here, entropy is a measure of the randomness in the information being 

processed [17], or we can call it the impurity of a dataset. 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ⁡−∑𝑝𝑖
𝑖

(𝑙𝑜𝑔2𝑝𝑖) 

That’s how a normal classification decision tree works, but in case the response are continuous 

values instead of categorical ones, we also have another subclass of decision tree called Regression 

Tree, which splits the data according to the minimum Mean Squared Error of the child nodes  after 

being split by a feature. 

𝑀𝑆𝐸 =⁡
1

𝑁
∑(𝑦 − 𝑦𝑖)

2

𝑁

𝑖=1

 

When a data set is split, if a split child has most of its data belonging to a same class, the entropy 

of the said child will be low. Thus, the information gain is high, and the feature is preferred over 

other available features. The tree will stop splitting once one of the stopping criteria is meet. These 

include: (i) the number of instances in a node is too small; (ii) the depth of the tree is too high; and 

(iii) all values of all child nodes are of the same class. Once a full tree was constructed this way, 

the Decision Tree can aid in the process of classifying a new data to determine whether it belongs 

to this class or the other by going down the tree with the feature of the new data. Should the new 

data that are being classified have a feature value not used or are new to the decision tree, there are 

two popular approaches to this, either (1) put all new data down to the child node with the highest 

number of instances, which is used in CART; or (2) put the new data down to all the child nodes 

with a weight proportional to the number of instances of each child, which is used in C4.5. CART 

and C4.5 are two popular decision tree algorithms. 

 Now we will explain how to apply the decision tree in our setting. A normal Decision Tree 

technique cannot be used directly on our data set due to several reasons. First, while our problem 

can be called a classification problem, we have more than 2 classes to choose from, with each of 

them being a different parameter set used by the ABR algorithms. Second, while the parameter set 

that a single video viewing session prefers is fixed, the parameter set for all the sessions within the 

same group might not. For example, let’s look at table 3.6: 
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Session ISP Country City Device 

Model 

OS QoE1 QoE2 QoE3 

1 Bell Canada Windsor PC Window 1 1 0.6 

2 Bell Canada Windsor Mobile Android 0.9 1 0.5 

Table 3.6: Sample Table 1 

 

Consider the two sessions in the table 3.6. Session 1 prefers both parameter set 1 and 2, while 

session 2 prefers set 2. If these 2 sessions are grouped together at the current node, since most of 

their feature are the same, the preferred parameter set for this node will be 2 as it yields the best 

QoE overall for all sessions in the node. However, should the two sessions here be split further 

based on their device model or OS, the preferred set for the node with session 1 could be 1, while 

the preferred set for the node with session 2 will be 2. 

 So, our first challenge is to find a way to find out which feature will be the best for splitting, 

now that entropy and information gain formula does not work due to the changing classification 

and multiple classes. To do this, we look back at the definition of entropy as well as the regression 

tree and see how we can apply it to our new problem. What we found out is that, in our problem, 

what we want is the best parameter set within a group of sessions to have the normalized QoE value 

of that parameter set being 1 or as close to one as possible. For example, look back at table 3.6. The 

best parameter set is 2 because both session 1 and 2 have their QoE value of the parameter set 2 

being 1. So, we can say that the group is “pure” because all the QoE values of the best parameter 

set are 1s, and its “impure” when not all of the QoE values of that best parameter set is 1. Let’s 

look at table 3.7: 

Session ISP Country City Device 

Model 

OS QoE1 QoE2 QoE3 

1 Bell Canada Windsor PC Window 1 1 0.6 

2 Bell Canada Windsor Mobile Android 0.9 1 0.5 

3 Bell Canada Toronto PC Window 0.7 0.8 1 

Table 3.7: Sample Table 2 

 

By adding session 3 into the table, the best parameter set for all 3 of them is still set 2 since it has 

the highest average QoE, but not because the QoE value of session 3 is 0.8. Session 3 by itself 

actually prefers set 3 over set 2 even though set 2 is good enough. In this regard, we define a new 

impurity formula to determine how good a group of sessions is, from the MSE formula: 
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𝑝𝑎𝑟𝐼𝑛𝑑𝑒𝑥(𝑟, 𝑆) =
𝑎𝑟𝑔
𝑖

max{𝑛𝑜𝑟𝑚𝑄𝑜𝐸(𝑟, 𝑆, 𝑝𝑖)|𝑝𝑖 ∈ 𝑃} 

𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦(𝑟, 𝑆) = ⁡
1

|𝑆|
∑(1 − 𝑛𝑜𝑟𝑚𝑄𝑜𝐸(𝑟, 𝑠, 𝑝𝑝𝑎𝑟𝐼𝑛𝑑𝑒𝑥(𝑟,𝑆)))

2

𝑠⁡∈⁡𝑆

 

 

 parIndex(r,S) is a formula to define which parameter set is the best overall parameter set 

for all sessions in S, and with that value, we can find the Impurity of the set S with the Impurity 

formula. 

With this formula, if all the QoE of the parameter set is 1, the impurity will be 0, or we can 

say that the set is pure, meaning all sessions in that set prefers the same parameter set. Every other 

QoE value will increase the impurity of the set by a degree measured by the distance from 1, and 

what we want is for the impurity to be as low as possible. 

 Now that we have a way to define which feature is better for splitting, we move on to 

discuss the splitting criteria. As mentioned before, in a normal decision tree, we usually have either 

binary split, which will always split a node into two child nodes, or multi-way split, which will split 

the node into multiple child nodes with all the values of that feature. For example, if we have a 

feature Weather with values Sunny, Rain, Snow, binary split will give us 2 child nodes: “Sunny 

and not Sunny” or “Rain and not Rain” or “Snow and not Snow” while multiway split will give us 

3 child nodes Sunny, Rain and Snow. Unfortunately, with our specific problem of dealing with the 

video viewing sessions, neither approach is suitable as the number of values in each feature is too 

large. With our data set of around 8700 session (more details will be given in chapter 4), we have 

more than 1700 different ISP. So if we were to do binary split, the depth of the tree will be too high 

with no noticeable gain while increasing the cost of running through all combination of these 1700 

ISP with different features, making the time complexity of the algorithm reaching O(n^2) where n 

is the total number of all feature values. On the other hand, if we were to do multiway split, the tree 

becomes a really shallow but wide one with each leaf having a very small number of sessions. This 

would easily lead to overfitting, which is a problem happened when a Machine Learning algorithm 

gets trained to fit a specific training set too much that it won’t work on any different testing set. To 

deal with this problem, we have changed the way Decision Tree split the nodes with a trade-off 

between binary split and multiway split. Note that with the number of parameter set M acting as 

classes, after we do multiway split, even though we can have up to 1700 different child nodes, they 

all choose one of the P parameter sets as their best/preferred parameter set, and they will have 

impurity either equal to 0 or larger than 0. At this point, we combine all child nodes, after each 

multiway split, that choose the same parameter set so they can be split later on should a better 

feature be found to split them. Thus, the minimum number of child nodes per parent node will be 

2 while the maximum will be 2P, two for each of the P different parameter sets, one for impurity 

equal to 0 (meaning they already reached “pure” and cannot be split anymore) and one for impurity 

larger than 0 (meaning they are “impure” and can continuously be split again).  
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 With the way to split the data set defined, we can now complete the training part of our 

modified Decision Tree. To help with the process of creating the tree from the training set, we use 

two addition classes. The first is treeNode, which will hold the information of (i) which sessions 

are currently in this node, (ii) which node is its parent or child, (iii) how to get to the child, (iv) 

which parameters set is the best for all sessions in this group, and (v) the impurity of this node. The 

second is sessionInfo, which just holds all the information of a session including all its features, 

QoE value for each parameter set, and which parameter set has the best QoE value. To construct 

the tree:  

Step 1: Put all the training sessions into 1 single treeNode, which will be the root. 

Step 2: For every feature class we have, split the node using multiway split and combine all the 

impurity of all the child nodes using the following formula: 

𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦(𝑟, {𝑆1, 𝑆2…𝑆𝑀}) = ⁡∑
|𝑆𝑖|

|𝑆|
∗ 𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦(𝑟, 𝑆𝑖)

𝑀

𝑖=0

 

∀𝑖, 𝑗 ≤ 𝑀, 𝑆𝑖 ∩ 𝑆𝑗 = ∅⁡ 

 Here M is the number of child nodes the current node S has, and Si is a child node of S. 

Step 3: If the combination of impurity from all the child nodes got from splitting the node using 

this feature is the lowest, and (i) there are at least 2 child nodes choosing different best parameter 

set, or (ii) one has impurity > 0 and one has impurity equal to 0, then this feature will be used to 

split this node. It will be added to the current node as Splitting Feature so we know that this node 

uses this feature to split. 

Step 4: Combine all child nodes having impurity > 0 and having chosen the same best parameter 

set into one node, with the maximum number of nodes equal to the number of parameter sets. Also, 

combine all child nodes having impurity = 0 and having chosen  the same best parameter set into 

one node, with the maximum number of nodes equal to the number of parameter sets. With this, 

the minimum number of child nodes a node can have will be 2, and the maximum will be 2*number 

of parameter set. 

Step 5: Add all the combined child nodes into the tree, while also adding the feature’s value that 

was chosen to get to each child from the parent node so it knows which feature and value was 

chosen to go down to which child. 

Step 6: Go through all the nodes in this current layer of the tree. If a node has impurity and has 

more than 10 sessions inside, repeat step 2 to 6 for this node. Otherwise, add 1 to the counter of 

leaf node for this layer. If the number of leaf nodes in this layer is equal to the number of nodes in 

this layer, or if the layer size is larger than 50, stop constructing the tree.  

Step 7: Save the tree for use when testing. 
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It worth noting that in step 6, the layer size is limited to 50 so that in theory, the tree will not become 

too big which will have a harmful impact on the runtime of the algorithm. In practice, the tree 

usually only has around 10 layers. 

 

3.5/ Decision Tree Testing 

 

 Now we will explain how to use the obtained tree on the testing set to see how well it 

performs. The testing follows these steps: 

Step 1: Load the tree and the sessions in the testing set 

Step 2: From the root, for each session in the testing set, go down the tree using the feature of the 

session. 

Step 3: If the testing session has a feature value that the tree does not have, do one of the followings: 

- Follow the technique used in C4.5: go down all the children of the current node and get a 

vote back from each child. Each child’s vote is combined with the weight of that child 

which depends on the number of sessions per child. 

- Follow the technique used in CART: go down the child with the most number of sessions. 

Step 4: Record the prediction for each session in the testing set 

Step 5: Calculate how much the Decision Tree algorithm has improved over selecting only the 

single best parameters set for the entire testing set, by using the formula: 

𝑃𝑒𝑟𝑐𝑄𝑜𝐸𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = ⁡
𝑆𝑖𝑛𝑔𝑙𝑒𝐵𝑒𝑠𝑡𝑄𝑜𝐸(𝑟, 𝑆) − 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝑟𝑒𝑒𝑄𝑜𝐸(𝑟, 𝑆)

𝑆𝑖𝑛𝑔𝑙𝑒𝐵𝑒𝑠𝑡𝑄𝑜𝐸(𝑟, 𝑆)
 

 

Step 6: Find out how many sessions have improved QoE, have kept the same QoE or got worse 

QoE compared to only select one best parameters set for the entire testing set. 

The result for the testing process will be discussed in chapter 4.  
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CHAPTER 4 

DATASET, TESTING RESULT AND CONCLUSION 

 

4.1/ Dataset 

To test our algorithm, we use a proprietary dataset from Conviva Inc. The dataset consist 

of 8411 sessions from 143 different countries. For each session, we have the measure of a sequence 

of actual network throughput along with the timeline of the session. Each session also came with 

all their features including different countries where the sessions were run, the different internet 

service provider (ISP) of the sessions, the device and OS the session was run on, etc. The list of 

features we considered and their total number of feature values are given in table 4.1. 

Country State City ISP Connection CDN OS 

143 432 1487 1724 9 2 5 

Table 4.1: Data feature 

 

In the 8411 sessions we have, although we have many different countries, most of the data 

are actually sessions occurred within North America, giving a high throughput rate, meaning that 

we do not actually have that many sessions that showcase what will happen when the throughput 

rate is low, such as rebuffering or that the bitrate needs to be lowered down. So in order to make 

the data reflect those cases more accurately we opted to do resampling [18] , which is a technique 

commonly used in machine learning to deal with imbalanced dataset where data get skewed toward 

one side (like in our case where data is skewed toward the side with good throughput rate). There 

are two types of resampling: over-sampling where we add a random number of copies of instances 

(in our case, sessions) of the under-represented class, and under-sampling, where we remove 

instances of the over-represented class. In our case, due to the already small number of sessions we 

have at 8411, we choose to do over-sampling by selecting sessions with rebuffering in any of the 

parameters set and adding in a random number of no more than 20 copies of those, bringing the 

total number of sessions to 8650. This will only be done during the decision tree learning part. For 

the part on comparing parameters set, we will use the default 8411 sessions. 
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4.2/ Testing Result 

For the testing, first, we begin by choosing parameters for the BBA-0 algorithm. To recap, 

the original value proposed by the authors of the BBA-0 algorithm gives us the reservoir value of 

37.5% and the slope of 2213/12600, with 2133 being the range of bitrate we have (going from 

196kb/s to 2409kb/s), and 12600 being the cushion time in ms. With those base values, we tried 5 

different parameter set as described in table 4.2 by keeping one single slope and running 5 different 

reservoir values. Since we cannot have the bitrate jumping directly from the lowest to the highest 

bitrate, the cushion time must not approach 0. Also, since there must be enough space for the bitrate 

to reach maximum, the cushion time must not exceed (buffer size - reservoir size). Hence, with the 

default slope value, the cushion time must not exceed 150000ms. This area is denoted as the safe 

zone for the f(B) function in BBA algorithm [8]. The reservoir is also under the restriction that it 

cannot reach 100% as it will make the cushion time approach 0. Otherwise, the reservoir value can 

change freely. 

Set 1 2 3 4 5 Original 

Reservoir 

(%) 

5 10 20 30 40 37.5 

Slope 2213/ 

100000 

2213/ 

100000 

2213/ 

100000 

2213/ 

100000 

2213/ 

100000 

2213/ 

126000 

AvgBitrate 1996.412 1943.159 1838.201 1734.3 1630.949 1594.538 

Rebuffering 

Ratio 

(*10000) 

0.8% 0.5% 0.2% 0.17% 0.15% 0.16% 

Table 4.2: Parameter sets value 

 

So with this data and the definition we have in chapter 3.3, we can say conclusively that 

parameters set 5 is better than the original default parameters proposed by the authors of the BBA 

algorithm as both the average bitrate and rebuffering ratio of set 5 improve over the original set. 

However, that’s not to say that all other parameters sets are not as good as the original one simply 

because they were not able to improve both of the values like set 5, Instead, they all showed a 

tradeoff to improve average bitrate more in exchange of worsening the rebuffering ratio. 
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As we can get result by changing only one parameter, it makes sense that we should also 

try to change both the parameters at the same time to see how much it can further improve the 

average bitrate and rebuffering ratio. So, for the next test, we do a combined change of both 

reservoir and slope, each with 7 different values including the original parameters set as one of the 

possible values, giving us 49 different sets as in table 4.3. 

 

Set 1 2 3 4 5 6 7 

Reservoir 

(%) 

5 10 20 30 40 41.5 5 

Slope 2213/ 

60000 

2213/ 

60000 

2213/ 

60000 

2213/ 

60000 

2213/ 

60000 

2213/ 

60000 

2213/ 

80000 

AvgBitrate 2103.2 2048.3 1941.1 1835.4 1731.4 1712.2 2048.3 

Rebuffering 

Ratio 

(*10000) 

1.02 0.54 0.25 0.18 0.16 0.16 0.84 

 

Set 8 9 10 11 12 13 14 

Reservoir 

(%) 

10 20 30 40 41.5 5 10 

Slope 2213/ 

80000 

2213/ 

80000 

2213/ 

80000 

2213/ 

80000 

2213/ 

80000 

2213/ 

100000 

2213/ 

100000 

AvgBitrate 1994.4 1888 1783.3 1679.8 1664 1996.4 1943.2 

Rebuffering 

Ratio 

(*10000) 

0.50 0.24 0.18 0.16 0.16 0.76 0.47 
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Set 15 16 17 18 19 20 21 

Reservoir 

(%) 

20 30 40 41.5 5 10 20 

Slope 2213/ 

100000 

2213/ 

100000 

2213/ 

100000 

2213/ 

100000 

2213/ 

120000 

2213/ 

120000 

2213/ 

120000 

AvgBitrate 1838.2 1734.3 1630.9 1616.8 1948 1895 1790.2 

Rebuffering 

Ratio 

(*10000) 

0.24 0.18 0.16 0.16 0.71 0.42 0.24 

 

Set 22 23 24 25 26 27 28 

Reservoir 

(%) 

30 40 41.5 5 10 20 30 

Slope 2213/ 

120000 

2213/ 

120000 

2213/ 

120000 

2213/ 

130000 

2213/ 

130000 

2213/ 

130000 

2213/ 

130000 

AvgBitrate 1686.5 1583 1567.7 1923.7 1870.8 1766.4 1662.6 

Rebuffering 

Ratio 

(*10000) 

0.17 0.16 0.16 0.73 0.41 0.23 0.17 

 

Set 29 30 31 32 33 34 35 

Reservoir 

(%) 

40 41.5 5 10 20 30 40 

Slope 2213/ 

130000 

2213/ 

130000 

2213/ 

140000 

2213/ 

140000 

2213/ 

140000 

2213/ 

140000 

2213/ 

140000 

AvgBitrate 1558.8 1543.5 1898.7 1845.9 1741.7 1638.2 1415.4 

Rebuffering 

Ratio 

(*10000) 

0.16 0.16 0.70 0.40 0.22 0.17 0.16 
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Set 36 37 38 39 40 41 42 

Reservoir 

(%) 

41.5 5 10 20 30 40 41.5 

Slope 2213/ 

140000 

2213/ 

126000 

2213/ 

126000 

2213/ 

126000 

2213/ 

126000 

2213/ 

126000 

2213/ 

126000 

AvgBitrate 1404.8 1932.7 1880.1 1775.7 1672.2 1568.5 1553.1 

Rebuffering 

Ratio 

(*10000) 

0.16 0.72 0.41 0.23 0.17 0.16 0.16 

 

Set 43 44 45 46 47 48 Original 

Reservoir 

(%) 

37.5 37.5 37.5 37.5 37.5 37.5 37.5 

Slope 2213/ 

60000 

2213/ 

80000 

2213/ 

100000 

2213/ 

120000 

2213/ 

130000 

2213/ 

140000 

2213/ 

126000 

AvgBitrate 1757.4 1705.7 1656.8 1608.9 1584.8 1560 1594.5 

Rebuffering 

Ratio 

(*10000) 

0.17 0.16 0.16 0.16 0.16 0.16 0.16 

Table 4.3: 49 parameters set result 

 

From this result table, if we take out the average bitrate and rebuffering separately, we got 

table 4.4 and 4.5. Looking at these tables, we can see a clear trend that, as the cushion and reservoir 

increase, the average bitrate becomes worse while the rebuffering becomes better. And among all 

of our parameters set, with the definition in chapter 3.3, we have set 17 and 18 both undoubtedly 

perform better than the original parameters set as both the average bitrate and rebuffering ratio of 

them improved compared to the original parameters set. Between set 17 and 18, we cannot say 

conclusively which one is better as set 17 has slightly better average bitrate (1631kb/s compare to 

1617kb/s) and set 18 has slightly better rebuffering ratio (0.00001593 vs 0.00001598). Among the 

remaining parameters sets, we have set 46 and 47 performing worse than set 17 and 18 as they 

worsen in both average bitrate and rebuffering ratio. So those sets can be taken out of the table 

completely without affecting any future decision. The remaining parameters sets all perform better 

in one value while worsen in the other, so it can be left to the users to choose which one they want 

expressed by their QoE formula. For example, if they want to choose improvement of average 
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bitrate over the improvement in rebuffering ratio, they can choose set 1, 2, 7 or 8 as they all highly 

improve the average bitrate, trading off with a worse rebuffering ratio. And vice versa, if they want 

to choose improvement of rebuffering ratio over average bitrate, they can choose set 29, 30, 35 or 

36 as they all improved the rebuffering ratio in exchange for worsen average bitrate. 

 

Cushion\ 

Reservoir 

60 80 100 120 126 130 140 

5 2103 2048 1996 1948 1933 1924 1899 

10 2048 1994 1943 1895 1880 1871 1846 

20 1941 1888 1838 1790 1776 1766 1742 

30 1835 1783 1734 1686 1672 1662 1638 

37.5 1757 1706 1657 1609 1595 1585 1560 

40 1731 1680 1630 1583 1568 1558 1415 

41.5 1712 1664 1616 1568 1553 1544 1405 

Table 4.4: Average bitrate across 49 parameters sets (higher is better) 
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Cushion\ 

Reservoir 

60 80 100 120 126 130 140 

5 1.02 0.84 0.76 0.71 0.72 0.73 0.7 

10 0.54 0.5 0.47 0.42 0.41 0.41 0.4 

20 0.25 0.24 0.24 0.24 0.23 0.23 0.22 

30 0.18 0.18 0.18 0.17 0.17 0.17 0.17 

37.5 0.17 0.16 0.16 0.16 0.16 0.16 0.16 

40 0.16 0.16 0.16 0.16 0.16 0.158 0.157 

41.5 0.16 0.16 0.16 0.16 0.16 0.157 0.156 

Table 4.5: Rebuffering (*10000) across 49 parameters sets (lower is better) 

 

 So from doing parameters set comparisons, we can already find many different parameters 

set that can either undoubtedly perform better than the original parameters set or allowing for some 

trade off to improve over the original parameters set according to different QoE formula. For the 

next step, we are going to improve that result even more by using Decision Tree. With the QoE 

formula defined as in chapter 3.2, we can then use the values in table 4.3 to calculate the QoE for 

each parameters set, and find out the best one among them to be our single best parameters set.  

The 8650 sessions in our dataset were divided into a training set to train the decision tree 

and a testing set to be used for testing, at the ratio of 9:1. With the default weight in the QoE formula 

set to 20, and using the technique used in C4.5 algorithm (put the sessions with a feature that our 

tree does not have, into all the child nodes and get a vote from each of them with the weight, which 

is the number of sessions in each node), we got the QoE value increased by 8.59% compare to the 

single best set QoE, and if we want to take a look at each individual value, the average bitrate is 

improved 2.657% relative to the single best set average bitrate, while the rebuffering ratio is 

improved from 0.000389% to 0.000251%. It’s worth noting that, because we have so little 

rebuffering to begin with, even with resampling, the increase in absolute value looks small in 

number. In relative value, the rebuffering ratio is improved by 35.4%. Out of 864 sessions in the 

testing set, we have 850 sessions (98.38%) get improved in QoE, compared to the single best 



 

26 

 

parameters set, 7 sessions (0.81%) perform the same, and 7 sessions perform worse compared to 

the single best parameters set. We also tried to use the technique used in CART algorithm (put the 

sessions with a feature that our tree does not have, into the child with the most number of sessions), 

and we found that the result is slightly worse, with QoE increased by 8.5% instead and average 

bitrate improved by 2.53%.  

 

Figure 4.1: Ratio of better, same and worse QoE visualized 

 

Figure 4.2: Ratio of better, same and worse AvgBitrate visualized 
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Figure 4.3: Session per percentage QoE increase comparison 

 

 

Figure 4.4: Session per percentage AvgBitrate increase comparison 
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Figure 4.5: Average bitrate Decision Tree vs Single Best (Higher is better) 

 

Figure 4.6: QoE Decision Tree vs Single Best (Lower is better) 

 

In figure 4.5 and 4.6, it is hard to see how much the average bitrate and QoE improved 

going from single best parameters set to decision tree, so in figure 4.7 and 4.8 we show the 

cumulative distribution function of QoE and average between the two to show clearly which one is 

better. 
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Figure 4.7: Cumulative Distribution Function of QoE (Lower is better) 

 

 

Figure 4.8: Cumulative Distribution Function of Average Bitrate (Higher is better) 
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As among all of our testing sessions we only have around 20 sessions with rebuffering, in 

figure 4.9 we only look at the change within those 20 sessions. 

 

Figure 4.9: Rebuffering Decision Tree vs Single Best (Lower is better) 

 

Looking at figure 4.3 and 4.4, we can also see that within 864 sessions we have for the 

testing set, most of them get increased in QoE and average bitrate from 2 to 4%. The worse one for 

QoE decreased the QoE by 9.5%, while the best one increased QoE by 66.9%. For the average 

bitrate, the worse one decreased by 21% from 291kb/s to 227kb/s while the best one increased by 

10.6% from 1513kb/s to 1673 kb/s. With this result, we can make the conclusion that Decision tree 

can further improved the single best parameters set by allowing the sessions to change the 

parameters set to the a different one for each session.  

We have talked about how the QoE formula is not unique and can be changed depending 

on the user requirement. So we want to test how the decision tree would work on our data set if we 

change the QoE requirement by varying the weight r in the QoE formula. We test on different 

weights in increment of 5 from 0 to 50, and the result we got is recorded in table 4.6: 
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QoE formula: 𝑄𝑜𝐸(𝑟, 𝑠, 𝑝) =
𝑟∗𝑟𝑒𝑏𝑢𝑓𝑅𝑎𝑡𝑖𝑜(𝑠,𝑝)+1

𝐴𝑣𝑔𝐵𝑖𝑡𝑅𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜(𝑠,𝑝)
 

Weight r 0 5 10 15 20 25 30 35 40 45 50 

QoE increase 0.062

% 

3.53

0% 

3.26

5% 

2.32

9% 

8.593

% 

3.09

3% 

6.68

4% 

14.16

7% 

17.8

40% 

11.0

73% 

15.74

0% 

Avg 

BitRate 

increase 

0.009

% 

-

0.14

7% 

-

0.07

5% 

-

0.08

7% 

2.650

% 

2.69

7% 

2.68

0% 

8.703

% 

8.54

0% 

2.65

0% 

8.550

% 

Rebuf 

improvement 

(*10000) 

-

0.3 

% 

10 % 4% 2.7% 1.4% 0.6% 17% - 

0.2 

% 

0.4 

% 

1% -

0.1 

% 

Better (QoE) 0.460

% 

2.07

0% 

1.26

9% 

1.27

0% 

98.38

0% 

98.7

34% 

98.8

50% 

99.42

1% 

99.5

40% 

98.0

00% 

99.70

0% 

Same (QoE) 99.30

0% 

97.4

65% 

98.2

69% 

97.9

10% 

0.810

% 

0.57

0% 

0.92

0% 

0.231

% 

0.46

0% 

0.23

0% 

0.230

% 

Worse (QoE) 0.230

% 

0.46

0% 

0.46

1% 

0.81

0% 

0.810

% 

0.69

0% 

0.23

0% 

0.347

% 

0.00

0% 

0.81

0% 

0.000

% 

Table 4.6: Result of different QoE formula’s focus using technique in C4.5 
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Figure 4.10: Decision Tree with different weight value 

 With the change in weight, we can see that when rebuffering time was not considered at 

all for the QoE formula, the Decision Tree algorithm only slightly improves the QoE value, average 

bitrate and slightly worsen the rebuffering ratio. Out of all the testing sessions, we only have 0.46% 

sessions performing better, 0.23% performing worse and the majority of sessions performing the 

same and this ratio continues as the weight increases up to 15. However, for the QoE value, 

according to figure 4.8, QoE improvement in general increases as the weight increases. The average 

bitrate also goes from worse to improved compare to the single best parameters set. Rebuffering in 

general has gone down as the weight increases. This is to be expected. The BBA algorithm actively 

pushes the average bitrate down to avoid any possible rebuffering. When we select the single best 

QoE for the entire dataset, we also have to take into account the rebuffering of the sessions, hence 

the overall average bitrate is low. However, once the data is learned via decision tree, each group 

of sessions can now freely choose a better average bitrate for their group without having to worry 

about other sessions in other groups holding it down due to rebuffering, so the bitrate in average 

increases as the weight increases. Starting from weight set 20 onward, we see that the ratio of 

sessions performing better stays relatively stable at around 98.8%, and the ratio of sessions perform 

the same also stays stable at around 0.6%. The ratio of sessions performing worse stays low at 

around 0.5% throughout all different weight values. With the above analysis, we can conclude that 

our Decision Tree solution performs well with stable results across different QoE settings, which 

means that it can be used by all video hosting services with different requirement and focus for 

their video streaming system. 

Another result we can get with our proposed algorithm is related to its cost. The decision 

tree building and testing itself takes a relatively small amount of time, with the run time stay at only 

4900-5000ms for tree building, and the testing took around 700ms on a desktop with an i7 gen 4. 
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The time consuming part comes from building initial QoE table by simulating the ABR algorithm 

itself: It takes up to 20000ms on the same machine. The runtime for machine learning part however 

does increase to 6700ms when running with more number of parameters set (49 sets), but because 

tree building only needs to be run once and the decision tree the algorithm built can be used for 

decision making at the start of any video viewing session, we do not have to worry too much about 

building time. As for the cost of space, the decision tree object is relatively small at only 770-

800KB. However, the data used to build the tree takes much more space, at around 8MB for 7 

different parameters set. While these data do not need to be kept after the decision tree is created, 

it is advised that these data be kept so that in the future, should there be more parameters set to be 

considered, and we do not have to reconstruct these data and can easily make a new decision tree 

with just the new data added in. 

 

4.3/ Future Work 

From what we learned in doing this thesis, in future, we can keep improving our algorithm 

by tackling these two problems: The first is in regard to the number of parameter set we have. We 

proposed 6 different changes to the reservoir and 6 different changes to the slope of the two 

parameters in BBA algorithm. Combining them together we have 36 different parameters set. It is 

easy to see how this number could increase exponentially if we have a large number of parameters 

or increase the number of values per parameter. For this problem, we hope to be able to look at the 

change within each single parameter only, and reduce the number of parameters that we should 

bring up for the combination test. For example, if in BBA algorithm, the reservoir changes do not 

improve the QoE of the algorithm much, we can remove the reservoir changes from our 

consideration and only focus on the slope to improve the QoE. Or, if we see the trend that the higher 

the reservoir is, the better the algorithm performs, we can just limit ourselves to the top 3 reservoir 

values when we carry out  the combination test, in order  to reduce the number of parameters set 

we have to consider. 

Another point we want to consider is that, in the current thesis, we proposed to use Decision 

Tree, which is a very powerful and commonly used Machine Learning technique. But Decision 

Tree is not the only Machine Learning technique out there. In the future, we would like to further 

explore  the proposed method using different machine learning techniques, to find out the 

advantages and disadvantages of each of them, especially in regard to whether it can improve the 

performance of our algorithm or not. 

Last but not least, at the moment we only consider the rebuffering ratio and average bitrate, 

but in the future we would like to also consider other parameters that can be changed such as join 

time, buffer size and record what kind of effect they have on the algorithm. 
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4.4/ Conclusion 

We now make the final conclusions of this thesis based on the result we obtained in chapter 

4.2. We have proposed a way to systematically define which parameters set is better than another, 

and which one will have some tradeoff. With this proposal, we can improve the performance of an 

ABR algorithm. To achieve more performance increase in the ABR algorithms, we can use our 

modified decision tree algorithm, leading to further increase of the QoE value by 8.593%, with a 

majority 98.38% sessions performing better than before. Our modified decision tree algorithm can 

improve the QoE across various client requirements on different QoE metrics. Furthermore, our 

algorithm has a low cost both in runtime and space. While the tree building only needs to be done 

once in a while on the server, the testing algorithm is efficient enough to be run in real time for 

every client with ignorable negative impact to the user’s view experience, such as increased join 

time. 
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