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ABSTRACT 
 

Finding the shortest path between two points on a given grid map is called path finding. 

Many algorithms have been devised, but the most widely used and efficient is A*. 

Theta* is an any-angle algorithm that finds shorter and more realistic paths when 

compared with A*. 

Theta* is an any angle path planning algorithm which works by utilizing line of sight 

checks during the search to find shorter paths due to which the algorithms takes 

considerable amount of time to find the goal as the map size increases. 

To solve this problem C – Theta* is proposed, It utilizes the concept of clustering to 

improve the search performance by implementing on-demand line of sight checks, this 

improves the time taken by C – Theta* to find the goal by at least 20% when compared 

with Theta* and the paths plotted are as short as Theta* and no longer than A* 

algorithms. 
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CHAPTER - 1 INTRODUCTION 

This chapter describes the domain of path finding and what are the components of path 

finding. It also looks at the problems in path finding since CPU resources are limited 

and game maps used are becoming more complex and realistic as well as  the size 

increases in size of these maps with an increase in the number of agents on these maps 

[15] makes path finding an interesting research area. 

1.1 Problem Domain 

Path finding is the process of finding a low cost traversal path between two nodes in a 

graph these nodes are referred to as the start and goal node respectively. Let us consider 

a graph G on which two nodes ‘s’ and ‘t’ are selected. The process of path finding 

determines a path that is traversal from ‘s’ namely the start node and ‘t’ the goal or 

target node. Though there can be a number of paths that can be plotted from one node 

to another the aim of path finding is to find the least cost path if one exists. In general, 

if there exists a problem of finding a least cost path and this problem can be applied to 

a graph ‘G’ then the process of path finding can be applied to this problem. 

Path finding is used in many real life applications such as GPS systems, networking, 

robotics and video games [14]. For example in a GPS system the maps can be 

represented as a graph G where the roads can be represented as edges and cities as nodes 

connected by these edges, when a user selects a source and destination the system using 

path finding can plot a least cost path for the user. In video games path finding can be 

applied in a similar way where a path needs to be plotted for an agent to traverse to 

various locations of the game map based on the users input. 

Based on our observations of path finding the process of path finding can be reduced to 

searching. It can be applied to games such as chess and the 8- piece puzzle game, where 
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the goal is to arrange all tiles in a sorted order in such a game the next possible positions 

of a tile can be represented as the nodes. The problem of path finding can be applied to 

NP- hard problems such as the famous travelling salesman problem and the N-Puzzle 

problem. 

1.2 Components of Path finding 

There are three components of path finding are, 

1. Spatial Representation. 

2. A searching algorithm 

3. A Heuristic 

1.2.1. Spatial Representation 

 Spatial representation is also known as the process of representing the environment for 

a path finding problem. To perform any sort of path finding the environment needs to 

be discretized into a graph. 

To improve the process of path finding the environment can be represented into special 

types of graphs such as 

a) Navmesh. 

b) Waypoints  

c) Grids. 

a) NavMesh: 

Navmesh is a special type of graph that is used to abstract the real world into a graph. 

In short a navmesh can be defined as a set of convex polygons that describes the 

walkable surface of an environment [13]. The polygons in a nav mesh follow the 

following property:  Consider a convex polygon P, then there exists a straight traversal 

path between any two points with the convex polygon P. Thus a convex polygon 
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guarantees a free walk for an agent as long as it is in the same polygon. The standard 

edges of polygons in a navmesh range from 3 to 6 anything above 6 edges becomes 

complex and expensive memory wise [11]. 

The Fig 1.1(a) and Fig 1.1(b) describe how the real world is represented as a navmesh 

and the method in which these paths are plotted on a navmesh. 

 

Fig 1.1 (a): The real world represented by N- sided polygon navmesh. 

 

 

Fig 1.1(b) : The real world represented as a N- sided polygon navmesh with 

centroids placed in a convex polygon to plot the path from the node ‘s’(start) 

node ‘g’ (goal). 

b) Waypoints: 

A waypoint graph is another representation of the real world used in path finding. A 

waypoint graph consists of nodes placed at various locations of the map. These nodes 

are connected by straight line edges over which traversal is possible. 
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A waypoint graph is usually designed by a user, which requires a lot of tuning for a 

search to be efficient. It works well on maps that representing closed spaces for example 

a map of connecting rooms. As the number of waypoints increase on a map so does the 

complexity of the waypoint graph. 

                  

 

Fig 1.2 a): A real world representation of the environment with waypoints b) Waypoint Graph 

The above Fig 1.2(a), Fig(b) provides a representation of strategically placed waypoints 

and how they are connected with straight lines (edges) to form a waypoint graph. 

c) Grids 

To represent the real world the most commonly used graph structure is a grid. A grid is 

a graph made up of repeating squares called tiles or a set of squares to represent the 

map terrain [12]. The popularity of grids is attributed to the fact that a grid can be 

generated quickly and efficiently to represent the environment and are utilized heavily 

in path finding research to test new algorithms. The below figure shows how the real 

world environment can be represented as a grid. 

 

Fig 1.3 Spatial representation of a map using grid structure. 

 

 

 

 

 

 

                          (a)                                                                                            (b) 
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The tiles in the grid shown in the above Fig 1.3 can be used to store information about 

a region or a single tile in a grid map. For example a map of a strategy game called Age 

of Empires can store the amount of resources in the tiles of the grid map (a gold mine 

or quarry). 

If the real world is represented as a grid the movement of an agent on a grid is restricted 

to 4-way movement (cardinal) or 8- way movement (octile) as shown in Fig 1.4 below. 

                        

  Fig 1.4: Grid representation and the type of movement possible on a grid. 

Most path finding problems when using grids for spatial representation can move based 

on the following movement described in Fig 1.5 below. 

                                   

     Fig 1.5: Different methods to plot a path on grid map. 

 The map on the left represents a path using the centroids of the tile and the right 

represents a path along the grid edges. 

In this thesis the maps are represented as grids because they are the most popular type 

of spatial representation used by the research community. 

1.2.2. Search Algorithms 

There are a number of search algorithms that work on a graph to find a goal from the 

start node. Some of the early search algorithms in this area are breath first search, depth 

1 

s 

g 

  
s 

g 
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first search, iterative deepening search, these algorithms will find the destination if a 

path exists but they aren’t intuitive and they approach the problem utilizing the strategy 

of brute force , i.e., the algorithm will search every node  on its way to the goal on the 

graph. 

To provide a more intelligent and intuitive method of searching the environment 

(graph) a group of algorithms were implemented known as informed search algorithms. 

Dijkstra’s search algorithm is an informed search algorithm that is used to solve the 

single source shortest path problem, it uses the actual cost to traverse from one node to 

another until the goal node is discovered and will select the path with the least cost from 

the source to destination[16][17]. Similarly best first search estimates the cost to 

traverse from node to node instead of using actual traversal costs until the goal is 

reached.  

A* algorithm was developed by merging the properties of Dijkstra’s and best first 

search. It is described in detail in Chapter 2.  

1.2.3. Heuristics 

Heuristics are the cornerstones of modern path finding methods. They provide the 

search algorithm with ability to estimate the cost to reach the goal. A heuristic is a 

method that aids in decision making and problem solving in human beings and 

machines [18]. 

 In path finding consider a map on which a path finding algorithm needs to move from 

the start node to the goal node, the algorithm needs to decide which node to expand 

based on cost of traversal from the current node to its successor node on the path to the 

goal. A heuristic will aid the algorithm in deciding the most desirable node to expand, 

i.e., the least cost node. 
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In path finding some of the most popular heuristics that are applied to solve a particular 

problem are, 

a) Manhattan Distance. 

b) Euclidean Distance. 

a)  Manhattan Distance 

Manhattan distance is calculated by measuring the length between two points on a grid 

along right angle axes. The heuristic is inspired based on the road network of the city 

of Manhattan which represents a grid layout. The Fig 1.6 represents the plotted path 

based on Manhattan distance. 

 

Fig 1.6: A grid map with start and goal node and the path plotted using Manhattan distance 

heuristic. 

Consider two point x (xi, yi) and y (xj, yj) at right angle to calculate the distance between 

them using Manhattan distance the following formula is defined below. 

h (n) = ∑(|𝑥𝑖 − 𝑥𝑗|) + (|𝑦𝑖 − 𝑦𝑗|) 

b) Euclidean Distance 

The heuristic Euclidean distance is defined as the straight line distance between two 

points of a tile on a grid. In a 2D space the heuristic is defined as the Pythagorean 

Theorem.  
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Fig 1.7: A grid map with start and goal node and the path plotted using Euclidean distance as 

heuristic. 

Consider two points x (xi, yi) and y (xj, yj) is a 2D space the Euclidean distance is 

defined as follows. 

h (n) = √(𝑥𝑗 − 𝑥𝑖) 2 + (𝑦𝑗 − 𝑦𝑖) 2 

In Euclidean space 𝜔3 the distance between two point x, y and z is defined as, 

h (n) =  √(𝑥𝑗 − 𝑥𝑖) 2 + (𝑦𝑗 − 𝑦𝑗) 2 + (𝑧𝑗 − 𝑧𝑖) 2
2

 

This thesis uses Euclidean distance for evaluation of the performance of the search 

algorithms under review. 

1.3 Contribution of this Thesis 

In this thesis we introduce a new any-angle algorithm. It is a variant of the Theta* and 

has been christened C-Theta*. 

C-Theta* introduces the concept of clustering in the field of any-angle search 

algorithms which are a part of single agent search. The details of C – Theta* are 

explained in chapter 3 Proposed Approach.  
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Any angle algorithms are a group of algorithms that successfully remove the constraint 

of path traversal on a grid map along the edges of the grid map. Consider the agent 

needs to move from the current node to its neighbor or successor node in a grid map. 

The movement is restricted to 45 degrees in the map thus an agent can move only on 

the grid edges as defined above. The movement is unrealistic especially in free space 

and cannot be considered as the true shortest path. 

Though these algorithms successfully remove the constraint of movement and find 

shorter paths as explained above. The time taken to find the path from a given start node 

to a goal node on a grid map is considerable. They become especially slow as the map 

size increases which makes them undesirable. 

This thesis looks at improving the performance of Theta* an any-angle path finding 

algorithm. The aim of C-Theta* which is a variant of Theta* is to improve the 

performance and at the same time maintain the structural properties of Theta* whose 

properties make it an algorithm that is easily adopted by users and used extensively on 

grid maps. 

Thesis Claim: 

C-Theta* the proposed algorithm  in the thesis performs better that its predecessor 

Theta* in terms of run time as well as reducing the number line of sight checks 

introduced by its predecessor and plotting paths that are shorter than A*.  

The experiments performed to compare the performance of C – Theta* with other path 

finding algorithms (A* and Theta*) are showcased in chapter 4 to validate our claim.  
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1.4 Organization of this Thesis 

The thesis is organized as follows: As seen above chapter 1 provides a brief introduction 

to the world of path finding. In Chapter 2 we discuss about any-angle path finding and 

the milestones in this area of research. The chapter provides a brief overview on Theta* 

and the latest work done on this any- angle algorithm to improve its performance or 

tweak it to perform under certain environments. Chapter 3 introduces C - Theta* which 

is the pillar of this thesis or the main contribution. The features and properties of the 

algorithms are explained in detail. Especially the concept of clustering, the process of 

region creation and determining the node region during search are explained in detail. 

Chapter 4 describes the experimental setup implemented to test the path finding 

algorithm without bias. Chapter 5 showcases our results comparing C – Theta* with the 

following existing path finding algorithms A* and Theta*. Chapter 6 documents the 

observations made and the concluding remarks for C-Theta* and Chapter 7 provides a 

brief insight into the future work possible on C-Theta*. 
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CHAPTER - 2 BACKGROUND 

This chapter looks at what work has been done in path planning under any-angle path 

planning. It documents the efforts taken to increase the performance and applications 

of these genre of path planning algorithms. 

Any-angle path planning algorithms are a relatively new area in the field of path 

planning or path finding algorithms. In the early part of this century extensive research 

was conducted on improving and optimizing traditional path finding algorithms such 

as A* and Dijkstra’s. These algorithms are efficient, robust and widely used in many 

practical applications such as video games, GPS systems, network design layout, 

robotics etc. 

Traditional algorithms such as A* and Dijkstra’s find the shortest path. Though this is 

not the true shortest path because the movement of an agent is constraint along the 

edges of a grid tile in a grid map. This also causes the movement of an agent to look 

unrealistic because of unnecessary turnings in free space on a grid map. To smooth a 

path plotted by A* or Dijkstra’s a post-processing step is introduced known as string-

pulling which is an overhead cost and the difference in the path can be seen in Fig2.1. 

To solve this problem in path finding any-angle path finding was introduced the main 

objective of these algorithms is to void the constraint of an agents path along grid edges 

and propagate search information along grid edges. 

            

Fig 2.1: Before and after path plotted using string pulling. 
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2.1. A*  

A* is an informed search technique. The algorithm merges the properties of two well-

known search algorithms namely Dijkstra’s and Best first search. A* was developed 

by Hart, is the most widely used and known algorithm in the domain of path-finding 

[1]. 

Algorithm -1  : A* Pseudo-Code [1] 

 

1: Main() 

2: S (start)  := 0; (Start Node) 

3: parent := S(start); 

4: open := 0;       

5: f (S (start) ) := g(S(start))+ h(S(start));   

6: open. Insert(S(start),f(S (start))); 

7: closed := 0;  

8: while open != 0 do 

9:      S: = open. Pop(); 

10:         If S == S(goal) then  

11:               return “Path  Found” ; 

12:    closed := closed U {S} 

13:  for each S’ ∈  neighbors (s) do 

14:         if S’ ∈  closed then  

15:        if S’ ∈  open  then 

16:           g(S’)  :=  ∞; 

17:           parent(S’) := NULL; 

18:   nodeValue(S, S’); 

19: return “path not found”; 

20: end; 

21: nodeValue(s, s’) 

22: If g(s) + c(s, s’) < g(s’) then   

23:  g (s’) := g(s) + c(s, s’); 

24:  parent (s’) :=  s; 

25:      if s’ ∈ open  then  

26:          open. Pop(s’); 

27:  open. Push(s’, f(s’)); 

28: end; 
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Algorithm -1: A*[1] pseudo-code describes how A* [1] finds the goal from the start 

node. The algorithm maintains two lists the open list (line 4) and the closed list (line 

7). At the start of A* [1] search the open list contains the start node while the closed 

list is empty. The neighboring nodes around the start node are expanded by evaluating 

their f-scores and are placed on the open list (lines 21-28).The node with the lowest f-

score (low - cost) is selected for expansion(line 9). This process is repeated until the 

algorithm finds the goal node or there are no nodes left for expansion, i.e., the open list 

is exhausted (line 8). 

If the algorithm finds the goal node it traces the path back from the goal node to the 

start node. This is achieved by maintaining a pointer reference in the child node, i.e., 

the node that gave birth to it. 

In Fig 2.2 (a), Fig2.2(b), A* [1]  utilizes the open list to process nodes by either adding 

nodes to the list or updating nodes in the open list as it searches for the goal node. The 

nodes visited and already processed are placed on the closed list. The nodes represented 

in teal are the nodes in the closed list and the nodes surrounding the nodes in the closed 

list are on the open list represented by light blue. 

      

Fig 2.2(a): Spatial representation of the search space. 2.2(b) Pictorial 

representation of the A*[1] algorithm search process.  
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2.1.1. Evaluation of f (n) 

To evaluate which nodes are to be expanded to reach the goal, A* uses the following 

evaluating function to calculate the cost of each node ‘n’. 

f (n) = g (n) + h (n) 

Where, 

g (n)  is the actual cost of traversal, i.e., the cost from the start node to the node ‘n’ by 

adding up cost in between to reach ‘n’. At the start g (n) = 0. 

h (n) is the estimated cost to reach the goal from the node under consideration ‘n’. It is 

also known as the heuristic cost or function. It is an approximate estimate as to the cost 

of traversal from the node under consideration ‘n’ to the goal. For example, in a GPS 

device calculating the straight line distance from the user’s current location to the 

destination using Euclidean distance. 

2.1.2. Optimality and Completeness  

A* [1] is an optimal search algorithm by implementing an admissible heuristic like 

Euclidean distance, Manhattan distance etc. because these heuristics will never 

overestimate the cost to reach the goal. A* [1] guarantees a shortest path using tree 

search if the heuristic used is admissible. 

 A heuristic is said to admissible if for every node s in a graph the estimated cost h(s) 

to reach the goal node is less than h*(s) (h(s) ≤  h*(s)), where h*(s) is the true cost to 

reach the goal from the start node. This called the optimistic property of an admissible 

heuristic. 

For example, consider GPS systems using Euclidean distance as a heuristic to measure 

the straight line distance from the start to the goal node. 
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A* guarantees to find a shortest path using graph search if the heuristic used in A* is 

consistent. A heuristic is said to be consistent if for every node s, and every successor 

node s’ of parent s generated by an action a, h(s)  ≤ c(s, a, s’) + h(s’) where c(s, a, s’) 

is the cost of travel from s to s’ based on some action ‘a’. This states that the evaluation 

function f (n) should be monotonically increasing. 

A* is complete, this means that A* is will always finds a path to the goal node if one 

exists.  

2.2 Field D* 

It was the first algorithm to consider the nodes as the corner vertices of a grid tile on a 

grid map. The motivation for developing field D*[4] was to develop an efficient path 

planning algorithm in the field of robotics. Field D*[4] is an extension of D*[19] and 

D*Lite[20] proposed by Sven Koenig they are novel path planning and re-planning 

algorithms that continuously repairs the path based on the environment and are based 

on A*. Field D* [4]uses a linear interpolation technique to reduce the cost of travel 

from the start node to a goal node, produce smoother paths from the start to the goal 

node  as well as reduce unnecessary turning on a grid map. 

This algorithm was developed with the motivation to be used in robotics. Most path 

finding algorithms restrict the movement of an agent as discussed above on a small set 

of headings like 0, 
𝜋

2
,

𝜋

4
 etc. [4]. For example consider traditional path finding 

algorithms that traverse along a set of discrete possible solutions. In such scenarios a 

robot is able to traverse along headings restricted to 
𝜋

4
  which results in paths that are 

not optimal and when these methods are used with string pulling the trajectories of the 

agent’s path can be expensive.  
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Field D*[4]  uses the below described linear interpolation method to compute the cost 

to drive its search which results in paths that are low in cost and also have low cost 

trajectories. In Fig 2.3 (a) below the nodes are represented as a set of edges {s1s2, s2s3, 

s3s4, s4s5, s5s6, s6s7, s7s8, s8s1} on which the optimal path from node‘s’ must exist. 

         

Fig 2.3(a): Field D* corner vertices expansion. (b):The traversal cost from node ‘s’ 

utilizing the path cost of s1 and s2.the traversal cost ‘c’ and traversal cost ‘b’ of the bottom 

cell.[4] 

 

From the above Fig 2.3 consider the shortest path from the node‘s’ under consideration 

to pass through an grid edge connected to the neighbors of node‘s’. To compute the 

path cost using the set of edges describes in Fig 2.2 field D* also computes of the nodes 

connected by the edge s1s2 and the traversal costs from the node‘s’. 

Field D* assumes a point sy resides on the edge under consideration for example s1s2 is 

a linear combination of g (s1) and g (s2). 

   g (sy) = yg (s2) + (1-y)g (s1)…….. [4] 

Where ‘y’ is the distance from s1 and s2.Though this is not an exact assumption in theory 

it works well with linear approximation. Thus the path cost of node ‘s’, s1, s2 and  cost 

‘c’ is computed by field D* using the following equation. 
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𝑚𝑖𝑛
𝑥,𝑦

 [bx + c √(1 − 𝑥)2 + 𝑦2    + g(s2)y + g(s1)(1 – y]…[4] 

In the above equation x belongs to the  interval [0, 1] which is the distance along the 

bottom edge ‘b’ from the node under consideration ‘s’ before cutting across to reach 

the line edge s1s1 at a distance y from the node s1 and y belongs to the interval[0,1]. 

2.3. Theta*  

Theta*[2] is a variant of A*[1]. Though A*[1] is known for completeness and 

optimality in finding the path from the start node to the goal node, it does not find the 

true shortest path because the path is constrained along grid edges.  

The motivation for Theta* was to remove this constraint and to find short and realistic 

looking paths [2]. Theta* performs line of sight checks on the fly to remove the 

constraint of traversal along grid edges this method is known as “string pulling”. Thus 

eliminating the constraint of traversal along grid edges by broadcasting information 

along the grid edges of the map. On the next page the pseudo-code describes how 

Theta* traverses from one node to another.  
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Algorithm -2: Theta* Pseudo-Code[2] 

1: NodeValue(s, s’) 

2: If LOS (parent(s),s’ & ) then 

/* Decision – 1 */ 

3:      If(g(parent(s))+c(parent(s),s’)) < g(s’) then 

4:             g(s’) := g(parent(s)) + c(parent(s),s’); 

5:             parent (s’) = parent(s); 

6:          if s’ ∈ open then  

7:              open.pop(s’); 

8:                      open. Push(s’, f(s’))         

else /*Decision -2 */ 

9:     If g(s) + c(s, s’) < g(s’) then  /*(where c(s, s’) cost to move from s to 

successor node s’)*/ 

10:     g (s’) := g(s) + c(s, s’); 

11:     parent (s’) :=  s; 

12:          if s’ ∈ open  then  

13:             open.pop(s’); 

14:                   open. Push(s’, f(s’) 

15: end; 

 

The above algorithm pseudo-code describes how Theta* explores the grid map to find 

a path from start to goal node.  The process is similar to A* except for the function 

described above (lines1-15) this function is called in Algorithm - 1 (line 18) and the 

line of sight algorithm. Theta* considers two decisions while deciding which node to 

expand and the constraint on the predecessor node being the parent of the successor 

node is removed, i.e., in the case Theta* the node under consideration can be any of the 

evaluated predecessor nodes. The decisions are described in detail below.  
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Decision – 1 

Consider a node s’ under consideration and whose parent node is the predecessor node 

s. If a line of sight exists from s’ to the parent of s, i.e., parent(s). Theta* then considers 

decision one (lines 2-8).In this case the sum of the actual cost of parent(s) and the cost 

of traversal from the parent(s) to s’ (g (parent(s)) + c (parent(s), s’)) is compared with 

the actual cost of the node s’ under consideration, i.e., g(s’).If the cost is less than the 

actual cost of s’ g(s’)  (line 3)  then the algorithm will replace the cost g(s’) with  the 

cost [g(parent(s)) + c(parent(s),s’)] and anchor the parent of s with the node s’.[2] 

Decision – 2  

This decision is similar to A*, i.e., the sum of the actual cost of the node under 

consideration s’ g(s’) and the cost of traversal from s to s’ c(s, s’). [2] 

                 

Fig 2.4(a): Spatial representation of the search space. (b) Pictorial representation of the 

Theta* algorithm search process.  

In the above Fig 2.4 (a) and (b) Theta*  utilizes the open list to process nodes by either 

adding nodes to the list or updating nodes in the open list as it searches for the goal 

node based on the output of the line of sight checks. The nodes visited and already 

processed are placed on the closed list. The nodes represented in teal are the nodes in 

the closed list and the nodes surrounding the nodes in the closed list are on the open 

list represented by light blue. The red line represent the path plotted by Theta*. 
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2.4. Lazy Theta* 

Sven Koenig et al. proposed Lazy Theta*[8]. In a 3D environment the average shortest 

paths found between a start and goal node are 13% longer than paths found in a 

continuous environment, as per the authors, there is a need for a smart path planning 

algorithm for a 3D environment [8]. Theta* an any angle path planning algorithm can 

be tweaked to be adapted in a 3D environment, but since Theta* will perform a line of 

sight check for every unexpanded neighbor of a node under consideration and in a 3D 

grid map environment each node will have 26 neighbors under evaluation for a line of 

sight check before expanding the lowest cost neighbor which would make Theta* 

undesirable in a 3D environment.  

The authors introduced Lazy Theta *[8] which is an extension of Theta* designed for 

a 3D environment grid map. Lazy Theta*[8] is similar to Theta but is based on lazy 

evaluation, i.e., it performs only one line of sight check for every expanded node [8].  

Algorithm - 3: Lazy Theta* Pseudo-Code [8] 

1. SetVertex(s) 

2. If ! (Lineofsight (parent(s), s’)) then  

3.    parent (s) := argmins’ 𝜖 neighbor vis(s) ∩ closed (g(s’) + c(s’ , s)); 

4.    g(s) := mins’ 𝜖 neighbor vis(s) ∩ closed (g(s’) + c(s’ , s));  

5. end 

6. ComputeCost (s, s’) 

7.             /*Decision – 1 */ 

8.  If g (parent(s)) + c(parent(s),s’) < g(s’)  then 

9.  parent (s’) := parent(s); 

10.  g (s’) = g(parent(s)) + c(parent(s),s’); 

11. end  
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According to the pseudo-code of Lazy Theta* it is similar to Theta* except for the 

addition of the function setVertex (s) and ComputeCost (s, s’). 

In Theta* the algorithm will update the g-value and the parent of every unexpanded 

visible node of the node under consideration‘s’ based on the output of the line of sight 

check the algorithm will update the values of  the neighboring nodes of ‘s’ based on 

decision-1 and decision-2 as shown in the Theta* algorithm described above. 

But in the case of Theta* the algorithm will assume that a line of sight exists between 

the node under consideration and its successor node s’. Thus it will anchor the parent 

of the node s’ with the parent(s) and update the g-value of the node‘s’, in this way lazy 

Theta* reduces the number of line-of-sight checks, Of course this assumption may be 

wrong and needs to be confirmed before expanding the node s’. This is implemented 

in the function setVertex(s) (lines 1-5).In the function setVertex the algorithm checks 

for a line of sight from the parent(s) to s’ (line 2).If there exists a line of sight from a 

node s’ to parent (s) then the algorithm confirms the assumption that a line of sight 

exists from the node s’ to the parent of s. On the other hand if the line of sight check 

fails, .i.e., a line of sight does not exist between the nodes s and parent of s’. In this 

case the algorithm will update the g-values and the parent of s’ based on decision -1. 

In this case the algorithm will consider the path from start node to the node s’’ and from 

the node s’’ to the node s’ based on Euclidean distance (straight line distance) and will 

choose the shortest path. The reason the algorithm considers s’’ is because s’ will have 

at least one unexpanded neighbor in since the node s’ was added to the open list when 

the algorithm expanded the neighbor nodes of the node s. 
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2.5 ANYA 

Daniel Harabor and Alban Grastein introduced ANYA [5] an optimal any angle 

algorithm. Path finding implemented in robotics has been a known problem in the field 

of robotics. On a grid map with the selected nodes, i.e., start and goal node almost all 

any angle algorithms use a Euclidean solution to plot a path. As per the authors many 

online solutions exist but they require supra linear space and pre-processing time [5]. 

Most any angle algorithm forsake optimality for smoother, shorter paths and removal 

of unnecessary turning in free space. ANYA [5], any-angle path finding algorithm 

addresses this issue. 

ANYA [5] considers a set of states when expanding nodes to reach a goal state from 

the start node. These states are represented by intervals in the algorithm. The algorithm 

will select a desirable point enclosed within a state and calculate its f-value which will 

represent the f-value for the whole state. The advantage of ANYA [5] is that it does all 

this online.  

In Fig 2.5(a) below provides a graphical representation of how ANYA [5] considers 

different states while searching for the goal node. The four identified states in fig. 2.5 

are (I’1,r) , (I’2,r) which are visible states and (I’3,r’) and (I’4, r’) which are not 

visible.[5] 
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          Fig 2.5: The above figure represents the state (I,r) consisting of four states.[5] 

Example Trace of ANYA 

 

Fig 2.6: Path finding using ANYA between n1 and n2 where the point y1, y2, y3, y4 represent 

the point considered in different intervals during its search for n2. [5] 
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Consider the following grid map of size 6 × 6 in fig 2.6. With start node n1 and goal 

node n2 .The node n1 is a point at (2, 0) the algorithm will plot a path from n1 to the 

goal node which is at point (3, 4). If we consider existing any angle algorithms like 

Theta* it will consider only the discrete points, i.e., the corner vertices of a grid tile 

while calculating the f- values of the points. Therefore as per traditional path finding 

algorithms the actual cost of traversal from the start to goal node differs, i.e., in 

traditional algorithm the actual cost is a grid – constrained path while in the case of 

Theta* it is the straight line distance between (n1, n2). 

Due to this the condition for optimality as discussed before the evaluating function 

needs to be monotonically increasing which is broken in the case of Theta*.For 

example in fig. 7   the goal node n2 can be reached from its parent node(s) (3,3). 

Applying the evaluating function for the node (3, 3) f (n) = g (n) + h (n)  ⟹  g (distance 

(n1, s)) + h (s, n2) ⟹ 4.16.  For the algorithm to be optimal it should be monotonically 

increasing thus f (n2) ≥ f(s). As per Theta* the evaluating function will compute the 

value for n2 as follows f (n) = g (distance (n1, n2)) + h (n1, n2) ⟹  4.12. Thus breaking 

the condition for optimality. 

To address this issue ANYA [5] considers the corner vertices as well as the 

intermediate point between each of the grid edges. In this case the interval formed 

between to vertices of a grid tile is [0, 1], the problem encountered in this approach is 

the number of point can be very large. This problem can be reduced to a Farey sequence 

by considering the points between two corner vertices as a set of point’s yi lying in the 

interval [0, 1]  along which a point can be on the path of an optimal path from the start 

node to the goal node, this lies between 0 ≤ (w/h) ≤ 1, where w(resp , h) is a set of 

integers between { 0,…..,W}(resp,{0,…….H}), in this case  for any given  n = 

max(W,H) [5] the cardinality  for the corresponding  set of elements quadratic in ‘n’ 
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[5].Thus in the case of ANYA instead applying the evaluation function to each point 

yi.. It will evaluate together all the nodes from the corresponding interval in which the 

point yi appears. 

This makes ANYA a complete and optimal any angle algorithm. 

2.6 Block guided Theta* 

The authors Zi Yang and Wenshen Yu introduce Block guided theta*[3] which is a 

variant of Theta*[2]. Block guided Theta*[3] approaches the problem of any-angle path 

finding with a twist unlike Theta*[2], Lazy Theta*[8] which successively expand nodes 

until a goal state is reached. Block guided Theta* utilizes the blocked nodes in the grid 

map to guide the search to the goal state. The aim behind the algorithm is to reduce the 

number of vertex expansions, Unlike the previous algorithms which focus only on the 

nodes that are desirable (unblocked nodes) block guided Theta* doesn’t consider these 

nodes but rather the unblocked nodes thus creating a finite set of nodes to examine 

during its search which greatly reduces the number vertex expansions. 

 

Fig 2.7: Shortest path selection as per Block guided Theta*[6]. 
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In Fig 2.7 Consider the shortest paths based on one blocked cell (s, s’). As per the line 

axiom if s’ is in area C then the shortest path P = {s, s2, s’} because s2 will be the 

intersection vertex of the path P. [3] 

Algorithm  - 4 : Block Guided Theta* [3] 

 

2. Choose vertex v with the minimum f (v) from open,  

If  LineOfSight (v, t) is true then 

         Mark vertex t closed and go to Step5,  

Else then  

           Put all vertices in BlockedVertices(Line(v, t)) into the target 

queueSet T(v) of vertex v.  

3. For each non-closed vertex v ∈ T (v), do the following check: 

 (a) If LineOfSight(v, v ) is true, 

Mark v open and calculate f (v). Then if f (v) has been changed in set 

open and there is a vertex q depend − on v, f (q) should be updated 

as f(q) = g(v )+1+ h(q) except that the former f(q) is smaller than 

the later. 

 (b) if LineOfSight(v, v ) is false,  

but there is a opened vertex p and v depend − on p, add v to the open 

set with 

 f (v ) = g(p)+1+ h(v ).  

(c) If LineOfSight(v, v ) is false  

And v depends on no opened vertices, then add all vertices in 

BlockedV ertices (Line (v, v ))to the back of T(v). 

 4. Go back to step2. 

 5. Clear set open to empty and do a re-find for the path generated from s to 

t. 

 6. The algorithm ends and return the final shortest path. 
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Block guided Theta* is divided into two parts, in the first part the algorithm will 

generate a path similar to Theta* in which case the nodes with the lowest cost are placed 

onto the OPEN list. Consider a vertex s under consideration by block guided Theta* it 

will try to find a path from the vertex s to the goal vertex g using the Euclidean heuristic 

- straight line distance. 

If the algorithm encounters a blocked node on its path it will select one of the four 

vertices of the blocked node, If the path is relevant, i.e., it can plot a path to the goal 

vertex ‘t’, it will place the select point on to the OPEN list. But if the algorithm cannot 

find a relevant path from the blocked node it will follow back on the depend-on 

situation. If the algorithm cannot find a suitable node to reach the goal it will record 

the blocked nodes. The algorithm will perform a search until it finds a suitable point 

from which the line of sight returns true. 

The author describes the depend-on situation as follows: Consider a point under 

consideration‘s’ and consider two points ‘p’ and v’ which may or may not have line of 

sight to predecessor point‘s’. Then the algorithm will place the point v’ on the open 

list. Fig 2.8. Describes the depend-on situation executed by block guided Theta*. 

 

Fig 2.8: v’ depend – on ‘p’ and the current target vertex under ‘v’.[3] 
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Summary  

This chapter discussed the work done in any-angle path finding by describing various 

algorithms. Thus providing a window to look at the state of any-angle path finding on 

a grid from the time it was implemented in Theta* by Sven Koenig et al. for a grid 

based spatial representation of the problem. 

As seen most of the work focused on optimizing the algorithms runtime to provide 

better solution times as well as concentrating on reducing the path lengths of agents. 

All any-angle path finding algorithms are sub-optimal by nature research has also 

focused on creating an efficient optimal solution as described in ANYA. These 

solutions are important in terms of video games to provide a realistic feel to the 

movement of an agent as well providing an efficient run time solution. In terms of 

robotics it reduces the risk of dangerous heading changes and reduces the cost of 

trajectory movement by introducing line of sight checks at runtime instead of a post 

processing phase. 

Theta * is an efficient, simple and finds shorter paths than traditional algorithms such 

as A* but has a runtime solution that can still be improved especially in the way it 

performs line of sight checks. 
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CHAPTER – 3 PROPOSED APPROACH 

In this chapter the proposed approach is discussed. It explains the motivation for 

developing C-Theta*.  

Clustering is an important concept and a cornerstone of C-Theta*. In this chapter the 

concept of clustering is explained and the clustering algorithm that is implemented is 

described in detail and how this process makes the map more intelligent to improve the 

search is discussed. 

The proposed approach looks at the structure and properties of C-Theta* and how the 

algorithm tries to maintain the properties of Theta* and A* which are mainly ease of 

use in implementation for fast adoption, and finding shortest paths on the map based 

on where the start and goal node are located as well as eliminating unnecessary heading 

changes. 
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3.1 Motivation 

Current research in the field of path planning focuses on any-angle path planning. 

Theta* an any-angle path planning algorithm is a fast and simple to understand path 

planning algorithm, On observing the behavior of the algorithm on grid maps it was 

noticed an agent performs a sizable amount of redundant line of sight checks to fulfill 

the property of any-angle path planning on grids, i.e., to remove the constraint of 

traversal along grid edges. For example consider a map on which the obstacles are 

distributed, there would be large spaces in the map where performing line of sight check 

are pointless shown in Fig 3.1. 

 

Fig 3.1: A grid map with distributed obstacles, regions in the map where a lot of 

unnecessary line of sight checks are performed.  

The idea for cluster Theta* began with a question “How do we perform line of sight 

checks in an intelligent way?” If we consider a map “M” containing obstacles “O” on 

a map how can we best utilize this information to improve Theta* and make it viable 

as the map size increases.  
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One of the solutions is to use clustering on the map to provide or improve the 

information supplied to the agent about the terrain thus improving the path as well as 

navigation on grid maps.  

3.2 Clustering  

To understand C - Theta* the concept of clustering needs to be understood. Clustering 

comes under the domain of machine learning and is a subset of unsupervised learning. 

In unsupervised learning consider an algorithm(machine) that takes an input of data in 

a sequential pattern, let this sequence of data be represented as a1, a2 , a3, a4, a5,a6….an. 

Unlike in supervised learning where the algorithm is given a set of desired outputs and 

trains itself to provide the correct output, unsupervised learning is not provided with 

any of these options. The algorithm does not get any sort of feedback from the 

environment on which it is executed and still provides an approximate correct output 

which makes it difficult to understand since there is no prior knowledge to base your 

results hypothesis on. Unsupervised learning is based on the idea that given an input 

the algorithm can provide a formal representation of the input, i.e., data on which it can 

find patterns to assist in decision making by providing reports on the data and 

predicting future events based of patterns in the input. In short, this domain of machine 

learning mainly focuses its study on unstructured data by finding patterns. 

Unsupervised learning can be summarized in one line “Finding order in chaos”. In 

C-Theta* clustering is an important concept that is implemented to gain better 

understanding of the environment. 

Clustering be defined as a process that works on a set of unstructured data and groups 

this data into groups based on some similarity measure. Thus clusters can be regarded  
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as groups of individuals (data) that are similar to each other in some characteristics and 

dissimilar with other groups of individuals (data). 

                  

Fig 3.2:  A graphical representation of clustering data scattered on a 2D plane. [6] 

The most common feature utilized in clustering are distance measures like Euclidean 

distance and non-Euclidean distances like Jaccard and cosine distance. In Fig 3.2 above 

the data points are scattered in 2D space and by implementing clustering the points 

converge to form the clusters shown on the right. 

In C-Theta* we implement the K-Means algorithm which is a clustering algorithm for 

the improving the information of the map and uses Euclidean distance as a distance 

measure. 

3.2.1. K-Means 

It is the most robust and widely used clustering algorithm and is also known as Lloyd’s 

algorithm. To improve its output K-Means[21] utilizes an iterative technique which can 

be observed in the pseudo-code of the algorithm. 
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Algorithm 5: K-Means Algorithm[7] 

1. Choose the number of k - clusters. k=1,2,3…….n 

2. Select the points to represent a cluster center based on the number of 

clusters, a1, a2, and a3 ….ak. 

These cluster centers are selected based on one of the following ways 

a) Random or structured selection. 

b) Apply priori information (training data). 

c) Selection based on preliminary calculations. 

d) Applying a theoretical principle independent of the actual data. 

3. Distribute the samples among  K means 

The data samples must be assigned to the cluster based on its 

proximity to the cluster centers. 

              x ∈ Si (n) if  | x - ai (n) | ≤ | x - aj | ,  

                                                         for all j = 1, 2, 3 , ….,k; where  i ≠ 

j 

Si (n) is the set of samples whose cluster center is zi (n), where n 

indicates that this is the nth iteration of this procedure. 

4. Compute new clusters for each set  Si(n) 

Find a new value for each ai.: In this case the a new cluster 

centre(centroid) ai (n+1) is chosen which is the mean of the points 

belonging to Si (n) such that: 

                    ai(n+1) = ∑ 𝑥𝑥 ∈𝑆𝑖(𝑛)  

5. Compare ai (n) and ai(n+1) for all i 

Compute the distance measures between each pair of points for 

consecutive iterations. 

a) If there is no substantial change, terminate the procedure. Some 

possible criteria for termination are, 

1. If |ai (n+1) – ai (n) |  < T, ∀ i  

2. If   ∑ |𝑎𝑘
𝑗=1 i (n+1) – ai (n) | < T , ∀ i 
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Fig 3.3. Flowchart of K-Means 
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3.3 C-Theta* 

The below example trace provides an insight into how C-Theta* plots a path between 

two points. 

            

Fig. 3.4a: Grid map cut into regions based on region size. 3.4(b) Path Plotted by C – Theta* 

In Fig 3.4(a) The grid map is processed to create regions based on region size. After 

region creation  a clustering algorithm, in our case K-Means is used to classify a region  

into high and low density based on the number of obstacles in a region Fig 3.4(b) The 

red line plotted from start to goal node is the path found by C-Theta*. 

In Chapter 2 Theta* is described in detail, as discussed in the above chapter it finds 

shorter paths than A*. Though the paths are shorter than A* the time taken is longer 

and as the map size increases this trend continues to increase. 

To address this problem C-Theta* has been developed which attempts to maintain the 

structural integrity of Theta* which makes it a popular path planning algorithm as well 

as it tries to improve the time taken by Theta* to plot the path. 

To understand how C-Theta* works, Consider Fig 3.4(a) and Fig 3.4(b), the map is 

created with obstacles (Fig3.4 (a)). This map is then divided into regions. Once the 
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regions are created the blocked nodes in a region under consideration provides a picture 

on whether the region is a high density region or a low density region. Based on this C-

Theta* decides on whether to perform a line of sight or not. For example, to divide a 

grid map of size 200 × 200 into regions of size 10 the number of regions created is 20 

of size 10 × 10 on the entire grid map. 

Once the regions are created, how the algorithm does decides which density regions are 

high and low? It uses a clustering algorithm to decide whether a region is of high or 

low density.  

In the case of C-Theta*, K-Means is used to decide whether a region is of high and low 

density  by supplying it the number of blocked nodes in a region this data is stored  in 

a single array and it will classify a region based on the number of obstacles into a low 

and high density region. 

This new information is supplied to C-Theta* which considers two type of paths 

explained below 

Smooth Path:  

If a node of a region belongs to a label of low density. C-Theta* will perform a line of 

sight check to plot the path. 

Raw Path: 

If a node of a region belongs to a label of high density .C-Theta* will not perform a line 

of sight check. 

For example in Fig 3.4(b) if the start node selected is represented by ‘S’ and the goal 

node is represent by ‘G’ the algorithm will first create the regions as discussed above 

where they are represented as R1-R4 in Fig 3.4(a).The K-Means algorithm is used to 
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label the regions as high and low density, as shown in Fig 3.4(b) R1-L is a region of 

low density. The start node is in a low density region (R1-L) and the goal lies in a region 

R4-H which is a high density region (Fig3.4 (b)). 

When the algorithm begins, it will expand nodes as per the rule defined in “Smooth 

Path”, Once the algorithm enters R4-H which is a high density region the “Raw Path” 

rule is followed where no line of sight checks are performed until it gets out of region 

R4-H or if the goal is found the search stops and the path is plotted. 

The proposed algorithm is explained in great detail as shown by the pseudo-code 

derived below. 

 

Algorithm - 6 Proposed Algorithm: C-Theta* 

1: Main() 

2: ConvertToRegions  

3: do K-Means Clustering & Label Regions 

/*start*/ 

4: S (start)  := 0; (Start Node) 

5: parent := S(start); 

6: open := 0;      /*(Open list : =  Set of node under consideration)*/ 

7: f (S(start)) := g(S(start))+ h(S(start););   

8: open.Insert(S(start),f(S (start))); 

9: closed := 0; /*( Closed List := Set of nodes already evaluated) */ 

10: while open != 0 do 

11:    S := open.pop(); 

12:       If S == S(goal) then  

13:           return “Path  Found” ; 

14: closed := closed U {S} 

15: for each S’ ∈  neighours (s) do 

16:         if S’ ∈  closed then  

17: if S’ ∈  open  then 

18:      g(S’)  :=  ∞; 
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19:      parent(S’) := NULL; 

20        NodeValue(S, S’); 

21: return “path not found”; 

22: end; 

 

23: NodeValue(s, s’) 

24: If DetermineNodeRegion(s’) then/*Low density Region*/ 

25: If LOS (parent(s),s’ ) then  

26:                 If(g(parent(s))+c(parent(s),s’)) < g(s’) then 

27:           g(s’) := g(parent(s)) + c(parent(s),s’); 

28:           parent (s’) = parent(s); 

29:   if s’ ∈ open then  

30:    open.pop(s’); 

31:        open.push(s’, f(s’)) 

32: else if g(s) + c(s,s’) < g(s’) then   

33:  g (s’) := g(s) + c(s,s’); 

34:  parent (s’) :=  s; 

35:      if s’ ∈ open  then  

36:        open.pop(s’); 

37:                                    open.push(s’,f(s’)); 

38: end  
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The Flowcharts below provide a graphical representation of how C-Theta* performs 

its search between a start and goal node on a given grid map. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.5: Flow chart explaining the pre-processing stage 
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Fig 3.6: Flow chart explaining the structure of C-Theta* search 
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3.4 C-Theta* Vs Theta*  

 

 

Fig 3.7: Theta* Vs C – Theta* 

Fig 3.7 represents a high density grid region of a grid map where the yellow and red 

lines represent a path plotted by Theta* and C-Theta*.The green line represents the 

overlap of both algorithm on the path plotted to reach the goal. 

Consider the above Fig3.7 which portrays the paths plotted by C-Theta* and Theta* in 

a high density region. These regions are where C-Theta* and Theta* differ.  

For example in Fig 3.7 the start node ‘S’ at location [4, 4] and the goal node ‘G’ [3, 2] 

are in a high density region, if Theta* plots the path in this region it will perform a line 

of sight check of each unexpanded neighbor as moves from as it moves towards the goal 
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in this case to reach the node [3,3] it has already performed 6 line of sight checks at each 

of the corner vertices of the nodes [[4,4],[3,2],[3,3]], While as per C-Theta* no line of 

sight check will be performed since the nodes under consideration are in a high density 

region. To move from the node [3, 3] towards the goal Theta* will again perform at least 

3 more line of sight checks to reach the goal node at [3, 2], while C-Theta* will not 

perform any line of sight checks and plot the same path as Theta* to reach the goal from 

[3,3]. 

Though these paths are different and the path length of Theta* is slightly shorter than 

and C-Theta* because of triangle inequality the time taken would exceed that of C-

Theta* because of the redundant line of sight checks because one of the main objective 

of performing line of sight checks in the case of Theta* is to avoid unnecessary heading 

changes in a grid map by performing line of sight checks, but in a high density region 

the chances of performing unnecessary heading changes are minimal. Also the paths 

explored by Theta* and C-Theta* will overlap a fair bit as shown in Fig 3.7. in high 

density regions. 
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Summary 

Chapter 3 discussed the workings of C-Theta* and the motivation behind this novel 

algorithm. 

Since the concept of clustering is an important section of C-Theta* a brief overview of 

how clustering is implemented is explained. The clustering algorithm adopted for C-

Theta* is also explained in detail. 

The structure of C-Theta* is explained via pseudo-code as well as by using flow charts 

for graphical representation of how C-Theta* performs a search to find the goal from a 

give start node. 

The examples provided help in understanding how C-Theta* expands and plots a path 

between nodes as well as providing an insight into how this algorithm differs from 

Theta*. 
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CHAPTER - 4 EXPERIMENTAL SETUP 

4.1 Search Space representation and Heuristic 

The environments used to test the performance of C-Theta* is based on maps made up 

of grids. The performance of most path finding algorithms is tested on this type of 

graphical representation and very popular in video games [9]. The grids maps designed 

have a uniform traversal cost set at 1 to move from one grid cell to another.  

The maps have been designed manually using a base framework developed in JAVA 

by Arttu Viljakainen, Teemu Turunen [10] and modified and enhanced to support any-

angle path finding for experimental purposes of C-Theta*, Random maps of with 

randomly placed obstacle maps are used to test the performance of algorithms which 

assists in testing the algorithm in environments not controller by the user where the 

maps can be tailor-made for a particular problem. 

       

Fig 4.1:  The left image represents a user designed map and the right a random map. 

The heuristic used to drive the search of all the path finding algorithms under 

consideration is Euclidean distance in a 2D space. This heuristic is explained in great 

detail in the introduction. 
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4.2 Assumptions 

a) Static: The graphs generated are static for the experimental results. The reason for 

using static grid maps is because of the preprocessing step ahead of C-Theta* where 

the map is broken into regions. If the maps were dynamic the results would be 

invalidated because of continuous change in information about the grid map. 

b) Information: The information provided at the start, i.e., creation of the grid map is 

constant, i.e., there will be no change in the information supplied to the algorithms 

during run time. This is an important factor because C-Theta* is dependent on a pre-

processed step. 

c) Type of Search: The search will be performed between two single nodes anywhere 

on the grid map these points will be referred to as that start and goal node. In single 

agent search this is a common method used in path finding algorithms research.  

d) Connectivity: The grid map generated will always be connected, i.e., the edges of 

nodes are connected such that a path always exists between  any node in the grid map 

as well as a path from one node to any other node on the grid map. 

e) Tie Breaking: The strategy used to take care of any ties between the f-values of any 

two nodes in the experimental set up is taken care of by the priority queue implemented 

in JAVA version “1.8.0_45”.Therefore the node with the smallest f-value is selected 

and  no explicit tie breaking rule has been defined. 

d) Region Size: For the experiments, on user as well as random maps the region size 

is set at 10 × 10. 

 



46 
 

4.3 Algorithms 

The algorithms under experimentation are: 

a) A* 

b) Theta* 

c) C-Theta*. 

Among these algorithms A* is used as the base algorithm against which both 

algorithms Theta* as well as C-Theta* are compared because A* is the most widely 

used path finding algorithm. This algorithm is used to measure the performance of C-

Theta* in terms of time and the difference in path length when we compare all of the 

three algorithms together. 

As discussed above Theta* is a variant of A* and is known to find shorter paths than 

A* but the time taken is considerable when compared with A*.We use Theta* as a 

benchmark to compare C-Theta* which is a variant of Theta*. 

The last algorithm under consideration is C-Theta* which used clustering improve the 

search time in finding a traversable path between a start and goal node. 

The heuristic used in all three algorithms is Euclidean distance which has been 

explained in detail in chapter 1. 

4.4 Process of Testing 

The maps used to test the algorithms are of dimensions 100 × 100 and 200 × 200 user 

designed maps and random maps of the same dimensions. The start and goal node are 

selected at random on the maps. Our assumptions hold that the selected paths will 
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always be connected any point that are unreachable due obstacle blockages are rejected. 

Also all paths that have their start node equal to the goal node on the grid maps will be 

excluded from analysis.  

The algorithms have been tested on maps with varying obstacle density which has been 

limited to 40% on user designed maps and 30% on random maps. The search is 

executed in cycles of 10 iterations on each instance of a maps with the locations of each 

start and goal nodes spread across the map and no two location under consideration are 

equal, i.e., each start and goal node is unique. 

The algorithms have also been tested on maps of varying region sizes to test the 

performance of C-Theta*. 

4.5 Hardware and Software Environment 

The hardware and software environment used to test the algorithms performance is as 

follows  

a) Hardware  

Machine: Lenovo X201 Thinkpad Tablet 

Processor: Intel i5 second generation 

RAM: 8GB 

b) Software 

The framework used is developed in java and the JVM version used for 

experimentation is "1.8.0_45”. 
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CHAPTER - 5 EXPERIMENTAL ANALYSIS 

5.1 Runtime Analysis 

5.1.1 User Designed Maps 

The algorithms were tested based on the obstacle density of each map under 

consideration and the time taken to plot the path from a start node to a goal node taken 

at random on the map. The below graph (Fig 5.1) displays the time taken by each of the 

algorithms to discover the path on the map size of 100 × 100.  

 

Fig 5.1:  Avg. Runtime of each of the algorithms to plot the paths on a user designed map of 

dimensions 100 × 100. 

Observing the runtimes of each algorithm to find the path from a given start node to 

goal node based on varying obstacle densities on can observe that A* takes the least 

amount of time in finding the path to goal and as expected Theta* the any-angle 
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algorithm on which C-Theta* is based takes the longest. On a high level C-Theta* 

oscillates between A* and Theta*. 

On average the C-Theta* performs better than Theta* is most cases a peculiar thing to 

note is that as the obstacle density increases the performance of C-Theta* improves too. 

For example in the case of 10% obstacle density the performance is negligible as it 

oscillates between 5% and 10% improvement on average and while the obstacle density 

is 0% ,i.e., no obstacles on the map, the performance of C - Theta* is negligible and 

also may take more time than Theta* in some cases. This gradually improves as the 

obstacle density increases from 10 percent - 40 percent. The maximum improvement 

observed in time is 30% when the obstacle density reaches 40%. 

The performance improvement in C-Theta* can be attributed to the clustering algorithm 

and the structure of C-Theta*. By structure, i.e., in the case of C-Theta* the algorithm 

tries to minimize the number of unnecessary line of sight checks using the additional 

information provided by K-Means in the pre-processing step. This makes C – Theta* 

intelligent in the terms of how it executes the line of sight checks on the given grid 

maps C – Theta* is executed on.    

Below in Table 1 the runtime for results in user designed maps of dimensions 100 × 

100 are documented. 

Obstacle Density A* Theta* C-Theta* 

0% 3.1395 4.722615 4.587843 

10% 3.472443 5.898572 4.209572 

20% 9.733683 19.0066 11.58277 

30% 13.35421 25.12258 17.22577 

40% 10.95463 20.28975 15.35478 

   Table 1: Runtime results for the algorithms with varying obstacle density in map size 100 ×     

100. 
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Fig 5.2:  Avg. Runtime of each of the algorithms to plot the paths on a user designed map of 

dimensions 200 × 200. 

The pattern repeats itself in map sizes of 200 × 200 shown in Fig 5.2, where C – Theta* 

again outperforms Theta* when plotting a path from a start node to a goal node but 

unlike in the before results where there was an average improvement of 30 % in the 

maps where the obstacle density was between 30 – 40 % we see a decrease in 

performance by 10% in our results on the 200 × 200 map size. 

Though it may look like the performance degrades as the map size increases but that is 

not the case as an average improvement of 20 % was observed throughout all variations 

in the obstacle densities of the map. This proves that the performance C – Theta* is 
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dependent on the way the clustering algorithm will label the different regions of the 

map. 

It is observed that when the obstacles are tightly coupled there is a decrease in 

performance as observed in the results in the above graphical representation of Fig 5.2. 

Obstacle Density A* Theta* C-Theta* 

0% 17.6736195 17.12443 17.97635 

10% 30.4726895 36.15652 33.15816 

20% 36.15390695 83.76186 53.64893 

30% 30.7462387 60.93086 46.60938 

40% 35.2859 55.32058 44.22221 

    Table 2: Runtime results for the algorithms with varying obstacle density in map size 200 ×    

200. 

 

5.1.2 Random Maps 

The algorithms were compared on random maps with varying obstacle densities and 

the region size was fixed at 10 thus the dimensions each region is 10 × 10.In terms of 

performance  C-Theta* performs better than Theta* on the maps. 

The results for random maps can be observed in the graphical representation of the 

results based on the runtime of each algorithm and Table 3 displays the results of the 

algorithms. 

Obstacle Density A* Theta* C-Theta* 

10% 
4.257459 5.523796 4.528788 

20% 
5.40997 7.600321 5.707198 

30% 
6.037147 9.128994 6.128788 

    Table 3: Runtime results for the algorithms with varying obstacle density in map size 100 ×       

100. 
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Fig 5.3:  Avg. Runtime of each of the algorithms to plot the paths on a random map of size 100 

× 100. 

 

Fig 5.4:  Avg. Runtime of each of the algorithms to plot the paths on a random map of size 200 

× 200. 
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The above results reflect an almost similar pattern seen in the results of the user 

designed maps where on average the time taken by C-Theta* is 20 % less than that of 

Theta* though the time taken is still more when compared with A*. 

Though there are spikes in improvement in time on random maps for example for the 

random map of 30% obstacle density  with map size 200 × 200 we observe an 

improvement of 40%  which is very good when we compare the result with Theta* the 

algorithm we aim to improve. 

Also there seems to exist a pattern in the results though the improvement is of 20% on 

average. When the obstacle density increases the time taken by C – Theta* is closer to 

the result of A* and when the obstacle density decreases the time taken by C-Theta is 

closer to the time taken by Theta*. 

Obstacle Density A* Theta* C-Theta* 

10% 24.25541 34.51403 27.21528 

20% 33.3874 49.29604 35.58314 

30% 38.45055 81.07007 47.97218 

Table 4: Runtime results for the algorithms with varying obstacle density in map size 200 × 

200. 

 

5.2. LOS Analysis 

The Line of sight is used by any-angle path finding algorithms to eliminate unnecessary 

turns in free space and plot a path that looks realistic. In this thesis the focus has been 

to optimize any-angle algorithms by tweaking the line of sight checks to reduce the 

time taken by these algorithms in finding the path. The core of C-Theta*   has been to 

reduce the number of unnecessary line of sight checks which makes Theta* (any angle 

algorithm) an undesirable option as the map size increases. 



54 
 

We observe the effects of reduction in line of sights based upon the time taken by C – Theta* 

and Theta* to find the path for a given start and goal node. Table 5 and Table 6 provide a tabular 

representation of the reduction in line of sight in C – Theta* when compared with Theta*. 

User Designed Maps 

Obstacle Density Theta* C- Theta* 

10% 7869 4974.33 

20% 10350 6455.25 

30% 5766 2315.5 

40% 6724.5 2166.75 

Random Maps 

10% 4996 2256 

20% 4684.8 1798 

30% 3856 1255 

      Table 5: Avg Line of Sights for grid maps of size 100 × 100.  

 

User Designed Map 

Obstacle Density Theta* C-Theta* 

10% 6643 5802 

20% 17807 9758 

30% 31678 25877 

40% 44540 37712 

Random Map 

Obstacle Density Theta* C-Theta* 

10% 15730 7545.5 

20% 16287 8581.333 

30% 18275 6091.767 

      Table 6: Avg Line of Sights for grid maps of size 200 × 200.  

The main reason C- Theta* performs better than Theta* is because of the way it reduces the 

line of sight checks in Theta*. 
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Based on the way the clustering algorithm labels regions we are able to reduce the line of sight 

for a particular map based on where the source and goal node are located. On observing the 

results one deduction can be made, i.e., as the line of sight checks decrease the performance of 

C-Theta* will improve. This phenomenon can be observed when we compare the results of 

random map and user designed map.   

In the case of  user defined maps, on average the number of line of sight performed is between 

35 – 50% less than the line of sight checks performed by Theta*. While this number shoots up 

to on random maps where the line of sight checks are reduced anywhere between 55 - 65%. 

This is in itself proves that as the line of sight checks are reduced the time taken to plot the path 

from the start to the goal node will reduce. 

We can prove this by taking single instances from data tables provided above. If we look at 

Table 2 where the results to find the time taken to plot are path is observed and we look at the 

second row displaying the results for a map with a 10% obstacle spread the performance 

improvement is just 8% while for the same table and a 20% obstacle spread the performance 

improvement is 36% this improvement can be linked to the reduction in line of sight checks 

shown in table 6 where the reduction in line of sight checks for a 10% spread for the same 

results in table 2 is 12% while  for the 20% obstacle spread the reduction is line of sight checks 

is 45%. 

Even though we see an overall improvement in the results from the reduction in line of sight 

checks, the performance is also affected the way in which the obstacles are spread across the 

map. The results reflect this when we look at the results of the random map and user designed 

maps. Where the average performance improvement is 20% as stated above but the 

performance increase to 30 % is observed frequently in random maps as opposed to user 

designed maps where there are few instances of C – Theta* gaining a huge performance 

improvement. 
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5.3 Region Based Analysis 

To test whether the region size affects the improvement of results in C- Theta* we 

conducted experiments on 3 random maps with obstacle densities varying form 10 – 

30%. The maps were divided into regions of 10, 15, 20 and the start and goal location 

were chosen at random on the maps. The tests were for 10 iteration each. 

 

Fig 5.5:  Avg. Runtime of each of the algorithms to plot the paths on a random maps with 

varying region sizes. 

In our experiments we look at two parameters that largely affect the performance of C 

- Theta* namely the region size and the obstacle density. To correlate whether there is 

a difference in performance based on region size the above experiment was conducted. 

We also wanted to see if a link exists between the region size and obstacle density. 

We shall first look at region size from the above graphical representation we can 

conclude that region size does affect the performance of C – Theta*  

If we observe the result on an abstract level we can conclude that the performance of C 

– Theta* is affected by region size if we look at the difference between a region size of 

10 and a region size of 20 there is a considerable performance improvement. For 
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example if we look at the graph and compare the results of a map with 10% obstacle 

density we see an improvement of almost 40% when the region size is increased from 

10 to 20 this also seen when the obstacle density is 30%. 

Thus as the region size increases the performance of C-Theta* also improves. 

If we look closer there is also a relation between the obstacle density and region size 

for example in the above graph when the region size is larger the obstacle density is 

high the performance of C-Theta* improves considerably and this trend continues as 

observed in Fig 5.5. 

Thus we can also conclude that if a grid map with low obstacle exists then tune the 

region size appropriately for best results. 

5.4 Path Length Analysis 

As explained in the previous chapters to improve the path length or shorten the path 

length most path finding algorithms would need to compromise on the time taken to 

find this shortest path. This can be clearly seen in the case of Theta* where is plots 

paths that are shorter than A* but the time taken to find these paths is significant 

especially as the maps size increases. 

Below is a graphical representation of the path length in user designed maps as well as 

random maps.  
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Fig 5.6: The average path length compared with the time taken to find the goal from source on 

user designed maps of size 100 ×100. 

 

 

Fig 5.7: The average path length compared with the time taken to find the goal from the source 

on random maps of size 100 ×100. 
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Fig 5.8: The average path length compared with the time taken to find the goal from the source 

on user designed maps of size 200 × 200. 

 

 

Fig 5.9: The average path length compared with the time taken to find the goal from the source 

on random maps of size 200 × 200. 
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similar pattern noticed in our earlier analysis of the LOS and region based analysis, i.e., 

as the obstacle density increases the path plotted by C – Theta* is extremely close to 

the path plotted by A* though still shorter than A*.  

It was observed the paths plotted were similar to Theta* when the obstacle densities are 

low and as the obstacles increase the path plotted by C – Theta* were similar to A*, but 

an important observation to be made is that the path quality does not degrade as we try 

and optimize the time to find the shortest path from goal to destination. 

5.5 Standard Deviation 

To validate the results of our experiments we have calculated the standard deviation for 

each of the dataset for one particular problems on grid maps. The standard deviation is 

calculated for a random as well as user designed map for the dimensions used in the 

experiments above in the same pattern in which all the results were documented, i.e., 

by ignoring the first 5 iterations and collecting the data of the next 10 iterations. 

Obstacle Density A* Theta* C- Theta* 

10% 0.34 1.312472 1.381999 

20% 0.2277 0.978325 0.143853 

30% 0.30925 0.270195 0.092681 

40% 0.193893 0.093759 0.154389 

       Table 7: Standard Deviations for user designed maps of size 100 × 100.  

Obstacle Density A* Theta* C- Theta* 

10% 0.387187 0.119655 0.5092 

20% 0.135549 0.238611 0.294189 

30% 0.279773 0.307399 0.152067 

       Table 8: Standard Deviations for random maps of size 100 × 100.  
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      Table 9: Standard Deviations for user designed maps of size 200 × 200.  

 

Obstacle Density A* Theta* C - Theta* 

10% 1.468292 1.928006 1.23006 

20% 0.539145 1.424891 1.614983 

30% 1.168435 1.388527 1.109081 

      Table 10: Standard Deviations for random maps of size 200 × 200.  

The tables 7, 8, 9, 10 displays the standard deviation for each map with different obstacle 

densities. On observing the value for the standard deviation for each of the datasets we can 

conclude the experimental set up for testing the performance of each of the algorithms is very 

good because the individual values of each run lie between an extremely tightly coupled interval 

of +1.3 to -1.3 approximately. 

 

 

 

 

 

 

 

 

 

 

 

 

Obstacle Density A* Theta* C - Theta* 

10% 0.699237 0.928006 1.022301 

20% 0.844314 1.129114 1.238258 

30% 0.935076 1.345235 1.312908 

40% 1.284351 1.01688 1.57082 
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Summary 

In our experimental analysis we looked at two types of maps and performed 

experiments related to obstacle density, region sizes, and time and path length. In our 

Experimental analysis we provided an insight into how C- Theta* performs better than 

Theta* and how clustering can be successfully used to make maps more informative 

without manually increasing knowledge of grid maps. 

It was observed that on average C- Theta* performed 20-30% better than Theta* and 

still plotted paths shorter than A*. 

Based on our results we can make the following conclusions. 

1. The results of C- Theta depends on the pattern in which K-Means labels the regions. 

2. As the obstacle density increases C- Theta* performs better and reports times closer 

to A* as well as plotting shorter paths than A*. 

3.  As the region size increases the performance of C- Theta* improves considerably 

the best results were reported using a region size of 20.This can be attributed to the fact 

as the region size increases the number of line of sight checks reduce thus the gain in 

time. 

4. The path quality of C- Theta* does not degrade, i.e., it still plots paths shorter than 

A* our base algorithm while reducing the time to plot such paths. 

5. The time taken by the C – Theta* also depends on the Obstacle spread of the map. 
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CHAPTER - 6 CONCLUSION 

The thesis has explained several concepts of path finding. It looks at any-angle path 

finding and how it differs from traditional path finding methods. This book builds upon 

the work done in any-angle path finding and specifically looks at Theta* in detail. 

Theta* is an any-angle path finding algorithm that uses line of sight checks to eliminate 

the constraint of traversal on the edges of a grid map. Theta* differs from A* by 

performing line of sight checks along with the search to find the goal from a particular 

start node. 

C  - Theta*  uses the same characteristics of Theta*, i.e., performing line of sight checks 

during the search and maintaining its structural properties of being easy to implement 

and use just like Theta* and plot paths longer than Theta* if not as short as A*. In C - 

Theta* we introduce three concepts that makes C – Theta* unique in the field of any-

angle path finding. 

Regions: Dividing the map into regions reduces the overall complexity this concept has 

been influenced by real life, i.e., When an individual needs to search over a large area 

our brain tends to divide the area into regions while performing a search. 

Clustering: To improve the time of any-angle algorithms and enhance their searching 

capabilities we build upon our real life example explained above of searching an 

individual in a large area though our brain creates regions it also associates priority with 

these regions based on some attributes. Similarly C – Theta* implements clustering to 

assign labels of high and low density to the created regions to make the map 

considerably informative. 
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Selective LOS: Based on the results of clustering, C – Theta* can make intelligent 

guesses of when a line of sight check needs to be performed or not on a node under 

consideration based on its location in a region of a map. 

Obstacle Spread: While comparing the results of C – Theta* an important attribute 

was discovered, the influence of the pattern of the obstacle spread on a map. 

This thesis compares C – Theta* with Theta* the algorithm it hopes to improve and A* 

the algorithm against which Theta* performs considerably poorly thus A* .Thus A* 

and Theta* can be consider as the min and max time and the ideal time for C- Theta* 

would be in between these two maxima and minima.  

Based on the results we can conclude that C – Theta* manages to perform considerably 

well against Theta* and manages to catch up to A* to some extent at times. Some key 

observations were made based on the results of C – Theta* from which we can conclude 

that C – Theta* works well in environments where the obstacle density is high. It also 

performs well where the obstacle are spread across the map creating evenly distributed 

clusters of high and low density regions. Also the performance of C – Theta* can 

considerably improve in maps where the obstacle density is low by increasing the 

region size of the grid map under consideration. 

This algorithm can be used in game maps which are considerably huge. It can be used 

in GPS systems to make the maps more informative as well as improving the paths 

plotted for a user based on division of the regions into high and low density. 
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CHAPTER - 7 FUTURE WORK 

In this thesis we have introduced C – Theta* an any-angle algorithm used on static grid 

maps. In the future we would like to extend C – Theta* on dynamic maps and document 

its performance with other path finding algorithms used in dynamic environments like 

D* and D* lite. Another interesting possibility is to explore the use of C – Theta* on 

different representations of graphs such as navmesh and way points. 

In the future work could be done to improve the line of sight process such that it 

performs better if not as good as A* with respect to time taken to plot the path from 

start to goal node, for example introducing time based strategies to execute line of sights 

on grid maps. Currently in this thesis we have implemented only the Euclidean distance 

heuristic to test our results. In the future, experiments can be conducted to test the 

performance of C- Theta* with different heuristics. This would be an interesting test to 

observe the best suited heuristic to be used with C – Theta*. 

Currently we have used clustering to improve the information of the terrain in a map, 

in the future work can be done to explore the possibilities of other methods to improve 

the information of a map. For example creating quad trees algorithm to divide the grid 

into regions based on obstacles and comparing the results with clustering would be an 

interesting topic to explore. Also testing whether the performance of C – Theta* can be 

improved by implementing other clustering algorithms and comparing the results would 

be a nice path to explore the advantages of clustering in path finding. 

While performing experiments it was observed that an important factor to measure the 

performance of C – Theta* is the obstacle spread. In the future we would like to perform 

experiments to prove whether the obstacle spread of a map has an effect on the 

performance of path finding algorithms. 
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