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ABSTRACT 

 
 

Set covering is a well-studied classical problem with many applications across 

different fields. More recent work on this problem has taken into account the 

parallel computing architecture, the datasets at scale, the properties of the datasets, 

etc. Within the context of web crawling where the data follow the lognormal 

distribution, a weighted greedy algorithm has been proposed in the literature and 

demonstrated to outperform the traditional one. In the present work, we evaluate 

the performance of the weighted greedy algorithm using an open-source dataset in 

the context of resource management. The data are sampled from a given roadmap 

with 1.9 millions of nodes. Our research includes three different cost definitions 

i.e. location cost, driving cost and infrastructure cost. We also consider the 

different coverage radius to model possible parameters in the application. Our 

experiment results show that weighted greedy algorithm outperforms the greedy 

algorithm by 8% in average for all three different cost definitions. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Overview 

 
One of the most common problems today is the planning. Planning includes making 

plans about where to build new facilities in a city, how to allocate the resources and how 

to use the resources optimally. Solutions to these problems exist with many techniques, 

and one of them being the solution to the set covering problem. Finding the smallest set 

of solutions of a problem from many sets of solutions is widely researched in many 

fields. A set covering problem is presented as an abstract problem, so it captures many 

different scenarios in the context of knowledge mining, data management, etc. [1]. 

1.1.1 Set Covering Problem and Its Applications 

 
Set covering is a classical problem in the field of computer science. It is one of the 

Karp’s 21 NP-complete problems. This problem is a base for the entire field of 

approximation algorithms. Set covering is considered NP-Hard in optimization and 

search problems and NP-Complete in decision-based problems. 

Set Covering is to select a minimum number of subsets in such a way that they 

contain all the elements from a fixed universe [2]. The most significant factor considered 

in this process is to minimize the cost of the selected subsets. There are various 

applications of set covering. Some of them are as follows [1]. 

Operational Research: - The operational research problem is to locate a facility in such 

a way that specific sites can reach it. This problem can be solved using set covering 

algorithms by considering each set of corresponding sites to a facility. 
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Machine Learning: - In machine learning, items are classified based on examples that 

cover them. The final goal is to make sure that all items are covered by some example, 

which is an instance of Set Covering problem. 

Planning: - In planning, set covering can be applied to allocate resources when demands 

vary over time. To cover the requirements for planning, variations of set covering are 

used [3]. 

Data Mining: - Set covering can be applied to find the minimal explanations for the 

patterns in the data. In data mining, the goal is to find a set of features in such a way that 

every example is a positive example of these features. It can be viewed an instance of set 

cover problem where each set contains some examples which correspond to a feature. 

Information Retrieval: - In Information Retrieval, the goal is to find the smallest set of 

documents that cover the topics in a query. It leads to an instance of set cover where a set 

of documents is required in response to a query[4]. 

1.2 Motivation 

 
In this world, if we want to complete any task we need some resources. Everything and 

everyone need resources to complete its functioning whether a human being or a 

machine. Management of these resources is a problem which needs to be studied to get 

the best use of these resources that we have and to use them for a more extended period. 

When we think of resource management in the field of planning, there are various 

problems which need to be addressed. 

In  strategic  planning  for  big  firms  whether  private  or  public,  facility  location  is  a 

 

significantly  critical   component   of   their   planning.   Facility  location   as   a   part of 
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Operational Research is a well-established area in itself [32]. There are various models in 

this area to help with the decision-making process, and one of the most popular areas in 

those models is facility location model in covering problem. The concept of covering 

comes from its applications in daily life. Some of the problems are to determine the 

number and the location of public facilities like schools, libraries, hospitals, parks, fire 

stations and various other places. 

Another major factor of studying in this area is the need to plan things properly. The 

rapid growth of population concerning some available resources has forced us to think of 

solutions to provide resources to people in such a way that demand can be managed in the 

best possible way. One daily life application of this is the placement of fire stations in a 

city in such a way that those fire stations can cover the entire area of the city and that the 

number of those stations is minimized to reduce the operational cost and initial 

investment in the infrastructure. 

Another part that motivated this thesis work is set covering problem. It is a part of Karp’s 

Np-complete problems, a base of approximation algorithms, that had led to the 

development of various fundamental techniques in this field. The usefulness of set cover 

problem has been seen at many places of the exciting application. 

The weighted greedy algorithm by Wang et al. [16] is a good variation of greedy 

approach for web crawling but hasn’t been tested on any other type of set covering 

problem. The use of this solution within the field of resource management might give 

some good results. 
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1.3 Problem Statement 

 
As the world is dealing with the shortage of resource, there arises a need to either get 

more resources or to manage those resources appropriately. Study on set covering has 

provided many useful results for planning and resource management problems. 

A weighted greedy algorithm for set covering problem has been proposed by Wang 

et.al.[16] within the context of web crawling and demonstrated to outperform the 

traditional greedy algorithm. In our present work, we evaluate the performance of the 

weighted greedy algorithm using open-source datasets in the context of resource 

management. It includes the setting of resource allocation on a sample taken from a 

roadmap with 1.9 million of nodes. The dataset is taken from open source data provided 

by Stanford Network Analysis Project (SNAP)[35]. 

1.4 Thesis Organization 

 
The rest of this thesis is organized as follows: Chapter 2 provides a review of some of the 

concepts and terminologies that are related to this work and provides more details of the 

areas related to this research. It also includes a review of some of the closely related work 

of other researchers. In Chapter 3, we define the problem and present the proposed 

approach. Chapter 4 shows the results of experiments and Chapter 5 concludes the thesis 

with some suggested future work. 
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CHAPTER 2 

REVIEW 

 

 

 

2.1 Dataset 

 
A dataset is a collection of data most commonly corresponding to a database table or 

matrix where rows and columns define some values. They are large in size and might not 

be well organized like a database. Most of the times a data set is a collection of data 

under some experiment. For example:- Temperature data gathered by a probe for every 

half an hour for one month. 

 

 

Fig 2.1: A dataset representing connected nodes of a roadmap 

 

In the above, the dataset for connection among nodes is represented. There are various 

ways to represent a dataset. It can be a numeric matrix, adjacency matrix or a table with 

different kind of data types. 
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2.2 Matrix 

 
A two-dimensional array of numbers arranged in rows and columns is called a matrix. 

The size of a matrix is determined by its number of rows and columns. Usually, rows are 

listed first and the columns second. Let’s say if a matrix is said to be 3 * 4 then it has 

three rows and four columns. 

 
 

 

 

Fig 2.2: Example of a Matrix 

 

Various operations can be performed on a matrix like Addition, Scalar Multiplication, 

and Transposition, etc. There are various types of matrix used in various applications. For 

example, in Graph Theory, the transpose matrix is used to represent the connection 

among nodes. 

 
 

 

 
Fig 2.3: A Network Graph 

 
 

1 1 0 

1 0 1 

0 1 0 
 

Fig 2.4: An adjacency matrix for the above network graph 
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2.3 Coefficient of Variation 

 
The coefficient of variation (CV) is a measure of relative variability. It is the ratio of the 

standard deviation to the mean and is also known as a relative standard deviation. Its 

most common use is in the field of engineering and physics for quality assurance studies. 

The biggest advantage of the coefficient of variance is that it is unitless. It is used to 

represent the consistency of the data. Here consistency means the uniformity of data 

distribution. We can also use it to compare two datasets or samples. The coefficient of 

variation is also denoted by CV:  
� 

� 
(2.1) 

 

 

 

Here S stands for standard deviation and X stands for a mean of the sample. The use of 

CV is limited to some conditions. For example, it should be computed only for data 

measured on a ratio scale and only for non-negative values. It cannot be used for data on 

an interval scale. 

There are some disadvantages when we use CV under certain conditions. For example 

Coefficient of Variation will reach infinity, if the mean is close to zero and it is sensitive 

to small change in the mean. 

2.4 Sampling 

 
The first thing comes to mind when one tries to perform some experiment on big data is 

how to handle big data or how to perform tests on such a big size of data. The technique 

most commonly used is sampling. A small subset of original data is taken out to perform 

CV =
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the tests, and it is assumed if the experiment is right in a sample then it should also 

perform well on the original data. 

Why reduce data? 

 

i. It is not always possible to store all the data. 

 

ii. It is too resource consuming to work with big data. 

 

iii. It is faster to work with a smaller amount of data. 

 

Why Sample? 

 

There are several reasons why we use sampling approach rather than applying direct 

experimentation on original data. Some of the reasons are: 

i. Estimation on a sample is easier and more straightforward. 

 

ii. It is easy to understand. 

 

iii. Sampling is general and is independent of the analysis to be done. 

 

How to take a sample of original data? 

 

Now the question arises how to take a sample. For that, there are various sampling 

algorithms available. Some mostly used are as follow: 

Random Walk:- First we pick a random node and then start a random walk on the graph 

[5]. The next node is selected with a certain probability, the probability by which vertices 

and edges are sampled [6]. If the random walk is struck at some point, it gets back to a 

new starting node and starts the random walk again. 
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Sampling by random node selection:- In random node selection, starting node is 

selected randomly, and then the next node is selected based on the probability of the node 

being selected. This probability could be either proportional to the page rank weight [5] 

of the node, or proportional to a degree of a node, i.e., with how many nodes it is 

connected. It can be used in peer to peer (P2P) networks like Bit torrent [6]. 

Sampling by random edge selection:- This is similar to node selection, while edges are 

randomly selected. It is known as Random Edge (RE) Sampling. The only difference in 

this one compared to random node selection is that we select edge rather than nodes. A 

variation of this model is Random Node-Edge (RNE) sampling, in which, first at random, 

a node is selected and then uniformly at random, an edge corresponding to the node is 

selected [5]. 

Forest Fire Model [8]:- In this model, we pick a random seed node and then begin 

burning outgoing links and corresponding nodes. Once a node is burned, the node at the 

other end has a chance to burn its link which will continue recursively. For example, a 

new graduate student arrives at a university and gets acquaintance with some senior 

students from his department. Those students introduce him to their friends, and those 

friends may introduce him to their friends which make it a recursive process.  This 

process needs two parameters: a forward burning probability, and a backward burning 

ratio. 

 

 

 
Snowball Sampling Approach [7]:- A snowball sampling approach is something similar 

to the Forest Fire Model but with little variation, i.e., it does not use two probabilities, 
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and it can also be carried out without the probability, using a deterministic approach. As 

the name suggests, it starts with a random node and then grows like a snowball by 

collecting all the corresponding nodes to that random node and continues. 

2.5 Set Covering Algorithms 

 
For set covering algorithms, we first need to know what set covering problem is and what 

the desired solutions are. 

The Set Covering Problem is where we have a given set of elements (A finite universe) 

M = {e1, e2, . . . , em} and a set of subsets of M, X = {S1, S2,  . . . , Sn}. Each subset has  

a non-negative cost Ci. We have to find a union of subsets U{Si} which has minimum 

Cost (C) and contains all the elements of M. 

The formal definition of set covering is: 

 

I ⊆ {S1, S2, . . . , Sn} that minimizes ∑ (i∈I)Ci and guarantees ⋃(i∈I)Si=M 

 
Set covering problem is also defined on the 0-1 matrix by Carpara and Toth [9]: 

 

Let A=(aij) be a 0-1 m x n matrix, and c= (cj) be an n-dimensional integer vector. The 

value cj (j ∈ N) represents the cost of column j, assuming that cj > 0 for j ∈ N. j ∈ N 

covers a row i ∈ M if aij=1. SCP calls for a minimum-cost subset S of columns, such that 

each row i ∈ M is covered by at least one column j ∈ S. A natural mathematical model  

for SCP is 

v(SCP)= min∑	∈ N CjXj (2.2) 
 
 

Subject to 
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∑	∈ N  AijXj ≥ 1 , for all i ∈ M, (2.3) 

xj ∈ {0,1}, j ∈ N (2.4) 

 

 
Here Equation (2) makes sure that each row is covered by at least one column and 

Equation (3) is the integrality constraint [2]. 

The set covering problem is an NP-Hard problem, and there are many algorithms 

to solve it. There are two ways to solve this problem: exact algorithms and heuristic 

algorithms. The exact algorithms are mostly based on branch and bound and branch and 

cut [12]. The Best exact algorithm for the SCP is CPLEX [14]. Greedy algorithms may  

be the best fit to solve the significant combinatorial problems quickly. A greedy 

algorithm is discussed in more detail below. 

 

 

 
2.5.1 Greedy Algorithms for Set Covering Problem 

 
Greedy algorithms are a type of heuristic algorithms. There are various reasons why they 

are used so much. According to [11,15], greedy set cover algorithms are best known 

polynomial-time approximation algorithms for set cover. They are easy to implement, 

and that is why they are most commonly used heuristic algorithms. 

Classical Greedy Algorithm:- This is the most basic greedy algorithm. It selects the set at 

each step which contains the largest number of uncovered elements. The process 

continues until all the elements are covered. Let (X, F) be an instance of set covering 

problem, where X contains all the elements in the universe and F contain subsets of X. C 
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is the solution which is initially empty, and S is a single subset. Then the Greedy 

Algorithm will work like this: 

Greedy Set Cover (X, F) 

 

1 U <- X 

 

2 C <- Ø 

 

3 While U≠ 0 do 

 

A. Select an S ∈ F that maximizes |S ∩ U| 

 

B. U <- U - S 

 
C. C <- C U {S} 

 

4 return C 

 

Example: Let X = { a, b, c, d, e, f, g, h, i, j} be a universe and F = {{a, b, c, d, e, f}, {a, b, 

 

c, g, h}, {d, e, f, i, j}, {g, h, i}, {j}} and let labels for these subsets be S1,S2,S3,S4,S5 

respectively. Initially, C is empty. In the first step, the greedy algorithm will select  S1 = 

{a, b, c, d, e, f} because coverage of this subset is better than all other subsets. Now 

solution set is C = {{a, b, c, d, e, f}}. 

In the second step, S4 has the most substantial number of uncovered elements {g, h, i}, 

i.e., the greedy algorithm will choose S4 and now solution set C = {{a, b, c, d, e, f}, {g,  

h, i}}. 

In the third step, S2 has one uncovered element {j} and S5 has one uncovered element 

 

{j}. Either one of them can be selected. Let us selected S5, so now the solution set will  

be C= {{a, b, c, d, e, f}, {g, h, i} ,{j} }. Now all the elements in X are covered, so C is 
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the final solution set. The greedy algorithm might not give optimal solution every time, 

but the result is most of the time good enough. Considering the simple implementation, it 

is worth using it. 

There are many variations of Greedy algorithms people use according to their needs, for 

example, weighted greedy algorithm. In this type of greedy algorithm, weight is assigned 

to every node which tells the importance of the node, and by how many nodes it is 

covered. In this situation, we can select a different strategy. For example, if a single node 

is covered by many nodes then we can say that this node can be added to result later and 

we try to get the least covered node into the result first. There are many other ways to 

modify greedy algorithm according to the needs. 

2.6 Literature Review 

 

2.6.1 Deep Web Crawling Using a New Set Covering Algorithm 

 
In this paper [16], the authors described a new set covering algorithm for crawling in the 

deep web. To understand the concepts of this paper, first, we need to know hidden web, 

web crawling, and query selection. We give a brief explanation of these. 

2.6.1.1 Hidden Web or Deep Web 

 
A deep web is referred to as a web-generated from the file system and database and 

cannot be accessed by URL directly. It is often guarded by search interfaces. Most of the 

people depend on search engines like Yahoo, Google, etc. to find information on the web 

but these web search engines only search the surface web. It is estimated that deep web is 

much larger than the surface web [19]. According to [20], the hidden web comprises of 
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nearly 550 billion documents which are up to 2,000 times greater than surface web. 

Hidden Web has more focused content than Surface Web entities. 

2.6.1.2 Deep Web Crawling 

 
Fetching the information from the hidden web is termed as deep web crawling. A query is 

issued which contains some keywords, and with those keywords in the query, we crawl 

the data from the hidden web. For crawling the deep web, crawlers are used which is a 

GUI based interface between the web and the user. Hidden Web Crawlers search the 

hidden website using the given query, and then they give back the results based on the 

query. 

2.6.1.3 Query Selection 

 
It is the process of selecting queries that can cover a maximum number of documents in a 

corpus. It is an essential step because if the format of a query is not proper, it may give an 

empty result [18]. According to [17], one should also consider the cost of the query 

because sometimes some queries might give good results but at the stake of a significant 

query cost which is not acceptable. 

Now that we know some basics about web crawling let's get back to the paper by Wang 

et al. [16]. In this paper, the authors used set covering with greedy and weighted greedy 

algorithm for the deep web crawling. The primary task is to select a proper set of queries 

to minimize the total cost of mapping selected queries into the original database. 

They created a four-step framework for deep web crawling: 

 

i. Randomly select documents from original database to build a sample. 
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ii. Create a query pool, i.e., a set of queries based on sampleDB. 

 

iii. By using sampleDB and query pool, select a proper set of queries. 

 

iv. Map those selected queries to the original database. 

 

For example, Table 2.1 shows an input matrix for the set covering algorithm. Here {d1, 

d2, ......, d9} represents documents of a sample database. {q1, q2, ...., q5} represent 

queries. Let this table be a sample from the original database. Suppose that we run the 

algorithm on a sample rather than directly on the corpus. Queries selected from a sample 

database can also perform on the original data source as well [21]. 

 
 

 

 
 

Table 2.1: The Input Matrix for Set Covering Matrix 

 

According to a simple greedy algorithm for unit cost, next query q is the one 

which covers the maximum number of new documents. Here the authors are using a 

weighted greedy algorithm. Therefore, they add weights to the documents. It will help to 

cover small documents first because they can be matched with few queries. Smaller 

documents are given more weight so that queries covering them can be selected first. 
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According to greedy strategy, queries QJ with larger query weight (qw) are preferred. A 

large qw should be obtained by a small number of documents. In other words, queries 

with smaller df/qw are preferred. Therefore weighted greedy algorithm will choose next 

query with smaller df/qw. 

For example Table 2 shows the weights based on Table 1. At the bottom of the 

table, document frequencies and query weights are listed. Here the smallest value for 

df/qw is 1.85 for q4. q4 is selected, and documents covered by that query are removed 

from the matrix. See Table 3 for the matrix in the second round. 

 
 

 

 
 

Table 2.2: The initial table with weights based on Table 1 
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Table 2.3: Second round weighted matrix 

 

See Table 2.3 now, it has only four queries and five documents left. The process 

continues until all the documents are removed from the matrix. Table 4 shows the final 

results of the weighted greedy method. Here q4, q3, q1 are selected in the first, second 

and third round respectively. 

 
 

 

 
 

Table 2.4: Results of the weighted greedy method. 

 

Here the cost is how many total documents can a query fetch. The unique rows column is 

how many total unique documents are fetched by queries after a certain point. For 

example, q3 has a document frequency of 5. Therefore, it adds 5 to the cost and the total 
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cost after selecting q4 and q3 is 9. q3 can fetch three new documents which means three 

unique rows. The unique rows fetched by q4 and q3 are 7. 

 

 

 

 
 

 

 

The above picture shows the weighted greedy algorithm in [16]. This method performs 

better than the greedy algorithm as the experiment shows. 

Therefore we will be using this same approach in operational research and provide the 

comparison to see if this weighted greedy method performs better in other scenarios. 

2.7 Set Cover Algorithms for Very Large Datasets 

 
Graham et al. [1] showed how to work with large datasets to find a solution to the set 

covering problem with a standard greedy algorithm. They gave an alternative approach to 

the greedy algorithm, particularly for disk-resident datasets. The most backdated research 

on this topic is by Berger et al. [11]. The idea of Berger is recently applied to Map 

Reduce paradigm [22] to find partial set cover in the distributed case. 
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They considered a standard unweighted greedy algorithm for the set covering problem. 

The most significant problem for a greedy algorithm is the use of memory because, for 

every update of the set, it needs to access information from a disk or access the main 

memory. Although modern computers have a significant amount of memory, efficient use 

of memory is necessary. For example, random access to disk will be highly expensive. 

Graham et al. [1] analyzed the algorithms for external memory model of the running 

during the execution. 

They presented a greedy heuristic using two approaches, inverted index, and multiple 

passes. 

Inverted Index:- This approach is suitable when random access to a location in the 

memory takes a constant amount of time. In inverted index approach, a priority queue is 

maintained for each Si\C. The priority queue is a descending order queue of set Si. Here 

Si denotes the collection of m subsets of the universe and C denotes elements covered so 

far. To update values of Si\C, when a set Si is added to the solution, it is needed to 

determine which other sets contain elements of Si. This step can be done using inverted 

index in which each item j is associated with 

Tj={i:j Si} (2.5) 

 

Tj is the inverted index of Si. Tj is created in preprocessing step, and greedy iteration is 

applied. The inverted index of the example in Fig 2.5 is shown in Fig 2.6. 
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Fig 2.5: Sample input data 
 

 

 

 

 
Fig 2.6: Inverted Index of Fig 1 

 

This algorithm is expensive due to many random accesses to many locations on disk. It is 

also tough to predict at which stage Tj will be used. 

Multiple Passes:- This approach does not use any priority queue or inverted index. It 

merely keeps track of set C covered so far. In this approach, every time two sets are 

compared, we look for those already covered elements in those not selected sets. It 

makes linear passes through the data which is efficient when the data is resident on the 

disk. The only disadvantage is that it will be slow if the size of a selected set is large 

because it might need to go through the entire dataset to add this set. 

Graham et al. give a new approach which is better than the standard greedy algorithm. 

Their approach follows the subsetting of sets according to the size of the sets. Their 

algorithm works in two loops. They added a parameter p>1 to govern the approximation 

of the algorithm. 
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The algorithm by Graham et. al. 

 

Initially, Si is assigned to sub-collection S(k) if pk Si<pk+1.Here in the algorithm, K is 

the largest k with nonempty S(k). Figure 3 shows the algorithm execution on sample 

input data in Figure 2.7. 

 

 

 

 

Fig 2.7: Execution of algorithm by Graham. Et al. on sample data in fig 1 

 

The basic functionality of this algorithm is to arrange the sets according to their sizes. 

The set with the biggest size is selected and added to the solution set. The rest sets in that 
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range are reduced to only uncovered elements and appended to the corresponding range 

of sets. This process continues until all the elements in the universe are covered. The 

proposed algorithm according to the results is much faster than the conventional 

algorithms. 

This paper gave us an idea to use greedy and variation of greedy with large datasets. We 

are interested in seeing the behavior of this algorithm in operational research when data is 

large. The approach followed by this paper was to test on disk-resident data and memory 

resident data. We are using the leanings from memory resident approach to do our 

experiments. 

2.8 Set Covering in Locating Facilities 

 
In the planning strategy of big public and private firms, facility location is a critical 

component of the study. In facility locating, covering models are most extensively 

studied. They are such attractive topics for researchers because of their applicability in 

the real world. In covering models, the customer can get service from a facility in a 

predefined area. That predefined distance is called coverage distance or coverage radius 

[23]. According to Schilling et al. [24], Set covering models can be classified into two 

major categories: Set Covering Problem (SCP) and Maximal Covering Location Problem 

(MCLP). The difference between these two is that in SCP, the coverage is required and in 

MCLP, the coverage is optimized. Classification can also be given based on the solution, 

i.e., heuristic or optimal. 

According to Reza et. al.[25], the first covering model was introduced by Hakimi in 1965 

[26]. He used a vertex covering problem in a graph to determine the minimum number of 
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police needed to cover all the nodes on a highway network. The first mathematical 

problem was developed by Toregas et al. [27]. It was used for the location of emergency 

service facilities. We are going to discuss various set covering approaches for locating 

facilities. 

Another paper by Toregas, Swain, et al. [30] gives an emergency vehicle model with a 

specified time or distance constraint which is on demand. If this kind of constraints is 

given, then the problem is either to find a solution with minimum time or distance or to 

find a solution with a minimum number of facilities. They have assumed that the time 

needed between every two user nodes is known, and the upper limit for the constraint like 

time or distance can be described. If maximum response time for a node is s, then for any 

node I that is at most s time away from I, we can provide the emergency service to i. Ni 

denotes this set for node i. They give a mathematical problem as follows 

xj ={ 0 if no facility is established at point j, 

xj={1 if a facility is established at point j. 

 

 

 

 

 
The actual implementation of (I) requires two steps. In the first step, it determines the sets 

Ni for a given value of s and a given shortest distance matrix. The second step involves 

the solution of (I) with the sets established in step one. 
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A paper by Mark S. Daskin [28] describes the stochastic approach for set covering. They 

used a heuristic algorithm to solve the problem. They considered the problem of covering 

a location with more than one facility so that in case one facility is not operating; the 

other can be reached. They have given an algorithm which describes in the case of 

failure, which facility will cover the locations covered by the failed facility. 
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CHAPTER 3 

PROPOSED APPROACH AND EXPERIMENTAL SETUP 

 
3.1 Introduction 

 
This chapter introduces the use the weighted greedy algorithm proposed by Wang. Et. 

al.[16] in the field of resource management. As demonstrated in the paper, it has 

outperformed the traditional greedy algorithm in the field of web crawling for query 

selection. Our objective here is to compare the performance of the weighted greedy 

algorithm with the traditional greedy algorithm in roadmaps. 

3.2 Greedy Algorithm 

 
Greedy algorithms are a type of heuristic algorithms. A greedy algorithm always looks 

for a locally optimal solution. Greedy might not find a globally optimal solution, but it 

will provide an answer very close to the optimal one with less processing cost. Greedy 

Algorithms are used in various fields like networking, machine learning, artificial 

intelligence, etc. 

 

 

Fig 3.1: A Sample Graph 

 

Figure 3.1 is a sample graph. Suppose that we want to apply a greedy algorithm on this 

graph to reach from one point to another, say from C to E with the shortest path. The 
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shortest path is C to F, F to E and the total cost is 9. According to the Greedy algorithm, 

it will choose the shortest path at a particular instance. Therefore, the path will be C to A, 

A to D, D to F, F to E and the total cost will be 15. The path chosen by greedy algorithm 

is not optimal all the time. It only looks for best option at a particular instance. It can be 

used in multiple scenarios and setups. There are several algorithms used in the set 

covering based on a greedy approach to solve the problems. 

The basic greedy algorithm uses the step by step approach to solve the problem, and at 

every step, a solution node is chosen for this problem. Greedy is to approximate the 

globally optimal solution using the locally optimal solution on each step. For every step, 

one column is selected, and there are various ways to select a column. A column here 

represents a node. 

There are various approaches to apply the greedy approach, it all depends on which factor 

we want to focus on. Some of the approaches on which solution can be focused are as 

follows: 

• Minimize the cost: The next column is selected which has the lowest cost on a 

particular step. Using the smallest cost at every step, lowest total cost is 

approximated. 

• Maximize coverage: Another method is to select the next column which can 

cover the largest number of nodes that are not yet covered by previously selected 

nodes. This approach aims to reach the maximum coverage in minimum steps. 
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• Combined Approach: We can also use the combined approach which combines 

both the above approaches and take into consideration cost and the number of 

new nodes that can be covered. 

 

 

 

 

Node 
 

number 

1 2 3 4 5 

1 0 0 1 1 0 

2 0 0 1 0 1 

3 1 1 0 1 0 

4 1 0 1 0 0 

5 0 1 0 0 0 

ncd 2 2 3 2 1 

nnf 2 2 3 3 3 

ncd/nnf 1 1 1 1 1 

 

 

 

Table 3.1: Sample matrix of road network for greedy algorithm 

 

The above matrix represents the input matrix to the greedy algorithm. Here ncd is node 

coverage degree which means how many nodes can be covered by a node. nnf is new 

nodes fetched, i.e., how many new nodes can be fetched by this node. Initially, nnf is the 

same as node frequency, and it changes after some iterations. ncd/nnf is to determine 

which should be next solution node. 
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3.3 Weighted Greedy Algorithm 

 
In weighted greedy algorithms, the approach is the same to choose the best at a particular 

instance. The only difference is that there are weights added to the nodes which have a 

crucial role in deciding for a particular instance to determine which one is the best. The 

weighted greedy algorithm, which is used in our approach, is based on choosing the 

nodes which are less covered, which means areas that are less accessible are covered first. 

The algorithm is as follows: 

 

 

 

 

 

 
Node 

 

number 

1 2 3 4 5 

1 0 0 0.5 0.5 0 

2 0 0 0.5 0 0.5 

3 0.33 0.33 0 0.33 0 

4 0.5 0 0.5 0 0 

5 0 1 0 0 0 
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ncd 2 2 3 2 1 

nw 0.83 1.33 2 0.83 0.5 

ncd/nw 2.409 1.503 1.500 2.409 2 

 

 

 

Table 3.2: Sample matrix of road network for weighted greedy algorithm 

 

Here ncd stands for node coverage degree, nw for node weight which is the sum of the 

significance of all nodes and ncd/nw is used to pick the next solution node. Here node 

significance stands for the out degree of a node, i.e. the total sum the column of this node 

in the matrix. 

According to the algorithm, more focus should be put on nodes with less coverage, i.e., 

nodes that can be reached by less number of nodes. As for greedy strategy, nodes with a 

large number of node weight are preferred, i.e., small nf/nw is preferred. 

In the greedy algorithm, it does not matter whether a node is covered later or early, but 

this is important in the weighted greedy method. In the above table, node 5 is only 

covered by node 2, so it is essential to cover this node first. We argue that for each node i, 

if the number of the nodes covering node i is bigger, it is better covering node i later. The 

reason for this is: 

When node i is covered in later steps, more columns covering node i means that there is a 

possibility to select small cost column covering few new nodes. 
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When node i is covered in earlier steps, there is a higher possibility of overlapped 

coverage, because node i will be covered multiple times when more columns will be 

covering this node. 

 

 

 
3.4 Roadmap 

 
Here term roadmap is coined as a network of roads for a particular area demonstrated in 

the form of edges and vertices. Every node or vertex represents an intersection, and every 

edge is a link between those nodes. These roadmaps can be created from the data 

provided in the form of a matrix. Usually, the 0-1 matrix represents which node is 

connected to the other node. 

3.5 Setup Procedure 

 
The primary purpose of our experiment is to test the performance of the weighted greedy 

algorithm in resource management and compare it with the greedy algorithm regarding 

solution results. We will run greedy and weighted greedy algorithm on datasets with 100 

samples, 50 for coverage radius 1, and 50 for variable coverage radius, using three cost 

definitions. 

Our experimentation works in the following structure: 
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Fig 3.2: Flow of the approach 

 

The raw dataset, Connected Subgraph, and Coverage Graph are the part of data 

preprocessing where data is being converted into the suitable format as an input for 

greedy and weighted greedy algorithm. Calculation of Coefficient of Variance is being 

done as a parameter to compare both algorithms. The last module is a comparison of 

Greedy vs. Weighted Greedy algorithm where both the algorithms are implemented and 

executed on same input data to test their performance. 

3.5.1 Raw Dataset 

 
Raw Dataset is the original data obtained from the SNAP(Stanford Network Analysis 

Project)[35]. We are using the dataset which is road network of California. Road network 

for California contains 1,965,206 Nodes and 2,766,607 Edges. This raw dataset is in the 

form of a matrix with two columns where column 1 denotes the node from which 

connection is, and the column 2 denotes to which node connection is going. 
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3.5.2 Connected Subgraph 

 
Working with big data is always a difficult task. There are several issues like memory 

and hardware resources we have to deal with and to avoid these problems we are using 

the connected subgraphs of smaller size from these raw datasets. The connected 

subgraph, as the name suggests is a small portion of the original data coined as a sample. 

We are using the sample size of 10,000 nodes approximately. This sample is a matrix 

same as the raw dataset but with smaller size and with all the connection among those 

selected nodes from the raw dataset. 

 

 

Fig 3.3: A 10-node connected subgraph 

 

The above figure 3.3 is an example of connected subgraph with 10 nodes fetched from a 

raw dataset with all the connection among the nodes. We are using this kind of connected 

subgraph as an input to build coverage matrix. 
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3.5.3 Coverage Graph 

 
It is the adjacency matrix generated from connected subgraph. The coverage graph is 

generated according to the defined coverage. Here coverage is how many nodes can a 

node cover starting from its neighbors. If we say the coverage graph has coverage value 

of two, then we can say that a node can cover its neighbors and neighbors of their 

neighbors. As the coverage value increases, more levels of neighbors each node will 

cover. The coverage graph is represented in the form of adjacency matrix where 1 

denotes that the node can cover that node and 0 denotes it cannot cover that node. 

 

 

 

Fig 3.4: Coverage Matrix with coverage value 1 

 

The above matrix is a representation of connected subgraph in the form of coverage 

graph where each row represents which nodes a single node can cover. For example, in 

second-row, node 9 can cover 7, 10 and 84. This matrix has coverage 1, i.e., a node can 

cover its neighbors only. If this node has coverage 2 then the same node 9 could have 

covered its neighbors 7, 10 and 84 as well as neighbors of 7, 10, and 84 which are 9, 11, 
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110, 83 and 85. This coverage graph acts as input for the greedy and weighted greedy 

algorithm. 

3.5.4 Calculation of Coefficient of Variance 

 
This part calculates the coefficient of variance which is used as a parameter to compare 

the performance of both the algorithms. The coefficient of Variance (CV) is calculated 

using the standard formula which is standard deviation divided by the mean of the 

sample. Once the CV is calculated, we can test the performance of algorithms and 

analyze for a specific CV range how much improvement our algorithms show. For every 

sample, we calculate the CV once. 

In our case, we are calculating the CV of a sample using the formula used by Yan Wang 

 

[34] in his approach. We measure the dispersion of node degree (deg) using Coefficient 

of Variation. We know that the CV is the ratio of standard deviation to the mean, where 

mean is the sum of the node degree over the total number of nodes in the sample. 

 

 

 

 

 
(3.1) 

 

Mean here can also be called an average node coverage degree. In the same way, we will 

calculate the standard deviation of the sample which is 

 

 

 

SD = (3.2) 
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Here deg is the degree of a node and µ is the mean calculated above, and m is a total 

number of nodes in the sample. By definition of this standard deviation and mean, we 

calculate the value of coefficient of variation (CV) which is 

(3.3) 

 

 

 

 
Once the CV is calculated for the sample, we can compare the algorithms and calculate 

the improvement of weighted greedy over the greedy algorithm. 

3.5.5 Comparison of Greedy and weighted Greedy Algorithm 

 
In this step, a coverage graph with specific CV is supplied as an input to both the 

algorithms and the algorithms perform their calculations to compute the solution 

outcome. The solution contains two different answers, one from greedy and one from 

weighted greedy. The solution contains the number of solution nodes given by each 

algorithm. Then those solutions are compared using the improvement formulae to check 

how much improvement the weighted greedy algorithm has over greedy algorithm. 

��−�� 

�� 
(3.4) 

 

Formulae to check the improvement 

IMP =
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The above formula calculates the improvement of the weighted greedy algorithm over 

greedy algorithm. Here Cg and Cw are the results (total cost) for greedy and weighted 

greedy respectively. 

After calculating the improvement, the data is plotted on the graph which represents the 

improvement correlated with CV. 

3.6 An Illustrative Example 

 
Here we will show an example of a small data to illustrate the working process. We will 

start with a small dataset represented above with ten nodes and illustrate the process on 

that dataset. Suppose that we have fetched the following subgraph from the raw dataset 

 

 
 

Table 3.3: A 10-node connected subgraph 

 

 

 

 
The plot view of this subgraph is as follow 
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Fig 3.5: Connected Subgraph plot view 

 

Now we convert this subgraph into an adjacency matrix with the coverage radius 1. The 

matrix produced is as follows: 

 

 
 

Table 3.4: 01 Matrix of the Subgrap 

 

Now we consider applying the weighted greedy algorithm on this matrix and calculate  

the node coverage degree(ncd), node weight(nw) and nf/nw. First, we add all the values 

of each row then replace all the 1’s with 1/sum where the sum is the node significance 
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index. We will perform this step for every individual row, and the resulting matrix is as 

follows 

 
 7 9 10 84 11 110 12 83 112 85 111 

7 0 1 0 0 0 0 0 0 0 0 0 

9 0.333 0 0.333 0.333 0 0 0 0 0 0 0 

10 0 0.25 0 0.25 0.25 0.25 0 0 0 0 0 

84 0 0.25 0.25 0 0 0 0 0.25 0 0.25 0 

11 0 0 0.333 0 0 0.333 0.333 0 0 0 0 

110 0 0 0.25 0 0.25 0 0 0 0.25 0 0.25 

12 0 0 0 0 1 0 0 0 0 0 0 

83 0 0 0 0 0 0 0 0 0 0 0 

112 0 0 0 0 0 0.333 0 0.333 0 0 0.333 

85 0 0 0 1 0 0 0 0 0 0 0 

111 0 0 0 0 0 0.5 0 0 0.5 0 0 

ncd 1 3 4 4 3 4 1 2 3 1 2 

nw 0.33 1.5 1.116 2.083 1.5 1.416 0.333 0.583 1.25 0.25 0.583 

ncd/nw 3.03 2 3.43 1.92 2 2.82 3.03 3.43 2.4 4 3.43 

 

Table 3.5: Matrix after division of node weights and calculation of nf, nw, nf/nw 

 

We select the value with smallest nf/nw. Now 84 will be added to the solution and 

column with node 84 and all rows of nodes it covers will be deleted including 84. The 

resulting matrix after this step will be 

 
 7 9 10 11 110 12 83 112 85 111

7 0 1 0 0 0 0 0 0 0 0

11 0 0 0.333 0 0.333 0.333 0 0 0 0

110 0 0 0.25 0.25 0 0 0 0.25 0 0.25

12 0 0 0 1 0 0 0 0 0 0

112 0 0 0 0 0.333 0 0.333 0 0 0.333

111 0 0 0 0 0.5 0 0 0.5 0 0

nc d 1 3 4 3 4 1 2 3 1 2

nw 0 1 0.583 1.25 1.166 0.333 0.333 0.75 0 0.583

ncd/n w Inf 3 6.861063 2.4 3.430532 3.003003 6.006006 4 Inf 3.430532

 

 
Table 3.6: Matrix after selection of the first node 

 

Now we again select the minimum values for nf/nw, and node 11 will be selected. The 

same process will be repeated, and column with node 11 and rows covered by this node 

will be deleted. The resulting matrix after this round will be 
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 7 9 10 110 12 83 112 85 111

7 0 1 0 0 0 0 0 0 0

112 0 0 0 0.333 0 0.333 0 0 0.333

111 0 0 0 0.5 0 0 0.5 0 0

ncd 1 3 4 4 1 2 3 1 2

nw 0 1 0 0.833 0 0.333 0.5 0 0.333

ncd/nw Inf 3 Inf 4.801921Inf 6.006006 6 Inf 6.006006

 

Table 3.7: Matrix after second round 

 

In the same way, after the third round now the selected node will be 9, and the same 

process will be repeated. In the fourth round, selected result node will be 110, and all the 

rows will be deleted. 

 

 7 10 110 12 83 112 85 111 

112 0 0 0.333 0 0.333 0 0 0.333 

111 0 0 0.5 0 0 0.5 0 0 

nf 1 4 4 1 2 3 1 2 

nw 0 0 0.833 0 0.333 0.5 0 0.333 

nf/nw Inf Inf 4.801921 Inf 6.006006 6 Inf 6.006006 

 

Table 3.8: Matrix after the third round 

The nodes selected as result nodes are 84,11,9,110 

node nf nw Nf/nw cost Unique rows 

84 4 2.08 1.92 4 5 

11 3 1.25 2.40 7 8 

9 3 1 3 10 9 

110 4 0.83 4.80 14 11 

 

 

Table 3.9: Solution table for Weighted Greedy algorithm 
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In this example, a greedy algorithm can start from any random node because initially, the 

value of new node fetched will be 1 for every node. Let’s say it starts at 10. 

 

 

 
 

Table 3.10: Matrix at the starting point for greedy algorithm 

 

The above is the matrix at the initial stage after calculating node coverage degree(ncd), 

new nodes fetched(nnf) and new node value(nnv). Starting form node 10 we will delete 

rows covered by node 10 and delete node 10 from columns. 

 
 9 11 84 110 7 12 83 85 111 112

7 1 0 0 0 0 0 0 0 0 0

12 0 1 0 0 0 0 0 0 0 0

83 0 0 1 0 0 0 0 0 0 0

85 0 0 1 0 0 0 0 0 0 0

111 0 0 0 1 0 0 0 0 0 0

112 0 0 0 1 0 0 0 0 0 0

nc d 3 3 4 4 1 1 1 1 1 1

nnf 1 1 2 2 0 0 0 0 0 0

nnv 3 3 2 2 Inf Inf Inf Inf Inf Inf 

 

 

 
Table 3.11: Matrix after first round of greedy 

1 112 

11111111111nnv

11111144334nnf

11111144334 d nc

00000010000 2 11 

00000010000 1 11 

0000000100085

0000000100083

0000000010012

000000000107

11000000101 0 11 

0011000001184

0000101000111

000001010019

0000001111010

11 8583127 0 11 8411910
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In the same way, the process will continue, and the solution for greedy algorithm will be 

as follows 

 

 

 

 

node ncd nnf ncd/nnf cost Unique rows 

10 4 4 1 4 5 

110 4 2 2 8 7 

84 4 2 2 12 9 

11 3 1 3 15 10 

9 3 1 3 18 11 

 

 
 

Table 3.12: Solution table for greedy algorithm 

 

From the above two solution tables, we see that weighted greedy found 4 solutions with a 

total cost of 14 whereas greedy algorithm found 5 solutions with a total cost of 18. 

3.7 Technologies Used 

 
3.7.1 R 

 
R is a GNU project developed in bell laboratories by John Chambers and his colleagues 

[36]. It is an environment for statistical computing and graphics. R is open source 

software, and it can run on UNIX, Linux, Windows and Mac operating systems. It is 

mostly used for data manipulation, calculation, and graphical display. Following are 

some of its features: 
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• It has excellent graphical facilities for data analysis and display. 

 

• A simple and well developed useful programming language allowing user-defined 

recursive functions. 

• An efficient storage facility and data handling language. 

 

• A suite of operators for calculations on matrices. 

 
We can extend R easily with packages and anybody can publish his or her packages for 

specific tasks. 

3.7.2 iGraph Library 

 
It is a package used to plot and analyze the network graphs. We used this package to 

create our coverage matrix for variable coverage. This library can be used to create and 

plot network graphs from edge or vertex table and vice versa. 

3.7.3 R Studio 

 
RStudio is an open source IDE for R. It is also available with a commercial license for 

organizations not able to use AGPL software [37]. It also offers other excellent products 

which include RStudio Server open source and licensed as well to host applications on 

the local server. Shiny io creates applications using R with minimal support and host 

applications on the Shiny server. 
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CHAPTER 4 

EXPERIMENTATION AND RESULTS 

In this chapter, we present the experiment results, obtained using the greedy and 

weighted greedy method. The purpose is to test whether the weighted greedy is better 

than the greedy algorithm in resource allocation setup. 

4.1 Data 
 

We are going to perform the experimentation on a dataset by extracting several regional 

maps from it. The Dataset contains 1,965,206 Nodes, but we will use regional maps of 

10,000 nodes. We will experiment with two different kinds of inputs: one will be with 

Coverage Radius 1, and the other will be with Coverage Radius greater than one. We will 

run both algorithms on 50 regional maps of coverage radius 1, and 50 regional maps of 

variable coverage radius. We will check the improvement of the weighted greedy 

algorithm in different scenarios like under different coverage radius or different cost 

definitions. 

The algorithms will be performed on the symmetric matrix of 10000 * 10000 Nodes. We 

will try to cover the gap of CV range between 0.3 and 1.In previous research, there are no 

results available for this range. Here CV represents the dispersion of node coverage 

degree. 
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Fig4.1: Distribution of node coverage degree in Coverage Radius 7 
 

 

 
 

 

 

Fig4.2: Distribution of node coverage degree in Variable Coverage Radius 10 
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Fig4.3: Distribution of node coverage degree in Variable Coverage Radius 15 
 

 

 

 

 
Data Source Number of 

 

Samples 

Rows(m) Columns(n) Node Coverage Degree 

max min mean CV 

Coverage Radius 
 

1 

50 10000 10000 8 1 2.75 0.37 

Variable Coverage 
 

Radius 

50 10000 10000 9744 20 898.11 0.42 

 

 

Table 4.1: The properties of data source with two types of data: one with coverage radius 

1, and the other with variable coverage radius 

The above graphs represent the distribution of node out degree under two scenarios: one 

with coverage radius 1, and the other with coverage radius greater than one. The table 
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represents the properties of two different versions of the data we are using. We are 

showing these results for 50 samples of each data. Both types of samples have about 

10000 rows and 10000 columns. The table shows the maximum and a minimum number 

of node coverage degree, average mean of node coverage degree and average CV of 

samples. 

4.2 Cost Definition 

 
We also want to see how different cost definitions will affect the performance of the 

algorithm. We have used three types of cost definitions as follows: 

Infrastructure Cost: With this type, the cost of selecting any node is one. It corresponds 

to the situation in traditional set covering problem where the ultimate goal is to minimize 

the number of nodes selected. It is also called set covering with unit cost. This type of 

cost corresponds to the cost of building a station, for example, a medical facility, food 

service or fuel station. 

Location Cost: With this type of cost definition, the cost of a node is the out-degree of 

this node. For example, if a node is connected to five other nodes, then the out-degree of 

this node is five. 

Driving Cost: This cost is the sum of the distance between this node and each node it 

covers. The distance between two nodes is the length of the shortest path between them in 

regional map. 



47  

4.3 Results 

 
We divide the data into two parts and three subparts. Data is divided into two parts: one is 

coverage radius 1, and the other with coverage radius greater than 1. These two 

categories are then tested using both greedy and weighted greedy algorithms using three 

different scenarios of cost definitions. 

We used 50 regional maps with coverage radius 1, and 50 maps for with variable 

coverage radius greater than 1. We have run the greedy and weighted greedy algorithm 

three times on every regional map using each cost definition. 

With our experiments, the weighted greedy algorithm turns out to be very efficient on our 

data sources according to tables and figures: 

• The cost calculated in all different scenarios by the weighted greedy algorithm is 

less than that from greedy algorithm. 

• On average, on regional maps with variable coverage radius, the weighted greedy 

algorithm outperformed greedy algorithm by approximately 8% 

 

Cost Definition Coverage Radius 1 (IMP %) Coverage Radius >1 (IMP %) 

MAX MIN AVE MAX MIN AVE 

Infrastructure Cost 3 1 1.4 25 1 10 

Location Cost 3 0.5 1.2 25 0.8 5 

Driving Cost 2 0.6 0.9 33 9 9 

 

 

Table 4.2: Performance Improvement of Weighted greedy over greedy algorithm 

regarding solution nodes in three different cost definition scenarios 
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Fig 4.4: Cost difference of solution nodes under Driving Cost 

x- Weighted Greedy Algorithm 0-Greedy Algorithm 

 

 

 

Fig 4.5: Cost difference of solution nodes under Infrastructure Cost 

x- Weighted Greedy Algorithm 0-Greedy Algorithm 
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Fig 4.6: Cost difference of solution nodes under Location Cost 

x- Weighted Greedy Algorithm 0-Greedy Algorithm 

 

 

In the above figures, we can observe that in average results from greedy cost more than 

those of weighted greedy for all the cost definitions. This cost can correspond to location 

related cost, building cost of each facility etc. in different scenarios. 

4. 4 Impact of data distribution 

 
The only difference between the weighted greedy algorithm and a greedy algorithm is 

that nw/cost is replaced by new/cost. The main idea is that newly covered rows should 

not be considered in the same way: there should be difference in covering different rows. 

If all rows are covered by the same number of columns, which means all node weights 

are the same, then the weighted greedy algorithm will be same as the greedy algorithm. 

In other words, if out degree of all the nodes is the same, then both algorithms work in 

the same manner. The cost saving can only be expected when we have different node 
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coverage degrees, i.e., some nodes have larger coverage degree than the others. The 

bigger the dispersion of node coverage degree is, the more improvement we achieved 

with the weighted greedy algorithm [34]. 

As we have shown our results on two different kinds of data with different coverage 

radius and different data distribution, we measure the improvement using the dispersion 

of node coverage degree. We will measure the improvement of the weighted greedy 

algorithm to the CV. To do so, we use the Pearson Product Moment Correlation 

Coefficient (PC). PC is used to measure the correlation between two variables X and Y. It 

gives a value between -1 to +1 where -1 means decreasing linear correlation and +1 

means increasing linear correlation. Definition of PC is as follows: 

It is defined as the product of covariance of the two variables divided by the product of 

their standard deviations. 

 
 

(4.1) 

 

The following graph shows the relationship between the CV and improvement of the 

weighted greedy algorithm over greedy algorithm for each regional map. 
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Fig 4.7: Relationship between CV and improvement on Infrastructure Cost regional maps 
 

 

 

 

Fig 4.8: Relationship between CV and improvement on Location Cost regional maps 
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Fig 4.9: Relationship between CV and improvement on Driving Cost regional maps 

 

Base on all the results for different cost definitions, the ρ of different cost definition 

results is as follows: 

 

Cost Definition P-value 

Infrastructure Cost 0.19 

Location Cost 0.49 

Driving Cost 0.23 

 

 

 

Table 4.3: P-value for different cost definitions 

 

These positive values of ρ and the figures above tell us that there is a positive linear 

correlation with CV to the Node Coverage Degree. From all the above, we can conclude 
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that the improvement of the weighted greedy algorithm depends upon the dispersion of 

the degree of coverage. The more the dispersion is, the better the algorithm will perform. 
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CHAPTER 5 

CONCLUSION & FUTURE WORK 

5.1 Conclusion 

 
In this thesis, we tested the weighted greedy algorithm in the field of resource allocation. 

We tested the algorithm with the traditional greedy algorithm with different cost 

definitions. The results show that it possesses the same properties as in web crawling by 

outperforming the greedy algorithm. The results from three cost definitions show that this 

algorithm can be used while considering the different cost definitions. 

The weighted greedy algorithm was initially designed for web crawling, but the results 

from our work show that it can be efficiently used in other fields as well. In the thesis by 

Y. Wang [34], it was tested using the Beasley data where CV’s fall within a specific 

range, but in our work, results for different CV range were produced using the real data. 

The results also showed the positive linear correlation between CV and the improvement 

of weighted greedy algorithm, same as in the web crawling setup. 

The weighted greedy outperforms the greedy algorithm method not only regarding 

solution nodes but also regarding the cost as well. This application of cost-effectiveness 

of the weighted greedy algorithm can be handy in the field of resource allocation. Better 

planning techniques can be generated in the field of resource allocation using this 

algorithm. It can also come in handy when decisions are to be made focusing on least 

accessible areas because this algorithm tries to cover those areas first which can only be 

accessed by limited nodes. 
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5.2 Future Work 

 
Allocation of resources is a big problem when we have limited number of resources. The 

weighted greedy algorithm showed promising results in our setup, but many things can be 

considered for future improvement. 

Parallel processing of the operations of the algorithms can be considered to improve the 

speed and efficiency of the algorithm. We have run this algorithm in parallel with 

multiple inputs, and it performed reasonably well. In future, if parallel processing can be 

applied to internal operations of the algorithm, then it can be tested on bigger data sets. 

Another aspect is to test it in other fields of Computer Science to check whether there are 

any other applications of this algorithm in other fields. There are various applications of 

set covering algorithms, and it can be tested in those applications to check whether it is 

generally applicable in all the fields or not. We can also build some better algorithms 

using the concept of this algorithm according to the required field. 
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