
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2016

Accommodating prepositional phrases in a highly
modular natural language query interface to
semantic web triplestores using a novel event-based
denotational semantics for English and a set of
functional parser combinators
Shane Peelar
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Peelar, Shane, "Accommodating prepositional phrases in a highly modular natural language query interface to semantic web
triplestores using a novel event-based denotational semantics for English and a set of functional parser combinators" (2016). Electronic
Theses and Dissertations. 5911.
https://scholar.uwindsor.ca/etd/5911

https://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F5911&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5911&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5911&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/5911?utm_source=scholar.uwindsor.ca%2Fetd%2F5911&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Accommodating prepositional phrases in a highly modular

natural language query interface to semantic web

triplestores using a novel event-based denotational

semantics for English and a set of functional parser

combinators

By:

Shane Peelar

A Thesis
Submitted to the Faculty of Graduate Studies

through the School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada

2016

c© 2016 Shane Peelar

Accommodating prepositional phrases in a highly modular

natural language query interface to semantic web

triplestores using a novel event-based denotational

semantics for English and a set of functional parser

combinators

by

Shane Peelar

APPROVED BY:

Dr. Richard J. Caron
Department of Mathematics and Statistics

Dr. Luis G. Rueda
School of Computer Science

Dr. Robert D. Kent, Co-Supervisor
School of Computer Science

Dr. Richard A. Frost, Co-Supervisor
School of Computer Science

December 12 2016

Declaration of Co-Authorship / Previous
Publication

I hereby declare that this thesis incorporates material that is result of joint research, as

follows:

Some of the material in this thesis is derived from the following research papers:

[25] R. A. Frost, R. Hafiz, and P. Callaghan. “Parser combinators for ambiguous left-
recursive grammars”. In: International Symposium on Practical Aspects of Declarative
Languages. Springer LNCS Volume 4902. 2008, pp. 167–181

[10] R. A. Frost, W. Agboola, E. Matthews, and J. A. Donais. “An Event-Driven Ap-
proach for Querying Graph-Structured Data Using Natural Language”. In: EDBT/ICDT
Workshops. Vol. 2014. 2014, pp. 192–199

[11] R. A. Frost, J. Donais, E. Mathews, W. Agboola, and R. Stewart. “A Demonstra-
tion of a Natural Language Query Interface to an Event-Based Semantic Web Triplestore”.
In: ESWC (Satellite Events). Springer LNCS Volume 8798. 2014, pp. 343–348

Paper [25] (Frost, Hafiz, and Callaghan) describes a set of functional parser combina-

tors developed by Frost and Hafiz as part of Hafiz’s doctoral thesis work, which enables

language processors to be built as executable specifications of fully-general attribute gram-

mars, including ambiguous left-recursive grammars. The processors use a polynomial time

complexity top-down parsing strategy which enables a natural specification of the gram-

mars and the associated semantic rules. This was previously thought to be impossible, and

was stated as such in many textbooks on parsing.

Paper [10] (Frost, Agboola, Matthews, and Donais) describes an event based semantics

developed by Dr. Frost and his research team and includes extracts from a Haskell program

which demonstrated the viability of the semantics with respect to an in-program database

of triples coded as part of the program.

Paper [11] (Frost, Donais, Matthews, Agboola, and Stewart) describes the demonstra-

tion of the Haskell program which I wrote and which forms the basis of this thesis work.

iii

Declaration of Co-Authorship / Previous Publication iv

The reason that I am not listed as an author is that the paper was submitted before I officially

joined the research team. I developed the Haskell program after the paper was submitted.

The online program was the one used by Dr. Frost in the demonstration he gave at the

conference this paper was presented at.

My contributions to the research project include:

• Improving the efficiency of the programs which implement the event-based seman-

tics

• Integrating the event-based semantics with the parser combinators to build the query

processor

• Enhancing the existing module to access the external triplestore with efficient meth-

ods to do so, including a basic form of query fusion in the form of memoization

• Demonstrating a novel method of handling the word “by” in prepositional phrases,

and extending prepositional phrases to span multiple property names

• Building a web interface to the query processor which includes both an English Nat-

ural Language Interface and also a safe Direct Query Interface for directly evaluating

the combinators

• Converting the parser Hafiz wrote[25] to natively work with monads in Haskell, as

well as the original semantics[11] to be monad based

• Maintaining the XSaiga package on Hackage[3], an online repository of Haskell li-

braries and programs, which contains the semantics, parser, and triplestore described

in this Thesis

I am aware of the University of Windsor Senate Policy on Authorship and I certify that

I have properly acknowledged the contribution of other researchers to my thesis, and have

obtained written permission from each of the co-author(s) to include the above material(s)

in my thesis.

I certify that, with the above qualification, this thesis, and the research to which it refers,

is the product of my own work.

Declaration of Co-Authorship / Previous Publication v

I certify that I have obtained a written permission from the copyright owner(s) to include

the above published material(s) in my thesis. I certify that the above material describes

work completed during my registration as graduate student at the University of Windsor.

I declare that, to the best of my knowledge, my thesis does not infringe upon anyone’s

copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or

any other material from the work of other people included in my thesis, published or oth-

erwise, are fully acknowledged in accordance with the standard referencing practices. Fur-

thermore, to the extent that I have included copyrighted material that surpasses the bounds

of fair dealing within the meaning of the Canada Copyright Act, I certify that I have ob-

tained a written permission from the copyright owner(s) to include such material(s) in my

thesis. I declare that this is a true copy of my thesis, including any final revisions, as ap-

proved by my thesis committee and the Graduate Studies office, and that this thesis has not

been submitted for a higher degree to any other University or Institution.

Abstract

The Semantic Web is an emerging component of the set of technologies that will be known

as Web 3.0 in the future. With the large changes it brings to how information is stored

and represented to users, there is a need to re-evaluate how this information can be queried.

Specifically, there is a need for Natural Language Interfaces that allow users to easily query

for information on the Semantic Web. While there has been previous work in this area,

existing solutions suffer from the problem that they do not support prepositional phrases

in queries (e.g, “in 1958” or “with a key”). To achieve this, we improve on an existing

semantics for event-based triplestores that supports prepositional phrases and demonstrate

a novel method of handling the word “by”, treating it directly as a preposition in queries.

We then show how this new semantics can be integrated with a parser constructed as an

executable attribute grammar to create a highly modular and extensible Natural Language

Interface to the Semantic Web that supports prepositional phrases in queries.

vi

Dedication

This Thesis is dedicated to my meme and pepe, Theresa and Alfred Bombardier

vii

Acknowledgements

I’d like to thank, in no particular order:

Dr. Richard A. Frost, whom I’ve been working with since my first semester here at

the University of Windsor, for his guidance in my work and the many opportunities he

has provided me over the years to participate in research. You were the first professor I

had a chance to have a conversation with when I started my Undergraduate degree here in

2009, and ultimately it is our conversations during the labs of 60-100 that got me seriously

interested in functional programming in the first place.

Dr. Robert D. Kent, for believing in me and providing me with many opportunities to

contribute here at the University, and generally being a very positive role model in my life.

It is in no small part our talks that have allowed me to refocus, get my priorities straight,

and get my life back in order.

My External and Internal Readers, Dr. Richard J. Caron and Dr. Luis G. Rueda, for

being available on such short notice to participate on my Thesis Committee.

David MacMillan, Bryan St. Amour and Paul Preney, for being great lab partners, being

up for interesting conversations, and always being willing to lend an ear. Thank you also

Bryan and Paul for letting me use your LaTeX styles and giving my first draft a read.

All of the secretaries in the School of Computer Science for their help during my degree.

Whether it was getting me through scheduling nightmares or helping me get things done

by the deadlines, your help has been incredibly invaluable to me and I sincerely thank you

for your work.

My girlfriend, Taylor Tracey Kyryliuk, for being incredibly supportive of me both in

life and in my work.

And my friend Kyle Iaquinta for taking the time to proofread my Thesis and providing

viii

Acknowledgements ix

me with positive encouragement throughout my degree.

Contents

Declaration of Co-Authorship / Previous Publication iii

Abstract vi

Dedication vii

Acknowledgements viii

List of Figures xiii

List of Appendices xiv

Nomenclature xv

1 Introduction 1
1.1 Motivation . 1
1.2 The Semantic Web . 1
1.3 The Problem . 3
1.4 Existing approaches . 4
1.5 Shortcomings of previous approaches . 4
1.6 New approach . 5
1.7 Thesis Statement . 6
1.8 Proof of Concept . 6
1.9 Structure of Thesis Report . 7

2 Demonstration of the query interface that has been built 8
2.1 Natural Language Interface . 8
2.2 Direct Query Interface . 10

2.2.1 Verb voices . 11
2.2.2 Evaluating types . 12
2.2.3 Result formatting . 13

2.3 XSaiga Package . 13
2.4 Accessibility . 13
2.5 SPARQL Endpoint . 14
2.6 Summary . 14

3 Event-Based Denotational Semantics 17

x

Contents xi

3.1 Event-Based Triplestores . 17
3.2 Original Event-Based Denotational Semantics 18

3.2.1 Triplestore interface . 19
3.2.2 Semantic functions . 20
3.2.3 Haskell implementation for SPARQL 23

3.3 Improvements over Original Semantics . 23
3.3.1 Multiple-property prepositions and terminology 24
3.3.2 Naming and definition of “Images” 25
3.3.3 The implicit ‘and’ problem and the problem of ‘every’ 26
3.3.4 Semantic consistency . 27
3.3.5 The use of ‘by’ as a preposition 36

3.4 Summary . 36

4 Parser Combinators 37
4.1 Handling non-referentially transparent functions 37
4.2 Summary of the Parser Combinators . 38

5 The Query Program 39
5.1 Implementation language . 39

5.1.1 Functional Programming . 39
5.1.2 Lazy-evaluation . 39
5.1.3 Monads . 40
5.1.4 Why Haskell? . 41

5.2 Data representation . 42
5.3 Structure . 42
5.4 AGParser2 and TypeAg2 modules . 42

5.4.1 PrettyPrinting . 43
5.4.2 formatAttsFromAlt . 44

5.5 Main module . 45
5.6 Interactive module . 45
5.7 LocalData module . 46
5.8 SolarmanTriplestore and Getts modules 46
5.9 Improvements over Original Haskell Implementations 47

5.9.1 Type safety . 47
5.9.2 The Getts module: A generic interface to triplestores using a typeclass 48

5.10 Summary . 54

6 Timing 55
6.1 Experiment setup . 55
6.2 Experiment description . 56
6.3 Experiment 1 . 56

6.3.1 Results . 57
6.3.2 Discussion . 58

6.4 Experiment 2 . 58
6.4.1 Results . 60

Contents xii

6.4.2 Discussion . 60

7 Proof of the Thesis 62

8 Conclusions 63

9 Future Work 65
9.1 Providing Event-based views into entity-based triplestores 65
9.2 Thoughts on scaling up to handle massive triplestores 66

9.2.1 Query fusion . 66
9.2.2 Data parallelism . 68
9.2.3 Conceptual spaces . 70

9.3 Summary . 70

Bibliography 71

Appendices 75
Appendix A - Source code listing . 75

Vita Auctoris 76

List of Figures

2.1 Screenshot of English Natural Language Interface 15

2.2 Screenshot of Direct Query Interface . 16

3.1 Example using prepositional phrases to filter events 33

5.1 Module graph of the XSaiga package . 43

5.2 Parser operation: how an English sentence is mapped to semantic functions

for evaluation[11] . 44

xiii

List of Appendices

Appendix A - Source code listing . 75

xiv

Nomenclature

Chapter 1

1 Definition – Uniform Resource Identifier 2

2 Definition – Triple . 2

3 Definition – Entity . 2

4 Definition – Entity-based Triplestore . 2

Chapter 3

5 Definition – Event . 17

6 Definition – Event-Based Triplestore . 18

7 Definition – Collect function . 21

8 Definition – Image (original semantics) 21

9 Definition – Entity-event relation . 22

10 Definition – Property . 24

11 Definition – Preposition . 24

12 Definition – Function defined by the relation r 25

13 Definition – ENTEVPROP(evs, prop) relation 25

14 Definition – ENTEVPROP TYPE(ev type, prop) relation 25

15 Definition – Relevant and irrelevant FDBR-pairs with respect to a predicate 28

16 Definition – Predicate . 28

17 Definition – intersect fdbr function . 28

Chapter 5

18 Definition – Grouped Association List . 50

xv

Nomenclature xvi

Chapter 9

19 Definition – Ontology . 65

20 Definition – Task parallelism . 68

21 Definition – Data parallelism . 68

Chapter 1

Introduction

1.1 Motivation

Gone are the days where we could assume that a toaster was just a toaster, a refrigerator was

just a refrigerator, or a kettle was just a kettle. Increasingly, Internet-aware “smart” devices

are becoming the norm, silently replacing their ordinary counterparts with versions that

contain microprocessors, sensors, network adapters, and other electronic hardware. These

devices are what comprise the Internet of Things, a revolutionary change in how we interact

with devices and appliances around us. One benefit of this change is that these devices

are able to be operated remotely and through alternative interfaces, drastically improving

accessibility for those who have disabilities. Natural Language Interfaces, in particular,

could carry tremendous value to these users.

The Internet of Things, or IoT, is built on the Semantic Web, a body of open standards

that allows these devices to “speak the same language” to one another, much like how the

World Wide Web operates today[34]. If it were possible to design a framework for building

Natural Language Interfaces to the Semantic Web, Natural Language Interfaces could in

turn be designed for these IoT-enabled devices.

1.2 The Semantic Web

To begin understanding the Semantic Web, first some terminology must be introduced.

1

Chapter 1. Introduction 2

Definition 1 (Uniform Resource Identifier). “A compact sequence of characters that iden-

tifies an abstract or physical resource”[29]

A Uniform Resource Identifier may also be referred to as a URI. A URI may take the

form of a name, a location, or possibly both at once. A common example of a URI is an

HTTP URL for a website. Another example would be the ISBN of a book, or a telephone

number. URIs are a fundamental component of the Semantic Web, as it standardizes the

notion of identification for the devices, or more generally speaking, agents that comprise it.

Having a canonical name for a given object helps agents to refer to it, and in turn understand

what one another are referring to when communicating.

Definition 2 (Triple). A 3-tuple that has the form (subject,predicate,object), where sub-

ject, predicate, and object are Uniform Resource Identifiers[15].

Fundamentally, the Semantic Web is a network of online databases that store facts in

the form of triples. These triples compose the basic elements of the Resource Descrip-

tion Framework data model that underlies the Semantic Web, and databases that contain

them are commonly referred to as triplestores or RDF triplestores. When we refer to the

subject, predicate, or object of a triple, we are referring to the first, second, or third

component of that triple, respectively.

Traditionally, triplestores describe facts in terms of entities.

Definition 3 (Entity). “A thing capable of an independent existence that can be uniquely

identified”[8]

We call triplestores whose information is organized around entities entity-based triple-

stores.

Definition 4 (Entity-based Triplestore). A triplestore where the subject and object of the

triples contained within it refer only to entities

In this Thesis Report, we use the syntax (s, v, o) to describe a triple. However,

in practice, different encodings are used to represent triples. For instance, in N-Triples

syntax[14], the triple (s, v, o) would be represented using the string obtained by sub-

stituting the URIs that s, v, and o represent directly into their corresponding placeholders

“$s”, “$v”, and “$o” in the following string: “<$s> <$v> <$o>.”. In our Haskell code,

Chapter 1. Introduction 3

we would represent this triple using the tuple (ss, vs, os), where ss, vs, and os are,

respectively, the URIs that s, v, and o represent mapped to the String type in the language.

Therefore, in this Thesis Report the triples we refer to are “abstract” triples rather than

the actual concrete representations of those triples in practice.

1.3 The Problem

The SPARQL Protocol and RDF Query Language is an attempt to provide an SQL-like

interface to the Semantic Web. Currently, it is the de-facto method of querying RDF triple-

stores. SPARQL queries form patterns that define restrictions on the elements of triples.

Only triples matching the query pattern are returned in the result. Users submit queries to

a SPARQL endpoint which in turn executes the query against a triplestore and returns the

results.

SPARQL is not intended to be used directly by humans, however. User-friendly Seman-

tic Web query interfaces provide higher level metaphors for interacting with RDF triple-

stores, improving accessibility. These query interfaces then transform these metaphors into

corresponding SPARQL queries. One type of user-friendly interface that has seen use in

the Semantic Web is the Natural Language Interface. These interfaces allow users to query

Semantic Web triplestores using spoken or written Natural Language queries.

Querying the Semantic Web using Natural Language is an active area of research inter-

est, as it allows users with little to no technical background to construct queries for RDF

triplestores. This allows, for instance, health or police databases to be queried by profes-

sionals with minimal effort by the user. It also enhances accessibility of the Semantic Web

for users who have disabilities.

One problem in developing Natural Language Interfaces, however, is that they must be

expressive enough for users to comfortably use. Ideally, a wide coverage of Natural Lan-

guage constructs should be supported so that users can directly express their intent without

having to modify their queries to work around restrictions. As there have been several at-

tempts to construct a Natural Language Interface for the Semantic Web, and research is

ongoing, the problem of developing such a system is non-trivial. A summary of existing

Chapter 1. Introduction 4

approaches for Natural Language Interfaces to query the Semantic Web is given below:

1.4 Existing approaches

ORAKEL

An ontology-aware English interface to the Semantic Web based on Montague seman-

tics[27]. ORAKEL parses sentences according to a provided grammar, and evaluates

queries based on a compositional semantics. It supports quantification, negation, and con-

junction in queries. ORAKEL directly attempts to convert the input query to a SPARQL

query.

QuestIO

An ontology-aware English interface to the Semantic Web that is keyword oriented, at-

tempting to match words against concepts to hone down queries[26] . Uses SeRQL[33],

a query language similar to SPARQL, to form queries. Sentences are transformed into

SeRQL queries by the use of a formal semantics.

AutoSPARQL

A supervised machine learning approach using English to query the Semantic Web[21].

Queries are provided in the form of keywords, which are used to construct query trees.

These are then converted to SPARQL queries. It is a feedback oriented system in that the

user is expected to be actively involved in refining subsequent results by selecting candi-

dates from the returned set that best match what the user is looking for.

1.5 Shortcomings of previous approaches

While these approaches have seen success, they all share a shortcoming in that they do

not allow for prepositional phrases in queries, and therefore have limited coverage of the

English language.

Chapter 1. Introduction 5

1.6 New approach

The work presented in this thesis draws on two main concepts: executable attribute gram-

mars[25] and event-based denotational semantics[10].

Executable attribute grammars are a natural way to implement Natural Language pro-

cessors[38], and since they allow top-down rather than bottom-up parsing, they are highly

modular[25]. This makes them well suited to the natural specification of semantic rules,

since the meanings of terminals and rules in the grammar are able to be defined along-

side those rules and terminals in the grammar itself. Additionally, it is possible to handle

left-recursion and ambiguity directly in executable attribute grammars efficiently, allowing

these grammars to witness sentences in natural language that are inherently ambiguous.

English denotational semantics were first described by Dr. Richard Montague in 1970[19].

Montague proposed denotations for English words using characteristic functions described

in higher order logic. The presence of universal quantification in these characteristic func-

tions made Montague’s semantics difficult to implement in a computationally tractable way,

however. Frost et al. in 1989 presented an improved version of Montague semantics called

FLMS[39] that addressed this need. Frost’s approach was to use sets instead of characteris-

tic functions, making the semantics computationally tractable. In addition, Frost proposed

a denotation for transitive verbs which was missing in Montague’s semantics[16].

Frost et al. modified FLMS in 2013 to produce a new semantics called EV-FLMS[16],

intended for use with event-based triplestores. This event-based denotational semantics

operates on event-based triplestores[11] rather than entity-based triplestores. Entity-based

triplestores describe entities and their relations to other entities, but a problem exists in how

to add contextual information to a particular triple. In an event-based triplestore, triples

describe events rather than entities, and information about entities and their relationships to

one another may be gleaned from the events in which they occur. Additional information

about an event may be added by simply adding a new triple to the triplestore.

As an example, the sentence “Jane bought a pencil” could be represented in an entity-

based triplestore with the triple

(Jane, purchased, pencil_1)

Chapter 1. Introduction 6

In an event-based triplestore, the same sentence could be represented with three triples:

(event1, subject, Jane)

(event1, type, purchase)

(event1, object, pencil_1)

Additionally, other information about the event may be added as well, for example

including the purchase price with the triple: (event1, cost, $1), or perhaps the time t

the transaction occurred with (event1, time, t).

In this thesis, we present a new event-based denotational semantics called Unified EV-

FLMS or UEV-FLMS that improves on EV-FLMS by unifying several semantic concepts,

supporting prepositions that query multiple properties, and solving two problems resulting

from how prepositional phrases were handled in the original semantics. In doing this, we

introduce a novel method of handling the word “by” as used in the passive form of a verb

by treating it directly as a preposition within our grammar, unifying our treatment of active

and passive verbs. With this approach, we are able to accommodate queries such as “which

moon was discovered in 1877 by hall” without any added complexity to the semantics.

1.7 Thesis Statement

By integrating a novel event-based denotational semantics with a parser constructed as

an executable attribute grammar, it is possible to create a highly modular and extensible

Natural Language Interface to the Semantic Web that supports the use of prepositional

phrases in queries.

1.8 Proof of Concept

We prove the Thesis by creating an online English query interface to a triplestore containing

thousands of facts about the solar system[2].

Some example queries that can be handled by this system include:

• “when was something discovered at mt wilson”

Chapter 1. Introduction 7

• “how was the thing that was discovered at flagstaff discovered”

• “what was discovered in 1877 in us naval observatory”

• “what planet is orbited by a moon that was discovered in 1684”

• “which vacuumous moon that orbits jupiter was discovered by nicholson or hall with

a telescope in 1938 in mt wilson or mt hopkins”

1.9 Structure of Thesis Report

The remainder of this Thesis Report is structured as follows:

1. Demonstration

2. The event-based semantics

3. The parser combinator

4. The query program

5. Timing

6. Thoughts on scaling up to handle massive triplestores

7. Proof of the Thesis

8. Conclusions

Chapter 2

Demonstration of the query interface

that has been built

The query program is called “Solarman”, and there exists two web based interfaces that

can be used to interact with it.

Solarman was a program originally built in Miranda to demonstrate Frost’s FLMS se-

mantics in 1989[39], enabling the user to perform queries about objects in the Solar sys-

tem. It was later ported to Haskell and integrated with Hafiz’s parser in 2008[25] to form

a Natural Language Interface using FLMS semantics to perform queries. Later still, it

was ported to EV-FLMS semantics, operating on an in-program triplestore and, option-

ally, a SPARQL endpoint using unsafeDupablePerformIO. We ported Solarman to use

UEV-FLMS semantics as described in this Thesis to perform queries on the Semantic Web

through SPARQL endpoints safely, removing the need for unsafeDupablePerformIO in

our code. We provide two interfaces: a Natural Language Interface enabling the user to

enter queries in English, and a Direct Query Interface enabling users to enter queries using

expressions in the Haskell language. Our SPARQL endpoint contains 4,129 triples in total

representing information about the Solar system.

2.1 Natural Language Interface

The English Natural Language query interface can be accessed via this URL:

8

Chapter 2. Demonstration of the query interface that has been built 9

http://speechweb2.cs.uwindsor.ca/solarman2/demo_sparql.html

In the text box labeled “Enter query here”, English queries about the Solar system can

be entered to be evaluated. This is accomplished using the Common Gateway Interface,

or CGI, to directly execute the “Solarman” program on the server with the given query as

an argument. Internally, Solarman is configured to use a Virtuoso[23] RDF database as

its SPARQL endpoint. The following SPARQL query is an example query that Solarman

could send to a SPARQL endpoint:

PREFIX sol: <http://solarman.richard.myweb.cs.uwindsor.ca#>

SELECT DISTINCT ?x1 ?x0 WHERE {

?x0 sol:type sol:discover_ev .

?x0 sol:object ?x1 .

} ORDER BY ASC(?x1)

In the above example, the triplestore is being queried for all events of the “discover”

type and the entities that were discovered in each of those events. Additionally, the query

stipulates that the results should be lexicographically sorted in ascending order by the

names of the entities being discovered in each event. This ordering constraint is useful

as it enables the results to be processed into an FDBR in O(n) time, as detailed in chap-

ter 5. Each pattern in a SPARQL query that defines restrictions on matching triples is

described as a statement ending with a “.”. As shown in the example, multiple pattern

matching statements are permitted in a single SPARQL query. A “PREFIX” statement may

be provided at the start of a SPARQL query to define a shorthand for a namespace that

can be used within patterns. In our triplestore, all facts about the Solar system are in the

“http://solarman.richard.myweb.cs.uwindsor.ca#” namespace.

Traversing the “More Examples” link will bring up a page that contains a full list of the

words that can be used in queries, along with a list of example queries that can be used.

Some example queries that use prepositional phrases include:

• what moon was discovered by one person in 1877

• what planet is orbited by a moon that was discovered in 1684

http://speechweb2.cs.uwindsor.ca/solarman2/demo_sparql.html

Chapter 2. Demonstration of the query interface that has been built 10

• what was discovered in 1877 in us naval observatory with a

telescope

• how many moons were discovered in 1938

• where were the moons that were discovered by hall or kuiper in

1877 discovered

• which moons that orbit a planet that orbits a sun were discovered

by one person at a place with a telescope

• how were the moons that were discovered with two telescopes

discovered

• who discovered something with two telescopes

The last query, “who discovered something with two telescopes”, is a valid

English sentence that is semantically ambiguous. The question could be asking whether

someone used two telescopes to discover one particular thing, or whether someone dis-

covered potentially multiple objects using two telescopes, using one telescope in each dis-

covery. Our semantics treats both interpretations as valid and uses both in forming query

results.

2.2 Direct Query Interface

In addition, a “Direct Query Interface” is provided that allows users to directly interact with

the parser combinators and semantic functions by chaining them together to form queries.

This is useful tool to explore and understand the semantics. It can be accessed via this

URL:

http://speechweb2.cs.uwindsor.ca/solarman2/demo_sparql_direct.html

The Direct Query Interface is implemented using Safe Haskell[20], an extension of the

Haskell language that restricts the functions that can be evaluated to a safe subset that is

suitable for executing untrusted code. This makes the Direct Query Interface suitable for

http://speechweb2.cs.uwindsor.ca/solarman2/demo_sparql_direct.html

Chapter 2. Demonstration of the query interface that has been built 11

use on public-facing websites, preventing external users from executing malicious code

using the interface. For example, the expression System.IO.readFile "/etc/passwd"

is disallowed under this scheme as both the Haskell Prelude and System.IO modules are

by default not trusted.

Examples of Haskell expressions that can be executed with the Direct Query Interface:

• when’ $ something $ discovered [at mt wilson]

(English: “when was something discovered at mt wilson”)

• how’ $ discovered $

the (thing ‘that‘ discovered [at flagstaff])

(English: “how was the thing that was discovered at flagstaff discovered”)

• what $ discovered [in’ 1877, at us naval observatory]

(English: “what was discovered in 1877 at us naval observatory”)

• which planet $ orbited

[by $ a (moon ‘that‘ discovered [in’ 1684])]

(English: “what planet is orbited by a moon that was discovered in 1684”)

• which

(liftM2 intersect fdbr vacuumous (moon ‘that‘ orbits jupiter))

$ discovered [by $ nicholson ‘termor‘ hall,

with $ a telescope, in’ 1938,

at $ mt wilson ‘termor‘ mt hopkins]

(English: “which vacuumous moon that orbits jupiter was discovered by nicholson

or hall with a telescope in 1938 in mt wilson or mt hopkins”)

2.2.1 Verb voices

When using transitive verbs in the Direct Query Interface, the appropriate voice of the

verb must be selected. Both the “discover” and “orbit” transitive verbs are supported. The

available voices are summarized as follows:

Chapter 2. Demonstration of the query interface that has been built 12

• discover is the active voice (e.g. ”hall discovered a moon”)

• discover’ is the active voice with support for prepositional phrases, and

• discover is the passive voice with prepositional phrases

The above voices apply to the “orbit” verb as well.

2.2.2 Evaluating types

In addition to evaluating queries, the types of the combinators themselves and their results

may also be evaluated by prepending the query with “:t”. For example:

• “:t moon” returns “moon :: IO FDBR”

• “:t a moon”

returns “a moon :: IO [(String, t2)] → IO [(String, t2)]”

• “:t by” returns “by :: t → ([[Char]], t)”

• “:t discovered’”

returns “discovered’ :: (IO FDBR → IO FDBR) →

[([[Char]], IO FDBR → IO FDBR)] → IO FDBR”

• “:t vacuumous” returns “vacuumous :: IO FDBR”

In the above query results, FDBR refers to the “Function Defined By Relation” construct

which is explained in Section 3.3.2. A value of type IO FDBR represents an “IO Action”,

when executed, yields a value of type FDBR. In our semantics, the FDBR type is defined as

[(String, [String])]. The type a→ b is used to denote a function from type a to type

b.

The Haskell language deduces the most general type declaration possible for a given

function definition. If certain components of an input value aren’t used, those components

will be replaced with a type variable when possible. This can be seen above in the queries

for :t a moon and :t by. Neither of these expressions use the list of events associated

Chapter 2. Demonstration of the query interface that has been built 13

with the input FDBR, and therefore the type declaration was generalized, substituting a

type variable for the list of events. The type variable is allowed to be bound to any type,

subject to type constraints. For example, in “:t a moon”, if we let t2 = [String], then

a moon :: IO [(String, [String])] and hence a moon :: IO FDBR.

2.2.3 Result formatting

The results of the Direct Query Interface are formatted for easier viewing. In particular,

in each “FDBR”, each result pair is on its own line, making it clear which entities are

connected with which events.

2.3 XSaiga Package

“Solarman” is also included as part of the XSaiga package that we have uploaded to Hack-

age, an online repository of Haskell libraries and software[3]. It is available at this URL:

https://hackage.haskell.org/package/XSaiga

To install the XSaiga package, the GHC compiler version 8.0.1 or higher is required.

With the cabal command, execute the following at a terminal:

> cabal update

> cabal install XSaiga

The XSaiga code resides inside the XSaiga namespace, and includes the parser, Solar-

man and its semantics, and a local triplestore in the module “LocalData” containing all of

the RDF triples in a list.

2.4 Accessibility

Both interfaces are also designed to be accessible, supporting programs such as screen

readers in order to accommodate those with disabilities. This was accomplished using the

WAVE Web Accessibility Evaluation Tool[6] and AChecker IDI Web Accessibility Checker[1]

to validate the interfaces for accessibility.

https://hackage.haskell.org/package/XSaiga

Chapter 2. Demonstration of the query interface that has been built 14

2.5 SPARQL Endpoint

The SPARQL endpoint that Solarman uses can be accessed via this URL:

http://speechweb2.cs.uwindsor.ca/sparql

We use the Virtuoso RDF triplestore software and its SPARQL interface[23] in our

demonstration. To replicate our setup, first install the Virtuoso software for your operating

system. Next, obtain a database dump of our triplestore in “n-Triples” format[14] using

this URL:

http://speechweb2.cs.uwindsor.ca/solarman2/triples.nt

Finally, use the “bulk import” mechanism in Virtuoso Conductor to import our triples

into your triplestore, selecting the triples.nt file. Our semantics can use any SPARQL

interface, so the Virtuoso triplestore may be substituted with any number of alternatives,

including Apache Jena[18].

2.6 Summary

In this chapter we summarized previous implementations of Solarman and described our

online Natural Language Interface using our Semantics. In Chapter 3, we present an

overview of event-based denotational semantics, summarizing EV-FLMS and introducing

UEV-FLMS.

http://speechweb2.cs.uwindsor.ca/sparql
http://speechweb2.cs.uwindsor.ca/solarman2/triples.nt

Chapter 2. Demonstration of the query interface that has been built 15

Figure 2.1: Screenshot of English Natural Language Interface

Chapter 2. Demonstration of the query interface that has been built 16

Figure 2.2: Screenshot of Direct Query Interface

Chapter 3

Event-Based Denotational Semantics

Our demonstration query program, Solarman, uses an event-based denotational semantics

in order to perform queries on the Semantic Web. In this chapter we present an overview of

event-based triplestores, a summary of the original event-based semantics that our seman-

tics is based on, and our improved semantics. We also present a novel method of handling

the word “by”, as in the phrase “discovered by”, treating it directly as a prepositional phrase

in queries.

3.1 Event-Based Triplestores

One problem with entity-based triplestores is that it is difficult to add contextual informa-

tion to a triple. Two common examples of contextual information are time and location.

Many approaches that allow this use a method called reification[30].

One form of reification is to organize information into events.

Definition 5 (Event). A set of meaningfully connected physical or abstract phenomena

For example, the triple (sally, met, susan) in an entity-based triplestore could be

represented by three triples:

(event1, type, meet)

(event1, subject, sally)

(event1, object, susan)

17

Chapter 3. Event-Based Denotational Semantics 18

These triples describe the event in which “Sally met Susan” rather than directly describ-

ing the meeting itself. The advantage of this approach is that it is possible to add additional

information about the meeting by simply adding more triples with event1 as the subject:

(event1, year, 1955)

(event1, location, windsor)

Triplestores that organize their information in this fashion are called Event-based Triple-

stores.

Definition 6 (Event-Based Triplestore). A triplestore where the subject of the triples

contained within it refer to events[10]

We say that a triple belongs to an event if the subject of the triple is the name of the

event. For example, the triples above belong to event1. The entities that belong to an event

e are the objects of the triples belonging to that event. For example, in the triples above,

the entities sally, susan, 1955, and windsor belong to event1.

The key motivation behind using Event-based triplestores in this Thesis is that they

directly support reification on triples[10].

3.2 Original Event-Based Denotational Semantics

The semantics in this Thesis is based on work that was originally described by Frost et al.

in 2013[16], called EV-FLMS. That work was later improved upon by Frost and Agboola

in 2014[10].

One key feature of the original semantics is that they were not tied to any particular

implementation of an event-based triplestore, removing the need to directly convert queries

into corresponding triplestore queries. This was achieved by defining the semantic func-

tions in terms of an abstract triplestore interface. The original semantic functions them-

selves were defined in pure math notation, suitable for implementation in any sufficiently

powerful programming language.

In [10], a Miranda implementation of the semantics was demonstrated, and in [12] a

Haskell implementation was produced as well. In both the Miranda and Haskell versions,

Chapter 3. Event-Based Denotational Semantics 19

the sets used in the semantics were represented using singly-linked lists, called lists. Lists

are composed using the (:) operator, where the left argument of (:) is an element and

the right argument is a list. The (:) operator is right-associative prepends the left operand

to the right operand. The empty list is denoted with []. The syntax [x 1, x 2, ...

x n], (x 1 : x 2 : ... : x n : []) and (x 1 : (x 2 : ... : (x n :

[]))) are equivalent. Lists are homogeneous in that types of all elements in the list must

be identical.

Functions in Haskell that take two arguments may be treated as binary operators by

surrounding the function name with backticks (‘) in a function call. For example, if the

function plus takes two numeric arguments, then the Haskell expressions “plus 1 2” and

“1 ‘plus‘ 2” are equivalent.

A summary of the original semantics and the Haskell implementation is provided be-

low:

3.2.1 Triplestore interface

Triplestore access was implemented for in-program triplestores through the following func-

tions, where ev data is an in-program triplestore represented as a list of 3-tuples, each

3-tuple representing a triple:

getts_1 ("?",b,c) = [x | (x,y,z) ← ev_data, y == b, z == c]

getts_2 (a,"?",c) = [x | (x,y,z) ← ev_data, x == a, z == c]

getts_3 (a,b,"?") = [z | (x,y,z) ← ev_data, x == a, y == b]

Other useful utility triplestore functions were defined in terms of the getts * functions:

get_subj_for_ev ev = getts_3 (ev, "subject","?")

get_subjs_for_events evs = concatMap (get_subj_for_event evs)

get_members set = get_subjs_for_evs evs

where

evs = intersect evs_of_type_membership evs_with_set_as_object

evs_of_type_membership = getts_1 ("?", "type", "membership")

Chapter 3. Event-Based Denotational Semantics 20

evs_with_set_as_object = getts_1 ("?", "object", set)

get_subjs_of_event_type et = get_subjs_for_evs evs

where

evs = getts_1 ("?", "type", et)

3.2.2 Semantic functions

Common nouns were defined as “the set of entities that are members of the set associated

with that noun”[12]. These were implemented using the get members function.

person = get_members "person"

Intransitive verbs were defined as “the set of entities that are subjects of an event of the

type associated with that verb”[12]. They were implemented using the get subjs of event type

function.

steal = get_subjs_of_event_type "steal_ev"

Proper nouns were defined as “functions that take a set of entities as an argument and

which return True if a particular entity is a member of that set”[12]. They were imple-

mented using the member function which tests list membership.

torrio setofents = "torrio" ‘member‘ setofents

Determiners were defined as functions taking two sets of entities, called a nounphrase

and verbphrase respectively. Each of these functions is defined in terms of set intersection.

They were implemented using list intersection:

a nph vbph = length (intersect nph vbph) /= 0

one nph vbph = length (intersect nph vbph) == 1

two nph vbph = length (intersect nph vbph) == 2

every nph vbph = subset nph vbph

Conjoiners for common nouns were implemented similarly:

nounand s t = intersect s t

Chapter 3. Event-Based Denotational Semantics 21

nounor s t = mkset (s ++ t) -- behaves like set union

that = nounand

A determiner phrase was defined as being a determiner such as “a” or “every” applied to

a common noun, for example “every moon”.[12]. A termphrase was defined as being either

a proper noun or a determiner phrase[12]. Conjoiners for termphrases were implemented

as follows:

termand tmph1 tmph2 setofents = (tmph1 setofents) && (tmph2 setofevs)

termor tmph1 tmph2 setofents = (tmph1 setofents) | | (tmph2 setofevs)

This was necessary because common nouns were sets of entities, but proper nouns and

determiner phrases were functions that acted on sets of entities.

Transitive verbs were defined in terms of images[12]. Briefly, images are constructed

from binary relations with the collect function.

Definition 7 (Collect function). The function collect is defined such that it takes a binary

relation as an argument, e.g. joinrel, and “returns a new binary relation, containing one

binary tuple (x, image x) for each member of the projection of the left-hand column of

joinrel , where image x is the mathematical image of x under the relation joinrel”[12]

Definition 8 (Image (original semantics)). A function that maps elements in the domain to

sets

Intuitively speaking, the collect function converts arbitrary binary relations into func-

tions. (∀x) All pairs (x,y1),(x,y2), ...,(x,yn) in the argument of collect are grouped into

one pair (x,{y1,y2, ...,yn}) in the returned binary relation.

In the Haskell implementation, binary relations and images were represented using as-

sociation lists, which are lists of pairs[12].

collect was implemented as follows:

collect [] = []

collect ((x,y):t) = (x, y:[e2 |(e1, e2)←t,e1 == x])

: collect [(e1, e2) | (e1, e2) ← t, e1 /= x]

Chapter 3. Event-Based Denotational Semantics 22

According to [7], this implementation of collect has a worst-case asymptotic time

complexity of O(n2).

Definition 9 (Entity-event relation). A binary relation from entities in a triplestore to events

in that triplestore

The function make image creates an entity-event relation from a given event type and

then converts it to an image using collect:

make_image et = collect

[(subj, ev) | ev ← evs, subj ← getts_3 (ev, "subject","?")]

where evs = getts_1 ("?", "type", et)

Transitive verbs were defined by filtering pairs in the image of the event type that cor-

responds to the verb using the termphrase provided. The only pairs remaining in the image

are those for which the termphrase predicate returns True. An example is the “join” verb:

join tmph = [subj | (subj, evs) ← make_image "join_ev",

tmph (concat [getts_3 (ev, "object", "?") | ev ← evs])]

Prepositional phrases were defined through an extension of the above mechanism. Be-

fore passing an entity list to a termphrase, the events those entities were drawn from would

be first filtered through a series of prepositions.

Prepositions were defined as a pair consisting of the name of a property of an event and

a termphrase. Chained prepositional phrases were defined as a list of prepositions.

An example chained prepositional phrase: [("with implement", a telescope),

("year", year "1877")]

join could be modified to support prepositions as follows:

join tmph preps = [subj | (subj, evs) ← make_image "join_ev",

tmph (concat [getts_3 (ev,"object","?") | ev ← evs,

filter_ev ev preps])]

where filter ev is defined as follows[12]:

filter_ev ev [] = True

Chapter 3. Event-Based Denotational Semantics 23

filter_ev ev (prep:list_of_preps)

= ((snd (prep)) (getts_3 (ev,fst (prep),"?")))

&& filter_ev ev list_of_preps

3.2.3 Haskell implementation for SPARQL

In 2015, Agboola modified the Haskell implementation to support SPARQL endpoints,

with some efficiency improvements[7]. In particular, the asymptotic time complexity of

the collect function was improved to O(n log n) time.

3.3 Improvements over Original Semantics

In the following section, function currying[37] is used to simplify the description of the

semantics. Briefly, a function f with n arguments can be curried into a chain of n functions,

each accepting one argument and returning the next function in a chain, effectively “fixing”

the current argument in the returned function. If the end of the chain is reached, the value

that f would have produced had it been directly called with all n arguments is returned.

This is a key feature of many functional programming languages[22].

We use the syntax f x1 x2 . . . xn to denote a function or function call with n argu-

ments. If this syntax is used and only a partial number of arguments are provided, then

a function of the remaining arguments is returned. Otherwise, this syntax is equivalent to

f (x1,x2, . . . ,xn).

We use set-builder notation to define the sets and binary relations throughout the se-

mantic functions. When we provide a definition for a set R, we use the syntax:

R(a1,a2, ...,an) = {...}

R’s arguments (if any) are substituted into the set definition on the right hand side of the

equation. We may combine this syntax with function currying, as used in the denotations

for English words in our semantics, to simplify our definitions.-

Chapter 3. Event-Based Denotational Semantics 24

The improvements from the original semantics presented in [11][10] are detailed below.

This new semantics is called “Unified EV-FLMS”, abbreviated as UEV-FLMS.

3.3.1 Multiple-property prepositions and terminology

Prepositions were previously defined as a pair consisting of the name of a property of an

event and a termphrase. This meant that prepositions could only refer to one property of an

event, making prepositions such as “in” impossible to express, as it could refer to either a

location or a range in time. To solve this, we extended the definition of preposition in our

semantics. First, some new terminology:

Definition 10 (Property). A predicate of a triple in an event-based triplestore.

For example, in the triple (event1000, with implement, refractor telescope 1),

with implement is a property. Since the triple belongs to event1000, we say that with implement

is a property of event1000. In general, there is no restriction on the number of entities of

an event that share the same property.

Definition 11 (Preposition). A pair consisting of a set of properties and a predicate.

By using a set of properties rather than a single property as in the original semantics,

we are able to support prepositions that could refer to multiple properties. For example, the

preposition in’ in our semantics is defined as:

in′ tmph= ({“location”,“year”} ,tmph)

When referring to the entities with property prop of an event, we are referring to the

objects of the triples of the event that have the predicate prop. We may use the phrase

“the props of an event” as a shorthand for “the entities with property prop of an event”.

For example, the subjects, objects, or types of an event are the entities with property

subject, object or type of that event, respectively.

Chapter 3. Event-Based Denotational Semantics 25

3.3.2 Naming and definition of “Images”

Originally, transitive verbs were defined in terms of images[12]. In this thesis report, we use

the term function defined by the relation instead of image, as image is a term that already

exists throughout mathematics and has a different meaning.

Definition 12 (Function defined by the relation r). The function defined by the binary

relation r is the set {(x,imagex) : x is a member of the domain of r and imagex is the

image of x under r}

The function defined by a relation is referred to throughout this thesis report by the

shorthand FDBR. It is represented by an association list in the Haskell code, as images were

represented in the original semantics. The function defined by the relation r is denoted with

the syntax FDBR(r). We call an element (x,imagex) of an FDBR an FDBR-pair.

We also define the ENTEVPROP relation. Informally, ENTEVPROP(evs,prop) is the

entity-event relation in which the props of the events evs are related to the events that

they belong to.

Definition 13 (ENTEVPROP(evs, prop) relation).

ENTEVPROP(evs,prop) = {(ent,ev) : ent ∈ getts(ev,prop,ANY) ∧ ev ∈ evs}

The ENTEVPROP TYPE relation is similar, accepting an event type as an argument

instead of a set of events. ENTEVPROP TYPE(ev type, prop) obtains the set of events

where the types of those events are the desired event type.

Definition 14 (ENTEVPROP TYPE(ev type, prop) relation).

ENTEVPROP TYPE(ev type,prop) = ENTEVPROP(evs,prop)

where evs = getts(ANY,type,ev type)

In the original EV-FLMS semantics, the make trans function can be defined using the

above functions as follows:

Chapter 3. Event-Based Denotational Semantics 26

make trans event type tmph=

tmph(map fst FDBR(ENTEVPROP TYPE(event type,“subject”)))

These relations form the basis on which our new semantics is defined.

3.3.3 The implicit ‘and’ problem and the problem of ‘every’

In the original semantics there were two problems resulting from how prepositional phrases

were implemented.

First, a query such as “the sun is orbited by every planet” would have returned False

due to the way filter ev was implemented.

This was because in FDBR(orbit), where orbit = ENTEVPROP TYPE(orbit ev,

“object”), the FDBR-pair for sun would have the form: (sun, [event1000,event1001,

. . . ,event1008]), where each event would denote a separate orbit event corresponding to

each planet that orbits the sun. filter ev applied each preposition’s termphrase to each

event separately, meaning that no information provided by other events could be used by the

predicate. Hence every planet would have returned False for each individual event’s as-

sociated object, and filter ev would have discarded the pair for sun in FDBR(orbit).

If there were one singular orbit event in which all of the planets were listed as orbiting the

sun, then this query would have worked. However, if there are properties unique to the

planets being described in each orbit event, then it is not possible to describe all orbits in

one singular event. Therefore there was a need for a method to filter events in FDBRs that

allowed termphrases to view the objects of all events in an FBDR-pair rather than just one.

Second, an implicit “and” was placed in between each preposition, transforming sen-

tences such as “who discovered something with two telescopes in 1914” into “who discov-

ered something with two telescopes and in 1914”.

Although the above sentence is ambiguous in that it could be asking whether some-

one used two telescopes to discover one particular object, or whether someone discovered

potentially different objects with two telescopes, the asker most certainly did not intend

Chapter 3. Event-Based Denotational Semantics 27

for an implicit “and” to be inserted in between the prepositions. This happens because in

the original filter ev function, the sets of events were not actually “honed down” before

being passed to subsequent predicates in the preposition chain.

In our semantics we define a new filter ev function that overcomes both these prob-

lems. Its definition is deferred until the Transitive Verbs section as some additional concepts

must be introduced first.

3.3.4 Semantic consistency

One goal of the new semantics is to unify concepts in the original semantics. A significant

refactoring was performed in order to accomplish this task.

Triplestore utility functions

The getts functions are identical to how they were in[16], however all other triplestore

utility functions have been modified from their original definitions. In particular, the func-

tions get subjs for event, get subjs for events, get subjs for event type, and

get members return an FDBR rather than a set of entities. They are defined as follows:

get subjs for events evs= FDBR(ENTEVPROP(evs,“subject”))

get subjs for event ev= get subjs for events{ev}

get subjs for event type ev type=

FDBR(ENTEVPROP TYPE(ev type,“subject”))

The definition of get members is identical to the original except that it uses the new

get subjs for events function.

By returning FDBRs, information about the entire entity-event relation is provided

rather than only information about entities belonging to those events. This change sim-

plifies the definitions of the triplestore utility functions and also makes their function more

uniform.

Chapter 3. Event-Based Denotational Semantics 28

Semantic functions

All semantic functions have been modified to accept FDBRs and return FDBRs, with the

exception of “query” functions whatobj, where’, how’, when’, and what.

what and whatobj are differentiated to obtain the subjects and objects of FDBRs,

respectively, with the objects being obtained through the events in FDBR.

Determiner phrases and proper nouns Previously, predicates were functions from sets

of entities to boolean values.

In our new semantics, we modified the definition of predicates such that predicates

accept FDBRs and return FDBRs. A returned FDBR that is non-empty is considered to be

True. A returned FDBR that is empty is considered to be False. Specifically, a predicate

p evaluated on an FDBR F returns only the elements of F that are relevant to p.

Definition 15 (Relevant and irrelevant FDBR-pairs with respect to a predicate). An FDBR-

Pair x of an FDBR F is irrelevant with respect to a predicate p if p F = p F ′, where F ′ is

obtained by removing x from F . Otherwise, x is relevant to p.

Definition 16 (Predicate). A function from FDBRs to FDBRs that discards irrelevant FDBR-

pairs from its argument.

Most predicates in our semantics are defined in terms of the function intersect fdbr:

Definition 17 (intersect fdbr function).

intersect fdbr fdbr1 fdbr2=

{(ent2,evs2) : (ent1,evs1)∈ fdbr1 ∧ (ent2,evs2)∈ fdbr2 ∧ ent1= ent2}

Briefly, this function performs the intersection of two FDBRs using the entity name

in each FDBR-pair. The events from the second FDBR are preserved in the intersection,

while the events from the first FDBR are discarded.

For an example of why intersect fdbr is defined this way, consider the sentence a

moon spins. The events that justify the claim that a particular moon spins are contained in

the FDBR spins. On the other hand, the events of moon are only membership events and

don’t contribute any useful information about whether a given moon spins or not. Therefore

Chapter 3. Event-Based Denotational Semantics 29

we would expect in the FDBR for a moon spins, we would only have events from the

spins relation. Furthermore, it wouldn’t make sense to have any entities that weren’t

moons in a moon spins, nor would it make sense for us to be missing any moons, since

we know that all moons spin. If we let a= intersect fdbr, then we capture exactly these

semantics.

In general, in any determiner function, we are interested in the events of the second

FDBR as they provide justification that the entities in the first FDBR have some charac-

teristic that the second FDBR expresses. The first FDBR is useful only for the entities

contained within it as a way of specifying which entities should be queried. With this in

mind, we define the determiners as follows:

a= intersect fdbr

any= a

the= a

some= a

an= a

every=

intersect fdbr nph vbph, if nph entities ⊆ vbph entities

/0, otherwise

where

nph entities= map fst nph

vbph entities= map fst vbph

one nph vbph=

intersect fdbr nph vbph, if |intersect fdbr nph vbph|= 1

/0, otherwise

two nph vbph=

intersect fdbr nph vbph, if |intersect fdbr nph vbph|= 2

/0, otherwise

Chapter 3. Event-Based Denotational Semantics 30

fst is a function that returns the first component in a pair. The map function computes

the image of a function f over the elements of a set s. Hence the function map fst obtains

all of the entities in an FDBR.

Proper nouns are defined as follows:

make pnoun noun fdbr= intersect fdbr {(noun, /0)} fdbr

Note that proper nouns are treated the same as determiners under the same reasoning.

This change was actually motivated by our changes to how prepositional phrases are

handed in our semantics, and is the basis through which “filtering” occurs along preposition

chains. Since predicates only return FDBR-pairs that are relevant to them, filter ev can

directly use predicates to filter FDBRs and find the events that are common among all of

them, if any.

Transitive verbs In the original semantics, the function make trans was used to con-

struct an FDBR out of an event type.

In our semantics, we distinguish between the active and passive voices of transitive

verbs. For example, in the sentence “Hall discovered a moon”, the active voice is being

used. In the sentence “A moon was discovered by Hall”, the passive voice is being used.

This voice of a verb changes what the verb is acting on in a sentence. To express this in the

semantics, we provide two functions, make trans active’ and make trans passive’

to construct an FDBR denoting the active and passive voice of a transitive verb, respect-

fully.

Chapter 3. Event-Based Denotational Semantics 31

make trans active′ ev type tmph preps=

filter

(
prepFilter

(
{({“object”},tmph)}∪preps

)) (
fdbr active

)
make trans passive′ ev type preps=

filter (prepFilter preps) (fdbr passive)

where

prepFilter((,evs)) = filter ev preps evs

fdbr active= FDBR(ENTEVPROP TYPE(ev type,“subject”))

fdbr passive= FDBR(ENTEVPROP TYPE(ev type,“object”))

The filter function takes a function that returns a boolean value and returns a new

set containing only the elements of the original set for which that function returned True.

filter ev is used to filter FDBRs such that only FDBR-pairs that match the prepositions

are kept. It is defined as follows:

filter ev preps evs=

False, if filtered= /0

True, otherwise

where

filtered= {ev : (∀propFDBR ∈ propertyFDBRs) ev ∈ (snd propFDBR)}

propertyFDBRs=

{
pred

(∪
pName∈propNames

FDBR(ENTEVPROP(evs,pName))

)
:

(propNames,pred) ∈ preps

}

Informally, filter ev computes an FDBR of the relevant properties for each prepo-

sition from all events, and evaluates the termphrases of each preposition on each corre-

Chapter 3. Event-Based Denotational Semantics 32

sponding FDBR. The intersections of all events in all FDBRs are used as a way of “honing

down” the events. If there are no events in common with any preposition, then the return

value is False, otherwise at least one event satisfies all prepositions and the return value

is True. This solves the problems with how prepositional phrases were handled in the

original semantics.

We also provide two more functions, make trans active and make trans passive,

transitive verbs without prepositional phrases:

make trans active ev type tmph= make trans active′ ev type tmph /0

make trans passive ev type= make trans passive′ ev type /0

The mechanism for filtering prepositional phrases is powerful enough that no extra

work need be done for handling the termphrase associated with a transitive verb, for exam-

ple a moon in discover (a moon). By adding a virtual preposition to the set of preposi-

tions, ({({"object"}, tmph)}, filter ev is able to subsume that functionality, simpli-

fying the semantics.

Therefore, both voices of transitive verbs, and versions both with and without support

for prepositional phrases, are handled uniformly and transparently.

As an example of how filtering using prepositional phrases works, consider the query

“who discovered at mt wilson in 1938”. The FDBR of the verb “discovered” contains the

FDBR-pair (“nicholson”,{event1056,event1057,event1058,event1059}). In Fig-

ure 3.1, a visualization of the four events in the FDBR-pair with “nicholson” as the subject

is shown. The matching properties queried by the prepositional phrase “at mt wilson”

and “in 1938” are highlighted in pink and purple, respectively. An FDBR is constructed

for each prepositional phrase from the properties denoted in each preposition, and those

FDBRs are filtered using each preposition’s corresponding predicate. The set of events

common to all filtered FDBRs for each prepositional phrase is contained within the dashed

box. According to this chain of prepositions, the set of events that have properties matching

all predicates in the chain is {event1056,event1058}. Since there exists a non-empty set

of events relevant to all prepositional phrases in the chain, “nicholson” is included in the

Chapter 3. Event-Based Denotational Semantics 33

event1056

ty
p
e

ob
jec
t

location

w
ith_

im
p
le
m
en

t

ye
ar

subject

discover_ev

lysithea
nicholson

mt_wilson

hooker_telescope

1938

event1057

ty
p
e

ob
jec
t

location

w
ith
_im

p
lem

e
nt

ye
ar

subject

discover_ev

ananke
nicholson

mt_wilson

hooker_telescope

1951

event1058

ty
pe

ob
jec
t

location

w
ith_

im
p
le
m
en

t

ye
ar

subject

discover_ev

carme
nicholson

mt_wilson

hooker_telescope

1938

event1059

ty
pe

ob
jec
t

location

w
ith_

im
ple

m
en

t

ye
ar

subject

discover_ev

carmenicholson

mt_hamilton

refractor_telescope_2

1914

Figure 3.1: Example using prepositional phrases to filter events

query result. Next, consider the FDBR-pair with “hall” as the subject for the active “dis-

cover” verb: (“hall”,{event1045,event1046}). Since both these events have property

“year” as “1877”, filtering using the prepositional phrase “in 1938” yields an empty set of

matching events. Therefore, “hall” is not included in the query result.

Adjectives, common nouns, and intransitive verbs In the original semantics, intransi-

tive verbs and common nouns were defined as a set of entities.

Since get subjs of event type and get members return FDBRs, intransitive verbs

and common nouns in our semantics are denoted by FDBRs. In addition, we also support

adjectives in our semantics. Adjectives were not demonstrated in the original semantics,

Chapter 3. Event-Based Denotational Semantics 34

however are easily accommodated using the intersect fdbr function.

For example: “vacuumous moon”, where vacuumous is an adjective and moon is a

common noun, can be accomodated with vacuumous ‘intersect fdbr‘ moon.

Conjoiners Originally, conjoiners for common nouns were defined in terms of the inter-

sections and unions of sets of entities. In our semantics, conjoiners for common nouns are

defined in terms of FDBRs.

nounand= intersect fdbr

nounor nph1 nph2= nph1∪nph2

that= nounand

Similarly, the conjoiners for termphrases are also defined in terms of FDBRs:

termand tmph1 tmph2 fdbr=termor tmph1 tmph2 fdbr, if (tmph1 fdbr∪tmph2 fdbr) 6= /0

/0, otherwise

termor tmph1 tmph2 fdbr= nounor (tmph1 fdbr) (tmph2 fdbr)

Note that termand tmph1 tmph2 and termor tmph1 tmph2 are predicates: they are

functions from FDBRs to FDBRs and return exactly the FDBR-pairs that are relevant to

them. termand tmph1 tmph2 is curiously defined in terms of termor. The reason for

this is that, provided both termphrases evaluate to True for FDBR F (i.e. the returned

FDBRs are non-empty), all FDBR-pairs in both returned FDBRs are relevant: if any of

those FDBR-pairs were to go missing from F , calling this new FDBR F ′, at least one of the

termphrases tmph1 or tmph2 would evaluate to False on F ′, changing the result. Hence, all

FDBR-pairs in the FDBRs returned by tmph1 and tmph2 when evaluated on F are relevant

and should be included in the result of termand tmph1 tmph2 when evaluated on F . On

the other hand, if either termphrase evaluates to False on F , then termand tmph1 tmph2

Chapter 3. Event-Based Denotational Semantics 35

evaluates to False on F , preserving the semantics of conjunction.

As an example, consider the semantic expression:

(termand hall nicholson) discovered intrans

This expression corresponds to the sentence “hall and nicholson discovered”.

discovered intrans is the intransitive form of the “discover” verb, which is an FDBR

from the subjects of the events with type “discover ev” to the set of events they are

subjects of. hall and nicholson are predicates that filter FDBRs for the FDBR-pairs

with“hall” and “nicholson” as a subject, respectively. Hence, filtering

discovered intrans with hall will yield an FDBR with one FDBR-pair:

{(“hall”,{event1045,event1046})}

Similarly, filtering discovered intrans with nicholson will yield an FDBR with

one FDBR-pair:

{(“nicholson”,{event1056,event1057,event1058,event1059})}

Since these FDBRs are both nonempty, both FDBRs are combined into one FDBR with

termand:

{(“hall”,{event1045,event1046}),

(“nicholson”,{event1056,event1057,event1058,event1059})}

If either of these FDBR-pairs were removed from discover intrans, then at least

one of hall or nicholson would return an empty FDBR when evaluated on that new

FDBR, changing the result. Therefore all FDBR-pairs in hall discover intrans and

nicholson discover intrans are relevant and should be included in the result of termand

hall nicholson discover intrans.

Chapter 3. Event-Based Denotational Semantics 36

3.3.5 The use of ‘by’ as a preposition

One item of note is that in our semantics we treat the word “by”, as in “discovered by”, as

a preposition.

When designing the new semantics orginally, the termphrase after “by” was applied to

a passive transitive verb in order to filter FDBR-pairs for those matching the termphrase.

However, this is exactly the same task that filter ev already performs when evaluating

chains of prepositional phrases. By letting by tmph = ({"subject"}, tmph), we can

include by directly in chains of prepositional phrases as a virtual preposition, simplifying

the grammar with no loss of functionality. With this approach, “by” can appear anywhere

in a chain of prepositions, for example “in 1877 by hall”, instead of needing to be directly

next to the verb.

3.4 Summary

In this chapter we presented an overview of event-based denotational semantics. We first

introduced the concept of an event-based triplestore, and then presented a summary of

EV-FLMS, an event-based denotational semantics for use on those types of triplestores.

We then presented a new event-based denotational semantics called Unified EV-FLMS or

UEV-FLMS that improves on FLMS in several ways. First, we extended the definition

of prepositions so that they may query multiple properties. Second, we chose a different

name for the concept previously known as an “Image” in EV-FLMS that does not clash

with existing nomenclature in mathematics. Third, we overcame two shortcomings with

how prepositions were originally defined in EV-FLMS. Fourth, we unified the treatment of

several distinct semantic concepts in EV-FLMS, simplifying the semantics without sacri-

ficing any power. In the process of doing so, we discovered a novel way of handling the

word “by”, treating it directly as a preposition in our grammar. In Chapter 4, we describe

the parser combinators used in our query program.

Chapter 4

Parser Combinators

To implement our Natural Language Interface, we integrated our semantics with a parser

constructed as an executable attribute grammar. We chose to use the parser described by

Frost and Hafiz in 2008[25] for this purpose, as it supports top-down parsing of ambiguous

grammars. Our motivations for choosing this parser were threefold. First, it enables users

to not have to worry about ambiguity or left-recursion in their grammars. The parser itself

tracks ambiguity and evaluates all unique possible parses[25]. Second, both semantic and

syntactic rules can be defined together, improving modularity[25]. Third, new syntactic

and semantic rules can be easily and naturally coded in an attribute grammar that supports

left recursion, thereby improving extensibility[25].

We could not use the parser as-is, however, since it did not support non-referentially

transparent functions as attributes. We detail the modifications we made to the original

parser in order to lift this restriction in Section 4.1 and in Section 5.4.

4.1 Handling non-referentially transparent functions

The parser combinators as described in this Thesis differ from their original implementa-

tions as described by Frost and Hafiz[25]. The most significant change that we made is

that the combinators are now monadic in nature rather than being strictly pure functions.

Briefly, monads in the Haskell programming language are types that are instances of the

Monad typeclass that obey the monad laws[35]. In Haskell, functions that are not referen-

37

Chapter 4. Parser Combinators 38

tially transparent are represented using computations in the monad IO, commonly referred

to as the IO monad.

By modifying the parser to work with monadic rather than pure values, the restriction

that the semantics themselves must also be pure was lifted, and we can safely support

streaming information from external triplestores in our semantics as a result.

The parser works in the IO monad currently, however if other monads were desired,

only minimal changes would be required to the parser in order to accommodate other in-

stances of the Monad typeclass. In Chapter 9, one potential application of this functionality

is discussed.

4.2 Summary of the Parser Combinators

Aside from the differences noted above, the combinators function the same as they did

originally in [25]. They are summarized as follows:

• (<|>) – a combinator that represents an alternative. In the expression “a <|> b”,

both a and b are attempted to be matched against the string. If both a and b match,

i.e. the grammar is ambiguous, both parse trees are returned in the result.

• (*>) – a combinator that represents a sequence. In the expression “a *> b”, the

parser would try to match a followed by b. Both must be matched in order for the

parse to succeed.

In Chapter 5, we show how we constructed a parser as an executable attribute grammar

using these combinators and integrated it with our novel event-based denotational seman-

tics to produce a Natural Language Interface to the Semantic Web.

Chapter 5

The Query Program

5.1 Implementation language

We chose to implement UEV-FLMS in the Haskell programming language[22]. Briefly,

Haskell is a lazily-evaluated functional programming language with first class support for

monads. We summarize these concepts and provide justification for our choice in the fol-

lowing subsections:

5.1.1 Functional Programming

Functional programming languages are declarative, rather than imperative, in nature. This

means that programs are written by composing functions together, much like how mathe-

matical functions can be defined in terms of function composition. Unlike imperative lan-

guages, mutable state is avoided in programs written in functional languages. This lends

lends itself to a highly expressive style of programming that heavily encourages code reuse

while still retaining the ability to easily reason about code.

5.1.2 Lazy-evaluation

In a language that is lazily evaluated, expressions and subexpressions are evaluated only as

they are needed at run-time. This enables infinitely recursive data structures to be expressed

directly in the language, and allows for improved performance in some cases by leaving

39

Chapter 5. The Query Program 40

unnecessary calculations unevaluated.

For example, consider the function primes that returns a list of all prime numbers.

If no elements of primes are used, then no computation is performed at all. If only the

first 20 elements of primes are used, only the first 20 elements need to be evaluated, with

the rest being left unevaluated. In an eagerly evaluated language, every element of the

list returned by primes would be computed the first time it was referenced, resulting in a

non-terminating loop. In this example, lazy-evaluation enables users to use an intuitive ab-

straction to iterate through a sequence of prime numbers while avoiding the costs associated

with those abstractions in eagerly evaluated languages.

5.1.3 Monads

Monads in functional programming are inspired from their counterparts in category theory.

In a functional programming language, a type A is a monad if there exists definitions of

two functions in that language with the types of those functions as follows:

• bind : A x→ (λx→ A y)→ A y

• return : x→ A x

The bind function is commonly used as a binary operator. In Haskell, the bind function

is denoted with operator >>=. In addition, these definitions must satisfy the monad laws.

We use this syntax to summarize the monad laws as follows. Here, a ≡ b denotes that the

expression a is semantically equivalent to the expression b and hence they are interchange-

able. These laws are defined using lambda calculus.

Monad Laws

(∀x)(∀y)(∀ f)(∀m)(∀a) f is a function with type f : x→ A y, m is a value with type m : A x,

and a is a value with type a : x

• Left-identity: return a >>= f ≡ f a

• Right-identity: m >>= return ≡ m

Chapter 5. The Query Program 41

• Associativity: (m >>= f) >>= g ≡ m >>= (λx→ f x >>= g)

In Haskell, computations with monads are expressible with a special syntax called the

“do” syntax. This allows for a convenient way of expressing monadic computations directly

within the language. Haskell gives special treatment to the monad IO, enabling computa-

tions within it to be non-referentially transparent. An example expression in Haskell using

the IO monad is as follows:

main :: IO ()

main = do

line ← readLine

putStrLn ("Hello world! " ++ line)

This syntax is equivalent to the code:

main :: IO ()

main = readLine >>= (λline → putStrLn ("Hello world! " ++ line))

Monads are useful to express computations that involve multiple independent actions

with an implicit action that “ties” them together. This can be used, for example, to im-

plicitly pass state as an argument through functions, a technique used in Frost and Hafiz’s

parser to efficiently parse highly ambiguous left recursive grammars[25].

5.1.4 Why Haskell?

In particular, mathematical functions are easily implemented in functional languages. Due

to their declarative nature, often times the definition of the mathematical function itself

can be directly expressed in the language. Since UEV-FLMS is heavily rooted in set-

relational theory[39], we were able to implement all of our semantic functions as they were

defined in Chapter 3 by directly expressing those functions in Haskell. To accommodate

communication with external triplestores, we “lifted” the implementations of the semantic

functions into the IO monad, enabling our semantics to use non-referentially transparent

getts functions. We were also able to modify the original parser that Frost and Hafiz

described[25] to support non-referentially transparent attributes and integrate that with our

semantics, owing to the reusability of code that functional languages encourage.

Chapter 5. The Query Program 42

It certainly would have been possible to use an imperative language to achieve the

same end-result, however significantly more work would have been involved in doing so.

For one, implementation of UEV-FLMS semantics in an imperative language would have

taken much more code, as the mathematical definitions themselves would not be directly

expressible in the language. Another difficulty would have been in parsing English queries,

since adapting an existing parser for this end may not have been possible. Certainly, one

would not be able to directly express an Executable Attribute Grammar directly in an imper-

ative language without significant work, meaning that the semantics and the parser would

not be able to be defined together in a piecewise fashion.

5.2 Data representation

Like the original Haskell implementations, we represent sets in our implementation using

lists and binary relations as association lists. We represent triples using 3-tuples and we

represent URIs using the String type, which is a list of Char.

5.3 Structure

A graph representing the structure of the modules in the XSaiga package in relation to one

another is presented in Figure 5.1. Briefly, there exists an arrow from module A to module

B in the graph if and only if module A imports module B in the source code.

5.4 AGParser2 and TypeAg2 modules

The parser is defined in the AGParser2 module.

The types of the semantic functions in SolarmanTriplestore are defined in the Ty-

peAg2 module. These are the implementations of the semantic functions described in

Chapter 3. The TypeAg2 module therefore serves as the interface between the parser and

the semantics.

Chapter 5. The Query Program 43

Figure 5.1: Module graph of the XSaiga package

The changes made to the original parser to accommodate monadic code are summarized

below:

5.4.1 PrettyPrinting

Utility functions for formatting the parser results had to be modified.

Pure version

In the pure version, we have:

class PP’ a where

pp’ :: a → Doc

where Doc is a formatted String and instances are defined for the various types used

by the parser itself.

Chapter 5. The Query Program 44

 “Who stole a car in 1918 or 1920 in a borough of New York?”

 ⇩parser⇩

 “Who (stole (a car) [(in (1918 or 1920), in (a (borough (located_in New_York)))])?”

 ⇩ ⇩ ⇩ ⇩ ⇩ ⇩ ⇩ ⇩ ⇩ ⇩ ⇩ ⇩ ⇩

 λ… (λ… (λ… λ…) [(λ… (λ… λ… λ…), λ …(λ…(λ… (λ… λ…

)))])

 ⇧ ⇧ ⇧ ⇧

 TRIPLESTORE

URL: http://cs.uwindsor.ca/~richard/semantics_presentations/talk_for_GraphQ.ppt

Figure 5.2: Parser operation: how an English sentence is mapped to semantic functions for
evaluation[11]

Monadic version

In the monadic version, we have:

class PP’ a where

pp’ :: a → IO Doc

Here, the pp’ function returns an IO action rather than a pure value. All instances of

PP’ were modified accordingly.

5.4.2 formatAttsFromAlt

Pure version

formatAttsFinalAlt key e t =

http://cs.uwindsor.ca/~richard/semantics_presentations/talk_for_GraphQ.ppt

Chapter 5. The Query Program 45

[(pp’ [vcat [(vcat [vcat [vcat [text (show ty1v1) |ty1v1←val1]

|(((st,inAtt2),(end,synAtts)), ts)←rs, end == e]

| ((i,inAt1),((cs,ct),rs)) ← sr])

| (s,sr) ← t, s == key]

Monadic version

formatAttsFinalAlt key e t =

sequence [(sequence [liftM vcat $ sequence

[(liftM vcat $ sequence

[liftM vcat $ sequence

[liftM vcat $ sequence

[liftM text (showio ty1v1) | ty1v1←val1]

|(id1,val1)←synAtts]])

|(((st,inAtt2),(end,synAtts)), ts)←rs, end == e]

| ((i,inAt1),((cs,ct),rs)) ← sr])>>= pp’

| (s,sr) ← t, s == key]

5.5 Main module

The Main module implements a CGI interface for evaluating Natural Language queries

using the SolarmanTriplestore module.

5.6 Interactive module

The Interactive module is used by the Direct Query Interface to directly evaluate seman-

tic functions. It is intended to be used with SafeHaskell in order to restrict the evaluation

of functions to a trusted subset, suitable for online interfaces.

In SolarmanTriplestore, a dictionary is defined that maps words to semantic func-

tions. This module defines variables that are named after those words such that those

functions can be directly accessed in a Haskell interpreter. This enables, for instance,

hall $ discovered phobos

Chapter 5. The Query Program 46

to be directly evaluated at a Haskell prompt.

A Haskell file InteractiveGenerator.hs is used to generate this module using the dictio-

nary in SolarmanTriplestore.

5.7 LocalData module

This module contains an in-program version of the triplestore located on our SPARQL

endpoint. As the Getts module provides a general interface to triplestores in the form of a

typeclass, we are able to support both in-program triplestores as well as remote triplestores.

The module exports the list of triples as the variable localData:

localData = [("event1000", "object", "sol"),

("event1000", "subject", "mercury"),

("event1000", "type", "orbit_ev"),

("event1001", "object", "sol"),

("event1001", "subject", "venus"),

("event1001", "type", "orbit_ev"),

("event1002", "object", "sol"),

("event1002", "subject", "earth"),

("event1002", "type", "orbit_ev"),

("event1003", "object", "sol"),

...]

5.8 SolarmanTriplestore and Getts modules

The implementation of our semantics in Haskell is contained within these modules, along

with the parser constructed as an executable attribute grammmar and the dictionary used

by the parser. We detail our implementation improvements over EV-FLMS in Section 5.9.

Chapter 5. The Query Program 47

5.9 Improvements over Original Haskell Implementations

5.9.1 Type safety

The original semantics were implemented as pure functions in Haskell, which was accept-

able for the in-program triplestores they were used on.

In [7], the getts * functions were modified to retrieve triples from external SPARQL

endpoints, enabling the original semantics to work with SPARQL triplestores. For SPARQL

triplestores, however, the getts * functions as defined in [7] are not actually guaranteed

to be referentially transparent. In particular, SPARQL triplestores are able to change over

time with triples being potentially added, removed, or modified. For example, consider the

query “which people discovered a moon that was discovered by a person”. “people” and

“person” are synonyms in our semantics and therefore the same query would be performed

twice. If the SPARQL triplestore changed in between these evaluations, then these queries

could return different results, violating referential transparency.

The function unsafeDupablePerformIO was used in [7] to force Haskell to treat the

getts * functions as pure functions in order to maintain compatibility with the original

semantics. The problem with unsafeDupablePerformIO is that it subverts the type system

of Haskell. Code that is built using it is therefore not on solid theoretical ground within

the constructs of the language, and surprising effects can occur as a result. The use of

unsafeDupablePerformIO, while legitimate in some cases, is heavily discouraged within

the Haskell community[5].

In this Thesis, we chose a different approach to handling external triplestore queries

by representing the triplestore functions and semantics in terms of monadic functions. By

expressing the semantics and triplestore functions monadically, we stay safely within the

confines of Haskell’s type system, avoiding the need to use unsafeDupablePerformIO

in order to perform queries to external triplestores as a result. Another key benefit of this

approach is that it preserves the compositional nature of the original semantics.

The semantics are implemented in the IO monad currently. However, if other monads

were desired, just as with the parser described in Chapter 4, only minimal changes would

be required in order to accommodate other instances of the Monad typeclass. In Chapter 9,

Chapter 5. The Query Program 48

one potential application of this functionality is discussed.

5.9.2 The Getts module: A generic interface to triplestores using a

typeclass

Typeclasses are used in Haskell to enable ad-hoc polymorphism in the definition of func-

tions in the language. This can be used to provide generic interfaces to different types,

without callers needing to be aware of the differences between those types. We used this

feature of the language to provide a generic interface for triplestores in the form of typeclass

TripleStore.

TripleStore m subsumes the functionality that the getts * functions provided in the

original semantics.

class TripleStore m where

getts_1 :: m → (Event, String, String) → IO [String]

getts_2 :: m → (Event, String, String) → IO [String]

getts_3 :: m → (Event, String, String) → IO [String]

getts_fdbr_entevprop_type :: m → String → String → IO FDBR

getts_fdbr_entevprop_type ev_data ev_type entity_type = do

evs ← getts_1 ev_data ("?", "type", ev_type)

getts_fdbr_entevprop ev_data entity_type evs

getts_fdbr_entevprop :: m → String → [Event] → IO FDBR

getts_fdbr_entevprop ev_data entity_type evs = do

pairs ← liftM concat $ mapM (λev → do

ents ← getts_3 ev_data (ev, entity_type,"?")

return $ zip ents (repeat ev)) evs

return $ collect pairs

getts_members :: m → String → IO FDBR

Chapter 5. The Query Program 49

getts_members ev_data set = do

evs_with_set_as_object ← getts_1 ev_data ("?", "object", set)

evs_with_type_membership ← getts_1 ev_data

("?", "type", "membership")

getts_fdbr_entevprop ev_data "subject" $

intersect evs_with_set_as_object evs_with_type_membership

First and foremost, the getts * functions defined in TripleStore m now properly re-

turn IO actions. Three new functions are introduced: getts fdbr entevprop,

getts fdbr entevprop type, and getts members. getts fdbr entevprop type serves

the same purpose that make image had in the original semantics. These functions are

named after their counterparts in Chapter 3.

Only the three getts * functions must be defined for the new type of triplestore at

minimum. However efficient implementations of all functions in the typeclass may be

provided if desired. We provide a backend using a SPARQL endpoint as a triplestore using

the SPARQLBackend type and a backend for in-program triplestores using the [Triple]

type as instances of TripleStore.

Basic query fusion

In addition to this, a basic form of query fusion has been implemented in the form of mem-

oization. Briefly, queries and their results are stored in key-value stores. When a query

is performed, it is first checked against the appropriate key-value store to see if the same

triplestore query has been made previously. If it has, the previous result is returned. Other-

wise, the request is made to the remote triplestore and its result is saved into the appropriate

key-value store. Multiple requests for the same information to the remote triplestore are

therefore fused together.

The key-value stores are held in top-level mutable variables. Defining top-level mutable

variables in Haskell is a subject that has been explored in depth, with many proposals in

how to provide an idiomatic method in the language to express it. According to the Haskell

community, the accepted way of doing this for now is with the following pattern[5]:

Chapter 5. The Query Program 50

• A top-level mutable variable v is defined using v = unsafePerformIO $ newIORef

value

• v must be annotated with the compiler pragma {-# NOINLINE v #-}

Efficiency of “collect”

The collect function as defined in [7] used a key-value store from the Data.Map.Lazy

module in Haskell to efficiently construct Images from relations represented as association

lists. Because all key-value pairs of the Map will be traversed in order, immediately and

in all cases, in this thesis the Data.Map.Strict module was used instead. The asymp-

totic time complexity of both methods are identical, however the Strict version uses less

memory and is slightly faster as it does not attempt to store partially evaluated areas of the

Map as thunks, which are partially evaluated Haskell expressions.

The collect function is defined in this module as:

collect = Map.toList ◦ Map.fromListWith (++) ◦ map (λ(x, y) → (x, [y]))

Efficiently constructing FDBRs from grouped association lists

In addition, a new function, condense, has been created to efficiently construct FDBR(r)

such that r is represented by a grouped association list.

Definition 18 (Grouped Association List). An association list where the indices of all pairs

in the list with equal first components are contiguous An association list where all pairs with

equal first components are contiguous in the list

We refer to any association list that is not a grouped association list as an ungrouped

association list.

The condense function is defined in this module as:

condense =

map (λlist → (fst $ head list, map snd list)) ◦ List.groupBy cmp

where

cmp x y = (fst x) == (fst y)

Chapter 5. The Query Program 51

In our SPARQL backend, the getts fdbr entevprop and getts fdbr entevprop

type functions efficiently construct FDBRs from their ENTEVPROP relations using this

function by requesting to the SPARQL endpoint that the ENTEVPROP query results be

sorted according to the first element in each pair. Since this groups pairs together in the

association list by their first element, condense is used instead of collect in order to

construct the FDBR in the SPARQL backend.

The condense algorithm can be expressed in functional language pseudocode as fol-

lows. In this pseudocode, we denote lists with the syntax [a1,a2, . . . ,an], with the empty list

denoted as []. Lists are represented as a recursive abstract datatype using the cons function

as originally used in lambda calculus to represent lists using Church Encoding[17]. The

syntax [a1,a2, . . . ,an] is hence equivalent to the expression:

cons a1 (cons a2 (. . .(cons an []))))

We denote tuples with the syntax (a1,a2, . . . ,an). Function application is denoted as

in Chapter 3. For example: head [x, y, z] => x and tail [x, y, z] => [y, z].

Function definition is denoted with a similar syntax, supporting pattern matching on ab-

stract datatypes such as tuples and lists. For example, the function f (cons x xs) = x

matches its first argument with the outer cons in a list, and the function g (x, y) = x

matches its first argument with a pair, assigning variables x and y to the first and second

components of that pair, respectively. A where clause may be appended to a function def-

inition to define variables used within that function. A let binding, using the form let

pattern = expr in expr’, creates a local variable binding using pattern matching in an

expression. The expression expr is assigned to the pattern pattern, whose variables are

made available in expr’. Finally, conditional evaluation is expressed with the if expr

then expr1 else expr2 expression: if expr evaluates to True, then the result of the

expression is expr1, otherwise it is expr2.

These syntax choices were chosen to both simplify expression of the algorithm and ease

implementation of the algorithm in a wide variety of programming languages.

Chapter 5. The Query Program 52

ALGORITHM condense

INPUT: al (grouped association list)

OUTPUT: fdbr (FDBR of al as an association list)

condense alist = map mkpair (groupBy cmp alist)

mkpair list = (head list, map snd list)

fst (a, b) = a

snd (a, b) = b

head (cons x xs) = x

tail (cons x xs) = xs

cmp x y = (fst x) == (fst y)

map f [] = []

map f (cons x xs) = cons (f x) (map f xs)

span p [] = ([], [])

span p (cons x xs’)

= if (p x)

then let (ys,zs) = span p xs’ in (cons x ys,zs)

else ([],(cons x xs’))

groupBy eq [] = []

groupBy eq (cons x xs) = cons (cons x ys) (groupBy eq zs)

where (ys,zs) = span (eq x) xs

fdbr = condense al

Chapter 5. The Query Program 53

Theorem 5.9.1. Algorithm condense has O(n) worst-case time complexity, with compar-

ison on the first element in the association list pairs being the key operation.

Proof:

cmp is the function that compares two association list pairs by their first element.

Let al be a grouped association list.

condense al => map mkpair (groupBy cmp al).

Proposition 5.9.1. The function groupBy cmp has O(n) worst-case time complexity, with

comparisons on the elements of the input list using cmp being the key operation.

Proof:

Let lst = (cons x xs) be a list with n elements.

In groupBy cmp (cons x xs), argument eq = cmp and the predicate used in span

is p = eq x = cmp x.

The function span returns a partition (ys, zs) of the input list xs, where ys is the

longest prefix of xs such that predicate p is True on all elements in the prefix, and zs are

the remaining elements in xs. It follows that p is evaluated at least s times and at most s+1

times, where s is the length of pre (it will only be evaluated s times if pre = xs).

By recursing into the second list returned by span, no previous elements of lst are

revisited, and no elements are skipped, so groupBy partitions the input list lst into m lists.

Call this partition part. Note that the sum of the lengths of all lists in part is n.

For each list i in part except the last, ((length i) - 1) + 1 = length i com-

parisons will have been made (groupBy calls span on xs, not cons x xs). For the last list

last in part, (length last - 1) comparisons will have been made (the longest prefix is

xs in this case). Therefore, the total number of comparisons made can be expressed by:

length part[0] + length part[1] + ... + length part[m - 2]

+ (length part[m - 1] - 1)

= (length part[0] + length part[1] + ... + length part[m - 1]) - 1

= n - 1

Hence, the worst-case time complexity of groupBy cmp is O(n−1) = O(n), with com-

parisons using cmp being the key operation.

Chapter 5. The Query Program 54

–

mkpair performs no comparisons and therefore has a worst-case time complexity of

θ(1) with comparisons using cmp being the key operation.

–

The map function evaluates mkpair over every list in the partition returned by (groupBy

cmp al). Since neither map nor mkpair perform any comparisons using cmp, they do not

contribute to the number of key operations performed.

Therefore, if the length of al is n, the worst-case time complexity of condense is

O(1)+n∗ (O(1)+O(1))+O(n) = O(n)

with comparison on the first element in the association list pairs (cmp) being the key oper-

ation. �

5.10 Summary

In this chapter we presented an overview of our query program structure as well as how we

efficiently implemented our semantics in Haskell. We showed the modifications we made

to the parser described in [25] in order to accommodate monadic functions as attributes.

We presented a basic form of query fusion as used by our implementation, and showed an

improved version of collect for grouped association lists. In Chapter 6, we perform some

benchmarks to measure the empirical performance of our code.

Chapter 6

Timing

6.1 Experiment setup

We conducted some experiments in order to measure the performance of our implementa-

tion. First, we compiled all Haskell code with profiling enabled such that we were able to

accurately see how much time was spent in various functions. Second, we enabled the high-

est level of optimization possible in the GHC Haskell compiler as we wanted to measure

how performance would look in the real world.

This was accomplished by using the following arguments to GHC when compiling:

ghc -prof -fprof-auto -rtsopts -O3

Note that to replicate these experiments, you must rebuild the entire package library

that ships with GHC with profiling enabled. This is because with GHC, code that is instru-

mented with profiling must only link to other code that is instrumented for profiling.

All tests were performed on a system with these specifications:

• Intel Core i7 4770k processor

• 16 GB of RAM

• Samsung 850 EVO Solid State Drive

55

Chapter 6. Timing 56

6.2 Experiment description

In our first experiment, we do a simple measurement to see the amount of CPU time is spent

for constructing the FDBR of binary relations of various sizes (recall that binary relations

and FDBRs are represented with association lists in our code, detailed in Chapter 5).

In our second experiment, we examine the amount of time it takes to perform a query,

using profiling information to break down exactly where most time is spent in processing.

6.3 Experiment 1

We construct both a grouped association list and an ungrouped association list with 10,000

unique events and 1000 entities with a varying number of pairs in both association lists.

Definitions can be found in Section 5.9.2 for grouped association lists and ungrouped as-

sociation lists. We chose to use fewer entities than events to ensure that the same entities

were reused throughout different events, as would be seen in actual triplestores. We detail

the construction of these association lists as follows.

Random number generation We use a uniformly distributed pseudorandom number

generator to generate event identifiers and entity identifiers, representing these identifiers

as strings. We use the seed 1024 when initializing the pseudorandom number generator in

all cases, in order to make results more easily comparable between the implementations.

Ungrouped association lists For each ungrouped association list of size n, we use a uni-

formly distributed pseudorandom number generator to generate n event identifiers in the

range of [1,10000] and n entity identifiers in the range of [1,1000], treating the result as

a string. For entities, the word “entity” is prepended to the identifier. For example, if

we generate 9900 as an identifier for an event, the identifier will be a string with name

“event9900”. We then directly combine both lists of identifiers pairwise to form an asso-

ciation list. For example, n = 2 and we generated entity names “5” and “100” and event

names “event9” and “event500”, these would be combined to form the association list

[(“5”,“event9”),(“100”,“event500”)].

Chapter 6. Timing 57

Grouped association lists For each grouped association list of size n, we used a uni-

formly distributed pseudorandom number generator to generate n event identifiers just as

we did for ungrouped association lists, however we generate the list of entity identifiers

differently. To generate the list of entity identifiers, we calculate m = n/1000 and for each

i in the range [1,1000], we repeat i represented as a string m times in a list to obtain a

list of n entities. We chose values of n such that 1000 divides n to ensure that each entity

occurs exactly m times. When combining the list of entity identifiers and the list of event

identifiers pairwise, the result is a grouped association list.

We compare the implementation of our collect and condense functions versus the

previous implementation in [7] by evaluating them on the constructed association lists. Def-

initions for both implementations of collect and condense can be found in Section 5.9.2.

For ungrouped association lists, we only compare the collect functions since condense

may only be used with grouped association lists.

6.3.1 Results

Ungrouped association lists

First, we compare the implementations on ungrouped relations.

Pairs Previous collect Our collect

100,000 0.130 sec 0.129 sec

1,000,000 1.426 sec 1.388 sec

10,000,000 14.274 sec 14.283 sec

Grouped association lists

Next, we compare the implementations for grouped relations, including the condense as

defined in Section 5.9.2.
Pairs Previous collect Our collect condense

100,000 0.083 sec 0.068 sec 0.030 sec

1,000,000 0.775 sec 0.756 sec 0.401 sec

10,000,000 8.169 sec 7.618 sec 4.502 sec

Chapter 6. Timing 58

6.3.2 Discussion

In the ungrouped case, both implementations are highly comparable, with no noticeable

difference in running time between them.

In the grouped case, both collect implementations fare much better with increasing

n. The reason for this is that both implementations use the Map datatype in Haskell, which

is a key-value store that internally is represented as a balanced binary tree. Since the input

grouped association list is already sorted on the entities in the association list, this makes

building a balanced binary tree out of the elements a simple task. Both collect imple-

mentations are again highly comparable. The condense function demonstrates a clear

improvement with larger values of n over the two collect implementations, as expected

from the complexity analysis performed in Section 5.9.2.

6.4 Experiment 2

We performed two Natural Language queries to our SPARQL endpoints using a simple

command line interface for Solarman:

1. “which vacuumous moon that orbits jupiter was discovered by nicholson or hall with

a telescope in 1938 in mt wilson or mt hopkins”

2. “what was discovered in 1877 at us naval observatory”

We ran our command line interface with the following arguments to enable profiling

for IO:

./solarman_cmd <query_string> +RTS -pa

We also ran our command line interface with these arguments to enable profiling for

CPU time:

./solarman_cmd <query_string> +RTS -p

After doing so, we examined the “prof” files produced by each run of our command

line interface.

Chapter 6. Timing 59

When profiling for IO, we were interested in how much time was spent in the “SYS-

TEM” module, which is the interface that code in Haskell uses to communicate with the

underlying operating system. Any time spent waiting on operating system interrupts is

represented as time spent in the SYSTEM module.

When profiling for CPU time, the time spent in the SYSTEM module is excluded from

the “prof” files. Since any IO request necessarily involves some amount of CPU overhead,

we have included the CPU overhead involved in performing any IO request in these results.

A brief explanation is given below for the four categories used:

• SPARQL query generation and result processing including XML parsing: The time

spent in the Data.RDF module provided by the HSparql Haskell package. This in-

cludes the time spent generating SPARQL queries and parsing the results of those

queries as represented in XML. This excludes the underlying network related pro-

cessing detailed below.

• Network related processing: The time spent in the Network module, used for struc-

turing requests over different protocols to be sent over networks. This excludes any

time actually spent waiting on IO, and only measures the CPU overhead involved in

generating these requests.

• Natural Language parsing: The time spent in the AGParser2 module (described in

Chapter 4), excluding the time spent in the semantic functions, detailed below.

• Semantic functions: The time spent spent in the semantic functions in the Solar-

manTriplestore module (described in Chapter 5), excluding any SPARQL query gen-

eration and result processing and network related processing.

Hence, we can consider the first two categories to be the IO overhead involved in per-

forming Natural Language queries using our semantics.

A 15 megabit cable connection was used during these tests. Before performing any ex-

periments, we measured latency to the remote SPARQL triplestore as being approximately

60 milliseconds.

Chapter 6. Timing 60

6.4.1 Results

Profiling for IO:

• For query 1: approximately 98.3% of the running time was spent waiting on IO

• For query 2: approximately 98.5% of the running time was spent waiting on IO

Profiling for CPU time (excluding IO time):

Running time breakdown for query 1:

• SPARQL query generation and result processing including XML parsing: 51.4%

• Network related processing: 39.3%

• Natural Language parsing: 5.5%

• Semantic functions: 3.8%

Running time breakdown for query 2:

• SPARQL query generation and result processing including XML parsing: 42%

• Network related processing: 44%

• Natural Language parsing: 3%

• Semantic functions: 11%

6.4.2 Discussion

As is evident from the results, our implementation is heavily IO bound. The vast majority

of time is spent performing the SPARQL queries themselves, with less than 2% of CPU

time actually spent in our semantic functions. This means that improvements to the time

complexity of the semantic functions has little impact in the overall responsiveness of the

system.

Chapter 6. Timing 61

This provides a good hint as to how to improve the semantics in the future. We could

potentially alleviate this bottleneck by performing fewer external triplestore queries, ei-

ther by using more advanced forms of query fusion or better caching mechanisms. Such

techniques are discussed further in Chapter 9.

Chapter 7

Proof of the Thesis

In Chapter 3, we described a new event-based denotational semantics that improves on

the work described by Frost et al. in 2013[16] and Frost and Agboola in 2014[10]. In

Chapter 4, we described our modifications to the XSaiga parser that enables semantic func-

tions to be non-referentially transparent, suitable for querying external triplestores. This

parser allows both the syntax and the semantics of the Interface to be defined together in

the attribute grammar[25], improving modularity, and new semantic rules can be easily and

naturally coded in an attribute grammar that supports left recursion, improving extensibil-

ity. In Chapter 5, we showed how this new semantics can be implemented efficiently in

Haskell and integrated with a parser constructed as an attribute grammar in order to handle

Natural Language queries. In Chapter 2, we demonstrated our semantics in action by cre-

ating two Web-based interfaces to interact with our query program, operating directly on

the Semantic Web.

Therefore, we have shown that by integrating a novel event-based denotational seman-

tics with a parser constructed as an executable attribute grammar, it is possible to create a

highly modular and extensible Natural Language Interface to the Semantic Web that sup-

ports the use of prepositional phrases in queries.

62

Chapter 8

Conclusions

In conclusion, we have shown that it is possible to create a highly modular and extensible

Natural Language Interface to the Semantic Web that supports the use of prepositional

phrases in queries using our approach.

We presented a novel event-based denotational semantics, UEV-FLMS, that improves

on EV-FLMS, unifying the treatment of several semantic concepts, solving two problems

with the original semantics, and expanding the capabilities of prepositional phrases. In ad-

dition to this, we demonstrated a novel way of handling the word “by”, as in “discovered

by” in our semantics by treating it directly as a preposition. We integrated this seman-

tics with a parser constructed as an executable attribute grammar, extending the work by

Frost and Hafiz in 2008[25] to support monadic values. We showed that our approach

was viable by performing two benchmarks in Chapter 6, and improving on the asymptotic

time-complexity of the original semantics with our condense function. We discussed po-

tential methods to improve efficiency further in Chapter 9. We also uploaded our work to

Hackage, an online repository of Haskell packages, in the form of the XSaiga package.

Finally, we built an online query interface to this program, creating a highly modular and

extensible Natural Language Interface to the Semantic Web that supports complex chained

prepositional phrases in queries.

The approach used in this thesis for handling the word “by” could potentially apply

to other related problems in Natural Language Processing. In unifying the treatment of

distinct semantic concepts, it may be possible to find simpler ways of handling linguistic

63

Chapter 8. Conclusions 64

concepts which have been inherently difficult to capture in formal semantics. It also could

be used to cleanly handle the separation of Primary and Secondary sources, and future

semantics may be able to infer the truth of statements by agreement among Secondary

sources. For example, in the statement “Sally said that John thinks the moon is made of

cheese”, In the absence of the definitive statement to the contrary from a Primary source,

e.g. “John denied thinking that the moon is made of cheese”, it may be reasonable to infer

that John believes that the moon is made of cheese, especially if Sally is a particularly

trustworthy source. Research in this area will become increasingly important in order to

assess the trustworthiness of results from queries in the Semantic Web. It may also be

possible to apply our technique for handling prepositional phrases to handling language

constructs seen in other languages, such as postpositions and circumpositions.

One area where our research could be particularly relevant is in constructing Natural

Language Interfaces for IoT-enabled devices. It could be feasible to provide an interface

to control a variety of these devices using our apporach, improving accessibility for users

who suffer disabilities. As the Semantic Web becomes more mainstream, there will be an

increasing need for enabling technologies like these. It is our hope that researchers in the

future will consider building on our approach in order to fulfill this growing need.

Chapter 9

Future Work

9.1 Providing Event-based views into entity-based triple-

stores

The system presented in this thesis report requires event-based triplestores in order to func-

tion. Much of the Semantic Web, however, is not comprised of event-based triplestores.

In order to perform queries on these databases, there must be a way to transform these

existing triplestores into an event-based form or provide an event-based “view” into these

databases.

In practice, entity-based triplestores also contain ontology information that describes

the structure of particular sets of triples. An ontology in the Semantic Web serves a similar

purpose as a schema does in a relational database. In fact, the original language proposed

by the W3C for describing ontologies was called RDF Schema. This evolved into what is

known today as the Web Ontology Language or OWL for short.

Definition 19 (Ontology). “An ontology is an explicit specification of a conceptualiza-

tion”[36]

Using information present in Web Ontologies, it may be possible to provide event-based

views into entity-based data.

65

Chapter 9. Future Work 66

9.2 Thoughts on scaling up to handle massive triplestores

There are several drawbacks with the current implementation that prevent it from being

used with massive triplestores. In the worst case, some of the functions would require

reading in a significant amount of data from the triplestore in order to return a value. One

example of this is in the membership functions.

In addition to this, the semantics as they exist currently in some cases perform many

small queries to the triplestore, slowing down processing dramatically. In particular, as seen

in Chapter 6, running time of the semantics was empirically measured to be dominated by

the IO involved in actually communicating with the remote triplestore.

An example of where these small queries are made are in the make trans active’

and make trans passive’ semantic functions.

In these functions, getts entevprop is applied to each event list inside the FDBR

passed to the function for each preposition’s properties. getts entevprop makes a request

to the remote triplestore for each event list. Therefore, if there are n FDBR-pairs inside the

FDBR, and m prepositions, n ∗m requests will be made to the remote triplestore in the

worst case.

9.2.1 Query fusion

One way of remedying this is to reduce the number of queries to the remote triplestore.

To achieve this, it may be possible to modify the semantics to support query fusion, fus-

ing smaller queries together into larger queries in order to reduce the number of queries

performed.

In Chapter 4 of this Thesis Report, it was explained that the parser now operates in

the IO monad, and that with a small amount of work, it could work in other monads as

well. To support query fusion in the semantics, a new monad could be devised that the

semantic functions would use instead of the IO monad. Let us call this hypothetical monad

QueryFusion. This monad would be pure, functioning much like the monad State as it

exists in the Haskell language currently: threading an implicit state argument through the

combinators and semantic functions and keeping the details of that state neatly abstracted

Chapter 9. Future Work 67

away. The goal of this would be to obtain a value of type QueryFusion a, which with the

help of a function, say, runQueryFusion, that would convert the query into an IO action.

One nice side effect of this is that it would allow the semantics to once again be defined

as pure functions.

An example of how this could work:

runQueryFusion :: QueryFusion a → IO a

main = do

rawQuery ← getQueryString -- rawQuery :: String

let sQuery = genQuery rawQuery -- sQuery :: QueryFusion Result

result ← runQueryFusion query -- result :: Result

print result

The actual optimization itself would occur in the runQueryFusion function. A variety

of transformations could occur in this process.

A basic form of query fusion exists in the Solarman source code currently that relies

on memoization. The SPARQL backend in the Getts module remembers the results of

previous queries, and so if another query is made for the same information, the previous

result is returned. This optimization was made under the assumption that the triples in the

triplestore would not change in the span of time that the query was being made. More

sophisticated query fusions would be implementable with the above scheme. It may be

feasible, for instance, to preprocess queries with this method to form one large “super-

query” to the endpoint that contains all triples needed by each semantic function used

in the query. This would eliminate the overhead associated with performing many small

queries to remote SPARQL endpoints, as semantic functions could operate directly on local

memory.

Chapter 9. Future Work 68

9.2.2 Data parallelism

Assuming that the Query Fusion changes are implemented, further optimizations could

occur by exploiting parallelism within the semantic functions. Currently, no parallelism

is taken advantage of within the semantics, as they are implemented in a single-threaded

manner.

Definition 20 (Task parallelism). Dividing a problem into independent tasks and executing

them in parallel, possibly on different sets of data

Semantic functions which do not depend on one another, for example moon and planet,

could be evaluated in parallel to accelerate processing. In addition to this, when the final

FDBRs are obtained for the semantic functions, data parallelism could be used to effi-

ciently perform operations on FDBRs.

Definition 21 (Data parallelism). A special case of task parallelism where the tasks are

identical, but are executed over different sets of data

As an example of data parallelism, consider the problem of squaring each integer in a

list. Let us define a function square that computes the square of a number.

square :: Integer → Integer

square x = x ∗ x

A single-threaded Haskell program might evaluate square across all of the elements in

a list in the following manner:

list :: [Integer]

squareList = map square

> squareList [1,2,3] ⇒ [1,4,9]

Note that squaring one number in the list does not depend on the square of any other

number in the list. Therefore, we could in theory compute the elements of squareList

[1,2,3] in parallel.

Suppose we have n hardware threads of execution available to use. Let us define a

Chapter 9. Future Work 69

function to partition list into n sublists:

partition n = foldr buildPart (empty n) ◦ split n

split n [] = []

split n list = (take n list) : (split n $ drop n list)

empty 0 = []

empty n = [] : (empty (n - 1))

buildPart x partition

= (zipWith (:) x partition) ++ drop (length x) partition

Now, execute square over each sublist with a hypothetical parMap function which

performs a map across each element in a list in parallel, distributing each task among a

different core:

result = concat $ parMap squareList $ partition n list

In this view, squareList is a task being executed in parallel across all of the partitions

of our input list. Specifically, this example is exhibiting data parallelism, as we have one

task squareList that is being executed over different sets of data. The concat function

merges the results back into one list.

One benefit of data parallelism is that it maps well onto a variety of different compute

architectures, such as FPGAs, GPUs, and compute clusters. In massive triplestores, it may

not be feasible to perform computations on FDBRs in a reasonable amount of time using

only single-threaded semantics, as in these triplestores, an FDBR could contain millions

of FDBR-pairs. Fortunately, each FDBR-pair exists independent of other FDBR-pairs, and

the semantic functions could be rewritten in a data-parallel way similar to how the above

example was rewritten in order to scale across the available hardware threads in a system.

In doing so, the door would be open for implementing the semantics on GPUs as well.

Chapter 9. Future Work 70

9.2.3 Conceptual spaces

One promising approach to processing large amounts of data involves the use of Concep-

tual Spaces[31][32][13][9], which has already seen some use in performing queries in the

Semantic Web[28][24][13]. It may be possible to develop a new event-based semantics

that uses Conceptual Spaces, and by extension Conceptual Geometry, to perform queries

on larger datasets.

9.3 Summary

In this chapter we discussed two potential avenues for future work. We first discussed the

notion of an event-based view into an entity-based triplestore. We then discussed potential

ways to improve the performance of our semantics, through more advanced forms of query

fusion and taking advantage of the data-parallel aspects of FDBR filtering in our semantics.

In the remaining chapters of this Thesis, we present the proof of our Thesis Statement and

discuss conclusions that could be drawn from our work.

Bibliography

[1] AChecker. IDI Web Accessibility Checker. http : / / achecker . ca / checker /

index.php. [Online; accessed 11-November-2016]. 2016 (cit. on p. 13).

[2] S. Peelar. Solarman Natural Language Interface. http://speechweb2.cs.uwindsor.

ca/solarman2/demo_sparql.html. [Online; accessed 11-November-2016]. 2016

(cit. on p. 6).

[3] S. Peelar. XSaiga Haskell Package. https://hackage.haskell.org/package/

XSaiga. [Online; accessed 11-November-2016]. 2016 (cit. on pp. iv, 13).

[4] Prelude. https://hackage.haskell.org/package/base-4.9.0.0/docs/

Prelude.html. [Online; accessed 28-November-2016]. 2016.

[5] Top level mutable state. https://wiki.haskell.org/Top_level_mutable_

state. [Online; accessed 28-November-2016]. 2016 (cit. on pp. 47, 49).

[6] WebAIM. WAVE Web Accessibility Evaluation tool. http://wave.webaim.org/.

[Online; accessed 11-November-2016]. 2016 (cit. on p. 13).

[7] W. Agboola. “An extensible natural-language query interface to the DBpedia Triple-

store”. M.Sc. Thesis. University of Windsor, 2015 (cit. on pp. 22, 23, 47, 50, 57).

[8] R. E. Kent. “The ERA of FOLE: Foundation”. In: arXiv preprint arXiv:1512.07430

(2015) (cit. on p. 2).

[9] F. Zenker and P. Grdenfors. “Applications of Conceptual Spaces”. In: (2015) (cit. on

p. 70).

71

http://achecker.ca/checker/index.php
http://achecker.ca/checker/index.php
http://speechweb2.cs.uwindsor.ca/solarman2/demo_sparql.html
http://speechweb2.cs.uwindsor.ca/solarman2/demo_sparql.html
https://hackage.haskell.org/package/XSaiga
https://hackage.haskell.org/package/XSaiga
https://hackage.haskell.org/package/base-4.9.0.0/docs/Prelude.html
https://hackage.haskell.org/package/base-4.9.0.0/docs/Prelude.html
https://wiki.haskell.org/Top_level_mutable_state
https://wiki.haskell.org/Top_level_mutable_state
http://wave.webaim.org/

Bibliography 72

[10] R. A. Frost, W. Agboola, E. Matthews, and J. A. Donais. “An Event-Driven Ap-

proach for Querying Graph-Structured Data Using Natural Language”. In: EDBT/ICDT

Workshops. Vol. 2014. 2014, pp. 192–199 (cit. on pp. iii, 5, 18, 24, 62).

[11] R. A. Frost, J. Donais, E. Mathews, W. Agboola, and R. Stewart. “A Demonstration

of a Natural Language Query Interface to an Event-Based Semantic Web Triple-

store”. In: ESWC (Satellite Events). Springer LNCS Volume 8798. 2014, pp. 343–

348 (cit. on pp. iii, iv, 5, 24, 44).

[12] R. A. Frost, J. Donais, E. Matthews, and R. Stewart. “A denotational semantics for

natural langauge query interfaces to semantic web triplestores”. In: Submitted for

publication (2014) (cit. on pp. 18, 20–22, 25).

[13] P. Grdenfors. The geometry of meaning: Semantics based on conceptual spaces. MIT

Press, 2014 (cit. on p. 70).

[14] T. W. W. W. C. (W3C). RDF 1.1 N-Triples. https : / / www . w3 . org / TR / n -

triples/. [Online; accessed 11-November-2016]. 2014 (cit. on pp. 2, 14).

[15] T. W. W. W. C. (W3C). RDF 1.1 Semantics. https://www.w3.org/TR/rdf11-

mt/. [Online; accessed 06-September-2016]. 2014 (cit. on p. 2).

[16] R. A. Frost, B. S. Amour, and R. Fortier. “An Event Based Denotational Seman-

tics for Natural Language Queries to Data Represented in Triple Stores”. In: ICSC,

2013 IEEE Seventh International Conference on Semantic Computing. IEEE. 2013,

pp. 142–145 (cit. on pp. 5, 18, 27, 62).

[17] J. M. Jansen. “Programming in the λ -calculus: From Church to Scott and back”. In:

The Beauty of Functional Code. Springer, 2013, pp. 168–180 (cit. on p. 51).

[18] A. Jena. “Apache jena”. In: jena. apache. org [Online]. Available: http://jena. apache.

org [Accessed: Mar. 20, 2014] (2013) (cit. on p. 14).

[19] D. R. Dowty, R. Wall, and S. Peters. Introduction to Montague semantics. Vol. 11.

Springer Science & Business Media, 2012 (cit. on p. 5).

[20] D. Terei, S. Marlow, S. Peyton Jones, and D. Mazires. “Safe Haskell”. In: ACM

SIGPLAN Notices. Vol. 47. 12. ACM. 2012, pp. 137–148 (cit. on p. 10).

https://www.w3.org/TR/n-triples/
https://www.w3.org/TR/n-triples/
https://www.w3.org/TR/rdf11-mt/
https://www.w3.org/TR/rdf11-mt/

Bibliography 73

[21] J. Lehmann and L. Bhmann. “Autosparql: Let users query your knowledge base”.

In: Extended Semantic Web Conference. Springer. 2011, pp. 63–79 (cit. on p. 4).

[22] M. Lipovaca. Learn You a Haskell for Great Good!: A Beginner’s Guide. no starch

press, 2011 (cit. on pp. 23, 39).

[23] O. Erling and I. Mikhailov. “Virtuoso: RDF support in a native RDBMS”. In: Se-

mantic Web Information Management. Springer, 2010, pp. 501–519 (cit. on pp. 9,

14).

[24] B. Adams and M. Raubal. “Conceptual Space Markup Language (CSML): Towards

the Cognitive Semantic Web.” In: ICSC. 2009, pp. 253–260 (cit. on p. 70).

[25] R. A. Frost, R. Hafiz, and P. Callaghan. “Parser combinators for ambiguous left-

recursive grammars”. In: International Symposium on Practical Aspects of Declara-

tive Languages. Springer LNCS Volume 4902. 2008, pp. 167–181 (cit. on pp. iii, iv,

5, 8, 37, 38, 41, 54, 62, 63).

[26] V. Tablan, D. Damljanovic, and K. Bontcheva. “A natural language query interface

to structured information”. In: European Semantic Web Conference. Springer. 2008,

pp. 361–375 (cit. on p. 4).

[27] P. Cimiano, P. Haase, J. Heizmann, and M. Mantel. Orakel: A portable natural lan-

guage interface to knowledge bases. Tech. rep. Technical report, Institute AIFB,

University of Karlsruhe, 2007 (cit. on p. 4).

[28] X. Wu, L. Zhang, and Y. Yu. “Exploring social annotations for the semantic web”. In:

Proceedings of the 15th international conference on World Wide Web. ACM. 2006,

pp. 417–426 (cit. on p. 70).

[29] T. W. W. W. C. (W3C). Uniform Resource Identifier (URI): Generic Syntax. https:

//tools.ietf.org/html/rfc3986. [Online; accessed 11-November-2016]. 2005

(cit. on p. 2).

[30] G. Antoniou and F. Van Harmelen. A semantic web primer. MIT press, 2004 (cit. on

p. 17).

https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986

Bibliography 74

[31] P. Grdenfors. Conceptual spaces: The geometry of thought. MIT press, 2004 (cit. on

p. 70).

[32] D. Widdows and D. Widdows. Geometry and meaning. Vol. 773. CSLI publications

Stanford, 2004 (cit. on p. 70).

[33] J. Broekstra and A. Kampman. “SeRQL: a second generation RDF query language”.

In: Proc. SWAD-Europe Workshop on Semantic Web Storage and Retrieval. 2003,

pp. 13–14 (cit. on p. 4).

[34] S. Palmer. The semantic web: An introduction. http://infomesh.net/2001/

swintro/. [Online; accessed 28-November-2016]. 2001 (cit. on p. 1).

[35] G. Hutton and E. Meijer. “Monadic parsing in Haskell”. In: Journal of functional

programming 8.04 (1998), pp. 437–444 (cit. on p. 37).

[36] T. R. Gruber. “Toward principles for the design of ontologies used for knowledge

sharing?” In: International journal of human-computer studies 43.5 (1995), pp. 907–

928 (cit. on p. 65).

[37] G. T. Leavens. “A Physical Example for Teaching Curried Functions”. In: (1995)

(cit. on p. 23).

[38] R. A. Frost. “Constructing programs as executable attribute grammars”. In: The

Computer Journal 35.4 (1992), pp. 376–389 (cit. on p. 5).

[39] R. Frost and J. Launchbury. “Constructing natural language interpreters in a lazy

functional language”. In: The Computer Journal 32.2 (1989), pp. 108–121 (cit. on

pp. 5, 8, 41).

http://infomesh.net/2001/swintro/
http://infomesh.net/2001/swintro/

Appendices

Appendix A - Source code

The source code for Solarman and the XSaiga parser can be obtained online via this URL:

https://hackage.haskell.org/package/XSaiga-1.5.0.0/XSaiga-1.5.0.0.tar.gz

The XSaiga package for Haskell is available online at this URL:

https://hackage.haskell.org/package/XSaiga

75

https://hackage.haskell.org/package/XSaiga-1.5.0.0/XSaiga-1.5.0.0.tar.gz
https://hackage.haskell.org/package/XSaiga

Vita Auctoris

Shane Peelar was born in 1990 in Windsor, Ontario. He completed his undergraduate

degree in Computer Science from the University of Windsor in 2014, graduating with Hon-

ours and specializing in Software Engineering. He then went on to complete his Masters

degree in Computer Science from the University of Windsor in 2016.

76

	University of Windsor
	Scholarship at UWindsor
	2016

	Accommodating prepositional phrases in a highly modular natural language query interface to semantic web triplestores using a novel event-based denotational semantics for English and a set of functional parser combinators
	Shane Peelar
	Recommended Citation

	Declaration of Co-Authorship / Previous Publication
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Figures
	List of Appendices
	Nomenclature
	Introduction
	Motivation
	The Semantic Web
	The Problem
	Existing approaches
	Shortcomings of previous approaches
	New approach
	Thesis Statement
	Proof of Concept
	Structure of Thesis Report

	Demonstration of the query interface that has been built
	Natural Language Interface
	Direct Query Interface
	Verb voices
	Evaluating types
	Result formatting

	XSaiga Package
	Accessibility
	SPARQL Endpoint
	Summary

	Event-Based Denotational Semantics
	Event-Based Triplestores
	Original Event-Based Denotational Semantics
	Triplestore interface
	Semantic functions
	Haskell implementation for SPARQL

	Improvements over Original Semantics
	Multiple-property prepositions and terminology
	Naming and definition of ``Images''
	The implicit `and' problem and the problem of `every'
	Semantic consistency
	The use of `by' as a preposition

	Summary

	Parser Combinators
	Handling non-referentially transparent functions
	Summary of the Parser Combinators

	The Query Program
	Implementation language
	Functional Programming
	Lazy-evaluation
	Monads
	Why Haskell?

	Data representation
	Structure
	AGParser2 and TypeAg2 modules
	PrettyPrinting
	formatAttsFromAlt

	Main module
	Interactive module
	LocalData module
	SolarmanTriplestore and Getts modules
	Improvements over Original Haskell Implementations
	Type safety
	The Getts module: A generic interface to triplestores using a typeclass

	Summary

	Timing
	Experiment setup
	Experiment description
	Experiment 1
	Results
	Discussion

	Experiment 2
	Results
	Discussion

	Proof of the Thesis
	Conclusions
	Future Work
	Providing Event-based views into entity-based triplestores
	Thoughts on scaling up to handle massive triplestores
	Query fusion
	Data parallelism
	Conceptual spaces

	Summary

	Bibliography
	Appendices
	Appendix A - Source code listing

	Vita Auctoris

