
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2016

A Functional Approach to Library Construction for
Conceptual Reasoning
David William Patrick MacMillan
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
MacMillan, David William Patrick, "A Functional Approach to Library Construction for Conceptual Reasoning" (2016). Electronic
Theses and Dissertations. 5842.
https://scholar.uwindsor.ca/etd/5842

https://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F5842&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5842&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5842&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/5842?utm_source=scholar.uwindsor.ca%2Fetd%2F5842&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

A Functional Approach to Library Construction for

Conceptual Reasoning

By:

David MacMillan

A Thesis
Submitted to the Faculty of Graduate Studies

through the School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada

2016

c© 2016, David MacMillan

All Rights Reserved. Absolutely no part of this document may be reproduced, stored in a
retrieval system, translated, in any form or by any means electronic, mechanical, facsimile,
photocopying, or otherwise, without the prior written permission of the copyright holder.

A Functional Approach to Library Construction for

Conceptual Reasoning

By:
David MacMillan

APPROVED BY:

Dr. R Caron
Department of Mathematics and Statistics

Dr. D Wu
School of Computer Science

Dr. R Kent, Advisor
School of Computer Science

August 16, 2016

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of this thesis has

been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone’s

copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or

any other material from the work of other people included in my thesis, published or oth-

erwise, are fully acknowledged in accordance with the standard referencing practices. Fur-

thermore, to the extent that I have included copyrighted material that surpasses the bounds

of fair dealing within the meaning of the Canada Copyright Act, I certify that I have ob-

tained a written permission from the copyright owner(s) to include such material(s) in my

thesis and have included copies of such copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved

by my thesis committee and the Graduate Studies office, and that this thesis has not been

submitted for a higher degree to any other University or Institution.

iv

Abstract

Conceptual Spaces is an emerging theory of knowledge representation that describes rela-

tionships between concepts, contexts and observations. Due to its mathematical and func-

tional nature, this theory is quite useful for automated reasoning. However, to the best

of our knowledge, there are no software frameworks or packages that allow us to explore

the computational applications of this theory. In this thesis, we designed, developed and

tested a library containing conceptual data structures and operators, primarily for use in

automated reasoning and decision support systems.

v

Dedication

To Bob and Sue, for their undying support.

vi

Acknowledgements

First and foremost, I would like to thank God for giving me the strength and endurance to

complete this work.

Thanks to my supervisor Dr. Robert Kent for his support throughout my time at the

university. The opportunities you gave me helped me develop skills that will last a lifetime.

Thanks to my committee members for their comments and work in making this thesis better.

Thanks also to the support staff at the School of Computer Science for their assistance with

the minute details of submitting a thesis.

To my family, my parents Bob and Sue, my brother John and sister-in-law Sam, and my

nephews Micah and Josiah: You made me who I am today and I love you all dearly.

Thanks also to the students I worked with during my time here. Bryan St. Amour,

Jordan Willis, Paul Preney, Numanul Subhani, I wouldn’t have made it this far without

your ideas, help and encouragement.

Lastly, to my friends who have supported me outside of the academic setting. Jordan

Legg, Jordan Ditty, Peter Brinn, Brittni Carey, Trevor de Boer, Nathan Buck. You helped

me realise the potential I have not only as a student but as a man.

vii

Contents

Author’s Declaration of Originality iv

Abstract v

Dedication vi

Acknowledgements vii

List of Tables xii

List of Figures xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 4

1.3 Proposed Solution . 4

1.4 Contribution . 5

1.5 Organisation of Document . 6

2 Background 7

viii

Contents ix

2.1 Automated Reasoning . 7

2.1.1 Fuzzy Logic . 9

2.2 Conceptual Spaces . 10

2.2.1 Applications . 16

2.2.2 Automated Reasoning in Conceptual Spaces 17

2.2.3 Summary . 18

2.3 Summary . 19

3 Functional Programming with Haskell 20

3.1 Functional Programming and Lambda Calculus 20

3.1.1 System Fω . 21

3.2 The Haskell Programming Language . 22

3.2.1 Types . 23

3.2.2 Maybe . 25

3.3 Summary . 26

4 Thesis Statement 27

4.1 Thesis Problem . 27

4.2 Hypothesis . 28

4.3 Objectives . 29

4.4 Research Methodology . 30

5 Conceptual Reasoning Library in Haskell 31

5.1 Data Structures . 31

Contents x

5.1.1 Domain . 32

5.1.2 Property . 33

5.1.3 Observation . 34

5.1.4 Context . 36

5.1.5 Concept . 36

5.1.6 Summary . 39

5.2 Operators . 39

5.2.1 Property-Observation measure . 39

5.2.2 Observation-Concept measure . 41

5.2.3 Concept-Concept measure . 45

5.2.4 Summary . 48

5.3 Design Considerations . 49

5.4 Limitations . 49

5.5 Summary . 50

6 Analysis of Results 52

6.1 Demonstration of Type-Safety . 52

6.1.1 Property . 53

6.1.2 Domain . 53

6.1.3 Observation . 54

6.1.4 Context . 55

6.1.5 Concept . 56

6.2 Proofs of Termination . 58

Contents xi

6.2.1 Property-Observation . 58

6.2.2 Concept-Observation . 59

6.2.3 Concept-Concept . 61

6.3 Demonstration of Verifiability . 63

6.4 Summary . 67

7 Conclusion 68

7.1 Summary of Thesis Findings . 68

7.2 Future Work . 69

Bibliography 70

A CRLH code 74

A.1 Types.hs . 74

A.2 Constructors.hs . 75

A.3 Operators.hs . 78

A.4 Test.hs . 85

Vita Auctoris 87

List of Tables

6.1 Comparison of results . 67

xii

List of Figures

6.1 Routes between ports indicated for (a) fair conditions (b) and stormy con-

ditions [22]. 64

6.2 Matrix of associations involving concepts C1 and C2 [22]. 65

6.3 Matrix representation of observation o in both subconcepts of C1 [22]. . . . 65

6.4 Matrix representation of observation o in concept C2 [22]. 66

xiii

Chapter 1

Introduction

1.1 Motivation

Imagine a professor who is in a thesis proposal seminar and is trying to determine the valid-

ity and quality of the research being proposed. He or she can rely on their past experience,

but not as a direct correlation - theses must be unique, after all. However, some professors

will have a list of questions for the student: does this thesis contribute to the field, and

how? Does the student have enough of a grasp on the background reading and have they

explored any related work? Does the student’s presentation leave you with the impression

that they know what they are trying to accomplish and the confidence that it can be done?

Most importantly, is this proposal still a proposal or have they done the majority of the

work already?

Now imagine a scenario in which a lab technician is deciding how to allocate some

newly purchased computers. Four computers were ordered, with differing specifications.

The technician knows that these computers have different tasks; he needs two workstations,

1

Chapter 1. Introduction 2

a server, and a computer for organizing backups. The technician has a vague idea of what

these tasks require. How does he go about categorizing the machines?

Consider a hunter who has set up his camouflaged shelter during deer hunting season.

For various reasons, he is only allowed to shoot female deer. As the hunter cannot spend

his entire life living in his shelter waiting for deer to show up, he installs a camera to take

pictures while he is away. The camera itself is connected to a sensor that takes a picture

when movement is detected. In this scenario, the hunter has a number of (time-stamped)

pictures of a certain part of the forest. Using these pictures, he can determine what is the

best time to hide in his shelter to attempt to shoot the deer. He may also consider moving

his shelter if his photographs show no deer.

Another real-world example to consider is the management of a baseball team. The

manager has a set number of players on her team, and a eight fielding positions to fill.

For the sake of this example we will ignore the existence of pitchers. No two positions are

exactly alike, so making direct comparisons is not always a possibility. The manager knows

that all of her players have a certain level of skill in a number of areas (running, catching,

throwing) but some positions require other talents - the second baseman and shortstop must

be skilled in communicating with each other, for example. Now let us say that the team’s

left fielder comes down with an injury during the season. The Manager examines her roster

and finds she does not have another left fielder. She cannot send out a team with only seven

position players, so what does she do?

In all of these situations, reasoning involves comparing what is observed to preexisting

knowledge of the categories at hand. The professor, for example, cannot accept a thesis

proposal which is identical to one previously presented, though some areas of research

Chapter 1. Introduction 3

have room for several similar theses. The technician, on the other hand, may have a precise,

ideal specification for a backup machine. If one of the computers matches that, he is in luck.

However, if his specification is more vague, or presented in terms that are not compatible

with the system specifications (Ex. A backup computer should have “a lot” of storage

space), how does he make a decision?

Furthermore, the hunter must be able to identify the animals in the picture. The pictures

themselves may not be of very high quality; the cameras used have generally been adapted

for low-light situations. The hunter must be able to identify animals based on their physical

traits, as there are significant penalties for hunting animals out of season. In the example

of managing a baseball team, we can consider the overlap that can occur between different

specializations within a more generalized field. The team manager in question may find

that since there is a significant skill set overlap between playing left field and playing centre

field, and she has an unused centre fielder, she can have her backup centre fielder play left

field until her left fielder is healthy again.

What we are dealing with here is called conceptual reasoning, that is, reasoning about

concepts. The Oxford English dictionary [27] defines a concept as:

a general idea or notion, a universal; a mental representation of the essential

or typical properties of something, considered without regard to the peculiar

properties of any specific instance or example.

Considering the abstract nature of this definition, reasoning about such things is rela-

tively foreign to the kind of automated reasoning systems used in artificial intelligence. A

framework that could make these conceptual ideas less abstract would be useful in that it

Chapter 1. Introduction 4

could increase the applicability of such automated reasoning systems.

1.2 Problem Statement

Categorization - also called classification - is an open area of research in artificial intel-

ligence. Conceptual Spaces is an emerging theory of cognition about categorization and

reasoning. To the best of our current knowledge, there are no software tools to help re-

searchers test effectiveness and find new applications.

Most of the relevant foundations for pursuing research into computational cognition

require mappings of notions from cognitive science, including philosophy of semantics,

especially as it pertains to the use of language in describing the world of objects and rela-

tionships between them. To this end, we may reference some elements of category theory

[16] in the discussion of our system.

The theory of Conceptual Spaces, initially defined by Peter Gärdenfors [7], has been

reformulated by Rickard, Aisbett and Gibbon [22] for applications in Computer Science;

however, to the best of our knowledge there are no software tools available for researchers

to further develop, or apply, this theory to new and existing problems.

1.3 Proposed Solution

To this end, we intend to build a library of data structures and operators to allow users to

model conceptual spaces. We will show our library to be type safe, prove the termination

of our operators and verify our library by repeating select calculations from Rickard et al

Chapter 1. Introduction 5

in the literature.

1.4 Contribution

Conceptual similarity as a method of categorization applies to a number of open areas of

research in Computer Science, including but not limited to data cleaning, pattern recog-

nition, machine learning, decision support, semantic interoperability and computer vision.

There may also be some applicability to conceptual mathematics and category theory [16]

as well. Moreover, should conceptual spaces lend itself well to modelling some elements

of category theory, our work will be useful in other aspects of that field of study.

In this thesis we have done the following:

• We developed a type-safe, composable library of conceptual data structures and op-

erators. (Chapter 5)

• We showed that the library is type-safe and discussed its handling of invalid data.

(Section 6.1)

• We showed that the operators terminate given valid input. (Section 6.2)

• We demonstrated the verifiability of the library by repeating select calculations from

the literature. (Section 6.3)

Chapter 1. Introduction 6

1.5 Organisation of Document

In this thesis we will present a functional programming library for conceptual reasoning.

In Chapter 2 we will discuss automated reasoning and conceptual spaces as it was origi-

nally defined and currently exists in the literature. In Chapter 3 we will discuss functional

programming in general and the Haskell programming language in particular. In Chapter

4 we formalize the thesis problem, our hypothesis, objectives and research methodologies.

Chapter 5 will describe our solution and implementation, including the reasons behind

choices we made in our implementation. Chapter 6 will include our proofs of termination,

demonstration of type-safety and show the verifiability of our operators by repeating a se-

lection of examples from the literature. Chapter 7 will conclude the thesis and discuss areas

of improvement and future research. A full list of references is available following Chapter

7. Appendix A contains the full source code for our library, including brief instructions

detailing its proper use.

Chapter 2

Background

We begin with a discussion of automated reasoning followed by an overview of conceptual

spaces.

2.1 Automated Reasoning

Reasoning is the process of drawing conclusions from facts. For the conclusions themselves

to be certain, they must follow directly from the facts. There are three main methods of

reasoning:

• deduction, in which we have a series of rules, in the form “If A then B”, from which

we can draw conclusions through the use of Modus Ponens and Modus Tollens [26].

For example, Modus Ponens tells us that if we know that all rugby players are nice

people and we know that Mr. Jones is a rugby player, we know that Mr. Jones is a

nice guy. Modus Tollens, on the other hand, tells us that if we know that all rugby

players are nice people and that Mr. Jones is not a nice person, then Mr. Jones is not

7

Chapter 2. Background 8

a rugby player,

• induction, in which we form hypotheses from existing observations and test to see if

they hold given new data. As a result, the information drawn from induction is not

certain, but rather probable. For example, if after observing several rugby matches,

a sports fan may hypothesize that all matches are played at full-contact. However,

this hypothesis will change after watching a child’s match, which is played using a

‘two-hand touch’ rule,

• abduction, in which we determine the best hypothesis to explain an observation. The

best example of abduction in everyday life would be a doctor diagnosing an illness or

injury after hearing a description of symptoms. Given that a doctor cannot observe

the causes of the symptoms, their conclusion is a ‘best guess’. In the event that there

are a number of competing theories, a doctor must test a given theory to determine if

it is true.

According to Wos et al, Automated reasoning is “concerned with programs that aid in

solving problems and in answering questions where reasoning is required” [30], and an

automated reasoning program is one that “employs an unambiguous and exacting notation

for representing information, precise inference rules for drawing conclusions, and carefully

delineated strategies to control those inference rules” [30]. Given this definition, deductive

reasoning appears to be the most appropriate style of reasoning for such programs. The

trouble with such systems is that the world is rarely unambiguous.

As a result, more recent systems are focused on reasoning under uncertainty. Most

of these frameworks make use of probability in an attempt to draw a number of possible

Chapter 2. Background 9

responses. These implementations include Bayesian Probability [29], Fuzzy Logic [32],

Dempster-Shafer Theory [25], and Subjective Logic [14]. These theories have been used

in a variety of reasoning applications and fuzzy logic specifically is used in the theory of

Conceptual Spaces.

2.1.1 Fuzzy Logic

Fuzzy Logic is a multi-valued logic designed for approximate reasoning. It differs from the

classical forms of logic in that it deals with approximate truth values rather than the precise

values of classical logic. The term “fuzzy logic” was first used by Zadeh in describing fuzzy

set theory [31], a theory that discussed the idea of partial or approximate membership in

sets.

A fuzzy set is a set A on a domain X , where A is equipped with a function fA where

the value determined by fA(x) is on the range [0,1] and describes the likelihood that x is

in the set A. As an example, let A be the fuzzy set of real numbers that are much larger

than 1. The function fA maps values from the domain of real numbers to the codomain

[0,1]. We can describe some potential representative values of fA, for example fA(0) = 0,

fA(1) = 0, fA(10) = 0.05, fA(1000) = 1. From here we have “a precise, albeit subjective,

characterization of A” [31].

Fuzzy logic is an adaptation of fuzzy set theory, adapted to classical forms of logic.

Given a predicate G and a value x, let G(x) be a function that maps x onto the interval [0,1].

We can say that the value of G(x) represents the extent to which x satisfies the predicate

G. For example, let us consider the predicates Hot and Cold. Given the variable cool, we

Chapter 2. Background 10

could say that Hot(cool) = 0.05 and Cold(cool) = 0.75 as cool is significantly closer to

Cold than to Hot. That is, cool is more Cold than it is Hot. It is important to note, however,

that a different observer may assign different values to these associations.

Fuzzy logic has the AND, OR and NOT operators of Boolean logic, but since fuzzy

logic is multi-valued, these operators have been redefined. In fuzzy logic, the AND operator

selects the lower of the two, while the OR operator selects the greater. The NOT operator

is equal to 1 minus the truth value. For example:

Cold(cool) OR Hot(cool) = 0.75 OR 0.05 = 0.75,

whereas Cold(cool) AND Hot(cool) = 0.75 AND 0.05 = 0.05,

and NOT(Cold(cool)) = NOT(0.75) = 0.25.

There have been numerous applications of fuzzy logic and fuzzy sets since they were

introduced in 1965. In the following section, we will discuss the theory of conceptual

spaces and how fuzzy logic has been useful in reformulating conceptual spaces for use in

computer science.

2.2 Conceptual Spaces

Conceptual Spaces is a theory of concept representation that was initially proposed by Peter

Gärdenfors [7] and later improved by Jane Aisbett and Greg Gibbon [1] and John Rickard

[21], among others. Rickard, Aisbett and Gibbon later combined their work [22], which is

the basis for this thesis.

The purpose of Conceptual Spaces is to try to quantify and qualify concepts. Recall

that a concept is an abstract representation of an idea. The point of such a framework is

Chapter 2. Background 11

to help the user make their ideas less abstract without making them so concrete that they

are not useful for categorization. Let us consider example of managing a baseball team

from Chapter 1. If we make our idea of a left fielder (or any other position) too concrete,

we would run the risk of not being able to find a replacement player in case of injury. If

we said, for example, that a left fielder needs to be able to run fast, have good hand-eye

coordination and know how to field different kinds of hits, we would have made our concept

concrete enough to find a replacement player, for example. If we were to say that our left

fielder also needed to be six feet tall, weigh 200 pounds and be named Michael Saunders,

we would have made our concept too specific.

Gärdenfors’ initial theory used a geometric representation in which observations are

points in an n-dimensional space and concepts are represented as convex regions of these

spaces. He also noted the existence of prototypes. These prototypes are located at the

centre of their respective concept. While an observation will not necessarily have values

in every dimension, some dimensions require a value in another. For example, we cannot

discuss a coloured light’s hue without the light also having a brightness and saturation.

Aisbett and Gibbon’s extension [1] of conceptual spaces took advantage of the geo-

metric aspects of Gärdenfors work. Under this new framework, similarity between two

properties is measured by the distance between them. The similarity of two concepts is

measured by the distance between their prototypes.

Rickard [21] extended Gärdenfors work to represent a concept as a point in a unit hy-

percube, which describes the concept’s properties, salient weights and correlations. The

advantage this provides is that it allows a concept to be learned from training data. Rickard

also introduces a method for representing observations as a point in the same unit hyper-

Chapter 2. Background 12

cube. Because both the observations and concepts are in a unit hypercube, results from the

similarity measures are already normalized.

Another way Rickard extended Gärdenfors work is to represent concepts as fuzzy sets

rather than convex regions. By using elements of fuzzy logic and fuzzy set theory, Rickard

is able to introduce a metric for measuring similarity between two concepts via mutual

subset-hood and a metric for measuring similarity between an observation and a concept

via fuzzy subset-hood.

In their combined work [22], Rickard et al defined domains as a collection of inte-

gral dimensions. The authors chose to use membership functions from fuzzy set theory to

describe properties. A property, then, is a fuzzy subset of a domain whose membership

function defines the extent to which a given observation relates to that property. Because a

property is a fuzzy set, it has a corresponding membership function called pi j where p is

the jth property on the ith domain. The authors also define the intersection of two proper-

ties pi j and pik on the domain i to be pi j ∩ pik(x) : x→ min(pi j(x), pik(x)). Furthermore,

the overlap on any two properties on different domains to be 0 [22].

Concepts are functions on the domain I(C)× I(C) to the codomain [0,1] where I(C) is

the set of properties of the concept C, where for all a,b∈ I(C) the following two statements

are true: C(a,a)> 0 and C(a,b) = 0 whenever C(b,a) = 0 [22]. The term Cab denotes the

association of property a and property b. This value is not necessarily equal to Cba, as these

associations may have been learned from the co-occurrences of those properties in training

data.

The authors also describe the idea of a concept being smaller than another. A concept

C is smaller than a different concept D if I(C) ⊂ I(D) and C(a,b) = D(a,b) ∀a,b ∈ I(C).

Chapter 2. Background 13

From here on, we will borrow Rickard et al’s use of matrix notation, where C(a,b) =Cab.

Furthermore, the authors describe the subconcepts of a concept C as the “maximal concepts

smaller than C that have no zero associations.” [22] That is, if C′ is a subconcept of C, then

for any concept C′′ that is smaller than C, either C′ is not smaller than C′′ or C′′ab = 0 for

some a,b ∈ I(C′).

Consider again the example of the baseball manager from Chapter 1. If we model posi-

tion player as a concept, we can model different positions as subconcepts of that concept.

In the example of the hunter, a concept could model the quality of a particular hunting loca-

tion, with subconcepts modelling the quality of that location with respect to different game.

In our example of the lab technician, we can consider a concept to be the role a particular

computer might be used for. In cases where a role is composed of multiple smaller roles,

a subconcept could be considered to be a singular role. For example, while acting as a

development machine, a computer might also perform the role of a database or web server.

A context is defined as a set of properties. Rickard et al defined a similarity measure

between two concepts (C1 and C2) in a context G has been stated as follows:

s(C1,C2) =
∑a,b min

(
C1

ab,C
2
ab

)
∑a,b max

(
C1

ab,C
2
ab

) , (2.1)

where the sums are over all pairs of elements in I(C1,C2;G) ≡ (I(C1)∪ I(C2))∩G [22].

We note that in this equation, we are adding the results of applying the OR operator from

fuzzy logic and dividing that by the summation of applying fuzzy logic’s AND operator,

applied to all elements of both concepts.

Again using the example of the baseball team from Chapter 1, when moving a player

Chapter 2. Background 14

to a secondary position, the manager must consider which positions are most similar. In

Chapter 1 we discussed the idea of a manager needing to replace a left fielder. The concepts

centre fielder or right fielder are closer to left fielder than the concept catcher would be, for

example. In this framework, what this would mean is that s(left fielder,centre fielder) >

s(left fielder,catcher). In the example of the hunter, this measure could be used to deter-

mine which game is more prevalent overall. In the example of the lab technician, some

roles are similar to others. A database server and a backup server, for example, both re-

quire large volumes of storage space. In that sense, they are similar, however a backup

server may not necessarily require the constant availability of a database server.

In situations where the concepts contain different properties, similarity values for these

properties can be calculated using the property overlap measure

C1
ab = Br

aa∗B
s
bb∗C

1
a∗b∗ (2.2)

where Br
aa∗� Br

aa′ for all a′ ∈ Ir∩ I(C1) and Bs
bb∗� Br

bb′ such that a′ 6= a∗, b′ 6= b∗ and

Bi
jk =

∫
min

(
pi j (x) , pik (x)

)
dmi∫

pi j (x)dmi
(2.3)

[22]. In most cases, the discrete form of Equation 2.3 is used, seen here:

B jk =
∑r min(p j(r), pk(r))

∑i p j(r)
(2.4)

[22].

An observation is described as a vector in a feature space. More specifically, o is defined

Chapter 2. Background 15

as the collection of sets of points {oi} from domains {∆i}i∈K , where K is the set of all

domains. This definition allows for observations to have multiple points on one domain.

Because of this, we define the membership pi j(o) to be max{pi j(y) : y ∈ o}.

Considering again our example of a baseball manager from Chapter 1, an observation

would be analogous to the state of an individual player’s ability, measured at a certain point

in time. In our example of the professor considering a thesis proposal, an observation would

be a proposal seminar. In our example of the hunter, we could consider an observation to

be a singular photograph taken by the hunter’s camera. Lastly, in our example of the lab

technician, an observation is analogous to an individual computer.

Having defined the their methods of data representation, the authors then present a

mechanic for identifying an observation as an instance of a concept. The similarity for any

observation o to a concept C in a context G is

s(C,o) = max
C’ a subtype of C

(
∑a,b∈I(C′)∩G min

(
C′ab,oab

)
∑a,b∈I(C′)∩GC′ab

)
. (2.5)

This equation is very similar to that of the one used to calculate the similarity of two

concepts. Should a context G not be provided, I(C′) is used as a context. In the example of

our lab technician, this measure would be used to assist him in deploying new equipment

to various roles in his lab. In the example of a baseball team from Chapter 1, we could

consider this similarity function to be a tool for determining which position a particular

player is best suited for at a specific point in time. In the example of the professor reviewing

a thesis proposal, this similarity measure could be viewed as the determination process

through which the acceptability of a proposal is measured. Similarly, in our example of the

Chapter 2. Background 16

hunter, this measure could be used, with a number of observations, to show whether or not

the current location is good for a specific type of game.

2.2.1 Applications

There have been a number of proposed applications of conceptual spaces [34], including

semantic interoperability [24], computer vision [4], predication [6] and computing with

words [2].

Chella et al [4] proposed applying conceptual spaces as an intermediate representation

of real-world objects in computer vision. Specifically, they proposed using conceptual

spaces as a method of deconstructing physical objects into their component parts. For

example, the authors deconstructed a hammer into its handle, as a cylinder, and its head, as

a box. They found that their conceptual spaces approach provided results similar to other

descriptive frameworks but allowed for measuring similarity between different objects and

parts.

Dessalles [6] discusses the difficulty in assigning meaning to phrases and presents a

method for doing this, using conceptual spaces as a means of categorizing phrases to mean-

ings. Dessalles extends conceptual spaces with a contrast operator, which assists in binding

the meaning of words to the contexts in which they are found. The author considers the

word ‘big’, applied to different objects. A ‘big’ flea, for example, is much smaller than

a ‘big’ galaxy. Furthermore, Dessalles argues that the contrast operator, when used on

predicates, is more dynamic than the prototype model used by the traditional Gärdenfors

approach.

Chapter 2. Background 17

Scheider and Kuhn proposed conceptual spaces as a method for semantic interoperabil-

ity through conceptual imitation [24]. By using conceptual spaces as a basis, the authors

are able to model a multiple-perspective situation and determine the relationship between

pairs of concepts when viewed from different perspectives. The authors use a number of

examples including modelling the concept of a mountain when agents are using different

training data (mountains in England vs mountains in Asia) and comparing the two on mul-

tiple pairs of properties (average wind speed vs average temperature, altitude vs relative

relief).

Additional work towards disambiguating information has been proposed by Aisbett,

Gibbon and Rickard [2] in an effort to integrate conceptual spaces and Computing With

Words [33], a set of tools that might be developed to allow computers to do input/output

with words rather than numbers. Applying conceptual spaces to this problem may help

solve some of the underlying issues in Computing With Words, mainly the lack of a suitable

modelling framework. The authors note a number of similarities between the two systems,

but noted a number of problems with Gärdenfors’ definition of a concept.

2.2.2 Automated Reasoning in Conceptual Spaces

We have covered the basics of automated reasoning and conceptual spaces. In this section,

we will discuss how conceptual spaces can be used for automated reasoning.

If we consider the types of inference rules mentioned in Section 2.1 to exist in the form

“If a then b (a⇒ b)”, then conceptual spaces can be used to help classify raw data into

the predicates that exist in such rule systems. The classification would work as follows:

Chapter 2. Background 18

Consider a conceptual space consisting of the domain ∆h representing height and the do-

main ∆s representing speed. ∆h has two properties, t and sh, while ∆s contains properties

f and sl. Next we consider a set of concepts Cpf,Cc, representing different positions on a

basketball team. The mappings in each of these concepts could be considered an inference

rule themselves. Given an observation o, if (t(o)> 0.85∧ sl(o)> 0.7), then s(Cc,o) = 1, if

(t(o) > 0.75∧ t(o) < 0.9∧ sl(o) > 0.6∧ sl(o) < 0.75), then s(Cpf,o) = 1, etc. This result

itself could be expanded even further, if given additional inference rules.

2.2.3 Summary

So, to summarize: a domain is a collection of dimensions (that is, axes) equipped with a

set of properties. Furthermore, a property p is a fuzzy subset of a domain i. The property is

represented by a membership function p j(x) from the domain i to the codomain [0,1]. The

value on the codomain represents the extent to which a given data point ‘has’ that property.

An observation is a collection of points on various domains. As there can be multiple

points on any one domain, the membership value of that observation to any given property

on that domain is equal to the highest membership value of any point in the observation.

A context is a set of properties. A concept contains a set of properties and a mapping

from pairs of those properties to the interval [0,1]. These properties define the concept, and

the mapping defines the extent to which each property is a representation of the concept.

Functions that measure the similarity of two concepts, and the similarity of a concept and

an observation have been defined. A concept also contains a set of subconcepts. These

subconcepts are contexts whose properties form a subset of the parent concept’s property

Chapter 2. Background 19

set.

2.3 Summary

In this chapter we provided an overview of automated reasoning and fuzzy logic. We de-

scribed and discussed the theory of conceptual spaces and related it to a number of exam-

ples introduced in the motivation for our thesis. In the following chapter, we will describe

functional programming, lambda calculus and the Haskell programming language.

Chapter 3

Functional Programming with Haskell

3.1 Functional Programming and Lambda Calculus

Functional programming was initially described by John Backus in his 1977 Turing award

lecture “Can Programming Be Liberated from the von Neumann Style? A functional Style

and Its Algebra of Programs” [3]. As the name suggests, the entities in functional pro-

gramming are described by what they do, rather than what they are. A purely functional

language is one in which the definition of function is equivalent to the mathematical def-

inition in that the outputs depend solely on the inputs. Much of the basis of functional

programming comes from lambda calculus [11].

Lambda calculus is a system of expressing the computational aspect of functions [11].

Developed initially by Church in an attempt to define a mathematical logic in which “every

combination of symbols ... if it represents a proposition at all, shall represent particular

proposition, unambigouously[sic], and without the addition of verbal explanations” [5].

In one of the earliest forms of lambda calculus, what Hudak calls pure untyped lambda

20

Chapter 3. Functional Programming with Haskell 21

calculus [11], there are two types of lambda expressions, consisting of identifiers (x) and

expressions (e). An expression e can have one of three forms:

• e ::= x

• e ::= e1e2

• e ::= λx.e

Expressions in the form λx.e are called abstractions and they are the notation used

for functions, whereas the e1e2 form are the application of those functions [11]. Lambda

calculus makes heavy use of substitution in expressions. The syntax [e1/x]e2 indicates that

we replace every occurrence of x in e2 with the expression e1.

What interests us most is typed lambda calculus. The key difference between typed and

untyped lambda calculus is that the type system allows, as one might imagine, for typed

identifiers and expressions. Hudak outlines a number of issues with typed lambda calculus

[11], but Hindley [9] and Milner [18] developed a polymorphic type system which, while

somewhat restricted, still maintains decidable type inference.

3.1.1 System Fω

As we are interested in the Haskell programming language and its type system, we will

give an overview of System Fω , an extension to typed lambda calculus. Developed in-

dependently by Girard [8] and Reynolds [20], System F introduced the Λ operator. This

operator is used to describe the type of a variable, thus defining polymorphic functions in

lambda calculus. For example, suppose we have some type σ and a variable x, then xσ

Chapter 3. Functional Programming with Haskell 22

means that x is of type σ . The identity function for such a type would be λxσ .xσ . A poly-

morphic identity function, then, would be Λσ .λxσ .xσ . System Fω thus introduced kinds. A

kind can be considered types of types, or type classes. This system is the basis for Haskell’s

type system.

3.2 The Haskell Programming Language

Haskell is a non-strict, strongly-typed purely functional programming language [13] that

was developed in part for teaching and research [12], including research into programming

languages and their features. By non-strict, we mean that expressions are only evaluated

when needed. This is known as lazy evaluation and has the added benefit of having each

expression be evaluated at most once [11].

The Glasgow Haskell Compiler includes a number of basic data types, including Char,

Integer, Float, Double, Bool, etc. Also included are a set of type classes, which can be

thought of as groups of types that have something in common. The Eq type class, for

example, is a collection of types that, amongst themselves, can be equated. The Num type

class is the collection of types that are numbers. Type classes can be members of other type

classes if they share the appropriate properties. The Ord type class, which consists of all

types that can be ordered, also contains the Eq type class.

Since Haskell is a purely functional language, its functions are written as equations,

with white space separating the parameters of each function. For example,

fibonacci 0 = 0

fibonacci 1 = 1

fibonacci n = (fibonacci n-1) + (fibonacci n-2)

Chapter 3. Functional Programming with Haskell 23

Not all functions are named, however. Haskell has anonymous or lambda functions,

which look very similar to the abstraction notation from lambda calculus.

3.2.1 Types

Each expression in Haskell has a type. As a result, even the expression ‘c’ would have

the type Char. In Haskell, this is expressed as ‘c’ :: Char. Our function above, f ibonacci,

has the type Int → Int. When defining a function, it is required to define its signature,

which is the name of the function, followed by its type. Thus, the signature of our function

f ibonacci would be

fibonacci :: Int → Int

A list is enclosed by square brackets, and all items must be of the same type. For

example,

a = ["This", "is", "a", "list"]

b = ["This", 3, "isn’t"]

a is a valid list, while b is invalid because of its mixed types. Haskell also contains some

very powerful list comprehension tools, which function similarly to set comprehension

tools found in set theory. This allows us to construct lists like the following:

a = [3,6,7]

let b = [x | y ← a, x ← [y∗2]]

In the second line, b is a list of x, where y comes from the list a and x comes from the list

of y∗2. This results in b = [6,12,14]. This feature is simplifies programming as it allows

the programmer to let the compiler deal with the list management so the programmer can

focus on the actual transformation function.

Further to this, Haskell allows for the user to create new types and type classes. There

Chapter 3. Functional Programming with Haskell 24

are two main ways of creating a new type. The type keyword is used for renaming an

already existing type while copying its constructor. For example, the String type is defined

as follows:

type String = [Char]

This line of code defines a String as a list of Char. The second way to create a new

data type is the newtype keyword, which allows us to rename a type and re-implement

its constructor, but there are two caveats with newtype. Firstly, it can only support one

constructor. Secondly, there can only be one field in a data type created with newtype.

The data keyword is used to combine multiple (existing) types. Let us consider a point on

a two-dimensional map. If we wanted to create this data type using the type or newtype

keywords, we could use the following:

type Point = (Int,Int)

newtype Point = Point (Int,Int)

In this case, the data structure can only be described by its coordinates. If we wanted to

attach a label to this point, we must use the data keyword as follows.

data Point = Point (Int,Int) String

This line creates a data type and corresponding constructor called Point which takes a

tuple of Ints and a String. Using this syntax, however, accessing the individual items in the

data structure requires us to write a function like this:

label :: Point → String

label (Point _ x) = x

While this is easy for a simple data type like Point, it can get tedious when we start to

get longer and more complex data structures. Fortunately, Haskell includes record syntax,

which allows us to implicitly create the functions needed to access these members. To

Chapter 3. Functional Programming with Haskell 25

leverage the record syntax, we can recreate the Point type as follows:

data Point = {

coordinates :: (Int,Int),

label :: String

}

There are two functions created using Haskell’s record syntax. The function coordi-

nates takes a Point and returns (Int,Int), while the function label takes a Point and returns a

String. The downside to using record syntax is that it only allows one constructor per data

structure. Creating a new data type with the data keyword does use more memory than

either of the other two keywords, but it is the only way to create a multi-field data type.

3.2.2 Maybe

In our research, one of the most useful aspects of Haskell is the Maybe type. Maybe has two

constructors: Just x, and Nothing. Consider, for example, a function that takes a number

and returns its square root. There are a cases where a square root does not exist (complex

or negative numbers, for example). If we were to write such a function, we could use

the Maybe type when returning. This way, even if we are given a negative number, our

function would terminate and return a value, even if the value is Nothing. The Maybe

module includes a number of functions for handling values wrapped in Maybe, including

fromMaybe, which takes two values, a :: x and b :: Maybe x. If b is wrapped in the Just

constructor, it is returned unwrapped. If b is Nothing, a is returned.

This allows our library to be built entirely with composable functions without requiring

our data types to be well-formed. While our library requires well-formed data types to re-

turn useful results, the library itself will always return an output when given an input. This

is discussed further in Chapter 6. Another useful aspect of Haskell is its use of list com-

Chapter 3. Functional Programming with Haskell 26

prehension tools, discussed above. This has simplified the implementation of some of our

work. We will show in Chapter 5 how we used these tools to simplify the implementation.

For those who are interested in learning more of Haskell, we suggest the book Real

World Haskell [19]. We find that for total beginners, the book “Learn You a Haskell For

Great Good!” [17] is also a good resource.

3.3 Summary

In this chapter we have introduced functional programming, giving an overview of its his-

tory. We discussed lambda calculus, and some extensions that allow for types and type

classes. We then discussed the Haskell programming language, including an overview of

its type system and its Maybe type. In the next chapter, we will present our thesis problem

and proposed solution.

Chapter 4

Thesis Statement

In this chapter we will discuss the thesis problem, our hypothesis, objectives and research

methodology.

4.1 Thesis Problem

There have been a number of attempts to apply the theory of conceptual spaces to open

areas of research in artificial intelligence. Scheider and Kuhn [24] describe an approach to

semantic interoperability centred around conceptual imitation, using conceptual spaces as

a basis for synthetic learning. Dessalles [6] discussed the possibility of using conceptual

spaces for predication. Chella et al [4] use conceptual spaces as a generalized framework

for modelling complex objects in the field of computer vision, though they make mention

of a number of problems, including the definition of a suitable similarity measure. Aisbett,

Gibbon and Rickard [2] propose the integration of conceptual spaces and computing with

words [33] to further develop those frameworks, as described in Section 2.2.1.

27

Chapter 4. Thesis Statement 28

As we stated earlier, there are no software tools currently available for researchers to

make use of the theory of conceptual spaces for research, development and testing. While

there have been a number of discussions on possible applications in computer science, to

the best of our knowledge a complete implementation does not exist. This is a problem

because the lack of these tools means that the specific details and problems related to the

implementation of this theory would never get addressed. We do not expect ours to be

the best possible solution to this problem, merely the first. Nevertheless, we outline some

expectations for our library below.

We would expect any such library to be type-safe and compositional. That is to say,

we should expect our library to catch nonsensical data types as early as possible. A strong

type system would help catch incompatible data types at time of compilation, which would

assist us in this area. Additionally, we would like our library to produce output even if it

is given nonsensical, though type-safe, input. Lastly, making the library compositional, in

addition to the other qualities of the library, would increase the usability of the library by

ensuring that computational expressions of arbitrary length can be computed from a small

set of functions.

4.2 Hypothesis

We are not trying to implement a particular conceptual space. Rather, we are trying to

give an end user the ability to not only construct their own conceptual spaces, but leverage

these in their own programs. To do so, we must avoid general mistakes that result in a poor

software library.

Chapter 4. Thesis Statement 29

Specifically, should the library be given invalid data (in whatever form), the library

should not cause the program to halt unexpectedly. That is to say our library should be type-

safe. Furthermore, when the user calls a function from the library, they should eventually

receive a result. That is to say, with the exception of being given infinite data, the library

should terminate.

Finally, as we are basing our system on the work described in [22] and that paper

involved some sample calculations, we must be able to reproduce these calculations and

their results. That is to say the library should be verifiable.

Our hypothesis is this: using Haskell [13], a strongly-typed purely functional program-

ming language, it is possible to construct a general purpose Conceptual Spaces library that

has provable behaviours including type-safety, verifiability and termination.

4.3 Objectives

The main objective of our research is to build a library of data structures and operators.

Within this objective are a number of smaller goals. Firstly, we want our data structures to

match the restrictions on them as outlined in the literature. Secondly, we want our operators

to be type-safe and verifiable. Lastly, we want our operators to terminate.

With these specifications in mind, our objectives are as follows:

• Build a library of data structures and operators.

• Demonstrate the type-safety and verifiability of the operators.

• Show that the operators terminate.

Chapter 4. Thesis Statement 30

4.4 Research Methodology

To complete these objectives,

• we used the Haskell programming language to construct our library (Chapter 5),

• we showed how Haskell’s use of strong typing allows for our library to reject non-

sensical observations, domains and concepts (Section 6.1),

• we showed termination of the operators via structural induction on the size of the

input context (Section 6.2),

• we demonstrated the verifiability of the operators by repeating a selection of exam-

ples shown in the literature (Section 6.3).

The library was developed using the Glasgow Haskell Compilation System [28], ver-

sion 8.0.1.

The next chapter will introduce the Conceptual Reasoning Library in Haskell and dis-

cuss some of the software design choices made. The proofs and discussion mentioned

earlier will appear in Chapter 6, including a discussion on how the use of Haskell’s Maybe

type allows us to process incompatible concepts, contexts and observations.

Chapter 5

Conceptual Reasoning Library in

Haskell

In this chapter we introduce the Conceptual Reasoning Library in Haskell, CRLH. We

begin by describing our data structures and operators. From there, we discuss the various

design choices made when constructing CRLH. Finally we discuss the limitations of our

library.

5.1 Data Structures

CRLH includes data structures representing domains, properties, observations, concepts

and contexts.

In designing our library, we decided that all data points would be encoded as strings of

characters. Because conceptual data can include words as well as numbers we found that

this choice provided us with a more general method of data representation. We note that

31

Chapter 5. Conceptual Reasoning Library in Haskell 32

in some ways this limits the extent to which the membership function of a property can be

defined. We will discuss this further in Section 5.3.

5.1.1 Domain

Recall from Section 2.2.1 that a domain is composed of a (non-empty) set of dimensions

and a (non-empty) set of properties. With this in mind, we designed our domain data struc-

ture, which can be found in Appendix A.1. This data structure is represented as a 3-tuple

D = {N,M,P}, where for a given domain D1, N(D1) is the domain’s name, represented by

a String, M(D1) is the domain’s set of dimensions, represented by Strings, and P(D1) is the

domain’s set of Properties. We note that while the original description from Section 2.2.1

did not mention a name, we felt that including it would help the end user keep track of their

conceptual model.

We chose to use strings to represent dimensions as the dimensions themselves are only

used for identifying data points and strings allow us to name the segment a given data point

exists on. We wish to use Haskell’s record syntax as it simplified the construction of our

library. As a result, in this constructor we cannot enforce the requirement that the sets of

dimensions and properties are non-empty.

In an effort to handle this shortfall, we designed a secondary constructor. This con-

structor returns a Domain type (that is, the type returned by the original constructor) but

checks to make sure the properties and dimensions exist. As we have the additional field of

a domain name, we chose to return an error message to the user should they supply invalid

data. As the domain name is not used in any computations and is only included for pro-

Chapter 5. Conceptual Reasoning Library in Haskell 33

grammer convenience, we do not consider an unnamed domain to be malformed. If either

the dimensions or properties are missing, we return an empty Domain. We also return an

empty Domain in the case that there is a malformed property in the list. We will define

a malformed property in the following subsection. If the supplied lists of dimensions and

properties pass these two requirements we return a (well-formed) Domain.

5.1.2 Property

In defining a property we again return to Section 2.2.1. A property is a fuzzy subset on a

domain, but it is represented as a function from the domain to the codomain [0,1]. Due to

the difficult nature of enforcing the restriction on the codomain we have chosen to imple-

ment a property as a collection of mappings from values on a selection of the dimensions

of the property’s domain to the codomain [0,1].

A property is represented as a tuple P = {N,A}, where for a given property P1, N(P1)

is the property’s name and A(P1) represents a map from values on various dimensions to

a floating point number representing its association value to that data point. We note that

while a property exists on a domain, we found that in implementing these data structures we

could define this relation as either a member of the domain data structure or the property

data structure. For reasons that we will discuss in the next subsection, we chose to this

relationship in the domain data structure.

Recall that in our description of the domain data structure we discussed how our use

of Haskell’s record syntax resulted in our only being able to define one constructor. The

same problem arose here and we used the same strategy (the design and construction of

Chapter 5. Conceptual Reasoning Library in Haskell 34

a secondary constructor). Our constructor takes as arguments a string representing the

name of the property and a list of tuples, which we will refer to as [((a,b),c)]. The first

element of these tuples is itself a tuple, where the elements, a and b, are Strings. The

value a represents the dimension that the value b exists on. The element c is a Float, which

represents the extent to which the value b, on that dimension a, indicates similarity to the

property.

Our property constructor checks for two possible failures:

• Firstly, if there are no mappings, the property is undefined and an empty property is

returned.

• Secondly, as property similarity values are on the interval [0,1], we should not allow

values over 1 or below 0.

In either case, an empty Property (with an appropriate error message) is returned. Other-

wise, a well-formed Property is returned.

5.1.3 Observation

Recall from section 2.2.1 that an observation is a collection of points on various domains.

From sections 5.1.1 and 5.1.2 we recall that we chose to represent the relationship between

properties and domains on the domain data structure. We did this because doing so means

that when we want to compare an observation to the potentially relevant properties, we can

access a complete set through the domains in which the observation’s data points exist.

Our observation data structure can be considered a tuple o = {D,T} where, for a given

observation o1, D(o1) represents the set of domains on which the observation’s data exists

Chapter 5. Conceptual Reasoning Library in Haskell 35

and T (o1) represents the data points on those domains. We represent these data points in

a similar fashion to their representation in our Property data structure in that we pair the

dimension and value together in a tuple. The set of data points of an observation on a

domain is represented as (Domain, [(Dimension,Value)]).

In implementing this data structure we used Haskell’s record syntax for the sake of

uniformity. Furthermore, we developed a secondary constructor to ensure a few conditions

for an observation. While only one of these conditions appears in the literature (and only

implicitly at that), we feel that the other condition is necessary for a coherent conceptual

system.

Our observation constructor checks to make sure of two things:

• Firstly, we check the existence of data points.

If there are no data points, this observation would not match the definition that exists

in the literature. [22]

• Secondly, we make sure that for each data point, each dimension is on the listed

domain.

This condition is not found in the literature, but it follows logically that if an ob-

servation references a dimension that does not exist, we will have an inconsistent

conceptual space.

If either of these two conditions fails, we return an empty observation.

Chapter 5. Conceptual Reasoning Library in Haskell 36

5.1.4 Context

As the definition of a context is so simple, we only mention briefly here that our context data

structure is a tuple G = {N,P}, where, for a given context G1, N(G1) is the context’s name

and P(G1) is the set of properties that represents the context. The name, as with Properties

and Domains, is added for programmer reference. The notion of a set of properties is taken

directly from the literature [22].

Arguably, we did not need to design a secondary constructor for our context type, as the

only condition that would make a context invalid is when the context’s set of properties is

empty, which is the style we had been using for our other data structures so far. However,

we felt that by exposing a secondary constructor we would make our library more uniform

in its presentation to the user.

Our context constructor takes a name, represented again by a String, and a list of prop-

erties. The constructor then checks for one of two possible failure states: either the list

of properties is empty, or the list contains an invalid property. While the user cannot cre-

ate an invalid property using our (secondary) constructor, we cannot stop them from using

the primary constructor in an undesirable way. To check that the properties are valid, we

ensure that each property’s map is not empty, using the Map.null function from Haskell’s

Map library.

5.1.5 Concept

When designing our concept data structure we recall again from Section 2.2.1 that a con-

cept is composed of a set of properties, a set of subconcepts and a membership function

Chapter 5. Conceptual Reasoning Library in Haskell 37

from pairs of those properties to the interval [0,1]. We define a concept C to be a 4-tuple

{N, I,S,M}, where, for a given concept C1, N(C1) is the name of the concept, I(C1) is the

set of properties, S(C1) is the set of subconcepts and M(C1) is a map from I(C1)× I(C1)

to [0,1]. In order to simplify our notation, we use Rickard et al’s notation for describing

elements of the map as C1
ab to represent the association between properties a and b. Much

like our Property data structure, we chose to emulate this function using Haskell’s Map

data structure, for the same reasons. While Rickard et al do not specifically list a set of

subconcepts as being part of a concept, for a given concept C we need to keep track of all

concepts that are smaller than C. Recall from [22] the definition of a smaller concept:

A concept C’ is smaller than C if I(C′)⊂ I(C) and C′ab =Cab∀a,b ∈ I(C′)

This definition allows us to incorporate a subconcept as a context applied to a concept;

that is, a concept that has been filtered through the smaller set of properties in a subcon-

cept. The drawback associated with this implementation is that comparing the individual

subconcepts of a concept becomes impractical. Our suggestion to overcome this problem

is to define those subconcepts as their own concept.

There are a number of conditions that must be satisfied for a concept to be well-formed.

• From the literature, ∀a,b∈I(C)Cab = 0 ⇐⇒ Cba = 0.

This is to say that a zero association between two properties must hold for both

properties.

• ∀a∈I(C)Caa 6= 0.

Chapter 5. Conceptual Reasoning Library in Haskell 38

This is to say that a property’s self-association must not be equal to 0. If a property’s

self-association was equal to 0, that property would not be in that concept.

• We must also ensure that the given subconcepts are valid. A subconcept is valid if

and only if its property set is a subset of the larger concept.

To check the first condition, we filter the map for any key-value pairs for which the

value is 0, and check the opposite key (ie, if Cab = 0, check Cba). We place all such values

in a list and add them together. If the sum is not zero, we know that there exists some

Ca,b|Ca,b = 0∧Cb,a 6= 0, which means that this concept is not well-formed. In this case, an

empty concept is returned.

To check the second condition, we place all diagonal values (that is, Ca,a∀a ∈ I(C)) in

a list and use Haskell’s minimum function (which returns the minimum element of a list)

to ensure that all values are above 0. If any one value is 0, the concept is not well-formed,

and an empty concept is returned.

The third condition requires us to check that all subconcepts of the potential concept

are valid. If there are no provided subconcepts, we have nothing to check. However if

a concept has subconcepts, we must check that all subconcepts’ property sets are subsets

of the concept’s property set. Should any one of these subconcepts fail this condition, an

empty concept is returned.

Our decision to represent subconcepts as contexts makes checking the third condition

significantly simpler; since a subconcept uses a reduced map of its parent concept, we do

not have to check that Cab =C′ab∀a,b ∈ I(C′).

Chapter 5. Conceptual Reasoning Library in Haskell 39

5.1.6 Summary

In this section we have detailed the data structures in CRLH and discussed the secondary

constructors we designed. We mentioned several times that should the user fail to provide

valid data, an empty data structure would be returned. In our next section, we will describe

our operators and how they handle these empty data structures.

5.2 Operators

Our library includes operators for measuring the similarity between a concept and an obser-

vation, between two concepts and an operator for determining observation property values.

There are a number of supporting functions in our library, including a function used by

the Concept-to-Concept operator for calculating property overlap in cases where the sets of

properties contained by two concepts are not equal.

We will start with the Property-Observation measure, which determines the degree to

which an observation is an example of all properties of each domain on which the observa-

tion exists. In these descriptions we will refer to the composite parts of the tuples used to

describe our data structures in Section 5.1.

5.2.1 Property-Observation measure

This operator takes an observation and returns a map from each property that observation

represents to the number on the interval [0,1] representing the degree to which the obser-

vation has that property.

This multi-stage process is described as follows: We pass an observation to the proper-

Chapter 5. Conceptual Reasoning Library in Haskell 40

Algorithm 1 Property-Observation measure
1: procedure PROPERTYRECOGNITION(a) . a is an observation
2: if size (D(a)) == 0 then
3: return an empty map . Empty observation
4: else
5: return Map.fromList [x|y← T (a),

x← (propertyRecognition’ y)] . A map from all relevant properties to their
similarity value.

6: end if
7: end procedure

tyRecognition function (outlined in Algorithm 1) and start by checking how many domains

the observation was recorded on. If that is 0, then either the observation was not properly

formed, or nothing was observed. In either case we return an empty map, as seen on line 3

in Algorithm 1.

Algorithm 2 Property Value Regulator
1: procedure PROPERTYRECOGNITION’((a,b)) . a is a domain, b is a list of values on

various dimensions in the domain a.
2: return [(x,y)|x← P(a), . x is the set of properties of the supplied domain
3: y← [min (∑ propertyVal (A(x),T (b))),1]] . y represents the value that the provided

data points in b have on the property x
4: end procedure . Returns a list of properties and the associated similarity values

Otherwise, we pass each domain’s list of observation points to Algorithm 2. Algorithm

1 makes reference to two functions, first and second. Both of these functions take a tuple.

The function first returns the first element in the tuple, while second returns the second. On

Algorithm 2 line 2, we get a full list of the domain’s properties. Line 3 uses list compre-

hension tools (on the list of properties) to pass the entire list of data points on that domain

and each property (individually) to Algorithm 3. That algorithm, which we will describe

shortly, returns a list. We total the list and return the lesser of that total and 1. This ensures

that no observation has a similarity higher than 1 to any given property.

Chapter 5. Conceptual Reasoning Library in Haskell 41

Algorithm 3 Property Value Calculator
1: procedure PROPERTYVAL(a,b) . a is a property’s map, b is a list of data points on

that property’s domain.
2: if b is empty then
3: return an empty list . This shouldn’t ever actually happen; we include this for

safety
4: else
5: return [x|y← b, . y contains a data point from b

x←[(Map.lookup y a)]] . Look up point y in the map a
6: end if
7: end procedure

Algorithm 3 takes a property’s map and an observation’s set of data points on the prop-

erty’s domain and checks each recorded instance of the observation against the provided

property. In the (unlikely) case that the observation has no data points on that domain, we

return an empty list. Otherwise, we use list comprehension tools to look up each data point

in the provided property map, placing all results in a list. If a data point is not in the map,

the value 0 is put into the list. This list is then returned.

This operator is called from the Observation-Concept measure, which we will describe

next.

5.2.2 Observation-Concept measure

When comparing an observation to a concept, there may or may not be a context involved.

As a result, we have two observation-concept measures. We will begin by describing the

context-sensitive measure.

Algorithm 4 takes as arguments a concept, an observation and a context. Its return type

is Maybe Float, which means it may return a Float, or it may return Nothing. In section

5.1, we discussed constructors that checked for invalid data. Algorithm 4 was designed with

Chapter 5. Conceptual Reasoning Library in Haskell 42

Algorithm 4 Context-Sensitive Observation-Concept Measure
1: procedure CONCEPTTOOBSWITHCONTEXTCALC(a,b,c) . Compare observation b

to concept a with context c.
2: if size (P(c)) == 0 then . Check for an empty context
3: return conceptToObsCalc(a,b) . Perform a context-free evaluation.
4: else if size (P(a)) == 0 then . Check for an empty concept
5: return Nothing
6: else if size (D(b)) == 0 then . Check for an empty observation
7: return Nothing
8: else if c ∈ S(a) then . Squeeze the concept down to its subconcept
9: return conceptToObsCalc(x,b), where x is a concept formed from a’s property

association maps reduced to the context c’s property set and contains no subconcepts.
10: else . Squeeze the concept down to fit in the context
11: return conceptToObsCalc(y,b), where y is a concept formed from a’s property

association maps reduced to the context c’s property set and contains filtered subcon-
cepts.

12: end if
13: end procedure

invalid data handling in mind. Line 2 first checks to see if the supplied context is empty.

Recall that equation 2.5 is undefined when I(C′)∩G = /0. Because this result cannot be

computed, we assume that the context was malformed. In the case of a malformed context,

we return the similarity value of a context-free measure on the provided observation and

concept. Line 4 checks to make sure that the concept has properties. If it does not, we

return Nothing, as the result would be undefined. Line 6 checks to make sure that the

observation has any data. If it does not, we return Nothing. We chose to make this choice

because while equation 2.5 would arguably return 0, we feel that comparing an observation

to a concept it has nothing in common with is fundamentally different than comparing an

empty observation to that same concept. If the provided data passes all of these conditions,

we move on to handling valid cases.

Line 8 checks whether the provided context c is a subconcept of a. If so, we perform

a context-free similarity measure between the provided observation b and a new concept,

Chapter 5. Conceptual Reasoning Library in Haskell 43

created by filtering out from the provided concept’s map any keys which contain properties

not found in the property set of the provided context c. This new concept will not contain

any subconcepts, as we recall from the definition in If c is not a subconcept of a, we again

perform a context-free similarity measure, this time between the provided observation b and

a new concept, created similar to the method described above, with one main difference:

this new concept has a set of subconcepts which consists of any subconcepts from the

original concept whose property sets are subsets of the property set of the provided context

c.

As we have now described Algorithm 4, we will now proceed to outline and discuss its

context-free version below.

Algorithm 5 Context-Free Observation-Concept Measure
1: procedure CONCEPTTOOBSCALC(a,b) . Compare observation b to concept a.
2: if size (P(a)) == 0 then . Check for an empty concept
3: return Nothing
4: else if size (D(b)) == 0 then . Check for an empty observation
5: return Nothing
6: else if size S(a)> 0 then
7: return max(conceptToObsWithContextCalc(a,b,x)) . x ∈ S(a).
8: else
9: return Just (∑calcMin(a,b)

∑Map.elems(M(a))). Map.elems returns the values (or elements) of a
map, in ascending order of their keys.

10: end if
11: end procedure

Algorithm 5 is used to perform context-free concept-to-observation similarity mea-

sures. Similar to algorithm 4, we make some checks to ensure our supplied concept and

observation are valid data structures. Algorithm 5 line 2 checks to see if the provided con-

cept contains any properties. If it does not, we have a malformed concept, in which case we

return Nothing. Line 4 checks to see if the supplied observation is well-formed by checking

Chapter 5. Conceptual Reasoning Library in Haskell 44

if it exists on any domains. If it does not, we have an empty observation and so we again

return Nothing. At this point, we have checked for all possible cases of invalid data and are

finally ready to begin calculating a similarity value.

Line 6 checks for the existence of subconcepts in the provided concept. In the case

that the supplied concept contains at least one subconcept, we pass the observation, con-

cept and that subconcept to the context-sensitive similarity function, returning the maximal

similarity value of all subconcepts. If there are no subconcepts, line 9 calculates and returns

the similarity value of the supplied observation to the supplied concept. This line calls the

function calcMin, which we will discuss below. Once that function has returned, we total

the list and divide it by the sum of the values in the provided concept. We wrap this result

in the Just constructor and return it to the user.

Algorithm 6 Minimum Concept-Observation calculator
1: procedure CALCMIN(a,b) . Given a concept a and an observation b, return the

minimum value for each pair of properties in a.
2: return zipWith min (Map.elems M(a)) (calcprop (Map.keys M(a)) b)
3: end procedure

Algorithm 6 is used to collect the minimum value of each pair of properties in the

supplied concept. This algorithm makes use of Haskell’s zipWith function, which takes a

function and two lists. It returns one list, composed of the output of the provided function

applied to each pair of elements in the list. In calcMin, it takes two lists of numbers and

returns a list containing the minimum element at each place in the provided lists, ie. given

the lists [0,1,2] and [1,0,3], it returns the list [0,0,2]. Should it be given lists of different

lengths, the length of the returned list is equal to the shorter of the two provided lists.

The two other Haskell functions of note are Map.keys and Map.elems. Map.keys takes a

Chapter 5. Conceptual Reasoning Library in Haskell 45

map and returns its keys in ascending order, while Map.elems takes a map and returns its

elements (or values) in ascending order of its keys.

Algorithm 7 Minimum Property-Observation calculator
1: procedure CALCPROP(a,b) . Given a list of pairs of properties a and an observation

b, return a list of the minimum property similarity values
2: return [x|y← a,

x← [min (Map.lookup (first y) c) (Map.lookup (second y) c)]]
3: where c = propertyRecognition b
4: end procedure

The calcprop function, shown in Algorithm 7, takes a list of pairs of properties and an

observation. Using the property-observation similarity measure described in section 5.2.1,

it returns a list of numbers between [0,1], corresponding to the lesser of the two property’s

similarity values. If the observation has no similarity with a given property, 0 is used.

We also note the use of Haskell’s where clause on line 3. Because the propertyRecog-

nition function can be computationally trivial, we want to avoid calling it needlessly. By

using Haskell’s where clause, we can ensure that the function only gets called once.

Having covered our observation-concept measure, we will now proceed to cover the

concept-concept similarity measure.

5.2.3 Concept-Concept measure

When designing our concept-concept similarity measure, we chose to use a design strategy

similar to that of the concept-observation similarity measure outlined in Section 5.2.2. Be-

cause we chose to use this similar style, we have two concept-concept measures: one that

is context-free and one that is context-sensitive. We will begin by describing the context-

sensitive measure.

Chapter 5. Conceptual Reasoning Library in Haskell 46

Algorithm 8 Context-Sensitive Concept-Concept Measure
1: procedure CONCEPTTOCONCEPTWITHCONTEXTCALC(a,b,c) . Compare concepts

a and b in context c
2: if c has no properties then . Check for an empty context
3: return conceptToConceptCalc(a,b)
4: else if a or b has no properties then . Check for an empty concept
5: return Nothing
6: else . Squeeze the concepts down to fit in the context
7: return conceptToConceptCalc(x,y) . x and y are concepts derived from a and

b, respectively.
8: end if
9: where v← ((P(a)∪P(b))\P(c)),

w← ((P(a)∪P(b))\P(c)),
x = Concept {N(a),(P(a)∩P(c)),S(a),(Map.filter (v,w) M(a))}
y = Concept {N(b),(P(b)∩P(c)),S(b),(Map.filter (v,w) M(b))}

10: end procedure

The context-sensitive concept-concept measure is outlined in Algorithm 8. Like our

observation-concept measure, the concept-to-concept similarity operator checks for invalid

data types. Line 2 checks for an empty context. If the context is empty, it returns a context-

free evaluation. Our reasoning for not accepting empty concepts in this operator is the

same as it was for the context-sensitive observation-concept measure. Line 4 checks that

both concepts have properties. If either concept is empty, it returns Nothing. Otherwise,

we create new concepts by using the supplied context as a filter for the supplied concepts’

maps. We then return a context-free similarity calculation on these new concepts.

Much like the observation-concept measure, all concept-concept measures eventually

become context-free, so we will examine that measure next.

We begin our Context-Free Concept-Concept Measure, as outlined in Algorithm 9, by

ensuring our concepts are non-empty. This condition is checked on line 2. If either concept

is empty, we return Nothing. Otherwise, we create lists from the concepts a and b, which

we call z and y, respectively. These lists contain the property relevance values for each pair

Chapter 5. Conceptual Reasoning Library in Haskell 47

Algorithm 9 Context-Free Concept-Concept Measure
1: procedure CONCEPTTOCONCEPTCALC(a,b) . Compare concept a to concept b
2: if a or b has no properties then . Check for an empty concept
3: return Nothing
4: else . Perform the context-free operation
5: return Just (∑zipWithmin(z,y)

∑zipWithmax(z,y)) . z and y are lists formed from a and b,
respectively.

6: end if
7: where c← (P(a)∪P(b)),

d← (P(a)∪P(b)),
z = [x|x←Map.findWithDefault(ifNeeded (a,c,d))(c,d)(M(a))]
y = [x|x←Map.findWithDefault(ifNeeded (b,c,d))(c,d)(M(b))]

8: end procedure

of properties in the union of the two concepts’ property sets. Should any pair of properties

be undefined in either of the concepts, the function ifNeeded is called. This function is our

implementation of Equation 2.2, using the discrete form of Equation 2.3. We have also

included a version of this algorithm that does not call ifNeeded. Should a pair of properties

not exist in either concept, 0 is returned. Having created these lists, we again use Haskell’s

zipWith function, dividing the minimum values over the maximum values for each list. This

quotient is then wrapped in the Just constructor and returned. As the ifNeeded function is

a critical component of the concept-concept similarity measure, we will examine it next.

Algorithm 10 Conceptual Property overlap measure
1: procedure IFNEEDED(a,b,c) . Calculate the property overlap of properties (b,c) in

concept a
2: if (c,d) ∈Map.keys (M(a)) then
3: return (Map.findWithDefault 0 (b,c) M(a)) . We don’t need to calculate the

overlap in this case.
4: else
5: return z∗ v∗Map.findWithDefault 0 (y,w) (M(a)) . Equation 2.2
6: end if
7: where (y,z) = propertyOverlap (b,P(a))

(w,v) = propertyOverlap (c,P(a))
8: end procedure

Chapter 5. Conceptual Reasoning Library in Haskell 48

Algorithm 10 is used to calculate any missing conceptual property values when com-

paring concepts. Line 2 checks to make sure the property pair is not in the concept to begin

with. If it is, we return that pair’s value. While this adds a slight computational overhead

to the operator, it allows the user to make use of it on its own. If the property pair is not

found in the concept, line 5 calculates and return the property overlap value. The prop-

ertyOverlap function takes a property and a set of properties and returns a tuple in which

the first element is a property and the second element is a Float. This result represents the

property in the provided set which overlaps most with the supplied property and its overlap

value. This is to say, given a property d and a property set [a,b,c], the function would return

(b,0.75), for example. Using this, we can say that second z ≡ Bbb∗ and second y ≡ Bcc∗

from equation 2.2.

5.2.4 Summary

This concludes our discussion on the operators of our library. While we intend for end users

to use our type-safe constructors, we cannot force them to, so we developed several guards

to ensure invalid data structures are caught by the operators. There are also situations

in which using our operators can result in invalid data structures. For example, if a user

tried to perform a context-sensitive concept-concept similarity measure in which one of the

concepts and the context’s property sets were mutually exclusive, our library would pass an

empty concept to the context-free operator, which would return Nothing. Having finished

discussing the operators, we will now describe briefly some limitations of our library and

then conclude the chapter.

Chapter 5. Conceptual Reasoning Library in Haskell 49

5.3 Design Considerations

When designing our library one of the most important aspects to consider was the format

we would use in the representation of data. Taking inspiration from Gärdenfors’ quality

dimensions [7], we wanted to attach some form of meaning to the data, even if only at a

representational level. We also wanted to include as many different kinds of data as we

could, including textual and numerical data.

As we mentioned earlier, in designing our library we decided to encode all data points

in language, represented as strings of characters. This choice was made to allow not only

numerical but also textual data to be reasoned about. Rickard’s earlier work described data

as points in an n-ary space: “Objects in a conceptual space are represented by points, in

each domain, that characterize their dimensional values” [21]. We do the same, but like his

later combined work, we abandon the strict geometric viewpoint [22] and incorporate the

idea of data points being represented by combinations of descriptive phrases.

By representing data as strings we allow for a greater range of concepts and ideas to

be reasoned about than if we had limited our library to a numerical form of representation.

We accept, however, that this approach is not without its limitations, which we discuss in

Section 5.4.

5.4 Limitations

Our library is limited in that the theory of conceptual spaces, properties are membership

functions and our implementation of a property is a function in the sense that we have a

domain, a codomain and a set of assignments mapping elements from the domain to the

Chapter 5. Conceptual Reasoning Library in Haskell 50

codomain [16].

However, our properties function as somewhat of a black box, in that we cannot define

a rule (or set of rules) to manipulate elements of the domain into elements of the codomain.

For example, we do not support defining a property function as f (x) = 1
3x . This design

choice was made because of the difficulty in verifying the codomain to be [0,1]. However,

we find that should a user have such a function, it would be relatively simple to form a list

similar to the type required by our property constructor.

Our choice to represent data as descriptive phrases introduces limitations in our library

as well. Even if we could verify the codomain for property functions like those described

above, such definitions would not be useful when the domain of such a function is text.

Moreover, this library is limited in that should descriptive phrases be found as an inadequate

measure for some phenomenon, the library itself would not be useful.

5.5 Summary

In this chapter we introduced CRLH, a library for conceptual reasoning in Haskell. We

described our selection of data structures, constructors and operators, while also describing

some limitations of our library.

While we have done our best to represent the operators and data structures found in the

literature, we accept that there may be errors in our work. Any mistakes found are the sole

responsibility of the author. The task of implementing mental objects is not a simple one;

we refer to what C.A.R. Hoare said in his 1980 Turing Award lecture [10]:

I conclude that there are two ways of constructing a software design: One way

Chapter 5. Conceptual Reasoning Library in Haskell 51

is to make it so simple that there are obviously no deficiencies and the other

way is to make it so complicated that there are no obvious deficiencies. The

first method is far more difficult.

In the next chapter, we will provide an analysis of the type-safety of our library, prove

the termination of our operators, and demonstrate the verifiability of CRLH by repeating a

selection of example calculations found in the literature.

Chapter 6

Analysis of Results

In this chapter we demonstrate the type-safety of the library, show proofs of termination

for our operators and demonstrate the verifiability of the operators by repeating some of

the examples shown in the literature.

6.1 Demonstration of Type-Safety

As a function of our exposed constructors and Haskell’s strong-typing, we limit the ability

for users to create improper instances of our data types. Furthermore, by using Haskell’s

Maybe type, we are able to ensure that CRLH will report as few errors at run time as

possible. If there are to be errors, we would rather they be caught at compile time.

We consider the constructors of our data types to be type-safe as they always return

their data type regardless of whether or not they were given valid data. We will show this

for all constructors here.

52

Chapter 6. Analysis of Results 53

6.1.1 Property

We begin with the Property type. To be a valid type, a Property needs only a collection

of mappings from a point on a dimension to a value between 0 and 1. While a Property’s

dimensions must all be members of the Property’s Domain, we cannot enforce this in this

constructor. Instead, that is left for the Domain constructor. The property’s constructor,

seen below, checks:

• The existence of these mappings and

• The values that are mapped to are no larger than 1.

The first condition is checked using Haskell’s length function, which returns the length

of a given list. If the length of the list is 0, then there are no mappings and an empty Property

is returned. The second condition is checked through the use of Haskell’s maximum, snd

and unzip functions. Unzip takes a list of tuples and returns a tuple of lists, snd takes a tuple

and returns the second element and maximum returns the maximum element of a list. The

list of mappings is processed through this chain of functions to determine the maximum

mapped value. If that value is greater than 1, the constructor returns an empty Property.

Otherwise, a (relatively) well-formed property is returned.

property :: String → [((String,String),Float)] → Types.Property

property a b

| length b == 0 = (Types.Property "Error, no mappings!" Map.empty)

| maximum (snd (unzip b)) > 1 = (Types.Property "Error, invalid mappings!" Map.empty)

| otherwise = (Types.Property a (Map.fromList b))

6.1.2 Domain

Our Domain type needs the following things to be valid:

Chapter 6. Analysis of Results 54

• A collection of dimensions and

• A collection of (well-formed) properties.

For programmer convenience we have also included a name, but that is not strictly

required. Our domain constructor, seen below, receives these two collections as lists, and

using Haskell’s length function, ensures they are non-empty. In the case that the list of

dimensions or the list of properties is empty, a Domain is returned, with an error message

in place of the domain’s name. Further to this, we check that all properties are valid by

ensuring that their maps are non-empty and all dimensions listed in those maps are also

elements of the Domain.

In the case that both of those lists are non-empty and the properties are valid, a well-

formed Domain type is returned.

domain :: String → [String] → [Types.Property] → Types.Domain

domain a b c

| length b == 0 = (Types.Domain "Error, No Dimensions" Set.empty Set.empty)

| length c == 0 = (Types.Domain "Error, No Properties" Set.empty Set.empty)

| checkProperties c = (Types.Domain "Error, Invalid Properties!" Set.empty Set.empty)

| otherwise = (Types.Domain a (Set.fromList b) (Set.fromList c))

checkProperties :: [String] → [Types.Property] → Bool

checkProperties a b = or [(or [x | y ← b, x ← [Map.null (propertyMaps y)]]),

(or [x | y ← b, z ← (Map.toList (propertyMaps y)), w ← [fst (z)], x ← [(fst w) ‘notElem‘ a]])]

6.1.3 Observation

Our Observation type contains a set of Domains on which the observation exists and a col-

lection of values on the dimensions of those Domains. Our observation constructor, shown

below, takes a list of tuples and returns an Observation. These tuples contain a domain and

a list of tuples corresponding to the dimensions and values on those dimensions. To be a

valid Observation, we must ensure that the list is non-empty, and that the dimensions listed

Chapter 6. Analysis of Results 55

are on the associated domain.

As before, we check the first condition with Haskell’s length function. If it returns 0, we

have an invalid observation and an empty Observation is returned. If the list is non-empty,

we pass it to the checkObservation function, which ensures that each listed dimension is

in its associated domain. We built this on the idea that if we can’t trust all of it, we can’t

trust any of it, so should any one data point fail this requirement, the entire observation

is assumed to be invalid. In this case, we again return a well-formed, empty Observation.

However, should the list pass both of those checks, a well-formed, valid Observation is

returned.

observation :: [(Types.Domain,[(String,String)])] → Types.Observation

observation a

| length a == 0 = Types.Observation (Set.empty) []

| checkObservation a == False = Types.Observation (Set.empty) []

| otherwise = Types.Observation (Set.fromList (fst (unzip a))) a

checkObservation :: [(Types.Domain,[(String,String)])] → Bool

checkObservation a = and [x |
y ← a,

w ← (snd y),

z ← [(fst w)],

x ← [Set.member z (dimensions (fst y))]

]

6.1.4 Context

Our Context data structure only requires a set of properties and so we only need to ensure

two things when checking the validity of a context.

• We must check that the context has properties and,

• We must check that the properties are valid.

The constructor for our Context data structure is provided below. It takes as arguments

a String representing its name and a list of properties. Much like the String used in our

Chapter 6. Analysis of Results 56

Property and Domain data structures, it is included solely for programmer convenience.

We again use Haskell’s length function to make sure the list is non-empty; that is, to make

sure its length is greater than 0. To check that the supplied properties are valid, we use the

function checkContextProperties. This function ensures that all properties in the list are

valid, that is, their maps are non-empty. If the data fails either of these two conditions, an

empty Context is returned. However, if the supplied properties pass the two checks, we

return a valid Context.

context :: String → [Types.Property] → Types.Context

context a b

| length b == 0 = (Types.Context "Error, No Properties" Set.empty)

| checkContextProperties b = (Types.Context "Error, Invalid Properties" Set.empty)

| otherwise = (Types.Context a (Set.fromList b))

checkContextProperties :: [Types.Property] → Bool

checkContextProperties a = (or [x | y ← a, x ← [Map.null (propertyMaps y)]])

6.1.5 Concept

At its barest level, our Concept type needs a set of properties, and maps from pairs of those

properties to a Float. A Concept can also have a set of subconcepts, which we represent

as contexts. Much like our Context, Property and Domain data structures, we let the user

name their Concept, should they so desire.

For a Concept to be valid, the mappings need to do more than simply exist, however.

We use the notation Ca,b to represent the membership value that the pair of properties a,b

have in the concept C. The following conditions must be satisfied:

• If Ca,b = 0, then Cb,a = 0 for all a,b ∈C

• For all a ∈C,Ca,a 6= 0

Chapter 6. Analysis of Results 57

Our constructor, shown below, also checks to make sure that any Contexts passed as

subconcepts are valid for this Concept. That is, they make sure that those concepts’ prop-

erty sets are all subsets of the Concept’s property set. The constructor itself takes a String,

a list of contexts, and a list of tuples. The first element of these tuples is itself a tuple of

properties, and the second element is a Float.

We use Haskell’s length function to check if the supplied list has any mappings. If

not, we return an empty concept. We wrote the function checkConceptZeros to check all

zero-valued property pairs to ensure that they are consistent. If that function returns False,

we return an empty concept, with an appropriate error message stored as the name of the

concept. We also wrote a function called checkConceptSubtypes which ensures that all

listed contexts are subsets of the Concept’s property set.

concept :: String → [Types.Context] → [((Types.Property,Types.Property),Float)] → Types.Concept

concept a b c

| length c == 0 = (Types.Concept "Error, no mappings!" Set.empty Set.empty Map.empty)

| checkConceptZeros c == False = (

Types.Concept

"Error, inconsistent maps!"

Set.empty

Set.empty

Map.empty

)

| checkConceptSubtypes b

(

Set.union

(Set.fromList (fst (unzip (fst (unzip c)))))

(Set.fromList (snd (unzip (fst (unzip c)))))

) == False = (Types.Concept "Error, inconsistent subconcepts!" Set.empty Set.empty Map.empty)

| otherwise = (

Types.Concept

a

(Set.fromList b)

(Set.union

(Set.fromList (fst (unzip (fst (unzip c)))))

(Set.fromList (snd (unzip (fst (unzip c)))))

)

(Map.fromList c)

)

checkConceptZeros :: [((Types.Property,Types.Property),Float)] → Bool

checkConceptZeros a = and [

0 == (sum

[x |
(y,z) ← Map.keys (Map.filter (== 0) (Map.fromList a)),

x ← [(Map.findWithDefault 2 (z,y) (Map.fromList a))]]),

0 /= (minimum

[x |

Chapter 6. Analysis of Results 58

y ← Map.keys (Map.fromList a),(fst y) == (snd y),

x ← [(Map.findWithDefault 2 y (Map.fromList a))]]

)]

checkConceptSubtypes :: [Types.Context] → Set.Set Types.Property → Bool

checkConceptSubtypes a b = and [x |
w ← a,

y ← [Types.contextProps w],

z ← [b],

x ← [Set.isSubsetOf y z]

]

6.2 Proofs of Termination

We have shown our data structures to be type-safe and now we will show the operators to

terminate, given these type-safe data structures. We will begin by showing that the operator

which calculates the similarity of an observation to a property will terminate. Then we will

show termination of our concept-observation similarity operator. Finally, we will examine

our concept-to-concept similarity measure.

6.2.1 Property-Observation

In this subsection, we will show that the Property-Observation similarity operator termi-

nates. We show this by showing that as long as the total number of properties times the

total number of data points is smaller than the maximum size of a map in Haskell.

Postulate: The maximum size of a map in Haskell is given by maxBound::Int.

Lemma 1: The number of properties possible for a given observation is never larger

than N ∗Pmax, where N is the number of domains on which the observation exists and Pmax

is the number of properties on the domain with the most properties.

Proof: Trivial, but if it were larger, then the domain with the most properties wouldn’t

Chapter 6. Analysis of Results 59

be the domain with the most number of properties.

Lemma 2: For each data point in the observation, propertyRecognition’ is called.

Proof: propertyRecognition’ is called in a list comprehension in propertyRecognition.

This list comprehension processes the list of data points in the provided observation.

Lemma 3: The number of calls to the function propertyVal = P∗D, where P represents

the total number of properties and D represents the total number of data points.

Proof: propertyVal is called in a list comprehension that lives in propertyRecognition’.

This list comprehension runs once for each of the properties in the dimension of the current

data point. Combined with Lemma 2, we know that propertyRecognition’ is run once per

data point.

Lemma 4: For a given property and observation, the function propertyVal returns a list

no longer than R, where R represents the number of data points on that property’s domain.

Note: The list returned by propertyVal is length R but it is summed.

Theorem: The function propertyRecognition terminates (and returns a map) ⇐⇒ P ∗

D < maxBound::Int.

6.2.2 Concept-Observation

To prove termination of our context-free concept-observation similarity measure, we ex-

amine its three possible cases. Either an empty concept is provided, an empty observation

is provided, or a non-empty concept and observation are provided.

Case 1: An empty concept is provided. In this case, the function returns Nothing and

terminates.

Chapter 6. Analysis of Results 60

Case 2: An empty observation is provided. In this case, the function returns Nothing

and terminates.

Case 3: A non-empty observation and concept are provided. In this case, the function

calls calcMin, one of our supporting functions. That function calls the function calcprop,

which terminates if the observation-property similarity measure terminates. We have shown

above that the observation-property measure terminates, therefore calcprop and calcMin

terminate. What we are left with is a list of elements of length I(C)∩ J, where J is the

set of properties that the observation represents. Now, since |I(C)∩ J| ≤ |I(C)|, we will

use mathematical induction on the number of properties in I(C), which we will call |P|, to

show that the function terminates.

Base case: |P| = 1: In this case, we have conceptToObsCalc (C,o) = ∑[x]
∑[y] , for some

x,y ∈ I(C)∩ J. Since the sum of a list of elements whose length 1 is just the element itself,

the summations complete, then the division is performed and the function terminates.

Inductive Hypothesis: Assuming that conceptToObsCalc terminates for |P|= k, show

that it terminates for |P|= k+1.

Inductive Proof: Since the length of |P| is k, the list of elements in conceptToObsCalc

is of length k2. Therefore, since |P| = k+ 1, the lists are of length (k+ 1)2 = k2 + 2k+ 1

elements. In this case, we have conceptToObsCalc (C,o) = ∑A+∑Y
∑B+∑Z , where A and B are lists

of length k2 and Y and Z are lists of length 2k+1. We know from our inductive hypothesis

that summations terminate on lists of length k2 (and shorter), that 2k≤ k2, ∀k≥ 2 and from

our base case that the summation of a list of elements whose length 1 is just the element

itself. From these statements, we know that the function terminates.

To prove termination of our context-sensitive concept-observation similarity measure,

Chapter 6. Analysis of Results 61

we examine its four possible cases. Either an empty context is provided, an empty concept

is provided, an empty observation is provided, or all required data is provided.

Case 1: An empty context is provided. In this case, the function performs a context-free

similarity measure, returns the result and terminates.

Case 2: An empty concept is provided. In this case, the function returns Nothing and

terminates.

Case 3: An empty observation is provided. In this case, the function returns Nothing

and terminates.

Case 4: A non-empty context, concept and observation are provided. In this case, the

function creates a new concept and performs a context-free evaluation. As we have shown

above that the context-free similarity measure terminates in all cases, we can conclude that

the context-sensitive similarity measure terminates in this case.

We have now shown that, in all cases, the Concept-Observation Similarity Measure

terminates.

6.2.3 Concept-Concept

To prove termination of our context-free concept-concept similarity measure, we have two

possible cases. Either we are provided with an empty concept, or we are provided with two

non-empty concepts.

Case 1: We are provided with an empty concept. In this case, the function returns

Nothing and terminates.

Case 2: We are provided with two non-empty concepts. In this case we will employ

Chapter 6. Analysis of Results 62

mathematical induction on the number of properties in the union of each concept’s property

set. The operator calculates the formula conceptToConceptCalc(C1,C2) =
∑a,b min(C1

ab,C
2
ab)

∑a,b max(C1
ab,C

2
ab)
|

a,b∈ (I(C1)∪ I(C2))∩G. We will be performing induction on the size of (I(C1)∪ I(C2))∩

G, which we will call |P|.

Base case: |P| = 1: In this case, we have conceptToConceptCalc (C1,C2) = ∑[x]
∑[y] , for

some x,y ∈ (I(C1)∪ I(C2))∩G. Since the sum of a list of elements whose length is 1 is

just the element itself, conceptToConceptCalc terminates.

Inductive Hypothesis: Assuming that conceptToConceptCalc terminates for |P| = k,

show that it terminates for |P|= k+1.

Inductive Proof: Since the length of |P| is k elements, the list of elements in the

summations in conceptToConceptCalc is of length k2. Therefore, if |P| is now k+1, then

we have lists of length {k+1}2 = k2 +2k+1 elements. As we are adding 2k+1 elements

to lists containing k2 elements, we have conceptToConceptCalc (C1,C2) = ∑A+∑Y
∑B+∑Z , where

Y and Z are lists of length 2k+ 1 and length A = k2, length B = k2. We know from our

assumption that the summation terminates on lists of length k2 (and smaller), that 2k ≤ k2,

∀k > 1 and that lists of length 1 terminate (from our base case). From these statements, we

know that the function terminates.

To prove termination of our context-sensitive concept-concept similarity measure, we

examine its three cases. The function is provided with an empty context, the function is

provided with an empty concept, or the function is provided with two non-empty concepts

and a non-empty context.

Case 1: We are provided with an empty context. In this case, a context-free concept-

concept evaluation is called. We have shown above that our context-free operator termi-

Chapter 6. Analysis of Results 63

nates, therefore the context-sensitive operator terminates.

Case 2: We are provided with (at least) one empty concept. In this case, the function

returns Nothing and terminates.

Case 3: We are provided with two non-empty concepts and a non-empty context. In

this case, the function creates two new concepts and performs a context-free evaluation. As

we have shown that the context-free similarity measure terminates, we can conclude that

the context-sensitive measure terminates in this case.

We have now shown that, in all cases, the concept-concept similarity measure termi-

nates.

6.3 Demonstration of Verifiability

To verify our library we repeat a selection of examples performed by Rickard et al [22].

Their examples discussed the travel routes of maritime vessels in differing weather con-

ditions. The routes themselves can be seen in Figure 6.1. In this example, concept C1

represents voyages from port A to port D in fair weather. When completing this journey,

a ship could take route a, followed by either b or c and then d, in fair weather. In stormy

weather, only only route f is usable, but since this concept does not include trips in stormy

weather, that route is not included in C1. Concept C2 represents voyages from port A to

port E in fair weather. The only routes that work for this origin-destination pair is a and e,

so those are the only routes included in this concept.

As both concepts are based on journeys completed in fair weather, the fw property

from the Weather domain is also included. An observation describes the specific routes as

Chapter 6. Analysis of Results 64

followed by an individual ship on a particular journey. The matrices containing our sample

data concepts are shown in Figure 6.2. We will go over the individual matrices as the need

arises. We will perform two context-free similarity measures between an observation and

a concept, as well as a similarity measure between concepts C1 and C2.

Figure 6.1: Routes between ports indicated for (a) fair conditions (b) and stormy conditions
[22].

We begin by performing the context-free concept-concept similarity measure. In Figure

6.2, (a) represents context C1 and (b) represents concept C2. Using the list comprehension

in conceptToConceptCalc and the function ifNeeded, we are able to reproduce the matrices

(e) and (f), representing the derived associations for concepts C1 and C2. There are some

minor variations between our output and their matrix; we attribute these differences to

rounding errors or typos. We have coded the list comprehension as a separate function

deriveMatrix in test.hs, see Appendix A.4.

In comparing these two concepts, the result from [22] is 2.87/11.14 = 0.261. Com-

1We are unable to obtain this result using either our library or our own calculations by hand.

Chapter 6. Analysis of Results 65

Figure 6.2: Matrix of associations involving concepts C1 and C2 [22].

pleting our calculation, CRLH produces the result Just1 0.21072756. We recognize the

difference, but are unable to explain the discrepancy between our results and theirs. We

note what appear to be a number of typographical errors in their matrices, however even

correcting for these differences does not assist us in reaching their result.

Figure 6.3: Matrix representation of observation o in both subconcepts of C1 [22].

We move on to the concept-observation similarity measure. The observation is defined
1“Just” is the result of a successfully returned Maybe value in Haskell.

Chapter 6. Analysis of Results 66

Figure 6.4: Matrix representation of observation o in concept C2 [22].

as follows: “Suppose an observation o has membership 0.8 in fair weather fw, 0.8 in stormy,

0.9 in a, 0.3 in b, 0.3 in c, 0.01 in d, 0.1 in e and 0 otherwise” [22]. The observation can be

seen in matrix form in Figure 6.3, for both subconcepts of C1, and Figure 6.4, for concept

C2. In comparing the observation to the concepts, we consider that concept C1 has two

subconcepts, whose matrix representations are (c) and (d) in Figure 6.2. Concept C2 has

just one subconcept, represented by matrix (b).

In comparing the observation o to concept C1, the result from [22] is max(3.05/4.05 =

0.75,3.40/9.34 = 0.36) = 0.75. We compare the observation o to concept C1 using the

context-free concept-observation similarity measure, conceptToObsCalc. We note, how-

ever, that because concept C1 contains two subconcepts, the context-sensitive measure will

also be used. From test.hs, the Haskell command used is conceptToObsCalc conceptTest

observationTest. This returns Just1 0.75296444 which, rounding to 2 decimal places, is

0.75, the same value as the one calculated in [22].

Lastly, we compare the observation o to concept C2. In [22], the result was 2.54/4.47=

0.57. In our calculations we will use the context-free concept-observation measure as be-

fore. However, because concept C2 contains only one subconcept, the context-sensitive

measure will not be used. From test.hs, the Haskell command used is conceptToObsCalc

conceptTest2 observationTest. This command returns Just1 0.5682326 which rounds to the

same value calculated in [22]. Our results are summarized in Table 6.1.
1“Just” is the result of a successfully returned Maybe value in Haskell.

Chapter 6. Analysis of Results 67

Table 6.1: Comparison of results
Operator Result from [22] CRLH Result CRLH, Rounded

Concept-Concept 0.26 0.21072756 0.21
Concept-Observation (C1, o) 0.75 0.75296444 0.75
Concept-Observation (C2, o) 0.57 0.5682326 0.57

We note that as the property-observation measure was not explicitly defined by Rickard

et al, we do not have any results with which to verify this operator. However, as the

operator is used as a part of the concept-observation similarity measure, we can verify

that it performs as expected.

6.4 Summary

We have demonstrated the type-safety of our library by showing that the provided con-

structors always return a valid data structure when given valid data, and an empty data

structure when given invalid data. Having additionally shown termination and verifiability

for a selection of operators, we will now conclude the thesis.

Chapter 7

Conclusion

In this chapter we conclude the thesis and describe areas of future research.

7.1 Summary of Thesis Findings

In this thesis, we have presented CRLH, the Conceptual Reasoning Library in Haskell,

which implements the theory of Conceptual Spaces. Conceptual Spaces is a recent theory

of concept representation [7] with a number of newly-suggested applications [34] in areas

from computer vision [4] to linguistics [6].

In Chapter 5 we presented the Conceptual Reasoning Library in Haskell. Section 5.3

discussed the limitations of its current implementation. In Section 6.1 we demonstrated

and discussed the type-safe constructors designed for each of our data structures. Section

6.2 presented a proof of termination for the major operators in our library. In Section 6.3

we demonstrated the verifiability of our library by repeating select calculations from the

literature [22].

68

Chapter 7. Conclusion 69

7.2 Future Work

In this section we discuss areas of research not covered by this thesis.

• Develop and implement a method of expressing uncertainty.

Gärdenfors [7] required the dimensions of a domain to be integral with each other as

discussed earlier. Aisbett and Gibbon [1] relaxed this requirement and made mention

of using a point at infinity to represent an unknown or incompatible value. However,

such a point cannot be easily implemented; another representation is required. We

find that the lack of detail in this area allows for further research into applications in

uncertain reasoning.

• Enhance our property constructor to allow users to specify a function rather than a

series of mappings.

As we discussed in Chapter 5, our library does not support defining a property’s

mapping function by taking a standard function, ie. f (x) = 1
3x . We consider im-

plementing this feature as something beyond the scope of this thesis. Furthermore,

as connections between category theory [15], conceptual spaces and prototype the-

ory [23] develop, new comparisons could require capabilities beyond those found in

CRLH.

• Develop a reasoning engine to make use of our library.

As the theory of conceptual spaces does not perform reasoning, but rather gives us

something to reason about, our library would require a reasoning engine to actually

perform automated reasoning.

Bibliography

[1] AISBETT, J., AND GIBBON, G. A general formulation of conceptual spaces as a

meso level representation. Artif. Intell. 133, 1-2 (Dec. 2001), 189–232.

[2] AISBETT, J., RICKARD, J. T., AND GIBBON, G. Conceptual Spaces and Computing

with Words. Springer International Publishing, Cham, 2015, pp. 123–139.

[3] BACKUS, J. Can programming be liberated from the von neumann style?: A func-

tional style and its algebra of programs. Commun. ACM 21, 8 (Aug. 1978), 613–641.

[4] CHELLA, A., FRIXIONE, M., AND GAGLIO, S. Conceptual spaces for computer

vision representations. Artificial Intelligence Review 16, 2 (2001), 137–152.

[5] CHURCH, A. A set of postulates for the foundation of logic. Annals of Mathematics

33, 2 (1932), 346–366.

[6] DESSALLES, J.-L. From Conceptual Spaces to Predicates. Springer International

Publishing, Cham, 2015, pp. 17–31.

[7] GARDENFORS, P. Conceptual spaces the geometry of thought. MIT Press, Cam-

bridge, Mass, 2000.

70

Bibliography 71

[8] GIRARD, J.-Y. The system f of variable types, fifteen years later. Theoretical Com-

puter Science 45 (1986), 159 – 192.

[9] HINDLEY, R. The principal type-scheme of an object in combinatory logic. Transac-

tions of the American Mathematical Society 146 (1969), 29–60.

[10] HOARE, C. A. R. The emperor’s old clothes. Commun. ACM 24, 2 (Feb. 1981),

75–83.

[11] HUDAK, P. Conception, evolution, and application of functional programming lan-

guages. ACM Comput. Surv. 21, 3 (Sept. 1989), 359–411.

[12] HUDAK, P., HUGHES, J., PEYTON JONES, S., AND WADLER, P. A history of

haskell: Being lazy with class. In Proceedings of the Third ACM SIGPLAN Confer-

ence on History of Programming Languages (New York, NY, USA, 2007), HOPL III,

ACM, pp. 12–1–12–55.

[13] HUDAK, P., PEYTON JONES, S., WADLER, P., BOUTEL, B., FAIRBAIRN, J.,

FASEL, J., GUZMÁN, M. M., HAMMOND, K., HUGHES, J., JOHNSSON, T.,

KIEBURTZ, D., NIKHIL, R., PARTAIN, W., AND PETERSON, J. Report on the pro-

gramming language haskell: A non-strict, purely functional language version 1.2.

SIGPLAN Not. 27, 5 (May 1992), 1–164.

[14] JØSANG, A. A logic for uncertain probabilities. International Journal of Uncertainty,

Fuzziness and Knowledge-Based Systems 9, 03 (2001), 279–311.

[15] LAKOFF, G. Women, Fire and Dangerous Things: What Categories Reveal About the

Mind. University of Chicago Press, Chicago, 1987.

Bibliography 72

[16] LAWVERE, F. W., AND SCHANUEL, S. Conceptual mathematics : a first introduc-

tion to categories. Cambridge University Press, Cambridge, UK New York, 2009.

[17] LIPOVACA, M. Learn You a Haskell for Great Good!: A Beginner’s Guide, 1st ed.

No Starch Press, San Francisco, CA, USA, 2011.

[18] MILNER, R. A theory of type polymorphism in programming. Journal of Computer

and System Sciences 17, 3 (1978), 348 – 375.

[19] O’SULLIVAN, B., GOERZEN, J., AND STEWART, D. Real World Haskell, 1st ed.

O’Reilly Media, Inc., 2008.

[20] REYNOLDS, J. C. Towards a theory of type structure. In Programming Symposium,

Proceedings Colloque Sur La Programmation (London, UK, UK, 1974), Springer-

Verlag, pp. 408–423.

[21] RICKARD, J. T. A concept geometry for conceptual spaces. Fuzzy Optimization and

Decision Making 5, 4 (2006), 311–329.

[22] RICKARD, J. T., AISBETT, J., AND GIBBON, G. Reformulation of the theory of

conceptual spaces. Information Sciences 177, 21 (2007), 4539 – 4565.

[23] ROSCH, E. Cognitive representations of semantic categories. Journal of experimental

psychology: General 104, 3 (1975), 192.

[24] SCHEIDER, S., AND KUHN, W. How to Talk to Each Other via Computers: Semantic

Interoperability as Conceptual Imitation. Springer International Publishing, Cham,

2015, pp. 97–122.

Bibliography 73

[25] SHAFER, G. A Mathematical Theory of Evidence. Books on Demand, 1976.

[26] STERNBERG, R. Cognitive Psychology. Cengage Learning, 2008.

[27] STEVENSON, A. Oxford Dictionary of English. Oxford Dictionary of English. OUP

Oxford, 2010.

[28] TEAM, T. G. The Glorious Glasgow Haskell Compilation System User’s Guide, July

2014.

[29] WEBB, G. I., AND PAZZANI, M. J. Adjusted probability Naive Bayesian induction.

Springer Berlin Heidelberg, Berlin, Heidelberg, 1998, pp. 285–295.

[30] WOS, L., OVERBECK, R., LUSK, E., AND BOYLE, J. Automated Reasoning: Intro-

duction and Applications. Prentice Hall Professional Technical Reference, 1984.

[31] ZADEH, L. Fuzzy sets. Information and Control 8, 3 (1965), 338 – 353.

[32] ZADEH, L. A. Fuzzy logic. Computer 21, 4 (Apr. 1988), 83–93.

[33] ZADEH, L. A. Fuzzy logic = computing with words. IEEE Transactions on Fuzzy

Systems 4, 2 (May 1996), 103–111.

[34] ZENKER, F., AND GARDENFORS, P. Applications of conceptual spaces : the case

for geometric knowledge representation. Springer, Cham, 2015.

Appendix A

CRLH code

In this appendix we present the source code for our library, CRLH. The library consists of

three main files:

• Types.hs, which contains the data structures,

• Constructors.hs, which contains the type-safe constructors for our library,

• Operators.hs, which contains our Concept-to-Concept, Concept-to-Observation and

Property-Observation Recognition operators and their supporting functions.

Following these three files is an included Test.hs file, containing sample data used to

test the library functions.

A.1 Types.hs

This file contains the data structures of CRLH. The conditions on the data structures out-

lined by Rickard et al [22] are not enforced here, but in our constructors. As a result, this

74

Appendix A. CRLH code 75

module is not meant to be imported by the end user. Instead, the end user should import

Constructors.hs and Operators.hs

module Types

where

import qualified Data.Map.Strict as Map

import qualified Data.Maybe as Maybe

import qualified Data.Set as Set

--Data structure for Domain

data Domain = Domain { domString :: String -- Name of Domain

, dimensions :: Set.Set String -- List of Dimensions.

, properties :: Set.Set Property

} deriving (Eq, Ord)

instance Show Domain where

show a = "Name: " ++ (show (domString a)) ++ "λnProperties: "

++ [x | y ← (Set.toList (properties a)),x ← (show y) ++ ", "]

-- Data structure for property.

data Property = Property { propertyString :: String, -- Name of the property.

propertyMaps :: Map.Map (String,String) Float -- maps.

} deriving (Eq, Ord)

instance Show Property where

show = show.propertyString --show.propertyName

-- Data structure for observation

data Observation = Observation {

observationDomains :: Set.Set Domain,

observationMaps :: [(Domain, [(String,String)])]

} deriving (Show)

-- Data structure for Context

data Context = Context {contextName :: String,

contextProps :: Set.Set Property

} deriving (Eq, Ord)

-- Data structure for Concept

data Concept = Concept {conceptName :: String, -- Name of the concept.

conceptSubTypes :: Set.Set Context, -- list of subconcepts

conceptProps :: Set.Set Property, -- all properties in the concept

conceptMaps :: Map.Map (Property,Property) Float -- Property Association of Concepts.

}

instance Show Concept where

show = show.conceptName

instance Show Context where

show = show.contextName

A.2 Constructors.hs

This file contains the constructors for our library. They check that the data supplied matches

the requirements for the specific data structure. For more information, see Section 6.1.

Appendix A. CRLH code 76

module Constructors

where

{-this module will provide the type-safe constructors for our data structures.-}

import qualified Data.Map.Strict as Map

import qualified Data.Set as Set

import qualified Types as Types

-- Exported Functions --

-- These are constructors for the data types --

-- designed in this library. --

domain :: String → [Types.Property] → Types.Domain

domain a c

| length c == 0 = (Types.Domain "Error, No Properties" Set.empty Set.empty)

| otherwise = (Types.Domain a (Set.fromList (getDims c)) (Set.fromList c))

getDims :: [Types.Property] → [String]

getDims a = [x |
y ← a,

x ← fst(

unzip (

Map.keys (

propertyMaps y

)

)

)

]

property :: String → [((String,String),Float)] → Types.Property

property a b

| length b == 0 = (Types.Property "Error, no mappings!" Map.empty)

| maximum (snd (unzip b)) > 1 = (Types.Property "Error, invalid mappings!" Map.empty)

| minimum (snd (unzip b)) < 0 = (Types.Property "Error, invalid mappings!" Map.empty)

| otherwise = (Types.Property a (Map.fromList b))

-- Ensure that the properties in each pair are --

-- in the domain listed. --

-- Constructor for observation. Takes as input a list of tuples.

-- These tuples contain domains paired with a list of tuples.

-- The second list of tuples contains dimension name and value on that dimension.

observation :: [(Types.Domain,[(String,String)])] → Types.Observation

observation a

| length a == 0 = Types.Observation (Set.empty) []

| checkObservation a == False = Types.Observation (Set.empty) []

| otherwise = Types.Observation (Set.fromList (fst (unzip a))) a

checkObservation :: [(Types.Domain,[(String,String)])] → Bool

checkObservation a = or [x |
y ← a,

w ← (snd y),

z ← [(fst w)],

x ← [Set.member z (dimensions (fst y))]

]

-- This one might be fine. --

concept :: String → [Types.Context] → [((Types.Property,Types.Property),Float)] → Types.Concept

concept a b c

| length c == 0 = (Types.Concept "Error, no mappings!" Set.empty Set.empty Map.empty)

| maximum (snd (unzip c)) > 1 = (Types.Concept

"Error, invalid maps!"

Set.empty

Appendix A. CRLH code 77

Set.empty

Map.empty

)

| checkConceptZeros c == False = (Types.Concept

"Error, inconsistent maps!"

Set.empty

Set.empty

Map.empty

)

| checkConceptSubtypes b d == False = (Types.Concept

"Error, inconsistent subtypes!"

Set.empty

Set.empty

Map.empty

)

| otherwise = (

Types.Concept

a

(Set.fromList b)

d

(Map.fromList c)

)

where d =
Set.union(

Set.fromList(

fst(

unzip(

fst(

unzip c

)

)

)

)

) (

Set.fromList(

snd(

unzip(

fst(

unzip c

)

)

)

)

)

checkConceptZeros :: [((Types.Property,Types.Property),Float)] → Bool

checkConceptZeros a = and [

0 == (

sum [x |
(y,z) ← Map.keys (Map.filter (== 0) (Map.fromList a)),

x ← [(Map.findWithDefault 2 (z,y) (Map.fromList a))]

]

),

0 /= (

minimum [x |
y ← Map.keys (Map.fromList a),

(fst y) == (snd y),

x ← [(Map.findWithDefault 2 y (Map.fromList a))]

]

)

]

checkConceptSubtypes :: [Types.Context] → Set.Set Types.Property → Bool

checkConceptSubtypes a b = and [x |
w ← a,

y ← [Types.contextProps w],

z ← [b],

Appendix A. CRLH code 78

x ← [Set.isSubsetOf y z]

]

-- This one is also probably fine. --

context :: String → [Types.Property] → Types.Context

context a b

| length b == 0 = (Types.Context "Error, No Properties" Set.empty)

| checkContextProperties b = (Types.Context "Error, Invalid Properties" Set.empty)

| otherwise = (Types.Context a (Set.fromList b))

checkContextProperties :: [Types.Property] → Bool

checkContextProperties a = (or [x |
y ← a,

x ← [Map.null (propertyMaps y)]

])

-- Ported from Types --

properties = Types.properties

dimensions = Types.dimensions

domString = Types.domString

propertyString = Types.propertyString

propertyMaps = Types.propertyMaps

observationDomains = Types.observationDomains

observationMaps = Types.observationMaps

conceptName = Types.conceptName

conceptSubTypes = Types.conceptSubTypes

conceptProps = Types.conceptProps

conceptMaps = Types.conceptMaps

contextName = Types.contextName

contextProps = Types.contextProps

A.3 Operators.hs

This section contains our Operators, which are discussed in Section 5.2. Some measures

have been put in place to ensure that all operators terminate when given invalid data. For

proof of this, see Section 6.2.

module Operators

where

import qualified Types as Types

import qualified Data.Map.Strict as Map

import qualified Data.Maybe as Maybe

import qualified Data.Set as Set

propertyRecognition :: Types.Observation → Map.Map Types.Property Float

-- This takes an observation and returns a map from each property

-- to the observation’s similarity value for that property.

-- If an empty observation is passed, an empty map is returned.

propertyRecognition a

Appendix A. CRLH code 79

| Set.size (Types.observationDomains a) == 0 = Map.empty

| otherwise = Map.fromListWith max [x |
y ← Types.observationMaps a,

x ← propertyRecognition’ y

]

propertyRecognition’ :: (Types.Domain, [(String,String)]) → [(Types.Property, Float)]

-- This takes an observation’s values on a domain

-- and returns the similarity values of each property on the given domain.

propertyRecognition’ a = [(x,y) |
x ← (Set.elems (Types.properties(fst a))),

y ← [min (sum (propertyVal (Types.propertyMaps x) (snd a))) 1],

y > 0

]

-- This takes a property’s map and an observation’s values on a domain

-- and returns the similarity values of that observation to that property.

propertyVal :: (Map.Map (String,String) Float) → [(String,String)] → [Float]

propertyVal a [] = []

propertyVal a b = [x |
y ← b,

x ← Maybe.catMaybes [(Map.lookup y a)]

]

conceptToObsWithContextCalc :: Types.Concept → Types.Observation → Types.Context → Maybe Float

-- Takes in a concept, an observation and a context. If all arguments are well-formed,

-- it returns the similarity value of the observation to the concept in that context.

-- Otherwise, it returns nothing.

conceptToObsWithContextCalc a b c

| Set.null (Types.contextProps c) = conceptToObsCalc a b

| Set.null (Types.conceptProps a) = Nothing

| Set.null (Types.observationDomains b) = Nothing

| Set.member c (Types.conceptSubTypes a) = conceptToObsCalc

(Types.Concept

(Types.conceptName a)

Set.empty

(Set.intersection (Types.conceptProps a) (Types.contextProps c))

(Map.filterWithKey

(λk _ → k ‘notElem‘

([(x,y) |
y ← Set.toList

(Set.difference

(Types.conceptProps a)

(Types.contextProps c)

),

x ← Set.toList (Types.conceptProps a)

] ++ [(x,y) |
y ← Set.toList

(Set.difference

(Types.conceptProps a)

(Types.contextProps c)

),

x ← Set.toList (Types.contextProps c)

] ++ [(x,y) |
x ← Set.toList

(Set.difference

(Types.conceptProps a)

(Types.contextProps c)

),

y ← Set.toList (Types.conceptProps a)

] ++ [(x,y) |
x ← Set.toList

(Set.difference

(Types.conceptProps a)

(Types.contextProps c)

),

y ← Set.toList (Types.contextProps c)

])

Appendix A. CRLH code 80

)

(Types.conceptMaps a)

)

)

b

| otherwise = conceptToObsCalc

(Types.Concept

(Types.conceptName a)

(Set.fromList [x | x ← Set.toList (Types.conceptSubTypes a),

(Types.contextProps x) ‘Set.isSubsetOf‘ (Types.contextProps c)]

)

(Set.intersection (Types.conceptProps a) (Types.contextProps c))

(Map.filterWithKey

(λk _ → k ‘notElem‘

([(x,y) |
y ← Set.toList

(Set.difference

(Types.conceptProps a)

(Types.contextProps c)

),

x ← Set.toList (Types.conceptProps a)

] ++ [(x,y) |
y ← Set.toList

(Set.difference

(Types.conceptProps a)

(Types.contextProps c)

),

x ← Set.toList (Types.contextProps c)

] ++ [(x,y) |
x ← Set.toList

(Set.difference

(Types.conceptProps a)

(Types.contextProps c)

),

y ← Set.toList (Types.conceptProps a)

] ++ [(x,y) |
x ← Set.toList

(Set.difference

(Types.conceptProps a)

(Types.contextProps c)

),

y ← Set.toList (Types.contextProps c)

])

)

(Types.conceptMaps a)

)

)

b

conceptToObsCalc :: Types.Concept → Types.Observation → Maybe Float

-- Takes in a concept and an observation.

-- If all arguments are well-formed, it returns their similarity value.

-- Otherwise, it returns nothing.

conceptToObsCalc a b

| Set.null (Types.conceptProps a) = Nothing

| Set.null (Types.observationDomains b) = Nothing

| Set.size (Types.conceptSubTypes a) /= 0 = Just

(maximum [x |
y ← Set.toList (Types.conceptSubTypes a) ,

x ← Maybe.catMaybes [conceptToObsWithContextCalc a b y]

])

| otherwise = Just (sum (calcMin a b) / sum (Map.elems (Types.conceptMaps a)))

calcMin :: Types.Concept → Types.Observation → [Float]

calcMin a b = zipWith

min

(Map.elems (Types.conceptMaps a))

(calcprop (Map.keys (Types.conceptMaps a)) b)

Appendix A. CRLH code 81

calcprop :: [(Types.Property, Types.Property)] → Types.Observation → [Float]

calcprop a b = [x |
y ← a,

x ← [min

(Map.findWithDefault 0 (fst y) c)

(Map.findWithDefault 0 (snd y) c)

]

]

where c = (propertyRecognition b)

conceptToConceptWithContextCalc :: Types.Concept → Types.Concept → Types.Context → Maybe Float

-- Takes in two concepts and a context.

-- If an empty context is passed, the calculation is performed as if there were no context passed.

-- If either concept is empty, Nothing is returned.

conceptToConceptWithContextCalc a b c

| Set.null (Types.contextProps c) = conceptToConceptCalc a b

| Set.null (Types.conceptProps a) = Nothing

| Set.null (Types.conceptProps b) = Nothing

| otherwise = conceptToConceptCalc

(Types.Concept

(Types.conceptName a)

(Types.conceptSubTypes a)

(Set.intersection (Types.conceptProps a) (Types.contextProps c))

(Map.filterWithKey

(λk _ → k ‘notElem‘

([(x,y) |
x ← Set.toList

(Set.difference

(Types.conceptProps a)

(Types.contextProps c)

),

y ← Set.toList (Types.conceptProps a)

] ++ [(x,y) |
x ← Set.toList

(Set.difference

(Types.conceptProps a)

(Types.contextProps c)

),

y ← Set.toList (Types.contextProps c)

] ++ [(x,y) |
y ← Set.toList

(Set.difference

(Types.conceptProps a)

(Types.contextProps c)

),

x ← Set.toList (Types.conceptProps a)

] ++ [(x,y) |
y ← Set.toList

(Set.difference

(Types.conceptProps a)

(Types.contextProps c)

),

x ← Set.toList (Types.contextProps c)

])

)

(Types.conceptMaps a)

)

)

(Types.Concept

(Types.conceptName b)

(Types.conceptSubTypes b)

(Set.intersection

(Types.conceptProps b)

(Types.contextProps c)

)

(Map.filterWithKey

(λk _ → k ‘notElem‘

Appendix A. CRLH code 82

([(x,y) |
y ← Set.toList

(Set.difference

(Types.conceptProps b)

(Types.contextProps c)

),

x ← Set.toList (Types.conceptProps b)

] ++ [(x,y) |
y ← Set.toList

(Set.difference

(Types.conceptProps b)

(Types.contextProps c)

),

x ← Set.toList (Types.contextProps c)

] ++ [(x,y) |
x ← Set.toList

(Set.difference

(Types.conceptProps b)

(Types.contextProps c)

),

y ← Set.toList (Types.conceptProps b)

] ++ [(x,y) |
x ← Set.toList

(Set.difference

(Types.conceptProps b)

(Types.contextProps c)

),

y ← Set.toList (Types.contextProps c)

])

)

(Types.conceptMaps b)

)

)

conceptToConceptCalc :: Types.Concept → Types.Concept → Maybe Float

conceptToConceptCalc a b

| Set.null (Types.conceptProps a) = Nothing

| Set.null (Types.conceptProps b) = Nothing

| otherwise = Just (sum

(zipWith

min

z

y

)

/
sum

(zipWith

max

z

y

)

) where z = [x | c ← (Set.toList (Set.union (Types.conceptProps a) (Types.conceptProps b))),

d ← (Set.toList (Set.union (Types.conceptProps a) (Types.conceptProps b))),

x ← [

Map.findWithDefault

(ifNeeded a c d)

(c,d)

(Types.conceptMaps a)

]

]

y = [x | c ← (Set.toList (Set.union (Types.conceptProps a) (Types.conceptProps b))),

d ← (Set.toList (Set.union (Types.conceptProps a) (Types.conceptProps b))),

x ← [

Map.findWithDefault

(ifNeeded b c d)

(c,d)

(Types.conceptMaps b)

]

Appendix A. CRLH code 83

]

ifNeeded :: Types.Concept → Types.Property → Types.Property → Float

ifNeeded a c d

| (c,d) ‘elem‘ Map.keys (Types.conceptMaps a) = Map.findWithDefault 0 (c,d) (Types.conceptMaps a)

| otherwise = (snd

(propertyOverlap

c

(Set.toList

(Types.conceptProps a)

)

)

) ∗ --B_{aa∗}
(snd

(propertyOverlap

d

(Set.toList

(Types.conceptProps a)

)

)

) ∗ --B_{bb∗}
(

Map.findWithDefault

0

(fst

(propertyOverlap

c

(Set.toList

(Types.conceptProps a)

)

),

(fst

(propertyOverlap

d

(Set.toList

(Types.conceptProps a)

)

)

)

)

(Types.conceptMaps a)

) --C_{a∗b∗}

conceptToConceptCalc’ :: Types.Concept → Types.Concept → Maybe Float

-- This function is merely here to show that the property overlap works.

conceptToConceptCalc’ a b

| Set.null (Types.conceptProps a) = Nothing

| Set.null (Types.conceptProps b) = Nothing

| otherwise = Just (sum

(zipWith

min

y

z

)

/
sum

(zipWith

max

y

z

)

) where z = [x | c ← (Set.toList (Set.union (Types.conceptProps a) (Types.conceptProps b))),

d ← (Set.toList (Set.union (Types.conceptProps a) (Types.conceptProps b))),

x ← [

Map.findWithDefault

0

(c,d)

(Types.conceptMaps a)

Appendix A. CRLH code 84

]

]

y = [x | c ← (Set.toList (Set.union (Types.conceptProps a) (Types.conceptProps b))),

d ← (Set.toList (Set.union (Types.conceptProps a) (Types.conceptProps b))),

x ← [

Map.findWithDefault

0

(c,d)

(Types.conceptMaps b)

]

]

-- This returns (a∗,B_{aa∗}), where a∗ is the property that overlaps most with a.

propertyOverlap :: Types.Property → [Types.Property] → (Types.Property,Float)

-- The maximal overlap between two properties.

propertyOverlap a b = maximum’ [(x,y) | x ← b, y ← [propertyOverlap’ a x]]

--Given a list of tuples, find the element with the highest second member.

maximum’ :: Ord a ⇒ [(t, a)] → (t, a)

maximum’ (x:xs) = maxTail x xs

where maxTail currentMax [] = currentMax

maxTail (m, n) (p:ps)

| n < (snd p) = maxTail p ps

| otherwise = maxTail (m, n) ps

----From Rickard, Aisbett, Gibbon 2007, this calculates the B value of two properties a,b.

propertyOverlap’ :: Types.Property → Types.Property → Float

propertyOverlap’ a b

| a == b = 1

| (

(&&)

((Types.propertyString a) == "PropertyB")

((Types.propertyString b) == "PropertyE")

) == True = 0.2

| (

(&&)

((Types.propertyString a) == "PropertyE")

((Types.propertyString b) == "PropertyB")

) == True = 0.05

| (

(&&)

((Types.propertyString a) == "PropertyC")

((Types.propertyString b) == "PropertyE")

) == True = 0.02

| (

(&&)

((Types.propertyString a) == "PropertyE")

((Types.propertyString b) == "PropertyC")

) == True = 0.01

| otherwise = (sum

(

[x |
z ← Map.keys (Types.propertyMaps a),

x ← [min

(Map.findWithDefault

0

(z)

(Types.propertyMaps a)

)

(Map.findWithDefault

0

(z)

(Types.propertyMaps b)

)

]

]

)

Appendix A. CRLH code 85

) / sum (Map.elems (Types.propertyMaps a))

A.4 Test.hs

Test.hs includes some sample calculations and all test variables and functions mentioned in

Section 6.3.

module CRLH where

import qualified Data.Map as Map

import qualified Data.Set as Set

import Constructors

import Operators

import Types

propertyA = property "PropertyA" [(("PortA","A"),0.9)]

propertyB = property "PropertyB" [(("PortB","B"),0.3)]

propertyC = property "PropertyC" [(("PortB","C"),0.3)]

propertyD = property "PropertyD" [(("PortC","D"),0.01)]

propertyE = property "PropertyE" [(("PortB","E"),0.1)]

propertyFW = property "PropertyFW" [(("Weather","FW"),0.8)]

deriveMatrix :: Types.Concept → Types.Concept → ([Float],[Float])

deriveMatrix a b = ([x |
c ← (Set.toList (Set.union (Types.conceptProps a) (Types.conceptProps b))),

d ← (Set.toList (Set.union (Types.conceptProps a) (Types.conceptProps b))),

x ← [

Map.findWithDefault

(ifNeeded a c d)

(c,d)

(Types.conceptMaps a)

]

],[x |
c ← (Set.toList (Set.union (Types.conceptProps a) (Types.conceptProps b))),

d ← (Set.toList (Set.union (Types.conceptProps a) (Types.conceptProps b))),

x ← [

Map.findWithDefault

(ifNeeded b c d)

(c,d)

(Types.conceptMaps b)

]]

)

domainTest = domain "A" [propertyA]

domain2 = domain "B" [propertyB,propertyC,propertyE]

domain3 = domain "C" [propertyD]

domainTest2 = domain "Domain2" [propertyFW]

observationTest = observation

[

(domainTest,

Appendix A. CRLH code 86

[

("PortA","A")

]),

(domain2,

[

("PortB","B"),

("PortB","C"),

("PortB","E")

]),

(domain3,

[

("PortC","D")

]),

(domainTest2,

[

("Weather","FW")

])

]

contextTest = context "ContextNameTest" [propertyA,propertyB,propertyFW]

contextTest2 = context "ContextNameTest2" [propertyA,propertyC,propertyD,propertyFW]

conceptTest = concept "ConceptNameTest" [contextTest, contextTest2]

[

((propertyA,propertyA),1.00),

((propertyA,propertyB),0.27),

((propertyA,propertyC),0.4),

((propertyA,propertyD),0.4),

((propertyA,propertyFW),0.4),

((propertyB,propertyA),0.13),

((propertyB,propertyB),1),

((propertyB,propertyC),0),

((propertyB,propertyD),0),

((propertyB,propertyFW),0.2),

((propertyC,propertyA),0.75),

((propertyC,propertyB),0),

((propertyC,propertyC),1),

((propertyC,propertyD),0.75),

((propertyC,propertyFW),0.4),

((propertyD,propertyA),1),

((propertyD,propertyB),0),

((propertyD,propertyC),1),

((propertyD,propertyD),1),

((propertyD,propertyFW),0.2),

((propertyFW,propertyA),0.03),

((propertyFW,propertyB),0.018),

((propertyFW,propertyC),0.003),

((propertyFW,propertyD),0.003),

((propertyFW,propertyFW),1)

]

conceptTest2 = concept "ConceptNameTest2" []

[

((propertyA,propertyA),1.00),

((propertyA,propertyE),0.33),

((propertyA,propertyFW),0.4),

((propertyE,propertyA),0.5),

((propertyE,propertyE),1),

((propertyE,propertyFW),0.2),

((propertyFW,propertyA),0.03),

((propertyFW,propertyE),0.01),

((propertyFW,propertyFW),1)

]

Vita Auctoris

David MacMillan was born in 1990 and raised in Oakville, Ontario, Canada. He graduated

from Iroquois Ridge High School in 2008 and completed his Bachelor’s degree in Com-

puter Science from the University of Windsor in 2012. He completed his Master’s degree

from the same institution in 2016.

87

	University of Windsor
	Scholarship at UWindsor
	2016

	A Functional Approach to Library Construction for Conceptual Reasoning
	David William Patrick MacMillan
	Recommended Citation

	tmp.1477499409.pdf.FBdpt

