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Abstract

Prediction and analysis of protein-protein interactions (PPI) is an important problem in life

science research because of the fundamental roles of PPIs in many biological processes

in living cells including regulation of biochemical pathways, signaling cascades, and gene

regulation.

Prediction of PPIs has been studied from many different perspectives in solving differ-

ent problems. One of the important problems surrounding PPIs is the identification and

prediction of different types of complexes, which are characterized by properties such as

type and numbers of proteins that interact, stability of the proteins, and also duration of

the interactions. This thesis focuses on studying the temporal and stability aspects of the

PPIs mostly using structural data. We have addressed the problem of predicting obligate

and non-obligate protein complexes, as well as those aspects related to transient versus

permanent because of the importance of non-obligate and transient complexes as therapeu-

tic targets for drug discovery and development. Generally, non-obligate interactions are

more difficult to study and understand due to their instability and short life, while obligate

interactions are more stable.

We have presented a computational model to predict-protein interaction types using our

proposed physicochemical features of desolvation and electrostatic energies and also struc-

tural and sequence domain-based features. To achieve a comprehensive comparison and
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demonstrate the strength of our proposed features to predict PPI types, we have also com-

puted a wide range of previously used properties for prediction including physical features

of interface area and interface area ratio, chemical features of hydrophobicity and amino

acid composition, physicochemical features of solvent-accessible surface area (SASA) and

atomic contact vectors (ACV). After extracting the main features of the complexes, a vari-

ety of machine learning approaches have been used to predict PPI types mostly based on

combinations of classification, clustering and feature selection techniques. The prediction

is performed via several state-of-the-art classification techniques, including linear dimen-

sionality reduction (LDR), support vector machine (SVM), naive Bayes (NB) and k-nearest

neighbor (k-NN). Moreover, several feature selection algorithms including gain ratio (GR),

information gain (IG), chi-square (Chi2) and minimum redundancy maximum relevance

(mRMR) are applied on the available datasets to obtain more discriminative and relevant

properties to distinguish between these two types of complexes

Our computational results on different datasets confirm that using our proposed physico-

chemical features of desolvation and electrostatic energies lead to significant improvements

on prediction performance. Moreover, using structural and sequence domains of CATH and

Pfam and doing biological analysis help us to achieve a better insight on obligate and non-

obligate complexes and their interactions.
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Chapter 1

Introduction

1.1 Protein-protein Interactions

Proteins are large molecules that constitute the bulk of the cellular machinery of any living

organism or biological system. They play important roles in fundamental and essential bi-

ological processes such as DNA synthesis, transcription, translation, and splicing. Proteins

perform their functions by interacting with molecules such as DNA, RNA, and other pro-

teins. Regulation of biochemical pathways, signaling cascades and transduction, cellular

motion, gene regulation, forming a protein complex, modifying or carrying another protein

are some of the essential biological processes in living cells performed by protein-protein

interactions (PPIs). As a consequence, to understand the complex cellular mechanisms in-

volved in a biological system, it is necessary to study the nature of these interactions at the

molecular level, in which prediction of PPIs plays a significant role.

Although prediction of PPIs has been studied from many different perspectives, the

main aspects that are studied include [1]: sites of interfaces (where), arrangement of pro-

teins in a complex (how), type of protein complex (what), molecular interaction events (if),

1
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and temporal and spatial trends (dynamics). These problems have been investigated in var-

ious ways, involving both experimental (in vivo or in vitro) and computational (in silico)

approaches. Experimental approaches such as yeast two-hybrid and affinity purification

followed by mass spectrometry tend to be costly, labor intensive and suffer from noise.

Nonetheless, these techniques have been successfully used to produce high-throughput pro-

tein interaction data for many organisms [2, 3]. Typically, structural information in the main

databases such as the Protein Data Bank (PDB) [4] is derived through costly techniques

such as X-ray crystallography or NMR (for smaller proteins). Therefore, using computa-

tional approaches for prediction of PPIs is a good choice for many reasons [5]. To date,

a variety of machine learning approaches have been used to predict PPIs, mostly based on

combinations of classification, clustering and feature selection techniques. These systems,

in general, represent objects (complexes, sites, patches, protein chains, domains or motifs)

as features or properties.

Among these research problems in the field of prediction of PPIs, this thesis focuses on

computational prediction of PPI types.

1.2 PPI Types

There are different types of protein-protein interactions that provide different levels of in-

formation on different biological processes. Based on the type and numbers of proteins that

interact, stability of the proteins, duration of the interaction, the following PPI types can be

defined [6]:

• Based on the similarities of sub-units (chains):

– Homo-oligomeric complexes (homomer): Interaction between identical chains.
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– Hetero-oligomeric complexes (heteromers): Interaction between non-identical

chains.

• Based on the number of interacting sub-units:

– dimers (two sub-units), trimers (three sub-units), tetramer (four sub-units), pen-

tamer (five sub-units) and so on.

• Based on the affinity and stability of PPIs:

– Non-obligate complexes: binding components (proteins) can form stable struc-

tures and cannot exist in vivo independently.

– Obligate complexes: components do not form stable functional structures on

their own and can be stable in vivo independently.

• Based on the duration and life time of the interactions [6]:

– Transient complexes: the interactions associate/dissociate temporarily in vivo.

– Permanent complexes: the interactions are stable and irreversible.

Stability of complexes can be quantified in terms of their disassociation rates. Disasso-

ciation rates of obligate complexes are in the range of nM (10−9Mol) while for non-obligate

complexes this rate is in the range of µM (10−6Mol) [7]. In general, all obligate complexes

are permanent. Similarly, except from some examples of permanent non-obligate interac-

tions such as enzyme-inhibitor interactions, all non-obligate interactions can be considered

as transient complexes [7].

In this thesis, we focus on the prediction of obligate (permanent) and non-obligate (tran-

sient) complexes. It is important to be able to distinguish between obligate and non-obligate
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complexes, since non-obligate interactions are more difficult to study and understand due

to their instability and short life, while obligate interactions are more stable [8].

1.3 Prediction of PPI Types

A general model to predict PPI types is shown in Figure 1.1. The dataset is a list of PPIs with

their pre-defined types (classes). To predict PPI types, first of all, the prediction properties

(features) of each complex in the dataset are extracted employing different PPI databases.

Then, the extracted features are passed through a feature selection module used to remove

noisy, irrelevant, and redundant features and select the most powerful and discriminative

ones for prediction. After that, the selected features are used for classification and the

outputs of the classification module are the predicted PPI types. Finally, the performance

of the prediction model can be evaluated using different numerical performance metrics

and visual analysis tools. More details about the four main parts, feature extraction, feature

selection, classification, and evaluation and analysis of the presented prediction model are

discussed below.

1.3.1 Feature Extraction

Features are the observed properties of each sample (complex) which are used for predic-

tion. Using the most relevant features is very important for successful prediction. Some

studies in PPIs consider the analysis of a wide range of properties for predicting types of

complexes or types of protein-protein interfaces (binding sites), including physical [9, 10],

chemical [9–12], physicochemical [13], geometric [9, 10, 12, 14], sequence-based [10, 15,

16], and domain-based features [9, 17, 18]. A summary of the feature types employed for
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Figure 1.1: A general framework used to predict PPI types.

prediction in different studies along with the characteristics of obligate and non-obligate

interactions (or interfaces) based on using those features is shown in Table 1.1.

1.3.2 Feature Selection

Feature selection is the process of choosing the best subset of relevant and discriminative

features that represents the whole set of features efficiently after removing redundant and/or

irrelevant ones. Applying feature selection before running a classifier is useful in reducing

the dimensionality of the data and, thus, reducing the prediction time while improving the

prediction performance.
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There are two different ways of doing feature selection: using wrapper methods and

filter methods [20].

In filter-based feature selection methods, the quality of the selected features are scored

and ranked independently of the classification algorithm by using some statistical criteria

based on their relevance. Although feature selection based on filter methods is fast, it does

not consider dependency of features from each other; a feature that is not useful by itself can

be very useful when combined with others. Some of the most well-known filter methods

are the Minimum Redundancy Maximum Relevance (mRMR), Information Gain (IG), Gain

Ratio (GR) and Chi Square (χ2) [20].

However, the aim of wrapper methods is to find the best subset of features using a

particular predictive model (classifier) to score feature subsets. Since doing an exhaustive

search to find the best subset of features is computationally intensive, some heuristic search

methods can be employed to find an optimal feature subset for a specific dataset such as

forward selection and backward elimination [21].

1.3.3 Classification

After extracting and selecting the most discriminating features, a classifier can be applied

in order to assign the class labels (PPI types). For this, the samples are first divided into

train and test sets using different methods such as m-fold cross-validation or leave-one-

out methods. Classification method design follows two phases of processing for training

and testing. In the training phase, the training samples are used to build a model that is a

description of each training class. Then, in the testing phase, that model is used to predict

the classes of the test samples. There are a variety of classification methods, of which

some of the commonly used methods in the thesis are Linear Dimensionality Reduction
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(LDR), Support Vector Machines (SVMs), k-Nearest Neighbor (k-NN) and Naive Bayes.

The reader is referred to [22] for more details.

1.3.4 Evaluation and Analysis

Finally, the performance of the prediction model can be evaluated using numerical perfor-

mance metrics and visual analysis tools. One of the well-known numerical performance

metrics is accuracy, which can be computed as follows:

Accuracy =
T P+T N

N +P
(1.1)

where T P and T N are the total numbers of true positive (true obligate) and true negative

(true non-obligate) predictions, respectively. P and N are the total number of complexes in

the positive and negative classes, respectively. For unbalanced class problems, the perfor-

mance can be analyzed in terms of specificity (SP = T N/N), sensitivity (SN = T P/P), or

geometric mean (Gm =
√

SN ×SP). Moreover, the receiver operating characteristic (ROC)

curve is a visual tool that can be plotted based on the true positive rate (TPR), aka “sensi-

tivity”, vs. the false positive rate (FPR), or “1 − specificity”, at various threshold settings.

To generate the ROC curves, the sensitivity and specificity of each subset of features are

determined for different parameter values of the employed classifier. Then, by applying a

simple algorithm, the FPR and TPR points are filtered as follows: (a) for the same FPR

values, the largest TPR value (top point) is chosen, and (b) for the same TPR values, the

smallest FPR value (left point) is chosen. A polynomial of degree 2 is then fitted to the

selected points. ROC analysis is suitable for unbalanced class problems and yields a better

insight than simple performance metrics.
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1.4 Motivation and Objective

Prediction and analysis of protein-protein interactions and specifically types of PPIs is an

important problem in life science research because of the fundamental roles of PPIs in

many biological processes in living cells. In addition, because of the importance role of

non-obligate interactions as drug targets, understanding the mechanism of binding two (or

more) proteins and especially attempt to achieve accurate prediction of PPI types are worth

further investigation.

However, most of the properties employed to predict obligate and non-obligate PPIs

listed in Table 1.1 are not accurate enough. For example, in Figure 2 of [10], it has been

shown that although most of the non-obligate complexes have a small interface area (less

than 1500 Å2), there are still some non-obligate complexes with interface area greater than

3500 Å2. As a consequence, we have proposed new features for predicting of obligate and

non-obligate PPIs as follows.

1.4.1 Physicochemical Properties

As mentioned ealier, obligate complexes are more stable than non-obligate ones; the dis-

association rate of obligate complexes are in the range of nM (10−9Mol) while for non-

obligate complexes this rate is in the range of µM (10−6Mol) [7]. On the other hand, the

stability of each protein can be quantified in terms of the energy associated with the forces

that form the different interactions. Thus, as in [23], the binding free energy ∆Gbind is

defined as follows:

∆Gbind = ∆Eelec +∆Gdes, (1.2)
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where ∆Eelec is the total electrostatic energy and ∆Gdes is the total desolvation energy.

Desolvation energy is defined as the knowledge-based contact potential (accounting for

hydrophobic interactions), self-energy change upon desolvation of charged and polar atom

groups, and side-chain entropy loss. In addition, electrostatic interactions are important in

understanding inter-molecular interactions, since they are long-range and because of their

influence in charged molecules. This is the main motivation for using electrostatic energy

for prediction of PPI types.

In this thesis, both sub-types of binding free energy, desolvation and electrostatic ener-

gies, are employed as the properties to predict obligate and non-obligate complexes. These

two features are included in the group of physicochemical features, which consider both

chemical and physical characteristics of the interacting residues as the prediction proper-

ties.

1.4.2 Domain-based Properties

Domains are the minimal and fundamental units of proteins. These functional units often

have a biological role and serve some specific purpose, such as signal binding or manipu-

lation of a substrate within cells [24, 25].

Recent studies focus on employing domain knowledge to predict protein-protein inter-

actions [26–30]. It it has been claimed that only a few highly conserved residues are crucial

for PPIs [9, 17], and also most domains and domain-domain interactions (DDIs) are evo-

lutionarily conserved [31]. Thus, it can be concluded that physical interactions between

proteins are mostly controlled by their domains. As a consequence, we have also proposed

a domain-based model to predict obligate and non-obligate complexes to achieve a better

insight of the PPIs.
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Table 1.2: Pfam domains of chains A and D of complex 1h8e.

Chain A Chain D
Pfam ID Start End Pfam ID Start End
PF02874 24 92 PF02874 13 79
PF00006 148 372 PF00006 135 355
PF00306 384 488 PF00306 368 475

There are few domain family resources that can be applied for this purpose including

databases such as Pfam [32] and CATH (Class, Architecture, Topology and Homologous

superfamily) [33].

The Pfam database contains domains that are derived from sequence homology with

other known structures, whereas CATH domains are based on structural homology. The

sequence domains in Pfam are identified using multiple sequence alignments and hidden

Markov models (HMMs). Other classifications of Pfam entries are (a) families of related

protein regions, (b) short unstable units that can make a stable structure when repeated

multiple times, and (c) short motifs present in disordered parts of a protein.

In Figure 1.2, the quaternary structure of an obligate complex, PDB-ID 1h8e, along

with its interacting chains A and D and containing Pfam domains of each chain is shown in

different colors. Also, the Pfam ID, start and end residue numbers of all domains of each

chain are listed in Table 1.2. From the table, it is clear that each chain has three similar

Pfam domains of PF02874, PF00006 and PF00306.

In contrast, the structural domains in the CATH database are organized in a hierarchical

fashion, which can be visualized as a tree with levels numbered from 1 to 8. Domains at

upper levels of the tree represent more general classes of structures than those at lower lev-

els. For example, “roll”, “beta barrels”, and “2-layer sandwich” are three different sample

architectures of domains (level 2) in class of “mixed alpha-beta” domains (level 1) in the
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Figure 1.2: Quaternary structure of an obligate complex, PDB-ID 1h8e, along with its
interacting chains A and D and containing Pfam domains of each chain. Chains A and D
are shown in light green and light blue respectively. Chain A has three domains of PF02874
(orange), PF00006 (red), and PF00306 (green). Similarly, chain D has the same number
and types of Pfam domains represented in purple, blue and yellow. The figure was generated
using ICM browser [34].



CHAPTER 1. 13

CATH hierarchy.

In this thesis, both sequence Pfam and structural CATH domains are considered as the

basis for our predictions.

1.5 Contributions

The main focus of this thesis is to predict obligate and non-obligate PPIs using different

types of physicochemical and domain-based properties. The main contributions are as fol-

lows:

• Providing a generic computational framework for prediction of PPI types.

• Proposing different prediction properties for classifying obligate and non-obligate

protein complexes including:

– Physicochemical features of desolvation and electrostatic energies.

– Domain-based features using structural CATH and sequence Pfam domains.

• Considering different interacting partners for each PPI to extend alternative represen-

tation of the same data for classification such as atom, amino acid and domain pairs

present in the interface of interacting complexes.

• Proposing a feature selection method based on mRMR, which is used for selecting

the most discriminative and relevant properties to distinguish between these two types

of complexes.

• Performing a comprehensive comparison by computing some of the existing and cur-

rently used features for prediction of PPI types to compare with our proposed features

in order to demonstrate the strength of the proposed features.
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• Considering different datasets to verify the efficiency of the proposed features.

• Developing an automatic tool for extracting features for the classification. Download-

ing the tertiary and quaternary structures of the complexes from different databases,

extracting and modifying the required information to calculate the features and calcu-

lating a wide range of features by considering different interacting partners are some

of the capabilities of this tool.

• Performing a broad biological and visual analysis to yield a better insight of the PPI

types and in order to analyze PPIs from a different perspective.

1.6 Thesis Organization

The thesis is organized in three parts with 9 chapters, including 7 selected papers out of 12

papers of the author [35–46] that have been previously published/submitted for publication

in peer reviewed conferences and journals.

Part I, with two journal and one conference papers, covers the topics related to the pro-

posed physicochemical features of desolvation energy (Chapters 2 and 3) and electrostatic

energy (Chapter 4) as follows:

Chapter 2: Md. Aziz, M. Maleki, L. Rueda, M.Raza, S. Banerjee, “Prediction of Bio-

logical Protein-protein Interactions using Atom-type and Amino Acid Properties,”

Wiley-VCH Proteomics, vol. 11, no. 19, pp. 3802-10, Aug. 2011.

Chapter 3: M. Maleki, Md. Aziz, L. Rueda, “Analysis of Relevant Physicochemical Prop-

erties in Obligate and Non-obligate Protein-protein Interactions,” in Workshop on
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Computational Structural Bioinformatics in conjunction with BIBM 2011, GA, USA,

Nov. 2011.

Chapter 4: M. Maleki, G. Vasudev, L. Rueda, “The Role of Electrostatic Energies in Pre-

diction of Obligate Protein-Protein Interactions,” Journal of BMC Proteome Science,

2013.

Parts II and III of the thesis are related to the proposed domain-based features to predict

obligate and non-obligate complexes. The following two papers that consider structural

CATH domains as the basis for our predictions are included in Part II:

Chapter 5: M. Maleki, M. Hall, L. Rueda, “Using Desolvation Energies of Structural

Domains to Predict Stability of Protein Complexes,” Journal of Network Modeling

Analysis in Health Informatics and Bioinformatics (NetMAHIB), vol. 2, no. 4, pp.

267275, Dec. 2013.

Chapter 6: M. Maleki, M. Hall, L. Rueda, “Using Structural Domain to Predict Obligate

and Non-obligate Protein-protein Interactions,” in 2012 IEEE Symposium on Com-

putational Intelligence in Bioinformatics and Computational Biology (CIBCB2012),

California, USA, May 2012.

Similarly, analysis of the role of sequence Pfam domain interactions in determining

obligate and non-obligate PPIs is presented in Part III.

Chapter 7: M. Maleki, Md. Aziz, L. Rueda, “Analysis of Obligate and Non-obligate Com-

plexes using Desolvation Energies in Domain-domain Interactions,” in 10th Interna-

tional Workshop on Data Mining in Bioinformatics (BIOKDD2011) in conjunction

with ACM SIGKDD 2011, San Diego, USA, Aug. 2011.
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Chapter 8: M. Maleki, M. Dezfulian, W. Crosby, L. Rueda, “Computational Analysis of

the Stability of SCF Ligases Employing Domain Information,” in 5th ACM Confer-

ence on Bioinformatics, Computational Biology and Health Informatics (ACMBCB),

CA, 2014. (submitted)

Finally, Chapter 9 concludes the thesis and identifies problems arising from this work

and relevant future work.
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Chapter 2

Prediction of Biological Protein-protein
Interactions using Atom-type and Amino
Acid Properties

2.1 Introduction

Protein-protein interactions (PPIs), binding of two or more proteins, are of prime impor-

tance in essential biological processes in living cells [1]. As a consequence of this, more

attention has been drawn to this field of study, in particular, for identification and analysis

of interacting proteins. Traditionally, the detection of protein-protein interactions was lim-

ited to labor-intensive experimental techniques such as co-immunoprecipitation or affinity

chromatography. However, because of the possibility of introducing systematic errors for

the large-scale prediction of PPIs, these methods have been recently replaced with vari-

ous computational approaches. These new methods have been developed based on many

different properties such as protein sequence, structure and evolutionary relationships in

complete genomes.

Some studies in PPI consider geometric properties, e.g., shape complementarity of the

protein structures [2], recognition of sites [3] or analysis of the conservation of residues [4]
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present in the interaction surface of protein-protein complexes [5]. In another study, the

role of hydrogen bonds and saline bridges appearance on the surface of proteins has been

considered [5], while the study of the loss of surface accessible to solvent was presented in

[6].

In [7], the amino acid composition of protein-protein interfaces in sequence level were

studied and six different types of interfaces of intra and inter domains, homo and hetero-

oligomers, and permanent and transient complexes were found. According to that study the

there is only 1.5% of similarity between the internal and external surfaces, and 0.2% simi-

larity between hetero surfaces of obligate homo complexes and transient homo complexes.

In general, transient interactions are more difficult to study and understand because of

their short life, while obligate interactions are more stable [8]. This is one of the main rea-

sons for which it is important to distinguish between obligate and transient complexes. In

[9], the behavior of transient and obligate interactions was studied and a prediction method

of these two types of interactions was proposed. In [10], it was shown that transient com-

plexes are rich in aromatic residues and arginine, while depleted in other charged residues.

Traditionally, the interfaces of some transient complexes were found to be hydrophobic

[11]. Additionally, in [12], it was proposed that interfaces of obligate complexes are within

clusters of hydrophobic residues. However, hydrophobicity in the interfaces of transient

complexes from the remainder of the surface is not as distinguishable as in the obligate

complexes [10]. The study of [13] suggested that mobility differences of amino acids are

more significant for obligate and large interface complexes than for transient and medium-

sized ones. As a consequence of this, making an accurate prediction of transient and ob-

ligate complexes using a single parameter of residue interface propensity is difficult. To

study PPIs, in [14], each interaction was analyzed in physical interaction, co-complex rela-
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tionship and co-member of the pathway. Also, in [15], three different types of interactions,

namely crystal packing, obligate and non-obligate interactions, were studied by considering

solvent accessible surface area (SASA), conservation scores, and the shapes of the inter-

faces. In [16], after classifying permanent and transient protein interactions based on 300

different interface attributes, the difference in molecular weight between interacting chains

was reported as the best single feature to distinguish transient from permanent interactions.

Based on their results, interactions with the same molecular weight or large interfaces are

permanent. Although there are many studies that consider a wide range of interface param-

eters, including desolvation energies, amino acid composition, conservation, electrostatic

energies, and hydrophobicity to predict protein-protein interactions, a prediction accuracy

of 70% has been independently achieved by different research groups [17–20].

In a recent works [21], an approach to classify obligate and non-obligate complexes

has been proposed in which only 20 minimum and maximum values of desolvation and

electrostatic energies for two interacting chains, calculated by the FastContact tool [22],

were considered as the input features of the classifiers. The results of that study show

that desolvation energies are better discriminant than solvent accessibility and conservation

properties. However, one of the drawbacks of that work is that the properties for prediction

are considered at the residue level, and not at the amino acid or atom level, and these values

are limited to only the 20 larger (or smaller) values for the energies, ignoring intermediate

values that could be important in the classification scheme. In this paper, which is an ex-

tended version of [23], we present an analysis of PPIs that uses desolvation energies of all

atom type and amino acid pairs present in the interface of interacting complexes to predict

obligate and non-obligate protein-protein interactions by using linear dimensionality reduc-

tion (LDR) and support vector machines (SVM) methods. Ten-fold cross validation of the
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proposed scheme on our newly-compiled BPPI dataset demonstrates that using desolvation

energies of atom type features (76.94% prediction accuracy) are slightly better than amino

acid properties (76.16% prediction accuracy) and much better than the features used in [15]

(75% prediction accuracy) for predicting obligate and non-obligate complexes.

Furthermore, we have also presented a numerical and visual analysis on the desolvation

energies of atom type and amino acid pairs present in these two types of interactions. A

heatmap is used as a visual tool to achieve a closer view and find appropriate properties

for prediction. Although a little decrease in prediction accuracy (1%–5%) is noticed, this

decrease is acceptable because of the less time and space complexity required for prediction.

2.2 Materials and Methods

2.2.1 Dataset

We have compiled a new dataset by merging two existing, pre-classified datasets of obli-

gate and non-obligate protein complexes obtained from the studies of Zhu et al., [15], and

Mintseris and Weng [24]. The former contains 75 obligate (permanent) and 62 transient

interactions, while the latter contains 115 obligate and 212 non-obligate interactions. There

are 39 common interactions in these two datasets and hence the redundant complexes were

removed. In addition, we carefully examined all the interactions and removed complexes

with contradicting class labels. For example ”1eg9,A:B” is classified as both obligate and

non-obligate in [15] and [24]. In total, seven complexes (1eg9, 1hsa, 1i1a, 1raf, 1d09, 1jkj

and 1cqi) showed this contradiction and were then removed from the new dataset. After this

pre-processing stage, the new dataset resulted in 417 complexes from which 182 were obli-

gate and 235 were non-obligate. In this study, each complex is considered as the interaction
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Table 2.1: Datasets used in this study

Name # Complexes # Obligate # Non-obligate

Dataset of [15] 137 75 62

Dataset of [24] 327 115 212

BPPI 516 213 303

of two chains (two single sub-units). Since the dataset of [24] considers the interaction of

two sub-units in which each may contain more than one chain, e.g., ”1qfu,AB:HL”, all these

complexes were converted to interactions between two single chains (binary interactions).

For this, all binary interactions of each of the 93 multiple-chain complexes were identified,

obtaining 289 interactions, and each of these was converted into a separate complex in the

new dataset. For example, the multiple-chain of 1qfu was transformed to four binary chains

as follows: A:H, A:L, B:H and B:L. The final step involves filtering binary complexes with

non-interacting pairs. Using the interface definition of [25], complexes with interacting

chains with less than five interface residues were removed. Two residues (from different

chains) are considered to be interacting, if at least one pair of atoms from these residues

is 5Å or less apart from each other. This resulted in our final dataset that contains 516

complexes, from which 303 are non-obligate and 213 are obligate complexes. We call this

dataset binary protein-protein interactions (BPPI), as detailed in Table 2.1. The PDB IDs

of these complexes and the interacting chains are shown in Table 2.2.

2.2.2 Prediction Properties

In our approach, we have introduced the use of desolvation energies as physicochemical

properties to predict obligate and non-obligate complexes. For comparison purposes, we

have also used various interface and non-interface properties such as solvent accessibility.
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Table 2.2: BPPI dataset containing 213 obligate and 303 non-obligate binary complexes.

Obligate Complexes

1a0f , A:B 1be3 , E:A 1dor , A:B 1go3 , E:F 1jb0 , B:D 1k8k , B:F 1lti , C:E 1qfe , A:B 1ytf , B:D
1a4i , A:B 1be3 , G:A 1dtw , A:B 1gpe , A:B 1jb0 , A:E 1k8k , C:G 1luc , A:B 1qfh , A:B 1ytf , C:D
1a6d , A:B 1bjn , A:B 1dxt , A:B 1gpw , A:B 1jb0 , A:E 1k8k , A:E 1m2v , A:B 1qla , A:B 1yve , I:J
1afw , A:B 1bo1 , A:B 1e50 , A:B 1gux , A:B 1jb0 , A:C 1k8k , C:F 1mjg , B:M 1qlb , B:C 2aai , A:B
1ahj , A:B 1brm , A:B 1e6v , A:B 1h2a , L:S 1jb0 , C:E 1k8k , D:F 1mjg , A:M 1qor , A:B 2ae2 , A:B
1aj8 , A:B 1byf , A:B 1e8o , A:B 1h2r , L:S 1jb0 , B:C 1kfu , L:S 1mro , A:B 1qu7 , A:B 2ahj , A:B
1ajs , A:B 1byk , A:B 1e9z , A:B 1h2v , C:Z 1jb0 , A:D 1kpe , A:B 1mro , B:C 1req , A:B 2hdh , A:B
1aom , A:B 1c3o , A:B 1eex , A:B 1h32 , A:B 1jb0 , A:D 1kqf , B:C 1mro , A:C 1sgf , A:B 2hhm , A:B
1aq6 , A:B 1c7n , A:B 1eex , A:G 1h4i , A:B 1jb0 , C:D 1kqf , A:B 1msp , A:B 1sgf , A:Y 2kau , A:C
1at3 , A:B 1ccw , A:B 1efv , A:B 1h8e , A:D 1jb7 , A:B 1ktd , A:B 1n98 , A:B 1smt , A:B 2kau , B:C
1aui , A:B 1cmb , A:B 1ep3 , A:B 1hcn , A:B 1jk0 , A:B 1l7v , A:C 1nbw , C:B 1sox , A:B 2min , A:B
1b34 , A:B 1cnz , A:B 1exb , A:E 1hfe , L:S 1jk8 , A:B 1l9j , C:L 1nbw , A:B 1spp , A:B 2mta , A:H
1b3a , A:B 1coz , A:B 1ezv , D:H 1hgx , A:B 1jkm , A:B 1l9j , C:M 1nse , A:B 1spu , A:B 2nac , A:B
1b4u , A:B 1cp2 , A:B 1ezv , C:F 1hjr , A:C 1jmx , A:G 1ld8 , A:B 1one , A:B 1tbg , A:E 2pfl , A:B
1b5e , A:B 1cpc , A:B 1f3u , A:B 1hr6 , A:B 1jmz , A:B 1ldj , A:B 1pnk , A:B 1tco , A:B 2utg , A:B
1b7b , A:C 1dce , A:B 1f6y , A:B 1hss , A:B 1jmz , G:B 1li1 , A:C 1poi , A:B 1trk , A:B 3gtu , A:B
1b7y , A:B 1dii , A:C 1fcd , A:C 1hxm , A:B 1jnr , A:B 1li1 , B:C 1pp2 , L:R 1vcb , A:B 3pce , A:M
1b8a , A:B 1dj7 , A:B 1ffu , A:C 1hzz , A:C 1jro , A:B 1lti , A:H 1prc , C:H 1vkx , A:B 3tmk , A:B
1b8j , A:B 1dkf , A:B 1ffv , A:B 1ihf , A:B 1jv2 , A:B 1lti , C:G 1prc , C:L 1vlt , A:B 4mdh , A:B
1b8m , A:B 1dm0 , A:D 1fm0 , D:E 1ir1 , A:S 1jwh , A:C 1lti , A:F 1prc , C:M 1vok , A:B 4rub , D:T
1b9m , A:B 1dm0 , A:B 1fs0 , E:G 1isa , A:B 1jwh , A:D 1lti , A:G 1qae , A:B 1wgj , A:B 4rub , A:T
1be3 , D:A 1dm0 , A:F 1fxw , A:F 1jb0 , B:E 1k28 , A:D 1lti , C:H 1qax , A:B 1xik , A:B
1be3 , K:A 1dm0 , A:E 1g8k , A:B 1jb0 , B:E 1k3u , A:B 1lti , C:D 1qbi , A:B 1xso , A:B
1be3 , C:A 1dm0 , A:C 1gka , A:B 1jb0 , B:D 1k8k , A:B 1lti , C:F 1qdl , A:B 1ypi , A:B

Non-obligate Complexes

1a14 , L:N 1bi7 , A:B 1dn1 , A:B 1f3v , A:B 1gaq , A:B 1ib1 , A:E 1k5d , A:C 1nf5 , A:B 1uea , A:B
1a14 , H:N 1bi8 , A:B 1doa , A:B 1f51 , A:E 1gc1 , C:G 1ibr , A:B 1k5d , A:B 1noc , A:B 1ugh , E:I
1a2k , B:C 1bj1 , H:V 1dow , A:B 1f51 , B:E 1gcq , B:C 1icf , B:I 1k90 , A:D 1nsn , H:S 1wej , F:H
1a4y , A:B 1bj1 , L:W 1dpj , A:B 1f80 , A:E 1gh6 , A:B 1icf , A:I 1kac , A:B 1nsn , L:S 1wej , F:L
1acb , E:I 1bj1 , H:W 1dtd , A:B 1f83 , A:C 1ghq , A:B 1iis , B:C 1kcg , A:C 1o6s , A:B 1wq1 , G:R
1agr , E:A 1bkd , R:S 1du3 , A:D 1f83 , A:B 1gl1 , A:I 1iis , A:C 1kcg , B:C 1o94 , A:C 1www , V:X
1ahw , A:C 1bml , A:C 1du3 , A:F 1f93 , A:E 1gla , F:G 1ijk , A:B 1kkl , A:H 1osp , L:O 1www , W:X
1ahw , B:C 1bqh , A:G 1dx5 , M:I 1f93 , B:F 1go4 , A:G 1ijk , A:C 1kkl , C:H 1osp , H:O 1xdt , R:T
1ak4 , A:D 1buh , A:B 1e6e , A:B 1f93 , B:E 1gp2 , A:B 1im3 , A:D 1kmi , Y:Z 1pdk , A:B 1ycs , A:B
1akj , B:D 1buv , M:T 1e6j , L:P 1f93 , A:F 1grn , A:B 1iod , B:G 1kxp , A:D 1qbk , B:C 1zbd , A:B
1akj , A:E 1bvn , P:T 1e6j , H:P 1fak , H:T 1gvn , A:B 1iod , A:G 1kxq , H:A 1qfu , A:L 2btc , E:I
1akj , A:D 1bzq , A:L 1e96 , A:B 1fak , L:T 1gxd , A:C 1is8 , C:M 1kxt , A:B 1qfu , A:H 2btf , A:P
1ao7 , A:E 1c0f , S:A 1eai , A:C 1fbi , L:X 1gzs , A:B 1is8 , B:L 1kyo , O:W 1qfw , A:M 2hmi , B:C
1ao7 , C:E 1c1y , A:B 1eay , A:C 1fbi , H:X 1h2k , A:S 1is8 , E:O 1l0o , A:C 1qfw , B:M 2hmi , B:D
1ao7 , C:D 1c4z , A:D 1ebd , A:C 1fc2 , C:D 1h59 , A:B 1is8 , D:N 1l0o , B:C 1qfw , B:I 2jel , L:P
1ao7 , A:D 1cc0 , A:E 1ebd , B:C 1fg9 , B:C 1he1 , A:C 1is8 , A:K 1l6x , A:B 1qgw , A:C 2jel , H:P
1ar1 , B:C 1cgi , E:I 1ebp , A:D 1fg9 , A:C 1hez , A:E 1is8 , D:O 1lb1 , A:B 1qkz , A:L 2mta , A:L
1ar1 , B:D 1clv , A:I 1ebp , A:C 1fin , A:B 1hlu , A:P 1is8 , A:L 1lfd , A:B 1qkz , A:H 2mta , A:C
1aro , L:P 1cmx , A:B 1eer , A:B 1fle , E:I 1hwg , A:C 1is8 , E:K 1lk3 , A:L 1qo0 , A:E 2mta , H:L
1atn , A:D 1cs4 , A:C 1efu , A:B 1flt , V:X 1hwg , A:B 1is8 , C:N 1lk3 , A:H 1qo0 , A:D 2pcb , A:B
1ava , A:C 1cs4 , B:C 1efx , C:D 1flt , W:X 1hx1 , A:B 1is8 , B:M 1lpb , A:B 1rlb , A:E 2pcc , A:B
1avg , H:I 1cse , I:E 1efx , A:D 1fns , A:L 1hzz , B:C 1itb , A:B 1m10 , A:B 1rlb , C:E 2prg , B:C
1avw , A:B 1cvs , A:C 1eja , A:B 1fns , A:H 1i2m , A:B 1jch , A:B 1m1e , A:B 1rlb , B:E 2ptc , E:I
1avx , A:B 1cxz , A:B 1emv , A:B 1fq1 , A:B 1i3o , A:E 1jiw , I:P 1m2o , A:B 1rrp , A:B 2sic , E:I
1avz , B:C 1d2z , A:B 1es7 , C:B 1fqj , A:C 1i3o , D:E 1jma , A:B 1m4u , A:L 1sbb , A:B 2tec , E:I
1awc , A:B 1d4x , A:G 1es7 , A:B 1fqv , A:B 1i3o , B:E 1jsu , B:C 1mah , A:F 1smf , E:I 3hhr , A:B
1ay7 , A:B 1d5x , A:C 1eth , A:B 1frv , A:B 1i4d , B:D 1jsu , A:C 1mbu , A:C 1smp , I:A 3sgb , E:I
1azz , A:D 1de4 , C:A 1euv , A:B 1fsk , A:B 1i4d , A:D 1jtd , A:B 1ml0 , A:D 1stf , E:I 3ygs , C:P
1azz , A:D 1dee , D:G 1evt , A:C 1fsk , A:C 1i7w , A:B 1jtg , A:B 1mr1 , A:D 1t7p , A:B 4htc , H:I
1b6c , A:B 1dev , A:B 1ezv , E:Y 1fss , A:B 1i85 , B:D 1jw9 , B:D 1n2c , A:F 1tab , E:I 4sgb , E:I
1b9y , A:C 1df9 , B:C 1ezv , E:X 1g0y , I:R 1i8l , A:C 1k3z , B:D 1n2c , B:E 1tgs , I:Z 7cei , A:B
1bdj , A:B 1dfj , E:I 1ezx , A:C 1g4y , B:R 1i9r , A:L 1k3z , A:D 1n2c , A:E 1tmq , A:B
1bgx , L:T 1dhk , A:B 1f02 , I:T 1g73 , A:C 1i9r , A:H 1k4c , A:C 1n2c , B:F 1toc , B:R
1bgx , H:T 1dkg , A:D 1f34 , A:B 1g73 , B:C 1ib1 , B:E 1k4c , B:C 1nbf , A:D 1tx4 , A:B
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Desolvation Energy

Different approaches have been developed to group different types of proteins, based on

their different properties. Among them, desolvation energies are very efficient for predic-

tion [23]. Knowledge-based contact potential that accounts for hydrophobic interactions,

self-energy change upon desolvation of charged and polar atom groups, and side-chain en-

tropy loss is defined as desolvation energy. In [22], the binding free energy, ∆Gbind , is

defined by the following equation:

∆Gbind = ∆Eelec +∆Gdes, (2.1)

where ∆Eelec is the total electrostatic energy and ∆Gdes is the total desolvation energy,

which for a protein is defined as follows [22]:

∆Gdes = g(r)ΣΣei j. (2.2)

If we are considering the interaction between the ith atom of a ligand and the jth atom

of a receptor, then ei j is the atomic contact potential (ACP) [26] between them, and g(r)

is a smooth function based on their distance. The value of g(r) is 1 for atoms that are less

than 5 Å apart [22]. For simplicity, we consider the smooth function to be linear within the

range of 5 and 7 Å, and the value of g(r) is (7− r)/2.

We collected the structural data from the Protein Data Bank (PDB) [27] for each com-

plex in the BPPI dataset. From each PDB file two chains (ligand and receptor) were ex-

tracted. We have considered 18 different atom types as in [26]. Thus, for each protein

complex a feature vector with 182 values were obtained, where each feature contains the

cumulative sum of desolvation energies of a pair of atom types, computed using Eq. (2.2).
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As the order of interacting atom pairs is not important, the final length of the feature vector

for each complex is 171 that corresponds to the number of unique pairs.

We have also considered pairs of amino acids, and for this, we computed 202 desolva-

tion energy values for each pair of atoms using Eq. (2.2), and accumulated the values for

each pair of amino acids. Avoiding repeated pairs resulted in 210 different features (unique

pairs of amino acids).

After computing all properties, some feature vectors contain zeros in most of their val-

ues, which filtered by applying principal component analysis (PCA). By using desolvation

energies for different types of features, two subsets of features for prediction and evaluation

were generated, as listed in Table 2.3. The names of the subsets are BPPI-X where X is

DEAT for atom type and DEAA for amino acid pairs.

Interface Properties

To analyze the power of desolvation energy in prediction of obligate and non-obligate com-

plexes and for comparison, we have also considered other properties, mainly for those

atoms and amino acids in the interface. A residue is defined as being part of the inter-

face, if its solvent accessible surface area decreases by more than 1 Å2. upon the formation

of the complex.

The following four interface properties of NOXclass [15] were extracted from the BPPI

dataset, since these properties were identified in [15] as the best ones for prediction of

different types of PPIs:

• Interface Area (IA)

IA =
1
2
(SASAa +SASAb −SASAab). (2.3)
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Table 2.3: Description of the subsets of features used in this study.

Dataset Description
BPPI-DEAT desolvation energies for atom type features
BPPI-DEAA desolvation energies for amino acid type features
BPPI-NOXclass NOXclass features [15]

• Interface Area Ratio (IAR)

IAR =
IA

min(SASAa,SASAb)
. (2.4)

• Amino acid composition of the interface

• Correlation between amino acid compositions of interface and protein surface

SASA values for the residues were calculated using NACCESS [28] with a probe sphere of

radius 1.4 Å2. These derived features were computed as the methods described in [15].

2.2.3 Prediction Methods

To predict complexes on the basis of desolvation energies (210 features for amino acid

type and 171 features for atom type), we first applied PCA as a pre-processing step to

eliminate ill-conditioned matrices involved in the LDR techniques. To obtain the principal

components, we used different threshold values, and selected the threshold that leads to the

highest accuracy. After obtaining those principal components, the complexes are classified

via LDR methods. For classifying on the basis of different number of physicochemical

interface properties, LDR methods were compared to SVMs.
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Linear Dimensionality Reduction

LDR methods have been successfully used in pattern recognition due to their easy imple-

mentation and high classification speed [29]. In LDR the objects (protein complexes in

our study) are represented by two normally distributed random vectors x1 ∼ N(m1,S1) and

x2 ∼ N(m2,S2), respectively, with p1 and p2 being the a priori probabilities. The aim

of LDR is to apply a linear transformation to project large dimentional data onto a lower

dimensional space, yi = Axi, in such a way that the classification is as efficient as pos-

sible, if not better, in the new space. To obtain the underlying transformation matrix A,

SW = p1S1 + p2S2 and SE = (m1 −m2)(m1 −m2)t , the within-class and between-class

scatter matrices respectively, are first computed.

Three LDR criteria are considered in this study:

(a) Fisher’s discriminant analysis (FDA) [30], which aims to maximize:

JFDA(A) = tr
{
(ASW At)−1(ASEAt)

}
. (2.5)

The optimal A is found by considering the eigenvector corresponding to the largest

eigenvalue of SFDA = S−1
W SE .

(b) The heteroscedastic discriminant analysis (HDA) approach [29], which aims to ob-

tain the matrix A that maximizes the following function:

JHDA(A) = tr
{
(ASW At)−1 [ASEAt −AS

1
2
W

p1 log(S
− 1

2
W S1S

− 1
2

W )+p2 log(S
− 1

2
W S2S

− 1
2

W )
p1 p2

S
1
2
W At

]}
.(2.6)

This criterion is maximized by obtaining the eigenvectors, corresponding to the largest
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eigenvalues, of the matrix:

SHDA = S−1
W

[
SE −S

1
2
W

p1 log(S
− 1

2
W S1S

− 1
2

W )+p2 log(S
− 1

2
W S2S

− 1
2

W )
p1 p2

S
1
2
W

]
. (2.7)

(c) The Chernoff discriminant analysis (CDA) approach [29], which aims to maximize:

JCDA(A) = tr{p1 p2ASEAt(ASW At)−1 + log(ASW At)− p1 log(AS1At)− p2 log(AS2At)}.

(2.8)

To solve this problem, a gradient-based algorithm is used [29]. This iterative algorithm

needs a learning rate, αk, which is maximized by using the secant method to ensure that the

gradient algorithm converges. The initialization of the matrix A is also an important issue

in the gradient-based algorithm. In this study, ten different initializations were preformed

and the solution for A that yields the maximum Chernoff distance in transformed space

were selected. More details about this algorithm, the CDA approach and LDR can be found

in [21, 29].

Once the dimension reduction takes place, the vectors in the new space of dimension

d can be classified using any classification technique. To achieve the reduction, the linear

transformation matrix A, which corresponds to the one obtained by one of the LDR criteria,

is found independently for every fold in the cross-validation process. In this work, two

classifiers are considered to classify the vectors in the lower dimensional space: Quadratic

Bayesian (QB) classifier [29], which is the optimal classifier for normal distributions, and

a linear Bayesian (LB) classifier obtained by deriving a Bayesian classifier with a common

covariance matrix, S = S1 +S2.
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Support Vector Machines

SVMs are well known machine learning techniques used for classification, regression and

other tasks. The aim of the SVM is to find the support vectors (most difficult vectors to be

classified), and derive a linear classifier, which ideally separates the space into two regions.

Classification is normally inefficient when using a linear classifier, because the data is not

linearly separable, and hence the use of kernels is crucial in mapping the data onto a higher

dimensional space in which the classification is much more efficient. There are a number

of kernels that can be used in SVM models. In this study, polynomial, radial basis function

(RBF) and sigmoid are used.

2.3 Results and Discussions

2.3.1 Experimental Settings

The three above-mentioned LDR schemes, including FDA, HDA and CDA combined with

a QB or LB classifier were applied. In a 10-fold cross validation process, reductions to

dimensions d = 1, . . . ,20 were performed, followed by QB and LB, and the maximum

average classification accuracy was recorded for each classifier. The SVM was also trained

in a 10-fold cross validation process with three kernels: RBF, polynomial and sigmoid.

The training phase was carried out with the LIBSVM package [31]. A grid search was

performed on the parameters gamma and C, choosing the ones that yield the maximum

average accuracy for all kernels. For the polynomial kernel, the degree of the polynomial

was set to 3.

PCA was used as a pre-processing step to eliminate ill-conditioned matrices present



CHAPTER 2. 35

in the LDR. To select the principal components, we used different threshold values (from

λmax10−2 to λmax10−7), where λmax is the largest eigenvalue of the scatter matrix. The

results for the threshold that achieves the highest accuracy are reported. In this study, LDR

was applied with default parameters. However, the parameters for CDA and HDA could be

optimized to obtain even better results. This is an open problem that is worth investigating.

The subsets of features shown in Table 2.3 were used for prediction. After running the

classifiers in a 10-fold cross validation procedure for all subsets of features, the average

accuracies were computed as follows: acc = (T P + T N)/N, where T P is the number of

true positive (obligate), T N is the number of true negative (non-obligate), and N is the total

number of complexes in the test sets of all 10 folds. In the subsequent tables, the best

accuracy for each method in each subset of features is bolded.

2.3.2 Analysis of Prediction

The results of SVM and LDR with different subsets of features are depicted in Table 2.4.

For SVM, it is clear that the RBF kernel performs better that polynomial and sigmoid ker-

nels for all subsets of features. The atom type features (BPPI-DEAT) are best classified

with SVM and the RBF kernel, achieving an average accuracy of 76.94%, while accuracy

for amino acid type features (BPPI-DEAA) in the best case is 76.16%. Furthermore, the

subset based on NOXclass features (BPPI-NOXclass) with best accuracy of 75% classifica-

tion accuracy yields less efficient predictions than the subsets based on desolvation energy

properties (BPPI-DEAT and BPPI-DEAA) with the SVM classifier.

For LDR, the best accuracy, 74.38%, is achieved by CDA with the linear classifier,

which is still lower than the best accuracy achieved by SVM. Note that both of them are on

the BPPI-DEAT subset. Additionally, as in SVM, the subset of atom type features perform
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Table 2.4: Prediction results for SVM and LDR on the BPPI dataset.

SVM LDR
RBF Poly. Sig. Linear Quadratic

FDA HDA CDA FDA HDA CDA
BPPI-DEAT 76.94 74.81 75.19 71.85 74 74.38 72.43 74.15 73.79

BPPI-DEAA 76.16 73.45 74.61 68.88 73.22 74.17 69.47 73.57 73.55

BPPI-NOXclass 75.00 71.51 72.67 73.06 72.48 71.71 72.48 71.32 71.32

slightly better than amino acid ones with 74.17% accuracy and also much better than the

NOXclass properties (73.06% accuracy).

Generally, it can be concluded that for the BPPI dataset:

(a) The SVM with RBF and optimized parameters outperforms the LDR methods in all

subsets of features.

(b) Amino acid type feature yield lower accuracies than atom type features for both

LDR and SVM.

(c) Desolvation energies are more powerful than the four properties of NOXclass (in-

terface area, interface area ratio, amino acid composition of the interface and correlation

between amino acid compositions of interface and protein surface) in predicting obligate

and non-obligate complexes, achieving 76.94% prediction accuracy in comparison to 75%

achieved when using SVM; also, 74.36% prediction accuracy in comparison to 73.06% by

using LDR.

2.3.3 Visual Analysis of Desolvation Energy

To visually observe the effect of desolvation energies among obligate and non-obligate

complexes within the BPPI dataset, we have used heatmaps of interacting atom and amino

acid pairs. For this, all complexes in the BPPI dataset were used to generate the feature
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vector by atom and amino acid type properties for obligate and non-obligate complexes,

separately. Then, we computed the column-wise sum, obtaining four sums of feature vec-

tors (obligate/non-obligate atom type pairs and obligate/non-obligate amino acid pairs).

Since the atomic contact potential (ACP) matrix is symmetric, we represented each sum

of feature vector as an 18x18 or 20x20 matrix for atom type or amino acid, respectively.

Then, each matrix was condensed as an upper triangular matrix. Summing all indices for

obligate and non-obligate, heatmaps were generated (red and blue respectively). Heatmaps

of interacting chains of obligate and non-obligate complexes are shown in Figure 2.1. In the

heatmaps, the lighter the color is, the larger the desolvation energy value of that interacting

atom or amino acid pair is. Combined heatmaps of obligate and non-obligate complexes

for atom and amino acid type features were obtained.

In the combined heatmaps, red/light or blue/light blocks indicate that the pair shows

strong obligate or non-obligate behavior, and those are our pairs of interest. Thus, we

selected 17 interacting pairs of atom type features (out of 171 features) and 27 interacting

pairs of amino acid features (out of 210 features) for prediction of obligate and non-obligate

complexes (white-border blocks in the combined heatmaps). The LDR methods were ap-

plied, again, for prediction of obligate and non-obligate complexes on the selected pairs.

The performance of LDR is shown in Table 2.5. By comparing the new results with those

of Table 2.4, reductions of 1% to 5% in prediction accuracies are noticed. Because of the

smaller number of features, the classification performed faster, and hence this decrease can

be acceptable. Also, this analysis shows that a few atom and amino acid pairs are good

descriptors for prediction of the two types of complexes.
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Table 2.5: Prediction results for LDR classifiers on the BPPI dataset after using visual pair
selection.

Linear Quadratic
dataset # features FDA HDA CDA FDA HDA CDA

BPPI-DEAT 17 70.87 70.28 70.81 70.47 70.86 70.68

BPPI-DEAA 27 66.98 68.73 68.14 67.97 68.93 68.14

2.3.4 Analysis of Interacting Sub-units

As explained earlier, a particular atom pair has a pre-determined desolvation energy value

in the ACP matrix. Thus, during the interaction, the actual energy depends on the num-

ber of interactions and the distances between their interacting pairs. As a result, different

complexes with the same interacting pairs may have different desolvation energy values,

because of the different distances in their interacting pairs. Moreover, the value for g(r) in

Eq. (2.2) varies in [0,1], which is equivalent to 0–100% of the desolvation energy value

of the atom pairs. Since interactions between proteins are weak, we expect many pairs of

atoms at distances between 5 and 7 Å. Thus, we expect that g(r) is influenced by the dis-

tance between interacting pairs. On the other hand, the closer interactions (i.e. stronger)

lead to higher values of desolvation energy for those interacting pairs.

The 3D structures of the interacting sub-units of three obligate (1efv, 1req and 1luc)

and three non-obligate complexes (1ava, 1ak4 and 1atn) of the BPPI dataset are shown in

Figure 2.2. It is clear that obligate complexes have more interacting atom pairs than non-

obligate ones. The numbers of atoms in each sub-unit of these complexes, the number of

interacting atoms (less than 5Å), and the average of interacting pairs are shown in Table

2.6. While obligate complexes have more than 50% interacting atom pairs, non-obligate

complexes have less than 35% interacting pairs. Thus, the larger the number of interacting
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Table 2.6: Analysis of interacting sub-units in obligate and non-obligate complexes.

Obligate Complexes

Complex # atom-chain 1 # atom-chain 2 # interacting pairs % Interacting Average
1efv , A:B 2296 1928 1880 89.69%

1req , A:B 5563 4695 3093 60.74%

1luc , A:B 2577 2516 1303 51.18%

Non-obligate Complexes
1ak4 , A:D 1553 1375 504 34.55%

1ava , A:C 3184 1404 630 32.33%

1atn , A:D 2897 2034 584 24.44%

pairs is, the higher the value for desolvation energy for that complex is expected to be.

2.4 Conclusion

We have presented a prediction approach that uses desolvation energy properties to distin-

guish between obligate and non-obligate protein complexes. We have investigated various

interface properties of these interactions including the NOXclass properties and desolvation

energies for atom and amino acid type pairs. The prediction results on the BPPI dataset,

which is a compiled version of two well-known datasets, show that the SVM classifier with

76.94% accuracy performs much better than LDR schemes coupled with quadratic and lin-

ear classifiers for all subset of features. The results also demonstrate that desolvation energy

outperforms solvent accessible surface properties [15], namely interface area, interface area

ratio, amino acid composition of the interface and correlation between amino acid compo-

sitions of interface and protein surface. Also, the proposed method reveals that the use of

desolvation energies for atom type properties are better discriminants than SASA features

for obligate and non-obligate complexes on the BPPI dataset.
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Furthermore, a visual analysis (heatmaps) indicates that a few pairs of atoms/amino

acids are proper for prediction. While using these features, prediction accuracies decreases

a little, this decrease in performance can be acceptable because of less required time and

space complexity. The approach proposed here can also be used for prediction of other

types of complexes, including intra and inter domains, homo and hetero-oligomers. Other

features can also be used, including geometric (e.g., shape, planarity, roughness or oth-

ers), and other statistical and physicochemical properties such as residue and atom vicinity,

secondary structure elements and domains, hydrophobicity, salt bridges, among others.
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Atom pairs of obligate complexes Amino acid pairs of obligate complexes

Atom pairs of non-obligate complexes Amino acid pairs of non-obligate complexes

Atom pairs of all complexes Amino acid pairs of all complexes

(a) Interacting atom pairs (b) Interacting amino acid pairs

Figure 2.1: Heatmaps of desolvation energies of (a) interacting atom pairs and (b) interact-
ing amino acid pairs.
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1efv, A:B 1ak4, A:D

1req, A:B 1ava, A:C

1luc, A:B 1atn, A:D

(a) Obligate Complexes (b) Non-obligate Complexes

Figure 2.2: 3D structure of (a) obligate complexes and (b) non-obligate complexes visual-
ized using ICM Browser [32].
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Chapter 3

Analysis of Relevant Physicochemical
Properties in Obligate and Non-obligate
Protein-protein Interactions

3.1 Introduction

Biological protein-protein interaction (PPI) has been studied for a long time because of its

fundamental role in many essential biological and cellular processes, including gene regu-

lation, drug development, signaling, among others. Prediction of interaction types between

two proteins and analyzing relevant properties involved in the interface have been studied

from different perspectives. Some studies in PPI consider identifying amino acids, atoms,

domains, motifs or other components of the molecules which are crucial in understanding

how proteins interact with each other. These studies have been carried out mostly by rely-

ing on biological knowledge about the atoms or molecules, which, normally, are selected

manually by observing groups of complexes or prediction results. Another important aspect

in studying PPIs is to predict different types of complexes, including similarities between

subunits (homo/hetero-oligomers), number of subunits involved in the interaction (dimers,

trimers, etc.), duration of the interaction (transient vs. permanent) [1], stability of the inter-
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action (non-obligate vs. obligate) [2], among others; we focus on the latter problem.

Obligate interactions are usually considered as permanent, while non-obligate interac-

tions can be either permanent or transient [3]. Non-obligate and transient interactions are

more difficult to study and understand due to their instability and short life, while obligate

and permanent interactions last for a longer period of time, and hence are more stable [4].

For these reasons, an important problem is to distinguish between obligate and non-obligate

complexes. To study the behavior of obligate and non-obligate interactions, in [5], it was

shown that non-obligate complexes are rich in aromatic residues and arginine, while de-

pleted in other charged residues. The study of [6] suggested that mobility differences of

amino acids are more significant for obligate and large interface complexes than for tran-

sient and medium-sized ones. Traditionally, the interfaces of some non-obligate complexes

were also found to be with clusters of hydrophobic residues [7]. Additionally, in [8], it

was proposed that interfaces in obligate complexes are inherently hydrophobic. However,

hydrophobicity at the interfaces of non-obligate complexes is not as distinguishable from

the remainder of the surface as hydrophobicity at the interfaces of obligate complexes [5].

For successful prediction, using the relevant features is very important. Features are the

observed properties of each sample that is used for prediction. There are a wide range of

properties that can be used for PPI prediction such as analysis of solvent accessibility [2, 9],

geometry [10], hydrophobicity [7, 8], sequence based features [11] and desolvation energy

[12–14]. In this study, we used desolvation energies which have already been shown to be

very efficient for PPI prediction [12, 13].

Different studies have claimed that only a few highly conserved residues are crucial

for protein interactions [15, 16]. Moreover, the computational cost for predictions may in-

crease substantially with more features; thus, feature selection methods can be applied to
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obtain more relevant and discriminating features for prediction, and to remove the irrele-

vant and redundant ones that lead to greater computational cost [17]. As a consequence

of this, automatic feature selection algorithms have been studied for long time in pattern

recognition and prediction, and have been successfully used in obtaining relevant proper-

ties in many problems [18, 19]. One of the most efficient feature selection methods, which

is based on mutual information, is Minimum Redundancy Maximum Relevance (MRMR)

[20]. Recently, MRMR, which discards the redundant features from the feature vector and

uses maximum relevance score as the class separability criterion, has been applied in many

biological problems such as prediction of tyrosine sulfation [21] or lysine ubiquitination

[22], prediction of protein-protein interactions [23] or protein-nucleic acids interactions

[24], and gene selection [25, 26]. Determining the optimal number of features is one of the

main challenges in all feature selection methods such as MRMR.

In this paper, a prediction approach that uses desolvation energies of atom and amino

acid pairs in the interface to identify obligate and non-obligate interactions is proposed.

Automatically selecting relevant properties useful in prediction of PPI is a scheme that we

propose in this study and that we endeavor to do using a well-known feature selection al-

gorithm, MRMR. Using linear dimension reduction (LDR) as the classification scheme, we

demonstrate that prediction results are improved by applying feature selection and iden-

tifying relevant features for two well-known datasets of [1] and [2]. We also discuss a

biologically-guided feature selection analysis, which selects features based on their polar-

ity properties. We conclude that hydrophobic amino acids are better discriminating features

for obligate and non-obligate prediction.
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3.2 Materials and Methods

3.2.1 Datasets and Properties

Two pre-classified datasets of protein complexes were obtained from the studies of Zhu

et al., [2], and Mintseris and Weng [1], namely the ZH and MW datasets respectively.

The former contains 75 obligate (permanent) and 62 transient interactions, while the latter

contains 115 obligate and 212 non-obligate interactions.

Different approaches have been developed to group different types of proteins, based

on their properties for prediction. Among them, desolvation energies have been found very

efficient for prediction [12] and [13]. Knowledge-based contact potential that accounts for

hydrophobic interactions, self-energy change upon desolvation of charged and polar atom

groups, and side-chain entropy loss is defined as desolvation energy. We have followed the

equation used in [27] for the binding free energy, ∆Gbind , which is defined by using Eq.

(3.1).

∆Gbind = ∆Eelec +∆Gdes. (3.1)

where ∆Eelec is the total electrostatic energy and ∆Gdes is the total desolvation energy,

which for a protein is defined as follows [27]:

∆Gdes = g(r)ΣΣei j. (3.2)

We consider the interaction between the ith atom of a ligand and the jth atom of a

receptor. Then, ei j is the atomic contact potential (ACP) [28] between them, and g(r) is a

smooth function based on inter-atom distance. The value of g(r) is 1 for atoms that are less



CHAPTER 3. 50

Table 3.1: Description of datasets used in this study.

Name dataset Atom Type Amino Acid
MW-AT [1]

√
-

MW-AA [1] -
√

ZH-AT [2]
√

-
ZH-AA [2] -

√

than 5 Å apart [27]. For simplicity, we consider the smooth function to be linear within the

range of 5 and 7 Å, and the value of g(r) is (7− r)/2 where r is the distance between the

ith atom of the ligand and the jth atom of the receptor.

For each complex in our datasets, structural data from the Protein Data Bank (PDB)

[29] was collected. Two chains (ligand and receptor) were extracted from each PDB file.

We consider 18 different atom types as in [28]. Thus, for each protein complex a feature

vector with 182 values were obtained, where each feature contains the cumulative sum of

desolvation energies of a pair of atom types, computed using Eq. (3.2). Since the order

of interacting atom pairs is not important, the final length of the feature vector for each

complex is 171 which corresponds to the number of unique pairs. We have also considered

pairs of amino acids, and for this, we computed 202 desolvation energy values for all pairs

of atoms using Eq. (3.2), by accumulating the values of the corresponding atoms for each

pair of amino acids. Avoiding repeated pairs resulted in 210 different features (unique pairs

of amino acids).

By using desolvation energies for different types of features and different datasets, four

subsets of features for prediction and evaluation were generated, as listed in Table 3.1.
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3.2.2 The Prediction Methods

For prediction, we have used LDR. The basic idea of LDR is to represent an object of

dimension n as a lower-dimensional vector of dimension d, achieving this by performing

a linear transformation. We consider two classes, obligate and non-obligate, represented

by two normally distributed random vectors x1 ∼ N(m1,S1) and x2 ∼ N(m2,S2), respec-

tively, with p1 and p2 the a priori probabilities. After the LDR is applied, two new random

vectors y1 = Ax1 and y2 = Ax2, where y1 ∼ N(Am1;AS1At) and y2 ∼ N(Am2;AS2At)

with mi and Si being the mean vectors and covariance matrices in the original space, re-

spectively. The aim of LDR is to find a linear transformation matrix A in such a way

that the new classes (yi = Axi) are as separable as possible. Let SW = p1S1 + p2S2 and

SE = (m1 −m2)(m1 −m2)t be the within-class and between-class scatter matrices respec-

tively. Various criteria have been proposed to measure this separability [30]. We consider

the following two LDR methods:

(a) The heteroscedastic discriminant analysis (HDA) approach [30], which aims to max-

imize the following function, optimized via eigenvalue decomposition:

JHDA(A) = tr{(ASW At)−1[ASEAt

−AS
1
2
W

p1 log(S
− 1

2
W S1S

− 1
2

W )+p2 log(S
− 1

2
W S2S

− 1
2

W )
p1 p2

S
1
2
W At ]}.

(3.3)

(b) The Chernoff discriminant analysis (CDA) approach [30], which aims to maximize

the following function, maximized via a gradient-based algorithm:
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JCDA(A) = tr{p1 p2ASEAt(ASW At)−1

+ log(ASW At)− p1 log(AS1At)− p2 log(AS2At)}.
(3.4)

In order to classify each complex, first, a linear algebraic operation y = Ax is applied

to the n-dimensional vector, obtaining y, a d-dimensional vector, where d is ideally much

smaller than n. The linear transformation matrix A corresponds to the one obtained by

one of the LDR methods, namely HDA or CDA. The resulting vector y is then passed

through a quadratic Bayesian (QB) classifier [30], which is the optimal classifier for normal

distributions and a linear Bayesian (LB) which is obtained by deriving a Bayesian classifier

with a common covariance matrix, S = S1 +S2.

3.2.3 The Feature Selection Methods

Feature selection is a process used to select the best subset of features that represents the

whole feature set efficiently. This process not only reduces the size of the feature vector and

helps to find discriminating features for prediction among all the features but also reduces

the prediction time.

Feature Selection based on MRMR

MRMR is a commonly used feature selection method which uses mutual information to

compute relevancy and redundancy among features [20, 31]. In MRMR, the features that

have minimal redundancy and are highly relevant to the classes are recursively selected and

scored to generate a ranking list of the features.

Determining the optimal number of features is a main challenge in all feature selection

methods, because it has significant effects on classification performance. Furthermore,
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this number is different from one dataset or subset of features to another and is a time-

consuming process. This is what will be demonstrated in the next section. Moreover, in

the original version of MRMR (MRMRorg), if we want to select i features from the whole

n features (i < n), the top i features in the list of scored features in MRMR will be selected.

In this case, we may encounter some zero-samples (complexes) that do not have any values

for the selected features. Zero-samples may lead to misclassification errors.

To solve this problem, in this study, we applied an efficient method that we call MRMRpro,

for determining the optimal number of features. For this, in the first step, MRMR is applied

to sort the features based on to their relevance scores. By starting from the top of the

MRMR feature list, each feature is examined to decide about its existence in the final list of

selected features. A feature can be selected if (a) it has a high MRMR score and (b) it has

values for more new complexes. For instance, if m complexes have non-zero values for the

first selected feature, the second feature will be selected if at least one new complex (not in

the m previously seen complexes) has any non-zero values for it. Having at least one feature

for each complex and selecting at least four features are used as a criterion to determine the

final subset of selected features in MRMRpro. By applying our feature selection method,

four features for ZH-AT, 12 features for ZH-AA, four features for MW-AT, and 14 features

for MW-AA datasets have been found.

Biological Feature Selection

According to the authors of [32], by considering polarity, amino acids can be divided into

the following three groups:

• Hydrophobic: Alanine, Isoleucine, Valine, Leucine, Phenylalanine and Proline are

hydrophobic amino acids and avoid contact with water.
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• Hydrophilic: Arginine, Asparagine, Aspartic acid, Cysteine, Glutamic acid, Glu-

tamine, Histidine and Serine are hydrophilic amino acids and like to interact with

water.

• Amphipathic: Lysine, Methionine, Threonine, Tryptophan and Tyrosine are amphi-

pathic amino acids and have both polar and non-polar behavior and hence a tendency

to form interfaces between hydrophobic and hydrophilic molecules.

As Glycine is a neutral amino acid, generally, we have 19 amino acids according to

this classification. Using this information, the desolvation energy values can be grouped

by amino acid type into three subsets of features with only hydrophobic, only hydrophilic

and only amphipathic type. In each subset, only the interaction between two pairs of amino

acids in the same group is possible. These three subsets of features were applied to our

classifiers to check the accuracy and decide the most relevant features for distinguishing

obligate and non-obligate complexes.

3.3 Results and Discussions

3.3.1 Experimental Settings

As discussed earlier, for the LDR schemes, four different classifiers were implemented and

evaluated, namely the combinations of HDA and CDA with QB and LB classifiers. In a

10-fold cross validation process, reductions to dimensions d = 1, . . . ,20 were performed,

followed by QB and LB. The maximum average classification accuracy was taken into

account for each classifier, which is the one that is reported for each subset of datasets.

For feature selection, we applied MRMRorg and MRMRpro, which used the list of scored
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features obtained from the online mRMR tool 1. Furthermore, we applied biologically

guided feature selection methods to our datasets to find the most relevant subset of features.

After running the classifiers in a 10-fold cross validation procedure, the accuracy was

computed as follows: acc = (T P+T N)/N, where T P and T N are the total numbers of true

positive (obligate) and true negative (non-obligate) counters over the 10 folds, respectively,

and N is the total number of complexes in the dataset.

3.3.2 Analysis of MRMR-based Feature Selection

The performances of LDR for amino acid type features of the MW and ZH datasets are

plotted against the number of selected features in Figure 3.1, respectively. The order of

the selected features is based on the order of features scored by MRMRorg. It is clear that

the best number of features for the MW-AA dataset is 21, achieving 79.75% prediction

accuracy while this number for the ZH-AT dataset is 28 with 86.86% prediction accuracy.

This results demonstrate that the best number of features is different from one dataset or

subset of features to another.

The results of the LDR classifier for the MW and ZH datasets with atom and amino acid

type features with/without using feature selection are depicted in Table 3.2. After finding

the optimal number of features by MRMRpro, the prediction accuracies for the same number

of features by using MRMRorg are also reported – the numbers of selected features are the

same. The only difference between MRMRorg and MRMRpro in this analysis is based on

the selected features. For instance, the top four features of {1,2,3,4} were selected for the

MW-AT using MRMRorg while the selected features using MRMRpro were {1,3,4,6}.

It is clear that for all datasets, except the ZH-AT, the predictions show better perfor-

1Available at http://penglab.janelia.org/proj/mRMR/
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Figure 3.1: Prediction accuracy of the ZH-AA and MW-AA datasets using MRMR feature
selection method.

mance by using feature selection methods. The best accuracy, 82.13%, for LDR methods

without using feature selection is achieved on the ZH-AA dataset, which is still lower than

the best accuracy achieved by MRMRorg and MRMRpro (82.48% and 83.21% respectively).

The most notable difference between accuracies for with and without feature selection is

approximately 3%, which observed in the MW dataset. While there is a slight decrease in

prediction accuracy for atom type features in the ZH dataset (ZH-AT) after applying feature

selection, this decrease in performance can be acceptable considering that only four features

instead of the 171 original features are used for prediction. This also implies savings in the

required classification time and space complexity. In general, it can be concluded that a few

pairs of atoms/amino acids are appropriate for prediction.

Furthermore, it is clearly observable that our MRMRpro feature selection method per-

forms better than MRMRorg for all datasets. For the ZH-AT dataset, the prediction results

for MRMRorg and MRMRpro are the same, because the subset of selected features for both
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Table 3.2: Prediction results for LDR classifier by using different MRMR-based feature
selection methods.

No Feature selection MRMRorg MRMRpro

Feature subset # features accuracy # features accuracy # features accuracy
MW-AT 171 77.91 4 78.22 4 78.53
MW-AA 210 75.77 14 78.53 14 78.83
ZH-AT 171 78.39 4 77.37 4 77.37
ZH-AA 210 82.13 12 82.48 12 83.21

of them are also the same. This indicates that MRMRpro is more accurate in finding relevant

features for prediction of obligate and non-obligate features.

3.3.3 Analysis of Biologically-guided Feature Selection Methods

As explained earlier, amino acids can be classified in three groups of hydrophobic (6), hy-

drophilic (8) and amphipathic (5) amino acids. Using this information, the desolvation

energy values can be grouped by amino acid type into three subsets of features with only

hydrophobic, only hydrophilic and only amphipathic type. In each subset, only the inter-

action between two pairs of amino acids in the same group is possible, and totally, there

are 21, 36 and 15 interacting hydrophobic, hydrophilic and amphipathic amino acid pairs

respectively. These three subset of features were applied to our classifiers to decide the

distinguishing features of obligate and non-obligate complexes. The results of LDR for the

MW and ZH datasets with these three groups of features are depicted in Table 3.3.

It is clear that hydrophobic amino acid pairs achieve the highest LDR accuracies for both

MW-AA (75.54%) and ZH-AA (77.07%) datasets, and hence they are the best properties

for prediction. After hydrophobic amino acid pairs, hydrophilic amino acid pairs are more

relevant than amphipathic pairs in classification of obligate and non-obligate complexes.
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Table 3.3: Prediction results for LDR classifier by using biologically guided feature selec-
tion methods for the MW and ZH datasets.

Hydrophobic Hydrophilic Amphipathic
Datasets # Features Accuracy # Features Accuracy # Features Accuracy
MW-AA 21 75.54 36 71.49 15 66.36
ZH-AA 21 77.07 36 68.97 15 67.72

3.3.4 Visual Analysis of Relevant Features

To visually observe the effect of polarity of amino acids among obligate and non-obligate

complexes and to find appropriate properties for prediction, we have used heatmaps of inter-

acting amino acid pairs. For this, desolvation energies of all complexes in the ZH and MW

datasets were calculated to generate the feature vectors by amino acid type properties for

obligate and non-obligate complexes, separately. Then, we computed the column-wise sum,

obtaining two sums of feature vectors (obligate/non-obligate). We represented each sum of

feature vector as a 20x20 matrix for amino acids. Then, as explained earlier, all amino acids

were sorted in three groups of amphipathic, hydrophilic and hydrophobic. Glycine which is

a neutral amino acid added at the end of the list. After that, each matrix was condensed as

an upper triangular matrix. Subtracting all indices for obligate and non-obligate, heatmaps

were generated. Heatmaps of interacting chains in the MW and ZH datasets are shown in

Figure 3.2. In the heatmaps, the lighter the green color is, the larger the desolvation energy

value of that interacting amino acid pair is, while negative desolvation energies correspond

to red colors.

There are many hydrophobic-hydrophobic (top right most green squares) and hydrophobic-

amphipathic (bottom right most green squares) amino acid pairs in both ZH and MW

datasets which indicate that these properties are more relevant for prediction. That is

what was previously shown in Table 3.3 for hydrophobic-hydrophobic amino acid pairs.
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In contrast, the interacting pairs of hydrophobic-hydrophilic amino acids, in general, are

not suitable for prediction because of the less number of interacting pairs in the heatmaps.

Similarly, it can be concluded that hydrophilic-hydrophilic amino acid pairs are more

discriminating than hydrophilic-amphipathic pairs because of the number of interacting

pairs in these two groups while they are less discriminating than only hydrophobic or

hydrophobic-amphipathic amino acids.

In contrast, on the bottom left side of the heatmaps (first five left amphipathic amino

acids), there are only four amphipathic-amphipathic amino acid pairs for the MW dataset

and six pairs for the ZH datasets. Thus, the only amphipathic amino acid pairs are not

appropriate features for prediction of obligate and non-obligate complexes, as shown also

in Table 3.3 and discussed previously.

To validate the extracted results from the heatmaps, we have done a post-processing

analysis on the selected features by MRMRpro. As explained earlier, 12 and 14 features

were selected by MRMRpro from the ZH-AA and MW-AA datasets respectively. A sum-

mary of types of these selected features is shown in Table 3.4. The interactions of polar

amino acids with Glycine are shown in the last row of the table. In both MW-AA and

ZH-AA datasets, most of the features selected by MRMRpro are hydrophobic pairs and

then hydrophobic-amphipathic amino acid pairs as it was shown in the heatmaps. The fact

that the number of hydrophilic amino acid pairs is greater than the number of amphipathic

amino acid pairs and less than two groups of hydrophobic and hydrophobic-amphipathic

amino acids, is also shown in this table.

As a consequence of this, it can be concluded from the heatmaps and the numerical

analysis that interacting amino acids can be sorted by relevance as follows: hydrophobic-

hydrophobic, hydrophobic-amphipathic, hydrophilic-hydrophilic, hydrophilic-amphipathic,
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Table 3.4: Post-processing analysis of features selected by MRMRpro for the MW and ZH
datasets.

Interaction Type MW-AA ZH-AA
Hydrophobic only 6 4

Hydrophobic-Hydrophilic 1 2
Hydrophobic-Amphipathic 3 3

Hydrophilic only 1 2
Hydrophilic-Amphipathic 1 0

Amphipathic only 0 1
Gly-Others 2 0

hydrophobic-hydrophilic, and amphipathic-amphipathic.

3.4 Conclusion

We have proposed an approach for automatically selecting relevant properties useful in

prediction and analysis of obligate and non-obligate protein complexes. Our prediction

approach uses desolvation energies of pairs of atoms or amino acids present in the inter-

faces of such complexes and the classification is performed via different LDR methods that

involve heteroscedastic criteria.

The results on two well-known datasets of pre-classified complexes demonstrate that

only a few subset of features are crucial in distinguishing obligate and non-obligate complexes–

these relevant features can be found by using a feature selection method such as MRMR.

Also, our MRMRpro, which is based on MRMR, not only can find the best number of fea-

tures but also can find the best relevant subset of features for prediction.

Furthermore, based on our visual (heatmaps) and numerical analysis, interacting amino

acid pairs can be sorted from the most to the least relevant pairs for prediction of obligate

and non-obligate complexes as follows: hydrophobic pairs, hydrophobic-amphipathic, hy-
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drophilic pairs, hydrophilic-amphipathic, hydrophobic-hydrophilic, and amphipathic pairs.

The approach proposed here can also be used for prediction of other types of complexes,

including intra and inter domains, homo and hetero-oligomers. Other properties can also be

used including geometric (e.g., shape, planarity, roughness or others), and other statistical

and physicochemical properties such as residue and atom vicinity, secondary structure ele-

ments and domains, hydrophobicity, salt bridges, among others. Applying different feature

selection and feature weighting methods can also be used to find the relevant features for

prediction.
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(a) The MW-AA dataset

(b) The ZH-AA dataset

Figure 3.2: Heatmaps of desolvation energies of interacting amino acid pairs in (a) the MW-
AA dataset and (b) the ZH-AA dataset. Amino acids are grouped based on their polarity.
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Chapter 4

The role of electrostatic energy in
prediction of obligate protein-protein
interactions

4.1 Background

Gene expression, cell growth, proliferation, signal transduction, cellular motion and gene

regulation are some of the essential biological processes in living cells which are controlled

by proteins [1]. As a consequence of this, more attention has been drawn to this field of

study, in particular, for identification and analysis of interacting proteins and their relevant

properties [2, 3]. Proteins bind to each other, creating protein-protein interactions (PPIs)

through a combination of hydrophobic bonding, van der Waals forces and salt bridges. The

strength of these interactions may depend on the size of the binding interface which can be

large surfaces, small binding clefts or even a few peptides.

Prediction of PPI types is one of the main challenges when studying protein interactions.

There are different types of PPIs and their associated prediction problems, including homo

vs. hetero-oligomers based on the similarities between sub-units [4], dimers vs. trimers

based on the number of interacting sub-units, transient vs. permanent based on the duration
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of the interaction [5] and obligate vs. non-obligate based on the stability of the complex [6–

9]. Despite obligate and permanent interactions, which are more stable and last for a longer

period of time, studying non-obligate and transient interactions is a very difficult problem,

because of their instability and short life [10]. We focus on distinguishing between obligate

and non-obligate complexes.

Using relevant features or observed properties of protein complexes is essential in per-

forming accurate predictions. As a consequence of this, previous studies in PPI have con-

sidered a wide range of relevant properties that can be used for PPI prediction including

geometric properties [11], recognition of sites [12], conservation of residues present in the

surface of PPIs [13, 14], hydrogen bonds and salt bridges on the surface of the proteins [13],

solvent accessibility [6, 15], hydrophobicity [8, 16], sequence-based features [17], desol-

vation energy [18–20] and recently, electrostatic energy [21]. Electrostatic interactions are

one of three types of non-covalent interactions, which occur between electrically charged

atoms having both positive and negative interactions [22]. Non-covalent interactions are

very common between macromolecules such as proteins. Van der Waal interactions, which

occur between any pair of charged atoms that are close to each other, and non-polar inter-

actions, which occur between atoms that do not have any charge, are other two types of

non-covalent interactions.

In previous studies, it has been claimed that only a few highly conserved residues are

important for protein interactions [23–25]. Moreover, removing irrelevant and redundant

features not only can decrease the computational burden, but also may increase the pre-

diction performance [26]. These are the main tasks carried out by specialized machine

learning algorithms for feature selection and classification. In this regard, automatic fea-

ture selection algorithms have been used in many biological problems such as prediction
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of tyrosine sulfation and lysine ubiquitination [27, 28], prediction of protein-protein inter-

actions [25, 29], protein-nucleic acid interactions [30], gene selection [31, 32] and gene

expression [33]. In this study, a few feature selection methods, including gain ratio (GR),

information gain (IG), chi-square (Chi2) and minimum redundancy maximum relevance

(mRMR), are applied to score and rank features based on their relevance, and select the top

ranked features for prediction of obligate and non-obligate PPIs.

In one of our recent works [21], a model to predict obligate and non-obligate protein

interaction types has been presented in which electrostatic energy values for both atom and

amino acid pairs present in the interface were considered as the input features of the clas-

sifiers. Linear dimensionality reduction (LDR) and a support vector machine (SVM) were

applied as the classifiers to predict these types. The prediction results of that study for two

well-known datasets, referred to as the ZH [6] and MW [5] datasets, show an impressive

accuracy in prediction. For the ZH dataset, an accuracy of 96.18% was achieved by using

SVM and electrostatic energy values of amino acid type features, which is much higher than

the accuracy obtained by using four interface properties including interface area, interface

area ratio, conservation score and gap volume index of NOXClass [6] with 88.52% predic-

tion accuracy (as reported by the authors), 46 solvent accessible and interface area proper-

ties of [18] with 81.83% prediction accuracy, 210 features of solvent accessible area of [34]

with 92.20% prediction accuracy, and even higher than 210 desolvation energy values for

amino acid type features of [18] with 83.21% prediction accuracy. Similarly, applying the

proposed scheme on the MW dataset demonstrates that using electrostatic energy values

of amino acid type features (95.38% prediction accuracy for SVM) is better than using the

four interface features as in [6] (77.96% prediction accuracy), and also better than using

210 desolvation energy properties as in [18] (78.83% prediction accuracy). Generally, the
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results reported in our previous study [21] implied an increase of at least 5% in prediction

performance from previous approaches.

This paper is an extension of the work presented in [21] by incorporating a wider range

of classification techniques that include LDR, SVM, naive Bayes (NB) and k-nearest neigh-

bor (k-NN). Distance cutoff selection approaches are also used for analysis of long-range

interactions (ranging from 5Å to 13Å), and feature selection algorithms for identifying rel-

evant physicochemical properties of interacting pairs of atoms and amino acids, including

GR, IG, Chi2 and mRMR, and an extended visual analysis. The results confirm that elec-

trostatic energy with distance cutoffs ranging from 9Å to 12Å is the best property to predict

obligate and non-obligate PPIs on the basis of the experimental results using different clas-

sification methods and different distance cutoffs on two well-known datasets. This is due

the fact that using electrostatic energy with a long distance cutoff, atoms on the surface and

some atoms buried under the surface may participate in the prediction that lead to excellent

classification performance. In fact, the latter is a problem that opens an interesting research

avenue in the field. Furthermore, using LDR as the classification scheme, we demonstrate

that prediction results are improved by applying feature selection and identifying more rel-

evant and discriminative features, while removing redundant and noisy ones for the two

datasets.

4.2 Methods

4.2.1 Datasets

In this study, we have used the same datasets as those used in [18, 25]. The first dataset,

referred to as the ZH dataset, was obtained from the study of Zhu et al. [6]. It originally
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contained 62 non-obligate and 75 obligate complexes. Since the electrostatic energy values

of some complexes (1cc0 A:E, 1qbk B:C, 1b8a A:B, 1cli A:B, 1qav A:B, 1bkd R:S and 1nse

A:B) cannot be computed, they were removed from the ZH dataset. The second dataset,

referred to as the MW dataset, was obtained from the study of Mintseris et al. [5], and

originally contained 209 non-obligate and 115 obligate complexes. Similarly, 24 complexes

of the original dataset (1b7y A:B, 1be3 CDEGK:A, 1jb0 AB:C, 1jb0 AB:D, 1jb0 AB:E, 1jro

A:BD, 1jv2 A:B, 1k28 A:D, 1kqf A:B, 1ldj A:B, 1m2v A:B, 1mjg AB:M, 1nbw AC:B, 1prc

C:HLM, 1bgx HL:T, 1de4 CF:A, 1ezv E:XY, 1is8 ABEJCIDHGF:KLOMN, 1m2o AC:B,

1o94 AB:CD, 1qfu AB:HL, 2hmi AB:CD, 4cpa I:0 and 2q33 A:B) were left out because

the electrostatic energy values for all atoms in their interfaces cannot be computed.

4.2.2 Prediction properties

Different properties can be employed to predict protein interactions and, in particular, types

of protein complexes. In our recent study [21], it has been demonstrated that electrostatic

energy is a powerful property to predict obligate and non-obligate complexes. Moreover, we

have previously shown that desolvation energy is also very effective for prediction of these

types of PPIs [18, 20]. In this study, electrostatic energy properties are used for prediction

of obligate and non-obligate interactions and desolvation energy properties are used for

comparison purposes. Our method to obtain these prediction properties are summarized

below.

Desolvation energy

Considering ei j as the atomic contact potential (ACP) between the ith atom of a ligand and

the jth atom of a receptor, the total desolvation energy for a protein (∆Gdes ) is defined as
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follows [35]:

∆Gdes = Σ18
i=1Σ18

j=1ei j ∗g(ri j). (4.1)

where all atom pairs (18 different atoms) are considered in the double summation and g(ri j)

is a smooth function based on the distance of interacting atoms i and j. For simplicity, in

our comparisons, the value of g(ri j) is 1 for pairs of atoms that are less than the selected

distance cutoff apart from each other, and 0 otherwise. Using Eq. (4.1), the desolvation

energy between any pair of ligand and receptor can be calculated. Thus, by following the

approach of [36], it is possible to compute the desolvation energy by using different criteria.

Desolvation energy values are calculated for atom and amino acid types. More details about

the computation of desolvation energy values for atom and amino acid types as features can

be found in [20].

Electrostatic energy

The main property that we use in this study for predicting obligate and non-obligate com-

plexes is electrostatic energy, because of its role in charged molecules [37]. Electrostatic

energy involves a long-range interaction and can occur between charged atoms of two inter-

acting proteins or two different molecules. Moreover, these interactions can occur between

charged atoms on the protein surface and charges in the environment. In order to compute

electrostatic energy values, PDB2PQR [38] and APBS [39] software packages are used.

For each complex in the datasets, after extracting the structural data from the Protein

Data Bank (PDB) [40], PDB2PQR is employed for preparing the structures for electrostatic

calculations. Adding missing heavy atoms, placing missing hydrogen atoms and assigning

charges are some of the main tasks performed by PDB2PQR. To customize the parameters
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of PDB2PQR in our experiments, we consider the following parameters: (a) the AMBER

forcefield is employed (b) “apbs-input” is specified to create output files with “.in” exten-

sion, and (c) “−−chain” is also specified to include the chain name in the “.pqr” files. The

outputs of this package, a “pqr” file and an “in” file, are the inputs to APBS.

APBS is utilized to compute electrostatic energy values of interactions between solutes

in salty and aqueous media. In APBS, the Poisson-Boltzmann equation is solved numer-

ically and electrostatic calculations are performed in a range from ten to million atoms.

Before running APBS, the parameters should be set accordingly as detailed in [21].

To compute the features for classification, first of all, a cutoff distance should be defined.

While in most studies, this cutoff, which is the maximum distance between interacting

atoms, is considered to be less than 7 Å we use cutoffs greater than 7 Å . Due to the

long-range nature of electrostatic interactions, electrostatic forces towards the stability of

the protein complex may be affected by atoms that are under the surface of the proteins.

Afterwards, the distances between all atom pairs of interacting chains are computed and

those that are lower than our defined cutoff distance are considered as interface atoms.

The quaternary structures of chains A (shown in red) and B (shown in blue) of an obligate

complex, PDB ID 1b8j, are depicted in Figure 4.1. The yellow and purple colors indicate

atoms that are under the specific cutoff distance and act as interface atoms of chains A

and B, respectively. It is clear that a large interface area is taken into account due to the

long-range nature of electrostatic interactions.

As in [36], 18 different atom types and 20 different amino acid types were taken into

account to calculate the features for prediction. Since the order of the interacting atoms

and amino acid pairs is not important, we generated feature vectors for atom type features

containing 171 (18
2 C+18) values. Similarly, for amino acid type features, the length of the
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Figure 4.1: Quaternary structure of an obligate complex, PDB-ID 1b8j, visualized with
ICM Browser, along with its interacting chains A and B. Positive and negative charges
are represented in red and blue respectively. Interface atoms of the interacting chains are
represented in yellow and purple, respectively.

feature vector 210 (20
2 C+20). Each feature contains the cumulative sum of electrostatic

energy values for all pairs of atoms or amino acids of the same type. More details about

the computation of electrostatic energy values for atom and amino acid type features are

described in [21].

For the ZH and MW datasets, the names of the generated subsets of features for pre-

diction using different feature types (interacting atoms or amino acids) are listed in Table

4.1.

4.2.3 Prediction methods

After finding the features of the complexes of the MW and ZH datasets, a prediction method

should be applied to them. In this paper, the prediction is performed via several commonly
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Table 4.1: Description of datasets used in this study

Authors Reference Atom type Amino acid type
Mintseris et al. [5] MW-AT MW-AA

Zhu et al. [6] ZH-AT ZH-AA

used classification methods, including LDR, SVM, NB and k-NN. More details regarding

the applied prediction methods are discussed below.

Linear Dimensionality Reduction

The main goal of LDR is to use linear combinations of the original features to generate new

features in a lower dimensional space in which classification is, hopefully, more efficient

than in the original space. There are different supervised LDR methods, and in this study,

the following are considered [41]:

1. Fisher’s discriminant analysis (FDA): FDA is a homoscedastic criterion that max-

imizes the Mahalanobis distance between the means assuming that the covariance

matrices are equal.

2. Heteroscedastic discriminant analysis (HDA): HDA is a criterion that starts from the

Chernoff distance in original space and takes correlations between random variables

to project the data onto a lower dimensional space.

3. Chernoff discriminant analysis (CDA): CDA is a heteroscedastic criterion and aims

to maximize the Chernoff distance between random vectors in the transformed space.

LDR is followed by a Bayesian classifier (linear or quadratic). More details about these

LDR methods and the corresponding classification tasks can be found in [41].
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Support Vector Machine

SVMs are well known machine learning techniques used for classification, regression and

other tasks. The main goal of the SVM is to find a hyperplane that classifies all the feature

vectors into two regions. In most cases, the separating hyperplane is not unique, and hence

the SVM chooses the hyperplane that leaves the maximum margin from that hyperplane to

the support vectors. Since most classification problems are not linearly separable, using a

linear classifier is inefficient. Thus, in order to achieve a more efficient classification, using

kernels to map the data onto a higher dimensional space can be useful. There are a number

of kernels that can be used in SVM models such as polynomial, radial basis function (RBF)

and sigmoid. The effectiveness of the SVM depends on the selection of the kernel, the

selection parameters and the soft margin [42]. In addition, sequential minimal optimization

(SMO), is a fast learning algorithm that has been widely applied to the training phase of

a SVM classifier to solve the underlying optimization problem. In this study, the SMO

module of the Waikato Environment for Knowledge Analysis (WEKA) with a polynomial

kernel, default parameter settings and 10-fold cross validation is used for performing clas-

sification via the SVM [43].

k-Nearest Neighbor

k-NN is one of the simplest classification methods in which the class of each test sample

can be easily found by voting on the class labels of its neighbors. To achieve this, after

computing and sorting the distances between the test sample and each training sample,

the most frequent class label in the first k train samples (nearest neighbors) is assigned to

the class of the test sample. Determining the appropriate number of neighbors is one of the

challenges of this method. In this study, the IBK module of WEKA with Euclidean distance,
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default parameter settings, and 10-fold cross validation is used for k-NN classification [43].

Naive Bayes

One of the simplest probabilistic classifiers is NB. Assuming independence of the features,

the class of each test samples can be found by applying Bayes’ theorem. The basic mech-

anism of NB is rather simple. The reader is referred to [26] for more details. In this study,

the NaiveBayes module of WEKA with default parameters and 10-fold cross validation is

used [43].

4.2.4 Feature selection methods

Feature selection is the process of selecting the best subset of relevant features that rep-

resents the whole dataset efficiently and removing redundant and/or irrelevant ones. Ap-

plying feature selection before running a classifier is useful in reducing the dimensionality

of the data and, thus, reducing the prediction time, while improving the prediction per-

formance by eliminating irrelevant, redundant and noisy features. There are two different

ways of doing feature selection: wrapper methods and filter methods [44]. In this study

filter-based methods are used in which the quality of the selected features are scored and

ranked independently of the classification algorithm and by using some criteria based on

their relevance. The following filter-based feature selection methods are used in this study.

Minimum Redundancy Maximum Relevance

One of the most widely-used feature selection methods based on mutual information is

mRMR [45, 46]. In this method, the features are selected and scored based on their rel-

evance and redundancy among other features. A feature with minimum redundancy and
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maximum relevance and with respect to the class concept is assigned a high score. After

assigning a significance score to each feature, a ranking list of all features is generated. In

this study, the online mRMR tool [47] with default parameters is used to obtain a complete

list of all scored features by mRMR.

Information Gain

Information gain (IG) is based on the concept of entropy [44]. The IG value of a feature X

with respect to class attribute Y is calculated as follows:

IG(Y,X) = H(Y )−H(Y |X). (4.2)

Here, H(Y ) is the entropy of class Y and H(Y|X) is the conditional entropy of Y given X ,

which are calculated by means of the following formulas:

H(Y ) = − ∑
y∈Y

p(y) log2(p(y)), (4.3)

and

H(Y |X) = − ∑
x∈X

p(x) ∑
y∈Y

p(y|x) log2(p(y|x)), (4.4)

where p(y) is the marginal probability density function for random variable Y and p(y|x) is

the conditional probability of Y given X . In this study, the InfoGainAttributeEval module

of WEKA is used for feature ranking based on the score of features by measuring the

information gain with respect to the class.
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Gain Ratio

GR attribute evaluation is a well-known feature selection method that is based on the con-

cept of IG and entropy [44]. The GR value of a feature X with respect to class attribute Y

is calculated as follows:

GR(Y,X) =
(H(Y )−H(Y |X))

H(X)
=

IG(Y,X)
H(X)

, (4.5)

where H(Y ), the entropy of class Y , and H(Y|X), the conditional entropy of Y given X , are

calculated using Eqs. (4.3) and (4.4) respectively. A value of GR = 1 indicates that feature

X is highly relevant and one of the best features to predict class Y , while GR = 0 means

that feature X is not relevant at all. In this study, the GainRatioAttributeEval module of

WEKA is used for feature ranking based on the relevance of each feature by measuring its

gain ratio with respect to the class.

Chi Square

Feature selection via the Chi square test is another, very commonly used method [44]. This

method evaluates the relevance of a feature with respect to a class by computing the value

of the Chi square statistic. In this study, the ChiSquaredAttributeEval module of WEKA is

used to obtain the scored feature vector.

4.3 Results and discussion

To test our proposed method and perform an in-depth analysis of the strength of electrostatic

energy as the prediction property, four different classification methods including SMO, k-

NN, LDR and NB and also four different feature selection methods including IG, GR, Chi2
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and mRMR have been used. The performances of the prediction methods are compared

in terms of their accuracies, which are computed as follows: acc = (T P + T N)/N, where

T P and T N are the total numbers of true positive (obligate) and true negative (non-obligate)

counters over the 10-fold cross-validation procedure, respectively, and N is the total number

of complexes in the dataset.

4.3.1 Analysis of prediction properties

In previous works [18–20], it has been shown that desolvation energy is very efficient for

prediction of obligate and non-obligate complexes in comparison with solvent accessible

and interface area properties. However, in our recent study of [21] and in this work, it has

been shown that employing electrostatic energy deliver impressive prediction accuracy.

To validate our previous results and compare the strength of electrostatic and desolva-

tion energies as properties for prediction, SMO, k-NN, NB and LDR have been applied for

prediction on these two types of features. For the LDR schemes, six different classifiers

were implemented and evaluated, namely the combinations of FDA, HDA and CDA with

quadratic and linear classifiers; the maximum average classification accuracy for each clas-

sifier is reported for each dataset. For SVM, k-NN and NB, the classification modules of

WEKA have been used with default parameters in a 10-fold cross-validation process. The

distance cutoffs between atom pairs of interacting chains are 9 Å and 7 Å for electrostatic

and desolvation energies as properties respectively.

The prediction results of SMO, NB, k-NN and LDR for atom and amino acid type prop-

erties for the ZH and MW datasets with desolvation and electrostatic energies as properties

are shown in Table 4.2. For ZH-AT, the best accuracy by using electrostatic energy is

96.95% with SMO, while by using desolvation energy, accuracy is much lower, 74.34%,
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Table 4.2: Comparison of accuracies for electrostatic and desolvation energies as properties

SMO NB k-NN LDR
Dataset DE EE DE EE DE EE DE EE
ZH-AT 72.52% 96.95% 72.52% 94.65% 64.12% 95.42% 74.34% 95.42%
ZH-AA 66.42% 97.70% 75.91% 92.37% 54.74% 96.18% 72.13% 93.89%
MW-AT 77.30% 96.04% 77.96% 89.44% 74.43% 95.71% 78.95% 96.30%
MW-AA 73.93% 98.68% 72.39% 90.10% 57.36% 98.68% 75.15% 92.08%

with LDR. Also, for ZH-AA, using electrostatic energy leads to 97.70% accuracy with

SMO, being more efficient than using desolvation energy with NB, 75.91%. Similarly, the

best accuracies for MW-AT, 96.30%, and MW-AA, 98.68%, are obtained using electro-

static energy in comparison with accuracies of 78.95% and 75.15% for both MW-AT and

MW-AA respectively by using desolvation energy.

Generally, from the table, it can be concluded that electrostatic energy yields much more

efficient prediction than desolvation energy, on the basis of the experimental results shown

here using different classification methods. In addition, for most subsets of features, SMO

performs better than k-NN, NB and LDR, for both desolvation and electrostatic energies.

Figure 4.2 shows the receiver operating characteristic (ROC) curves for the MW-AT and

ZH-AT datasets using electrostatic and desolvation energies as properties for prediction by

LDR. These ROC curves are plotted based on the true positive rate (TPR), aka “sensitivity”,

vs. the false positive rate (FPR), known as “1 - specificity”, at various threshold settings.

For both datasets, ZH-AT and MW-AT, the prediction performances of LDR using elec-

trostatic energy are clearly much better than using desolvation energy for prediction. In

addition, the area under the curve (AUC) for each of the above ROC curves was computed.

The AUC for ZH-AT using electrostatic energy is 0.90 while using desolvation energy is

0.73. Similarly, the AUC for MW-AT using electrostatic energy is 0.91 while using desol-

vation energy is 0.72. By comparing the AUC values, it can be concluded that electrostatic
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Table 4.3: Prediction accuracies using desolvation energy and different distance cutoffs

Inter-atom distance cutoffs
Dataset 5Å 6Å 7Å 8Å 9Å 10Å 11Å 12Å 13Å
ZH-AT 71.75% 74.04% 72.52% 71.75% 70.99% 69.46% 68.70% 67.93% 67.93%

MW-AT 75.99% 76.32% 77.96% 76.32% 75.99% 73.02% 73.02% 72.36% 71.38%

energy clearly shows much better prediction accuracy than desolvation energy.

4.3.2 Analysis of distance cutoffs

In order to obtain a better insight into the classification results by using desolvation and

electrostatic energies as properties, different experiments were performed by varying the

distance cutoff between atom pairs of interacting chains.

Table 4.3 shows the prediction results for all cutoff values ranging from 5Å to 13Å

for atom-type datasets, namely ZH-AT and MW-AT. For this analysis, desolvation energy

values are used as the prediction properties and the NB classifier is applied for classification.

The best distance cutoff for the ZH-AT dataset is 6Å, achieving 74.04% prediction accuracy,

while for MW-AT the highest prediction accuracy, 77.96%, is achieved for 7Å.

In Figure 4.3, the performances of NB for atom type features for the MW and ZH

datasets, when using desolvation energy, are plotted against the interaction distances. From

the plots, it is observable that for both datasets, the best prediction accuracies are obtained

for distance cutoffs between 5Å and 8Å. Moreover, for both datasets the performances

decrease gradually by increasing the distance cutoffs. These results demonstrate that the

best distance cutoffs for prediction by using desolvation energy is less than 8Å.

Similarly, Table 4.4 shows the prediction results for the ZH-AT and MW-AT datasets

for distance cutoffs from 7Å to 13Å. Here, electrostatic energy is used as the prediction

property and NB for classification. For the ZH-AT dataset, the best accuracy, 96.95%,
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(a)MW-AT dataset

(b)ZH-AT dataset

Figure 4.2: ROC curves for the (a) MW-AT and (b) ZH-AT datasets using desolvation
energy (blue line) and electrostatic energy (red line) as properties for prediction by using
LDR.
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Figure 4.3: Prediction accuracy for NB on MW-AT (red line) and ZH-AT (blue line) using
desolvation energy as the prediction property and different distance cutoffs ranging from
5Å to 13Å.

is obtained for a distance cutoff of 12Å, while for the MW-AT dataset the best accuracy,

90.42%, is achieved for a distance cutoff of 11Å.

The classification accuracies for the atom type datasets, MW-AT and ZH-AT, when

using electrostatic energy, are plotted in Figure 4.4. The x-axis shows the distance cutoff

between atom pairs of interacting chains (ranging from 7Å to 13Å) while the y-axis shows

the prediction accuracy. For ZH-AT, the best accuracies are achieved for distance cutoffs in

the range 10Å to 12Å, and these accuracies are all close to 96%. By increasing the distance

cutoff to 13Å, the accuracy decreases rather quickly. Also, for MW-AT, the prediction

accuracies in the range 9Å to 12Å are almost the same, around 90%. As in the ZH-AT, the

performance decreases when the distance cutoff is increased to 13Å.

As a general remark, it can be concluded that the best distance cutoffs for prediction

of obligate and non-obligate complexes using electrostatic energy range from 9Å to 12Å,

while by using desolvation energy the best distance cutoffs range from 5Å to 7Å. These
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Table 4.4: Prediction accuracies for electrostatic energy and different distance cutoffs

Inter-atom distance cutoffs
Dataset 7Å 8Å 9Å 10Å 11Å 12Å 13Å
ZH-AT 94.65% 94.65% 94.65% 96.15% 96.18% 96.95% 90%
MW-AT 84.44% 84.16% 89.44% 89.44% 90.42% 89.85% 82.83%

Figure 4.4: Prediction accuracy for NB on MW-AT (red line) and ZH-AT (blue line) using
electrostatic energy as the prediction property and different distance cutoffs ranging from
7Å to 13Å.
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distance cutoffs for desolvation energy are reasonable and are in agreement with all previ-

ous studies [5, 6, 36]. In most studies, a distance cutoff of 6Å is typically used to determine

whether or not two atoms from different chains interact with each other. Moreover, in

[20, 35, 36], a function g is used to compute the distance between two atoms. These ap-

proaches consider a smooth function for inter-atom distances between 5Å and 7Å, while

g evaluates to 0 if the distance is greater than 7Å. On the other hand, electrostatic energy

is considered to be long-range [21, 48], extending inter-atom interactions up to a 10Å dis-

tance or more, and hence covering a much broader and deeper area of the interface. In other

words, this suggests that using electrostatic energy with a long distance cutoff, the atoms in

the surface and some atoms buried under the surface may participate in the prediction that

led to outstanding classification performance. This is a topic of interest for further studies.

4.3.3 Analysis of feature selection

Determining the minimum number of features while keeping, or even improving, classifi-

cation performance is the main challenge in all feature selection methods. To demonstrate

this, the accuracies of LDR for atom type features of the MW and ZH datasets are plotted

against the number of selected features in Figure 4.5. The order of the selected features

for prediction is based on the order of features scored by GR. The best number of features

for MW-AT is 20, achieving 99.67% while for ZH-AT, 15 features are found with 97.69%

accuracy. From the plot, it can be concluded that (a) a few features are good descriptors

for prediction of obligate and non-obligate complexes; (b) the best number of features is

different from one dataset or subset of features to another; (c) prediction accuracy for the

MW-AT dataset is much higher, achieving almost perfect prediction.

To compare the performance of feature selection methods and their effects on the pre-
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Figure 4.5: Prediction accuracy for LDR on MW-AT (red line) and ZH-AT (blue line) using
electrostatic energy plotted against the number of features selected by GR.

diction algorithms from a different perspective, the features of all datasets were scored and

ranked by GR, IG, Chi2 and mRMR, separately. Then, LDR methods were applied for pre-

diction by selecting a subset of the top-ranked features. In this experiment, the number of

selected features was less than 10, starting from two features and then adding two more fea-

tures at each subsequent step. The results of the LDR classifier with atom and amino acid

type features with and without feature selection are depicted in Table 4.5. For all datasets,

except MW-AA, the predictions show better performance by using feature selection meth-

ods. The most significant increase in prediction performance is for ZH-AT, for which by

using only two of the top-ranked features scored by Chi2, yields 97.69% accuracy, which

is much higher than using no feature selection at all (95.42%). While the most notable de-

crease in prediction accuracy between with and without feature selection is approximately

3%, which is observed in MW-AA by applying GR, this decrease can be acceptable con-

sidering that only four out of the 210 original features are used for prediction. This also
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Table 4.5: Prediction accuracies for electrostatic energy and different feature selection
methods

ZH-AA ZH-AT MW-AA MW-AT
FS method n accuracy n accuracy n accuracy n accuracy

No FS 210 93.89% 171 95.42% 210 92.08% 171 96.30%
Chi2 8 97.69% 2 97.69% 10 91.09% 6 97.69%
GR 4 96.92% 8 96.92% 4 86.80% 6 97.69%
IG 8 97.69% 2 97.69% 8 88.78% 10 96.37%

mRMR 10 96.15% 10 97.69% 10 90.94% 10 96.10%

implies savings in the required classification time and space resources.

In general, it can be concluded that a few pairs of atoms/amino acids are appropriate for

prediction. Also, feature selection increases the performance of classification models by

eliminating redundant, irrelevant and noisy features and selecting the more discriminative

features. Moreover, by comparing the performance of the applied feature selection meth-

ods, Chi2 is the best method for ranking features. In contrast, mRMR is the worst ranking

method because it used more features and achieved lower performance for all datasets.

4.3.4 Visual analysis

To show the effect of using electrostatic energy for prediction of PPI types from a different

perspective, a visual analysis is presented. In this analysis, an obligate complex, PDB ID

2min, and a non-obligate complex, PDB ID 1a2k, both from the MW dataset are considered.

For these protein complexes the solvent accessible surfaces by electrostatic potential are

generated with the help of Jmol embedded in APBS. In the plots, positive electrostatic

potentials are shown in blue, while negative electrostatic potentials are shown in red.

The electrostatic potentials of the sub-units corresponding to chains A and B of 2min are

shown in Figures 4.6(a) and (b), respectively. The whole complex (chains A and B together)
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is shown in Figure 4.6(c). By observing Figure 4.6(c), it is clear that the interaction between

chains A and B of 2min takes place at regions of the two chains (highlighted in yellow) that

have different electrostatic potentials; the highlighted region of chain A has positive charge

(Figure 4.6(a)), while for chain B has negative charge (Figure 4.6(b)). It other words, the

positive and negative potentials on the interface areas of chains A and B cause them to

interact with each other.

Similarly, Figure 4.7 shows a non-obligate complex, PDB ID 1a2k AB:C, along with

the electrostatic potential for three different cases: chains AB as a sub-unit (Figure 4.7(a)),

chain C as a sub-unit (Figure 4.7(b)) and the whole complex including chains AB and

chain C (Figure 4.7(c)). From the plots, it is clear that the region highlighted in yellow in

Figure 4.7(a) shows negative electrostatic potential (shown in red), while in Figure 4.7(b),

the highlighted yellow region shows positive electrostatic potential (shown in blue). The

interaction between the two chains takes place at these regions is shown in Figure 4.7(c).

Similarly, the positive and negative potentials on the interface areas of chains AB and

chain C yield very high affinity and cause them to interact with each other. However, the

interface area of complex 1a2k, which is non-obligate, is smaller than the interface area

of complex 2min, which is obligate. Electrostatic energy is a very good property in the

sense that it captures the size of the interface area and the complementarity of the sub-units

participating in the interaction. Observing Figure 7(b), it is clear that the concavity of the

sub-unit corresponding to chain B will match very well the salient part on the right of the

sub-unit of chain A. These features are well captured by electrostatic energy and this is,

indeed, the main aspect that we exploit to predict the stability of protein complexes, which

is corroborated in the experimental results.



CHAPTER 4. 89

Figure 4.6: Plot of solvent accessible surface by electrostatic potential of an obligate com-
plex, PDB-ID 2min, before and after the interaction takes place; (a) Electrostatic potential
of chain A of 2min, (b) Electrostatic potential of chain B of 2min, (c) Electrostatic potential
of chains A and B of 2min.
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Figure 4.7: Plot of solvent accessible surface area by electrostatic potential of a non-
obligate complex, PDB-ID 1a2k, before and after the interaction takes place. (a) Elec-
trostatic potential of chains AB of 1a2k, (b) Electrostatic potential of chain C of 1a2k, (c)
Electrostatic potential of chains AB and C of 1a2k.
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4.4 Conclusions

The proposed prediction model works exceptionally well for distinguishing protein inter-

action types. Our prediction approach uses electrostatic energy values for pairs of atoms or

amino acids present in the interfaces of obligate and non-obligate complexes. The classifi-

cation is performed via various classification techniques including LDR, SVM, k-NN and

NB.

We observe that electrostatic energy values with distance cutoffs in the range 9Å to 12Å

turn out to be the best ones for prediction of interaction types on the basis of our experi-

mental results. The reason for why electrostatic energy yields better prediction results is

because electrostatic interactions are long-range. Thus, by using electrostatic energy with a

large distance cutoff, not only the atoms in the surface but also some atoms which are buried

under the surface may participate in the interaction, and this leads to excellent prediction

results. Therefore, among various types of molecular interactions, electrostatic interactions

play a special role. The proposed features then exploit the high affinity of proteins to in-

teract with each other (in terms of negative and positive potentials). Furthermore, applying

several feature selection algorithms on the MW and ZH datasets demonstrates that remov-

ing irrelevant and noisy pairs of atom type/amino acid type features and selecting the most

relevant pairs improve the prediction results.

From this study, various open questions remain to be answered. One of these is to

investigate domains and motifs present in the interface in order to achieve a better insight

on proteins, their interactions, and function. Another problem that deserves attention is to

investigate the role of buried atoms and their influence in obligate interactions. This study

could consider atoms that are 10 Å (or more) apart from each other, but one of these atoms
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may not be on the surface of the protein.
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Chapter 5

Using Desolvation Energies of Structural
Domains to Predict Stability of Protein
Complexes

5.1 Introduction

Domains can be considered as the minimal and fundamental units of proteins, which have

a clear biological role and act as basic functional units within cells [1, 2]. Recent studies

focus on employing domain knowledge to predict protein-protein interactions [3–9]. This

is based on claims that only a few highly conserved residues are crucial for protein-protein

interactions [10, 11], and most domains and domain-domain interactions (DDIs) are evo-

lutionarily conserved [12]. As a consequence, it has been observed that proteins interact if

a domain in one protein interacts with a domain in the other protein [13, 14]. There are a

number of domain family resources that can be applied for this purpose such as Pfam [15]

and CATH – Class, Architecture, Topology and Homologous superfamily – databases [16].

On the other hand, an important problem surrounding PPIs is the identification and

prediction of different types of complexes, which are characterized by properties such as

similarities between subunits (homo/hetero-oligomers), number of subunits involved in the
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interaction (dimers, trimers, etc.), duration of the interaction (transient vs. permanent),

stability of the interaction (non-obligate vs. obligate), among others. We focus on the

prediction of obligate and non-obligate complexes. It is important to be able to distin-

guish between obligate and non-obligate complexes, since non-obligate interactions are

more difficult to study and understand due to their instability and short life, while obligate

interactions are more stable [17].

Using the relevant features is very important for successful prediction. Features are the

observed properties of each sample that is used for prediction. Some studies in PPI con-

sider the analysis of a wide range of parameters for predicting obligate and non-obligate

complexes, including analysis of solvent accessibility [18, 19], geometry [20], hydropho-

bicity [21, 22], sequence-based features [23], desolvation energy [3, 4, 24–26] and, more

recently, electrostatic energies [27]. In this study, we use desolvation energies, which have

been shown to be very efficient for PPI prediction [24, 25].

To study the behavior of obligate and non-obligate interactions using domain knowl-

edge, in [10], interactions between residues were used for finding obligate and non-obligate

residue contacts of PPIs. The study concluded that non-obligate interfaces occupy less than

2% of the area of the domain surfaces, while the area occupied by obligate interfaces is

between 0–6%. In [11], the interface of 750 transient DDIs (interactions between domains

that are part of different proteins) and 2,000 obligate DDIs were studied. The interactions

between domains of one amino acid chain were analyzed to obtain a better understanding

of molecular recognition and identify frequent amino acids in the interfaces and on the

surfaces of protein complexes. Also, in [28], the domain information from protein com-

plexes was used to predict four different types of interactions, including transient enzyme

inhibitor/non enzyme inhibitor and permanent homo/hetero obligate complexes. In this
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way, the physical interaction between proteins can be better analyzed in terms of interac-

tions among their structural domains. In [29], a prediction model was proposed in which

Pfam domains were used to predict obligate and non-obligate PPIs. The results demon-

strated that desolvation energies are more efficient and powerful than interface area and

composition properties for prediction. Moreover, a visual and numerical analysis of the

DDIs present in these two types of complexes showed that different pairs of DDIs can

be identified in obligate and non-obligate complexes, and highlighted that homo-DDIs are

more likely to be present in obligate interactions.

In one of our recent works [3], a domain-based model to predict obligate and non-

obligate PPIs was presented, in which structural domains from the CATH database were

considered as the input features. That model used desolvation energies of amino acid pairs

present in the interface of DDIs as features for prediction. The results show that DDIs at

higher levels in the CATH hierarchy, especially those at the architecture and topology levels

(levels 2 and 3), provide the best prediction performance. Whereas our previous efforts in

[3] focused on the case in which all DDIs were taken from the same level of the CATH

hierarchy, we have extended our approach in [4] to cover the more general case in which

each domain can be represented at one of a number of possible levels. We restricted our

efforts to levels 2 and 3 of the CATH hierarchy, which have been shown to be very efficient

for prediction.

This work is an extension of the work presented in [4], by incorporating a wider range

of classification techniques that include LDR, SVM-SMO, NB, and k-NN and also a nu-

merical analysis focused on selecting relevant structural properties. The results on two

pre-classified datasets from [19] and [30] confirm that using DDIs from different levels of

the CATH hierarchy as prediction properties yields better performance than using DDIs of
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individual levels to predict obligate and non-obligate PPIs based on the obtained prediction

results using different classification methods. Furthermore, by grouping the DDI feature

vectors of the second level of the CATH hierarchy based on their secondary structures, it is

shown that most of the interactions are between domains that have mainly-beta structures.

Also, the prediction results for each group of DDIs from level 2 demonstrate that DDIs

related to mainly-beta, especially DDIs of mainly-beta with alpha-beta are the most dis-

criminative properties for predicting obligate and non-obligate PPIs using SVM-SMO and

k-NN.

5.2 Datasets and Prediction Properties

Two pre-classified datasets of obligate and non-obligate protein complexes were obtained

from the studies of Zhu et al. [19], and Mintseris and Weng [30].The first dataset contains

75 permanent (obligate) and 62 non-obligate interactions, while the second dataset contains

115 obligate and 212 non-obligate interactions. These datasets were obtained from the

literature and manually curated by the authors of [30] and [19] by removing inconsistent

complex types and homologous protein sequences.

5.2.1 Desolvation Energy

In this study, desolvation energies are used as the prediction properties, which have been

shown to be very efficient for the prediction of obligate and non-obligate complexes [24,

29]. Desolvation energy is defined as knowledge-based contact potential (accounting for

hydrophobic interactions), self-energy change upon desolvation of charged and polar atom

groups, and side-chain entropy loss. As in [31], the binding free energy ∆Gbind is defined
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as follows:

∆Gbind = ∆Eelec +∆Gdes, (5.1)

where ∆Eelec is the total electrostatic energy and ∆Gdes is the total desolvation energy. For

a protein, ∆Gdes is defined as follows:

g(r)ΣΣei j. (5.2)

If we consider the interaction between the ith atom of a ligand and the jth atom of a

receptor, then ei j is the atomic contact potential (ACP) between them and g(r) is a smooth

function based on their distance [32]. For simplicity, we consider the smooth function to

be linear. We also consider the criterion that for a successful interaction, atoms should be

within 7 Å distance; between 5 and 7 Å, the value of g(r) varies from 0 to 1 based on a

smooth function. For atoms that are less than 5 Å apart, the value of g(r) is 1 [31].

5.2.2 Domain-based Properties

We consider structural CATH domains [16] in this study. The CATH database is organized

in a hierarchical fashion, which can be visualized as a tree with levels numbered from 1

to 8, hereafter referred to as L1 to L8 [16]. Domains at upper levels of the tree represent

more general classes of structure than those at lower levels. For example, domains at level

1 represent mainly-alpha (c1), mainly-beta (c2), mixed alpha-beta (c3) and few secondary

structures (c4), whereas those at level 2 represent more specific structures. As shown in

Figure 5.1, roll, beta barrels and 2-layer sandwich are three different sample architectures

of domains in class c3. Domains at level 3 are even more specific, and so on.
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Figure 5.1: Four levels of the CATH hierarchy (Class, Architecture, Topology and Homol-
ogous superfamily).
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To extract domain-based properties, we first collected the 3D structures of each complex

in our datasets from the Protein Data Bank (PDB) [33]. Then, we collected the domain

information for each complex from CATH database and added this information to each atom

present in the chain. Complexes that did not have domain information in at least one of their

subunits were discarded. We refer to these two new datasets as the MW and ZH datasets.

The new MW dataset contains 100 permanent (obligate) and 161 non-obligate interactions,

while the new ZH dataset contains 72 obligate and 55 non-obligate interactions.

After identifying all the unique domains present in the interface of at least one complex

in the datasets, the desolvation energies for all pairs of domains (DDIs) were calculated

using Eq. (5.2). For each ligand-receptor (protein-protein) pair, if we found any duplicate

DDIs during calculation, we simply computed the cumulative desolvation energy across all

occurrences of that DDI. A domain is considered to be in the interface, if it has at least one

residue interacting with a domain in the other chain. In this study, two types of domain-

based properties are considered.

Domain-based Properties at the Individual Level

Since the CATH database is organized in a hierarchical scheme, in [3], a separate dataset

of feature vectors was created for each level of the CATH hierarchy. After calculating the

desolvation energies for all DDIs in level 8, for each DDI in higher levels, the desolvation

energy was calculated by taking the sum of the desolvation energies of the corresponding

DDIs at the next lowest level. After pre-processing the datasets, all zero-columns, which

represent DDIs that were not present in any complexes, were removed. More details about

the generation of domain-based feature vectors for each level are given in [3].

Each of these subsets of features was used for classification separately, in order to de-
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termine the predictive power of a specific level in the CATH hierarchy. In [3], it was shown

that domain-based features taken from level 2 (L2) and level 3 (L3) of CATH are more

predictive than the features of other levels.

Domain-based Properties at the Combined Level

To generate these types of feature vectors, instead of considering each level in the CATH

hierarchy separately, we consider combinations of levels. Thus, we do not obtain only one

set of feature vectors per level. Indeed, by allowing arbitrary combinations of nodes, the

total number of feature vectors would be exponential, with each feature vector correspond-

ing to a sequence of nodes chosen to represent the domains found in the dataset. In order to

maintain computational tractability and eliminate any redundancy in the feature vectors, the

following constraints have been imposed: (a) there can be no overlap between nodes. That

is, there cannot exist a pair of nodes in a sequence such that one node is an ancestor of the

other; (b) only combinations of nodes taken from levels 2 and 3 of the hierarchy have been

considered. Based on the results of our previous study [3], it is pertinent to conclude that

the optimal combination of nodes will be found somewhere between these two levels; (c)

nodes at level 3 which are the sole child of their parent node at level 2 have been discarded.

However, the number of node sequences to be evaluated is still exponential with respect

to the number of nodes at level 2. Though, even an exhaustive enumeration of the entire

search space is still computationally tractable given the size of our datasets (a conservative

estimate would be about 30 days and 60 days for the ZH and MW datasets, respectively,

on a single-core machine), this would be a poor choice, in general. Accordingly, a method

based on sequential floating forward search (SFFS) [34] has been implemented to find a

reasonable approximation to the best combination of nodes between levels 2 and 3. For
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this, SFFS was initialized at the sequence of nodes consisting of the set of all nodes at level

2, as this sequence showed the greatest promise in our previous study [3]. Then, the search

proceeded downward through the CATH tree towards the sequence of nodes corresponding

to level 3.

A complete list of domain-based features in the individual and combined levels for ZH

and MW datasets are shown in Tables 5.3 to 5.8 of the supplementary material, respectively.

5.3 Prediction Methods

After finding the domain-based features of the complexes of the MW and ZH datasets, we

applied several prediction methods to them. In this work, the prediction is performed via

commonly used classification methods, including LDR, SVM-SMO, NB and k-NN. More

detailed explanation of each prediction method is given below.

5.3.1 Linear Dimensionality Reduction

The basic idea of LDR, which has become popular in pattern recognition due to its relatively

easy implementation and high classification speed, is to represent an object of dimension

n onto a lower-dimensional vector of dimension d, achieving this by performing a linear

transformation. Each class, obligate or non-obligate, is represented by a random vector

x1 ∼ N(µ1,S1) or x2 ∼ N(µ2,S2) respectively, with p1 or p2 as a priori probabilities. Each

random vector is distributed normally with its mean µ and covariance S. The aim of LDR

is to find a linear transformation matrix A in such a way that the new classes yi = Axi are

as separable as possible.

In this work, we use a generalization of the Chernoff discriminant analysis (CDA) crite-
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rion proposed in [35], by relaxing the constraint that p1 = β and p2 = 1−β. The generalized

formula for the CDA criterion can be stated starting from the Chernoff distance as given

in [36]. As in [35], we take the trace of the resulting matrix in the transformed space as

follows:

JCDA(A) = tr{p1 p2(ASW At)−1ASEAt + log(ASW At)−

p1 log(AS1At)− p2 log(AS2At)}.
(5.3)

where SE = (µ1−µ2)(µ1−µ2)t and SW = p1S1 + p2S2. Also, the most accurate error bound

given in [36] is for a value of β (βε[0,1]) that maximizes the Chernoff distance.

The aim of the CDA approach is to maximize the above equation. To solve this prob-

lem, a gradient-based algorithm is used [35]. This iterative algorithm needs a learning rate,

αk, which is maximized using the secant method to ensure that the gradient algorithm con-

verges. The initialization of the matrix A is also an important issue in the gradient-based

algorithm.

In this study, ten different initializations were performed and the solution for A that

yielded the maximum Chernoff distance in the transformed space was selected. Since the

best value of β is unknown in advance, an exhaustive search over all possible values of

β, ranging from 0 to 1 with steps of 0.05, is applied in this study. This search gives a

more accurate bound for the classification error, and hence we expect higher classification

accuracy than other LDR methods. Note that the optimization of β is performed over all ten

cross-validation folds, in order to avoid any bias in selecting the parameter for a particular

fold. The resulting vectors yi are then input to a quadratic Bayesian (QB) classifier and a

linear Bayesian (LB) classifier, which is obtained by deriving a Bayesian classifier with a

common covariance matrix. The maximum of the average classification accuracies from



CHAPTER 5. 109

these classifiers is reported. More details about the CDA approach and LDR methods can

be found in [35].

5.3.2 Support Vector Machines Based on SMO

The aim of the SVM is to find the support vectors, and derive a linear classifier, which

ideally separates the space into two regions. Classification using a linear classifier is not

possible when the data is not linearly separable, and hence kernels are used to map the

data into a higher dimensional space in which the classification boundary can be found

much more efficiently. Sequential minimal optimization (SMO) is a fast learning algorithm

which is widely applied in the training phase of an SVM classifier as one possible way to

solve the underlying quadratic programming problem. In this study, the SMO module of

the Waikato Environment for Knowledge Analysis (WEKA) with a normalized polynomial

kernel, default parameter settings, and 10-fold cross-validation is used [37].

5.3.3 k-Nearest Neighbor

k-NN is one of the simplest classification methods, in which the class of each test sample

can be easily found by a majority vote of the class labels of its neighbors. To achieve this,

after computing and sorting the distances between the test sample and each training sample,

the most frequent class label in the first “k” training samples (nearest neighbors) is assigned

as the class of the test sample. Determining the appropriate number of neighbors is one of

the challenges of this method. In this study, the IBK module of WEKA with Euclidean

distance, default parameter settings, and 10-fold cross-validation is used [37].
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5.3.4 Naive Bayes

One of the simplest probabilistic classifiers is naive Bayes. Assuming independence of

features, the class of each test sample can be found by applying Bayes’ theorem. The basic

mechanism of NB is rather simple. The reader is referred to [38] for more details. In this

study, the NaiveBayes module of WEKA with kernel estimator, default parameters, and

10-fold cross-validation is used [37].

5.4 Results and Discussion

To test our proposed method and perform an in-depth analysis of the domain-based predic-

tion properties, the four classification methods outlined above have been used. The perfor-

mance of these prediction methods is compared in terms of their classification accuracies,

which are computed as follows: acc = (T P+T N)/N, where T P and T N are the total num-

bers of true positive (true obligate) and true negative (true non-obligate) predictions over

the 10 cross-validation folds, respectively, and N is the total number of complexes in the

dataset.

5.4.1 Analysis of the Prediction Properties

The prediction results of the LDR, NB, SVM-SMO and k-NN classifiers with individual

and combined domain-based features for the MW and ZH datasets are shown in Table 5.1.

For the domain-based subsets of features at each level, extracted from the MW dataset,

the MW-L2 subset achieves the best classification accuracy of 71.65% with SVM-SMO,

while for MW-L3 the best obtained performance with SVM-SMO is 68.97%. However,

by combining the feature vectors from levels 2 and 3 of MW (MW-L2+L3), the prediction
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accuracy improves to 73.56%, which is much better than using features from individual

levels (MW-L2 and MW-L3). This trend can be seen for all of the applied classifiers,

which shows that using domain-based features by combining levels is better that using only

features of level 2 and much better than using features of level 3 of the CATH hierarchy

for prediction. Also, by comparing the classification accuracies, we can see that for all

subsets of features extracted from the MW dataset, SVM-SMO performs better than other

classifiers.

Similarly, the best accuracy for the ZH dataset, 78.74%, is obtained using combined

domain-based properties (ZH-L2+L3) with SVM-SMO, compared to the best accuracies of

77.17% for ZH-L2 with the SVM-SMO classifier and 66.14% for ZH-L3 with LDR. Also,

the performances of other classifiers for all subsets of features of the ZH dataset show the

same trend: using the feature vector generated by combining features from levels 2 and 3

(ZH-L2+L3) is more efficient than using features from individual levels. Moreover, from

the results, it is clear that after ZH-L2+L3, domain-based features of level 2 (ZH-L2) are

more powerful for prediction than domain-based features of level 3.

Generally, it can be concluded for both the MW and ZH datasets that (a) domain-based

properties at the combined level yield higher accuracies than domain-based properties on

the individual levels; (b) domain-based features related to level 2 of CATH are more pow-

erful than the features from level 3; (c) SVM-SMO is the most powerful classifier for all

subsets of features; (d) SVM-SMO, LDR, NB and k-NN classifiers, however, show a simi-

lar trend. For all classifiers, DDIs from L2 are better than those of L3, while DDIs from a

combination of L2 and L3 are much better than those of both L2 and L3 individually.

The receiver operating characteristic (ROC) curves for the MW and ZH datasets using

different DDI properties for prediction are shown in Figs. 5.2(a) and 5.2(b), respectively.
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Table 5.1: Prediction accuracies of SVM-SMO, NB, k-NN and LDR for all domain-based
subsets of features of the ZH and MW datasets.

Subset Name # Features LDR SVM-SMO k-NN NB
MW-L2 96 70.01 71.65 68.96 69.39
MW-L3 291 67.05 68.97 67.43 67.05
MW-L2+L3 133 70.11 73.56 69.73 70.15

ZH-L2 64 74.80 77.17 66.14 71.65
ZH-L3 150 66.14 58.27 59.04 56.70
ZH-L2+L3 70 75.59 78.74 66.93 72.44

These ROC curves are plotted based on the true positive rate (TPR), aka “sensitivity”, vs.

the false positive rate (FPR), or “1 - specificity”, at various threshold settings. To generate

the ROC curves, the sensitivity and specificity of each subset of features were determined

for different values of d and β values in the CDA classifier. Then, by applying a simple

algorithm, the FPR and TPR points were filtered as follows: (a) for the same FPR values,

the greatest TPR value (top point) was chosen, and (b) for the same TPR values, the smallest

FPR value (left point) was chosen. A polynomial function with degree 2 was then fitted to

the selected points. From the ROC curves, it is clear that for both datasets, the prediction

performances of LDR using DDI properties on the combined level (ZH-L2+L3 and MW-

L2+L3) are clearly better than using DDI properties of level 2 (ZH-L2 and MW-L2) and

much better than those of level 3 (ZH-L3 and MW-L3).

In addition, the area under the curve (AUC), is computed for each of the above ROC

curves using the trapezoid rule. The AUC values are also shown in Figure 5.2. The AUC

for ZH-L2+L3 is 0.68 which is greater than AUC of both ZH-L2 (0.66) and ZH-L3 (0.63).

Similarly, the AUC for the MW dataset using DDI properties on the combined level (MW-

L2+L3) is 0.65 while for MW-L2 is 0.60. Also, the AUC of MW-L2 is greater than that of

MW-L3. Generally, by comparing the AUC values, it can be concluded that DDI properties
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from the combined levels show much better predictive power than DDI properties from the

individual levels.

5.4.2 Analysis of Structural Properties

As discussed earlier, in level 1 of the CATH hierarchy, the “class” of each complex is

defined. The four classes of CATH, which are determined based on the secondary structure

composition of the complexes, are mainly-alpha (c1), mainly-beta (c2), mixed alpha-beta

(c3) and secondary structure content (c4) [16]. A summary of the number of DDIs present

in both the ZH and MW datasets, categorized by class type, c1 to c4, is shown in Table

5.2. From the table, it is clear that most of the DDIs are between domains of c2 and other

classes in which c2:c2 and c2:c3 have the highest ranks. However, domains of c4 have no

interactions (with c1 and c4) or the least number of interactions with the domains of other

levels. This indicates that DDIs taken from c4 are less important and could be ignored for

achieving a faster, yet still accurate, prediction. In contrast, DDIs taken from c2 are more

powerful for prediction.

To investigate this hypothesis, a structural feature selection scheme has been applied

on the MW-L2 and ZH-L2 datasets. For this, DDI feature vectors from level 2 have been

grouped based on their class (secondary structure) type interactions such as c1-c1, c1-c2,

and so on. Then, each group of features was classified with SVM-SMO and k-NN classi-

fiers, individually. The classification results are shown in Table 5.2.

For the MW-L2 subset, the feature vector of c2-c3 achieves the best prediction with

67.43% and 64.75% accuracies by SVM-SMO and k-NN, respectively. The other DDIs

from c2 also achieve better performance than using DDIs of other classes. The most notable

feature vectors are c2-c4 and c1-c1, because they achieve acceptable prediction accuracies
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Figure 5.2: ROC curves and AUC values for all subsets of features of (a) MW and (b) ZH
datasets.
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Table 5.2: A summary of the number of CATH DDIs from level 2 present in the ZH and
MW datasets, categorized by their class types.

MW-L2 ZH-L2
Domain1 Domain2 #DDIs SVM-SMO k-NN #DDIs SVM-SMO k-NN

c1 c1 5 63.98 63.68 3 56.69 56.69
c1 c2 9 63.98 63.68 10 56.69 58.27
c1 c3 5 62.07 61.68 5 56.69 56.69
c1 c4 0 0 0 0 0 0
c2 c2 24 63.98 62.07 18 60.63 61.42
c2 c3 32 67.43 64.75 17 62.99 61.42
c2 c4 6 64.75 63.98 2 56.69 56.69
c3 c3 13 59 61.68 7 56.69 56.69
c3 c4 2 55.17 61.3 2 55.9 55.9
c4 c4 0 0 0 0 0 0

with less features. As expected, the worst prediction results were achieved using DDI

feature vectors from c4 and other classes.

Similarly, for the ZH-L2 subset, it is clear that while the most discriminative feature

vector for prediction is c2-c3, obtaining accuracies of 62.99% by SVM-SMO and 61.42%

by k-NN, the worst feature vectors are DDIs taken from c4 (c1-c4, c3-c4 and c4-c4). More-

over, the feature vector of c2-c2 is the second most powerful for prediction. All other

subsets of features yield almost the same performance. Some notable DDIs are c2-c4 and

c1-c1, as they achieve reasonable performance with fewer features.

Furthermore, using structural feature selection, a decrease of 4%-8% in prediction ac-

curacy compared to the original subset of features from MW-L2 and ZH-L2 (Table 5.1) are

observed. However, these decreases in performance can be acceptable given that there are

fewer features than in the original feature vectors, leading to a reduction in time and space

requirements.
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5.5 Conclusion

The idea of employing a structural domain-based approach for predicting obligate and non-

obligate protein complexes, which were presented in our previous studies, is extended in

this paper. Different interface properties, including domain-based properties on the individ-

ual levels and on the combined levels of the CATH hierarchy are used for prediction. The

classification is performed using various techniques, including LDR, SVM-SMO, k-NN,

and NB, for two well-known datasets of pre-classified complexes.

The prediction results demonstrate a significant improvement by combining nodes from

different levels in the CATH hierarchy, rather than considering DDI features of each level

separately. Also, it has been shown that DDIs at upper levels are more powerful than

those at lower levels for prediction. The plotted ROC curves and calculated AUC values

corroborate the prediction results.

Furthermore, a numerical analysis shows that while there are fewer interactions between

domains of c4 and domains of other classes, most of the interactions are between domains

of c2 and domains of other classes of level 2 of the CATH hierarchy. Also, the prediction

results on the structurally selected features of the MW-L2 and ZH-L2 datasets confirm that

DDIs taken from the mainly-beta class (c2), especially DDIs between the mainly-beta and

alpha-beta classes (c2-c3) are the best properties for predicting obligate and non-obligate

PPIs.

5.6 Supplementary Materials
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Table 5.3: List of feature vectors for the ZH-L2 dataset.

1.1 : 1.1 1.5 : 3.1 2.14 : 2.3 2.3 : 3.9

1.1 : 1.25 1.5 : 3.9 2.14 : 2.6 2.4 : 2.4

1.1 : 1.5 2.1 : 2.1 2.14 : 2.7 2.4 : 2.6

1.1 : 2.1 2.1 : 3.4 2.14 : 2.8 2.6 : 3.3

1.1 : 2.14 2.102 : 2.4 2.14 : 3.1 2.7 : 2.7

1.2 : 2.1 2.102 : 2.6 2.14 : 3.2 2.8 : 3.1

1.2 : 2.7 2.102 : 3.1 2.14 : 3.3 2.8 : 3.9

1.2 : 3.8 2.102 : 3.6 2.14 : 3.5 3.1 : 4.1

1.25 : 2.3 2.12 : 2.14 2.14 : 3.9 3.2 : 3.6

1.25 : 3.6 2.12 : 2.6 2.15 : 2.3 3.2 : 3.9

1.25 : 3.8 2.12 : 4.1 2.15 : 2.4 3.2 : 4.1

1.5 : 2.1 2.13 : 2.6 2.15 : 2.8 3.3 : 3.4

1.5 : 2.4 2.13 : 2.7 2.15 : 3.1 3.3 : 3.6

1.5 : 2.6 2.13 : 3.1 2.15 : 3.2 3.3 : 3.8

1.5 : 2.7 2.13 : 4.1 2.15 : 3.3 3.5 : 3.8

1.5 : 2.8 2.14 : 2.14 2.15 : 3.4 3.6 : 3.6

Table 5.4: List of feature vectors for the ZH-L3 dataset.

1.10.10 : 1.10.10 1.10.238 : 3.30.62 2.10.69 : 3.90.380 2.40.30 : 3.40.720

1.10.10 : 1.10.140 1.10.238 : 3.40.30 2.10.69 : 3.90.830 2.40.50 : 4.10.480

Continued on next page
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1.10.10 : 1.10.510 1.10.287 : 1.20.870 2.120.10 : 3.90.330 2.40.70 : 3.10.120

1.10.10 : 1.25.40 1.10.400 : 1.20.1250 2.130.10 : 3.30.10 2.40.70 : 3.20.20

1.10.10 : 3.10.450 1.10.400 : 3.30.428 2.140.10 : 2.30.29 2.60.40 : 3.10.50

1.10.10 : 3.30.350 1.10.400 : 3.30.560 2.140.10 : 3.40.420 2.60.90 : 3.30.810

1.10.10 : 3.40.20 1.10.420 : 1.20.870 2.140.10 : 3.40.50 2.60.90 : 3.90.1150

1.10.10 : 3.60.21 1.10.420 : 3.40.190 2.150.10 : 3.90.1150 2.70.70 : 3.90.340

1.10.10 : 3.80.10 1.10.439 : 3.30.70 2.30.26 : 3.30.350 2.70.98 : 3.30.560

1.10.1040 : 1.10.150 1.10.472 : 1.10.760 2.30.26 : 3.30.390 2.70.98 : 3.30.62

1.10.1040 : 1.25.40 1.10.472 : 2.40.10 2.30.26 : 3.30.470 2.80.10 : 3.90.420

1.10.1040 : 3.30.800 1.10.472 : 3.30.1330 2.30.26 : 3.30.540 3.10.120 : 3.60.20

1.10.120 : 1.10.494 1.10.494 : 3.20.20 2.30.26 : 3.30.560 3.10.130 : 3.10.50

1.10.120 : 2.40.70 1.10.494 : 3.90.110 2.30.26 : 3.40.192 3.10.450 : 3.30.350

1.10.120 : 3.40.20 1.10.506 : 1.10.510 2.30.26 : 3.40.20 3.10.50 : 3.90.640

1.10.120 : 3.40.532 1.10.506 : 3.30.62 2.30.26 : 3.40.420 3.20.16 : 3.20.20

1.10.1200 : 1.20.870 1.10.510 : 3.40.47 2.30.26 : 3.40.532 3.20.20 : 3.90.180

1.10.1200 : 3.10.120 1.10.520 : 3.30.200 2.30.26 : 3.40.640 3.30.10 : 3.30.572

1.10.1320 : 2.80.10 1.10.555 : 3.90.70 2.30.26 : 3.40.80 3.30.10 : 3.40.570

1.10.1320 : 3.90.1150 1.10.580 : 1.20.90 2.30.26 : 3.50.50 3.30.10 : 3.90.380

1.10.1320 : 3.90.650 1.10.580 : 3.30.1330 2.30.26 : 3.60.20 3.30.1120 : 3.30.572

1.10.140 : 1.50.10 1.10.620 : 2.10.60 2.30.26 : 3.90.1150 3.30.170 : 3.30.572

1.10.1400 : 3.40.718 1.10.760 : 2.140.10 2.30.26 : 3.90.340 3.30.170 : 3.30.70

1.10.150 : 2.30.30 1.10.760 : 2.40.50 2.30.26 : 3.90.540 3.30.200 : 3.90.80

1.10.150 : 3.10.450 1.10.840 : 3.30.470 2.30.29 : 2.40.30 3.30.350 : 3.40.390
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1.10.150 : 3.90.440 1.10.840 : 3.40.720 2.30.29 : 2.60.90 3.30.390 : 3.40.570

1.10.150 : 3.90.650 1.20.1050 : 3.30.450 2.30.29 : 2.70.98 3.30.40 : 3.40.80

1.10.167 : 3.30.200 1.20.120 : 2.70.70 2.30.29 : 3.10.50 3.30.428 : 3.90.770

1.10.196 : 2.30.120 1.20.120 : 3.90.640 2.30.29 : 3.20.16 3.30.560 : 3.40.720

1.10.210 : 1.10.510 1.20.58 : 3.40.718 2.30.29 : 3.20.70 3.30.60 : 3.40.47

1.10.210 : 2.70.70 1.20.870 : 3.30.70 2.30.29 : 3.30.170 3.30.70 : 3.90.830

1.10.210 : 2.80.10 1.20.90 : 3.30.350 2.30.29 : 3.30.40 3.40.190 : 3.90.1150

1.10.230 : 2.40.70 1.20.90 : 3.90.770 2.30.29 : 3.30.70 3.40.192 : 3.80.10

1.10.230 : 3.40.80 1.25.10 : 3.80.10 2.30.30 : 3.20.20 3.40.390 : 3.90.830

1.10.238 : 2.150.10 1.25.40 : 3.40.80 2.30.36 : 3.90.540 3.40.640 : 3.80.10

1.10.238 : 3.30.1330 2.10.25 : 2.120.10 2.40.10 : 2.80.10 3.90.110 : 4.10.480

1.10.238 : 3.30.350 2.10.60 : 3.30.800 2.40.10 : 3.40.532 3.90.370 : 3.90.80

1.10.238 : 3.30.360 2.10.60 : 4.10.410
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Table 5.5: List of feature vectors for the ZH-L2+L3 dataset.

1.1 : 1.1 1.5 : 2.30.42 2.15 : 3.6 2.30.26 : 3.2

1.1 : 1.20.120 1.5 : 2.8 2.15 : 3.9 2.30.30 : 2.4

1.1 : 1.20.870 1.5 : 3.1 2.15 : 4.1 2.30.30 : 2.7

1.1 : 3.3 2.1 : 2.102 2.30.120 : 2.30.120 2.30.30 : 2.8

1.1 : 3.4 2.1 : 2.15 2.30.120 : 2.30.26 2.30.42 : 2.6

1.1 : 3.9 2.102 : 2.15 2.30.120 : 2.30.29 2.4 : 2.4

1.20.1050 : 2.102 2.12 : 2.14 2.30.120 : 2.30.42 2.6 : 3.2

1.20.120 : 2.13 2.12 : 2.15 2.30.120 : 2.4 2.6 : 4.1

1.20.120 : 3.2 2.12 : 2.30.29 2.30.120 : 2.7 2.8 : 3.6

1.20.1250 : 1.5 2.12 : 3.3 2.30.120 : 3.1 3.1 : 3.4

1.20.1250 : 2.8 2.13 : 2.30.26 2.30.120 : 3.4 3.1 : 3.6

1.20.58 : 3.2 2.13 : 2.30.42 2.30.120 : 4.1 3.1 : 3.8

1.20.90 : 1.20.90 2.14 : 2.30.26 2.30.26 : 2.30.36 3.1 : 4.1

1.25 : 2.30.42 2.14 : 3.2 2.30.26 : 2.6 3.2 : 3.3

1.25 : 2.4 2.14 : 3.3 2.30.26 : 2.7 3.2 : 3.4

1.25 : 3.6 2.15 : 2.15 2.30.26 : 2.8 3.5 : 3.8

1.5 : 2.30.26 2.15 : 3.1 2.30.26 : 3.1 3.6 : 3.6

1.5 : 2.30.29 2.15 : 3.4
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Table 5.6: List of feature vectors for the MW-L2 dataset.

1.1 :1.1 2.1 : 2.7 2.15 : 2.7 2.6 : 2.6

1.1 : 1.2 2.1 : 2.8 2.15 : 2.8 2.6 : 3.4

1.1 : 1.25 2.1 : 3.2 2.15 : 3.2 2.7 : 3.4

1.1 : 1.5 2.1 : 3.5 2.15 : 3.3 2.7 : 3.8

1.1 : 2.1 2.1 : 3.8 2.15 : 3.4 2.7 : 4.1

1.1 : 2.14 2.1 : 3.9 2.15 : 3.5 2.8 : 2.8

1.1 : 2.4 2.1 : 4.1 2.15 : 3.6 2.8 : 3.4

1.1 : 2.6 2.102 : 2.15 2.15 : 3.8 2.8 : 3.5

1.2 : 1.5 2.11 : 2.6 2.15 : 4.1 2.8 : 3.9

1.2 : 2.102 2.11 : 2.7 2.17 : 2.17 3.1 : 3.8

1.25 : 2.8 2.11 : 3.2 2.17 : 2.3 3.2 : 3.4

1.5 : 2.11 2.11 : 3.3 2.17 : 3.1 3.2 : 3.6

1.5 : 2.13 2.11 : 3.8 2.17 : 3.2 3.2 : 3.8

1.5 : 2.17 2.13 : 2.3 2.17 : 3.3 3.2 : 4.1

1.5 : 3.2 2.13 : 2.4 2.17 : 3.4 3.3 : 3.4

1.5 : 3.3 2.13 : 2.8 2.17 : 3.6 3.3 : 3.5

1.5 : 3.4 2.13 : 3.5 2.17 : 3.8 3.4 : 3.6

1.5 : 3.8 2.14 : 3.1 2.17 : 3.9 3.4 : 3.8

1.5 : 3.9 2.14 : 3.2 2.17 : 4.1 3.5 : 3.8

2.1 : 2.17 2.14 : 3.3 2.2 : 2.2 3.5 : 3.9

2.1 : 2.2 2.14 : 3.4 2.3 : 2.6 3.6 : 3.8

2.1 : 2.3 2.14 : 4.1 2.3 : 2.8 3.6 : 4.1
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2.1 : 2.4 2.15 : 2.4 2.3 : 3.3 3.8 : 3.8

2.1 : 2.6 2.15 : 2.6 2.4 : 4.1 3.8 : 3.9
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Table 5.7: List of feature vectors for the MW-L3 dataset.

1.10.10 : 3.40.420 1.10.468 : 4.10.1030 1.20.950 : 3.90.380 2.170.240 : 3.30.365

1.10.10 : 4.10.720 1.10.468 : 4.10.40 1.20.950 : 4.10.410 2.170.40 : 3.30.1340

1.10.10 : 4.10.800 1.10.468 : 4.10.410 1.20.950 : 4.10.820 2.20.25 : 3.30.1650

1.10.100 : 1.10.520 1.10.468 : 4.10.740 1.25.10 : 2.10.22 2.20.25 : 3.30.70

1.10.100 : 1.10.620 1.10.468 : 4.10.980 1.25.10 : 2.10.25 2.20.25 : 3.90.760

1.10.100 : 3.30.30 1.10.472 : 1.10.506 1.25.10 : 2.40.200 2.30.36 : 2.70.50

1.10.100 : 3.40.470 1.10.472 : 1.10.530 1.25.10 : 2.60.15 2.30.36 : 3.30.1130

1.10.1030 : 1.10.472 1.10.472 : 1.10.565 1.25.10 : 2.60.200 2.30.40 : 3.90.440

1.10.1030 : 3.30.1450 1.10.472 : 1.10.645 1.25.10 : 2.70.50 2.30.42 : 2.40.250

1.10.1030 : 3.90.380 1.10.472 : 1.20.1060 1.25.10 : 3.10.10 2.30.42 : 3.40.462

1.10.1060 : 1.10.1170 1.10.472 : 1.20.1130 1.25.10 : 3.30.280 2.30.42 : 3.90.830

1.10.1060 : 2.60.90 1.10.472 : 3.30.505 1.25.10 : 3.30.370 2.40.128 : 2.60.120

1.10.1060 : 2.70.230 1.10.472 : 4.10.470 1.25.40 : 2.70.70 2.40.200 : 3.40.50

1.10.1060 : 3.10.130 1.10.494 : 3.30.830 1.25.40 : 3.10.20 2.40.200 : 3.90.470

1.10.1060 : 3.30.10 1.10.494 : 3.40.710 1.50.10 : 3.30.420 2.40.30 : 3.30.720

1.10.1090 : 1.10.286 1.10.510 : 1.20.930 2.10.150 : 2.10.22 2.40.30 : 3.90.440

1.10.1140 : 2.10.90 1.10.510 : 4.10.40 2.10.150 : 3.30.1120 2.40.30 : 3.90.700

1.10.1170 : 1.10.1820 1.10.520 : 2.170.240 2.10.150 : 3.30.1410 2.40.40 : 3.10.320

1.10.1170 : 1.10.555 1.10.520 : 2.30.40 2.10.150 : 3.30.1490 2.40.40 : 3.30.1470

1.10.1170 : 1.20.210 1.10.520 : 3.10.390 2.10.22 : 3.50.30 2.40.40 : 3.30.62

1.10.1170 : 1.20.810 1.10.520 : 3.30.10 2.10.22 : 4.10.820 2.40.50 : 3.30.1340

1.10.1170 : 2.60.40 1.10.520 : 3.30.170 2.10.50 : 2.70.70 2.40.70 : 4.10.160
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1.10.120 : 1.10.167 1.10.530 : 1.20.150 2.10.50 : 3.90.640 2.60.120 : 3.90.1170

1.10.120 : 1.10.468 1.10.530 : 1.20.930 2.10.60 : 3.30.1410 2.60.130 : 3.90.550

1.10.1200 : 1.20.89 1.10.533 : 2.170.240 2.10.60 : 3.40.950 2.60.15 : 3.40.970

1.10.1200 : 2.60.90 1.10.533 : 3.40.630 2.10.60 : 3.40.970 2.60.40 : 4.10.740

1.10.1200 : 3.10.320 1.10.555 : 1.10.8 2.10.69 : 3.30.420 2.60.90 : 3.90.470

1.10.1200 : 3.40.950 1.10.555 : 1.20.190 2.10.70 : 2.102.10 2.70.230 : 3.30.40

1.10.1200 : 3.90.70 1.10.555 : 3.30.30 2.10.70 : 2.170.240 2.70.230 : 3.90.470

1.10.1200 : 4.10.980 1.10.555 : 3.90.550 2.102.10 : 3.30.365 3.10.10 : 3.90.1170

1.10.1320 : 2.170.40 1.10.555 : 3.90.70 2.102.10 : 3.90.20 3.10.100 : 4.10.320

1.10.168 : 1.10.565 1.10.565 : 2.10.10 2.102.10 : 3.90.470 3.10.130 : 3.10.20

1.10.168 : 3.90.175 1.10.565 : 3.30.62 2.102.10 : 3.90.640 3.10.130 : 4.10.320

1.10.168 : 3.90.210 1.10.620 : 2.30.42 2.102.10 : 3.90.830 3.10.20 : 3.30.350

1.10.1760 : 3.30.530 1.10.645 : 3.30.530 2.102.10 : 4.10.40 3.10.380 : 3.90.440

1.10.1760 : 3.90.20 1.10.645 : 3.60.21 2.102.10 : 4.10.410 3.10.390 : 3.90.760

1.10.1780 : 4.10.820 1.10.8 : 1.20.58 2.102.10 : 4.10.720 3.30.10 : 3.90.190

1.10.1820 : 3.90.380 1.10.8 : 2.60.30 2.102.10 : 4.10.800 3.30.1130 : 3.30.830

1.10.196 : 1.20.1250 1.10.8 : 3.30.500 2.102.10 : 4.10.980 3.30.1390 : 3.40.810

1.10.238 : 1.20.1270 1.10.840 : 1.20.840 2.110.10 : 2.110.10 3.30.1450 : 3.30.62

1.10.238 : 2.30.42 1.10.840 : 2.10.10 2.110.10 : 2.170.240 3.30.1450 : 3.90.330

1.10.238 : 2.70.50 1.20.1060 : 3.60.120 2.110.10 : 2.20.25 3.30.1450 : 4.10.940

1.10.246 : 1.10.510 1.20.1060 : 4.10.630 2.110.10 : 2.30.36 3.30.1460 : 3.40.420

1.10.246 : 3.30.420 1.20.1130 : 2.10.70 2.110.10 : 2.30.40 3.30.1460 : 3.50.50

1.10.246 : 3.90.209 1.20.1130 : 3.30.420 2.110.10 : 2.40.200 3.30.1460 : 4.10.540
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1.10.246 : 3.90.760 1.20.120 : 1.20.1270 2.110.10 : 2.40.250 3.30.1490 : 3.40.1470

1.10.246 : 3.90.970 1.20.120 : 2.150.10 2.110.10 : 2.40.30 3.30.1650 : 3.30.70

1.10.246 : 4.10.160 1.20.120 : 3.30.479 2.110.10 : 2.40.70 3.30.170 : 3.90.830

1.10.246 : 4.10.365 1.20.1250 : 3.90.330 2.110.10 : 2.60.120 3.30.190 : 3.90.540

1.10.286 : 3.10.110 1.20.1270 : 3.10.20 2.110.10 : 2.60.90 3.30.370 : 3.90.210

1.10.287 : 2.40.30 1.20.1310 : 2.10.90 2.110.10 : 3.10.110 3.30.40 : 3.90.330

1.10.287 : 2.70.50 1.20.1310 : 2.60.90 2.110.10 : 3.20.20 3.30.465 : 3.90.760

1.10.287 : 3.30.1460 1.20.1310 : 3.90.830 2.110.10 : 3.30.1470 3.30.500 : 3.40.532

1.10.287 : 3.40.970 1.20.150 : 2.60.210 2.110.10 : 3.30.365 3.30.505 : 3.40.462

1.10.3470 : 1.10.468 1.20.150 : 3.90.760 2.110.10 : 3.30.390 3.30.505 : 3.60.120

1.10.3470 : 1.20.150 1.20.150 : 4.10.160 2.110.10 : 3.30.43 3.30.505 : 3.90.20

1.10.3470 : 2.150.10 1.20.190 : 3.10.50 2.110.10 : 3.30.479 3.30.559 : 3.90.700

1.10.3470 : 2.30.42 1.20.190 : 3.30.1130 2.110.10 : 3.30.530 3.30.56 : 3.40.50

1.10.3470 : 3.20.20 1.20.190 : 3.30.43 2.110.10 : 3.30.60 3.30.565 : 3.30.60

1.10.3470 : 3.40.1080 1.20.190 : 3.40.420 2.110.10 : 3.30.70 3.30.62 : 3.90.330

1.10.400 : 3.30.1130 1.20.190 : 3.90.370 2.110.10 : 3.30.710 3.30.830 : 3.90.700

1.10.420 : 1.20.1130 1.20.5 : 2.30.22 2.110.10 : 3.30.930 3.40.1380 : 4.10.720

1.10.420 : 2.10.10 1.20.5 : 2.40.70 2.110.10 : 3.40.30 3.40.228 : 3.60.21

1.10.468 : 3.10.380 1.20.5 : 3.30.1390 2.110.10 : 3.40.630 3.40.532 : 3.90.210

1.10.468 : 3.30.559 1.20.5 : 3.90.470 2.110.10 : 3.40.830 3.40.830 : 3.90.470

1.10.468 : 3.40.20 1.20.810 : 3.10.390 2.110.10 : 3.50.50 3.50.40 : 4.10.980

1.10.468 : 3.40.810 1.20.840 : 2.60.15 2.110.10 : 3.60.10 3.80.10 : 3.90.380

1.10.468 : 3.60.10 1.20.840 : 2.70.230 2.110.10 : 3.90.209 3.90.20 : 4.10.40
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1.10.468 : 3.90.1170 1.20.85 : 4.10.630 2.110.10 : 3.90.640 3.90.380 : 3.90.640

1.10.468 : 3.90.190 1.20.89 : 4.10.75 2.130.10 : 3.40.420 3.90.510 : 4.10.470

1.10.468 : 3.90.340 1.20.930 : 3.30.1390 2.150.10 : 3.40.532 3.90.540 : 3.90.70

1.10.468 : 3.90.640 1.20.950 : 2.60.90 2.150.10 : 4.10.540 3.90.830 : 4.10.940

1.10.468 : 3.90.70 1.20.950 : 3.50.50 2.170.240 : 3.30.1460
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Table 5.8: List of feature vectors for the MW-L2+L3 dataset.

1.1 : 1.1 2.10.240 : 3.10.390 2.13 : 4.10.470 2.2 : 4.10.480

1.1 : 1.2 2.10.240 : 3.4 2.13 : 4.10.630 2.2 : 4.10.540

1.1 : 1.25 2.10.240 : 3.6 2.13 : 4.10.75 2.2 : 4.10.75

1.1 : 1.5 2.10.240 : 3.8 2.13 : 4.10.980 2.2 : 4.10.800

1.1 : 2.10.10 2.10.240 : 3.9 2.14 : 2.150.10 2.3 : 2.60.130

1.1 : 2.10.25 2.10.240 : 4.10.365 2.14 : 2.17 2.3 : 3.10.20

1.2 : 2.10.69 2.10.240 : 4.10.40 2.14 : 2.2 2.3 : 4.10.320

1.2 : 3.2 2.10.25 : 2.60.200 2.14 : 2.3 2.3 : 4.10.470

1.2 : 3.6 2.10.25 : 3.10.130 2.14 : 2.4 2.3 : 4.10.630

1.25 : 2.10.90 2.10.50 : 2.60.120 2.14 : 2.60.40 2.3 : 4.10.720

1.25 : 2.11 2.10.50 : 2.60.90 2.14 : 3.10.100 2.3 : 4.10.75

1.5 : 2.4 2.10.60 : 3.6 2.14 : 3.10.130 2.3 : 4.10.820

1.5 : 3.3 2.10.69 : 4.10.365 2.14 : 3.10.450 2.4 : 4.10.800

1.5 : 3.4 2.10.69 : 4.10.75 2.14 : 3.10.50 2.60.130 : 4.10.140

1.5 : 3.9 2.10.70 : 2.60.250 2.14 : 3.4 2.60.15 : 4.10.540

1.5 : 4.10.820 2.10.70 : 3.10.110 2.14 : 3.8 2.60.200 : 3.4

1.5 : 4.10.940 2.10.77 : 2.150.10 2.14 : 4.10.1030 2.60.200 : 3.5

1.5 : 4.10.980 2.10.77 : 2.60.210 2.14 : 4.10.160 2.60.210 : 4.10.470

2.10.10 : 2.10.25 2.10.90 : 3.10.380 2.14 : 4.10.365 2.60.210 : 4.10.540

2.10.10 : 2.10.60 2.102 : 2.11 2.14 : 4.10.470 2.60.250 : 2.60.250

2.10.10 : 2.10.77 2.102 : 3.2 2.14 : 4.10.720 2.60.30 : 3.3

2.10.10 : 2.11 2.11 : 2.60.40 2.14 : 4.10.75 2.60.90 : 3.6

Continued on next page



CHAPTER 5. 128

2.10.10 : 2.13 2.11 : 3.10.320 2.14 : 4.10.800 2.8 : 2.8

2.10.10 : 2.60.130 2.11 : 3.10.390 2.14 : 4.10.820 3.10.10 : 3.10.100

2.10.10 : 3.10.10 2.13 : 2.60.15 2.14 : 4.10.940 3.10.130 : 4.10.410

2.10.150 : 2.10.60 2.13 : 2.60.200 2.150.10 : 4.10.320 3.10.380 : 4.10.365

2.10.150 : 2.10.69 2.13 : 2.60.210 2.150.10 : 4.10.630 3.10.50 : 3.4

2.10.240 : 2.10.77 2.13 : 2.60.250 2.150.10 : 4.10.75 3.3 : 3.6

2.10.240 : 2.60.200 2.13 : 3.10.50 2.17 : 4.10.480 3.5 : 4.10.940

2.10.240 : 2.60.210 2.13 : 3.6 2.17 : 4.10.540 4.10.1030 : 4.10.820

2.10.240 : 2.60.250 2.13 : 3.8 2.17 : 4.10.820 4.10.260 : 4.10.800

2.10.240 : 2.60.30 2.13 : 4.10.260 2.2 : 3.3 4.10.320 : 4.10.40

2.10.240 : 3.10.10 2.13 : 4.10.40 2.2 : 4.10.140 4.10.410 : 4.10.75

2.10.240 : 3.10.380
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Chapter 6

Using Structural Domains to Predict
Obligate and Non-obligate
Protein-protein Interactions

6.1 Introduction

Due to the fundamental role in many essential biological processes, the identification of

protein-protein interactions (PPIs) is a key research topic. Prediction of PPIs has been stud-

ied using various computational approaches and from many different perspectives. Predic-

tion of interfaces or interactions between subunits in large molecules involves analysis of

patches, sites, amino acids, or even specific atoms, while the physicochemical and geomet-

ric arrangement of subunits in protein complexes is best known as docking. An important

problem that has recently drawn the attention of the research community is the prediction

of “when” the interactions will occur – this is mostly studied at the level of protein in-

teraction networks. Another important problem surrounding PPIs is the identification of

different types of complexes, which are characterized by properties such as similarities be-

tween subunits (homo/hetero-oligomers), number of subunits involved in the interaction

(dimers, trimers, etc.), duration of the interaction (transient vs. permanent), stability of the

133
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interaction (non-obligate vs. obligate), among others; we focus on the latter problem.

Obligate interactions are usually considered to be permanent, while non-obligate inter-

actions can be either permanent or transient [1]. Non-obligate and transient interactions are

more difficult to study and understand due to their instability and short life, while obligate

and permanent interactions are more stable [2]. For this reason, it is important to be able to

distinguish between obligate and non-obligate complexes.

Some studies in PPIs consider the analysis of a wide range of parameters for predict-

ing obligate and non-obligate complexes, including analysis of solvent accessibility [3, 4],

geometry [5], hydrophobicity [6, 7], sequence-based features [8] and desolvation energy

[9–11]. In this study, we use desolvation energies, which have already been shown to be

very efficient for PPI prediction [9, 10].

Recent studies of PPIs focus on employing domain knowledge to predict the protein-

protein interactions [12–15]. The motivation behind these approaches is that: (i) domains

are the minimal and fundamental units of proteins, which have a clear biological role and

act as basic functional units within proteins [16]; (ii) it has been claimed that only a few

highly conserved residues are crucial for protein interactions [17, 18]; (iii) it has been shown

that most domains and domain interactions are evolutionary conserved, and consequently,

proteins will interact if a domain in one protein interacts with a domain in the other pro-

tein [19, 20]. In [17], interactions between residues were used for finding obligate and

non-obligate residue contacts of PPIs. The study concluded that non-obligate interfaces

occupy less than 2% of the area of the domain surfaces, while the area occupied by obli-

gate interfaces is between 0–6%. In [18], the interface of 750 transient DDIs (interactions

between domains that are part of different proteins) and 2,000 obligate DDIs were studied.

The interactions between domains of one amino acid chain were analyzed to obtain a better
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understanding of molecular recognition and identify frequent amino acids in the interfaces

and on the surfaces of PPIs. Also, in [21], the domain information from protein complexes

was used to predict four different types of PPIs including transient enzyme inhibitor/non

enzyme inhibitor, and permanent homo/hetero obligate complexes. Thus, the physical in-

teraction between proteins can be better analyzed in terms of the interaction between their

structural domains. There are a number of domain family resources that can be applied for

this purpose such as Pfam [22] and CATH [23].

In this paper, we propose a domain-based approach which uses CATH- Class, Architec-

ture, Topology and Homologous superfamily- domain information to predict obligate and

non-obligate protein-protein interactions. Desolvation energies of amino acid pairs present

in the interface of DDIs as well as desolvation energies of all amino acid pairs present in

the interface of interacting complexes are used in the prediction. The prediction approach

relies on two state-of-the-art classification techniques of linear dimensionality reduction

(LDR) [24] and support vector machines (SVM) [25]. Ten-fold cross validation of the pro-

posed scheme on two well-known datasets of [4] and [26] shows that: (i) DDI features of

the first three levels of CATH, especially level 2, are more powerful than features of other

levels in predicting obligate and non-obligate complexes; (ii) prediction accuracies using

DDI features for levels 5 to 8 of CATH are lower than those of features of upper levels; (iii)

although the prediction accuracies achieved by considering amino acid pairs present in the

interacting domains instead of all interacting amino acid pairs of two chains for both LDR

and SVM are relatively low, they are still acceptable and provide additional information

about the specific domains.

We have also performed a visual and numerical analysis on the DDIs present in obligate

and non-obligate interactions of levels 1 to 3 of CATH domains. The analysis shows that
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homo-DDIs are mostly present in obligate interactions. In addition, by grouping the DDIs

into three main groups of more obligate, more non-obligate and non-interaction groups

considering the distribution of DDIs, some important DDI features for the prediction of

complex types can be easily found.

6.2 Prediction Methods

6.2.1 Linear Dimensionality Reduction

One of the approaches we use for prediction is LDR. The basic idea of LDR is to repre-

sent an object of dimension n as a lower-dimensional vector of dimension d, achieving this

by performing a linear transformation. We consider two classes, ω1 and ω2, represented

by two normally distributed random vectors x1 ∼ N(m1,S1) and x2 ∼ N(m2,S2), respec-

tively, with p1 and p2 the a priori probabilities. After the LDR is applied, two new random

vectors y1 = Ax1 and y2 = Ax2, where y1 ∼ N(Am1;AS1At) and y2 ∼ N(Am2;AS2At)

with mi and Si being the mean vectors and covariance matrices in the original space, re-

spectively. The aim of LDR is to find a linear transformation matrix A in such a way

that the new classes (yi = Axi) are as separable as possible. Let SW = p1S1 + p2S2 and

SE = (m1 −m2)(m1 −m2)t be the within-class and between-class scatter matrices respec-

tively. Various criteria have been proposed to measure this separability [24]. We consider

the following two LDR methods:

(a) The heteroscedastic discriminant analysis (HDA) approach [24], which aims to ob-

tain the matrix A that maximizes the following function and which is optimized via eigen-

value decomposition:



CHAPTER 6. 137

JHDA(A) = tr

{
(ASW At)−1

[
ASEAt −AS

1
2
W

p1 log(S
− 1

2
W S1S

− 1
2

W )+p2 log(S
− 1

2
W S2S

− 1
2

W )
p1 p2

S
1
2
W At

]}
.(6.1)

(b) The Chernoff discriminant analysis (CDA) approach [24], which aims to maximize

the following function and which is maximized via a gradient-based algorithm:

JCDA(A) = tr{p1 p2ASEAt(ASW At)−1

+ log(ASW At)− p1 log(AS1At)− p2 log(AS2At)}.
(6.2)

In order to classify each complex, first a linear algebraic operation y = Ax is applied

to the n-dimensional vector, obtaining y, a d-dimensional vector, where d is ideally much

smaller than n. The linear transformation matrix A corresponds to the one obtained by

one of the LDR methods, namely HDA or CDA. The resulting vector y is then passed

through a quadratic Bayesian (QB) classifier [24], which is the optimal classifier for normal

distributions. For additional tests, a linear Bayesian (LB) classifier is considered by deriving

a Bayesian classifier with a common covariance matrix: S = S1 +S2.

6.2.2 Support Vector Machines

SVMs are well known machine learning techniques used for classification, regression and

other tasks. The aim of the SVM is to find the support vectors (most difficult vectors to be

classified) to derive a decision boundary that separates the feature space into two regions.

While a more detailed description of the SVM can be found in standard machine learning

textbooks (cf. [27]), for the sake of clarity, we provide a brief description below.

Let {xi} where i = 1,2,3.....n, be the feature vectors of the training dataset X. These

vectors belong to one of two classes ω1 and ω2, which are assumed to be linearly separable.
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The goal of the SVM is to find a hyperplane that classifies all the training vectors as follows:

g(x) = wtx+w0 (6.3)

This kind of hyperplane is not unique. The SVM chooses the hyperplane that leaves the

maximum margin from that hyperplane to the support vectors.

The distance from a point to a hyperplane is given by:

z =
|g(x)|
||w||

(6.4)

If for each xi we denote the corresponding class label by yi (+1 for ω1, -1 for ω2), the

SVM finds the best hyperplane by computing the parameters w and w0 of the hyperplane

so that the following is minimized:

J(w) =
1
2
||w||2 (6.5)

subject to

yi(wtxi +w0) ≥ 1, i = 1,2, ....n (6.6)

The classification by using the SVM is usually inefficient when using a linear classifier,

because in general, the data is not linearly separable, and hence the use of kernels is crucial

in mapping the data onto a higher dimensional space in which the classification is more

efficient. The effectiveness of the SVM depends on the selection of the kernel, the selection

parameters and the soft margin [28]. There are a number of different kernels that can be

used in SVMs. In our model, we use polynomial, radial basis function (RBF) and sigmoid.

In addition to this, these kernels require some parameters, which are discussed in the Results
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section.

6.3 Datasets and Prediction Properties

Two pre-classified datasets of obligate and non-obligate protein complexes were obtained

from the studies of Zhu et al. [4], and Mintseris and Weng [26], which we refer to as

the MW and ZH datasets respectively. The first dataset contains 75 permanent (obligate)

and 62 non-obligate interactions, while the second dataset contains 115 obligate and 212

non-obligate interactions.

6.3.1 Desolvation Energy

Different approaches have been developed to group different types of proteins, based on

their different properties. Among them, desolvation energies have been found to be very

efficient for prediction [9]. Desolvation energy is defined as knowledge-based contact po-

tential (accounting for hydrophobic interactions), self-energy change upon desolvation of

charged and polar atom groups, and side-chain entropy loss. As in [29], the binding free

energy ∆Gbind is defined a follows:

∆Gbind = ∆Eelec +∆Gdes, (6.7)

where ∆Eelec is the total electrostatic energy and ∆Gdes is the total desolvation energy.

For a protein, ∆Gdes is defined as follows:

g(r)ΣΣei j. (6.8)



CHAPTER 6. 140

If we consider the interaction between the ith atom of a ligand and the jth atom of a

receptor, then ei j is the atomic contact potential (ACP) [30] between them and g(r) is a

smooth function based on their distance. For simplicity, we consider the smooth function

to be linear. We also consider the criteria that for a successful interaction, the atoms should

be within 7 Å distance. Between 5 and 7 Å, the value of g(r) varies from 0 to 1 based on a

smooth function. For atoms that are less than 5 Å apart, the value of g(r) is 1 [29].

6.3.2 Domain-based Properties

In this study, we consider CATH domains [23]. The CATH database is organized in a

hierarchical fashion, which can be visualized as a tree with levels numbered from 1 to 8,

thereafter referred to as L1 to L8. Domains at upper levels of the tree represent more general

classes of structure than those at lower levels. For example, domains at level 1 represent

alpha helices, beta sheets, and combinations thereof, whereas those at level 2 represent

more specific structures such as beta barrels and rolls. Domains at level 3 are even more

specific, and so on.

To extract domain-based properties, we first collected the structural files of each com-

plex in our datasets from the Protein Data Bank (PDB) [31]. Then, we collected the domain

information of each complex from the CATH1 database and added the collected domain

information to each atom present in the chain. Complexes that did not have domain in-

formation in at least one of their subunits were discarded. A summary of the number of

obligate and non-obligate complexes before and after filtering these complexes by consid-

ering CATH domains is given in Table 6.1, where MW-CATH and ZH-CATH refer to as

the MW and ZH datasets after removing the complexes without CATH domains in their

1www.cathdb.info
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Table 6.1: Datasets and their number of complexes used in this study.

Dataset Name # Complexes # Obligate # Non-obligate
MW 327 115 212
MW-CATH 287 106 181
ZH 137 75 62
ZH-CATH 127 72 55

interaction.

After identifying all the unique domains present in the interface of at least one complex

in the datasets, the desolvation energies for all pairs of domains (DDIs) were calculated

using Eq. (6.8). For each ligand-receptor pair, if we found any duplicate DDIs during

calculation we simply computed the cumulative desolvation energy across all occurrences

of that DDI. A domain is considered as being in the interface if it has at least one residue

interacting with a domain in the other chain.

Since the CATH database is organized in a hierarchical scheme, we created a separate

dataset of feature vectors for each level of the hierarchy. Each of these datasets were used

for classification separately, in order to observe the prediction power of a specific level in

the CATH hierarchy. To speed up computations, after calculating the desolvation energies

for all DDIs in level 8, for each DDI in higher levels the desolvation energy was calculated

by taking the sum of the desolvation energies of the corresponding DDIs at the next lowest

level. For each node in the CATH tree, the set of DDIs associated with it are completely

disjoint (with the exception of reflexive pairs, which have been accounted for in postpro-

cessing). Thus, when we combine the desolvation energies of DDIs from one level to find

the desolvation energies for the respective parent nodes at the next highest level, we do not

introduce any redundancy into the corresponding features.

Since there are a large number of possible DDIs (0.5[n(n + 1)] + n, where n is the
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Table 6.2: Subsets of features used in this study.

Subset Name # Domains # Non-zero DDIs
(a) The Mintseris and Weng dataset[26]

MW-CATH-L1 4 9
MW-CATH-L2 26 106
MW-CATH-L3 237 342
MW-CATH-L4 386 403
MW-CATH-L5 740 563
MW-CATH-L6 803 573
MW-CATH-L7 864 576
MW-CATH-L8 899 576

(b) The Zhu et al. dataset [4]
ZH-CATH-L1 4 9
ZH-CATH-L2 24 67
ZH-CATH-L3 136 154
ZH-CATH-L4 186 180
ZH-CATH-L5 272 228
ZH-CATH-L6 278 230
ZH-CATH-L7 287 230
ZH-CATH-L8 301 236

number of unique domains), after pre-processing the datasets we removed all zero-columns.

Zero-columns represent DDIs that were not present in any complex. A summary of the

number of features after removing zero-columns for each subset of features is given in

Table 6.2. The names of these subsets show the dataset name (MW or ZH) and the level of

the domains in the CATH hierarchy (L1 to L8).
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6.4 Results and Discussions

6.4.1 Experimental Settings

For the LDR schemes, four different classifiers were implemented and evaluated, namely

the combinations of HDA and CDA, and QB and LB classifiers. Within 10-fold cross

validation, reductions to dimensions d = 1, . . . ,20 were performed, followed by QB and LB,

and the maximum of the average classification accuracies for each classifier was recorded.

Of these, the maximum for the four LDR schemes is reported.

The SVM was also trained with 10-fold cross validation for three kernels: RBF, poly-

nomial and sigmoid. The training was carried out with the LIBSVM package [25]. A

grid search was performed on the parameters gamma and C, both in the range [2−20..220]

choosing the ones that give the maximum accuracy for a specific kernel. For the polyno-

mial kernel, the degree of the polynomial was set to 2 and 3. For each subset of features

the maximum average classification accuracy obtained from these three kernels is reported.

The average accuracy for the 10 folds was computed as follows: acc = (T P + T N)/n,

where T P and T N are the true positive (obligate) and true negative (non-obligate) counters

respectively, and n is the total number of complexes.

In addition to domain-based features (Table 6.2), we have considered pairs of amino

acids present in the interface of PPIs. For this, we computed 202 desolvation energy values

for all pairs of atoms using Eq. (6.8), and accumulated the values for each pair of amino

acids. Avoiding repeated pairs resulted in 210 different features (unique pairs of amino

acids). We refer to these new subsets of features as the MW-aa for the MW dataset and

ZH-aa for the ZH dataset.
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6.4.2 Analysis of Prediction

The results of the SVM and LDR classifiers with amino acid and DDI-type features for the

MW and ZH datasets are depicted in Table 6.3. The maximum accuracies for LDR and

SVM variants are shown in the table.

For the subsets of features extracted from the MW dataset, the MW-aa subset is best

classified with SVM, achieving an accuracy of 77.70%, while MW-CATH-L2 achieves the

best performance of 77.35% – these two are almost identical. It is also clear that after DDIs

of level 2, DDIs of levels 1 and 3 are more powerful for prediction than DDIs of other levels.

Moreover, subsets of the last four levels of the CATH hierarchy (MW-CATH-L5 to MW-

CATH-L8) with the same number of features yield approximately the same low prediction

accuracy for both SVM and LDR. This could be due to the fact that for higher levels a large

number of zero-features is generated, and in that case, the classification would rely only on

the non-zero features.

Similarly, for the subsets of features extracted from the ZH dataset, it is observable

that the best accuracy of 85.83% is achieved by SVM when using desolvation energies

for amino acid type features (ZH-aa). Although it seems that ZH-CATH-L2 with 79.30%

accuracy has less performance than ZH-aa, when we consider the number of features of

these two subsets (67 for ZH-CATH-L2 and 210 for ZH-aa) this decrease is acceptable.

Moreover, from the results, it is clear that only DDIs of the first few levels of CATH are

good enough to predict obligate and non-obligate complexes and other levels, from levels

4 to 8, could be ignored because of their low prediction performance.

Generally, it can be concluded that for both MW and ZH datasets and all subsets of

features that: (a) amino acid type features yield higher accuracies than DDI type features

for both LDR and SVM; (b) domain-based features related to L2 and L1 of CATH are more
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Table 6.3: Prediction results for LDR and SVM classifiers for the MW and ZH datasets.

Subset Name # Features LDR SVM
(a) The Mintseris and Weng dataset[26]

MW-aa 210 75.17 77.70
MW-CATH-L1 9 67.59 72.82
MW-CATH-L2 106 71.03 77.35
MW-CATH-L3 342 66.9 71.25
MW-CATH-L4 403 64.83 70.73
MW-CATH-L5 536 64.48 70.38
MW-CATH-L6 573 64.14 69.69
MW-CATH-L7 576 63.79 69.69
MW-CATH-L8 576 63.45 69.69

(b) The Zhu et al. dataset [4]
ZH-aa 210 73.23 85.83
ZH-CATH-L1 9 68.5 74.80
ZH-CATH-L2 67 73.23 79.30
ZH-CATH-L3 154 64.57 69.76
ZH-CATH-L4 180 62.99 69.69
ZH-CATH-L5 228 59.84 67.93
ZH-CATH-L6 230 57.48 67.72
ZH-CATH-L7 230 57.48 67.72
ZH-CATH-L8 236 57.48 67.72

powerful than the features of other levels in the prediction of obligate and non-obligate

complexes – this difference is only marginal for the MW dataset; (c) the prediction perfor-

mance using DDI features for CATH levels from 5 to 8 are almost the same and could be

safely ignored; (d) SVM with optimized parameters is the most powerful predictor for all

subsets of features; (e) SVM and LDR classifiers, however, show a similar trend. For both

classifiers, DDIs of L1 are better than those of L3, while DDIs of L2 are much better than

those of both L1 and L3.
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Table 6.4: A summary of the number of CATH DDIs of level 1 present in the ZH and MW
datasets.

ZH-CATH-L1 MW-CATH-L1
Domain1 Domain2 # Ob. # Non-ob. Total # Ob. # Non-ob. Total

c1 c1 17 8 25 29 18 47
c1 c2 6 4 10 18 41 59
c1 c3 12 18 30 63 59 122
c1 c4 1 1 2 1 7 8
c2 c2 15 18 33 28 92 120
c2 c3 7 22 29 27 77 104
c2 c4 2 2 4 10 6 16
c3 c3 101 25 126 88 70 158
c3 c4 0 0 0 4 8 12
c4 c4 1 0 1 0 0 0

6.4.3 Analysis of DDIs

As discussed earlier, DDI features related to levels 1 to 3 of CATH are more powerful than

those of other levels when used for prediction of obligate and non-obligate complexes. In

level 1, the “class” of each complex is defined. Four classes of CATH, which are determined

based on the secondary structure composition of the complexes, are mainly-alpha (c1),

mainly-beta (c2), alpha-beta (c3) and secondary structure content (c4) [23]. A summary

of the number of DDIs present in both the ZH and MW datasets, categorized by complex

type, obligate and non-obligate, is shown in Table 6.4. There are ten unique DDIs from

these four classes of domains in CATH level 1. By observing the table, it is clear that most

of the DDIs are between domains of c3 and other classes in which c3:c3 has the highest

rank among all levels. However, domains of c4 have the least number of interactions with

the domains of other levels. In addition, the number of obligate DDIs is larger than the

number of non-obligate DDIs, when considering the interactions of homo-DDIs such as

c1:c1 and c3:c3.
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To provide a visual insight of the distribution of DDIs present in the complexes of the

MW and ZH datasets, a schematic view of the DDIs of levels 2 and 3 is shown in Figure

6.1. In each figure, DDIs that are obligate, non-obligate or common are shown as blue,

red and pink dots respectively. In the plots, the domains have been grouped by category

and then arbitrarily numbered within each category (the numbers correspond to the x and y

axes).

In the figures related to level 2 (a and b), the horizontal and vertical green lines indicate

the boundaries of classes in L1 of CATH. It is clear that there are fewer dots in the right

column of both a and b and these dots show the interaction of domains of c4 and domains of

other classes. This indicates that DDIs related to c4 are not important and could be ignored

for achieving a faster, yet still accurate, prediction. In contrast, DDIs in the diagonal,

especially c3:c3 and c2:c2, have the most number domain interactions. Moreover, there are

fewer common DDIs in c1:c1 and c1:c2 in comparison to other DDIs.

In the figures for level 3 (c and d), the boundaries of level 1 are shown with blue lines

while level 2 boundaries are shown with green lines. Some concentration of blue or red

dots can be seen in some parts of the plots in both datasets. This suggests that some do-

mains are more likely to occur in obligate, while others in non-obligate complexes. This

is more noticeable along the diagonal, in which most of the obligate DDIs (blue dots) are

concentrated, which indicates that the largest number of homo-domain pairs are in obligate

complexes. By considering this distribution, all DDIs can be divided into three main groups

of more obligate (columns 1-20, 2-30 and 3-90), more non-obligate (columns 2-60 and 3-

40) or non-interaction (columns 2-102 and 2-150). By analyzing this grouping scheme,

some DDIs in level 3 can be considered less important (non-interaction group), while the

others are more important (more obligate and more non-obligate groups) to predict obligate
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and non-obligate complexes.

6.5 Conclusion

We have presented a structural, domain-based approach to predict obligate and non-obligate

protein complexes. We have also investigated various interface properties of these interac-

tions including amino acid type and DDI features for different levels of the CATH hierarchy.

The classification is performed via LDR methods with heteroscedastic criteria and an SVM

with RBF, polynomial, and sigmoid kernels.

The results for two well-known datasets of pre-classified complexes demonstrate that

classification using DDI features from level 2 of the CATH hierarchy achieves better per-

formance than using DDIs from levels 1 and 3, and much better performance than using

DDIs of levels 5 to 8 for both LDR and SVM classifiers. This suggests that DDIs from

level 2 of CATH are more powerful and discriminative than DDIs from other levels for pre-

dicting obligate and non-obligate PPIs. Also, the SVM classifier with optimized parameters

outperforms the LDR methods for all subsets of features.

Furthermore, a visual and numerical analysis of DDIs shows that: (i) in both datasets,

most homo-domain pairs are in obligate interactions; (ii) while there are fewer interactions

between domains of c4 and domains of other classes, most of the interactions are between

domains of c3 and domains of other classes.
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(a) MW-CATH-L2

(b) ZH-CATH-L2

Figure 6.1: Schematic view of levels 2 and 3 of CATH DDIs present in the MW and ZH
datasets.
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Figure 6.1: Schematic view of levels 2 and 3 of CATH DDIs present in the MW and ZH
datasets.
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Chapter 7

Analysis of Obligate and Non-obligate
Complexes using Desolvation Energies in
Domain-domain Interactions

7.1 Introduction

Protein interactions are important in many essential biological processes in living cells,

including signal transduction, transport, cellular motion and gene regulation. As a con-

sequence of this, the identification of protein-protein interactions (PPIs) is a key topic in

life science research. Prediction of PPIs has been studied mostly using computational ap-

proaches and from many different perspectives. Prediction of interfaces (interactions be-

tween subunits) in different molecules includes analysis of patches, sites, amino acids, or

even specific atoms. The physicochemical and geometric arrangement of subunits in pro-

tein complexes is best known as docking. An important aspect that has recently drawn

the attention of the research community is to predict “when” the interactions will occur –

this is mostly studied at the protein interaction network level. Another important aspect

in studying PPIs is the identification of different types of complexes, including similarities

between subunits (homo/hetero-oligomers), number of subunits involved in the interaction
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(dimers, trimers, etc.), duration of the interaction (transient vs. permanent), stability of the

interaction (non-obligate vs. obligate), among others; we focus on the latter problem.

Obligate interactions are usually considered as permanent, while non-obligate interac-

tion can be either permanent or transient [1]. Non-obligate and transient interactions are

more difficult to study and understand due to their instability and short life, while obligate

and permanent interactions last for a longer period of time, and hence are more stable [2].

For these reasons, an important problem is to distinguish between obligate and non-obligate

complexes. To study the behavior of obligate and non-obligate interactions, in [3], it was

shown that non-obligate complexes are rich in aromatic residues and arginine, while de-

pleted in other charged residues. The study of [4] suggested that mobility differences of

amino acids are more significant for obligate and large interface complexes than for tran-

sient and medium-sized ones.

Some studies in PPI consider the analysis of a wide range of parameters, including

desolvation energies, amino acid composition, conservation, electrostatic energies, and hy-

drophobicity for predicting obligate and non-obligate complexes. In [1], a classification of

obligate and non-obligate interactions was proposed where interactions are classified based

on the lifetime of the complex. In [5], three different types of interactions were studied,

namely crystal packing, obligate and non-obligate interactions. That study was based on

using solvent accessible surface area, conservation scores, and the shapes of the interfaces.

After classifying obligate and transient protein interactions based on 300 different interface

attributes in [6], the difference in molecular weight between interacting chains was reported

as the best single feature to distinguish transient from obligate interactions. Based on their

results, interactions with the same molecular weight or large interfaces are obligate.

Different studies have claimed that only a few highly conserved residues are crucial for
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protein interactions [7, 8]. Moreover, it has been shown that physical interactions between

proteins are mostly controlled by their domains, as a domain is often the minimal and

fundamental module corresponding to a biochemical function [7, 8]. Thus, in previous

studies, the physical interaction between proteins is analyzed in terms of the interaction

between residues of their structural domains. For example, in [7], interactions between

residues were used for finding obligate and non-obligate residue contacts of PPIs. That

study concluded that non-obligate interfaces occupy less than 2% of the area of the domain

surfaces, while the number of obligatory interfaces is between 0–6%. In [8], the interface

of 750 transient DDIs, interactions between domains that are part of different proteins,

and 2,000 obligate interactions were studied. The interactions between domains of one

amino acid chain were analyzed to obtain a better understanding of molecular recognition

and identify frequent amino acids in the interfaces and on the surfaces of PPIs. Also,

in [9], the domain information from protein complexes was used to predict four different

types of PPIs including transient enzyme inhibitor/non enzyme inhibitor and permanent

homo/hetero obligate complexes.

In a recent work [10], an approach to distinguish between obligate and non-obligate

complexes has been proposed in which desolvation energies of amino acids and atoms

present in the interfaces of PPIs are considered as the input features of the classifiers. The

results of that classifier show that desolvation energies are better discriminant than solvent

accessibility and conservation properties. In this paper, we present an analysis of PPIs that

uses properties of DDIs present in the interface to predict obligate and non-obligate protein-

protein interactions. Desolvation energies of atom and amino acid pairs present in the

interface of DDIs as well as desolvation energies of all atom and amino acid pairs present

in the interface of interacting complexes are used in the prediction. We have also performed
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an analysis on the DDIs present in the two types of interactions. A visual analysis shows that

unique pairs can be identified for both types of interactions, and highlight the presence of

homo-DDIs in obligate interactions. The prediction approach resorts on two state-of-the-

art classification techniques of linear dimensionality reduction (LDR) and support vector

machines (SVM). Ten-fold cross validation of the proposed scheme on our binary-PPID

dataset, which is an extended dataset that we compiled from two well-known datasets of

[5] and [11], demonstrates that (a) using desolvation energies of atom type features are

better than the features used in [5] for predicting obligate and non-obligate complexes,

achieving 77.78% classification accuracy in comparison to 71.80% (b) atom type features

are better than amino acid type features for prediction of these two types of complexes (c)

although the prediction accuracies by considering atom and amino acid pairs present in the

interacting domains instead of all interacting atom and amino acid pairs of two chains are

low, they are still acceptable and provide additional information about the specific domains.

7.2 Materials and Methods

7.2.1 Dataset

We have compiled a new dataset by merging two existing, pre-classified datasets of pro-

tein complexes obtained from the studies of Zhu et al. [5], and Mintseris and Weng [11].

The former dataset contains 75 obligate and 62 non-obligate interactions while the latter

contains 115 obligate and 212 transient interactions. There are 39 common interactions

between these two datasets and hence the redundant complexes were removed. In addition,

we carefully examined all the interactions and removed complexes with contradicting class

labels. For example ”1eg9,A:B” is classified as both obligate and non-obligate in [5] and
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[11]. In total, seven complexes: 1eg9, 1hsa, 1i1a, 1raf, 1d09, 1jkj and 1cqi, showed this

contradiction and were then removed from the new dataset. After this pre-processing stage,

the new dataset resulted in 417 complexes from which 182 were obligate and 235 were

non-obligate. In this study, each complex is considered as the interaction of two chains

(two single sub-units). Since the dataset of [11] considers the interaction of two units in

which each may contain more than one chain, e.g., ”1qfu,AB:HL”, all these complexes were

converted to interactions between two single chains (binary interactions). For this, all bi-

nary interactions of each of the 93 multiple-chain complexes were identified, obtaining 289

interactions, and each of these was converted into a separate complex in the new dataset.

For example, the multiple-chain of 1qfu was transformed to four binary chains as follows:

A:H, A:L, B:H and B:L. Another step involves taking the whole dataset of binary com-

plexes and filtering non-interacting pairs. Using the interface definition of [8], complexes

with interacting chains with less than five interface residues were removed. Two residues

(from different chains) are considered to be interacting if at least one pair of atoms from

these residues is 5Å or less apart from each other. This resulted in a dataset that contains

516 complexes, from which 303 are non-obligate and 213 are obligate binary interactions.

In a final step, we collected the domains contained in each interacting chain from the Pfam

database [12]. The complexes that do not have any domains in at least one of their subunits

were discarded in the analysis. This resulted in our final dataset of 315 complexes, from

which 146 are obligate complexes and 169 are non-obligate complexes - we call this dataset

binary protein-protein interactions by considering domain definitions (binary-PPID). The

PDB IDs of these complexes and the interacting chains are shown in Table 7.1.
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Table 7.1: Binary-PPID dataset (146 obligate and 169 non-obligate binary complexes).
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7.2.2 Features

We use desolvation energies as the predicting properties, which are shown to be very ef-

ficient for prediction of obligate and non-obligate complexes [10]. Knowledge-based con-

tact potential that accounts for hydrophobic interactions, self-energy change upon desolva-

tion of charged and polar atom groups, and side-chain entropy loss compose the so-called

binding-free energy. In [13], the total desolvation energy is defined as follows:

∆Gdes = g(r)ΣΣei j. (7.1)

If we are considering the interaction between the ith atom of a ligand and the jth atom

of a receptor then ei j is the atomic contact potential (ACP) [14] between them, and g(r) is

a smooth function based on their distance. The value of g(r) is 1 for atoms that are less

than 5 Å apart [13]. For simplicity, we consider the smooth function to be linear. Within

the range of 5 and 7 Å, the value of g(r) is (7− r)/2.

We collected the structural data from the Protein Data Bank (PDB) [15] for each com-

plex in our dataset. After adding domain information obtained from Pfam to each atom

present in the chain, each PDB file was divided into two different ligand and receptor files

based on its side chains. From [14], we know that there are 18 atom types. Thus, for each

protein complex a feature vector with 182 values was obtained, where each feature contains

the desolvation energy of a pair of atom types. As the order of interacting atom pairs is not

important, the final length of feature vector for each complex was 171 that correspond to

unique pairs. We also considered pairs of amino acids, and for this, we computed desolva-

tion energy values for each pair of atoms using Eq. (7.1) and accumulated the values for

each pair of amino acids. Avoiding repeated pairs resulted in 210 different features (unique
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Table 7.2: Description of the subsets of features used in this study.

Name Feature Type Interacting Chains DDIs
PPID-AT atom type X -
PPID-AA amino acid X -
PPID-ATD atom type - X
PPID-AAD amino acid - X

pair of amino acids).

A posterior step was to identify the 317 unique domains present in the interface of at

least one complex in the dataset. Considering all pairs of domains, the desolvation energies

for all atoms and amino acids present in each interacting domains were calculated using

Eq. (7.1) and finally each complex had 171 atom type and 210 amino acid type features.

By using desolvation energies for different types of features, four subsets of features for

prediction and evaluation were generated (Table 7.2). The names of the subsets are PPID-

X where X is AT for atom type, AA for amino acid pairs, ATD for atoms in interacting

domains (DDIs) or AAD for amino acid pairs in interacting domains.

7.2.3 Prediction Methods

Linear Dimensionality Reduction

One of the approaches we have used for prediction is LDR. The basic idea of LDR is to

represent an object of dimension n as a lower-dimensional vector of dimension d, achieving

this by performing a linear transformation. We consider two classes, ω1 and ω2, represented

by two normally distributed random vectors x1 ∼ N(m1,S1) and x2 ∼ N(m2,S2), respec-

tively, with p1 and p2 the a priori probabilities. After the LDR is applied, two new random

vectors y1 = Ax1 and y2 = Ax2, where y1 ∼ N(Am1;AS1At) and y2 ∼ N(Am2;AS2At)
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with mi and Si being the mean vectors and covariance matrices in the original space, re-

spectively. The aim of LDR is to find a linear transformation matrix A in such a way

that the new classes (yi = Axi) are as separable as possible. Let SW = p1S1 + p2S2 and

SE = (m1 −m2)(m1 −m2)t be the within-class and between-class scatter matrices respec-

tively. Various criteria have been proposed to measure this separability [16]. We consider

the following two LDR methods:

(a) The heteroscedastic discriminant analysis (HDA) approach [16], which aims to ob-

tain the matrix A that maximizes the following function, which is optimized via eigenvalue

decomposition:

JHDA(A) = tr
{
(ASW At)−1 [ASEAt

−AS
1
2
W

p1 log(S
− 1

2
W S1S

− 1
2

W )+p2 log(S
− 1

2
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2

W )
p1 p2

S
1
2
W At

]}
. (7.2)

(b) The Chernoff discriminant analysis (CDA) approach [16], which aims to maximize

the following function, which is maximized via a gradient-based algorithm:

JCDA(A) = tr{p1 p2ASEAt(ASW At)−1

+ log(ASW At)− p1 log(AS1At)− p2 log(AS2At)}.
(7.3)

In order to classify each complex, first a linear algebraic operation y = Ax is applied

to the n-dimensional vector, obtaining y, a d-dimensional vector, where d is ideally much

smaller than n. The linear transformation matrix A corresponds to the one obtained by one

of the LDR methods, namely HDA or CDA. The resulting vector y is then passed through

a Quadratic Bayesian (QB) classifier [16], which is the optimal classifier for normal distri-
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butions. For additional tests, a linear Bayesian (LB) classifiers is considered, by deriving a

Bayesian classifier with a common covariance matrix: S = S1 +S2.

Support Vector Machines

SVMs are well known machine learning techniques used for classification, regression and

other tasks. The aim of SVM is to find the support vectors (most difficult vectors to be

classified), and derive a linear classifier, which ideally separates the space into two regions.

Classification is normally inefficient when using a linear classifier, because the data is not

linearly separable, and so the use of kernels is crucial in mapping the data onto a higher

dimensional space in which the classification is much more efficient. There are number of

kernels that can be used in SVM models. In our model, we use polynomial, radial basis

function (RBF) and sigmoid.

7.3 Results and Discussions

7.3.1 Experimental Settings

For the LDR schemes, four different classifiers were implemented and evaluated, namely

the combinations of HDA and CDA, and QB and LB classifiers. In a 10-fold cross valida-

tion setup, reductions to dimensions d = 1, . . . ,20 were performed, followed by QB and LB,

and the maximum average classification accuracy was recorded for each classifier. The best

accuracy for each method for each dataset is bolded to indicate the classifier that performed

the best for that dataset. Principal component analysis (PCA) was used as a pre-processing

step to eliminate ill-conditioned matrices present in the LDR step. To select the principal

components, we used different threshold values (from λmax10−2 to λmax10−7), where λmax
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is the largest eigenvalue of the scatter matrix. The results for the threshold that achieves the

highest accuracy are reported.

The SVM was also trained in a 10-fold cross validation setup with three kernels: RBF,

polynomial and sigmoid. The training was carried out with the LIBSVM package [17]. A

grid search was performed on the parameters gamma and C, choosing the ones that gives

the maximum average accuracy for all kernels. For the polynomial kernel, the degree of the

polynomial was set to 3.

The subsets of features shown in Table 7.2 were used for prediction. To analyze the

power of desolvation energy in discriminating obligate and non-obligate complexes, NOX-

class [5] was also applied to our binary-PPID dataset. The following four interface prop-

erties were analyzed, since in [5], these properties were recognized as the best ones for

prediction of different types of protein protein interactions:

• Interface area

• Interface area ratio

• Amino acid composition of the interface

• Correlation between amino acid compositions of interface and protein surface

We used NACCESS [18] to calculate solvent accessible surface area (SASA). After

running the classifiers in a 10-fold cross validation procedure for all subsets of features, the

average accuracies were computed. The accuracy for each individual fold was computed as

follows: acc = (T P + T N)/N f , where T P and T N are the true positive (obligate) and true

negative (non-obligate) counters respectively, and N f is the total number of complexes in

the test set of the corresponding fold.
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7.3.2 Analysis of Prediction

The results of SVM and LDR classifiers with different subsets of features are depicted in

Table 7.3. For SVM, it is clearly seen that the RBF kernel performs better that polyno-

mial and sigmoid kernels for all subsets of features. The atom type features present in

interacting chains (PPID-AT) are best classified with SVM and a RBF kernel, achieving an

average accuracy of 77.78%, while accuracy for atom type features present in interacting

domains (PPID-ATD) is 70.30%. Similarly, the subset of amino acid type features present

in interacting chains (PPID-AA) with 75.56% classification accuracy yields more efficient

predictions than using the subset of amino acid type features present in DDIs (PPID-AAD)

with 69.84% classification accuracy. Furthermore, the subset based on NOXclass features

(with best accuracy of 72.38%) perform worse than the best subset based on desolvation

energy properties (PPID-AT) on a SVM classifier.

For LDR, the best accuracy, 74.55%, is achieved by CDA with the quadratic classifier,

which is still lower than the best accuracy achieved by SVM. Note that both of them are

on the PPID-AT subset. Additionally, as in SVM, subsets of atom and amino acid type

features present in interacting chains perform better than those in DDIs. Also, the NOXclass

subset of features (PPID-NOXclass) yields lower accuracy (71.80%) than PPID-AT, which

is based on calculation of desolvation energies only, and also DDI subsets.

Generally, it can be concluded that in our binary-PPID dataset:

(a) SVM with RBF kernel performs better than LDR methods in all subsets of features

(b) Amino acid type features (for both PPID-AA and PPID-AAT subsets) yeild lower

accuracies than atom type features (PPID-AT and PPID-ATD) for both LDR and SVM

classifiers

(c) Although the performance of both SVM and LDR classifiers are lower for subsets
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Table 7.3: Prediction results for SVM and LDR classifiers on binary-PPID dataset.

SVM LDR
RBF Polynomial Sigmoid Linear Quadratic

HDA CDA HDA CDA
PPID-AT 77.78 76.83 72.70 71.76 74.08 72.73 74.55
PPID-AA 75.56 71.43 71.11 71.46 71.81 71.46 65.07
PPID-ATD 70.30 67.62 67.43 68.66 68.06 70.25 68.97
PPID-AAD 69.84 67.62 66.35 67.34 66.12 68.32 62.80

PPID-NOXclass 72.38 69.84 69.52 68.89 71.80 67.71 68.97

of DDI features (PPID-ATD and PPID-AAD) than subsets of interacting chain features

(PPID-AT and PPID-AA), they are acceptable results.

(d) Desolvation energy properties are more powerful than four properties of NOXclass

(interface area, interface area ratio, amino acid composition of the interface and correlation

between amino acid compositions of interface and protein surface) in predicting obligate

and non-obligate complexes.

7.3.3 Analysis of DDIs

As discussed earlier, the total number of DDIs among 317 existing domains of our binary-

PPID dataset is 100,489. After preprocessing and removing all zero-columns, we obtain

only 256 DDI pairs of which 125 are obligate and 131 are non-obligate DDIs.

The most salient feature in our binary-PPID dataset is the fact that all DDIs are presented

in either obligate or non-obligate complexes and there are no DDIs in both obligate and

non-obligate. This clearly implies that the type of complex could just be predicted by the

DDIs present in the interactions, achieving nearly perfect prediction rate of 100%. One

could design a simple classifier that contains binary features and indicates the presence or
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absence of the DDI in the complex, and then a simple rule that checks those binary flags.

However, this would not be the case when predicting new unknown complexes (not in this

dataset). That is, when using the training data to test the classifier. When cross-validation

is applied, as it is done in this paper, presence of a DDI in the training set may not imply

its presence or absence in the test set. In addition, it is expected, though it would not be

the case, that the DDI desolvation properties are much more informative than simply binary

features indicating the presence or absence of the DDI in the complex.

We performed a visual analysis on our DDIs and discovered that from 317 existing do-

mains in our binary-PPID dataset, 135 are present only in obligate DDIs, 158 are present

only in non-obligate DDIs and 21 domains are in both obligate and non-obligate DDIs. We

re-ordered the domain IDs based on their types (obligate, both and non-obligate). To pro-

vide a visual insight of the distribution of the DDIs in the different complexes, a schematic

view of the DDIs in the dataset is shown in Figure. 7.1. It is clearly seen that the most

homo-domain pairs are in obligate complexes (i.e. they lie on the diagonal line (x = y)

of the plot). Only a small part of the domain IDs are common. This also implies we can

achieve a reasonable prediction only by finding the domains of each unknown complex.

This is an interesting issue that deserves a lot of attention, and that we are currently inves-

tigating.

7.4 Conclusion

We have proposed an approach for prediction and analysis of obligate and non-obligate

protein complexes. We have investigated various interface properties of these interactions

including atom and amino acid types present in interacting chains or domains. Various

features are extracted from each complex, including the desolvation energies for atom and
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Figure 7.1: Schematic view of the DDI pairs in obligate and non-obligate interactions.

amino acid type pairs and also NOXclass properties. The classification is performed via

different LDR methods and SVM with different kernels, namely RBF, polynomial and sig-

moid.

The results on our binary-PPID dataset, which is a joint and modified version of two

well-known datasets, show that the SVM classifier with 77.78% accuracy achieves much

better classification performance, even better than LDR schemes coupled with quadratic

and linear classifiers for all subset of features. The results also demonstrate that desolvation

energy is better than interface area and composition for predicting obligate and non-obligate

complexes.

Furthermore, visual and numerical analysis on DDIs show that (i) most homo-domain

pairs are in obligate interactions and (ii) no common DDI is present in obligate and non-

obligate complexes and all DDIs are present in either obligate or non-obligate complexes.
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Our future work involves the use of other features such as residual vicinity, shape of

the structure of the interface, secondary structure, planarity, physicochemical features, hy-

drophobicity, structure of domains and many others in our dataset, and also identifying

pseudo-domains and motifs present in interacting proteins.
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Chapter 8

Computational Analysis of the Stability
of SCF Ligases Employing Domain
Information

8.1 Introduction

SCF ligases are the largest class of E3 ligases and are believed to be responsible for the

selection of up to 20% of the proteome for ubiquitin mediated degradation [1]. This class

of E3 ligases has been shown to be minimally comprised of four subunits: RBX1, CUL1,

SKP1 and an F-Box protein. The greater part of SCF-ligase function is thought to be the

control of protein abundance via ubiquitination and subsequent 26S proteasome-mediated

degradation. Although a substantial amount of information has been provided for regulation

of the cell cycle, transcription and many other processes via proteasome-bound SCF ligase-

mediated protein abundance regulation, the possibility of substrate ubiquitination events

mediated by the SCF-ligase which are not subjected to proteasome bound degradation can-

not be excluded at this juncture [2].

On the other hand, as the compact structural and functional units of proteins, domains

have a fundamental biological role in mediating the interactions of two or more proteins
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and serve some specific purpose, such as signal binding or manipulation of a substrate

within cells [3]. As a consequence, recent studies focus on employing domain knowledge

to predict protein-protein interactions (PPIs) [4–8]. There are few domain family resources

that can be applied for this purpose such as Pfam [9] and CATH – Class, Architecture,

Topology and Homologous superfamily – databases [10].

Although prediction of PPIs has been studied from many different perspectives, the

main aspects that are studied include [11]: sites of interfaces (where), arrangement of pro-

teins in a complex (how), type of protein complex (what), molecular interaction events (if),

and temporal and spatial trends (dynamics). Prediction of types of PPIs, in particular, the

identification and analysis of obligate and non-obligate complexes and their relevant prop-

erties has been studied from different perspective [12–18]. Obligate complexes are more

stable and have high-affinity interactions than non-obligate ones [19].

In this paper, we present an analysis of the role of domain interactions in determin-

ing obligate and non-obligate PPIs that are known or predicted to occur involving subunit

components of the SCF-ligase complex. For this, we used a manually curated SCF-ligase

dataset of 30 complexes that contains 21 obligate and 9 non-obligate complexes.

The numerical results on the number and type of interactions demonstrate that most of

the PPIs are mediated by at least one domain. Also, domain-domains interactions dominate

in obligate complexes whereas in non-obligate complexes, most of the interactions are me-

diated by one domain and a polypeptide chain. These results are in agreement with similar

studies published to date [13, 20].

Furthermore, the prediction results obtained by applying a support vector machine

(SVM) classifier on different extracted domain-based subset of features show that using

the combinations of domain-domain type, domain-peptide chain type and no-domain fea-
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ture vectors yield the best performance (80.64% prediction accuracy), in comparison to

domain-domain type or single-domain type used as feature vectors, individually. Also, by

employing Chi-Square for feature selection, the Pfam domain “PF00400” is recognized as

the most discriminative feature for classification of obligate and non-obligate complexes

in the dataset, achieving 77.42% prediction accuracy. This domain appears only in non-

obligate complexes and does not have any interactions with other domains.

8.2 Materials and Methods

To predict complex types, initially, the prediction properties (features) of each complex in

the dataset are extracted. Then, after selecting the most powerful and discriminative features

for prediction by employing a feature selection method, a classifier method is applied on

the selected features to predict the complex types. More explanations regarding the dataset,

extracted features and also feature selection and classifier methods used in this paper are

discussed below.

8.3 SCF-Ligases Dataset

As mentioned earlier, SCF-ligases are the largest class of E3 ligases which are minimally

comprised of four subunits of RBX1, CUL1, SKP1 and an F-Box protein, as shown in

Figure 8.1. RBX1 is responsible for the recruitment of the E2 ligase, CUL1 acts as a

scaffold for the assembly of SCF ligase, SKP1 acts as an adaptor connecting CUL1 to

the F-box protein, and the F-box protein dictates the target specificity of the E3 through

substrate selection [21].

Our manually curated SCF-ligase dataset contains 30 complexes. Of these, 21 com-
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Figure 8.1: A schematic view of a SCF-ligase.

plexes have strong interactions (obligate) and 9 complexes have weak interactions (non-

obligate). The Protein Data Bank (PDB) IDs of these complexes and the interacting chains

are shown in Table 8.1.

8.3.1 Prediction Properties

To extract domain-based prediction properties, first, the tertiary and quaternary structures

of the complexes in the dataset were downloaded from the PDB [22]. After filtering and

modifying the PDB files, the sequence domain content of each subunit was gleaned from

the Pfam website [9] and mapped to the corresponding amino acids in the chain.

In the dataset, 27 unique Pfam domains were present in the interface of at least one

complex were identified. Of these, 17 domains were in the obligate complex class and

4 were in the non-obligate, while the remaining 7 domains were both obligate and non-

obligate complexes. A domain is considered to be in the interface, if it has at least one

residue interacting with a domain in the other chain.

To calculate the features for prediction, first, all pairs of interacting amino acids and

their corresponding domains that are less than 7 Å apart from each other were extracted

for each complex in the dataset. After that, the extracted amino acid pairs are grouped
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Table 8.1: Dataset of SCF-ligase complexes.

Non-obligate Complexes (9)

1NEX E:B 2AST C:D 2P1N B:C

1P22 C:A 2E33 A:B 3DB3 A:B

2AST B:D 2OVQ B:C 3OGK Q:B

Obligate Complexes (21)

1FQV B:A 2ASS A:B 2P1M A:B

1LDK A:D 2ASS B:C 2QHO A:B

1LDK B:C 2E31 A:B 3MTN A:B

1LDK E:D 2HYE A:C 3NHE A:B

1NEX A:B 2HYE D:C 3OGK A:B

1P22 A:B 2HYE A:B 3OLM A:D

1U6G A:C 2OVP A:B 3PT2 A:B

into two-domain, single-domain and also no-domain groups based on their corresponding

domains. For instance, an amino acid pair is a member of single-domain group if only

one of the interacting amino acids belongs to at least one domain. To generate a domain-

domain type (DDT) feature vector for each complex, all pairs of domains were considered.

Since the order of the interacting domain pairs is not important, generated feature vectors

for domain-domain type features contain 378 =27
2 C + 27 values. The value of each do-

main pair in the DDT feature vector is the cumulative frequency across all occurrences of

their corresponding amino acid pairs present in the group of two-domain. Finally, after

pre-processing and finding domain-domain type feature vectors for all the complexes of

the dataset, all zero-columns, which represent domain pairs that were not present in any

complexes, were removed.

To generate a single-domain type (SDT) feature vector for each complex, all 27 identi-

fied unique domains in the dataset were considered, individually. Each feature contains the

sum of the frequencies for all amino acid pairs present in the group of single-domain with
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the same domain-peptide chain interactions. Similarly, all the zero columns were removed

after preprocessing all complexes, yielding 19 single-domain interactions for the dataset.

The no-domain (noD) feature vector has only one feature that shows the number of

amino acid pairs for each complex in the group of no-domain.

8.3.2 Prediction Method

After finding the properties of the complexes of the SCF-ligase dataset, a prediction method

is applied to them. In this work, the prediction is performed via a SVM. The main goal of

SVM is to find the support vectors, and derive a linear classifier, which ideally separates

all the feature vectors into two regions. Using a linear classifier is inefficient in most cases

when the data is not linearly separable. Hence, kernels, such as polynomial, radial basis

function (RBF) and sigmoid, can be used to map the data onto a higher dimensional space

in which the classification boundary can be found much more efficiently. The effectiveness

of the SVM depends on the selection of the kernel and optimizing its parameters [23]. In

addition, sequential minimal optimization (SMO) is a fast learning algorithm that has been

widely applied in the training phase of a SVM classifier as one possible way to solve the

underlying quadratic programming problem. In this work, the SMO module of the Waikato

Environment for Knowledge Analysis (WEKA) with a normalized polynomial kernel, de-

fault parameter settings, and 10-fold cross-validation is used to perform classification via

the SVM [24].

8.3.3 Feature Selection

Feature selection is the process of choosing the best subset of relevant features that rep-

resents the whole dataset efficiently after removing redundant and/or irrelevant ones. Ap-
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plying feature selection before running a classifier is useful in reducing the dimensionality

of the data and, thus, reducing the prediction time while improving the prediction perfor-

mance. In this paper, Chi Square (χ2) is employed for feature selection. This method

measures the degree of independence of each feature to the classes by computing the value

of the chi-square statistic [25]. The χ2 value of a feature X with respect to class attribute Y

is calculated as follows:

χ2(Y,X) =
N × (AD−CB)2

(A+C)× (B+D)× (A+B)× (C +D)
, (8.1)

where A is the number of times feature X and class Y co-occur, B in the number of times

X occurs without Y , C is the number of times Y occurs without X , D is the number of

times neither X and Y occurs, and N is the total number of samples. In this work, the

ChiSquaredAttributeEval module of the WEKA is used for ranking the features.

8.4 Results and Discussions

8.4.1 Analysis of Interaction Types

After identifying all the unique domains present in the interface of at least one complex in

the dataset, for each complex, the number of domain-domain interactions (DDIs), domain-

peptide chain interactions (DIs) and also the number of interactions that none of the inter-

acting amino acids belong to any domains (noD) were calculated. In Figure 8.2, the number

and type of the interactions for non-obligate (left) and obligate (right) complexes are shown

in different colors: blue for DDIs, red for DIs and green for noD interactions.

From the histogram, it is clear that obligate complexes have more number of interactions
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Figure 8.2: Number and type of interactions for two groups of non-obligate (left) and obli-
gate (right) SCF-ligase complexes.

and most of them are domain-domain interactions. In contrast, non-obligate complexes

have less interactions in comparison to obligate ones and most of their interactions are

single-domain (DIs). Also, most of the interactions, are mediated by at least one domain.

Similarly, the statistical results of the average number of interactions for each obligate

and non-obligate complexes of the SCF-ligase dataset categorized by their interaction types

shown in Table 8.2, confirm the results demonstrated in Figure 8.2. It means that in both

obligate and non-obligate complexes, less than 1% of the interactions mediated by no do-

mains. Also, the average number of interactions of obligate complexes (3,879 pairs) is

approximately five times greater than the number of interactions of non-obligate complexes

(794 pairs) in the dataset. In addition, more interactions of non-obligate complexes (greater

than 86%) are DIs while for obligate complexes, more than 63% of interactions are DDIs.



CHAPTER 8. 181

Table 8.2: A summary of the average number of interactions for obligate and non-obligate
complexes of the SCF-ligase dataset categorized by their interaction types.

Complex Type Type of interactions
# DDIs # DI # noD Total

Obligate 43 686 64 794
Non-obligate 2475 1394 10 3879

8.4.2 Analysis of the Prediction Properties

After running the SVM in a 10-fold cross validation procedure for all subsets of features,

the average accuracies were computed as follows: acc = (T P + T N)/N, where T P is the

number of true positive (obligate), T N is the number of true negative (non-obligate), and N

is the total number of complexes in the test sets of all 10 folds.

The prediction results of the SVM classifier with different domain-based subsets of

features are depicted in Table 8.3. Although, as explained earlier, 27 unique domains were

identified in our SCF-ligase dataset, only 19 of them had interactions with peptide chains

(SDT feature vector). Similarly, from the 378 features of DDT features, only 21 domain

pairs were present in at least one of the complexes of the dataset.

From the table, it is obvious that the subset of “DDT + SDT +noD” with 41 features

achieves the best classification accuracy of 80.64%. Also, by combining the SDT feature

vector with noD feature, the prediction accuracy improved to 77.42%, which is better than

using SDT features individually. This improvement can also be seen by combining feature

vectors of DDT with noD. Hence, it can be concluded that noD is one of the best features for

prediction of obligate and non-obligate complexes in the dataset. Furthermore, the subset

based on domain-domain interaction pairs (DDT) with accuracy of 70.96% classification

accuracy yields less efficient predictions than other subset of features. Also, by comparing

the classification accuracies of SDT and DDT, it can be seen that the features of SDT are
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Table 8.3: Prediction accuracies of SVM-SMO for all domain-based subsets of features of
the SCF-ligase datase.

Subset Name Number of features Accuarcy
DDT 21 70.96%
DDT + noD 22 74.20%
SDT 19 74.19%
SDT + noD 20 77.42%
DDT + SDT + noD 41 80.64%

more powerful than the features of DDT to classify these two types of complexes.

8.4.3 Analysis of the Feature Selection

As explained earlier, we employed the filter method of χ2 in WEKA for feature selection.

The χ2 value of all features except a single-domain type feature “PF00400” is zero. Ap-

plying the SVM classifier using this single feature, achieving 77.42% prediction accuracy,

confirms that this single feature is the most powerful and discriminating feature for classi-

fication of obligate and non-obligate complexes in the dataset.

Pfam domain of “PF00400” appears in the following complexes: chain B of 2OVP,

2OVQ and 1NEX and chain A of 1P22. But after finding the feature vectors of SDT, DDT

and noD, “PF00400” can only seen in SDT and mediated single-peptide chain interactions

of non-obligate complexes.

8.5 Conclusion

We have presented a domain-based approach to predict types of interactions in SCF-ligases.

The model uses the frequencies of amino acid pairs present in the interface of domain-

domain, domain-peptide chain and no-domain interactions as the prediction properties. χ2
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is applied for selecting the most powerful features and a SVM is used for prediction of our

manually pre-classified SCF-ligase dataset.

The numerical results on the number and type of interactions demonstrated that (a) more

than 99% of the PPIs are mediated by at least one domain, (b) the average number of in-

teractions of obligate complexes is greater than those of non-obligate complexes, and (c)

domain-domains interactions dominate in obligate complexes whereas non-obligate com-

plexes exhibit more domain-peptide chain interactions. Also, the prediction results show

80.64% accuracy by combining all feature vectors. Furthermore, a little decrease in pre-

diction accuracy (3%) using χ2 feature selection is acceptable because of the less time and

space complexity required for prediction.

The results presented here are limited by the current state of domain-definition and con-

tent of the PDB and Pfam databases. The utility of our study will benefit from ongoing

enrichment of domain information in the public databases, resulting in further enhance-

ments in the predictive power of our approach.

From this study, various open questions remain to be answered. One of these is to per-

form biological analysis on the domains and motifs present in the interface of obligate and

non-obligate SCF-ligase complexes in order to achieve a better insight on these complexes,

their interactions, and functions.
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Chapter 9

Conclusions and Future Work

9.1 Conclusion

In this thesis, we have presented a prediction model to analyze protein-protein interaction

types, namely obligate and non-obligate. This model uses the proposed physicochemical

features of desolvation and electrostatic energies for pairs of atoms, amino acids or domains

present in the interfaces of such complexes as prediction properties. Moreover, the idea

of employing a domain-based approach for predicting obligate and non-obligate protein

complexes is also proposed in this thesis in order to achieve a better insight on proteins and

their interacting domains. For this purpose, both sequence domains of Pfam and structural

domains of CATH are considered.

After extracting the main features from the complexes, prediction is performed via sev-

eral state-of-the-art classification techniques, including LDR, SVM, NB and k-NN for sev-

eral well-known datasets of pre-classified complexes. Also, for an in-depth analysis of

classification results, some other experiments were also performed such as varying the dis-

tance cutoffs between atom pairs of interacting chains, or performing some visual and/or

numerical analysis. Moreover, several feature selection algorithms including GR, IG, Chi2
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and mRMR are also applied on the available datasets in some of our studies to obtain more

discriminative pairs of atom, amino acid, and domain types as features for prediction.

A summary of the experiments that we have performed in some of our previous studies

(those reported in the thesis) including the dataset name, extracted feature types, names

of applied classification and/or feature selection methods and also types of the performed

analysis is shown in Table 9.1.

In the table, DE and EE are the abbreviations of desolvation energy and electrostatic

energy, respectively. For the features, AT is a vector of 171 atom pairs, AA is a vector

of 210 amino acid pairs, DDIs is a vector of interacting domain pairs, SDT is a vector of

single domains (domain-peptide chain interactions), and noD is the number of amino acid

pairs for each complex with no-domain interactions. For more details regarding the type of

features, the reader is referred to the corresponding chapters of the papers.

A summary of the prediction results obtained using different types of features as well

as the biological, numerical and visual analysis and discussions can be found at the end of

each chapter, separately.
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9.2 Future Work

The future work involves various extensions to this thesis listed as follows:

• The approach described in this thesis can also be used for prediction of other types of

complexes, including intra and inter domains, homo and hetero-oligomers.

• Performing biological analysis to find the interacting domains of different types of

complexes and also investigating the types of DDIs are some of the worthy research

topics in this area.

• Biologically guided feature selection and interpretation combined with automatic fea-

ture selection could also be useful.

• Performing some post analysis to obtain the more discriminating and relevant pairs of

atoms, amino acids, and domains present in the interface of two interacting proteins

that are biologically meaningful is worth further investigation.

• Other properties can also be extracted to predict these types of interactions includ-

ing geometric (e.g., shape, planarity, roughness or others), and other statistical and

physicochemical properties such as residue and atom vicinity, secondary structure

elements, and salt bridges, among others.

• Studying motifs present in the interface of PPIs in order to achieve a better insight on

these complexes, their interactions, and functions is useful.

• Electrostatic energies can also used for the prediction of PPI of other types of inter-

actions.
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• Investigating the role of buried atoms and their influence in different types of interac-

tions especially for electrostatic interactions that are long-range and cover a broader

area in the interface is another problem that deserves attention.
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