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Abstract

This dissertation proposes new algorithms to recover the calibration parameters and

3D structure of a scene, using 2D images taken by uncalibrated stationary zooming

cameras. This is a common configuration, usually encountered in surveillance camera

networks, stereo camera systems, and event monitoring vision systems. This problem

is known as camera auto-calibration (also called self-calibration) and the motivation

behind this work is to obtain the Euclidean three-dimensional reconstruction and

metric measurements of the scene, using only the captured images.

Under this configuration, the problem of auto-calibrating zooming cameras differs

from the classical auto-calibration problem of a moving camera in two major aspects.

First, the camera intrinsic parameters are changing due to zooming. Second, because

cameras are stationary in our case, using classical motion constraints, such as a pure

translation for example, is not possible.

In order to simplify the non-linear complexity of this problem, i.e., auto-calibration

of zooming cameras, we have followed a geometric stratification approach. In particu-

lar, we have taken advantage of the movement of the camera center, that results from

the zooming process, to locate the plane at infinity and, consequently to obtain an

affine reconstruction. Then, using the assumption that typical cameras have rectan-

gular or square pixels, the calculation of the camera intrinsic parameters have become

possible, leading to the recovery of the Euclidean 3D structure. Being linear, the pro-

posed algorithms were easily extended to the case of an arbitrary number of images

and cameras. Furthermore, we have devised a sufficient constraint for detecting scene

parallel planes, a useful information for solving other computer vision problems.
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Chapter 1

Introduction

The world has witnessed immense spread of inexpensive, yet high quality, digital

imaging devices which are available almost everywhere ( still cameras, cell phones,

web-cams, tablets, cars, video cameras, security cameras, etc. . . ). The massive spread

and wide deployment of these imaging devices ignited the skyrocketing rate at which

digital images and videos are taken by consumers, and consequently raised more de-

mands and interest for computerized image interpretation. Despite the simplicity

of the image acquisition process, a massive amount of information from the sur-

rounding three-dimensional (3D) world is compactly stored into a small hand-size

two-dimensional (2D) photo. As visual perception is almost effortless for humans, we

are capable of recognizing objects and unfold the three-dimensional world information

back from those two-dimensional images. However, when it comes to computer vision

machines, such ability is so complex and difficult to imitate. In order to simplify

this complexity, computer vision tasks are classified into more restricted domains

each with limited and clear goals to be achieved, for example, recognition and three-

dimensional structure recovery. In this dissertation, we target the central problem of

three-dimensional reconstruction from two-dimensional images.
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1.1 The 3D reconstruction problem

Successful solutions for many computer vision tasks may be achieved from 2D image

information such as handwriting recognition, Optical Character Recognition (OCR),

automatic face recognition, automated medical image analysis, etc. On the other

hand, many computer vision applications mandate for their operation reconstructing

the rigid 3D scene and information back from two or more images. This is known

as the 3D reconstruction problem. Traditionally, the typical solutions are the usage

of expensive devices working under controlled circumstances which were mainly used

for robotics and inspection applications.

Nowadays, however, a growing demand for 3D information has emerged for appli-

cations such as navigation, surveillance, 3D modeling, archeology, visualization, and

scene measurements with different levels of required accuracy and 3D data quality. In

addition, these applications require camera systems with flexible acquisition proce-

dures using low cost off-the-shelf cameras. Under these requirements, the acquisition

of the 3D information of the scene is a more difficult task, as it is often assumed that

both the scene and the camera geometry are unknown.

To simplify this complex problem, the framework of 3D reconstruction task is

decomposed into a number of manageable subproblems, with clearly defined input

and output links between them. This simplifies the problem by allowing researchers

to focus on solving more specific subproblems.

The first subproblem in this context is the feature matching problem, which is

also known as the correspondence problem. This problem concerns relating images

by finding the corresponding features between the different images (e.g. points, lines

, edges, etc). The result from the feature matching step initiates the next step of

2



structure from motion problem. When given two or more related images of a rigid

scene, taken by a moving camera with unknown motion and orientation, the 3D

structure need to be computed. The simplest case of 3D reconstruction is when

the camera parameters are known, i.e. calibrated camera, where only the position

and orientation of the camera need to be obtained. Traditionally, the camera can be

calibrated in advance, prior to image acquisition, using classical calibration techniques

with the aid of special calibration patterns of known geometry. However, in this

approach, the camera parameters should be kept constant during image acquisitions,

and thus focusing and zooming are prohibited.

However, in the case of unknown camera parameters, i.e. uncalibrated camera,

only projective structure of the scene can be obtained. Unfortunately, the projective

structure is of very limited use for computer vision, and need to be upgraded to

more useful and specialized structure such as affine, metric, or Euclidean. In order to

upgrade a projective representation to a metric one, the intrinsic parameters must be

recovered. Here comes the importance of auto-calibration, or self-calibration, which

is the process of determining the intrinsic parameters (i.e. geometric and optical

specifications) of the camera, from point correspondence only and without the aid of

calibration pattern. When those parameters are recovered, the camera is said to be

“calibrated” [43].

1.2 Zooming and auto-calibration

This dissertation is concerned mainly with the problem of recovering the scene struc-

ture from uncalibrated systems consisting of zooming cameras. The low cost of man-

ufacturing high-resolution camera systems, with automated zoom lenses, has widely

3



expanded their deployments. Camera systems with zoom ability are inherently more

useful than those cameras with fixed lenses. For some vision tasks, it might be very

useful to zoom out to yield a broad overview of a large area, while in other cases it

might be very important to zoom in to take a closer look at an object. In general, the

flexibility to freely adjust the camera settings to the scene’s conditions allows pro-

ducing better image quality. Camera systems with fixed parameters fail to produce

meaningful data in many situations.

Despite these advantageous characteristics, zooming cameras are less commonly

used in computer vision tasks, in comparison with imaging systems which rely on

cameras with fixed parameters. Very little work has been done in the field of zooming

camera auto-calibration. Using zooming cameras in computer vision introduce a wide

range of visual processing difficulties, and only few studies have reported integrating

image systems with zooming capabilities. The most important and obvious reason is

that the camera’s intrinsic parameters are immediately lost when the camera changes

its setting by zooming. Knowledge of camera’s intrinsic parameters are crucial for

recovering the metric structure and metric measurements from the 2D images.

In this dissertation, we address the auto-calibration problem of a system of two

or more individual stationary zooming cameras. To the best of our knowledge, such

configuration of cameras has not been specifically addressed in the literature. This

is a commonly occurring configuration often encountered in stereo camera systems

mounted over a robot head, surveillance networks, and monitoring of events. In such

image capture systems, each camera is physically attached to a static structure (wall,

ceiling or tripod) and is only allowed to zoom. This is a challenging configuration in

which only complex non-linear solutions exist. As the cameras may frequently zoom

and thus mandate re-calibration, a simple and reliable solution is highly desirable.

4



A stratified approach for auto-calibrating such system of zooming cameras is pro-

posed. The proposed camera auto-calibration method exploits the zooming capability

of the cameras in order to directly estimate the location of the plane at infinity. To the

best of our knowledge, this is the only method that does so without any assumption,

such as a restricted camera motion or scene knowledge. The well-known modulus

constraint, used to locate the plane at infinity, is only valid for cameras with constant

intrinsic parameters. Furthermore, as its computation is nonlinear, it is not reliable to

be used in practice. Because we are considering cameras that are stationary, methods

based on restricted camera motion are not valid (e.g. pure rotation, pure translation,

and planar motion). Moreover, the proposed method does not require the existence,

and hence identification, of any scene constraints, such as, parallel and/or orthogonal

lines or planes.

1.3 Objectives

The main objective of this work is to auto-calibrate a vision system, that consists

of multiple zooming cameras, and to reconstruct the three-dimensional structure of

a scene from two-dimensional images. In particular, the orientation and relative

position of the cameras does not need to be known in advance.

This dissertation addresses the following problems in the context of zooming cam-

eras :

• The calculation of the plane at infinity using only linear equations.

• The affine calibration of cameras and the affine 3D reconstruction of an observed

scene.

5



• The metric calibration and metric 3D reconstruction of a scene.

• The automatic detection of the scene parallel planes.

1.4 Contribution

The main contributions of this dissertation are as follows :

• Affine auto-calibration for a zooming stereo vision system. A new linear method

to compute the affine 3D structure from a stereo zooming camera system has

been proposed. Based on the valid observation that, the principal planes before

and after zooming provide a pair of parallel planes, we were able to extract

constraints on the plane at infinity. Two such pairs of parallel planes, from

the stereo pair of cameras, are enough to identify the plane at infinity and,

thus allow to upgrade the projective structure to affine. The practical side of

this method is that, unlike all other existing approaches, it does not rely on

restricted intrinsic camera parameters, nor depends on special camera motions

or scene constraints. This work was published in the paper [20].

• Auto-calibration and 3D reconstruction using a set of zooming cameras. A strat-

ified auto-calibration approach was proposed and tested. First, the previous

method of locating the plane at infinity is extended. In practice, more than two

cameras may be available and each camera can capture more than two images,

at different zoom settings of its lens. In this case and in order to cope with image

noise, it is highly desirable to include all available cameras and images to locate

the plane at infinity. Once the latter is retrieved, the no-skew and/or known

aspect ratio constraints can be used to linearly estimate the so-called Image of
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the Absolute Conic (IAC) and hence all the intrinsic parameters. Two meth-

ods have been investigated for linearly calculating an estimate of the camera

parameters

(a) the well-known linear least-squares through Singular Value Decomposition

(SVD) [41]

(b) a Linear Matrix Inequality formulation which allows to enforce the require-

ment of a positive-definite IAC [59].

Our extensive experiments on simulated and real images, using a variable num-

ber of cameras, zoom settings and image noise, have shown that the obtained

estimate of the intrinsic parameters are good enough for a simple nonlinear least-

squares optimization procedure to converge towards the optimal parameters.

This work has been published in the Image and Vision Computing journal [21].

• An automatic detection of the scene’s parallel planes using a zooming camera.

Detecting parallel planes is of great importance for many vision tasks. In our

case, detecting parallel planes helps the auto-calibration process as well as the

quality of scene reconstruction. A necessary condition is proposed in which

parallel scene planes can be detected. Given a priori knowledge about a single

pair of parallel planes, it is possible to identify all the other scene’s parallel

planes from uncalibrated images. We have proposed a new method where we

have used the pair of parallel planes, resulting from two images taken by a

zooming camera, as our a priori known pair of parallel planes, to automatically

identify the scene’s parallel planes. This work was published in the proceeding

of Computer and Robot Vision (CRV) Conference [19].
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1.5 Dissertation organization

The layout of the subsequent chapters is as follows. Chapter 2 briefly describes

the needed background material that covers some basic and relevant mathematics of

projective geometry and transformations. The pin-hole camera model and parameters

are introduced. The concept of epipolar geometry and stratification of projective

space is then presented.

A literature survey of camera auto-calibration is presented in chapter 3. The latter

covers the different approaches for auto-calibration including methods which rely on

special motion or scene constraints. As we are interested in zooming cameras, more

attention will be given to auto-calibration of camera systems with varying settings.

It will be shown that existing techniques for auto-calibrating zooming camera are

nonlinear.

Chapter 4 and 5 respectively address the problem of affine and metric auto-

calibration of a system of stationary zooming cameras. In chapter 6, the automatic

parallel plane detection method is presented and examined. Finally, we conclude our

work in chapter 7.
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Chapter 2

Background

This chapter introduces the main geometrical concepts needed in this dissertation.

First, it introduces the projective geometry of two and three dimensional spaces and

the associated basic geometrical primitives of points, lines, planes, as well as the con-

cepts of conics and quadrics. Moreover, the basic principles of image geometry and

the pinhole camera model is also discussed. These concepts allow describing the pro-

jection process of world’s scenes into images. Next, the concept of epipolar geometry

relating information from multiple views of the three-dimensional world is reviewed.

At last, extra attention is given to the transformation of the different geometrical con-

cepts across the different geometrical layers including projective, affine, metric and

Euclidean. Understanding these concepts will pave the road for developing methods

to inverse the projection process, which will be the topic of the next chapter.

2.1 Projective geometry

The three-dimensional world is well described with Euclidean geometry. For exam-

ple, we can describe a cubic box by different properties such as its size, equal edge
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lengths, square shaped sides, 90◦ angles between each pair of intersecting edges, paral-

lel edges and sides,. . . etc. In addition, such properties are preserved under Euclidean

transformation (translating and rotating the box will not alter its shape). While

Euclidean geometry describes objects in our world so well, it is not the only type

of geometry that exist and that we are familiar with! Consider two images of an

object, say the same box, taken from different view points. During the image for-

mation, three-dimensional object is projected onto a two-dimensional image plane.

It is clear that the properties of the imaged object are no longer preserved and are

different even among the two images of the same object. The lengths of the edges

are no longer equal, squares became quadrangle, angles are no longer right, parallel

edges may appear intersecting. We, as humans, still capable to identify the original

Euclidean properties from these images. However, it becomes clear that Euclidean

geometry alone is insufficient for machine vision. Euclidean geometry is indeed a

subset of what is known as projective geometry. Furthermore, metric and affine are

two other less restrictive geometries which come between them.

Since the main inputs to computer vision problems are two-dimensional images

of three-dimensional world scene, projective geometry is an indispensable tool to

model the perspective projection of the three-dimensional scenes onto a sequence

of two-dimensional images. Using projective notation and concepts has numerous

advantages. The encountered geometric entities and their relationship in computer

vision can be represented in a linearized and compact algebraic form. Projective

geometry also unify dealing with both finite and infinite point in the same manner

and thus avoids special cases treatment and unnecessary limitations. However, these

advantages come at the expense of additional ambiguities in comparison to the ordi-

nary Euclidean space where ratios, lengths, and angles are no longer preserved while
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parallel lines may intersect!

An n-dimensional projective space is defined by n+2 basis points. A points in an n-

dimensional projective space is represented by an n+1 column vector while projective

transformation are represented by (n + 1) × (n + 1) matrices. Projective geometry

may span any number of dimension, however, only notation and representations of the

main geometric entities of the two-dimensional P2 and three-dimensional P3 projective

spaces are described next. Most of the topics and material in this section can be

found in the “Multiple View Geometry” book of Hartely and Zisserman [43]. The

exploration is not meant to be extremely through, but to present a handy reference

to the most significant working tools that will be needed in later chapters. For precise

description and proofs of algebraic projective geometry, one should consult the original

text.

2.1.1 Homogeneous coordinates

Homogenous coordinates systems used in projective geometry are quite analogues

to the Cartesian coordinates systems used in Euclidean geometry. The Cartesian

coordinate of a point q̃ in n-dimensional Euclidian space is represented by an n-

vector: q̃ = (q1, . . . , qn)ᵀ. The homogenous representation q of this same point can

be achieved by simply adding an extra component of 1 at the end: q = (q1, . . . , qn, 1)ᵀ.

In general, scaling is unimportant, so the point (q1, . . . , qn, 1)ᵀ represents the same

point (αq1, . . . , αqn, α)ᵀ for any nonzero scalar α. In more general and compact form,

homogeneous coordinates of a point q in an n-dimensional space is represented by an

(n+ 1) tuple vector as follow:

q
.
= (q1, . . . , qn, qn+1)

ᵀ or q
.
= (q̃, 1)ᵀ.
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where
.
= indicates equality up to a non-zero scale factor.

While Cartesian coordinate system is limited to only represent points at finite

distance from the origin, homogenous coordinates system is capable of equally ex-

pressing both finite and infinite points of the projective space uniformly. This is

the most significant advantage of using homogenous coordinate system for projective

space. It revokes limitation on designing algorithms as it avoids special cases treat-

ment. An infinite points q∞ (known as infinity points or ideal points) in homogenous

coordinates is represented by setting the last component qn+1 to zero such that

q∞
.
= (q1, . . . , qn, 0)ᵀ.

The Cartesian counterpart q̃ of a finite homogenous point q can be obtained back

by simply dividing its components by the last one: q̃
.
= ( q1

qn+1
, . . . , qn

qn+1
)ᵀ. Since

infinite points are not defined with Cartesian coordinates, if we try to divide by the

last coordinate of a point at infinity, then we get the point (q1

0
, . . . , qn

0
)ᵀ and thus

(∞, . . . ,∞)ᵀ which is infinite.

2.1.2 Two-dimensional projective space

The two-dimensional projective space P2, also known as the projective plane, is the

set of all equivalent three-vectors (q1, q2, q3)
ᵀ excluding the null vector ( 0 , 0 , 0 )ᵀ.

Points and lines in P2

A point q in P2 is represented by a homogenous 3-vector:

q
.
= (q1, q2, q3)

ᵀ
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The set of vectors in P2 having the third coordinate set to zero, i.e. (q1, q2, 0)ᵀ,

represent the set of points at infinity. This subset of infinite points lies on a single

line called the line at infinity.

A line l on the projective plane P2 is also denoted by a 3-vector:

l
.
= (l1, l2, l3)

ᵀ

Since both lines and points in projective plane are represented with homogenous

3-vectors, both have only 2 degrees of freedom.

A point q lies on the line l if and only if their vector products satisfy:

qᵀl
.
= 0 (2.1)

Two distinct lines l1 and l2 intersect in a point q given by their cross-product:

q
.
= l1 × l2 (2.2)

Similarly, two distinct points q1 and q2 define the line l given by:

l
.
= q1 × q2 (2.3)

Equations (2.2) and (2.3) are just an example of the duality between points and

lines in the projective plane. This duality also exists between points and planes in P3

and indeed for any other higher dimensions of the projective space Pn.

In an alternative and more compact way, equations (2.2) and (2.3) can be re-

13



written as:

q
.
= [l1]×l2 and l

.
= [q1]×q2 (2.4)

where the 3× 3 skew-symmetric [v]× for a given 3-vector v = (v1, v2, v3) is on the

form:

[v]× =


0 v3 −v2

−v3 0 v1

v2 −v1 0

 (2.5)

Conics

A conic in projective space P2 is a curve described by a second degree equation. Such

curves can be written in homogenous form as follow:

C1q
2
1 + C2q1q2 + C3q

2
2 + C4q1q3 + C5q2q3 + C6q

2
3 = 0

Since the conic consist of six homogenous elements (up to a non-zero scale factor),

conics has five degree of freedom. The six elements of the conic can be arranged, more

conveniently, by a 3× 3 symmetric matrix on the form:

C
.
=


C1 C2/2 C4/2

C2/2 C3 C5/2

C4/2 C5/2 C6

 (2.6)

Due to duality between points and lines in P2, conics can be point conics or line

conic. A point conic C is the locus of the set of points lying on the conic curve. Any
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point q on the conic must satisfy

qᵀ C q
.
= 0 (2.7)

A line conic denoted C∗ is the dual representation of the point conic. It can be

though of as the envelope formed from the set of all lines tangent to the conic locus.

All such lines must satisfy

lᵀ C∗ l
.
= 0 (2.8)

It can be shown that the relation between a full rank point conic C and its dual

line conic C∗ is given by its inverse as C∗
.
= C−1.

2.1.3 Three-dimensional projective space

The three-dimensional projective space P3 consist of the set of all equivalent four-

vectors (Q1,Q2,Q3,Q4)
> excluding the null vector ( 0 , 0 , 0 , 0 )>.

Points and planes

A point Q in P3 is represented by a homogenous 4-vector:

Q
.
= (Q1,Q2,Q3,Q4)

>

The dual entity of a point in (P)3 is a plane which is also represented by a ho-

mogenous 4-vector

Π
.
= (π1, π2, π3, π4)

>
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Any point Q lying on the plane Π must satisfy:

Π>Q = Q>Π = 0 (2.9)

Any three non-collinear points define a plane Π as:


Q>1

Q>2

Q>3

Π = AqΠ = 0 (2.10)

where the plane Π can be computed as the 4-vector right null space of the matrix

of points Aq. Applying the duality principle between points and planes in (P)3, any

three non-coincident planes intersect in a point Q:


Π>1

Π>2

Π>3

Q = AπQ = 0 (2.11)

where the point Q can be computed as the 4-vector right null space of the matrix

Aπ constituted from the 3 planes and has a full rank (i.e. not singular).

Lines

Lines in the projective 3−diminsional space are self-dual. A point-based line, denoted

L, can be defined by any two points on the line, and its dual plane based line, de-

noted L∗ can be represented by any two distinct planes both containing that line (i.e.

intersecting exactly at it). Notional representation of lines in (P)3 is less convenient.

Among the different possible ways to represent lines, a line L and its dual L∗ adopted
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in this dissertation is represented by 2× 4 matrix such that:

L
.
=

 Q>1

Q>2

 and its dual L∗
.
=

 Π>1

Π>2

 (2.12)

where Q1 & Q2 are any two points on the line L, Π>1 & Π>2 are any two distinct

planes intersecting at the line L∗.

Quadrics

In projective 3-dimensional space P3, a quadric has a similar concept of conic in P2.

A quadric is a surface such as spheres, paraboloid, and cones. Quadrics are repre-

sented by a symmetric 4× 4 homogeneous matrix Ω. Note that due to symmetrical

form, the quadric matrix Ω depends only on nine parameters (the 10 diagonal and

above diagonal parameters minus 1 for scale). Ω is designated to denote point-based

quadrics while its dual Ω∗, is designated to plane-based quadric.

A point quadric Ω is the locus of all points Q on its surface which satisfy the

homogenous quadratic equation:

Q>Ω Q = 0, (2.13)

whereas a dual quadric Ω∗ is defined by the locus of all planes Π which satisfy

the quadratic equation:

Π>Ω∗Π = 0 (2.14)

Similar to the relation between a conic and its dual in projective 2-dimensional space,

the relation between a nonsingular (i.e. full rank) quadric Ω and its dual Ω∗ in
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3-dimensional space is given by its inverse Ω∗
.
= Ω−1 .

2.2 Transformation

A transformation in the projective space, also known as a homography, is a linear

mapping from Pn → Pn. Transformations in n−diminsional space are represented by

homogenous (n+ 1)× (n+ 1) invertible matrices T. The homogenous representation

of transformation matrices implies that these matrices are defined up to non-zero

scale factor, thus the transformations T and αT are the same for all nonzero scalar

α. The dual of a transformation T is denoted T−> where T−> = (T−1)> = (T>)−1.

2.2.1 Transformation in 2-dimensional space

In projective plane P2, a projective transformation is represented by a 3 × 3 matrix

H of nine homogenous elements. Under such transformation, points are mapped

to points and lines are mapped to lines. Projective transformation doesn’t preserve

angles, ratios, or parallelism. However, collinearity and cross ratios (ratio of ratios)

are preserved and remain invariant.

A point q transforms into point q′ as:

q→ q′
.
= T q (2.15)

The corresponding transformation of a line l is given by

l→ l′
.
= T−> l (2.16)
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A conic C and its dual C∗ transform as

C→ C′
.
= T−> C T−1 and its dual C∗ → C∗′

.
= T C∗ T> (2.17)

2.2.2 Transformation in 3-dimensional space

Transformation in projective space P3 follows similar reasoning. A transformation

is represented by 4 × 4 matrix T of 16 homogenous elements. Under projective

transformation, points, planes, and lines are mapped as follow:

Q→ Q′
.
= T Q (2.18)

Π→ Π′
.
= T−> Π (2.19)

L→ L′
.
= T L and its dual L∗ → L′∗

.
= T−> L∗ (2.20)

where L and it dual L∗ are the point and plane line representation in section (2.1.3).

Under homography transformation T, quadrics Ω and dual quadrics Ω∗ transforms

as

Ω→ Ω′
.
= T−> Ω T−1 (2.21)

Ω∗ → Ω∗′
.
= T Ω∗ T> (2.22)
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2.3 Geometry of images

This section is mainly concerned with the geometry of image formation and camera

model which is of crucial importance to recover the scene 3D geometry. The involved

camera model during image formation establishes strong relationship between the 3D

scene points and their corresponding 2D image points. Such relationship is strictly

governed by the camera intrinsic and extrinsic parameters. Among a number of

available camera models, only the pinhole camera model is reviewed; which is the

mainly and most practically used camera model in solving vision problems.

2.3.1 Pinhole camera model

The pinhole camera model provides good approximation to digital lenses camera with

CCD-like sensors. It models the perspective projection of world’s points on the two

dimensional image plane. For simplicity, consider the camera center C is positioned

at the origin of the world coordinate system < Xw, Yw, Zw | Ow > and the camera

axes system < Xc, Yc, Zc | C > is aligned with it. The image plane I is at distance

f from the camera center (see Figure 2.1). The optical axis Zc is the line passing

through the optical center C (also known as center of projection, focal point) and

perpendicular to the retinal image plane I where it intersects it at the principal point

p = (u0, v0)
ᵀ. Note that the image plane I in actual camera is behind the center of

projection at distance f and therefore the projected image is inverted. However, for

simplicity, this inversion can be avoided by shifting the image plane to the front of

the camera center instead as illustrated in Figure (2.1).

Now consider the projection of a single 3D world point Q to the image plane. The

emanating line from the 3D world‘s point Q = (Qx,Qy,Qz, 1)ᵀ intersects the image
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Figure 2.1: Pinhole camera geometry

plane at the 2D point q = (qu, qv, 1)ᵀ. Using simple triangulation, it is trivial to

conclude that the following ratios are equal:

qu
Qx

=
qv
Qy

=
f

Qz

(2.23)

By rearranging equation 2.23, the coefficient of the image point q = (qu, qv)
ᵀ can

be given by the equations

qu = f
Qx

Qz

and qv = f
Qy

Qz

(2.24)

This equation 2.24 can be represented in terms of homogeneous coordinates more
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conveniently as:


qu

qv

1

 .
=


fQx

fQy

Qz

 =


f 0 0 0

0 f 0 0

0 0 1 0





Qx

Qy

Qz

1


(2.25)

or in more compact and general form as :

q
.
= P3×4 Q4×1 (2.26)

The intrinsic parameters

Points in equation 2.25 expressed in image coordinate system are normally specified

in terms of metric units (e.g. millimeters) where the principal point p is the origin of

the image coordinate system. However, such points in digital images are expressed in

terms of pixels coordinates where the image origin is typically positioned at the upper-

left corner. It is therefore important to take in to account the mapping between the

image and pixel coordinates systems (see Figure 2.2). In the following, we designate

a trailing superscripts to denote the coordinate frame in which the point is expressed.

Let the point qi = (qiu, q
i
v, 1)ᵀ expressed in image coordinate frame and qp = (qpu, q

p
v , 1)ᵀ

represent the same image point q expressed however in pixel coordinate frame.

To model the relationship between the image coordinate frame and the pixel co-

ordinate frame we need to:

• convert the image coordinates from metric units into pixels.

• translate the origin of the pixel coordinate frame from the principal point to
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Figure 2.2: Using different image(i) and pixel(p) coordinate systems

the upper-left corner.

These two steps can be represented mathematically as:

qpu = suq
i
u + uo and qpv = svq

i
v + vo, (2.27)

where the scales su and sv are the number of pixels per metric unit distance along

u and v axial directions in the image coordinate frame, uo and vo are the coordinates

of the principal point.

Equation 2.27 can be rewritten in terms of homogeneous coordinates as:


qpu

qpv

1

 =


su 0 uo

0 sv vo

0 0 1



qiu

qiv

1

 (2.28)

Equations 2.25 and 2.28 can be combined to yield the transformations of the points
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Figure 2.3: Different intrinsic parameters

from camera coordinate frame to the relative pixel coordinate frame as:


qpu

qpv

1

 =


su 0 uo

0 sv vo

0 0 1



f 0 0 0

0 f 0 0

0 0 1 0





Qx

Qy

Qz

1


(2.29)

In digital cameras, the image is formed over an array of light sensitive sensor

elements called pixels. The physical shape of these pixels has an effect on the coor-

dinate of the image points. This phenomena is illustrated in Figure 2.3. The ratio

of the number of pixels per metric unit along the horizontal and vertical image axial

directions is the aspect ratio τ of the camera and computed as τ = su/sv. The angle θ

between the pixel sensor’s axial coordinates u and v models the skewness of the cam-

era. When the angle is of 90o, the camera is said to have rectangular pixels. If also the

pixel size along vertical and horizontal coordinates are equal (i.e. aspect ratio τ = 1

), the camera is said to have square pixels. The skew factor γ is introduced to model

such skewness in the sensor where γ = svqiv tan θ. It worth mentioning that the angle

θ in today’s modern CCD/CMOS digital cameras is very close to 90o and it is often

safe to consider zero skew factor γ = 0. By incorporating the skew factor, Equation
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2.29 can be reformulated as:


qpu

qpv

1

 =


fu γ uo

0 fv vo

0 0 1




1 0 0 0

0 1 0 0

0 0 1 0





Qx

Qy

Qz

1


(2.30)

or as:


qpu

qpv

1

 =


τf γ uo

0 f vo

0 0 1




1 0 0 0

0 1 0 0

0 0 1 0





Qx

Qy

Qz

1


(2.31)

where fu = fsu is focal length (in pixels) along the u coordinate direction, fv = fsv

is the focal length (in pixels) along the v coordinate directions, and γ model the skew

factor of the pixels. Equation 2.30 can be written in more compact form as:

qp
.
= K [I | 0] Qc, (2.32)

where qp is the image point in pixel coordinate frame, K is the camera intrinsic

matrix, I is the 3×3 identity matrix, and 0 is a 3 null vector, and Qc is the 3D world

point in camera coordinate frame.

The extrinsic parameters

To simplify the previous derivation, we have considered that the camera coordinate

system is aligned with the world coordinate system. It is very important to be able to

express scene points coordinates in a different coordinate system especially when the
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relation between these coordinates is unknown. In other words, we need to transform a

scene point Qw expressed in world coordinate system to point Qc expressed in camera

coordinate system (see Figure 2.4). This can be done using an 4 × 4 homogenous

rigid transformation which incorporate a 3 × 3 orthogonal rotation matrix R and a

3−translation vector t as follow:

Qc =

 R t

03 1

Qw ⇔



Qc
x

Qc
y

Qc
z

1


=



r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1





Qw
x

Qw
y

Qw
z

1


(2.33)

By inserting Equation 2.33 in 2.30, the full perspective projection model which

relates a 3D world point Qw = (Qw
x ,Q

w
y ,Q

w
z )ᵀ in the world coordinate frame to its

projection point qp = (qpu, q
p
v)

ᵀ expressed in the image pixel coordinate frame can be

expressed by:


qpu

qpv

1

 =


fu γ uo

0 fv vo

0 0 1




1 0 0 0

0 1 0 0

0 0 1 0





r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1





Qw
x

Qw
y

Qw
z

1



26



c 

Yc 

I 

v 

u 

w 

Xw Yw 

Zw 

Camera coordinate system 
( Xc, Yc, Zc | C ) 

World coordinate system 
( Xw, Yw, Z w| W) 

( R ,  t ) 

Figure 2.4: Camera and world coordinate systems


qpu

qpv

1

 =


fu γ uo

0 fv vo

0 0 1


︸ ︷︷ ︸

Intrinsic K


r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz


︸ ︷︷ ︸

Extrinsic(R,t)



Qw
x

Qw
y

Qw
z

1


(2.34)

or more compactly:

qp
.
= K [R | t] Qw, (2.35)

2.4 Epipolar geometry

The pinhole model, discussed in subsection 2.3.1, describes the geometrical relation-

ship between scene points and their projections on the image plane. Epipolar geome-
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try, on the other hand, describes the geometrical relationship between the projections

of scene points of two distinct views. Let I and I ′ be two distinct image planes ob-

serving 3D scene points Qi as shown in Figure 2.5. Image points qi and q′i of the

scene point Qi in image I and I ′ respectively. The image of the first camera center

C on the second image plane I ′ is the epipole e′. The second camera center in turn is

imaged on the first image plane I as the epipole e. The line segment joining the two

cameras’ centers C and C ′ is called the baseline and intersects the two image planes

in the epipoles e and e′. The plane passing through the two cameras’ centers C and

C ′ and the scene point Qi is the epipolar plane Πi. Each epipolar plane Πi intersect

the first image plane I in the epipolar line li and the second image plane I ′ in the

epipolar line l′i.

The epipolar geometry is of great importance in the context of 3D reconstruction.

It is the only information we can get from uncalibrated images of a rigid scene, thus

it is often considered, by many authors, as weak-calibration. Knowing the epipolar

geometry of a pair or more of images allows recovering the projective 3D structure

of the scene. In fact, Euclidean reconstruction and camera self-calibration methods

depends on this weak calibration as a primary step. Furthermore, epipolar geometry

is of great importance for stereo matching. Instead of searching the whole image

pixel points, epipolar geometry restrict the search of a point in the first view to the

corresponding epipolar line in the second view.

2.4.1 The fundamental matrix

The epipolar geometry is represented algebraically by the fundamental matrix. The

fundamental matrix F is a 3× 3 singular matrix of rank 2 ( [43]). For any two images

taken by two non-coincident camera centers, the fundamental matrix F constrains all
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Figure 2.5: Epipolar geometry

image points qi in the first view with their corresponding points q′i in the second view

such that:

q′>i F qi = 0 (2.36)

One nice property of the fundamental matrix is that its transpose F> provides

the opposite relation by relating image points q′i in the second view with their corre-

sponding points qi in the first view (i.e. F′=F>) and thus

q>i F>q′i = 0 (2.37)

Any points in one image is constrained by the fundamental matrix to its corre-

sponding epipolar line in the other view where its corresponding image match must
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coincide. More specifically,

l′i = F qi and li = F>q′i (2.38)

Finally, observe that for any point qi, the epipolar line l′i = Fqi intersect the

epipole e′ in the other view (see Figure 2.5). Thus, using the epipolar constraint,

Equation 2.36, e′>(Fqi) = (e′>F)qi = 0. This indicate that e′>F = 0 and thus e′ is

the left null-vector of F. In similar manner, e>F> = 0 and therefore e is the right

null-vector of F>.

2.4.2 Computation of the fundamental matrix

In general, eight points matches are enough to compute F, linearly, by stacking the

epipolar constraint equations for each pair of points q>i F>q′i = 0 and solving for the

nine unknown elements of F using a least squares approach such as the SVD. Com-

puting the fundamental matrix from point matches was first introduced by Longuet-

Higgins [61] as the Essential matrix in which the images are assumed to be calibrated.

The generalization of the essential matrix to uncalibrated images, as the fundamental

matrix, is due to Fugeras [24]). Boufama in [9] introduced a novel linear method

for computing the fundamental matrix, providing good estimation without the need

for the compulsory non-linear optimization refitment step. Hartley [38], enhanced

the linear computation of the fundamental matrix further by suggesting simple nor-

malization and scaling of the uncalibrated images followed by enforcing rank two

constraint. Unique solution from linear computation requires eight point matches.

Recall that the fundamental matrix consist of 9 homogenous elements but has only 7

degrees of freedom. One degree of freedom is related to the overall scale factor as F
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is a homogenous matrix. Another degree of freedom is removed as F is of rank 2 and

has a zero determinant. The fundamental matrix F can be computed non-linearly

from seven points [64]. The fundamental matrix has been under extensive research

in the last two decades and extensive effort has been put in automatic and robust

computation from point as well as line matches ( see for example [96], [71], [101]).

2.5 Stratified three-dimensional geometry

According to human perception, obtainable projective three-dimensional structure

from point matches can differ very much from the original scene. Perhaps the most

important question to address at this point is “How satisfactory is the obtained

3D projective structure for performing computer vision tasks?”. In projective space

lengthes, ratios, and angles are not preserved, parallel line and planes appear in-

tersecting in general, orthogonality is not preserved,. . . etc. Indeed such projective

structure is not satisfactory for the majority of vision task. Fortunately, the projec-

tive three-dimensional structure can be upgraded to Euclidean using a proper 4 × 4

transformation. Actually, there are different classes of geometry between the simplest

projective geometry and the most restrictive Euclidean form and such upgrade may

also pass over an intermediate affine and metric structure. In order to obtain the

proper transformation which upgrade the projective structure to the desired space

(i.e. affine, metric, or Euclidean), certain special geometrical entities must be spec-

ified. The geometrical hierarchy and transformation grouping are tightly related to

the invariants such transformation leaves when applied to these special geometrical

entities and properties. It is also important to notice that the different group of

transformation are actually subgroups of each other. The Euclidean is a subgroup of
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metric, and both are subgroup of affine group whereas all of them are subgroup of

the projective class.

In this section, the different geometrical transformation groups required to up-

grade the 3D structure from the simplest projective geometry to the most restrictive

Euclidean structure are reviewed. Note that a similar concept can be applied to any

n-dimensional space, but the treatment here is limited to the three-dimensional space

as it is the most relevant to this dissertation.

2.5.1 Projective transformation

The group of projective transformation is the most general one with weakest structure.

It has the least number of invariants and therefore is the super-group of all other

groups of transformation. A three-dimensional projective transformation, as seen in

section (2.2), is represented b a full rank 4× 4 matrix T such as:

Tproj
.
=



p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44


.
=

 A3×3 t3×1

v>3×1 1

 (2.39)

where pij is a scalar, v and t are 3−vectors, and A is an arbitrary 3 matrix. As

such transformation is homogenous and defined up to a nonzero scale factor, only

15 elements are essentials. Projective transformation preserves the incidence and

collinearity relations of points invariant. The cross-ration (i.e. the ratio of ratios) is

an invariant projective property as well. Since T is nonsingular, a dual transformation

T∗ can be obtained by the inverse of its transpose T∗ = (T−1)> = (T>)−1.
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2.5.2 Affine transformation

An affine transformation is represented by the homogenous transformation matrix

Taff

Taff
.
=



a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

0 0 0 1


.
=

 A3×3 t3×1

0>3×1 1

 (2.40)

The affine group of transformation is an intermediate group located between pro-

jective and metric groups. It is more restrictive than projective but more general than

metric. As affine is a subgroup of projective geometry, all projective invariants are

certainly affine invariants as well. The most special thing about affine group of trans-

formations is that they preserve parallelism. A n−dimesnional affine space differs than

projective space by identifying a special hyper-plane at infinity. As 3−dimensional

space is our concern here, identifying the true plane at infinity Π∞ in the projec-

tive 3−dimensional space allows to retrieve the affine structure. Since such plane

has 3 degrees of freedom, an affine transformation is more restrictive than projective

transformation and has 12 degrees of freedom (i.e. 15 d.o.f. projective less 3 for

plane at infinity). The plane at infinity has a canonical position Π∞ = (0, 0, 0, 1)>

in an affine space. Parallel lines and parallel planes intersect at the plane at infinity.

Ratios of lengthes along parallel directions are also affine invariants and an affine

transformation leaves the plane at infinity globally invariant (i.e. Π∞
.
= T−>affΠ∞).
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2.5.3 Metric transformation

Metric transformation is the group of similarity transformations. These transfor-

mations correspond to Euclidean transformations (i.e. rotation + translation) with

isotropic scaling. In metric transformation case two new properties retains invari-

ants: the angles and relative length, but not the absolute ratios and lengths. Metric

transformation is in general the highest level of structure that can be recovered from

images, unless knowledge about the exact length or size of an object in the scene is

available.

Metric transformations have the following representation:

Tmet
.
=



σr11 σr12 σr13 tx

σr21 σr22 σr23 ty

σr31 σr32 σr33 tz

0 0 0 1


.
=

 σR3×3 t3×1

0>3×1 1

 (2.41)

where rij are the coefficient of a 3 × 3 rotational matrix R, t = (tx, ty, tz)
> a

translation vector and σ a nonzero scaling factor. Note that any rotation matrix R

is an orthonormal matrix with unity determinant of 1 and such matrix has only 3

degrees of freedom. Therefore, a metric transformation accounts to 7 independent

degrees of freedom: 1 for scale factor σ, 3 for translation vector t, and finally 3 for

the rotation matrix R.

Similar to 3D affine case where its properties are related to the plane at infinity,

the new metric properties are related to a specific imaginary conic on the plane at

infinity called the absolute conic (AC) and denoted Ω∞. The absolute conic is a point

conic of imaginary points (no real points). A metric transformation transforms the

absolute conic into itself. Every points Q = (Q1, Q2, Q3, Q4)
> on a canonical metric
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conic (i.e. the plane at infinity on the form Π∞ = (0, 0, 0, 1)>) must satisfy

Q2
1 + Q2

2 + Q2
3

Q2
4

 = 0 (2.42)

Note that algebraic representation for such a conic requires two equations. For

this reason, the absolute conic is more practically utilized by its dual in 3-dimensional

space: the dual absolute conic denoted Ω∗∞ . The dual absolute conic Ω∗∞ can be

represented as a single quadric called the absolute dual quadric and introduced to

computer vision by [97]. The absolute quadric has a simple canonical form:

Ω∗∞
.
=



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0


(2.43)

Note that the null space of Ω∗∞ is the infinity plane Π∞ = (0, 0, 0, 1)>. A similar

concept exist in 2−deminsional space where the plane at infinity is the plane under

consideration. Under such consideration, ω∞ and ω∗∞ denotes the two-dimensional

representation of the absolute conic and the dual absolute conic respectively. The

canonical form of these entities are given by:

ω∞
.
=


1 0 0

0 1 0

0 0 1

 and ω∗∞
.
=


1 0 0

0 1 0

0 0 1

 (2.44)

Since the absolute conic resides on the plane at infinity, it projects on image

planes as a conic which depends only on the internal parameters of the camera and
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independent of its pose or position. This can be observed by noting that points of

the infinity plane Q∞ = (Q1, Q2, Q3, 0)> = (Q̃∞, 0)> projects on camera P as :

q
.
= K [R | t] Q̃∞

and thus points on the image plane and the infinity plane are related by the

homograpghy transformation T

q
.
= KRQ̃∞ = TQ̃∞

Thus the image of the absolute conic, also known as IAC and denoted ω , can

be obtained from the transformation of the 2D form of the absolute conic ω∞ using

(2.17) as follow:

ω = T−> ω∞ T−> = (KR)−>ω∞(KR)−1 = K−>R−>R−1K−1 = K−>K−1

Similarly, it can be shown that the image of the dual absolute conic (DIAC)

denoted ω∗ = ω−1 = KK>. This is of great importance as the camera internal

parameters K can be obtained using cholesky decomposition( get the re) as will be

shown in next chapter.

2.5.4 Projective to metric stratified transformation

In the previous section, the different geometrical group of transformation where

formed assuming a canonical position of the plane at infinity and absolute conic.

Driving such transformation is straight forward once we are in Euclidian space. In
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Table 2.1: List of the different groups of three-dimensional transformation showing
structure ambiguity, the number of degrees of freedom, canonical transformation ma-
trix, related special geometric entities, and invariant properties.
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computer vision, however, the initial obtainable 3-dimensional reconstruction of the

scene’s geometrical entities (i.e. points, lines, planes,. . . etc) from uncalibrated images

are up to an arbitrary projective ambiguity. In such projective structure, the plane

at infinity and the absolute conic are changed from their canonical position to new

unknown location. The general goal of a useful reconstruction, for vision tasks, is

to obtain at least a metric representation. The obtained projective structure can be

transformed to metric, or Euclidean, using a proper 4 × 4 homography TPM which

maps each projective points Qp to its metric positions Qm as:

Qm .
= TPMQp (2.45)

The upgrade homography transformation TPM can be computed directly in one

step or can be stratified into two step transformations: a projective to affine transfor-

mation TPA and an affine to metric transformation TAM . In practice, the advantage

of upgrading the projective structure to affine one first is more desirable as it al-

lows a linear upgrade to metric once the affine structure is computed. A complete

transformation from projective to metric can be computed afterward as:

TPM
.
= TAMTPA (2.46)

Projective to affine upgrade

In a given projective 3-dimensional representation, the plane at infinity is no longer

has its canonical position. The first step for the obtainment of an affine reconstruction

is the identification of the correct plane at infinity. The affine properties of the

structure can then be obtained if the chosen plane at infinity, in the given projective
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structure, is mapped to the true plane at infinity position in the world. In general,

plane at infinity can be identified from known affine properties and in particular

parallelism. Knowledge about parallel entities in the seen can be translated into

constrains on the position of the plane at infinity. For example, two or more parallel

lines intersect in a vanishing point on the plane at infinity and three such points are

enough to determine the plane at infinity. Actually, locating the plane at infinity

from images can be done in different ways and will be discussed more thoroughly in

section (auto-calibration).

Once the plane at infinity Π∞ is located, a simple transformation can be applied

to bring back the plane at infinity to the affine canonical value (0, 0, 0, 1)>. Denoting

and scaling the first 3 non-homogenous elements of the plane at infinity such as

Π∞ = (Π̃∞, 1)>, It can be simply verified that such transformation is on the form :

TPA
.
=

 A3×3 t3

Π̃>∞ 1


where A3×3 is any arbitrary matrix with nonzero determinant and t3 an arbitrary

3-vector, and 03 the 3 null vector. For simplicity A3×3 is normally chosen as the

identity I3×3 matrix and t3 as the null vector 03.

TPA
.
=

 I3×3 03

Π̃>∞ 1

 (2.47)

Note that such transformation maps the plane at infinity to the canonical location

(0, 0, 0, 1)>.
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

0

0

0

1


.
=

 I3×3 03

Π̃>∞ 1


−>

Π>∞

Affine to Metric upgrade

In order to upgrade an affine 3-dimensional representation of a structure to metric,

the absolute conic or one of its associated entities such as its dual must be retrieved.

This is possible once the plane at infinity is identified. It is, however, also possible

to retrieve both of the abolsute conic and its supporting plane (the plane at infinity)

all at once as will be disccused in the (Self-claibraion). The discussion here is limited

only to the upgrade from affine to metric.

Combining Equation 2.22 and Equation 2.40 one can verify that the dual absolute

quadric transforms as follow :

Ω∗∞
.
= TΩ∗∞T>

.
=

 A t

0>3 1


 I3×3 03

0>3 1


 A> 03

t> 1

 .
=

 AA> 03

0>3 1

 (2.48)

Since such transformation leaves the absolute dual quadric unchanged, such trans-

formation must be a similarity transformation (i.e. metric). Under these circum-

stances the absolute conic and its dual have the following form:

ω∞
.
= A−>A−1 and ω∗∞

.
= AA>. (2.49)

Consequently,a simple choice for the homograpghy transformation from affine to
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metric can be given by :

TAM
.
=

 A−1 03

0>3 1

 (2.50)

Combining transformation from equation (2.47) and 2.50) a homography for up-

grading the structure from projective to metric as:

TPM
.
= TAMTPA

.
=

 A−1 03

Π̃>∞ 1

 (2.51)

2.6 Conclusion

In this chapter, some basic concepts of projective geometry and transformation were

reviewed. These concepts are necessary to describe the image formation process for-

mulating the projection process of a scene into an image. The camera projection

matrix was introduced and the epipolar geometry relating multiple views of a scene

was discussed. Most importantly, an insight from studying the different geometrical

classes and their invariance shows that projective structure can be upgraded to more

restricted classes such as affine or metric when certain geometrical entities are iden-

tified (e.g. plane at infinity, absolute dual conic). This is of great importance as the

main objective in this dissertation is to develop methods to reconstruct the scene by

inverting the image projection process.
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Chapter 3

Camera Auto-Calibration :

Literature Review

3.1 Introduction

By matching image points between two, or more, images of a rigid scene taken from

different view points, the three-dimensional representation of these scene’s points can

be reconstructed. When there is no knowledge about the camera intrinsic and extrin-

sic parameters, however, such recovered three-dimensional presentation is only up to

a projective ambiguity and hence of limited use in solving vision tasks . For instance,

relative lengths and angles are no longer preserved and cannot be measured. This

ambiguity can be reduced to affine which helps accomplishing a wider range of tasks

(e.g. see the work of Hebert et al. [45]). In practice, at least metric representation

is required. In such case the relative scene’s model pose and size is measurable. In

some other more critical vision task the Euclidean measurements is necessary (e.g.

robot navigation need to avoid bumping into obstacles).

In order to upgrade a projective representation to metric one, the intrinsic and/or

extrinsic parameters must be recovered. Camera calibration in the context of three-
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dimensional machine vision is the process of determining the intrinsic parameters (i.e.

geometric and optical specifications) and the extrinsic parameters (i.e. position and

orientation of the camera in the world coordinate system). When these parameters

are recovered, the camera is termed “calibrated” [43].

Typically, camera calibration can be done off-line in laboratory setup with very

high accuracy. These were the early techniques of photogrammetry and relies on

Euclidean (or metric) scene knowledge to infer the intrinsic and extrinsic camera pa-

rameters. These early techniques, however, impose great limitation on the practical

usage in vision tasks. The presence of a calibration object in the scene is often not

possible. In addition, a calibrated camera must maintain its setting fixed; otherwise

these parameters will be all lost once the camera adjusts its settings (e.g. focus /

zoom) which is often necessary in practice. The advent of auto-calibration and struc-

ture from motion, on the other hand, made this possible without previous knowledge

of camera parameters. Auto-calibration is concerned with estimating the camera in-

terior and exterior, without the aid of calibration object in the scene, in order to

improve the reconstruction to a suitable level for accomplishing the vision task (e.g.

affine, metric, Euclidean).

As one of the main contribution of this work is auto-calibration of zooming cam-

eras, the general concept of calibration and the existing literature in this area is

reviewed. At first, classical calibration approaches, which requires a certain level of

scene knowledge, are briefly reviewed. The bulk of the remaining part of this chapter

is dedicated to the subject of auto-calibration of a moving camera observing unknown

rigid scene. The majority of the existing approaches are discussed and more details

are given when considering topics relevant to the contributions of this work and in

particular concerning auto-calibration of zooming cameras.
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3.2 Classical calibration

Classical calibration techniques were first developed by photogrammetrists with the

goal of obtaining high accurate camera calibration and 3D machine vision metrol-

ogy for aerial imaging and surveying [46]. This is achieved using specially designed

calibration devices and camera setup with known Euclidean geometry. The 3 × 4

camera projection matrix can be computed from the known 3D points and their cor-

responding 2D image points. The earliest methods depended on full-scale nonlinear

optimization for fitting the 2D data of the known Euclidean 3D measurements to

any arbitrary, yet could be complex, camera model allowing the estimation of lens

distortions as well. As non-linear optimization requires a good initial starting point,

these methods often start with a simplified linear model, such as Direct Linear Trans-

formation (DLT) of Abdel-Aziz [1] and the later method by Ganapathy [27], before

the non-linear refinement takes place.

The main difference between these early methods lies in the type of calibration

object and the complexity of the camera model that is used. A detailed review

of these methods can be found in the seminal work of Tsai [98] who provided a

simple calibration object (known as the Tsai grid) and a reliable two step method

for computation. This planar based method has been improved by not restricting it

to certain orientation. The most widely used planar based techniques nowadays is

the remarkable method proposed by Z. Zhang [105,106]. This method allowed a fast,

simple, and stable calibration method to be performed by unskilled general public

user where no expensive calibration object is required. A grid pattern printout from

a laser printer act as a calibration object with quality good enough for desktop vision

systems.
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As calibration of zooming camera is a primary concern in this work, classical cali-

bration of zooming camera are discussed below. Willson , in [102] , used an exhaustive

approach to model the effect of varying the camera setting on the calibration parame-

ters. The goal was to find a relationship between the change in zoom and focus on the

camera intrinsic and extrinsic parameters as a simple function. Controlled by a com-

puter, Willson used a motorized zoom, focus, and aperture camera and measured the

camera calibration parameters using Tsai’s calibration technique at different config-

uration. While keeping the aperture fixed, Willson computed the camera parameters

at different zoom and focus combination using bivariate polynomials to model the

camera intrinsic parameters as a function of zoom and focus. He concluded that

there is no simple relation between the camera center, controlled by the motor, and

the camera intrinsic variation. Furthermore, by fixing the zoom and focus at specific

setting, he tested the effects of changing the aperture on the intrinsic parameters.

From this experiment, he noted that changing the aperture does effect some of the

intrinsic parameters, but such change has no clear systematic model of relations.

Another similar approach was conducted by Strum [91], who considered self-

calibrating a moving camera equipped with a zoom lens. Under pin-hole camera

model, Sturm modeled the variation of the five intrinsic parameters subject to zoom.

In his model, Sturm showed that the skew angle is close to 90o degrees and the as-

pect ratio is almost fixed. As far as the principal point, it has been shown that the

principal point position is not stable and varies with the zoom and focus settings.

He modeled this variation with a polynomial function that approximates the calibra-

tion data. Depending on off-line accurate pre-calibration at different zoom settings,

Sturm developed an algorithm which exploits the interdependence of the parameters

that needs only simple computation of the roots of univariate polynomials, based on
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Kruppa equation, to self-calibrate while moving. The major drawback of this method

is the need for a time consuming off-line pre-calibration. In addition, it is not clear

if the proposed mechanism will suits other imaging systems other than the one used

by Sturm experiment and must be validated experimentally.

3.3 Auto-calibration

Auto-Calibration, or self-calibration, is the process of estimating the camera intrinsic

and extrinsic parameters without the aid of a calibration object. These methods rely

on the usage of point matches between two or more images of an unknown but rigid

scene to recover the intrinsic and extrinsic camera parameters. This is convenient

in many vision problems whereas the calibration becomes an on-line process (e.g.

robotics application).

The theory of auto-calibration was first introduced by Maybank and Faugeras [66].

They showed that locating the absolute conic is equivalent to recovering the intrinsic

parameters of the camera. This indicates that there is a virtual calibration object

which is present in all scenes. As mentioned in 2.5.3, the absolute conic Ω∞ is a point

conic which lies on the infinity plane, thus its relative position and orientation to a

moving camera is constant. Under fixed camera settings, the image of the absolute

conic projected on the image plane of a moving camera is also constant. As discussed

in section 2.5.3, once the image of the absolute conic ω (IAC) or its dual ω∗ (DIAC) is

identified, it can be used to compute the intrinsic parameters and hence upgrade the

reconstruction to metric. As discussed in section 2.5.4, upgrading a projective recon-

struction to metric or Euclidian can be attained by the usage of a proper similarity

transformation of eight degrees of freedom. For metric reconstruction from uncali-
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brated images, we seek to find the eight parameters: five parameters corresponding to

the calibration matrix K, and the three parameters of the plane at infinity Π∞. Some

auto-calibration techniques solve for those eight parameters directly. Such techniques

are, in general, non-linear and encounter problems solving non-linear equations for

many parameters at once. On the other hand, a stratified approaches split the com-

putation of these parameters by locating the plane at infinity, i.e. an affine strata,

first then recover the other five parameters in a subsequent step. As an advantage,

this allows to calculate the remaining five parameters linearly after eliminating the

unknown scale factors. However, it is worth mentioning that the hardest step in

auto-calibration is actually locating the true plane at infinity [43].

Although the intrinsic and extrinsic parameters are usually unknown, there are

some restrictions on them which allows auto-calibration. By exploiting these restric-

tions, simpler algorithm can be derived. These restrictions can be classified into:

restriction on intrinsic parameters and restriction on extrinsic (motion) parameters.

More recently, scene knowledge can be employed to constrain camera calibration.

However, this is only possible when such constraints do exist in the scene and can

be exploited automatically. The earliest auto-calibration methods assumed constant

intrinsic parameters. Later, it was shown that it is possible to auto-calibrate from

views with some varying intrinsic parameters and thus allowing the camera to zoom.

It is important to emphasise that over the last two decades tremendous number of

research has been conducted in the context of camera self-calibration, yet there is

no simple solution which works for all circumstances. Due to the nature of auto-

calibration, it is important to exploit all possible restriction which can be applied in

order to achieve a reliable auto-calibration. These restrictions vary according to the

vision application under consideration.
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3.3.1 Constant intrinsic parameters

Camera auto-calibration methods, using multiple views and assuming constant pa-

rameters, were the first to be proposed in the literature. Having a fixed camera setting

is equivalent to multiple views from a single moving camera with its setting fixed (i.e.,

no zooming or focusing). Several methods have been proposed. Below is a list of the

most important ones.

Auto-calibration based on Kruppa equations

The first auto-calibration method was due to Maybank and Fougeras [66], and was

based on Kruppa equations. Kruppa equations express the relationship that relates

the DIAC to the epipolar geometry of a pair of views algebraically. The epipolar ge-

ometry of a pair of views, as previously discussed, is encapsulated in the fundamental

matrix which can be computed using matched points across two views. Kruppa equa-

tions impose that the epipolar plane crossing the pair of camera centers and tangent

to the absolute conic must cross the image plane in a line tangent to the image of its

dual (i.e. DIAC) as shown in Figure 3.1. There are two such epipolar planes per pair

of views and their relation can be related by two independent quadratic equation on

the DIAC. Three views at least, taken with constant internal parameters, are required

to provide six constraints on the DIAC, which is sufficient to solve for the constant

intrinsic parameters.

Unfortunately, Kruppa-based calibration methods exhibit great sensitivity to noise

which consequently are not recommended in practice. Increasing the number of views

(e.g. five or more) complicates the computations, making the equations impossible

to be solved. However, when the focal length is the only unknown, a quadratic

expression for focal length in terms of the fundamental matrix can be obtained directly

48



from Kruppa equations [10, 39]. The main special feature about Kruppa equations’

based auto-calibration techniques, which could be useful in some cases, is that these

methods do not require a set of consistent projection matrices but rather depend only

on the epipolar geometry encapsulated in the fundamental matrices for each pair of

views. In other words, Kruppa equations do not enforce directly a consistent infinity

plane among each pair of views in which the absolute conic must lie on. Perhaps such

inconsistency explains why Kruppa based auto-calibration methods performs poorly

in comparison with other methods. It is worth mentioning that some variant and

improved Kruppa-based auto-calibration methods have been proposed by others over

time, see for example [33,55,63].
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Figure 3.1: The absolute conic and its images as a calibration device.
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QR-decomposition

Under the assumption of constant intrinsic parameters, Hartley [37] proposed an

alternative auto-calibration method which doesn’t depend on the absolute conic but

rather based on the structure of the projection matrix. Considering an Euclidian

transformation matrix T required to upgrade the camera projection matrices from

projective to Euclidian:

T =

 K−1 03

0>3 1


 I3×3 03

Π̃>∞ 1

 (3.1)

where the (Π̃∞1)> is the unknown plane at infinity and the matrix K represents

the constant intrinsic parameters. He derived constraints from the QR-decomposition

of the camera projection matrices which in metric frame must yield an upper triangu-

lar camera matrix Ki and an orthogonal rotation matrix Ri for each camera matrix Pi.

The eight unknowns of K and Π̃∞ are solved by using a proper non-linear minimiza-

tion criterion. The minimization process is initialized with an approximate coordinate

of the unknown plane at infinity by considering the chirality constraints [36]. Chiral-

ity constraints allow to upgrade the projective structure to what is called quasi-affine

structure. A quasi-affine structure is not a true affine structure but close to it. It

avoids splitting the convex hull of the structure across the plane at infinity by simply

imposing the fact that all of image points must actually lie in front of the camera.

This method encounters convergence problems as it has to solve for many parameters

at once. This method has been extended and improved later on for varying intrin-

sic parameters by first doing an exhaustive search for the true plane at infinity in a

bounded space, in which the intrinsic parameters can be computed afterward linearly.
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In most of the subsequent auto-calibration works, the elimination of the rotational

matrix is derived by implicit multiplication of the rotational matrix by its transpose,

instead of explicit QR-decomposition.

Absolute dual quadric

Bill Triggs introduced the dual absolute quadric to computer vision as a convenient

way to combine both the absolute conic and its supporting infinity plane in one single

geometrical entity [97] . Before reviewing Triggs method, it is worth mentioning that

Heyden and Åström proposed an auto-calibration method in [47] and had previously

derived similar constraints to the dual absolute quadric, but without providing the

geometrical interpretation as was shown by Triggs.

Heyden and Åström started from a projective to metric transformation T which

is required to bring the projective reconstruction to metric. The projective camera

matrices Pi
.
= K[Ri|ti] can be upgraded to metric by multiplying each camera matrix

Pi by the inverse of the transformation PiT
−1. By taking the inverse of Hartley’

equation in 3.1, and letting the first projective camera matrix P1 = [I3×3|03×1], the

similarity transformation T−1 must be of the form:

T−1
.
=

 K 03

a> 1

 (3.2)

where the nonhomogeneous coordinates of the plane at infinity Π̃>∞ are encoded in

the three-term vector a = −KΠ̃∞. Instead of Hartly’s QR-decomposition to eliminate

the extrinsic parameters of the projection camera matrices, the author followed a

different approach. Starting from the equation:
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PiT
−1 .

= K[Ri|ti]

and by eliminating the last column of the transformation T−1, the author nicely

eliminated the three unknown translation vectors ti such that:

Pi

 K

a>

 .
= KRi (3.3)

Furthermore, they eliminated the rotational matrix by post-multiplying both sides

of the equation 3.3 by its transpose.

Pi

 K

a>

 [K>|a]P>i .
= KRiR

>
i K> (3.4)

and since RiR
>
i yeilds the identity matrix I, the equations is simplified to

λiPi

 KK> Ka

a>K a>a

P>i = KK> (3.5)

where λi is a non-zero scale factor. This equation is formulated to define an

objective function for non-linear optimization to minimize:

C(K, a, λi) =
n∑
i=2

‖KK> − λiPi

 KK> Ka

a>K a>a

P>i ‖F (3.6)

where the expression ‖ . . . ‖F denotes the Frobenius norm. Each camera provides

five equations except for the first one. Thus, a minimum of three views are required

to recover the eight unknowns and upgrade to metric. To initialize the non-linear
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optimization, they suggested guessing the parameters, something that is not always

possible in practice. In addition to this disadvantage, the involvement of the addi-

tional λi unknown scalars for every view causes convergence problem for long sequence

of images. At last, the first camera is assumed error free and thus doesn’t treat all

images equally which may bias the estimation.

These disadvantages have been avoided by using the absolute dual quadric Ω∗∞

introduced by Triggs [97]. The absolute dual quadric is a rank three dual quadric

imposed on the infinity plane, where its rim is the absolute conic. The important

property of the absolute dual quadric Ω∗∞ is that it combines both affine and Euclidean

geometrical entities (i.e. the plane at infinity and the absolute conic) in a single entity

which is much easier to use than the absolute conic. Using the absolute dual quadric,

the relationship between the absolute conic and its projection in an image is easily

obtained using the equation

ω∗i = λiPiΩ
∗
∞P>i

.
= KiK

>
i (3.7)

This indicates that the projection of the absolute dual quadric of camera i is

actually the dual image of the absolute conic which encodes its intrinsic parameters.

This is quite similar to Heyden and Åström equation 3.5, where the first camera P1 is

chosen as [I3×3|03] and considering canonical form of the plane at infinity and absolute

conic then

Pi

 K

a>

 [K>|a]P>i = Pi

 I

0>

 [I>|0]P>i = Pi

 I 0

0> 0

P>i = PiΩ
∗
∞P>i

(3.8)
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In the case of unknown but constant intrinsic parameters, Triggs proposes to use

Equation 3.7 to solve for both the absolute dual quadric (10 unknowns) and the dual

image of the absolute conic ω∗ (5 unknowns), by enforcing the condition that ω∗

is the same for all views (i.e. ω∗i = ω∗). The scale factors λi were eliminated by

cross-multiplying the terms of Equation 3.7. Triggs proposed two different methods

to solve for the unknowns of Ω∗∞ and ω∗. The first one is a non-linear minimization

algorithm which requires three views, while the other one uses a quasi-linear technique

and requires at least four views. The non-linear optimization method were reported

to be faster and more accurate, but requires an approximate initialization.

Stratified approach & the modulus constraint

Rather than solving for the eight unknowns of the absolute conic and plane at infinity

all at once, Pollefeys [73, 74] proposes a stratified approach in which an affine cali-

bration is achieved first by locating the plane at infinity using the so called modulus

constraint. The unknown intrinsic parameters can be computed through constraints

on the dual image of the absolute conic. Under the case of constant camera intrinsic’s

parameters (i.e. no zooming), the homography induced by the plane at infinity relates

a pair of camera matrices, which can be defined as:

H∞ = KRK−1 (3.9)

This indicates that the infinity homography H∞ is conjugate to a rotation matrix

and thus must have eigenvalues of equal modulus. Taking the scale factor in consid-

eration, the eigenvalues λi of such orthogonal matrix are α , αeiθ, αe−iθ, which must

satisfy the two constraints ‖λ1‖ = ‖λ2‖ and ‖λ3‖3 = λ1λ2λ3. This observation were
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reported first by Luong and Viville in [65], but investigated by Pollefeys who drove a

quadratic constraint relating the three unknown parameters of the plane at infinity

with the modulus constraint. The earliest method required four views for locating

the plane at infinity [75] . The method were enhanced further in [73, 74] to provide

more robust result from at least three views by solving set of trivariate quadrics.

Geometrically, this is a problem of intersecting three quadratic surfaces and leads to

64 different solutions. Schaffalitzky [84] classified these 64 solutions and reduced the

feasible solutions to 21 only. The modulus constraint can be combined with other

scene constraints, e.g. vanishing points of parallel lines, to increase robustness or to

self-calibrate from two views only. The method were also extended later on to allow

calibration with varying focal length as well for a long sequence of images.

Once the plane at infinity is identified, it becomes easy to relate the image of the

absolute conics of each view using the infinity homography. Fore example, in the

case of constant parameters, Luong and Viville [65] showed that IAC transformation

is unchanged using the infinity homograpghy between different views. Algebraically,

this can be written as:

ωi = H−>∞ ωjH
−1
∞ and ω∗i = H∞ω

∗
jH
>
∞ (3.10)

where the dual image of the absolute conic ω∗ = KK> = ω−1.

Equation 3.10 can be used to generate a set of linear equations in the coefficients

of ω∗ or ω, after enforcing equality of both sides. This was proposed by Hartley [37]

to neatly eliminate the unknown scale factors between each pair by scaling each side

such that its determinant is unity. Once the IAC or its dual DIAC is computed, it

can be refined through a non-linear minimization step using for example, Levenberg-
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Marquard algorithm [78].

3.3.2 Varying intrinsic parameters

During the zooming process, the optical center of the camera translates to a new

position causing the focal length to vary. The misalignment caused by the mechanical

movement of the camera’s lenses alters also the principal point position [102]. Such

mechanical misalignment is minimal with high quality state-of-the-art cameras, and

thus maybe neglected with short focal lengthes adjustment [28]. However, for other

common cameras, the change in principal point position due to zooming cannot be

ignored by assuming fixed principal point position as the auto-calibration algorithms

are highly sensitive [42]. This indicates, in general, that there are at least three varying

parameters out of the five unknown intrinsic parameters, as it is often safe to assume

constant aspect ratio and skew. The latter depend on the pixel sensors shape and

are unaffected by focus and zoom changes. Based on this fact, the problem of auto-

calibration from images taken by cameras with different settings, or equivalently from

a single camera undergoing a general motion while adjusting its settings, cannot be

solved by the previous auto-calibration techniques that assume constant parameters.

This limitation is impractical for many vision tasks and even for a sequence of images

taken with a single camera as auto-focusing is performed in many circumstances. If all

intrinsic parameters are allowed to vary, auto-calibration is not feasible. Fortunately,

it was proven that auto-calibration from views of cameras with varying parameters is

possible, if at least one parameter is kept constant, but maybe unknown, along a set

of views [50].

In early stages and under the assumption of known skew, aspect ratio and prin-

cipal point, Hartley [35] used a decomposition of the fundamental matrix to find the
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varying focal lengths and the relative positions of a pair of cameras. The method

is based on the fundamental matrix and can be computed linearly using singular

value decomposition. However, from a pair of cameras, such approach can recover at

most two parameters (five related to extrinsic parameters out of the seven degrees of

freedom of the fundamental matrix leaves only two).

With the advances in camera manufacturing, it is often safe to assume that the

cameras have square or rectangular pixel sensors. This assumption sets the skew

parameter to zero and makes the aspect ratio constant. Under these conditions,

Heyden and Åström [48] have proven that it is possible to auto-calibrate a camera with

square pixels, allowing the focal length and the principal point to vary freely. This

proof was extended in [49, 50] to show that auto-calibration is theoretically possible

if at least one single parameter is fixed, but may be unknown, among the whole

sequence of views. A non-linear minimization using bundle adjustment technique was

proposed. The method requires to run simultaneously over all reconstructed cameras

and points. Beside the obvious difficulty dealing with non-linear minimization for

many parameters, this method did not address the problem of obtaining a suitable

initial estimation, required to properly initialize the non-linear iterative minimization

process. Hence, convergence remains a serious problem for this method.

Another independent work by Pollefeys [72] has extended Heyden and Åström

proof, showing that auto-calibration is possible under the assumption of rectangular

pixels (i.e. zero skew only). An accounting argument was also derived to calculate

the minimum number of views required for auto-calibration under any assumption

on camera parameters. For n views under general motion, the minimum number of
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views required to auto-calibrate must satisfy

n× (nknown) + (n− 1)× (nconstant) > 8 (3.11)

where, nknown and nconstant are the number of known and the number of constant

(nonchanging) intrinsic parameters, respectively.

This equation shows that each known intrinsic parameter provides n constraints

and each constant intrinsic parameter provides (n − 1) constraints. For example,

under non-degenerate camera motion, it was shown that if the skew is fixed (does not

change), auto-calibration is possible from at least eight views while only four views

are required to calibrate under varying focal and principal point but known zero skew

and aspect ratio case. A pair of views are sufficient to recover the single varying focal

length parameters if the other four parameters are fixed. The significant advantage

of Pollefeys’ method is that it provides a simple linear method to obtain a close

estimation of the parameters, a problem which was not addressed by Heyden and

Åström. By assuming that the principal point is known (e.g. assumed to be at the

image center) and square or rectangular pixels, linear constraints on the absolute dual

quadric can be obtained. These constraints are used to compute an initial estimate

of the intrinsic parameters, required to initialize a non-linear minimization process

where the focal length and principal points are allowed to vary. However, it was

shown in several works that the auto-calibration problem is sensitive to inaccurate

localization of the principal point (See for example the work of Hartley [42]).

Within the same vein of ADC, a linear-iterative algorithm was proposed by Seo

et al. [88]. The algorithm initially estimate the ADC in a similar way as Pollefeys

[72] by normalizing the image coordinates so that the image center is shifted to the

58



initial principal point position. Geometrically, this is equivalent to obtaining three

orthogonal vectors and thus three constraints on the ADQ can be obtained, thus

allowing the computation of the ADQ from three views or more. This initial step is

followed by enforcing rank 3 constraint on the ADQ and re-estimating the variation

of the estimated principal point with the initially assumed position. The algorithm

then iterates until a stop criterion is satisfied.

A stratified approach was also investigated for calibrating varying intrinsic param-

eters. Starting from a projective reconstruction, the three unknown parameters of the

plane at infinity need to be estimated in order to upgrade the structure to affine and

compute the infinity homography. Once the infinity homography is computed, linear

constraints on the image of the absolute conic can be transferred across the different

views. This indicates that, once the plane at infinity is located, liner upgrade to met-

ric is possible when enough number of images are provided. However, under general

camera motion and varying intrinsic parameters, estimating the plane at infinity is

a highly non-linear problem. Hartley [41] used chirality inequalities to upgrade the

projective camera matrices and structure to quasi-affine in order to bound the loca-

tion of the plane at infinity. An exhaustive search for the plane at infinity coefficients

within the bounded region of the parameter space is performed. Nister [69] in his turn

improved the quasi-affine structure computed with chirality inequalities by seeking a

reference plane which doesn’t split the camera’s centers. Qualitative comparison of

the methods shows that such obtained quasi-affine reconstruction highly improves the

chances of the subsequent non-linear auto-calibration method to converge correctly.

It is worth noting that, none of the current approaches provide a linear estimation of

the plane at infinity under general motion. As will be discussed in next subsections,

affine structure can be linearly computed but with the aid of either special motions
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(e.g. pure translation or pure rotation) or with the aid of scene constraints (e.g.

vanishing points).

Recently, several algorithms, assuming cameras with square pixels, have been

proposed, with the advantage of being linear. These algorithms are based on different

geometrical entities, similar to the previously discussed absolute dual quadric (ADQ),

which encodes the absolute conic. In this context, the Absolute Quadric Complex

(AQC) was proposed by [77]. Under the square pixels restriction and projective

camera matrices, two orthogonal lines can be identified which must intersect the

absolute conic by means of a quadric in the higher dimensionality space of P5 . This

is related to the nature of representing lines in P3 which is awkward as it requires

6 homogenous terms using Plucker lines (one can refer to the book of Hartley and

Zisserman [43]). The AQC is represented by a symmetric 6 × 6 matrix and thus

requires 21 parameters which can be reduced to 19 nonhomogeneous parameters. As

each camera provides two constraints from the two orthogonal lines, this explains why

such methods based on AQC require at least 10 cameras to be computed. This is a

drawback as it does not comply with the theoretical minimal requirements for metric

reconstruction in which only 8 unknown parameters required to parameterize the

projective to metric upgrade transformation which has 15 degrees of freedom. Despite

their linear advantage, such methods are limited in practice due to the requirement of

at least 10 cameras, to generate the minimal number of equations to computate the

AQC. This number could be insufficient, as many views might fall under or close to

the critical motion configuration. Ronda et al. reformulated the AQC showing new

properties which allowed them to obtain an enhanced auto-calibration algorithm [80].

The new results yielded closed-form expressions for the intrinsic parameters of the

camera, including skew-angle, aspect ratio and, the principal point position, in terms
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of the AQC. An algorithm was proposed to extract the ADQ from the AQC using

simple matrix operations which can be refined using bundle-adjustment, or by a

newly proposed algorithm based on minimizing the error in pixel shape. The latter

was reported to produce slightly better results with lower computational cost. Just

recently, [81], enhanced their previous algorithm by reducing the number of required

cameras from 10 to the theoretically minimum of 5. This is achieved by introducing

a new geometrical tool, called the Six-Line Conic Variety (SLCV). However, the

proposed algorithm is non-linear and requires a bidimensional search using second

degree equations.

3.3.3 Auto-calibration from special motions

Auto-calibration can take advantage of certain camera motions to simplify the prob-

lem by reducing the number of ambiguities. Some restricted motions may naturally

arise in practice as pure translation, pure rotation, and planar motion. However,

certain types of motion may fall under the category of critical motion, where it is not

possible to obtain metric calibration.

Pure translation

Pure translation refers to a translating camera while the intrinsic parameters remain

constant. This is equivalent to a single stationary camera obtaining images while the

scene is translating. Under pure translation, affine reconstruction can be obtained

instantly. This was demonstrated by Moons. et al. [68] who showed that by superim-

posing a pair of images on each other, a pair of matched points is enough to compute

the epipole e. Affine camera matrices from a pair of images under pure translation

can be instantly obtained as:
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P1 = [I3×3|0] and P2 = [I3×3|e]

However, as there is no rotation, no constraints on the intrinsic parameters can be

obtained. In addition, affine calibration fails if the camera’s parameters vary during

translation [52]. In the situation where the Euclidean/relative translation along the

different axes is known, the relative depth of the points can be recovered as shown

in [51]. From several known pure translations, the Euclidian reconstruction and

camera calibration of an unknown scene can be obtained linearly as shown in [70].

In fact, this is equivalent to classical calibration from a single view of a scene with

known Euclidian geometry.

In a stratified approach, the requirement of pure translation was used to obtain the

affine structure first, followed by one or more rotation to obtain metric structure [3].

Under the assumption of known principal point, Pollefeys et al. extended this method

to allow self-calibration with the flexibility of varying the focal length [76]. In fact,

an initial pure translation step allows computing the infinity homograpghy and thus

it is possible to transfer constraints on the image of the absolute conic between views

despite varying some, but not all, intrinsic parameters in subsequent views.

Pure rotation

Pure rotation refers to images taken from a stationary camera while rotating around

its optical center (see Figure 3.2). As the camera remains stationary, images of the

same feature point in two such images are related by qj = Hijqi, where Hij is the 3×3

matrix is the infinity homography relating the image point q in the ith & jth pair of

images, with Hij = KjRijK
−1
i . To clarify this, recall that the ith projection matrix
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∞
H 

Figure 3.2: Two images acquired by a rotating camera around its optical center. The
infinity homography maps image points between the two images.

can be represented by Pi = K[Ri|ti]. Since the camera optical center remains fixed

during rotation, this implies that ti = 0 for all images and thus the projection matrix

can be simplified to Pi = KRi. The 3×3 infinity homography can be computed from

four or more point matches only. Once the set of homographies Hij is computed, the

dual image of the absolute conic ω∗ in a pair of images can be related by the equation:

ω∗ = KiK
>
i = H>ijKjK

>
j Hij (3.12)

This fact was pointed out by Hartely [40] who wrote liner constraints on the fixed

camera parameters (i.e. Ki = Kj = K). By using the infinity homography to transfer

these constraints across images, it becomes possible to linearly compute ω∗ and, hence

the calibration matrix K can be found using Cholesky factorization.
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Varying focal length can be linearly estimated in the case of rotating camera with

known skew and principal point [89], whereas a non-linear solution was suggested

by [17].

As ω∗ = ω−1, by taking the inverse of both sides of Equation (3.12), [16] related

the image of the absolute conic between the pairs of views such that:

ωi = K−>i K−1i = H−>ij ωjH
−1
ij (3.13)

This allows to obtain linear equations under various possible restrictions including

the zero skew, known aspect ratio, and/or know principal point. The linear method

has the advantage of being very fast, does not necessitate initialization, and most

often provide a solution which can be refined non-linearly. However, it may also fail

if the IAC obtained is not positive definite which happen in cases of high noise levels,

ill-conditioned configurations camera, and critical or near-critical rotational motions.

De Agapito et al. also proposed in [18] a non-linear optimal Maximum Likelihood

(ML) estimator for the calibration matrices and the motion parameters by performing

a final bundle-adjustment. The advantage of the non-linear method lies in its ability

to directly parameterize any available constraints on the intrinsic parameters. The

non-linear method, usually initialized with the linear method, occasionally fail to

converge in ill-conditioned sequences and more often if the principal point is allowed

to vary due to zooming.

Rameau et al. [79] proposed a method which employs a Linear Matrix Inequality

(LMI) resolution approach for self-calibrating Pan-Tilt-Zoom (PTZ) cameras. The

algorithm has provided significant improvement in accuracy and robustness. Using

LMI allows incorporating extra constraints on the intrinsic parameters which can be
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tuned during the estimation process of the intrinsic parameters. As an advantage,

the considered constraints are enforced for all views rather than the normal technique

which consider recovering the first camera’s parameters from which the remaining ones

can be recovered.

It is important to emphasize a couple of practical issues related to auto-calibration

of rotating cameras. Such rotational motion may arise naturally in many scenarios

such as PTZ cameras used in video-conference and surveillance systems, and thus

can be considered practical. The main advantage of auto-calibration with cameras

rotating around their optical axes, is the availability of simplified linear algorithms and

robust feature matching between one-to-one images instead of one-to-many. On the

other hand, there are some limitations which need to be highlighted. Although auto-

calibration is possible from rotating cameras, nevertheless metric reconstruction from

a single rotating camera is not. Moreover, the assumption of pure rotation around

the exact optical axis is violated in practice due to misalignment, especially in the

case of zooming camera. This may lead to significant errors, threatening its success

for indoor applications where the distance to the scene is not large in comparison

with the translation of the optical center of the rotational axes. This fact has been

confirmed by several authors where, detailed and most comprehensive studies on the

misalignment of the optical center and the rotational axes can be found in [44,54,90].

3.3.4 Auto-calibration from scene constraints

In addition to the previous set of restrictions on the intrinsic parameters and/or on

the camera motions, scene constraints can be also intergraded in the auto-calibration

algorithms. Man-made environments are rich sources of geometrical primitives, and

thus can aid in many vision application. For off-line applications and with little hu-
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man interaction, such knowledge can be identified easily. Incorporating scene knowl-

edge within the auto-calibration framework is of several benefits as it can simplify

auto-calibration process, elevate robustness, provides extra constrains to be used in

conjunction with other intrinsic and motion constrains, as well as enhancing the recov-

ered 3D models quality. Such knowledge can be information of basic scene primitives

such as points, lines, and planes or higher level geometrical scene objects such as

circles, cubes, prisms, cylinders, etc. Regardless of the obtained type of scene in-

formation, all can be incorporated in the auto-calibration process or the subsequent

reconstruction bundle-adjustment.

Instead of using a calibration object of known Euclidean geometry, metric knowl-

edge, such as relative distances or angles in the scene, can be used to obtain metric

structure. For these methods, an initial projective reconstruction of the scene points

Qp can be computed by tracking and matching points in two or more images. A

second step is used to upgrade this projective structure to metric (or Euclidean) Qm,

by finding an appropriate 4× 4 transformation matrix T :

Qm .
= TQp (3.14)

If the exact position of some scene points are known, then the transformation

matrix T can be easily computed and the projective structure can be upgraded to

Euclidean. This is similar to classical calibration method using a calibration object.

However, instead of having a calibration object with high precision known geometry

in the scene, one can use other general Euclidean or relative metric information for

calibration. Boufama et al. [8] showed that various Euclidean scene knowledge can

be incorporated as constraints to upgrade the projective representation to metric or
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Euclidean. He derived constraints from various geometrical properties such as copla-

nar points (e.g. on the ground plane), points which are vertically aligned, as well as

known or equal distances between points. Liebowitz and Zisserman [60] investigated

the usage of weak metric planar information such as known length ratios, known an-

gles or two equal but unknown angles. Caprile and Torre exploited the usage of three

orthogonal vanishing points to allow computing the camera intrinsic parameters [12].

Such vanishing points, for example, can be computed from the orthogonal sides of

a building. [7] investigated using scene constraints such as orthogonality, parallelism

during the calibration procedure. In fact, many other scene knowledge has been ex-

ploited and can be used as constraints to restrict the projective structure to metric

or Euclidian such as parallel lines, orthogonal planes, circles, etc. The ability to de-

tect such scene constraints in the scene allows automating the calibration process or

enhancing its quality.

It is worth noting, however, that incorporating scene knowledge relying on hu-

man interaction is equivalent to classical camera calibration, i.e. using calibration

object, but with the advantage of not requiring to place the calibration object in the

scene. Such approach is useful for many human-guided application such as off-line

3D modeling from uncalibrated image sequence. On the other hand, for online ap-

plication from uncalibrated image sequences, reliable and automatic identification of

such information remains a hard problem. The following discussion is limited to auto-

calibration methods based on scene constraints which can be identified automatically

from uncalibrated images.

Schaffalitzky and Zisserman proposed a method for automatic detection and group-

ing of image elements which are repeated on a scene plane. Such elements can be used

for estimating vanishing points and vanishing lines [85, 86]. The authors addressed
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three classes of commonly occurring types of geometric primitives: (1) equally spaced

coplanar parallel lines; (2) a planar pattern with repeated elements by translation

in the plane; and (3) a set of elements arranged in a regular planar grid. Recover-

ing vanishing points and vanishing lines allows the recovery of the plane at infinity.

This allows the computation of the infinity homography, which enables linear metric

upgrade under the assumption of restriction on some intrinsic parameters.

Lines and points are the basic and common geometrical primitives which can be

identified and matched robustly across multiple images. Aminitabar and Boufama [2]

proposed an algorithm to detect scene planes from uncalibrated images, a challenging

problem that often leads to extracting large number of undesirable virtual planes. The

proposed algorithm is based on homography calculation between three or more point

matches from two images. It classifies the estimated planes into virtual and physical

scene planes by detecting non-coplanar points inside the convex hull of the group of

point used in the homography estimation. They provided different confidence levels

for extracted planes classifying them gradually from most likely virtual planes to most

likely physical ones.

The relation between a pair of parallel planes can be very useful for reducing

the projective ambiguity of the reconstruction. In particular, parallelism is an affine

invariant feature, and thus if identified can be employed to reduce the projective

ambiguity to affine. Similarly, orthogonality is a metric invariant property and a pair

of orthogonal lines, or planes, help obtaining metric reconstruction.

Using a set of extracted planes from a pair of uncalibrated images, Habed et al.

proposed a method to distinguish and identify parallel pairs [2]. Relying on the fact

that parallel planes intersect at infinity, a linear relationship between the inter-image

homographies of the parallel planes and the plane at infinity is devised. Under the
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assumption of constant camera intrinsic parameters, they combined this relation-

ship with the modulus constraint for parallel planes identification. Detecting parallel

planes allows identifying vanishing lines, i.e. the intersection of two parallel planes at

infinity, which places two constraints on the three unknown terms of the plane at in-

finity and thus with two pairs of parallel planes an affine calibration can be obtained

linearly [31]. In chapter (6), a similar method for parallel planes identification is

presented. However, the proposed method is relaxed from the restriction of constant

camera parameters.

Another important and very helpful relationship between a pair of planes is the

perpendicularity which is a metric invariant. The angle θ between any two planes Φ

and Ψ can be computed using the absolute dual quadric (Ω∗∞) as:

cos(θ) =
Φ>Ω∗∞Ψ√

(Φ>Ω∗∞Φ).(Ψ>Ω∗∞Ψ)
(3.15)

Considering orthogonal pair of planes (i.e. θ = 90o) and by ignoring the denomina-

tor of equation (3.15), the relationship between a pair of orthogonal planes simplifies

to:

Φ>Ω∗∞Ψ = 0 (3.16)

Benefiting from the linear nature of this equation (3.16), Huynh and Heyden pro-

posed a scheme for incorporating orthogonal scene planes in the framework of cam-

era auto-calibration [53]. Imposing orthogonal scene planes in the auto-calibration

and reconstruction provides extra constraints that makes auto-calibration from fewer

number of images possible and, help obtaining better 3D reconstruction quality. In-

corporating the scene orthogonal planes constraints can be at the initial step of esti-

69



mating the absolute dual quadric (Ω∗∞) as well as the subsequent bundle adjustment

refinement step. However, no method proposed for automatic identification of or-

thogonal scene planes and thus the proposed framework is limited to human-guided

3D modeling applications.
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Chapter 4

Affine Auto-Calibration and

3D-Reconstruction

Three-dimensional reconstruction of a scene from two or more images is of significant

importance for many computer vision applications. An initial projective point-wise

structure can always be recovered from feature correspondences tracked through an

uncalibrated image sequence [25,26,82,93]. Such projective structure is often of lim-

ited use for the majority of computer vision problems. The initial projective structure,

however, can be upgraded to a more specialized one, i.e. metric or Euclidian, once the

camera’s intrinsic and/or extrinsic parameters are known. In the case of frequently

zooming cameras, these parameters are continuously changing and thus need to be re-

calibrated. The three-dimensional Euclidian structure problem of a ”possibly” zoom-

ing and moving camera is nonlinear and challenging to solve [5,48,69,81,99,104]. The

reason, these methods seek recovering many unknown parameters, for each camera,

directly in a single step. Stratified auto-calibration methods, on the other hand, sim-

plify this problem by first obtaining an affine calibration and structure, from which

linear metric/Euclidean calibration and structure upgrade can be followed. The diffi-

cult step, however, is to precisely locate the plane at infinity with no prior knowledge
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about the scene and is the primary contribution of this chapter.

The scaled Euclidean structure, i.e. metric, provides the ultimate source of in-

formation that vision tasks strive to obtain and will be the topic of chapter 5. On

the other hand, affine structures have ample amount of information for many vision

applications. An affine reconstruction preserves parallelism of lines and planes, the

ratios of lengths of parallel line segments, as well as ratios of areas on parallel planes.

For example, using affine prosperities and structure, Beardsley et al. [6] proposed

navigation method and Criminisi et al. [14] showed how relative people’s height can

be measured from affine structure.

This chapter provides a linear method to affine auto-calibrate a pair of stationary

zooming cameras with unknown translation and orientation between them. Affine

calibration is equivalent to locating the plane at infinity. Once the latter is located,

the projective camera matrices and the projective three-dimensional structure of the

scene can be upgraded to affine.

All techniques for locating the plane at infinity depend on restrictions on the

camera intrinsic parameters, special camera motion, or scene constraints. In the case

of a moving camera with constant parameters, the modulus constraints [74] can be

used to recover the plane at infinity by solving a set of nonlinear polynomial equations.

In addition to the inherent difficulty of solving nonlinear equations and the multiple

possible solutions, these constraints cannot be used when the camera parameters are

allowed to change its setting by zooming. To overcome this limitation, the problem

has often been simplified by making unrealistic assumptions on the rigidity of the

principal point [72].

Simple linear affine calibration and estimation of the plane at infinity can be

achieved in situation of restricted camera motion. These motions are generally pure

72



translation [34, 51, 67, 68, 83]. Pure translating camera refers to a moving camera

without rotation while keeping the intrinsic parameters fixed. However, for images

taken by different and unknown intrinsic’s parameters these algorithms will fail [52,

56]. This is the situation when the camera zooms during the motion causing the focal

length and principal point to vary. Other methods, such as parallel screw axis or

planar motion, are also considered in the literature [4,22,23,58]. As far as stationary

cameras are concerned, the assumption of a mandatory pure rotation of the camera

has been proposed in the literature [18, 40]. As previously discussed in chapter 3,

pure rotations allow for a linear calculation of inter-image homographies induced by

the plane at infinity from which the camera parameters can be retrieved linearly.

However, moving cameras in a pure rotation motion is not feasible in practice and

such an assumption is only plausible when the camera is far from the scene [44,54,90].

Moreover, the 3D structure of the scene cannot be recovered from a single rotating

camera, even if the intrinsic parameters are known. Hence, at least one additional

image, captured from a different position in space, is needed. Other approaches

for locating the plane at infinity are based on scene constraints. Identifying scene’s

parallel lines or planes helps estimating vanishing pointsand vanishing lines, thus

allowing estimating the plane at infinity. However, such methods are limited to

scene’s where such parallel geometrical primitives do exist and can be automatically

identified.

This chapter addresses the problem of affine auto-calibration of an imaging system

comprised of two stationary zooming cameras located at distinct unknown positions

and orientations in space. The case of stationary zooming but non-rotating cameras

has not been addressed in the literature. This is a typical configuration in which each

zooming camera is physically attached to a static structure (wall, ceiling or tripod)
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often encountered in stereo camera systems, surveillance networks and monitoring

of all sorts of events. Because the cameras are not rotating, the methods designed

for stationary rotating cameras cannot be employed to self-calibrate each camera

independently. Solutions designed for moving cameras make no distinction between

images taken by stationary cameras and those which are not, leading to unnecessarily

complicated nonlinear equations.

Our approach fundamentally differs from all existing self-calibration approaches as

it locates the plane at infinity by exploiting the very fact that a camera has zoomed.

Indeed, all existing methods, whether dealing with the case of a stationary or moving

camera, do not exploit zooming as the camera may or may not have done so. Our

proposed method is based on some important observations we have made on the

results of the experiments conducted by Willson in his work on designing an active

model for zoom lenses [102]. Indeed, the change that affects the intrinsic parameters of

a camera while zooming is the result of the displacement of both its optical center and

image plane which may possibly undergo a mostly partial rotation. In the existing

methods that deal with a moving zooming camera, these changes are absorbed by

the rigid motion between the views and hence cannot be exploited independently to

support the self-calibration process. In the case of a stationary rotating and zooming

camera, these changes have not been exploited but rather neglected. In contrast to

all these methods, our affine self-calibration relies specifically on the motion of the

optical center and the image plane of the camera on which mild and valid constraints,

verified in [102] on several cameras, are imposed .

This chapter is organized as follows: Section 4.1 presents some necessary back-

ground and preliminaries. In Section 4.2, we describe the zooming camera model

that we have considered for developing our method and its relationship to the plane
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at infinity. A simple linear affine auto-calibration method is then described, which

constitutes the main contribution of this chapter. Obtained experiments and results

are described and discussed in Section 4.3. Section 4.4 concludes this chapter.

4.1 Background and preliminaries

Consider a static scene observed by a (stereo) pair of uncalibrated stationary non-

rotating but zooming cameras. The two cameras are placed at distinct positions in

space and have different orientations. We assume throughout that each camera i

(i = 1, 2) captures images at two distinct settings in the subset Si = {1, 2} of possible

zooming configurations of its lens. Neither the cameras nor the scene are physically

displaced or rotated between the shots. However, because the geometry of a camera

changes under zooming effect, we assume throughout that pairs of images captured

by the same camera with two distinct zoom settings as if they had been captured by

two distinct cameras each of which following the well-known pinhole model.

4.1.1 Projective scene and cameras

At any given zoom setting s ∈ Si, a camera i maps any world point Q onto the image

point qi,s. Expressing world and image points by their homogeneous coordinates, this

mapping is described up to a scale (hence ∼) through a 3 × 4 projection matrix Pi,s

as follows:

qi,s ∼ Pi,sQ. (4.1)

We assume throughout that all four projection matrices Pi,s have been calculated
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from point correspondences with respect to a common projective reference frame.

Note that, although we are dealing with stationary cameras, such matrices can always

be calculated. Indeed, since the two physical cameras are located at different positions

and orientations in space, a projective structure of the scene can be triangulated from

two images - one from each camera - while the remaining projection matrices, also

consistent with the chosen frame, can be calculated by back-projection on the two

other images. In practice, a projective set of projection matrices can be obtained using

virtually any off-the-shelf method [43]. In the present work, we have used Rothwell’s

linear method [82] to do so. The matrices thus obtained allow only for the recovery

of the scene and cameras up to common but unknown projective ambiguity. This

ambiguity can be reduced to an affine one by means of an adequate transformation

represented by a regular 4× 4 matrix

H ∼

 P

Πᵀ
∞

 (4.2)

obtained by stacking some arbitrary 3 × 4 matrix P (generally one of projective

projection matrices) and a row 4-vector Πᵀ
∞ representing the generally unknown coor-

dinates of the plane at infinity in the current projective frame. This transformation,

which restores parallelism in the estimated structure, maps every scene point Q to

its new location Q̂∼ HQ and turns the projection matrices into P̂i,s∼ Pi,sH
−1.

4.1.2 Camera matrix and world planes

The rows of a 3 × 4 projective camera matrix P are 4-vectors representing the ho-

mogeneous coordinates of three planes Π, Ψ and Φ. These planes can be inferred

geometrically as specific world planes, depicted in Figure 4.1, and intersecting in the
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camera center C.

P ∼


Πᵀ

Ψᵀ

Φᵀ

 . (4.3)

Φ 

Π 

Figure 4.1: The three world planes defined by the three rows of the camera matrix.

The plane with coordinates Π is the plane passing through the camera center and

the image’s vertical axis, i.e. the line u = 0. In this manner, a 3D point Q on the plane

Π satisfies ΠᵀQ = 0 and, hence, is projected onto an image point whose coordinate

vector is of the form PQ ∼ (0, v,w)ᵀ. Similarly, the plane with coordinates Ψ is the

one containing the camera center and passing through the image’s horizontal axis, i.e.

the line v = 0. Hence, a point Q on the plane Ψ satisfies Ψ>Q = 0 and projects onto

an image point PQ ∼ (u, 0,w)ᵀ. In particular, the plane Φ, represented by the 3rd
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row of P, is the principal plane [43]1. The principal plane is the plane containing the

X and Y axes of the camera’s reference frame, hence parallel to the image plane I and

containing the camera center. It is the plane of equation ΦᵀQ = 0 representing the

set of all points Q projected onto image points with coordinates PQ ∼ (u, v, 0)ᵀ, i.e.

points at infinity on the image plane. The method proposed in this chapter exploits

the motion of the principal plane that accompanies the displacement of the camera

center under zooming effect.

4.1.3 Parallelism and the plane at infinity

It is well-known that parallelism is invariant under affine (hence metric) transfor-

mations. This property is often exploited to locate the plane at infinity by detecting

and establishing correspondences of vanishing points or vanishing lines across images.

The plane at infinity can be computed from three such vanishing points [12] or from

a single vanishing point and a vanishing line [92]. The most general way of locating

vanishing points is by determining the intersection point of the images of lines that

are parallel in the scene. Furthermore, as parallel planes intersect in a vanishing line,

the latter can be located by reconstructing these planes in some projective frame

and back-projecting their common line onto the images. It has recently been shown

that the plane at infinity can also be located from scenes with two pairs of parallel

planes determining two vanishing lines without the need for reconstruction [31]. This

is achieved through a linear relationship between parallel scene planes and the plane

at infinity. To briefly describe this, consider a 3D scene consisting of two distinct and

parallel scene planes Π1 and Π2. Since these two planes are parallel to each other,

they meet in a line on the plane at infinity Π∞. As a consequence, the coordinates of

1The term focal plane is also used in the literature.
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the plane at infinity and those of Π1 and Π2 are linearly dependent. Such dependency

can be expressed by

Π∞ ∼ α1Π1 + α2Π2 (4.4)

where α1 and α2 are non-zero scalars and Π1 and Π2 are the homogeneous coordinate

vectors of the planes Π1 and Π2, respectively.

4.2 Zoom-based affine auto-calibration

In this section, we present and describe an affine auto-calibration method for a stereo

pair of stationary non-rotating zooming cameras. We discuss the effect of zooming on

the camera model, which is our main ingredients used in our method for locating the

plane at infinity. It will be shown that the principal planes corresponding to distinct

zoom settings of a stationary camera, are parallel to one another. A linear method

for calculating the plane at infinity is presented.

4.2.1 The effect of zooming on the camera model

Consider a camera that is physically fixed in space, e.g. on a tripod, capturing two

or more images at different settings of its zoom lens. At any given setting s ∈ Si of

its zoom lens, a camera i is described by its image plane Ii,s and by its optical center

Ci,s (see Figure 4.2). The optical center Ci,s, in which all light rays emanating from

the scene intersect, is located at a focal distance fi,s from the image plane, along the

optical axis of the camera. The latter is perpendicular to and intersects Ii,s in the

principal point ci,s.

Under the effect of zooming, the optical center Ci,s undergoes a displacement to
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Figure 4.2: Zooming camera model

a new location Ci,s′ at a focal distance fi,s′ from the image plane. This repositioning

of the lens, carried out by automated zooming hardware or by manual lens change,

does not affect only the focal length of the pinhole camera model, but also other

parameters. In fact, a change in the configuration of a camera lens due to zooming

results in the repositioning of both the optical center and the image plane. In his

design of an active model for zoom lenses [102], Willson has carried out a series of

experiments in which a pattern-based calibration of a stationary camera is repeated

at various zoom settings using several zoom lenses. This was to identify the camera

parameters that must be allowed to vary with the zoom versus the ones that can
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be fixed in the zooming camera model. The results of Willson’s experiments show

that the optical center is dominantly shifted (possibly by several tens of millimeters)

along the Z−axis of the camera (the optical axis) and that its displacements along

the X− and Y− axes are small and hence neglected in his model. This does not

imply that the position of the principal point remains stable since the image plane is

also displaced under the effect of zooming. In particular, the image plane was found

to undergo a mostly translational motion which is not necessarily parallel to the

Z−axis and hence affecting the position of the principal point. In Willson’s model,

the displacement of the image plane is represented by the fact that both the optical

center and the focal length are allowed to vary independently from one another and

by allowing the principal point to shift as well. Note that the goal in Willson’s work

was to obtain a simple model involving only the most influential parameters.

4.2.2 Parallel principal planes

Based on the previous description, the zooming process incorporates displacing the

camera center to a new location whilst preserving the orientation of the camera (i.e.

no rotation). This displacement of the camera center in general alters three out of

the five intrinsic parameters: the skew and aspect ratio remain very stable while the

principal point and focal length vary. From this point of view, a stationary zooming

camera can be viewed as a mechanism for obtaining images from pure translational

motion. Obtaining two views from pure translation is hard in practice and requires

a high degree of accuracy which might not be achievable, except with special equip-

ment and often in a laboratory setup. However, we should note that although an

affine reconstruction is possible from two views of a camera with fixed parameters

undergoing a pure translation, it is impossible to obtain an affine reconstruction from
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two views in the case of a zooming camera, i.e. varying intrinsic parameters with

pure translation motion constraints as proved in [52]. Furthermore, the modulus

constraints cannot be used in the case of zooming or varying camera parameters.

The only remaining existing possibility is to rely on scene constrains such as parallel

lines and planes. This chapter introduces a new method which neither relies on scene

constraints nor on explicit motion constraints.

The affine self-calibration method we propose, relies on less restrictive constraints

on the geometry of a zooming camera than Willson’s. Indeed, we rely on the fact

that the optical center is mostly displaced along the Z−axis but, unlike Willson’s

model, we allow it to also shift along the X− and Y− axes by any amount. More

importantly, we consider the image plane after zooming parallel to the one before

zooming. This assumption includes the case in which the image plane undergoes a

pure translation (as in Willson’s model) but also allows the image plane to rotate

around any axis parallel to the Z−axis. Note that our assumptions imply that all

the intrinsic parameters are free to vary. Under these assumptions, we achieve our

affine self-calibration goal by tracking the motion of the principal plane Φ (introduced

in Section 4.1.2) of the camera which we denote hereafter Φi,s (Figure 4.2), i.e. the

plane containing the optical center of camera i at zoom setting s and parallel to the

image plane. Because Φi,s contains Ci,s, this plane is also displaced under the effect of

zooming to overlap Φi,s′ containing the new camera center Ci,s′ . Since our assumption

is that the image plane after zooming is parallel to the one before zooming, then so

are the principal planes before and after zooming.
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Figure 4.3: Each pair of parallel planes intersect in a line at infinity.

4.2.3 Locating the plane at infinity

Let Φi,s and Φi,s′ be the homogeneous coordinate vectors of the principal planes at two

distinct zoom settings of camera i. The two planes represented by these coordinates

are parallel, if considered in any metric or affine frame, and hence intersect the plane

at infinity in a line. Although parallelism is not preserved under projective transfor-

mations, the linear relationship of parallel planes (see Equation 4.4) still holds, hence

we have:

αi,sΦi,s + αi,s′Φi, = Π∞ and i = 1, 2 (4.5)

where, αi,s and αi,s′ are non-zero scalars and, the coordinate vectors Φi,s, Φi,s′ and Π∞

may be expressed in any reference frame.
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As a consequence, the coordinate vectors of the principal planes may be provided

by the last rows of the associated projective camera matrices Pi,s and Pi,s′ (see sub-

section 4.1.2) whose calculation only requires feature correspondences across images.

When considering a single camera i at two distinct zoom settings, the linear rela-

tionship (4.5) provides four independent equations in six unknowns: αi,s, αi,s′ and the

four coordinates of the plane at infinity Π∞. These equations define a one-parameter

family of points describing the line Li on the plane at infinity at which Φi,s and Φi,s′

intersect, as shown on Figure (4.3). All principal planes originating from the same

camera meet in this line .

In order to retrieve the plane at infinity, at least two distinct lines on this plane

are necessary. Such lines can be obtained from two or more distinct zooming cameras

in general position. For computation of the plane at infinity, consider the pair of

zoom images taken by each camera i, i = 1, 2 and by substitution in (4.5):

α1,1Φ1,1 + α1,2Φ1,2 = Π∞ (4.6)

and

α2,1Φ2,1 + α2,2Φ2,2 = Π∞ (4.7)

Combining equations 4.6 and 4.7 provides:

α1,1Φ1,1 + α1,2Φ1,2 − α2,1Φ2,1 − α2,2Φ2,2 = 0 (4.8)

where 0 is a 4× 1 null vector. Equation (4.8 ) is equivalent to a system of linear

equations on the form Ax = 0, where the 4 × 4 matrix A constituted from the four
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principal planes column vectors Φ1,1,Φ1,2,Φ2,1 and Φ2,2 and the 4-vector x correspond

to the four unknown scalars α1,1, α1,2, α2,1, and α2,2. Such system can be solved easily

using Singular Value Decomposition (SVD). Once the scalars αi,j are recovered, the

plane at infinity can be computed by substituting the corresponding scalars αi,j in the

equations (4.6) or (4.7). In practice, we set ||Φi,s|| = 1 to achieve numerical stability.

4.3 Experiments and results

We have carried out several experiments that have validated the proposed method. In

particular, we have used off-the-shelf low-end cameras to capture our images. In all

our experiments, we have used the method reported in [82] to compute a consistent

set of projection matrices for all acquired images. Furthermore, only linear calcu-

lations have been employed. Theses results might likely be improved, if non-linear

optimization is added at different stages.

The quality of the results is assessed through the RMS error of the 3D recon-

struction in comparison to the ground truth. In addition, visual 3D reconstruction

of different indoor and outdoor scenes are also presented. Also we have compared

our method to two other well known methods for recovering the affine reconstruction.

Note that these methods are not automatic as they rely on scene constraints, such as

scene parallel lines and scene parallel planes. Our method on the other hand, does

not require any scene constraint and uses only point correspondences across images.

The obtained results are comparable to these two constraint-based methods, even

though such comparison is unfair.

In order to evaluate the obtained affine reconstruction, the reconstructed points

are first aligned with the Euclidean ground truth data via an affine transformation,
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then the RMS error is calculated. A linear affine transformation Ta can be calculated

from 4 or more of such points (see for instance Affine Direct Linear Transformation

DLT in [43]).

Beside using the RMS error as a quality measurement, we have also provided

visual representation of the reconstruction, in a wireframe model representation. At

the same time, to make any affine distortion more visible, the reconstructed points

are translated to the coordinate origin while anisotropically scaled by making the 3

dimensions of the scene approximately round. Note that such applied transformation

is affine.

4.3.1 Simulations

In each simulation, we have randomly generated a cloud of 125 points confined within

the unit sphere along with a pair of cameras (see Figure (4.4)). Each camera was

roughly pointing at the center of the sphere, from which it was randomly located at

a mean distance of 3 meters and 25 cm standard deviation. The generated cameras

were created to simulate a zooming camera with a zoom length capabilities of 12.5 -

35 mm, a CCD array of 8 × 8 mm and 64 pixels per millimeter. For each generated

camera, we capture two images (before and after zooming) by projecting the scene

points onto 512 × 512 pixels images. The first captured image by each camera is

taken with initial camera parameters of focal length 800 pixels (12.5 mm), zero image

skew, unit aspect ratio, and principal point located at the center of the image. For

the second image taken by each camera, and in order to simulate zooming, the focal

length increased randomly to a length within the range of 15-35 mm (960-2240 pixels).

The optical center of the camera is translated by a relative amount within the range

of 2.5 and 22.5 mm along the optical axis from its initial position before zooming.
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Table 4.1: 3D errors: simulated scenes and cameras.

Noise(pix) 0.0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2.0

Mean RMS(%) 0.0 % 3 % 3.5 % 4.0 % 5.0 % 5.5 % 6.0 % 6.5 % 7.0 % 7.7 % 8.0 %

For each scene and camera, we progressively corrupt the pixel coordinates by a zero-

mean Gaussian noise with standard deviation in the range 0 to 2 pixels (with a 0.2

pixel step). The plane at infinity is estimated using our method and the affine 3D

structure is obtained by triangulation and aligned with the original data via the best

affine transformation.

Figure 4.4: Simulations setup

The mean 3D relative RMS error over 1000 independent trials for each noise

level, reported in Table 4.1, was used as a quality measurement. The results we have

obtained show that, the quality of the affine reconstruction is perfect in the absence of

image noise which confirms our method theoretical correctness. Trivially the quality

87



progressively deteriorates with the increasing amplitude of pixel noise, but the relative

error remains within an acceptable range.

4.3.2 Laboratory experiments

Here, we have used a scene with known geometry, considered to be our ground truth

even though its measurements have been obtained using a low-end ruler. The scene,

a 184 × 244 × 244 mm cuboid-shaped calibration pattern with 30 × 30 mm black &

white squares (see Figure 4.5), was imaged by three different low-end (cost below

$100 each) digital cameras with motorized zoom. The three cameras consist of a

Kodak EasyShare, a Sony Cyber-shot DSC-S930 and a Sony DSC-W560. Each camera

captured two images, at two different zoom settings, while mounted on a tripod

located at about 2 meters from the scene. A total of 161 feature points were extracted

and matched across the six images.

Figure 4.5: The three pairs of images used in the minimum case

Using each pair of cameras (total of 3 different cases), the proposed method was

able to recover the affine 3D structure. A sample affine 3D reconstruction with
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Figure 4.6: 3D Affine reconstruction (left) and Euclidean reconstruction (right). Re-
constructed points are marked with ’+’.

Table 4.2: 3D RMS errors (in mm) using three different pairs of zooming images.

Used Camera EasyShare × DSC-S930 EasyShare × DSC-W560 DSC-S930 × DSC-W560

3D RMS error 4.4 mm 3.5 mm 4.8 mm

wireframe connecting the reconstructed points is shown on Figure 4.6 (left). These

3D affine reconstruction were aligned with the known geometry via an affine Direct

Linear Transformation (DLT [43]). Figure. 4.6 (right) shows the reconstructed 3D

model after the DLT alignment. The 3D RMS errors obtained for the 3 different pairs

of cameras, given in Table 4.2, were comparable and did not exceed a mean RMS error

of 5 mm. The good quality of these results obtained by different low-end cameras

validates the correctness of our assumptions and efficiency of our method with real

cameras. When considering the fact that the scene was at about 2000 mm from the

cameras and that feature points were not extracted with a sub-pixel accuracy, these

results are excellent as the mean errors ranged from 3.5 mm to 4.8 mm.
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4.3.3 An outdoor scene

In a third experiment, we applied our method to an outdoor scene of a house. Our

camera, a Sony DSC-S930, was placed at approximately 25 meters off a house then we

have captured 2 images at different zoom settings. This process was repeated 3 times

for 3 different positions, with a few meters between them. A total of 45 points were

extracted and matched across the different images of the scene as shown in Figure 4.7.

(a) (b)

Figure 4.7: Outdoor scene. (a) 3 pairs of images taken from 3 different positions
where each pair of images is taken with different zoom settings. (b) Sample selected
feature points

(a) (b) (c)

Figure 4.8: Affine reconstruction of the ”house” scene obtained by the different pairs
of cameras

Using 2 pairs of zoom images (total of 3 different cases), we have applied our

method in the minimum case and have computed the 3D affine reconstruction of the
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points. Figure 4.8 shows the affine reconstruction obtained from each pair of cameras

from different viewpoints. To better interpret the results, the reconstructed affine

3D points were translated to the origin and anisotropicaly scaled by making the 3

dimensions of the scene approximately round. In addition, a wireframe connecting

the reconstructed 3D points were drawn to better visualize it. As clearly shown on

Figure 4.8, the obtained affine reconstructions are very good and are similar to each

other, regardless of the pair of cameras used.

4.3.4 Comparison with other methods

In these experiments we confront our linear affine self-calibration method with other

methods employing scene constraints. Altogether, we have tested three methods

using the same images obtained from the same scene and cameras. The first method

relies on the use of 3 vanishing points from 3 orthogonal pairs of parallel lines that

make it possible to calculate the plane at infinity and hence the affine structure. The

second method employs 2 pairs of parallel planes from the scene to locate the plane

at infinity and recover the affine structure. The third method is our zoom-based

affine reconstruction in the minimum case of 2 cameras and 2 zoom images. In order

to provide such scene constraints in a single model, i.e., parallel planes and parallel

lines, along with ground truth data, we have used our calibration cube. Figure 4.9

shows the calibration cube along with the parallel lines and planes that have been

used as scene constraints. Note that unlike our method, the methods employing scene

constraints do not work for scenes where no parallel lines or planes exist.

The Canon PowerShot camera was used to capture images from 2 viewpoints. For

each viewpoint, the camera was again mounted on a tripod and captured 2 images

at different settings of its zoom. Figure 4.9 shows the images captured from each
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Table 4.3: 3D RMS errors (in %) using three different methods.

Method Parallel lines Parallel planes Zooming Cameras

3D RMS error(%) 0.7967 % 0.7493% 1.0277%
Scene Constraints 3 pairs of parallel lines 2 pairs of parallel planes no scene constraints

of the viewpoints. The two viewpoints were roughly 70 cm apart. A total of 108

points, located on 3 mutually orthogonal faces of the cube shown in Figure 4.9, were

extracted and matched across all 4 images.

(a) Viewpoint # 1 (b) Viewpoint # 2

Figure 4.9: Four images taken with two stationary cameras at different zoom settings
showing the manually selected parallel planes and lines.

The affine 3D scene structures were obtained using each method independently,

then aligned with the ground truth data using the affine DLT method. A 3D recon-

struction of the aligned data along with ground truth data is presented in Figure 4.10.

Table 4.3 shows the results of the affine reconstruction where the RMS errors obtained

with scene constraints were about 0.75% while the zoom-based method provided a

reconstruction with 1.03% error. The latter is clearly very good considering that our

method does not employ any a priori knowledge about the scene as it relies on point

correspondences only. Note that, the used scene constraints in these experiments,

parallel lines and planes, are perfect cases for such methods. Such perfect lines and

planes constraints rarely exist in real scenarios. Moreover, and more importantly, our

method is not limited to scenes exhibiting such constraints giving it an advantageous
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(a) Parallel Lines Method (b) Parallel Planes Method (c) Zooming Method

Figure 4.10: Obtained 3D reconstruction after upgrading the affine reconstruction to
Euclidean

flexibility.

4.4 Conclusion

This chapter focused on the problem of obtaining affine reconstruction and camera

matrices from a pair of stationary non-rotating zooming cameras. This is a problem

which has not been specifically addressed in the literature previously, where only

non-linear general solution are available. A simple linear method for locating the

plane at infinity is proposed, allowing to upgrade the initial projective reconstruction

to affine. The method retrieves the plane at infinity - directly from the projective

projection matrices of the cameras - by exploiting the displacement of their principal

planes under the effect of zooming. Different than all other existing approaches, the

proposed method for locating the plane at infinity does not rely on restricted intrinsic

camera parameters, nor does it depend on special camera motions or scene constraints.

The proposed method is based on the valid observation that the principle planes of

93



a stationary camera at two distinct zoom settings are parallel. This observation

does not impose any restriction on the intrinsic camera parameters as all parameters

are allowed to vary. Obtaining the affine reconstruction simplifies the process of

upgrading it to metric, the topic of the next chapter. Besides the simplicity of our

method, the obtained results using low-end zooming cameras yielded good accuracy

in comparison to other methods, which rely on scene’s constraints.
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Chapter 5

Metric Auto-Calibration and

3D-Reconstruction For Stationary

Zooming Cameras

5.1 Introduction

The auto-calibration problem of a system of zooming cameras is nonlinear and chal-

lenging to solve [13, 29, 48, 72, 81, 99, 104]. In this chapter, a linear stratified auto-

calibration method for stationary zooming cameras is proposed and evaluated. An

affine upgrade of the scene and cameras is first calculated. Then, the intrinsic param-

eters and metric structure can be linearly obtained. The affine calibration is achieved

by using an improved version of the method for locating the plane at infinity from a

stereo pair of zooming cameras presented in the previous chapter (chapter 4). This

enhancement is desirable for cases where more than two cameras are available and

when each camera may capture more than two zoom images. Employing all cameras

and images at hand helps to cope with image noise and critical motions.

Once the plane at infinity is retrieved from parallel principal planes, the no-skew
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and/or known aspect ratio constraints can be used to linearly estimate the so-called

Image of the Absolute Conic (IAC) and hence all the intrinsic parameters. It is

also well-known that estimating the camera’s intrinsic parameters is very sensitive to

the localization of the plane at infinity. Hence, we have investigated two methods

for linearly calculating an estimate of the IAC (and as a consequence the camera

parameters) from the linearly estimated plane at infinity: (a) the well-known linear

least-squares through Singular Value Decomposition (SVD) [41], and (b) a Linear

Matrix Inequality formulation which allows to enforce the requirement of a positive-

definite IAC [59]. Our extensive experiments both on simulated and real images (using

a variable number of cameras, zoom settings and image noise) show that the estimate

of the intrinsic parameters, obtained by both methods along with the zoom-based

candidate plane at infinity, allow for a simple nonlinear least-squares optimization

procedure to converge towards the optimal parameters.

This chapter is organized as follows. Section 5.2 describes our self-calibrating

method for zooming stationary cameras. First, the linear method for estimating

the plane at infinity, presented in the previous chapter, is reformulated to robustly

incorporate more zoom images and cameras. Next, under the assumption of square

pixels, linear method for estimating the IAC and hence the intrinsic parameters is

described. Our experiments and the results we have obtained are described and

discussed in Section 5.3. Section 5.4 concludes our work.

5.2 Zoom-based camera auto-calibration

In this section, we present and describe the stratified camera auto-calibration method

for a set of two or more stationary zooming cameras. Assuming a consistent set of
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projective camera matrices has already been recovered from image correspondences,

the full camera auto-calibration is carried out using the following steps.

1. Affine upgrade: linear estimation of the plane at infinity using the zoom based

method discussed in chapter 4, exploiting the assumption that the principal

planes corresponding to distinct zoom levels of the same camera are parallel to

one another. This method is extended and reformulated to support the general

case of an arbitrary number of zoom images and cameras.

2. Metric Upgrade: under the valid assumption of zero-skew and unit aspect ratio,

the intrinsic parameters of all cameras can be linearly calculated. We investigate

two linear methods for the computation of the IAC including the singular Value

Decomposition (SVD) and Semi-Definite Programming (SDP).

3. Refinement(optional): the initial linear estimation can be refined to obtain the

optimal intrinsic parameters and coordinates of the plane at infinity through a

nonlinear least-squares optimization procedure.

5.2.1 Estimating the plane at infinity: revisited

It is shown in the previous chapter that two images of a zooming camera allows to

identify a line at infinity constituted from the intersection of its (parallel) principal

planes using the equation:

αi,s,s′Φi,s + αi,s′,sΦi,s′ = Π∞. (5.1)

where Φi,s and Φi,s′ are the homogeneous coordinate vectors of the principal planes

at two distinct zoom settings of a camera i, and αi,s,s′ and αi,s′,s are non-zero scalars.
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Two or more zooming cameras (n > 2), two of which not pointing in the same

direction, allow to recover the coordinates of the plane at infinity by solving a linear

system of equations (5.1), involving all cameras and zoom images.

However, when relying on (5.1), each pair of parallel principal planes introduces

two new unknowns αi,s,s′ and αi,s′,s for every given camera. For instance, two cameras,

each capturing two zoom images, yield eight linear equations in eight unknowns and

suffice in theory to retrieve the plane at infinity. In practice, more than two cameras

may be available and each camera may very well capture more than two images at

distinct zoom settings of its lens. In such case, in order to cope with image noise, it is

highly desirable to employ all cameras and images at hand. However, n > 2 cameras

and mi > 2 zoom images captured by camera i, give rise to a system of 4n linear

equations (5.1) in 4 +
n∑
i=1

mi(mi− 1) unknowns. Although such linear system can be

solved (typically using SVD), the increase in the number of unknowns, in the presence

of noisy image measurements, may affect negatively the accuracy of the results.

Incorporating more cameras and images

Fortunately, (5.1) can be brought to a system of equations solely involving the

coordinates of the plane at infinity. This can be achieved by considering that neither

the plane at infinity nor any of the principal planes contain the origin of the reference

frame. Note that this is always possible either by arbitrarily choosing the world

reference frame within the scene or by discarding the principal plane containing the

origin of the frame, should the latter be attached to one of the cameras. Under

this assumption, the coordinate vector of the plane at infinity and that of any given

principal plane are of the form Πᵀ
∞ = (πᵀ

∞1) and Φᵀ
i,s = (φᵀ

i,s 1) where π∞ and φi,s are
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3-vectors. Equation (5.1) becomes

(πᵀ
∞ 1) = αi,s,s′(φ

ᵀ
i,s 1) + αi,s′,s(φ

ᵀ
i,s′ 1) (5.2)

from which one can easily deduce that αi,s,s′ +αi,s′,s = 1. Note that αi,s,s′ and αi,s′,s

can neither be zero nor one, since the plane at infinity is distinct from any of the

principal planes. As a consequence, one of the unknown scalars, say αi,s′,s, can be

eliminated by substitution which simplifies the equation to

π∞ = αi,s,s′(φi,s − φi,s′) + φi,s′ . (5.3)

Let [v]× denote the skew-symmetric matrix induced by the cross-product of some

3-vector v. Since [v]×v = (0, 0, 0)ᵀ, the remaining unknown scalar αi,s,s′ can be elimi-

nated by multiplying both sides of (5.3) by [φi,s − φi,s′ ]× which leads to

[φi,s − φi,s′ ]×π∞ = [φi,s]×φi,s′ ,

or equivalently, using the notation of the 3× 4 matrix Mi,s,s′ to describe the relation

between pairs of parallel planes for camera i at two distinct zoom setting s and s′, by

Mi,s,s′Π∞ =


0

0

0

 where Mi,s,s′ = [ [φi,s − φi,s′ ]× [φi,s]
ᵀ
×φi,s′ ]. (5.4)

For a given camera i and a pair of zoom settings, the rows of the 3×4 matrix Mi,s,s′

are the coordinate vectors of points lying on the plane at infinity. Note, however, that

only two rows are linearly independent and more cameras are required to identify the

plane at infinity. Let Mi be the mi(mi−1)
2

× 4 matrix obtained by stacking all Mi,s,s′
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matrices obtained from all pairs of zooming images of camera i. Considering n such

cameras, the plane at infinity can be recovered by solving a homogeneous linear system

of equations involving all cameras and zoom images:

Πᵀ
∞[ Mᵀ

1 Mᵀ
2...M

ᵀ
n ] = (0, 0, 0, ..., 0). (5.5)

Retrieving the plane at infinity from (5.5) may work well for low levels of image

noise. However, when using (5.5), cameras with more zoom images would carry more

weight than the rest of the cameras and thus have more influence on the calculation

of the plane at infinity. This may be a source of failure if the images obtained from

such dominant cameras turn out to be particularly affected by noise. Furthermore,

solving (5.5) allows to retrieve the plane whose distance to all 3D points (given by

the rows of all the Mi matrices) is minimal. However, in the presence of noise, such

solution does not take into account the fact that the rows of each matrix Mi must

define a line and that the sought plane ought to contain all such lines. Therefore,

a more geometrically meaningful solution is to first define the line that best fits the

points at infinity defined by each zooming camera (i.e. the rows of the associated Mi)

before fitting a plane to those lines. Finding the line that best fits a set of 3D points is

an orthogonal regression problem. The best fitting line can be perimetrically defined

as a set of points M̄i + λDi containing the centroid M̄ᵀ
i = (m̄ᵀ

i 1) and following a

direction Dᵀ
i = (dᵀ

i 0) [94]. The centroid can be obtained by re-scaling each row

of Mi so its last entry is 1 and averaging the entries in each column of the resulting

matrix. Denoting by (mᵀ
i,r 1) the rth row of the re-scaled matrix Mᵀ

i , the di component

of the direction of the line corresponds to the first principal component (i.e. the right

singular vector associated with the largest singular value) of the matrix formed by
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stacking the vectors mᵀ
i,r − m̄ᵀ from all rows of Mi. Since Πᵀ

∞(M̄i + λDi) = 0 for all

values of the parameter λ, the plane at infinity can then be obtained by solving the

linear system of equations

Πᵀ
∞L = (0, 0, 0, 0, ..., 0) where L = [ M̄1 D1 M̄2 D2...M̄n Dn ]. (5.6)

The plane at infinity corresponds to the right singular vector of the 4× 2n matrix

L associated with its smallest singular value. Retrieving the plane at infinity through

(5.6) has proven more accurate in practice and less sensitive to noise than when using

(5.5).

affine upgrade

Once the plane at infinity is located, the projective ambiguity that affects the

scene structure and the cameras can be reduced to an affine one by means of an

adequate transformation T represented by a 4× 4 regular matrix of the form

T ∼

 P

Πᵀ
∞

 . (5.7)

The transformation matrix T is obtained by stacking a 3 × 4 matrix, arbitrarily

chosen in the set of camera matrices Pi,s, and the homogeneous coordinate vector Πᵀ
∞

of the plane at infinity. While every scene point Q is mapped by T to its new location

TQ, the camera matrices in the affine frame are given by Pi,sT
−1.

5.2.2 Estimating the intrinsic parameters

Let the 3 × 3 matrix Hi,s = Pi,sT
−1[ I | 0 ]ᵀ represents the inter-image homography

induced by the plane at infinity and relating the reference image (whose projective
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camera matrix is P) and the image captured by the ith camera at the setting s of its

zoom. Note that I and 0 respectively denote the 3 × 3 identity matrix and the null

3-vector. When known, the matrices Hi,s allow to self-calibrate the imaging system

and hence to upgrade the scene’s structure and cameras into a metric frame. Indeed,

these matrices satisfy the relationship

H−ᵀi,s ωH−1i,s ∼ ωi,s (5.8)

between the Image of the Absolute Conic (IAC) ω in the reference image and its

corresponding IAC ωi,s in the image captured by camera i under the sth zoom setting.

The IAC in each image, including the reference image, is solely dependent upon the

intrinsic parameters of the imaging camera. It is represented by a 3 × 3 symmetric

positive-definite matrix that can be factored into ωi,s ∼ K−ᵀi,s K−1i,s and whose inverse

allows to recover the 3× 3 upper-triangular intrinsic parameters matrix Ki,s,

Ki,s =


τ fi,s γ ui,s

0 fi,s vi,s

0 0 1

 , (5.9)

through Cholesky factorization. While the focal length, denoted here fi,s, and the

pixel coordinates (ui,s, vi,s) of the principal point may vary with every new camera or

zoom change, all cameras will be assumed to have a known (unit) aspect ratio τ and

zero skew γ. Note that as long as the aspect ratio is known for a camera, Ki,s can

always be transformed to make τ = 1.

In order to upgrade the scene and cameras to a metric frame, it only suffices to

recover the intrinsic parameters matrix K of the reference camera or, equivalently, ω’s
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entries. Under the zero skew and unit aspect ratio assumptions, each image provides

two linear equations,

eᵀ1H−ᵀi,s ωH−1i,s e1 − eᵀ2H−ᵀi,s ωH−1i,s e2 = 0 and eᵀ1H−ᵀi,s ωH−1i,s e2 = 0, (5.10)

in the unknown entries of ω. It is assumed that the element at the last row and

last column of ω is fixed and set to 1. The vectors e1 and e2 are the canonical

basis vectors e1 = (1, 0, 0)ᵀ and e2 = (0, 1, 0)ᵀ. At least three images (including

the reference image) captured from distinct viewpoints are needed to recover all five

unknown entries of ω.

Note that some classes of motion sequences between cameras are critical for camera

auto-calibration and lead to its failure [56]. For instance, under the no-skew, known

aspect ratio and known plane at infinity assumptions, camera sequences containing at

most two viewing directions are critical and the underlying reconstruction ambiguity

is affine. Cameras with parallel (or anti-parallel) optical axes share the same viewing

direction. Hence, at least three distinct viewing directions throughout the sequence of

cameras are necessary for the recovery of the intrinsic parameters when solving (5.10).

The intrinsic parameters of the reference camera can be calculated by solving

(5.10) either using SVD [41] or through Semi-Definite Programming (SDP), employing

a Linear Matrix Inequality (LMI) formulation [59]. The advantage of solving (5.10)

as an SDP problem is that, unlike when using SVD, the positive-definiteness of the

sought IAC matrix ω can be enforced. Indeed, when using SVD in the presence of

image noise, the retrieved ω may not be positive-definite, rendering the calculation

of the camera parameters impossible. In the experiments presented in this chapter,

we have tested both the SVD and the LMI-based SDP approaches.
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Through solving the linear system of equations (5.10), one would like to calculate

all five entries of ω under the zero skew and unit aspect ratio assumptions for all

cameras. Although the recovery of the plane at infinity requires two cameras, each

capturing at least two images at different zoom settings, the calculation of the IAC

requires at least three images captured however from distinct viewpoints. Note that

the images obtained from the same camera at different zoom settings all share a unique

viewing direction. Therefore, after the plane at infinity is retrieved, at least three

images captured from cameras at different locations in space, and having different

viewing directions, are required for the recovery of the reference IAC. In practice,

because at least two of the cameras would provide two zoom images for the affine

upgrade, at least five images will be available all of which will be used for calculating

ω.

Because solving (5.10) using SVD is straightforward and well-known [43], we only

recall here, rather briefly, the LMI-based approach. For instance, assuming n > 3

cameras are available, of which at least two are zooming (mi > 2 for at least two

instances of i), the IAC ω of the reference image can be obtained by solving the
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following SDP:

min
ω,λi,s

∑n
i=1

∑mi
s=1 λi,s

s.t. ω � 0, λi,s eᵀ1H−ᵀi,s ωH−1i,s e2

eᵀ1H−ᵀi,s ωH−1i,s e2 λi,s

 � 0,

 λi,s eᵀ1H−ᵀi,s ωH−1i,s e1 − eᵀ2H−ᵀi,s ωH−1i,s e2

eᵀ1H−ᵀi,s ωH−1i,s e1 − eᵀ2H−ᵀi,s ωH−1i,s e2 λi,s

 � 0.

(5.11)

The symbol � 0 means that the symmetric matrix on the left-hand side is positive

definite. Problem (5.11) is a quasi-convex one that can be solved very efficiently using

interior-point methods [11]. From a practical point of view, several solvers, such as

SeDuMi (http://sedumi.ie.lehigh.edu/) and Matlab’s LMI Control Toolbox, are

available. The reader may refer to [59] for more details about this SDP formulation

of the problem of retrieving the IAC.

5.2.3 Refinement

As in all camera auto-calibration methods, the initial estimate of the plane at infinity

and that of the intrinsic parameters need to be refined through a nonlinear opti-

mization procedure in order to retrieve the optimal parameters. While several cost

functions have been proposed in the literature, the optimal results reported in the
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present chapter have been obtained by minimizing the following objective function

C(K, π∞) =
n∑
i=1

mi∑
s=1

(eᵀ1H∗ᵀi,sωH∗i,se2)
2 + (eᵀ1H∗ᵀi,sωH∗i,se1 − eᵀ2H∗ᵀi,sωH∗i,se2)

2

‖H∗ᵀi,sωH∗i,s‖2F
(5.12)

where ‖.‖F refers to the Frobenius norm of a matrix. Again, although at least

three images captured from different viewpoints are needed, all available images are

to be used in this optimization procedure. Note that, in (5.12), the matrix inverse H−1i,s

has been replaced by its equivalent adjoint matrix H∗i,s as to avoid inverting matrices

during optimization and to make π∞ appear explicitly. We recall that the inverse of

a matrix and its adjoint are related by

H∗i,s = det(Hi,s)H−1i,s . (5.13)

The adjoint matrix H∗i,s is defined as the transpose of the matrix of co-factors of Hi,s.

It can thus be expressed numerically as well as symbolically. In particular, it has

been recently demonstrated in [30] that H∗i,s entries are affine functions of π∞ and is

of the form

H∗i,s = (Pi,s[ I | 0 ]ᵀ)∗ + [ π∞ ]×[ I | 0 ]Pi,s
ᵀ[ pi,s ]ᵀ× (5.14)

where pi,s is the last column of Pi,s. It is this expression of H∗i,s that we have employed

in our cost function (5.12).

5.3 Experiments

In order to validate and assess our auto-calibration method for stationary non-rotating

zooming cameras, we have conducted several experiments using both synthetic and
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real images. The experiments with real images have been carried out both in a

laboratory setup and with a real scene.

In all our experiments, the projective camera matrices were calculated using the

method described in [82]. As customary, data normalization has been used through-

out. In all our experiments, a linear estimate of the plane at infinity was obtained

by solving (5.6). Initial estimates of the intrinsic parameters were obtained by solv-

ing (5.10) using SVD as well as by solving the SDP problem (5.11). Matlab LMI Con-

trol Toolbox has consistently been used throughout the experiments to solve SDPs.

An estimate of the intrisic parameters have been extracted from the linearly calcu-

lated IAC. Then, the optimal intrinsic parameters of the camera have been obtained

by minimizing (5.12) using the Levenberg-Marquardt algorithm. Errors on the 3D

reconstruction have been recorded and reported following each step of the algorithm.

In the case of real images, we also provide the resulting intrinsic parameters for the

sake of comparison with those obtained by the pattern-based calibration procedure.

In all the results reported here:

• ”LMI linear” refers to the results obtained after solving SDP problem (5.11)

without any further refinement of the results;

• ”SVD linear” refers to the results obtained by solving the linear system of

equations (5.10) without refinement;

• ”Focal only linear” are the results obtained by assuming all the parameters of

the camera, but the focal length, to be known;

• ”Affine DLT” are the results obtained by aligning the affine reconstruction

(directly calculated from parallel principal planes by solving (5.6)) with the

Euclidean ground truth via the best affine Direct-Linear-Transform (DLT) [43].
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The results obtained after refinement (by minimizing (5.12) and reconstructing the

scene) are referred to as ”LMI nonlinear”, ”SVD nonlinear” and ”Focal only nonlin-

ear”, each taking as input the results returned respectively by ”LMI linear”, ”SVD

linear” and ”Focal only linear”. Apart from ”Affine DLT” which uses the best trans-

formation, all 3D reconstructions have been carried out in the same frame as the

ground truth data and re-scaled accordingly.

Note that, in the estimation of the camera parameters, although our working

assumption is the absence of skew and known (unit) aspect ratio, none of the 5

sought entries of ω were fixed (apart from the element at the third row and third

column which was fixed to 1). This choice was made so the IAC on the reference

image and the IACs on all other views are treated equally.

5.3.1 Simulations

We have conducted extensive experiments with simulated data. In each simulation,

we randomly generated a 3D point cloud consisting of 200 points confined within 1m

radius sphere. The experiments were conducted using a variable number of cameras

each of which randomly generated at a mean distance of 2 m from the center of

the sphere with a 0.4 m standard deviation. Each camera was oriented in such a

way it roughly pointed towards the center of the sphere. The generated cameras

were created to simulate a zooming camera with realistic zoom length capabilities

of 12.5 - 35 mm, a CCD array of 8 × 8 mm and 64 pixels per millimeter. Using

each generated camera, we captured a number of images at different zoom settings

by projecting the scene points onto 512×512 pixels images. The first image captured

by each camera was obtained using a 800 pixels (12.5 mm) focal length, zero-skew,

unit aspect ratio, and the principal point located at the center of the image. For
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the subsequent images taken by each camera, and in order to simulate zooming, the

focal length was randomly increased to a length within the range of 15-35 mm (960-

2240 pixels). In this way, the optical center of the camera is translated by a relative

amount within the range of 2.5 and 22.5 mm along the optical axis from its initial

position before zooming. For every fixed number of cameras and number of zoom

images, each experiment was repeated by progressively corrupting pixel coordinates

by a zero-mean Gaussian noise with standard deviation in the range 0 to 2 pixels (with

a 0.25 pix step). Furthermore, each experiment was repeated for 1000 independent

trials for every number of cameras, number of zoom images and noise level. The

experiments were conducted using 3 to 6 cameras each capturing between 2 and 7

images at different zoom settings. For each trial, we have recorded the relative 3D

RMS error (in percent) of the reconstructed Euclidean structure. Both the mean

(over 1000 trials) and the median 3D RMS errors are reported in our figures.

Figure 5.1 shows the results obtained with the minimum number of viewpoints

(n = 3), here represented by 3 distinct physical cameras, each however capturing 2

zoom images. A total of 6 images have thus been employed. Note that the linear

step, whether using the LMI formulation or SVD, yielded large 3D errors (about 50%

on average when using the LMIs and high levels of noise). Yet, the linearly recovered

plane at infinity and camera parameters allowed for the refinement step to converge

to a fair result (35% using the LMIs method and 2 pixels of noise) considering only

3 viewpoints have been used. While the refined results are comparable regardless

of which linear method is initially used (”Focal only linear”, ”SVD linear” or ”LMI

linear”), the method relying on solving the LMIs provided the best results. The

median errors reported on the right-hand side of this figure suggest that at least half

of the trials have led to a very good reconstruction with a 3D RMS error of not more
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than 5%.

Figure 5.1: The mean (left) and median (right) 3D RMS error (in percent) of the
reconstructed scene versus different noise levels for n = 3 cameras each capturing 2
zoom images.

It is clear however that more cameras and/or more zoom images are to be con-

sidered for better results. For instance, Figure 5.2 summarizes the results obtained

with the same number of cameras (i.e. n = 3), employing, however, 7 zoom images

captured by each. In the refined results, the mean 3D RMS error is half (about 18%)

what it was when only 2 zoom images per camera were used (about 35%). The errors

obtained via the LMI-based and SVD-based linear steps have significantly dropped

to 40% (with 2 pixels of noise) from respectively 50% and 65% on average. Again,

the median 3D RMS errors on the right-hand side of Figure 5.2 show that most trials

have led to excellent results with at most 1% error.

As a realistic pixel localization error is generally within a single pixel, we provide

in Figure 5.3 the 3D errors obtained when using 3 cameras, each capturing a variable

number of zoom images (from 2 to 7) and a 1-pixel image noise.

Figure 5.3 shows that both the median and mean 3D RMS errors decrease with

the increasing number of zoom images. This is particularly true when calculating
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Figure 5.2: The mean (left) and median (right) 3D RMS error (in percent) of the
reconstructed scene versus different noise levels for n = 3 cameras each capturing 7
zoom images.

Figure 5.3: The mean (left) and median (right) 3D RMS error (in percent) of the
reconstructed scene for n = 3 cameras versus a variable number of zoom images per
camera and 1 pixel of noise.
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Figure 5.4: The mean (left) and median (right) 3D RMS error (in percent) of the
reconstructed scene for 1 pixel of noise, 2 zoom images per camera and a variable
number of cameras.

the camera parameters linearly (LMI linear, SVD linear and Focal only). The figure,

however, shows also that the refined result remains rather stable as early as when 3

zoom images per camera are used. This suggests that, apart from noise reduction,

further improvement of the quality of reconstruction cannot be only achieved by

adding more zoom images but also adding more viewpoints, and hence more distinctly

located stationary cameras. In this respect, we report in Figure 5.4 the reconstruction

results obtained, with 1 pixel of noise, by keeping the number of zoom images per

camera (only 2 zoom images) unchanged while varying the number of cameras from

3 to 6.

One can only deduce from Figure 5.4 that using more viewpoints contributes

to obtaining a more accurate reconstruction. Typically, using more viewpoints and

more zoom images may allow the linear step for calculating the camera parameters

to provide better results than those obtained after refinement from fewer viewpoints

and zooms. This is for instance the case when using 6 cameras, each capturing 7

zoom images, as depicted in Figure 5.5. The results reported therein clearly show
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Figure 5.5: The mean (left) and median (right) 3D RMS error (in percent) of the
reconstructed scene versus different noise levels for n = 6 cameras each capturing 7
zoom images.

that excellent results can be achieved in this manner. Indeed, with only 25% mean

error (with 2 pixels noise), the quality of the reconstruction obtained with any of the

linear methods (LMI, SVD or Focal only) exceeds that of the reconstruction obtained

after refinement when using only 3 camera with 2 zoom images each (between 35%

and 40% depending on the method).

We conclude this section on simulations with some remarks and comments. In all

our experiments, the results obtained linearly, when considering only the focal length

to be unknown, were generally worse (except when using SVD with 3 cameras and 2

zoom images each) than those obtained without such knowledge. This is because the

ground truth camera parameters do not correspond to the best parameters that can be

obtained in the presence of noise. It is thus recommended to leave all the parameters

free and to use the LMI-based method for the linear estimate of these parameters as

this method has consistently provided the best results. Furthermore, note that the

errors calculated after applying the affine DLT always fall between those obtained

linearly and those refined. In fact, the errors obtained via the DLT provide the best

113



indication with regard to the quality of the linearly calculated affine reconstruction

from parallel principal planes. The errors obtained following the recovery of the

intrinsic parameters, whether from the LMIs or from SVD, are likely to be undermined

by any proximity to a critical viewing configuration (critical motion between cameras).

It is worth mentioning that the nonlinear least-squares optimization step shows quick

time convergence. In our experiments, using Matlab optimization toolbox, the average

time for the nonlinear optimization step convergence is less than 50 milliseconds.

5.3.2 Laboratory experiments

In order to validate the proposed auto-calibration method, we carried out various

experiments using real images in a laboratory setup. Three low-end consumer digital

cameras with motorized zoom lenses have been used: a Kodak EasyShare, a Sony

Cyber-shot DSC-S930 and a Canon PowerShot SX150 IS. All three cameras were

assumed to have zero skew and unit aspect ratio. Because the same physical camera

has sometimes been used to capture a scene from more than a single location, in the

present section and the next one (Section 5.3.3 dealing with real scenes), we often use

the word ”viewpoint” instead of ”camera” to refer to a stationary camera placed at

some location in space and possibly capturing several zoom images from that same

location.

In these experiments, instead of using synthetic data, we presented our EasyShare,

Cyber-shot and PowerShot cameras with a scene consisting of a 21×21×21 cm cube-

shaped calibration object exhibiting 30×30 mm black and white squares on each face.

We conducted a number of experiments as to assess the quality of the reconstruction

and the effect of the relative orientation between pairs of viewpoints (turntable ex-

periments). We also compare the results of our method against those obtained by
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relying on scene constraints (namely parallel lines and planes). Note that, although

the Euclidean structure of the calibration cube was known to us, the cube was treated

as an unknown scene when applying our auto-calibration method. Knowledge about

the cube has only been used to measure the resulting 3D reconstruction errors and

in the method employing scene constraints.

3D metric reconstruction

The experiments we have conducted here are similar to those we carried out with

simulated data. The calibration cube has been imaged from 4 distinct viewpoints by

placing each camera on a tripod, roughly 1.25 to 1.5 meters from the scene. Each

of the EasyShare and Cyber-shot cameras captured images from one viewpoint while

the CyberShot camera imaged the scene from two viewpoints. From every viewpoint,

each camera captured 4 images at different settings of its zoom lens. This has resulted

in the 4 sequences of 4 zoom images given in Figure 5.6, each sequence being captured

from a different viewpoint by one of the cameras.

(a) Viewpoint # 1 (Canon PowerShot) (b) Viewpoint # 2 (Sony Cyber-shot)

(c) Viewpoint # 3 (Kodak EasyShare) (d) Viewpoint # 4 (Canon PowerShot)

Figure 5.6: Four sequences of zoom images: each sequence was captured from a dif-
ferent viewpoint by a stationary camera mounted on a tripod.

A total of 108 points, located on 3 mutually orthogonal faces of the cube, were

matched across the images obtained by all cameras at all considered zoom settings.
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(a) Linear LMI: 3 viewpoints (b) Linear SVD: 3 viewpoints (c) Linear SVD: 4 viewpoints

Figure 5.7: 3D Euclidean reconstruction obtained from linearly estimated parameters:
the plane at infinity was calculated using only 2 zoom images per viewpoint.

However, we have first conducted our experiments by considering only two viewpoints

(Viewpoints # 1 and # 2 in Figure 5.6) starting with two zoom images from each of

these two cameras and repeating the experiment with 3 and 4 zoom images. Then,

the same experiment was conducted by considering three viewpoints (Viewpoints #

1, # 2 and # 3) followed by using all four viewpoints and by varying the number of

zoom images each time. Table 5.1 provides the 3D RMS error (in %) - relative to

the cube’s diagonal - of the 3D reconstruction calculated from the LMI-based (5.11)

and SVD-based (5.10) linearly estimated parameters along with the errors obtained

after the nonlinear refinement (5.12) of the intrinsic parameters and plane at infinity.

We have also reported in Table 5.1 the 3D errors obtained after aligning the affine

structure (calculated via parallel principal planes) and the ground truth data. The

ground truth data are the measurements we obtained from the cube using an office

ruler. Note that, for the experiments involving only two viewpoints, only the errors

obtained using the affine DLT are reported since the method requires at least three

distinct viewpoints for upgrading the scene to metric. For the reader’s convenience,

we provide in Figure 5.7 the 3D structures obtained (red) after linearly estimating
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the parameters either by solving (5.10) through LMIs or SVD. Note that no nonlinear

refinement was used. Each estimated structure is superimposed on the ground truth

data (blue). All the estimated 3D structures in this figure have been obtained using

only two zoom images for the 3-viewpoint and 4-viewpoint cases.

Table 5.1: 3D RMS errors % .

# of # of Linear Non-linear

viewpoints zooms images Affine DLT SVD LMI SVD LMI

2 2 10.57 % N/A N/A N/A N/A
3 2 3.22 % 100.98 % 25.33 % 9.16 % 9.16 %
4 2 1.17 % 12.12 % 8.14 % 17.57 % 17.48 %

2 3 2.22 % N/A N/A N/A N/A
3 3 0.31 % 1.63 % 2.9 % 0.48 % 0.488 %
4 3 0.46 % 1.49 % 5.74 % 0.81 % 0.81 %

2 4 7.16 % N/A N/A N/A N/A
3 4 0.54 % 6.88 % 7.24 % 0.56 % 0.56 %
4 4 0.26 % 0.76 % 2.84 % 0.86 % 0.86 %

These results show that adding more zoom images and more cameras often allows

to obtain a better quality reconstruction. When using 3 viewpoints, the reconstruc-

tion error obtained through the affine DLT does not exceed 3.22% when only 2 zoom

images (per viewpoint) are used. This error drops, with every additional zoom image

and viewpoint, down to 0.26% with 4 viewpoints and 4 zoom images each. One can

only notice that in the 3-viewpoint case with 2 zoom images, the linear step failed

when SVD was used to recover the intrinsic parameters while the LMI method has

allowed to recover the 3D scene with 25% error. We would like to stress the fact

here that the non-linear refinement reduced the RMS % error close to an acceptable

9% (given the few viewpoints and zoom images used) for both the LMI and SVD

methods. This is something we have often observed in all our experiments, including

those with simulated data. This suggests that the coordinates of the plane at infinity
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obtained from the parallel principal planes assumption, along with the linearly es-

timated intrinsic parameters, have always provided initial estimates that fall within

the basin of convergence of our nonlinear refinement cost function. Furthermore,

although the LMI method has provided slightly less accurate results than the SVD

method for the intrinsic parameters calculation, this method has consistently led to a

3D reconstruction that is within acceptable bounds from the true scene. More impor-

tantly, the nonlinear refinement step has always yielded excellent results (less than

1%) with all experiments conducted with 3 and more zoom images per viewpoint.

The intrinsic parameters of the cameras, corresponding to the first image (left-

most image in each sub-figure of Figure 5.6) captured at each viewpoint, are reported

in Table 5.2. The two last rows of each table provide the parameters obtained linearly

using SVD (by solving (5.10)) preceded by our linear affine auto-calibration method

(”SVD”) as well as the refined parameters after nonlinear optimization (”Refined”).

Note that the parameters reported here have been obtained using 4 viewpoints with

3 zoom images each. We also report in this table the intrinsic parameters obtained

when calibrating the camera using the cube object as a calibration pattern with 108

known 3D points to estimate the Euclidean camera matrix from which the parameters

are extracted (”Pattern”). It can be seen that the intrinsic parameters obtained after

refinement are always close to those obtained though the pattern-based calibration.

The focal length obtained linearly via ”SVD” is also closed to both the refined value

and the one estimated through calibration. The errors on the ”SVD” parameters are

mostly concentrated in one of the image coordinates of the principal point. However,

these errors remain acceptable in the sense that the parameters linearly retrieved still

allow the refinement step to converge as desired. Although the true principal point

does not necessarily coincide with the image center, the results reported here show
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that, for all the cameras we have used, this point consistently falls within a reasonable

distance from it.

Table 5.2: Estimated intrinsic parameters corresponding to the first image of each
viewpoint.

Viewpoint #1 Camera #2
PowerShot Cyber-shot
1600× 1200 pixel 3648× 2736 pixel

τ f f γ u v τ f f γ u v

Pattern 3436 3419 3 897 553 6537 6514 -18 1614 1298

SVD 3828 3836 3 749 1118 6872 6872 3 1881 1897

Refined 3461 3464 14 818 611 6643 6655 -61 1818 1402

Viewpoint #3 Camera #4
EasyShare PowerShot
2592× 1944 pixel 1600× 1200 pixel

τ f f γ u v τ f f γ u v

Pattern 8688 8656 -2 1381 872 5357 5334 -8 787 521

SVD 10580 10500 -2 1256 3014 6065 6077 -18 901 1364

Refined 8761 8765 13 1275 988 5456 5471 -6 816 574

Turntable experiments

The experiments described here have been conducted to test the relative orientation

requirement between cameras (or viewpoints) for obtaining a satisfactory 3D affine

reconstruction. Indeed, our method for linearly estimating the plane at infinity using

the parallel principal planes assumption fails when the image planes of the physical

cameras are parallel to one another. This includes the case of a pure translational

motion between viewpoints. It is hence necessary to conduct experiments in a setup
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(a) Viewpoint # 1 (Base) (b) Viewpoint # 2 (5 degrees)

(c) Viewpoint # 3 (10 degrees) (d) Viewpoint # 4 (20 degrees)

Figure 5.8: Each triplet of images represents 3 (out of the 6) zoom images captured
by the PowerShot camera from different viewpoints.

that allows testing the impact of an increasingly changing orientation between the

zooming cameras. In these experiments, we have used the Canon PowerShot SX150

IS camera only.

The camera was mounted on a tripod about 2 meters from the calibration cube

which, in turn, was placed on a rotating tray as shown in Figure 5.8. Six 1600×1200

pixels images have been captured at different zoom settings of the camera while the

latter was kept stationary. The rotating tray was then rotated by 5, 10, and 20

degrees from its initial position. For every rotation of the tray, again six images

were captured at different settings of our PowerShot’s zoom lens. Figure 5.8 shows

3 (out of the 6) images captured from each of the 4 viewpoints. As in the previous

experiments involving the calibration cube, a total of 108 points were extracted and

matched across the images.

We have repeatedly used our linear method for retrieving the plane at infinity,

reconstructed the scene in an affine frame and aligned the latter with the ground truth

structure via the best affine DLT. Only two viewpoints were considered each time:
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(a) (b)

Figure 5.9: Affine reconstruction from parallel principal planes (left) and its affine
DLT alignment with the true Euclidean structure (right): Viewpoints 1 & 3 (10 degrees
rotation) with 3 zoom images per viewpoint.

viewpoint # 1 (as per Figure 5.8) and each of the other viewpoints. Furthermore,

we have carried out these experiments using from 2 to 6 zoom images per viewpoint.

Table 5.3 summarizes the relative 3D RMS errors (in percent) obtained in each case.

A view of the affine reconstruction and another one of its alignment (through the

best affine DLT) with the true structure of the cube are given in Figure 5.9 for visual

assessment.

Table 5.3: 3D RMS errors (%) .

Viewpoints Rotation Zoom sequence length

(pair #) (degrees) 2 images 3 images 4 images 5 images 6 images

1 & 2 5 12.397 % 6.298 % 5.12 % 4.348 % 2.168 %
1 & 3 10 3.136 % 0.782 % 0.810 % 0.631 % 0.836 %
1 & 4 20 3.922 % 0.985 % 1.147 % 0.593 % 0.705 %

In particular, the results reported in Table 5.3 show that the error on the affine
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structure obtained with our method is rather significant (12.4%) in the minimal case

of 2 viewpoints with 2 zoom images each for a small rotation of 5 degrees between the

viewpoints. However, increasing the number of zoom images, even for such a small

rotation, allows to improve the quality of the reconstruction (typically to 2.16% with

6 zoom images). The reconstruction quality also improves when considering wider

viewpoints. These experiments show that with only 10 degrees rotation between

viewpoints, a reconstruction with less than 1% error has been obtained when using

3 and more zoom images. Using wider rotation angles (as in the 20 degrees cases

reported) does not necessarily improve the quality of the reconstruction. Hence, the

proposed method may provide very satisfactory results even with small rotations thus

allowing for the point correspondence across images to be carried out in the usual

image-proximity conditions.

5.3.3 Real scene experiments

We have conducted additional experiments on a real scene consisting of a large build-

ing. Two different cameras, the Sony Cyber-shot and the Kodak EasyShare, were

used to capture the images for these experiments. Images have been captured from

4 distinct viewpoints by placing each camera on a tripod at 2 different locations at

about 30 meters from the scene. The viewpoints were a few meters apart from each

other. At each viewpoint, the considered camera captured 4 images at different set-

tings of its zoom lens. Each row in Figure 5.10(a) shows the 4 images captured from

every one given viewpoint.

A total of 71 feature points were extracted and manually matched across all 20

images using mouse clicks. Certain line segments have been chosen to provide a

wireframe model and simplify the 3D visualization of the reconstructed structures.
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(a) (b)

Figure 5.10: The building scene: (a) the first 4 zoom images captured from 4 different
viewpoints, (b) line segments used to compute angles and distance ratios.

A total of 23 line segments, of approximately known Euclidean geometry, have been

selected as shown in Figure 5.10(b). The end-points of these segments are feature

points that have been extracted and matched across the images. Selected pairs of

these segments have been used to estimate distance ratios and angles and compare

them against the approximately known true values. In particular, known segments

of equal length, orthogonal, and parallel segments are estimated and the error from

ground truth is then calculated.

Our camera auto-calibration method was applied in different scenarios each using

different numbers of viewpoints and zoom images. The affine calibration computed

using our method was upgraded to metric using the SVD and LMI methods for

calculating the intrinsic parameters as well as the results refined through nonlinear

optimization.

For this particular experiment, we report the following observations. In the case

in which only 3 viewpoints were considered, regardless of the number of zoom images

employed, the linear metric reconstruction was of bad quality for both the SVD and

LMI methods. The recovered structure had acceptable depth in the different direction

123



(a) linear SVD (top view) (b) Linear LMI (top view) (c) Non-linear SVD (top view)

(d) linear SVD (side view) (e) Linear LMI (side view) (f) Non-linear SVD (side view)

Figure 5.11: Sample wireframe models of metric 3D reconstructed scene model ob-
tained linearly and after the refinement of the camera parameters.

but the orthogonal angles were quite skewed. The resulting 3D structures were closer

to an affine structure than to a metric one. However, the nonlinear optimization

was successful for all cases and provided good metric 3D reconstructions. For the

experiments where all 4 viewpoints were employed, the metric 3D reconstruction

obtained linearly was good with all numbers of zoom images. The reconstruction

obtained from linearly estimating the camera parameters using SVD was better than

the one obtained by the LMI method. The quality of the 3D was best when all zoom

images from all 4 viewpoints were used. Figure 5.11 shows top and side views of the

wireframe models of the scene obtained from 4 viewpoints with 4 zoom images per

viewpoint. These wireframe models were obtained using the parameters calculated

linearly using SVD and those obtained after refinement. The structure obtained from

the LMI-based linear estimation of the parameters is also provided in this figure.
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In the case in which 4 viewpoints and 4 zoom images are considered, Table 5.4

lists the angle and ratio errors on the computed metric properties of all pairs of line

segments spanning the full 3D metric structure of the recovered scene model. In this

table, the average errors of all estimated values along with the standard deviations are

given for the results obtained with the linearly calculated camera parameters (using

both SVD and LMI methods) and for those obtained using the refined parameters.

As the refinement step for both SVD and LMI produced essentially the same results,

only the refined result of SVD is presented in each table.

Table 5.4: Average angle errors ± Standard deviation (degree) over all pairwise or-
thogonal lines and pairwise parallel lines. Average relative errors ± Standard devia-
tion (%) over all pairs of line segments.

Linear SVD Linear LMI Optimized SVD

Orthogonal lines 8.94◦ ± 3.31◦ 14.57◦ ± 7.88◦ 5.28◦ ± 3.94◦

Parallel lines 3.53◦ ± 1.25◦ 3.55◦ ± 1.37◦ 2.62◦ ± 1.46◦

Line segment ratios 2.94 ± 2.17% 3.60 ± 2.26% 8.57 ± 5.37%

After refinement, the parallel lines were found within 2.62 ± 1.46 degrees error

while the orthogonal lines exhibited 5.28 ± 3.94 degrees error. The average relative

error on line segments ratios is roughly about 9%. However, we recall that the exact

ground truth data are not available and we have used as a ground truth only an

estimate based on visual assessment of all angles and distances. The results we have

obtained can be considered as fair, in particular because only 4 viewpoints have been

used to image this large building that would normally require to be captured from

more viewpoints.
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5.4 Conclusion

In this chapter, a stratified linear method for self-calibrating a set of stationary non-

rotating zooming cameras is described. The linear zoom-based method for locating

the plane at infinity is extended to incorporate more zoom cameras and images. This

helps to cope with higher image noise and provide more robust estimation of the

affine camera matrices. The affine cameras and structure can be upgraded to metric

ones by imposing some restriction on the camera intrinsic. In this work, the intrinsic

parameters were estimated using the widely accepted valid assumption of square pix-

els (i.e. zero-skew and known aspect ratio). The results of our experiments whether

using simulations, laboratory setups or an outdoor scene generally show satisfactory

results using our method in the minimum case of two cameras each acquiring a pair

of zooming images. Our experiments have also shown that these results are further

enhanced in situations where more cameras and/or zoom images are incorporated

in the process. The full auto-calibration method includes the linear recovery of the

intrinsic parameters and their refinement along with the coordinates of the plane at

infinity. We have tested two linear methods for calculating the intrinsic parameters:

using SVD and another method employing a LMI formulation of the problem al-

lowing to enforce the positive-definiteness of the IAC. Note that both methods have

provided camera parameters that allowed the nonlinear refinement step to readily

converge to the desired optimal values. Although the SVD method does not enforce

the positive-definiteness of the IAC, it has consistently provided a positive definite

solution from which we have always been able to extract an initial estimate of the

camera parameters.

126



Chapter 6

Automatic Identification of Scene

Parallel Planes

6.1 Introduction

Images of man-made structures are rich sources of geometrical constraints that can be

exploited to aid accomplishing various computer vision tasks. Geometric properties

such as parallelism, orthogonality, equality of line segments and angles, flat surfaces,

squares, and cuboid are only few examples of such constraints. The latter have been

successfully employed in solving several central problems in computer vision, such

as camera self-calibration, recognition, 3D reconstruction, augmented reality, etc.

Although these constraints are abundant in man-made environments, their usage

remains limited in practice. This is mainly due to the need of certain amount of user

intervention before employing such scene knowledge. Automating the identification

of such geometrical scene constraints will eventually leverage the field of their usage

for many other unattended computer vision applications.

This chapter investigates the problem of automatic identification of parallel planes,

e.g. walls of hallways, buildings on both sides of streets, etc, from uncalibrated views.
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Figure 6.1: An arial view of city buildings (left), Extracted line edges (right)

To motivate the approach, some advantages of utilizing parallel planes in comparison

to parallel lines are discussed. Consider the group of parallel lines with vertical

direction to the ground, appearing on the different buildings’ walls in Figure 6.1.

All these parallel lines meet at a single point, the point at infinity, representing the

orthogonal direction to the ground plane. Recall that any two parallel lines define a

plane. Now, consider the set of different planes which may be formed by the same

previous set of vertical lines. Several subgroups of these planes are parallel. Each pair

or more of those parallel planes, with different orientation, uniquely identify a line

at infinity. In this particular example, at least two lines at infinity can be identified

which is enough to uniquely identify the infinity plane and, hence, the affine structure

of the scene. This is a clear example that shows the superiority of parallel planes to

parallel lines, in terms of number of scene constraints they provide and geometrical

invariants they preserve.
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A 3D reconstruction of the scene from calibrated images makes it possible to

identify parallel geometrical primitives. However, in the absence of calibration pa-

rameters, the scene can be reconstructed only up to a projective ambiguity where

parallelism is no longer preserved (e.g. parallel lines may appear intersecting). Au-

tomatic detection of line parallelism from uncalibrated images has been thoroughly

studied in the literature through the detection of vanishing points (see for example

[87,103]). In general, automatic detection of vanishing points relies on identifying and

clustering dominant directions of line segments present in the scene. Despite that a

vanishing point can be identified from images of two parallel lines, reliable detection

of vanishing points mandates the presence of many parallel lines sharing the same

direction.

Conversely, the identification of the scene’s parallel planes from uncalibrated im-

ages has not gained adequate attention from researchers in the past. Perhaps the main

reason is the nature of these geometrical primitives where, and in contrast to points

and line segments which can be identified from a single image, the identification of a

scene plane requires in general a set of matched points, or lines, between two or more

images. Nevertheless, identifying planes from images of a scene is a very feasible task

as several automatic and robust plane extraction methods has been proposed in the

past. For example, a fully automatic method for detecting the planes present in a

scene using a set of matched point and line features across a pair of images has been

proposed in [62]. In this method, an iterative voting scheme, based on pairs of point

and line features, searches for planar homographies. In another work, Vincent and

Laganieŕe developed in [100] a robust homography-based method which can be used

as a first step in an image analysis process (e.g. aid in weak calibration). More re-

cently, Amintabar and Boufama [2] proposed a method not only for detecting planes
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from uncalibrated images but also distinguishing physical and virtual ones with cer-

tain level of confidence. Note that regardless of the robustness or the accuracy of the

above mentioned algorithms, any three 3D points in projective space can be used to

define a plane. The 3D projective reconstruction of matched image points is always

possible from 8 or more point matches across two or more uncalibrated images.

The importance of parallel planes usage has been justified by their aid to solving

a wide number of Computer Vision and scene analysis problems. Tebaldini et al.

in [95] proposed a method for generating synthesised views under the knowledge of at

least one pair of parallel planes. In the people tracking problem, Khan and Shah [57]

showed that the usage of parallel planes can provide great aid in situation of occlusion.

Another important application for parallel planes is their aid in camera calibration.

For instance, in [31], the authors utilized planes parallelism to locate the plane at

infinity and hence affinely calibrate a camera. Furthermore, a calibration method for

optical triangular profilometry, proposed in [15], requires parallel planes for testing.

It seems that the only automatic parallel plane identification method has been

proposed by [32]. The authors show that there exists a linear relationship between

the coordinates of parallel planes and those belonging to the plane at infinity. Conse-

quently, an image-based parallel planes identification method is proposed that com-

bines the latter relationship and the so-called modulus constraint [74] on the homog-

raphy matrix of the infinity plane. It is worth mentioning that this method is limited

to images taken by a camera with fixed parameters and requires at least 3 images

taken at different orientations.

In this chapter, an automatic method for identifying scene parallel planes from

uncalibrated images of a scene is presented. The images need not to be taken with

constant camera parameters. The identification method is based on a sufficient con-
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straint relating the coordinates of two pairs of parallel planes. If the coordinate of

a pair of parallel planes are known a priori, it is possible to identify other parallel

planes in the scene. In our zooming camera case, such a priori can be provided au-

tomatically from a pair of zoom images and thus the whole detection process can be

performed without user intervention.

This chapter is organized as follows. Section 6.2 describes the method for identi-

fying parallel planes from uncalibrated images with varying camera parameters. Our

experiments and the results we have obtained on both synthesized and real images

are presented and discussed in Section6.3 and 6.4. Section 6.5 concludes this chapter.

6.2 Parallel planes identification

In this section, a method for identifying parallel planes from two or more images

taken by different and unknown camera’s interior is described. We assume a con-

sistent set of projection matrices has been calculated and a set of scene planes has

been identified from these images. This can be achieved using any of the different

existing methods such as [2, 62, 100]. The proposed parallel planes detection method

requires the knowledge of the coordinates of two scene parallel planes as a priori. This

assumption is always valid if we consider the intrinsic planes of a stationary zoom-

ing camera. We recall that the third rows of the projection matrices of a zooming

non-rotating camera are the coordinates of planes that are parallel to each other as

discussed in the previous chapters. Note that this assumption is only required to pro-

vide valid parallel planes for any scene. The presented detection method in this paper

works with any other camera configuration, i.e. without the use of zooming camera,

if two parallel planes, or equivalently a line at infinity or two vanishing points, where
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provided as a priori. First, we describe a necessary condition constraining two pairs

of parallel planes. Then, we discuss degenerate configuration cases and how they can

be avoided. Finally, we present a practical use of the constraint for parallel planes

detection from noisy images.

6.2.1 The parallel planes identification constraints

Let Φ1 and Φ2 be two 4-vectors representing the projective coordinates of two parallel

scene planes in P3. Consider also Π1 and Π2 as the projective coordinates of two other

distinct scene planes, that are possibly parallel.

When the projective coordinates of those four planes’ vectors are stacked as rows

in a 4× 4 square “detection matrix” D such that

D4×4 ∼



ΦT
1

ΦT
2

ΠT
1

ΠT
2


. (6.1)

With the a priori knowledge that Φ1 and Φ2 correspond to two scene parallel

planes, a hypothesis on the detection matrix D can be used to accept or reject the

parallelism of the pair of planes, Π1 and Π2. This can be achieved by evaluating the

detection matrix D’s determinant and rank. In case Π1 and Π2 are not parallel, the

matrix D will have a non-zero determinant and a full rank of 4. Whereas, if the two

tested planes are parallel, the square matrix D will have a zero determinant and rank

of 3.

This can be illustrated geometrically. Recall that a line in 3D space may be
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represented by a (2 × 4) matrix containing the coordinates of two planes1, as row

vectors (see Paragraph 2.1.3). An intuitive geometric notation of this is to consider

the 3D line as the axes of a pencil of planes, and thus is defined by the intersection

of any two planes from the pencil. Consider our two pairs of planes and let the two

lines Lφ and Lπ be their intersections given by

Lφ ∼

 ΦT
1

ΦT
2

 , Lπ ∼
 ΠT

1

ΠT
2


The line Lφ is the intersection of two parallel plane and thus lies at the infinity

plane, Π∞. Now consider the following two cases:

Parallel pair : In the event that the pair of planes Π1 and Π2 are parallel, their

intersection line Lπ must also lie in the infinity plane Π∞. Hence, both lines, Lφ and

Lπ, are coplanar. Because coplanar lines are linearly dependant and must intersect

in a single point, the detection matrix D will have only three independent equations

out of four and thus it is singular and of rank 3. The one-dimensional right null-

space of the detection matrix D is the homogenous point resulting from the two lines

intersection.

Non-parallel pair : when the two tested planes, Π1 and Π2, are not parallel, their

corresponding line of intersection Lπ does not lie at the infinity plane, but rather

intersects the plane at infinity in a single point. This point, in general, is not on the

line Lφ. As the two lines do not intersect, they are not coplanar and they are linearly

independent. Algebraically, the matrix D in this case is not singular and has a full

rank of 4. Another way to picture this, as the two planes are not parallel, each of

1As planes and points are dual in 3D, dual representation of a line can be formed with two 3D
points coordinates as well.
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them will intersect the line Lφ in a distinct point. In rare cases, discussed in the next

paragraph, the point of intersection may be the same, even though the two planes

are not parallel, this is a degenerate case.

6.2.2 Degenerate cases

Beside the obvious situation in which a plane is crossing any of the cameras centers,

there are some degenerate cases which may occur. If the two tested planes Π1 or Π2

are parallel with the planes Φ1 & Φ2, the detection matrix D will be of rank 2. This

is true as all of the 4 planes are parallel and will intersect at the same line at infinity

(i.e. a pencil of planes). In the event that only one of the tested planes, Π1 or Π2, is

parallel with Φ1 and Φ2, the detection matrix D will have rank 3. This could lead to

a false indication that the two tested planes are parallel. However, such a case can be

distinguished and be avoided easily by testing the rank of a 3×4 matrix consisting of

the line at infinity Lφ with each of Π1 and Π2, respectively. If one of the tested planes

is parallel to Φ1 and Φ2, the rank of such a matrix will be 2. This is clear since the

three planes in such a case will intersect in the same line at infinity Lφ.

The last degenerate case occurs when the line of intersection of the scene planes

under testing Lπ is parallel to planes Φ1 and Φ2. In this case, the line Lπ intersects

our infinity line Lφ in a point, and thus both lines Lπ and Lφ are considered coplanar,

but not with respect to the plane at infinity. Such configuration may occur only when

all the four planes differ from each other by a rotation or a translation and rotation

around a common single axes (i.e. planar motion). For example, consider any 4 scene

planes with different orientation but all are perpendicular to the ground plane, see

Figure 6.2. Each arbitrary, but non-parallel, pair of these planes will intersect each

other in a line perpendicular to the ground, forming a prism or a pencil of planes, and
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Figure 6.2: Degenerate case

thus all of these lines of intersection are parallel and intersect at the same vertical

vanishing point at infinity. In Figure 6.2, each pair of planes Φi, Πi , and Ψi are

parallel, and thus intersect at the plane at infinity in the infinity lines Lφ, Lπ and

Lψ respectively. Moreover, these lines Lφ, Lπ and Lψ intersect in a single common

point. This point represents the direction of the parallel rotational axes between

the different planes at the infinity plane. It is important to emphasize that this

degeneracy occurs only when all pairs (the pair of known parallel planes and the pair

of planes under testing) share a common rotational axis direction. This degenerate

case rarely happens in our case when using the pair of parallel planes resulting from

the stationary zooming camera.
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6.2.3 Dealing with noise

In real scenarios, relying on the algebraical characteristic of the detection matrix, i.e.

determinant and rank, turned out to be not practical. This is due to the severe effect

of noise on the detection matrix. In addition, approximating the correct rank of a

noisy 4× 4 matrix is not a reliable solution too, due to its small size.

However, a practical solution is possible by following a geometrical approach as

described below. In this approach, each scene plane is represented by a single 3D

point, Vπi , representing the intersection point of the scene plane Πi with the known

pair of parallel planes. Each point Vπi can be computed, using SVD for example, as

the right null space of the 3× 4 matrices formed by the three planes coordinated as

row vectors. More specifically, if the two parallel planes coordinates are Φ1 and Φ2,

the point Vπi satisfies


ΦT

1

ΦT
2

ΠT
i

Vπi =

 Lφ

Πi
T

Vπi = 0 (6.2)

Note that the obtained ideal points Vπi are all collinear as each point lies on the

infinity line Lφ.

The constraint for a pair of parallel planes can be reformulated as follow. Two

planes Πi and Πj are parallel if their corresponding computed Vπi and Vπj are equal.

A geometric interpretation of this is that when the two tested planes are parallel,

they intersect in a line at infinity which must intersect Lφ in this single point and

thus our two obtained points Vπi and Vπj are nothing but the same point.

In practice and because of noise, two ideal points,Vπi and Vπj , corresponding to a
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pair of parallel planes will not be perfectly identical but should be very close to eacah

other. Because the distance between points in projective space cannot be quantified

in the usual sense, these 3D points are first projected on an image plane then, their

pixel distance is estimated.

By doing this way, the projection of the image points (pixels) of two or more

ideal points can be considered equal if the distance between them is below a certain

threshold. In this case, their corresponding planes will be considered parallel. Such a

threshold depends on the image size, camera orientation, level of noise, as well as the

image location of the vanishing points. To use a uniform threshold that works for all

situations, it is important to use normalized image coordinates, which can be easily

done with a simple transformation of the image coordinates [38].

In our case, by using such normalization, a threshold of 10−3 was a good choice for

detecting parallel planes in all of our experiments on both simulated and real data.

6.2.4 Automatic a priori obtainment

The automatic identification method discussed above requires a pair of parallel planes

as an a priori. In the case of stationary zooming camera, such an a priori can be

obtained from a pair of principal planes of two images at different zoom settings, and

thus the whole method can be carried on automatically.

However, it is worth mentioning that the proposed method is not restricted to

the case of zooming cameras only. For example, it is possible to obtain a pair of

parallel planes in the case of a translating camera. A translating camera preserves

its orientation, and thus the principal planes of a translating camera are also a pair

of parallel planes, regardless of the constancy of the camera intrinsic parameters.

Another practical case is the case of vanishing points. The knowledge of two
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vanishing points can be translated to knowledge of two parallel planes. It is possible

to automatically detect vanishing points or vanishing lines from perspective images.

In many situations, however, only two vanishing points or a single vanishing line

can be identified in these images. Such knowledge alone is not enough to allow

affine upgrade of the projectively reconstructed scene. The proposed method can

complement this by detecting possibly parallel planes in the scene and hence provide

enough constraints for recovering the affine reconstruction.

The knowledge of two vanishing points or a single vanishing line can be mapped

easily into the coordinates of a pair of virtual parallel planes. This can be achieved by

reconstructing the two vanishing points, by triangulation from two images, to obtain

their 3D coordinates. The two reconstructed vanishing points define a 3D line L∞

contained within the infinity plane of the projective space P3. Consider the family

(pencil) of planes passing through the axis line L∞. Any arbitrary, but distinct,

pair of planes from this pencil must correspond to two parallel world planes in the

Euclidian space E3. Consequently, we may obtain the coordinates of two parallel

planes by picking any two arbitrary 3D points, e.g. from the reconstructed scene

points set, such that these two points together with the two vanishing points are not

all coplanar. Each plane can be computed from the triplet of points constituted by

both vanishing points and each of the selected scene points respectively.

6.3 Simulation

Experiments with simulated data were conducted to evaluate the proposed method

with different level of pixel noise. Each generated scene consists of 10 planes each

formed by 50 randomly generated scene points, distributed randomly on a disc of
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radius 1. The first and second generated planes are parallel with a mean distance of

0.5 units between them and a 0.15 standard deviation. In all the experiments, the

center of the disc on each of the remaining 8 planes was placed at random orientation

in front of the randomly generated cameras (see Figure 6.3).

In each simulation, two cameras were generated where each one was roughly point-

ing to the center of the scene. The cameras were randomly located at a mean distance

of 3 units, from the scene center, with a 0.25 standard deviation. The first images

were captured with camera parameters of a 12.5mm focal length, zero skew, unit

aspect ratio, and the principal point located at the center of the image. The zooming

cameras were created to simulate a camera with a zoom range of 12.5mm - 35mm, a

CCD array of 8×8 mm and a 64 pixels per millimeter. In each simulation, the zoom-

ing camera takes a second image at different zoom setting, where the focal length is

randomly increased to a value within the range of 15mm-35mm. The optical center

of the camera is translated by a relative amount within the range of 2.5mm - 22.5mm

along the optical axis from its initial position before zooming.

For each scene and camera, we progressively corrupt the pixel coordinates by a

zero-mean Gaussian noise with standard deviation in the range 0 to 2 pixels (with a

0.25 pixel step). In each trial, each possible pair of planes is evaluated by the proposed

method. The principal planes of the zoom cameras at different zoom settings were

used to provide the a priori pair of known parallel planes. Using the principal planes

from the projection matrices of a single zooming camera, we compute the ideal point

Vπi for each scene plane as described in equation (6.2). These computed 3D points are

then projected on the reference image plane as vanishing points. Using normalized

image coordinates in all calculations, a threshold of 10−3 is used to distinguish parallel

from non-parallel planes, as described in Paragraph 6.2.3.
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Figure 6.3: Simulations setup showing the generated planes and cameras

Table 6.1 summarizes the obtained results of our simulations, with a 1000 trials

for each noise level, and the corresponding value in each raw represents the success

rate (%) in identifying the sought pair of parallel planes. The results show that the

success rate slightly decreases with the increase of pixel noise. However, the success

rate for a realistic 1-pixel noise is above 85%. Even when the noise level reaches 2

pixels, the success rate is still satisfactory at 70%.
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Table 6.1: Success rate (%) for the detection of parallel planes

Noise(pixels) 0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0

Success (%) 100.00 % 99.00 % 95.50 % 93.25 % 85.25 % 82.00 % 82.00 % 75.50 % 68.25%

6.4 Experiments using real scenes

The proposed method has been tested for both indoor laboratory and outdoor scenes.

We have used off-the-shelf low-end cameras with motorized zoom lenses to capture

our images. Common among all of the conducted tests, 3 images were taken with

two different orientations, i.e., motion and rotation. The first image is taken by

a camera oriented toward the scene, followed by two images taken from a single

stationary zooming camera fixed on a tripod at two different zoom settings. In all our

experiments, we have used the linear method reported in [82] to compute a consistent

set of projection matrices for all acquired images. From these projective matrices, we

use the principal plane coordinates, i.e., the third row, of the matrices of the 2 zoom

images as our a priori known parallel planes.

For each test, a set of parallel and non-parallel planes in the scene have been

manually collected and used as ground truth to compare against our method re-

sult. Matched pixels across the images have a realistic noise level around 0.5-pixel

on average. Using the computed parallel planes deduced from the 2 zooming camera

projection matrices, we compute the ideal points Vπi for each scene plane, as de-

scribed in Equation 6.2. These computed 3D ideal points are then projected on the

image plane. Using normalized image coordinates, a threshold of 10−3 in all of our

experiments has been used to distinguish parallel from non-parallel planes.
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Figure 6.4: Cube object images and selected planes.
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6.4.1 Indoor tests

The Cube Model:

In this laboratory experiment, we have used a calibration cube scene model shown

in Figure 6.4. All the three images in this test were taken using a low-end camera,

Canon PowerShot SX150, fixed on a tripod. A total of 108 feature points scattered

on the three different sides of the cube were extracted and matched across the 3

views. Points on three orthogonal pairs of virtual planes are chosen as illustrated in

Figure 6.4 (top), where we have three pairs of parallel planes, P1‖P2, P3‖P4 and

P5‖P6. Each of these planes consists of 12 points spanning two sides of the cube. Our

method successfully detected all the parallel pairs. The computed distances between

pairs of vanishing points belonging to each pair of the parallel planes P1‖P2, P3‖P4

and P5‖P6 were 0.000849 , 0.000125 and 0.0002, respectively. On the other hand, the

distances between vanishing points of non-parallel pairs were very high. For example,

for the non parallel pairs P1 ∦ P3, P1 ∦ P5 and P3 ∦ P5, these values were 0.26,

0.488 and 0.2333 respectively.

The same experiments were repeated but instead of using the parallel planes

deduced from the stationary zooming camera images, we used randomly 2 parallel

scene planes to test the other remaining planes. All parallel and non-parallel pairs

were successfully detected, regardless of which pair of parallel planes used as the a

priori known pair.

Cylinder Model: In this set of experiments, 3 images were taken of a cylindrical

scene model as shown in Figure 6.5. All images were taken by the same digital camera

(Canon PowerShot SX150 IS) fixed on a tripod were the last 2 images are taken from

the same position but with different zoom settings. A total of 35 points were extracted

and matched across the different images as shown in the same figure. As there are
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Figure 6.5: The used cylindrical object and selected virtual planes.

no physical planes in the scene, several virtual planes has been manually identified

and used for testing (see Figure 6.5). Each of the labeled planes P1, P2,. . . , P5

are mutually parallel to each other, and consist of 6 points. Furthermore, Planes P6

& P7 are parallel while P8 is not parallel with any of the other planes. The result

of detecting every two consecutive planes of P1 . . .P5 were successfully detected as

parallel with an error distance in the range 0.0002-0.0004, well below our set threshold

of 10−3. However, in two cases of non-consecutive planes, P1 with P5 and P2 with

P5, the error distance exceeded slightly the threshold at 0.003 and 0.005, and failed to

detect their parallelism. This is acceptable as these virtual planes consist of 6 points

only, making the estimation of the plane sensitive to noise. For the parallel planes

P6 and P7 the difference were close to zero 0.00000032. The difference between P8
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and all the other planes exceeded the threshold and did not yield any false positive

with any other plane.

6.4.2 Outdoor tests

Figure 6.6: House images and chosen planes.

House Scene : In this set of experiments, our camera, a (Sony DSC-S930), was

placed at approximately 25 meters off a house. We have captured 2 images at different

zoom settings and a third image was taken from a different locations (see Figure 6.6).

A total of 45 points were extracted and matched across the different images and 6

different planes has been identified and labeled (see Figure 6.6-top). The computed

distances between the vanishing points corresponding to the parallel pairs P1‖P2,

P3‖P4, and P5‖P6 were 0.0002, 0.000698 and 0.000036, respectively. On the other
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hand, the distance between vanishing points of non-parallel pairs were very high. For

example, the distance between the vanishing points of the non-parallel pairs P1 ∦ P4,

P1 ∦ P6 and P4 ∦ P6 were 0.841, 1.2 and 0.416, respectively, which clearly exceed

our set threshold of 10−3. As an example, the vanishing points of each plane are

plotted on the top left corner of Figure 6.6. Note that these points are collinear, as

they all belong to the same line at infinity.

Round building Scene :

Figure 6.7: Images of a round building used in our experiments.

This is a cylindrical building that was photographed by the (Canon PowerShot

SX150 IS) camera. A total of 37 points were extracted and matched across the 3
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images and 5 virtual planes where selected and labeled (see Figure 6.7). Clearly,

planes P1, P2, P3 and P4 are parallel while plane P5 is not parallel to any of the

others. The computed difference of any two vanishing points among the parallel

planes, i.e. P1,...,P4, were between 0.0007 and 0.00002 and thus below the threshold

and the method detected them correctly as parallel. Even the non-consecutive planes

have been correctly identified parallel. On the other hand, the difference among these

planes and the non-parallel plane P5 were very high, 1.79 on average, which strongly

indicates non-parallelism with the other planes.

6.5 Conclusion

A novel automatic method for identifying parallel planes from uncalibrated views of

a scene was developed. In particular, a sufficient condition for identifying parallel

planes from the projective reconstruction of the scene was devised. The method

utilizes a priori knowledge of a pair of parallel planes in order to automatically detect

the other scene parallel planes. Such an a priori pair of known parallel planes is always

possible when using zoom images of a stationary non-rotating camera, making the

method fully automatic. Moreover, the method is flexible to work in other situations

such as, when two vanishing points or a vanishing line can be provided or detected

automatically. We have also provided a practical way to deal with image noise. Our

extensive experiments on simulated data and on indoor and outdoor real scenes have

yielded excellent results despite the use of low-end cameras and noisy images.
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Chapter 7

Conclusion

The work presented in this dissertation is primarily concerned with the problem of

auto-calibration and 3D reconstruction for a vision system consisting of stationary

non-rotating zooming cameras. This is a common configuration which is often en-

countered in stereo camera systems such as, surveillance networks and monitoring of

events. In such image capture systems, each camera is physically attached to a static

structure (wall, ceiling or tripod) and is only allowed to zoom.

While several approaches have been developed in the past for vision systems with

fixed settings, little work has been done in the context of active vision systems with

zoom lenses. Active vision systems with zoom capabilities allow to adjust the captured

images or videos to perform tasks which are not possible for vision systems with fixed

lenses. For example, a zoom-out allows analysis of a wide scene, while a zoom-in helps

taking a closer look at an object of interest. However, integrating zoom lenses into

vision systems introduces many difficulties. On the top of these difficulties comes the

need to auto-calibrate the vision system as all reconstruction techniques require some

form of calibration. The metric auto-calibration problem of a system with cameras

of different settings is known to be a hard non-linear problem that may often fail. A

simple and linear solution for such problem would be of great importance.
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In order to linearize the solution, a stratified auto-calibration approach has been

adopted. A stratified approach can bridge the gap between projective and metric

or Euclidean structure, by obtaining an affine calibration in a first stage. This is

equivalent to locating the plane at infinity for a given projective structure. Existing

techniques for locating the plane at infinity are either based on restricted camera

motion or depends on explicit scene constraints. When the cameras are supposed to

be stationary and non-rotating, the special camera motion case cannot be applied.

In addition, scene constraints may or may not exist in the scenes and require an

automatic and reliable identification methods.

In this work, a new theoretical insight on the zooming process is developed, en-

abling approaches which simplify the auto-calibration and three-dimensional recon-

struction problem. In particular, we have shown that a stationary zooming camera

allows the identification of parallel planes. We have translated this observation in to

the following practical methods:

• A linear method to compute the affine 3D structure, using a stereo zooming

camera system, was developed. Based on the valid observation that, the prin-

cipal planes, before and after zooming, provide a pair of parallel planes, we

were able to extract linear constraints on the plane at infinity. Two such pairs

of parallel planes, from the stereo pair of cameras, are enough to identify the

plane at infinity, making it possible for the scene’s projective reconstruction to

be upgraded to affine structure. Typically, affine calibration from a stereo pair

of stationary cameras with unknown orientation is not possible without scene

or camera motion constraints, even for cameras with fixed parameters (i.e. non-

zooming). Note that affine camera calibration and structure may be enough for

many computer vision tasks. This research work has resulted into a refereed
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conference article at the IEEE International Conference on Image Processing

(ICIP).

• Based on the assumption that typical cameras have rectangular or even square

pixels, a stratified auto-calibration approach was proposed. This has allowed

the recovery of the intrinsic camera parameters, and thus metric measurements

and structure of the scene have become possible. The previous method for

locating the plane at infinity was extended from its minimal case of a pair of

cameras and zoom images to the case of more cameras and more zoom images.

Such extension was necessary to obtain successful results under noisy conditions.

Two linear methods, based on SVD and LMI, were investigated and tested for

estimating the camera parameters. The obtained results were very good on both

synthetic and on real images. This research work has resulted into a refereed

journal paper at Image and Vision Computing (Elsevier).

• A method for automatically identifying parallel planes in a scene, using zoom-

ing cameras, was developed. Given a priori knowledge about a single pair of

parallel planes, a sufficient linear condition was devised and successfully applied

to identify other scene’s parallel planes. In this method, we have used the pair

of parallel planes, resulting from two zoom images, as the required a priori,

to automatically identify parallel planes in the scene. This research work has

resulted into a refereed conference article at the IEEE Canadian Conference on

Computer and Robot Vision (CRV).

In our future work, we may investigate lens radial distortion and and their impact

on the obtained results. Lens radial distortion estimation can be done by assuming

a constant radial distortion model that can be estimated at a particular zoom level.
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Then, its variation can be modeled using a magnification factor. Taking lens distortion

into account may improve both the success of the method and the quality of the

results.

Another important area for future research is the integration of these methods with

other auto-calibration techniques. Our proposed methods can fit naturally within the

Pan-Tilt-Zoom (PTZ) camera networks. Auto-calibration of a stationary and rotating

camera around its center are attractive because of their linear solutions. However,

moving cameras in a pure rotational motion is not feasible in practice, due to rotation

misalignment, and such an assumption is only plausible when the camera is far from

the scene. The integration of the proposed zoom-based auto-calibration methods with

the existing camera PTZ rotational based auto-calibration techniques may provide

more flexible and reliable solutions.
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