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Abstract

We proposed a family of methods for transcriptomics and gec® data analysis based
on multi-level thresholding approach, such as OMTG for gtil-and spot detection in
DNA microarrays, and OMT for detecting significant regiorsséd on next generation
sequencing data. Extensive experiments on real-life detasd a comparison to other
methods show that the proposed methods perform these tdigkatomatically and with a
very high degree of accuracy. Moreover, unlike previoushoes, the proposed approaches
can be used in various types of transcriptome analysis @nodbkuch as microarray image
gridding with different resolutions and spot sizes as welfiading the interacting regions
of DNA with a protein of interest using ChlP-Seq data withaaly need for parameter
adjustment. We also developed constrained multi-levelstmolding (CMT), an algorithm
used to detect enriched regions on ChiP-Seq data with theyathitargeting regions within

a specific range. We show that CMT has higher accuracy in tiegeenriched regions
(peaks) by objectively assessing its performance relédiether previously proposed peak
finders. This is shown by testing three algorithms on the-kmetiwn FoxAl Data set, four
transcription factors (with a total of six antibodies) f@rosophila melanogastesind the
H3K4ac antibody dataset. Finally, we propose a tree-bagptbach that conducts gene
selection and builds a classifier simultaneously, in ordeselect the minimal number of

genes that would reliably predict a given breast canceypabiOur results support that this

Vi



vii

modified approach to gene selection yields a small subsetr@gthat can predict subtypes
with greater than 95% overall accuracy. In addition to paow) a valuable list of targets for
diagnostic purposes, the gene ontologies of the selectegsgriggest that these methods
have isolated a number of potential genes involved in breaster biology, etiology and

potentially novel therapeutics.
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Chapter 1

Introduction

Pattern recognition and image processing and analysi®agpes are some of the main
streams for analysis of biological data, especially ingaaptomics. One of the main aims
of pattern recognition techniques is to make the proces=aohing and detection of patterns
explicit, in such a way that it can be implemented on computé&utomatic recognition,
description and classification have become important problin a variety of scientific
disciplines such as biology, medicine and artificial intgdhce. Classification, as one of the
most well-known techniques in pattern recognition, is uselouild models for identifying
the correct class label corresponding to an unknown inpupta These methods are also
very useful for analyzing biological data, identifying ééses and biomarkers. On the other
hand, when there is no explicit class label correspondirgatin sample, the model should
figure out the appropriate label for each sample by analythiegata. Clustering techniques
are among these methods, which group similar samples tegefustering methods has
been used vigorously for analyzing multi-dimensional $@iptomics data. Clustering one
dimensional data can be solved easily by using multi-leedgholding techniques, for

which efficient algorithms are known. Multilevel threshiolg has been applied to many



CHAPTER 1. 2

problems in signal and image processing and analysis. Beamape image segmentation,
vector and scalar quantization, finding peaks in histogrgmeessing microarray images

and finding enriched regions in next generation sequenatey[d—4].

1.1 Transcriptomics Data Analysis Using Machine Learn-
ing Methods

Transcriptomics data analysis is one of the areas that caefibéy using the computa-
tional methods. Clustering techniques are among thoseaaetinat can help scientists to
detect patterns in biological data. Clustering one dinmraidata can be efficiently solved
using several techniques such as K-means, fuzzy K-meansgatidlevel thresholding.
In particular, multilevel thresholding can solve this pieah efficiently by using optimal,
polynomial time algorithms. In this thesis, multilevelésholding is used for finding sub-
grids and spots in microarray images in Chapters 2 and 3. mbifod is also used in
Chapters 4 and 5 for finding enriched regions in ChIP-Seq d&tature selection methods
are among other machine learning techniques that can baasetéct a subset of relevant
features from a large set. There are different feature sefemethods such as minimum
Redundancy Maximum Relevance (MRMR) [5] and chi-squargdif6this thesis we use
the chi-squared method in Chapter 6 to select a subset osdgbatdiscriminate differ-
ent subtypes of beast cancer. Classification techniquestiaee types of machine learning
methods that can be used to train models for identifying omknsamples. There are dif-
ferent types of classification methods such as DecisiorjTieBayes classifier [8], support
vector machines (SVMs) [9], fuzzy rule-based classificatizethods [10] and neural net-

works [11] among others. In this thesis, we use SVM in Chaftesithin a hierarchical



CHAPTER 1. 3

scheme to classify different subtypes of breast cancer.

1.2 Microarray Image Processing and Analysis

A DNA microarray is a collection of microscopic DNA spotsathed to a solid surface.
Using Microarrays, scientists are able to measure the sgjane levels of large numbers
of genes simultaneously. DNA microarray images are obthlryescanning DNA microar-
rays at high resolution and are composed of sub-grids okspidtere are different steps
toward analyzing DNA microarray images such as griddingnsentation and quantifica-
tion among others. Gridding microarray images is one of tlistnmportant stages of
microarray image analysis, since any error in this step apggated to further steps and
may reduce the integrity and accuracy of the analysis diaaligt DNA microarray im-
ages contain sub-grids, and each sub-grid contains a seot# arranged in a grid with
a certain number of rows and columns. Figure 1.1 depictslaDidA microarray image
downloaded from the Stanford Microarray Database (SMD),[M&ich corresponds to a
study of the global transcriptional factors for hormoneatmeent ofArabidopsis thaliana
samples. The full image, Figure 1.1a, contains<2= 48 sub-grids. Each sub-grid, con-
tains 18x 18 = 324 spots, which each has the resolution ofx24 pixels. One of the
sub-grids is shown in Figure 1.1b.

The aim of DNA microarray image processing and analysis fntbthe positions of
the spots and then identify the pixels that represent gepeession, separating them from
the background and noise. The main steps involved in prowessid analyzing a DNA
microarray image are the following: spot addressing ordind, segmentation, noise treat-
ment and removal and background correction, which are gésmlin more detail below.

When producing DNA microarrays, many parameters are spdcguch as the number
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Figure 1.1: (a) Original DNA microarray image, 20391-chte@n channel), from the
SMD; (b) sub-grid extracted from thé'&olumn and % row.
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and size of spots, number of sub-grids, and even their erpaeatibns. However, many
physicochemical factors produce noise, misalignment,emgth deformations in the sub-
grid template that it is virtually impossible to know the ek#&ocation of the spots after
scanning, at least with the current technology, withoufgraring complex procedures.
Prior to applying the gridding process to find the locatiohthe spots, the sub-grids must
be identified, a process that is also known as sub-griddinge@he sub-grids are identified,
the gridding step takes a sub-grid as input and aims to finexthet location of each spot.
Depending on how complex the mechanisms are, the griddirthademay or may not
require some parameters about the sub-girds, namely thberushrows and columns of
spots, the size of the spots in pixels, and others. Varioubads have been proposed for
solving this problem with some variations in terms of the amtaf computer processing

time, user intervention and parameters required [13—-17].

1.3 ChIP-Seq Data Analysis

There are certain types of proteins that bind to some regioB&NA molecules, and these
events are related to transcription and translation of RNAegules into proteins. Protein-
DNA binding has been studied using different biotechnalabiechniques such as ChlP-
chip, ChiP-on-chip and ChIP-Seq [18-22]. They all use clatmmimmunoprecipitation
(ChIP), which precipitates a protein antigen out of the sotuusing a specific antibody
designed to attach to that protein of interest. Of theseP&dqg combines ChIP tech-
nology with high throughput, next generation sequencinggcivallows one to investigate
protein-DNA interactions more accurately. There are sshadvantages when using ChlP-
Seq as an alternative technology to ChIP-chip, which cossbthe ChIP with microarray

technology [23, 24]. Some of these are listed in Table 1.d,iaclude generating profiles
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Table 1.1: Comparison of ChIP-Seq and ChIP-chip technology

\ | ChlIP-chip \ ChIP-Seq \
Resolution 30-100 bp 1bp
Coverage limited by sequence on the array whole genome
Required amount of ChIP DNA few micro grams 10-50 nano gram
cost $400-$800 per array $1000 per lllumina lane

with higher signal-to-noise ratios and a larger number o&lized peaks. As observable
from the table, ChlIP-Seq has much higher resolution in coisa with ChlP-chip tech-
nology. Also, one of the main issues in ChlP-chip technal@gdyich is noise pollution due
to the hybridization step, does not exist in ChIP-Seq teldgyo Moreover, ChIP-Seq can
cover the whole genome, whereas in ChlP-chip the coveralymited to the amount of
DNA attached to the array. Lastly, the amount of ChIP DNA riesglifor performing the
analysis is much higher in ChiP-chip technology in compmariwith ChlP-Seq.

Figure 1.2 shows the work flow of ChIP-Seq data analysis.t,Rine DNA chromatin
is sheared by sonication into small fragments (betweenG@@bp depends on the experi-
ment). Then, using an antibody specific to the protein ofest the DNA-protein complex
is immunoprecipitated. Finally, after purifying DNA, theads are sequenced and mapped
to the reference genome. In the peak calling module, whitheistep we focus on in this
thesis, the locations in DNA that interact with certain pios of interest are determined.
After detecting those regions of interest, several anglytsps can be performed such as

visualization, motif discovery, combining the resultsmgtene expression data, and others.
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Figure 1.2: Diagrammatic view of the work flow of ChIP-Segadabalysis.

1.4 Finding Transcriptomics Biomarkers

Finding relevant transcriptome biomarkers correspontbrg certain disease is a key step
toward efficient prediction and diagnosis of many diseateardy stages. Traditional gene
selection approaches usually consider transcriptomerafesecells for comparison to the
patterns of normal cells in a cancer vs. non-cancer scefaritnding relevant transcrip-
tome biomarkers. Here, we focus on a more challenging nalasis problem that consists

of determining relevant and informative transcriptomiasarkers in various subtypes of
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a specific disease such as breast cancer.

While breast cancer is often thought of as a single diseaseasing evidence suggests
that there are multiple subtypes of breast cancer that aacdifferent rates in different
groups. They have their own specific treatment procedueanare or less aggressive, and
even have different survival rates. Having their own genatid transcriptomics signatures
makes the treatment procedure dramatically different fooma subtype to another. The
analysis in this case is more complicated, since each sel&bmarker can be related to
one or more classes with different possibilities or impaegels and it is essential to stratify
patients into their relevant disease subtype prior tormeat. We address this problem by

proposing a hierarchical method that finds an optimal sutfd@bmarkers for predicting a

patient’s subtype. It can be used for a wide range of diseasessting a family of different
subtypes with the ability of using different machine leamgntechniques to optimize the

model based on the needs.

1.5 Motivation and Objectives

The first task in DNA microarray image processing is griddiwdich, if done correctly,
substantially improves the efficiency of the subsequerkstdisat include segmentation,
guantification, normalization and data mining [25]. Mosttbé proposed methods use
one or more parameters to adjust their algorithms to thetimpage. Using more param-
eters can decrease the flexibility of the method, since tpas@meters are needed to be
adjusted carefully based on the features of each microarage before running the grid-
ding algorithm. We introduced a parameterless and yet vewyepful method for gridding
microarray images that removes the burden of fine-tuningénameters while providing a

very high accuracy for finding the sub-grids within the mamay image as well as finding
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the spots within each sub-grid.

As mentioned earlier, next generation sequencing offegadriresolution, less noise,
and greater coverage in comparison with its microarraygthasunterparts. Moreover, de-
termining the interaction between a protein and DNA to ratpiene expression is a very
important step toward understanding many biological pgses and disease states. ChlP-
Seq is one of the techniques used for finding regions of istenea specific protein that
interacts with DNA using next generation sequencing teldgy[26—32]. The growing
popularity of ChlP-Seq has increased the need to develo@igawithms for peak finding.
Due to mapping challenges and biases in various aspect® @xikting protocols, iden-
tifying relevant peaks is not a straightforward task. Onehef problems of the existing
methods is that the locations of the detected peaks couldbeptimal. Moreover, for
detecting these peaks all methods use a set of parametersdfaause variations of the
results for different datasets. Thus, after some modiboatiwe proposed a new model for
finding the interaction sites between a protein of interadt@NA using multi-level thresh-
olding algorithm coupled with a model to find the best numbgreaks based on clustering
techniques for pattern recognition that addresses botiesktissues.

Another downside of the existing methods is that they tryrtd &ll the enriched regions
regardless of their length. These regions can be groupetidiy length. For example,
histone modification sites normally have a length of 50 to I, kvhile some other regions
of interest like exons have a much smaller length of arourldf® Using these methods,
there is no way to focus on regions with a specific length alnaf #te relevant peaks should
be detected first. This is a time consuming task that foreesbdel to process all possible
regions. We also proposed a modified version of multi-ldvedsholding to deal with this

issue. Using the proposed method, we are able to search dicspegion with a certain
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length which consequently increases the accuracy andrpaafae of the model.

On the other hand, as discussed in Section 1.4, anotherepndbht is relevant in tran-
scriptomics data analysis is finding the most informativeegeassociated with different
subtypes of breast cancer, which is an important problemréadt cancer biomarker dis-
covery. Finding relevant genes corresponding to each typarcer is a key step toward
efficient diagnosis and treatment of cancer. Machine legrapproaches can be used to
precisely determine the number of genes required to pradiettient subtype with a high
degree of reliability. Moreover, modeling today’s compl#glogical systems requires ef-
ficient computational models to extract the most valuablermation from existing data.
In this direction, pattern recognition techniques in maehiearning provide a wealth of

algorithms for feature extraction and selection, classien and clustering.

1.6 Contributions

The contributions of the thesis are based on using macharaitg techniques for tran-
scriptome data analysis. We propose various models andthigs applicable on different
transcriptome analysis technology. The main contrib@tioithis thesis are summarized as

follows:

e Proposing the optimal multi-level thresholding griddil@M TG) method for finding
sub-grids in microarray image and spots within each detexiib-grid. The proposed
method is free of parameters (Chapter 2). We also proposed aalidity index )
for finding the optimal number of sub-grids in microarray geand optimal number
of spots within each sub-grid (Chapters 2 and 3). OMTG wagirally proposed

in 2011 for gridding microarray images. Since then, différarticles have cited the
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authors’ proposed method for microarray image griddindpldda.2 shows the list of

these publications.

e Adapting the proposed optimal multi-level thresholdingdebas a new framework
(OMT) to find the interaction points between a protein of iagt and DNA (Chapter
4) . Also, proposing a new high performance constraineddapproach (CMT)

used to find enriched regions in ChiP-Seq data (Chapter 5).

e Proposing a framework usinghi2 feature selection [33] and support vector ma-
chine (SVM) classifief34] to obtain biologically meaningful genes, and to inaea
the accuracy for predicting breast tumor subtypes. Theqs®g model is flexible, in
the sense that any feature selection and classifier can bedeiad in it. The model
can be used for prediction and diagnosis of various diseagkglifferent subtypes
(Chapter 6). We also discovered a new, compact set of bie@madt genes useful for

distinguishing among breast cancer types (Chapter 6).

1.7 Thesis Organization

The thesis is organized in seven chapters. Chapters 2 angkBtbe topics related to the
proposed optimal multilevel thresholding algorithm arsdapplication in DNA microarray

image analysis as follows:

Chapter 2: Luis Rueda, Iman Rezaeian: A Fully Automatic Gridding Methor cDNA
Microarray Images. BMC Bioinformatics (2011) 12: 113.

Chapter 3: Luis Rueda, Iman Rezaeian: Applications of Multilevel T$irelding Algo-

rithms to Transcriptomics Data. Progress in Pattern Ratognlmage Analysis,
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Table 1.2: The list of papers that have cited the proposetdaddty the author.

Year | Title Reference

2011 Automatic Spoti Identification for High Throughput Mj- [47]
croarray Analysis

2012 FPGA baseql system for automatic cDNA microarray im- [35]
age processing
Denoising and block gridding of microarray image using

2012 : [40]
mathematical morphology

2012 An improved automatic gridding based on mathematical [42]
morphology

2012 An |mprqved automatic gridding method for cDNA mi- [43]
croarray images

2013 Two dimensional barcode-inspired automatic analysis| for (48]

arrayed microfluidic immunoassays
A New Gridding Technique for High Density Microarray
2013 | Images Using Intensity Projection Profile of Best Sub Im- [37]
age
Recognition of cDNA micro-array image based on artjf

2013 | . " [39]
cial neural network

2013 Using the Maximum Between-Class Variance for Auto- [41]
matic Gridding of cDNA Microarray Images

2013 An |mprov_ed SVM method for cDNA microarray image [44]
segmentation

2013 | A new method for gridding DNA microarrays [36]
gitter: A Robust and Accurate Method for Quantificatipn

2014 : [46]
of Colony Sizes from Plate Images

2014 Crossword: A fully automated algorithm for the image seg- [39]

mentation and quality control of protein microarrays

2014 An Effectlye Automated Method for the Detection of Grigs [45]
in DNA Microarray
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Computer Vision, and Applications - 16th Iberoamerican gress (CIARP), Chile,
2011: 26-37.

Chapters 4 and 5 cover two proposed methods for analyzing-Skh data as follows:

Chapter 4: Iman Rezaeian, Luis Rueda: A new algorithm for finding ereechegions in
ChIP-Seq data. ACM International Conference on Bioinfdrosa Computational
Biology and Biomedicine (ACM-BCB), Chicago, USA, 2012: 2338.

Chapter 5: Iman Rezaeian, Luis Rueda: CMT: A Constrained Multi-Levietdsholding
Approach for ChlP-Seq Data Analysis. PLoS ONE 9(4): e932034.

Similarly, a novel method for finding a subset of most infotiveagenes to classify

breast cancer subtypes is included in Chapter 6.

Chapter 6: Iman Rezaeian, Yifeng Li, Martin Crozier, Eran AndrechekioAne Ngom,
Luis Rueda, Lisa Porter: Identifying Informative GenesRoediction of Breast Can-
cer Subtypes. Pattern Recognition in Bioinformatics - &RR International Con-

ference (PRIB), France, 2013: 138-148.

Finally, Chapter 7 concludes the thesis and identifies samwlglgms arising from this

work and relevant future work.
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Chapter 2

A Fully Automatic Gridding Method for

cDNA Microarray Images

2.1 Background

Microarrays are one of the most important technologies usetblecular biology to mas-
sively explore how the genes express themselves into potnd other molecular ma-
chines responsible for the different functions in an orgami These expressions are moni-
tored in cells and organisms under specific conditions, @aveé many applications in med-
ical diagnosis, pharmacology, disease treatment, jusetation a few. We consider cDNA
microarrays which are produced on a chip (slide) by hybimgjzample DNA on the slide,
typically in two channels. Scanning the slides at a very hggolution produces images
composed of sub-grids of spots. Image processing and amalgstwo important aspects
of microarrays, since the aim of the whole experimental @doice is to obtain meaningful
biological conclusions, which depends on the accuracyeififierent stages, mainly those

at the beginning of the process. The first task in the sequemgedding [1-5], which if

21
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done correctly, substantially improves the efficiency & subsequent tasks that include
segmentation [6], quantification, normalization and dataimy. When producing cDNA
microarrays, many parameters are specified, such as theemwand size of spots, num-
ber of sub-grids, and even their exact locations. Howevanyphysicochemical factors
produce noise, misalignment, and even deformations inuhegsid template that it is vir-
tually impossible to know the exact location of the spoteraficanning, at least with the
current technology, without performing complex procegur@oughly speaking, gridding
consists of determining the spot locations in a microarmagge (typically, in a sub-grid).
The gridding process requires the knowledge of the sulsgirddvance in order to proceed
(sub-gridding).

Many approaches have been proposed for sub-gridding andefaztion. The Markov
random field (MRF) is a well known approach that applies d#ife¢ constraints and heuris-
tic criteria [1, 7]. Mathematical morphology is a techniqueed for analysis and processing
geometric structures, based on set theory, topology, amdora functions. It helps re-
move peaks and ridges from the topological surface of thg@&saand has been used for
gridding the microarray images [8]. J&n[9], Katzets [10], and Stienfatls [11] mod-
els are integrated systems for microarray gridding and tifaéime analysis. A method
for detecting spot locations based on a Bayesian model rexs teeently proposed, and
uses a deformable template to fit the grid of spots using aposfprobability model for
which the parameters are learned by means of a simulatezkimg-based algorithm [1, 3].
Another method for finding spot locations uses a hill-clingapproach to maximize the
energy, seen as the intensities of the spots, which are fitféoaht probabilistic models [5].
Fitting the image to a mixture of Gaussians is another teghethat has been applied to

gridding microarray images by considering radial and pecspe distortions [4]. A Radon-
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transform-based method that separates the sub-grids ilNA ofidcroarray image has been
proposed in [12]. That method applies the Radon transforindgpossible rotations of the
image and then finds the sub-grids by smoothing the row ommolsums of pixel intensi-

ties; however, that method does not automatically find tmeeconumber of sub-grids, and
the process is subject to data-dependent parameters.

Another approach for cODNA microarray gridding is a griddmegthod that performs a
series of steps including rotation detection and compdresdw or column sums of the
top-most and bottom-most parts of the image [13, 14]. Thigwow which detects rotation
angles with respect to one of the axes, either y, has not been tested on images having
regions with high noise (e.g., the bottom-méslf the image is quite noisy).

Another method for gridding cDNA microarray images uses\aniwionary algorithm
to separate sub-grids and detect the positions of the spgsThe approach is based on a
genetic algorithm that discovers parallel and equididtaatsegments, which constitute the
grid structure. Thereafter, a refinement procedure is agpt further improve the existing
grid structure, by slightly modifying the line segments.

Using maximum margin is another method for automatic gndaif cDNA microarray
images based on maximizing the margin between rows and oslofrspots [16]. Initially,

a set of grid lines is placed on the image in order to sepagatie pair of consecutive rows
and columns of the selected spots. Then, the optimal pasitbthe lines are obtained by
maximizing the margin between these rows and columns usmgxamum margin linear
classifier. For this, a SVM-based gridding method was usddh In that method, the
positions of the spots on a cDNA microarray image are firstatetd using image analysis
operations. A set of soft-margin linear SVM classifiers isdito find the optimal layout of

the grid lines in the image. Each grid line corresponds tostygarating line produced by
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one of the SVM classifiers, which maximizes the margin beiwte® consecutive rows or

columns of spots.

2.2 Results and Discussion

For testing the proposed method (called Optimal Multi-leeresholding Gridding or
OMTG), three different kinds of cDNA microarray images hdseen used. The images
have been selected from different sources, and have diffscanning resolutions, in order
to study the flexibility of the proposed method to detect guilds and spots with different
sizes and features.

The first test suite consists of a set of images drawn from taef&d Microarray
Database (SMD), and corresponds to a study of the globadrgional factors for hor-
mone treatment oArabidopsis thalianasamples. The images can be downloaded from
smd.princeton.edu, by selecting “Hormone treatment” &sgray and “Transcription fac-
tors” as subcategory. Ten images were selected, whichspmnel to channels 1 and 2 for
experiments IDs 20385, 20387, 20391, 20392 and 20395. Thgdamhave been named
using AT (which stands foArabidopsis thaliang followed by the experiment ID and the
channel number (1 or 2).

The second test suite consists of a set of images from Gerre$sipn Omnibus (GEO)
and corresponds to an Atlantic salmon head kidney study.infhbges can be downloaded
from ncbi.nlm.nih.gov, by selecting “GEO Datasets” as gatg and searching the name
of the image. Eight images were selected, which correspomtiannels 1 and 2 for ex-
periments IDs GSM16101, GSM16389 and GSM16391, and alsmetha of GSM15898
and channel 2 of GSM15898. The images have been named usMdgd@iSwed by the

experiment ID, and the channel number (1 or 2).
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The third test suite consists of two images, obtained frontugioin experiment (DILN)
and correspond to channels experiments IDs Diln4-3.394%ahd Diln4-3.3942.01B [18].
The specifications of the cDNA microarray images for eachheké three test suites are

summarized in Table 2.1.

Table 2.1: The specifications of the three datasets of cDNé&oairay images used to
evaluate the proposed method.

Suite Name | SMD GEO DILN
Stanford Gene Expression
Database Name| Microarray . Dilution Experiment
Omnibus
Database
Image Format | Tiff Tiff Tiff
No. of Images | 10 8 2
Image Resolution 1910x 5550 1900x 5500 600x 2300
Sub-grid Layout | 12x 4 12x4 5x2
Spot Layout | 18x 18 13x 14 8x8
Spot Resolution| 24 x 24 12x 12 from 12x 12to 3x 3

To assess the performance of the proposed method, we cotisideercentage of the
grid lines that separate sub-grids/spots incorrectly,ginatly and perfectly. Each spot
was evaluated as being perfectly, marginally or incoryegtidded if the percentage of its
pixels within the grid cell is 100%, between 80% and 100%egesslthan 80% respectively
[16]. These quantities were found by visually analyzingrgmult of the gridding produced
by our method. For SMD and GEO, our gridding was not comparid the gridding
currently available in these databases. For DILN, aparhfte visual analysis, we also
apply segmentation and quantification by computing the melwf log of intensity and
relate these to the rate of dilution in the biological expennt. For the implementation,
we used Matlab2010 on a Windows 7 platform and an Intel co&/{¥ cpu with 8GB of

memory. The average processing times for sub-grid and gpettions are shown in Table
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2.2.

Table 2.2: Average processing times (in seconds) for datgstib-grids within each cDNA
microarray image and detecting spots within each detected)sd.

Sub-grid Detection] Spot Detection
SMD 379.1 10.8
GEO 384.7 9.2
DILN 62.3 3.8

2.2.1 Sub-grid and Spot Detection Accuracy

Table 2.3 shows the results of applying the proposed me®@b,G, for spot detection on
the SMD dataset. With the proposed method, spot locatiombealetected very efficiently
with an average accuracy of 98.06% for this dataset. The sate@f experiments were re-
peated for the GEO dataset and the results are shown in Tdbla@ain, the spot locations
are detected very efficiently with an average accuracy &2@%. The experiments were
repeated for the DILN dataset and the results are shown ile 2ab. Although the sizes of
the spots in each sub-grid are different in this datasetsplo¢ locations are detected very
efficiently with an average accuracy of 97.95%. In most ofithages, the performance
of the method is more than 98% and incorrectly and margiraiggned rates are less than
1%. Only in a few images with noticeable noise and defectsattcturacy of the method
is less than 98%, while incorrectly aligned rates increasadre than 2%. This shows the
flexibility and power of the proposed method. For all the iesgn the sub-grid detection
phase, the incorrect and marginal gridding rates are botty@ling an accuracy of 100%.
This means the proposed method works perfectly in sub-gtielation for this case.

One of the reasons for the lower accuracy in spot detectithraithe distance between

spots is smaller than the distance between sub-grids. fihrek datasets, there are approxi-
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Table 2.3: Accuracy of detected sub-grids and spots for maafe of the SMD dataset and

the corresponding incorrectly, marginally and perfectigreed rates.

27

Sub-grid Detection Spot Detection

Image Incorrectly | Marginally | Perfectly | Incorrectly | Marginally | Perfectly
AT-20385-CH1 0.0% 0.0% 100% 4.30% 0.46% | 95.24%
AT-20385-CH2 0.0% 0.0% 100% 2.83% 0.09% | 97.08%
AT-20387-CH1 0.0% 0.0% 100% 2.90% 0.14% | 96.96%
AT-20387-CH2 0.0% 0.0% 100% 0.52% 0.11% | 99.37%
AT-20391-CH1 0.0% 0.0% 100% 0.64% 0.17% | 99.19%
AT-20391-CH2 0.0% 0.0% 100% 0.32% 0.26% | 99.42%
AT-20392-CH1 0.0% 0.0% 100% 4.10% 0.33% | 95.57%
AT-20392-CH2 0.0% 0.0% 100% 0.21% 0.25% | 99.54%
AT-20395-CH1 0.0% 0.0% 100% 0.41% 0.12% | 99.47%
AT-20395-CH2 0.0% 0.0% 100% 0.98% 0.31% | 98.71%

Table 2.4: Accuracy of detected sub-grids and spots for eaape of the GEO dataset and

the corresponding incorrectly, marginally and perfectigreed rates.

Sub-grid Detection Spot Detection

Image Incorrectly | Marginally | Perfectly | Incorrectly | Marginally | Perfectly
GSM15898-CH1| 0.0% 0.0% 100% 0.58% 0.16% | 99.26%
GSM15899-CH2| 0.0% 0.0% 100% 1.00% 0.21% | 98.79%
GSM16101-CH1| 0.0% 0.0% 100% 0.00% 0.32% | 99.68%
GSM16101-CH2| 0.0% 0.0% 100% 1.57% 0.06% | 98.37%
GSM16389-CH1| 0.0% 0.0% 100% 0.79% 0.12% | 99.09%
GSM16389-CH2| 0.0% 0.0% 100% 0.57% 0.04% | 99.39%
GSM16391-CH1| 0.0% 0.0% 100% 0.00% 0.24% | 99.76%
GSM16391-CH2| 0.0% 0.0% 100% 0.14% 0.13% | 99.73%

Table 2.5: Accuracy of detected sub-grids and spots for @aalge of the DILN dataset
and the corresponding incorrectly, marginally and pelyesdigned rates.

Sub-grid Detection Spot Detection
Image Incorrectly | Marginally | Perfectly | Incorrectly | Marginally | Perfectly
Diln4-3.3942.01A| 0.0% 0.0% 100% 2.23% 0.05% | 97.72%
Diln4-3.3942.01B| 0.0% 0.0% 100% 1.71% 0.11% | 98.18%
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mately eight pixels between spots, and approximately 3@pitxorizontally and 100 pixels
vertically between sub-grids in the SMD dataset, 200 pixetee GEO dataset and 25 pix-
els horizontally, and 200 pixels vertically in the DILN ds¢d. Another possible reason for
this behavior is that the number of pixels in each sub-grdrigower than that of a microar-
ray image (around /0). Thus, the noise present in the image affects the spettitat
phase much more than the sub-grid extraction stage. It isritapt to highlight, however,
that because of the relatively large distance between gdb;g¢he detection process is not
affected by the presence of noise.

Additionally, to evaluate the effectiveness of the refinatn@ocedure, we tested the
accuracy of the proposed method with and without applyieg&inement procedure. The
results are shown in Table 2.6. For simplicity, we only imiduhose images in which
there is a change in accuracy. We observe that applying fimenmgent procedure slightly
improve the efficiency of the method in all the images in thxda
Table 2.6: The accuracy of the proposed method with and witheing the refinement
procedure in the spot detection phase. Only images withggsim accuracy are listed.
Without Refinement Procedure With Refinement Procedure

Image Incorrectly | Marginally | Perfectly | Incorrectly | Marginally | Perfectly
AT-20385-CH1 | 4.73% 0.79% | 94.48% | 4.30% 0.46% | 95.24%
AT-20387-CH2 | 0.93% 0.54% | 98.53%| 0.52% 0.11% | 99.37%
AT-20391-CH2 | 0.71% 0.58% | 98.71%| 0.32% 0.26% | 99.42%
AT-20395-CH2 | 1.37% 0.76% | 97.87%| 0.98% 0.31% | 98.71%
GSM16101-CH2| 2.13% 0.21% | 97.66%| 1.57% 0.06% | 98.37%

GSM16389-CH1| 0.93% 0.19% | 98.88%| 0.79% 0.12% | 99.09%
GSM16391-CH2| 0.47% 0.26% | 99.27%| 0.14% 0.13% | 99.73%

To analyze the results from a different perspective, we fese performed a visual
analysis. Figure 2.1 shows the detected sub-grids in th208B7-ch2 image (left) and the

detected spots in one of the sub-grids (right). Also, FiduBeshows the sub-grids detected
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in the GSM16101-chl image (left) and the detected spots énadrthe sub-grids (right),
while Figure 2.3 shows the sub-grids detected in the Dilrg8&2B image (left) and the
detected spots in one of the sub-grids (right). As showneraththree figures, the proposed
method finely detects the sub-grid locations first, and inrtbet stage, each sub-grid is
divided precisely into the corresponding spots with the sanethod. The robustness of
OMTG is so high that spots in sub-grids can be detected vellyewen in noisy conditions,
such as those observable in the selected sub-grid in FiglireThe ability to detect sub-
grids and spots in different microarray images with différeesolutions and spacing is
another important feature of the proposed method.

As mentioned earlier, deformations, noise and artifactsaféect the accuracy of the
proposed method. Figure 2.4 shows an example in which theopeal method fails to
detect some spot regions due to the extremely contaminegézhs with noise and artifacts.
In this particular sub-grid, noisy regions tend to be coatuwith spots. Also, most spots
have low intensities that are confused with the backgroéfigr testing other methods on
this image, we observed that they also fail to detect theecbgridding in these regions.

To further analyze the efficiency of the proposed method toraatically detect the
correct number of spots and sub-grids, we show in Figures26and 2.7 the plots for
the indices of validity against the number of sub-grids fér20387-ch2 , GSM16101-chl
and Diln4-3.3942B respectively. The plots on top of the fagurepresent the values of
the index functionsy axis) for detecting the horizontal lines for theA and a indices
respectively, while the plots of the indices for the velttisaparating lines are shown at
the bottom of the figures. We observe that it would be rathiicdit to find the correct
number of sub-grids using thandex or theA index, while thea index clearly reveals the

correct number of horizontal and vertical sub-grids by pi@dg an almost flat curve with
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Figure 2.1: Sub-grid and spot detection in one of the SMDg#dtanages. Detected sub-
grids in AT-20387-ch2 (left), and detected spots in one efdhb-grids (right).

pronounced peaks at 4 and 12 respectively for SMD and GEOe&asaand pronounced
peaks at 2 and 5 respectively for DILN images. For exampls,dlearly observable at the

bottom plots in Figures 2.5 and 2.6 that thedex misses the correct number of sub-grids,
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Figure 2.2: Sub-grid and spot detection in one of the GEOsg#tanages. Detected sub-

grids in GSM16101-ch1l (left), and detected spots in one®f&tib-grids (right).
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Figure 2.3: Sub-grid and spot detection in one of the DILNadat images. Detected sub-
grids in Diln4-3.3942B (left) and detected spots in one efshb-grids (right).
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Figure 2.4: Failure to detect some spot regions due to threragly contaminated images
with artifacts in the sub-grid located in the first row andtbucolumn of AT-20392-ch1l
from the SMD dataset.

12, by showing a higher peak at 13, while théndex finds the correct number of vertical

sub-grids accurately.

2.2.2 Rotation Adjustment Accuracy

To test the effect of the Radon transform we rotate two of thages 5,10,15,20 and 25
degrees in both clockwise and counter-clockwise direstidfigure 2.8 shows the images
rotated by -20, -10, 10 and 20 degrees (left) and the restitteohdjustment after applying
the Radon transform (right). Also, Table 2.7 shows the amgupf the proposed method
on two of the rotated images. In all cases, the adjustmerntadetvorks accurately and
corrects the rotations in both directions. Moreover, asvshim Table 2.7, the accuracy of

the method remains nearly constant for all cases regaroi¢ise degree of rotation.
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Figure 2.5: Plots of the index functions for AT-20387-chip] the values of thg A and
a indices for horizontal separating lines, and (bottom) thkies of thd, A anda indices
for vertical separating lines.

2.2.3 Comparison with other methods

A conceptual comparison between the proposed method, OMii@other microarray im-
age griding methods based on their features is shown in PaBleThe methods included
in the comparison are the following: (i) Radon transform-guldding (RTSG) [12], (ii)

Bayesian simulated annealing gridding (BSAG) [3], (iiingéic-algorithm-based gridding
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(GABG) [15], (iv) hill-climbing gridding (HCG) [5], (v) makmum margin microarray grid-
ding M3G) [16], and the proposed method, OMTG. As shown in the tatsi@pposed to
other methods, OMTG does not need any number-based paraaredehence making it
much more powerful than the previous ones. One could argaeever, that the index or
thresholding criterion can be considered as a “paraméfég’have “fixed” these two on the

o indexand thebetween classriterion, and experimentally shown the efficiency of OMTG
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Figure 2.6: Plots of the index functions for the GSM16101:cftop) the values of thg
A anda indices for horizontal separating lines, and (bottom) thrigs of thd, A anda
indices for vertical separating lines.
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Figure 2.7: Plots of the index functions for the Diln4-3.284 (top) the values of thé,
A anda indices for horizontal separating lines, and (bottom) thrigs of thd, A anda
indices for vertical separating lines.

on various cDNA microarray images with different configuwas.

An experimental comparison of the proposed method with GABG HCG is shown
in Table 2.9. As opposed to the proposed method that needarampters, GABG needs
to set several parameters such as the mutationpatee crossover rate, the maximum
threshold probabilitypmax the minimum threshold probabilitp,q, the percentage of lines

with low probability to be a part of the gridmax and the refinement threshol@,. Also,
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Figure 2.8: Rotation adjustment of AT-20387-ch2. Fourat#ht rotations from -20 to 20
degrees with steps of 10 degrees (left), and the adjustegeiratier applying the Radon
transform (right).

HCG needs to set some parameters such @asdo. As shown in the table, the accuracy
of our method is much higher than GABG and HCG. Since GABG a@dHise several
parameters, to obtain good results for the SMD, GEO and Dlatdskts, all the parameters
must be set manually and separately for each dataset. lfathe parameters for one of

datasets were used for the others, unpredictable and padtsevould be obtained — the
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Table 2.7: Accuracy of detected spots for different rotaiamf AT-20395-CH1 and
GSM16391-CH2, and the corresponding incorrectly, maityimad perfectly aligned rates.
AT-20395-CH1 GSM16391-CH2
Rotation| Incorrectly | Marginally | Perfectly| Incorrectly | Marginally | Perfectly
none 0.41% 0.12% 99.47% 0.14% 0.13% 99.73%

5° 0.41% 0.12% 99.47% 0.14% 0.13% 99.73%
10 0.43% 0.12% 99.45% 0.15% 0.14% 99.71%
15° 0.41% 0.13% 99.46% 0.14% 0.13% 99.73%
200 0.42% 0.13% 99.45% 0.15% 0.14% 99.71%
25° 0.42% 0.15% 99.43% 0.14% 0.15% 99.71%
—5° 0.41% 0.12% 99.47% 0.14% 0.13% 99.73%

-1 0.41% 0.12% 99.47% 0.14% 0.13% 99.73%
-15 0.42% 0.13% 99.45% 0.14% 0.14% 99.72%
—20° 0.42% 0.14% 99.44% 0.15% 0.13% 99.72%
—25° 0.42% 0.16% 99.42% 0.14% 0.15% 99.71%

accuracy of both methods could decrease to as low as 50%imEkiss these methods fully
dependent on the parameters, which have to be set manudlfpaspecific datasets. The
proposed method, however, does not need any parameter ahdlivorks exceptionally

well in different kinds of images with different resoluti®and noisy conditions.

2.2.4 Biological Analysis

In order to assess the proposed method on its suitabilityetiopn in accordance with
the biological problem, we analyze the quantification rssahd their relationships with
the dilution experiment on the DILN dataset. To compute thkiwe intensity of each
spot, first, we us&obelmethod to detect the edge of each spot and then the regiomwith
the edge is defined as the primary region of each spot. Thel 8wibod finds edges of
the spot using the Sobel approximation to the derivativeratutns edges at those points
where the gradient of image is maximum. In the next step, afsebrphological dilation

and erosion operators are used to decrease the noise dadtsiiti the region identified



CHAPTER 2. 39

Table 2.8: Conceptual comparison of our proposed methdd etiter recently proposed
methods based on the required number and type of input pteesrand features.

Automatic
Sub-grid | Spot De-| Detection

Method Parameters Detection | tection No. of Rotation
Spots
RTSG n: Number of sub-gridg / X X vV
o ,B: Parameters for balf
BSAG ancing prior and posterior x v Vv Vv

probability rates

iU, c :Mutation and
Crossover rate, Pmax
probability of maximum
threshold, piow: probabil-
GABG ity of minimum threshold,| +/ V Vv Vv
max . percentage of ling
with low probability to
be a part of grid, Tp:
Refinement threshold

A, o: Distribution param-

HCG eters % % v X
M3G c: Cost parameter X Vi v v
OMTG None v Vv Vv vV

Table 2.9: The results of the comparison between the proposthod (OMTG) and the
GABG and HCG methods proposed in [5] and [15] respectively.
| Dataset| Method|| Incorrectly | Marginally | Perfectly|
OMTG 1.72% 0.22% 98.06%
SMD | GABG 5.37% 0.51% 94.12%
HCG 2.12% 1.23% 96.65%
OMTG 0.58% 0.16% 99.26%

GEO GABG 4.49% 0.32% 95.19%
HCG 2.55% 0.74% 96.71%
DILN OMTG 1.97% 0.08% 97.95%

GABG 4.35% 0.34% 95.31%
HCG 3.78% 0.65% 95.57%
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for each spot. Finally, the summation of all pixel interestin the spot are used as the
level of expression of the gene associated with that spat;silmmation represents the
volumeof the spot. Table 2.10 shows the volume intensity of eaaltidih step for images
A and B respectively. As shown in the table, the proposed atk#stimates the average
intensities of dilution steps very well with near linear tEgsing steps. Also, Figure 2.9
shows log-plots of the dilution steps for all 80 cases andntlean of them with a red
line. The reference line with slope -1 is also shown in bla&k.shown in this figure, in
most parts of the dilution experiment, the estimated intessof each case follow a linear
relationship. In step 4 of the dilution steps, there is aegularity in the linearity of the
red curve as shown in Table 2.10 and Figure 2.9. The reasdhifoirregularity is that, in
some sub-grids of Diln4-3.3942.01A and Diln4-3.3942.0tt®, intensities of the spots in
step 4 are smaller than those of step 5. One example of thibeaeen in the third and
last rows of the sub-grids in Figure 2.10. As shown in Figud®g), this decrease in the
intensity of the spots causes a slight nonlinearity in stepte dilution steps. In general,
we observe that the proposed method is able to capture tHmeanrelationships present
in the dilution experiments. This is observable in the légtgpof Figure 2.9, as the black
line follows the array of logs of spot volumes.

Table 2.10: Logs of volume intensities of each dilution dtpimages A and B from the
DILN dataset.

Dilution steps| Diln4-3.3942.01A| Diln4-3.3942.01B
1 22.02 21.75
2 20.63 20.78
3 19.75 19.94
4 18.12 18.05
5 17.98 18.25
6 16.98 17.03
7 16.18 16.17
8 15.07 15.46
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2.3 Conclusions

A new method for separating sub-grids and spot centers infcibiroarray images is pro-
posed. The method performs four main steps involving theoRachnsform for detecting
rotations with respect to theandy axes, the use of polynomial-time optimal multilevel
thresholding to find the correct positions of the lines safiag sub-grids and spots, a new
index for detecting the correct number of sub-grids andsspod, finally, a refinement
procedure to increase the accuracy of the detection.

The proposed method has been tested on real-life, higtdteEsomicroarray images
drawn from three sources, the SMD, GEO and DILN. The resthitsvsthat (i) the rota-
tions are effectively detected and corrected by affine faansations, (ii) the sub-grids are
accurately detected in all cases, even in abnormal condisach as noisy areas present in
the images, (iii) the spots in each sub-grid are accuratetgatied using the same method,
(iv) using the refinement procedure increases the accurfatye enethod, and (v) because
of using an algorithm free of parameters, this method carskd tor different microarray
images in various situations, and also for images with vergpot sizes and configurations

effectively. The results have also been biologically vatiet! on dilution experiments.

2.4 Methods

A cDNA microarray image typically contains a number of sulzlg, and each sub-grid
contains a number of spots arranged in rows and columns. ihéesdo perform a two-
stage process in such a way that the sub-grid locations aredfm the first stage, and
then spots locations within a sub-grid can be found in thesgéstage. Consider an image

(matrix) A= {& j},i=1,...,nandj =1,...,m wherea; € Z*, andA is a sub-grid of a
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Figure 2.9: The logs of spot volumes that correspond to thioin steps in Diln4-
3.3942.01A (top) and Diln4-3.3942.01B (bottom). The reetd show the average of logs
of spot volumes in different dilution steps. The black limgresponds to the reference line

with slope equal to -1.
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(c)
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(b) (a)

Figure 2.10: Detected sub-grids and the correspondingdwatal and vertical histogram.
(a) detected sub-grids in Diln4-3.3942.01A, (b) vertiaatdgram (c) horizontal histogram.



CHAPTER 2. 44

cDNA microarray image. The method is first applied to a mio@aimage that contains a
template of rows and columns of sub-grids (usuallyjs in the range [0..65,535] in a TIFF
image). The aim of the first stage, sub-gridding, is to obwaictors,h = [hy,...hy_41]' and

V = [vi,...Vg-1]', wherey; € [1,m], hj € [1,n] and p andq are the number of horizontal and
vertical sub-grids respectively. These horizontal andicarvectors are used to separate
the sub-grids.

Ones the sub-grids are obtained, the gridding process, Indiméing the locations of
the spots in a sub-grid, can be defined analogously. Thenguia area between two adja-
cent horizontal vectors; andhj..1, and two adjacent vertical vectorsandyv;; delimit the
area corresponding to a spot (spot region). The aim of grgld to find the correspond-
ing spot locations given by the horizontal and vertical e€fd vectors. Post-processing or
refinement allows us to find a spot region for each spot, wii@nclosed by four lines.

To perform the gridding procedure our method may not neechtavkthe number of
sub-grids or spots. Although in many cases, based on theiafdhe printer pins, the
number of sub-grids or spots are known, due to misalignmeefermations, artifacts or
noise during producing the microarray images, these nusnibely not be accurate or un-
available. On the other hand, the optimal multi-level thrdding method needs the number
of thresholds (sub-grids or spots) to be specified. Thus,sgen iterative approach to find
the gridding for every possible number of thresholds, aed #valuate it with the proposed
a index to find the best number of thresholds.

The sub-grids in a microarray image are detected by appthi@d@radon transform as a
pre-processing phase and then using optimal multilevebtiolding in the next stage. By
combining the optimal multilevel thresholding method ahdd index (2.12) , the correct

number of thresholds (sub-grids) can be found. Figure 2eflcts the process of finding
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Figure 2.11: Schematic representation of the process fdmfinsub-grids (spots) in a
cDNA microarray image.

the sub-grids in a microarray image and the spots in a sub-Jie input to the Radon
transform is a cDNA microarray image and the output of thel@lpoocess is the location
(and patrtitioning) of the sub-grids. Analogously, the limas of the spots in each sub-grid
are found by using optimal multilevel thresholding comlivéth the proposed: index
to find the best number of rows and columns of spots. The imguhis process is a sub-
grid (already extracted from the sub-gridding step) andtltput is the partitioning of the

sub-grids into spots (spot regions).
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2.4.1 Rotation Adjustment

Rotations of the images are seen in two different directiasith respect to th& andy axes.
To find two independent angles of rotation for an affine tramaftion, the Radon trans-
form is applied. Given an imagk = {ayy}, the Radon transform performs the following

transformation:

R(p,t) = / o:o axt+pxdX, (2.1)
wherep is the slope antits intercept. The rotation angle of the image with respect t
the slopep is given byg = arctanp. For the sake of the notatioR(@,t) is used to denote
the Radon transform of imagk® Each rotation angle gives a different one-dimensional
function, and the aim is to obtain the angle that gives theddeggmment with the lines. This
will occur when the lines arparallel to they-axis. The best alignment will occur at the

angle@min that minimizes thentropyas follows [1]:

H(p) = — i R(q@t)logR (¢,t)dt. (2.2)

t=—o0

R(@t) is normalized intdR (¢,t), such thats; R (¢,t) = 1. The positions of the pixels in

the new imagejuvj, are obtained as follows:

COSPmin,  SINGmin
[U V] = [X )4 ) ’ ) (23)
—SiNQmin,  COSPrmin,

where@min, and@min, are the best angles of rotation found by the Radon transform.
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2.4.2 Optimal Multilevel Thresholding

Image thresholding is one of the most widely-used techradbat has many applications
in image processing, including segmentation, classiosaind object recognition. Given a
sub-grid, we compute the row or column sums of pixel intéesjtobtaining a discrete one
dimensional function, where the domain is given by the pams#t of the rows/columns of
pixels. In this work, that function is considered as a histogor projection in which each
bin represents one column (or row respectively), and theaioeolumn sum of intensities
corresponds to the frequency of that bin. We use the ternsidpiam” or “sum” indis-
tinctly. The frequencies are then normalized in order to deswered as probabilities of
the corresponding bins. Figure 2.12 depicts a typical cON&roarray image (AT-20387-
ch2) that contains 1R 4 sub-grids, along with the corresponding row or column sums
Also, Figure 2.13 depicts one of its sub-grids along with ¢beresponding row and col-
umn sums. Each row or column sum is then processed (see bel@b}ain the optimal
thresholding that will determine the locations of the suiolg(spots).

Although various parametric and non-parametric threshglohethods and criteria have
been proposed, the three most important streams are Otstl®d) which aims to maxi-
mize the separability of the classes measured by means stitheof between-class vari-
ances [19], the one that uses information theoretic measui@der to maximize the sep-
arability of the classes [20], and the minimum error craarj21]. In this work, we use the
between-class variance criterion [19].

Consider a histograril, an ordered sef1,2,...,n—1,n}, where theith value cor-
responds to théth bin and has a probabilityy;. Given an imageA = {a;j} , as dis-
cussed earlietd can be obtained by means of the horizontal (vertical) sunobews:

pi =YL 8 (pj = YL, j). We also consider a threshold detdefined as an ordered
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Figure 2.12: Sub-grid detection in a microarray image fromm$MD dataset. (a) detected
sub-grids in AT-20387-ch2 from the SMD dataset, (b) hortabhistogram and detected

valleys corresponding to horizontal lines, (c) verticatbgram and detected valleys corre-
sponding to vertical lines.
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(b)

Figure 2.13: Spot detection in a sub-grid from AT-20387-cf#) detected spots in one of
the sub-grids in AT-20387-ch2, (b) horizontal histogrard datected valleys corresponding
to horizontal lines, (c) vertical histogram and detecteleya corresponding to vertical
lines.

setT = {to,t1,...,tk,tkr1}, Where O=tg <t < ... <ty < tyy1 = nandt; € {0} UH.
The problem of multilevel thresholding consists of findingheeshold setT*, in such a
way that a functionf : HX x [0,1]" — R* is maximized/minimized. Using this threshold
set,H is divided intok+ 1 classes:{; = {1,2,...,t1}, (o = {t1 + Lit1 + 2,...,t2}, ..

k={tko1+ Ltk 1+2,...,t%}, k1 = {tk + Ltk + 2,...,n}. The between class variance
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criterion is given by:

k+1 )
=1

ti 1 <tj .
wherew; = Zijzt,»,ﬁl Pis M =g ZiJ:tj,Hl'pi-

We use the dynamic programming algorithm @ptimal multilevel thresholding pro-
posed in [22], which is an extension for irregularly samgietograms. To implement the
between-class variance criteridHgc(T) is expressed as follow&#pc(T) = z‘fﬁw,— “12 =
Z‘fﬂ Wy +1t;, whereWr 11y, = j ujz. We consider the temporary variablasand b

,which are computed as follows:

tj

a < Pt Y P, and (2.5)
i=tj_1+2
t
b « (tj*1+1)ptj—1+1+ Z ipi- (2-6)
i=tj_1+2

Since from (2.5) and (2.6@ andb are known, theny, ,12y;, for the next step, can be

re-computed as follows i®(1) time:

a  a-py,, (2.7)
b < b—(tj-1+1)p;_,+1, and (2.8)
b2
thj,1+27tj — g (29)

Full details of the algorithm, whose worst-case time coxipés O(kr?), can be found

in [22].
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Automatic Detection of the Number of Sub-grids and Spots

Finding the correct number of sub-grids and spots in eachgsidbis one of the most
challenging issues in sub-grid and spot detection. Thigesis crucial in order to fully
automate the whole process. Multi-level thresholding tisesiumber of sub-grids (spots)
as a single parameter. Thus, we need to determine the catmedier of sub-grids (spots)
prior to using multi-level thresholding methods. For thig resort on validity indices
used for clustering. By analyzing the traditional indices ¢lustering validity and their
suitability to be combined with our measure, we propose a inelx of validity for this
specific problem. From the different indices of validity fdustering (cf. [23, 24]), we
consider thd index as the basis of the proposed index. Theldex is defined as follows:

2
I(K) = <% X :—i X DK) , (2.10)

. K . .

whereEx ==K ;5% py|lk—1z||, Dk = max||z —z;||, nis the total number of points in the
ij=1

dataset (bins in the histogram), ands the center of th&th cluster. We also consider the

average frequency value of the thresholds in a histogranthws computed as follows:

1 K
AK) = 3 P, @11)

wheretj is theith threshold found by optimal multilevel thresholding gu(d) is the corre-
sponding probability value in the histogram.
The proposed indexy(x), is the result of a combination of thendex, (2.10)and\(K),

(2.11), as follows:

a(K) = VL) (& xDx)’

AKK) = VK p(t) . (2.12)
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For maximizingl (K) and minimizingA(K), the value ofa(K) must be maximized.

Thus, the best number of threshokisbased on the index is given by:

(B <2
K* = argmaxa (K) = argmax

A (2.13)
1<K <3 1<k<s VKZZp(t)

To find the best number of thresholds}, we perform an exhaustive search on all
positive values oK from 1 tod and find the value ok that maximizes the index. In our

experiment we s to /n (cf. [25]).

The Refinement Procedure

In some cases, the detected grid or sub-grid may not sepspate completely or may
separate them marginally. In these cases, a refinementdun@cean be used to boost the
performance of method. For this, each horizontal or vertine is replaced with a new
line. Consider two horizontal linels; andhj,; where j € [1,K*] and a vertical liney;
wherei € [1,K*], andy; is bounded betwee; andhj, 1. GivenA = {g;j}, linev; can be
moved to left and right in such way thﬁ‘ﬂﬁjaik is minimized. In other words, the vertical
line v; can be replaced with a new vertical ling, in such a way that:

hj+1

r= argmin lehja,-k. (2.14)

Vi—1<k<viqg

Analogously, this procedure can be applied to each hordine. Figure 2.14 shows
an example in which a vertical line is replaced by a new onénduhe refinement proce-
dure. As shown in the figure, the vertical limds originally located in the wrong place and

does not separate two adjacent spots correctly. By movitogéft and right, the new line
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v, is found in such way that those adjacent spots are separatestity.

Figure 2.15 shows the detected spots in one of the sub-gr2l3387-ch2 of SMD be-
fore and after using the refinement procedure. It is cleartkigae are some misalignments
in separating the adjacent spots in the top part of the siabbgfore using the refinement

procedure. After the refinement, all the spots are sepapagsisely as shown in the figure.
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Figure 2.14: The refinement procedure. During the refinerperdedure each line can be
moved to left or right (for vertical lines) and up or down (fasrizontal lines) to find the best
location separating the spots. In this images the sub-line before using the refinement
procedure and is the sub-line after adjusting it during refinement procedu
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Figure 2.15: Effect of the refinement procedure to increbseatcuracy of the proposed
method. Detected spots in one of the sub-grids of AT-20387foom the SMD dataset
before using the refinement procedure (top), and detectet$ &p the same part of the
sub-grid after using the refinement procedure (bottom).
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Chapter 3

Applications of Multilevel Thresholding

Algorithms to Transcriptomics Data

3.1 Introduction

Among other components, the genome contains a set of gemasa@ for an organism to
function and evolve. However, the genome is only a sourcafofiination and in order to
function, the genes express themselves into proteins.r&hedription of genes to produce
RNA is the first stage of gene expression. The transcript@ndye seen as the complete set
of RNA transcripts produced by the genome. Unlike the gendhgetranscriptome is very
dynamic. Despite having the same genome regardless ofpleofycell or environmental
conditions, the transcriptome varies considerably irediffg circumstances because of the
different ways the genes may express.

Transcriptomics, the field that studies the role of the twgsieme, provides a rich source
of data suitable for pattern discovery and analysis. Thatifyeand size of these data may

vary based on the model and underlying methods used forsisaly gene expression mi-
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croarrays, the raw data are represented in terms of imagesally in TIFF format which
are approximately 20-30MB per array. These TIFF files aregssed and transformed into
guantified data used for posterior analysis. In contragh tiroughput sequencing meth-
ods (e.g. ChiP-seq and RNA-seq) generate more than 1TBafwhtile the sequence files
(approximately 20-30GB) are typically used as a startingpior analysis [1]. Clearly,

these sequence files are an order of magnitude larger thea fitwom arrays.

3.1.1 DNA Microarray Image Gridding

Various technologies have been developed to measure thectigtome, including hy-
bridization or sequence-based approaches. Hybridiziidsed approaches typically in-
volve processing fluorescently labeled DNA microarrayscrgiarrays are one of the most
important technologies used in molecular biology to masgiexplore the abilities of the
genes to express themselves into proteins and other matemisichines responsible for
different functions in an organism. These expressions am@tored in cells and organisms
under specific conditions, and are present in many appiesin medical diagnosis, phar-
macology, disease treatment, among others. If we consiti# BDicroarrays, scanning
the slides at a very high resolution produces images condpafssub-grids of spots. Im-
age processing and analysis are two important aspects abamniays, and involve various
steps. The first task is gridding, which is quite importaneasrs are propagated to sub-
sequent steps. Roughly speaking, gridding consists ofrdetag the spot locations in a
microarray image (typically, in a sub-grid). The griddingpess requires the knowledge of
the sub-girds in advance in order to proceed, which is natsearily available in advance.
Many approaches have been proposed for microarray imagddiggi and spot detec-

tion, being the most widely known the following. The Markaandom field (MRF) is
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one of them, which applies specific constraints and heargstieria [2]. Other gridding
methods used for gridding include mathematical morphol@jyBayesian model-based
algorithms [4, 5], the hill-climbing approach [6], a Gawssmixture model approach [7],
Radon-transform-based method [8], a genetic algorithnsdéparating sub-grids and spots
[9], and the recently introduced maximum margin method.[ROjhethod that we have pro-
posed and has been successfully used in microarray grigkithg multilevel thresholding

algorithm [11], which is discussed in more detail later ia gaper.

3.1.2 ChlIP-Seq and RNA-Seq Peak Finding

Hybridization-based approaches are high throughput datively inexpensive, except for
high-resolution tiling arrays that interrogate large gaes. However, these methods have
several limitations, which include reliance upon existkmgpwledge about the genome,
high background levels owing to cross-hybridization, aroisted dynamic range of de-
tection owing to both background and saturation of signhl42]. Moreover, comparing
expression levels across different experiments is oftiicdt and can require complicated
normalization methods.

Recently, the development of novel high-throughput DNAusgring methods has pro-
vided a new method for both mapping and quantifying trapsomes. These methods,
termed ChIP-seq (ChIP sequencing) and RNA-seq (RNA seiugnthave clear advan-
tages over existing approaches and are emerging in such ghatgukaryotic transcrip-
tomes are to be analyzed in a high-throughput and more efficianner [12].

Chromatin immunoprecipitation followed by high-througitgequencing (ChlP-seq)
is a technique that provides quantitative, genome-widepingpof target protein binding

events [13, 14]. In ChIP-seq, a protein is first cross-lintke®NA and the fragments sub-
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sequently sheared. Following a size selection step thathes for fragments of spec-
ified lengths, the fragments ends are sequenced, and théngseads are aligned to
the genome. Detecting protein binding sites from massigeiesgce-based datasets with
millions of short reads represents a truly bioinformatibaltenge that has required con-
siderable computational innovation in spite of the avalifgbof programs for ChlP-chip
analysis [7,15-17].

With the increasing popularity of ChlP-seq technology, mded for peak finding meth-
ods has emerged and it causes developing new algorithnt®wgh due to mapping chal-
lenges and biases in various aspects of existing protadelstifying peaks is not a straight-
forward task.

Different approaches have been proposed for detectingspeased ChlP-seq/RNA-
seq mapped reads so far. Zhang et al. presents a Model-baséysis of ChlP-seq data
(MACS), which analyzes data generated by short read seqtefi8]. It models the shift
size of ChIP-seq tags, and uses it to improve the spatidltgso of predicted binding sites.
A two-pass strategy called PeakSeq has been presented.iT[ii9 strategy compensates
for signal caused by open chromatin, as revealed by thesieiwf the controls. The first
pass identifies putative binding sites and compensatesefoorgic variation in mapping
the sequences. The second pass filters out sites not sigtlifieariched compared to the
normalized control, computing precise enrichments angifstgnce. A statistical approach
for calling peaks has been recently proposed in [20], whicbdsed on evaluating the
significance of a robust statistical test that measuresdieaeof pile-up reads. Specifically,
the shapes of putative peaks are defined and evaluatedecediffate between random and
non-random fragment placements on the genome. Anotherithigofor identification of

binding sites is site identification from paired-end seaureg (SIPeS) [21], which can be
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used for identification of binding sites from short readsegated from paired-end solexa
ChiIP-seq technology.

In this paper, we review the application of optimal multééthresholding (OMT) to
gridding and peak finding problems in transcriptomics. Meeg, a conceptual and practi-

cal comparison between OMT and other state-of-the-artogmbres is also presented.

3.2 Optimal Multilevel Thresholding

Multilevel thresholding is one of the most widely-used teicjues in different aspects of
signal and image processing, including segmentationsifieation and object discrimina-
tion. Given a histogram with frequencies or probabilitiesdach bin, the aim of multilevel
thresholding is to divide the histogram into a number of go(or classes) of contiguous
bins in such a way that a criterion is optimized. In microgiraage gridding, we compute
vertical (or horizontal) running sums of pixel intensiti@btaining histograms in which
each bin represents one column (or row respectively), amaduhning sum of intensities
corresponds to the frequency of that bin. The frequencieshen normalized in order to
be considered as probabilities. Each histogram is therepsael (see below) to obtain the
optimal thresholding that will determine the locationsiué separating lines.

Consider a histograri, an ordered sefl,2,...,n— 1 n}, where thdth value corre-
sponds to théh bin and has a probabilitg;. Given animagei = {a;j } , H can be obtained
by means of the horizontal (vertical) running sum as follopis= szlaj (pj =S aj).
We also consider a threshold sef defined as an ordered s&t= {to,t1,...,t, i1},
where O=tp <t; < ... <ty <tg;7 =nandt; € {0} UH. The problem of multilevel
thresholding consists of finding a threshold sSEt, in such a way that a functioff :

HXx[0,1]" — R is maximized/minimized. Using this threshold détis divided intok + 1
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classesfi ={1,2,...,t1}, o ={t1+ L t1+2,.. .. to}, ..., k= {tk 1+ Ltk 1+ 2,..., 1},
k1= {tk+1,tk+2,...,n}. The mostimportant criteria for multilevel thresholdirrg the
following [22]:

Between class variance:

k+1
Wee(T) = Y wil§ (3.1)
=1
wherewj =3 1P K =g Sily P
Entropy-based:
k+1
Wu(T)= S Hj (3.2)
=1
tj i i
whereH; = — 5", ;& log g
Minimum error:
k+1
WnMe(T) =1+2 ) wj(logo;j —logw;) (3.3)
=1
tj pi(i—H))?
whereo? = Sily 1w

A dynamic programming algorithm fasptimal multilevel thresholding was proposed
in a previous work [22], which is an extension for irreguwahmpled histograms. For this,

the criterion has to be decomposed as a sum of terms as follows

m
LP(TOm) = LP({tO,tl, ce ,tm}) é z l‘IJtJ71+17tJ N (3.4)
j=1

where 1< m < k+1 and the functionp, ,, wherel <r, is a real, positive function of
PPty Pry Wit HZ X [0, 71 5 R¥ U {0}. If m=0, thenW({to}) = W1, =
Yo,0 = 0. The thresholding algorithm can be found in [22]. In theoailhm, a tableC is
filled in, whereC(t;j, j) contains the optimal solution fdg j = to, ty, . .., tj, ¥*(To,j), Which

is found from mir{t;} <t; <max{tj}. Another tableD(t;j, j), contains the value df_, for



CHAPTER 3. 65

which W*(To ;) is optimal. The algorithm runs i®(kr?), and has been further improved to

achieve linear complexity, i.@©(kn), by following the approach of [23].

3.2.1 Using Multi-level Thresholding for Gridding DNA Micr oarray

Images

A DNA microarray image contains spots arranged into sudsgmhe image contains var-
ious sub-grids as well, which are found in the first stage. €bthe sub-grids are found,
the spots centers are to be identified. A microarray imagebeaconsidered as a matrix
A={a },i=1,...,nandj=1,...,m whereaj € Z*, andAis a sub-grid of a DNA mi-
croarray image. The aim of sub-gridding is to obtain vectoesnelyh = [hy,...hp_1]' and
V= |vg, ...vq_l]‘, that separate the sub-grids. Finding the spot locatiotisng analogously
— more details of this, as well as those of the whole proces®edound in [11]. The aim
of gridding is to find the corresponding spot locations gitagrthe horizontal and vertical
adjacent vectors. Post-processing or refinement allows fiad a spot region for each
spot, which is enclosed by four lines.

When producing the microarrays, based on the layout of timgpipins, the number of
sub-grids or spots are known. But due to misalignments,radeftions, artifacts or noise
during producing the microarray images, these numbers mapaavailable. Thus, it is
important that the gridding algorithm allows some flexiilin finding these parameters,
as well as avoiding the use of other user-defined param@tbisis what the thresholding
methods endeavor to do, by automatically finding the bestaumof thresholds (sub-grids

or spots) — more details in the next section.
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3.2.2 Using Multi-level Thresholding for Analyzing ChIP-Seg/RNA-

Seq Data

In ChiP-seq and RNA-seq analysis, a protein is first crageeti to DNA and the fragments
subsequently pruned. Then, the fragments ends are segl @mckthe resulting reads are
aligned to the genome. The result of read alignments pradadestogram in such a way
that thex axis represents the genome coordinate ang thes the frequency of the aligned
reads in each genome coordinate. The aim is to find the signiffgeaks corresponding to
enriched regions. For this reason, a non-overlapping ngowindow is used. By starting
from the beginning, a dynamic window of minimum stze being applied to the histogram
and each window that could be analyzed separately. The sthe avindow could be dif-
ferent for each window to prevent truncating a peak befareritd. Thus, for each window
a minimum number of bins is used and, by starting from the end of previous windbev,
size of window is increased until a zero value in the histogimreached.

The aim is to obtain vectoiS,, = [c\}\,i,...c{,‘vi]t, wherew, is theit" window andC,, is
the vector that containsthreshold coordinates which correspond toitheindow. Figure
3.1 depicts the process of finding the peaks correspondirtigetoegions of interest for
the specified protein. The input to the algorithm includesrgads and the output of the
whole process is the location of the detected significankgbg using optimal multilevel

thresholding combined with our recently proposethdex.

3.3 Automatic Detection of the Number of Clusters

Finding the correct number of clusters (number of sub-goidspots or the number of re-

gions in each window in ChlP-seg/RNA-seq analysis) is orta@Mmost challenging issues.
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Figure 3.1: Schematic representation of the process fonfinglgnificant peaks.

This stage is crucial in order to fully automate the wholecpss. For this, we need to de-
termine the correct number clusters or thresholds prioppdy@ng multi-level thresholding
methods. This is found by applying an index of validity (ded from clustering tech-
nigues) and testing over all possible number of clusterthfesholds) from 2 tq/n, where
nis the number of bins in the histogram. We have recently egahen (x) index, which

is the result of a combination of a simple index and the watin| index [24] as follows:

K (B0
a(K) = JRA<K) = R p(t) (3.5)
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For maximizingl (K) and minimizingA(K), the value ofa(K) must be maximized.

Thus, the best number of threshokisbased on the index is given by:

(B <2
K* = argmaxa (K) = argmax

ATV (3.6)
1<K <3 1<k<s VKZIEp(ti)

3.4 Comparison of Transcriptomics Data Analysis Algo-

rithms

3.4.1 DNA Microarray Image Gridding Algorithms Comparison

A conceptual comparison of microarray image griding meshioased on their features is
shown in Table 3.1. The methods included in the comparisethar following: (i) Radon
transform sub-gridding (RTSG) [8], (ii) Bayesian simulhtsmnealing gridding (BSAG) [4],
(i) genetic-algorithm-based gridding (GABG) [9], (iv)lkclimbing gridding (HCG) [6],
(v) maximum margin microarray gridding®G) [10], and the optimal multilevel thresh-
olding algorithm for gridding (OMT) [11]. As shown in the tigh OMT does not need any
number-based parameter, and hence making it much more fpbte@n the other methods.
Although the index or thresholding criterion can be con®deas a “parameter”, this can
be fixed by using the between class criterion. In a previougwee have “fixed” the index
of validity to thea indexand thebetween clasas the thresholding criterion [11]. As can
also be observed in the table, most algorithms and methgdgegthe use of user-defined
and subjectively fixed parameters. One example is the GAB@chwneeds to adjust the
mutation and crossover rates, probability of maximum andimmim thresholds, among

others. It is critical then to adjust these parameters feciic data, and variations may
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occur across images of different characteristics.

3.4.2 Comparison of Algorithms for ChlP-Seq and RNA-Seq Andysis

A conceptual comparison between thresholding algorithnasadher ChIP and RNA-Seq
methods based on their features is shown in Table 3.2. Thieosi®included in the com-
parison are the following: (i) GLobal Identifier of Targetdrens (GLITR) [25], (ii) Model-
based Analysis of ChIP-seq (MACS) [18], (iil) PeakSeq [X8]) quantitative enrichment
of sequence tags (Quest) [26], (v) SICER [27], (vi) Site kferation from Short Sequence
Reads (SiSSRs) [28], (vii) Tree shape Peak IdentificatiorCluP-seq (T-PIC) [20], and
(viii) the optimal multilevel thresholding algorithm, OMTAs shown in the table, all al-
gorithms require some parameters to be set by the user bastt garticular data to
be processed, includingrvalues, FDR, number os nearest neighbors, peak heiglyval
depth, window length, gap size, among others. OMT is therdhguo that requires almost
no parameter at all. Only the average fragment length isetbdalit this parameter can be
easily estimated from the underlying data. In practicenduwgh computational resources
are available, the fragment length would not be needede shre OMT algorithm could be

run directly on the whole histogram.

3.5 Experimental Analysis

This section is necessarily brief and reviews some expataheesults as presented in
[11]. For the experiments, two different kinds of DNA micrcay images have been used,
which were obtained from the Stanford Microarray Datab&M) the Gene Expression

Omnibus (GEO). The images have different resolutions, remolb sub-grids and spots.
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Table 3.1: Conceptual comparison of recently proposed Dkaarray gridding methods.

Automatic
Sub-grid | Spot Detection .
Method Parameters Detection | Detection | No.  of Rotation
Spots
RTSG n: Number of sub-grids / X X vV
o ,B: Parameters for
BSAG balancing prior ang " y y J

posterior  probability
rates
M, c :Mutation and
Crossover ratespPmax
probability of maxi-
mum threshold, piow:
probability of mini-
GABG mum threshold, fmax % % % %
percentage of line
with low probability to
be a part of grid,Ty:
Refinement threshold
A , 0. Distribution pa-

HCG rameters % v v %
M3G c: Cost parameter X v Vi v
OMT Noné' N v v V

1 The only parameters that would be needed in the proposeduhat the “thresholding criterion” and the
“index of validity”. These two “parameters” are methodaka, not number-based, and hence making OMT
less dependent on parameters.
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Table 3.2: Conceptual comparison of recently proposed odstfor ChiP-seq and RNA-
seq data.

| Method | Peak selection criteria| Peak ranking | Parameters |
n: Classification by Peak height Target FDR, numbef
GLITR | height and relative en+and fold | nearest neighbors faqr
richment enrichment clustering
MACS | Local region Poissom p-value threshold, _tag
p value length, m-fold for shift
v1.3.5 value :
estimate
PeakSeq Local region binomial g value Target FDR
p value
KDE bandwidth, peaks
Quest height threshold, back- value height, sub-peak valley
v2.3 ground ratio d depth, ratio to back;
ground
p value from random Window length, gap
SICER | background model, value size, FDR (with con-
v1.02 enrichment relative tg g trol) or E-Value (no
control control)
. N* — N~ sign change _
SiISSRS | \ 14 |, n— . FDR, N* + N~ thresh-
vid N _—|—N threshold in| p value old
region
Average fragment
T-PIC Local height threshold | p value length, §|gnlf|cancep
value, minimum length
of interval
number of ChIP reads Average fragment
OMT minus control reads in volume g g
: length
window

We have used the between-class variance as the threshotdarig, since it is the one that
delivers the best results. All the sub-grids in each imagelatected with a 100% accuracy,
and also spot locations in each sub-grid can be detectegkefficwith an average accuracy

of 96.2% for SMD dataset and 96% for GEO dataset. Figure 2@ slthe detected sub-
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Figure 3.2: Detected sub-grids in AT-20387-ch2 microamagge (left) and detected spots
in one of sub-grids (right).
grids from the AT-20387-ch2 image (left) and the detectemtsm one of sub-grids (right).
As shown in the figure, the proposed method precisely detfeetsub-grids location at first,
and in the next stage, each sub-grid is divided precisetytimt corresponding spots with
the same method.

In addition to this, some experimental, preliminary restitir testing performance of
the OMT algorithm on ChIP/RNA-seq data are shown here. We hesed the FoxAl

dataset [18], which contains experiment and control sasnpl@4 chromosomes. The ex-
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periment and control histogram were generated separayedxtending each mapped po-
sition (read) into an appropriately oriented fragment, tirah joining the fragments based
on their genome coordinates. The final histogram was gestest subtracting the control
from the experiment histogram. To find significant peaks, sexua non-overlapping win-
dow with the initial size of 3000bp. To avoid truncating psa@k boundaries, each window
is extended until the value of the histogram at the end of timelew becomes zero. Fig-
ure 3.3 shows three detected regions for chromosomes 9 aaddltheir corresponding
base pair coordinates. It clear from the pictures that tlkgeontain a very high number
of reads, and then these regions are quite likely to reptdseding sites, open reading
frames or other bio-markers. A biological assessment cktlo-markers can corroborate

this.

3.6 Discussion and Conclusion

Transcriptomics provide a rich source of data suitable &ttgun analysis. We have shown
how multilevel thresholding algorithms can be applied tee#itient analysis of transcrip-
tomics and genomics data by finding sub-grids and spots inoaniay images, as well as
significant peaks in high-throughput next generation secing data. OMT can be applied
to a wide range of data from different sources and with déifiéicharacteristics, and allows
data analysis such as sub-grid and spot detection in DNAoaicay image gridding and
also for detecting significant regions on ChIP and RNA-sdgq.daMT has been shown to
be sound and deal with noise in experiments and it is ableg¢omundifferent approaches
with a little change — this is one the most important featafehis algorithm.

Thresholding algorithms, though shown to be quite usefutrfanscriptomics and ge-

nomics data analysis, are still emerging tools in thesesa@ad open the possibility for
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Chr 17 >>> 56788464 : 56789445

Rs2888E

Chr 17 >>> 70967039 : 70967990

Chr 9 >>> 81294162 : 81294903

Figure 3.3: Three detected regions from FoxA1l data for clasmmes 9 and 17. Theaxis
corresponds to the genome position in bp and/tleis corresponds to the number of reads.
further advancement. One of the problems that deservetiatigs the use of other thresh-
olding criteria, including minimum error, entropy-basedlathers. For these two criteria
the algorithm still runs in quadratic arlogarithmic complexity, and which make the whole
process sluggish. Processing a whole genome or even a cboomedor finding peaks in
ChIP or RNA-seq is still a challenge, since it involves higaoms with several million bins.
This makes it virtually impossible to process a histograonat, and so it has to be divided
into several fragments. Processing the whole histogramscatis one of the open and chal-

lenging problems that deserve more investigation. Nexeggion sequence data analysis
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is an emerging and promising area for pattern discovery aatysis, which deserve the

attention of the research community in the field.
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Chapter 4

A New Algorithm for Finding Enriched
Regions in ChIP-Seq Data

4.1 Introduction

Chromatin immunoprecipitation followed by high-througitgequencing (ChlP-Seq) is a
technique that provides quantitative and genome-wide imgpgf target protein binding
events [1, 2]. In ChIP-Seq, a protein is first cross-linkedtA and the fragments sub-
sequently sheared. Following a size selection step thathas for fragments of speci-
fied lengths, the fragments ends are sequenced, and thengsehds are aligned to the
reference genome. Detecting protein binding sites fromsimasequence-based datasets
with millions of short reads represents a truly bioinforioschallenge that requires con-
siderable computational resources, in spite of the avatiabf programs for ChlP-chip
analysis [3—6].

With the increasing popularity of ChlP-Seq technology, deenand for peak finding

methods has increased the need to develop new algorithnthoulih due to mapping

80
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challenges and biases in various aspects of existing mlistoicientifying peaks is not a
straightforward task.

Different approaches have been proposed for detectingspaalChlP-Seq/RNA-Seq
mapped reads. Zhang et al. presentedaglel-based analysis of ChlIP-Seq d@@ACS),
which analyzes data generated by short read sequenceltsifijdels the length of the se-
guenced ChIP fragments and uses it to improve the spat@utes of predicted binding
sites. A two-pass strategy call®éakSedpas been presented in [8]. This strategy compen-
sates for signals caused by open chromatin, as revealee byclhsion of the controls. The
first pass identifies putative binding sites and compengategenomic variation in map-
ping the sequences. The second pass filters out sites ndicsigtly enriched compared to
the normalized control, computing precise enrichmentssaguificance.Tree shape Peak
Identification for ChIP-Se(T-PIC) is a statistical approach for calling peaks thateen
recently proposed in [9]. This approach is based on evalgalie significance of a robust
statistical test that measures the extent of pile-up re@plscifically, the shapes of putative
peaks are defined and evaluated to differentiate betwedomaand non-random fragment
placements on the genome. Another algorithm for identiboadf binding sites isite iden-
tification from paired-end sequencii§lPeS) [10], which can be used for identification of
binding sites from short reads generated from paired-éachiha ChlP-Seq technology.

One of the problems of the existing methods is that the lonatof the detected peaks
could be non-optimal. Moreover, for detecting these pelikaethods use a set of param-
eters that may cause variations of the results for diffedatdsets. In the proposed method,
both of these issues have been addressed by proposing a akvinuer algorithm based
on optimal multi-level thresholdingoupled with a model to find the best number of peaks

based on clustering techniques for pattern recognitioe.r&€lults of our experiments show
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that our method can achieve a higher degree of accuracy tiearopsly proposed peak

finders while providing flexibility when applying it to diffent datasets.

4.2 The Peak Detection Method

4.2.1 Overview of the Method

In ChIP-Seq, a protein is first cross-linked to DNA and thginants subsequently pruned.
Then, the fragments ends are sequenced, and the resulnhgaee aligned to the genome.
The result of reading the alignments produces a histogramdh a way that the-axis rep-
resents the genome coordinates (i.e., each bin correspmadsngle base in the genome),
and they-axis represents the frequency of the aligned reads in eacbnge coordinate.
The aim is to find significant peaks corresponding to enrialegibns. Each peak can be
seen as homogeneous group (cluster) which is well sepafiatedthe others by means
of “valleys”. In that sense, the problem can be formulatedras-dimensional clustering
Figure 4.1 depicts the process of finding the peaks correspgio the regions of interest

for the specified protein. Each module is explained in detatie next few sections.

4.2.2 Creating Histogram

The first step of the algorithm consists of converting theutnED file containing the

position and direction of each read to a histogram. Each seadld be extended to a
fragment length. The fragment length is the only parametéretinput by the user, even
though the fragment length can be easily estimated from ldenlying data. In practice,
if enough computational resources are available, the fesyhength would not be needed,

since the OMT algorithm could be run directly on a whole chosome.
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Input reads

Extend size of

reads to fragment <

I

Create histogram
based on fragments
for each chromosome

'

Divide each
histogram into a set of
non-overlapping windows

Use OMT to find
significant peaks
in each window

Use the O index to find the :
correct number of significant !
peaks in each window L

Shrink peaks j

Use two sample Cramer-von
Mises non parametric hypothesis
test to select relevant peaks

Rank peaks ﬁ

Relevant peaks

Figure 4.1: Schematic representation of the process fomfinsignificant peaks by using
OMT.



CHAPTER 4. 84

After extending each read to a fragment based on the direofi@ach read (forward
or backward), each of them is aligned to the reference germased on its coordinates.
Afterwards, for each chromosome, separate histogramsxfmereanent and control data
are created for further processing. However, when dealiitly & full chromosome, the
number of bins is sufficiently large that it is rather diffictd process it all at once; this is
also due to the fact that we need to find the optimal numberalsd-or this reason, a non-
overlapping sliding window is used. By starting from the in@ing of the chromosome, a
sliding window of minimum size is applied to the histogram and each window is analyzed
separately. The sizes of the windows are not necessaril égprevent truncating a peak
before its end. Thus, for each window, a minimum numbenmhs is used and, by starting
from the end of the previous window, the size of the window@eased until a zero value
in the histogram is reached. We consider a minimur-6f3,000 in order to ensure that a
window covers at least one peak of typical size.

The aim is to obtain vectofS,, = [c\}\,i ..o ', wherew; is theit" window andC,, is the

vector that containg; thresholds which correspond to thewindow.

4.2.3 Using OMT for Analyzing ChiP-Seq Data

Multi-level thresholding is one of the most widely-usedhteigjues in different problems of
signal and image processing, including segmentationsifieation and object discrimina-
tion. This technique is an excellent approach for one-dsimral clustering, since it finds
an optimal solution efficiently, e.g., in polynomial timeivén a histogram with frequencies
or probabilities for each bin, the aim of multi-level thresding is to divide the histogram
into a number of groups (or classes) of contiguous bins it suway that a criterion is

optimized. In peak detection, we create a histogram basdchgments (reads). The his-
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togram is then processed (see below) to obtain the optimeshiolding that will determine
the locations of the peaks.

Consider a histograril, an ordered sefl,2,...,n— 1 n}, where theith value cor-
responds to thé&h bin and has a probabilityg;. The histogramH, can be obtained by
counting the number of aligned reads. We also consider ahble sefl, defined as an
ordered seT = {to,t1,...,t,tkr1}, Wwhere O=tg <t; < ... <ty <tyy1 =nandt € {0} UH.
The problem of multi-level thresholding consists of findimghreshold sefl *, in such a
way that a functionf : HX x [0,1]" — R* is maximized/minimized. Using this threshold
set,H is divided intok+ 1 classes:{; = {1,2,...,t1}, (o = {t1 + Lt1+2,...,t2}, ..,
k={tko1+ Lty 1+2,...t}, Ckr1 = {tk+ Ltk +2,...,n}. A few criteria for multi-level
thresholding have been proposed [11]. We consider the leetwkass variance criterion,
which aims to maximize the inter-class separability of s ses, and which is proportional
to:

k+1 )
LIJB(;(T) = Z Wi Uj (4.1)
j=1

t; 1 <t .
Wherew] = Zi]:tj,l—i-l pl ! p’] = UJ ZiJ:tj,]_-i-llpi'
A dynamic programming algorithm fayptimal multi-level thresholding was proposed
in our previous work [11], which is an extension for irreglyfasampled histograms. For

this, the criterion has to be decomposed as a sum of terméi@asgo

m
LIJ(TQI'T]) - l'IJ({t()?tl? R 7tm}> S Z llth,]_-ﬁ-l,tj ) (42)
j=1

where 1< m < k+ 1 and the function), ,, wherel <r, is a real, positive function of

PPt Py Wit HEx (0,17 RYU{0}. If m=0, thenW ({to}) = Wiop, =
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Wo,0 = 0. Full details of the thresholding algorithm can be foundlifh]. The optimal
thresholding is the one that maximizes the between-clasasnee (or, conversely, it mini-
mizes the within-class variance). The algorithm run®iir?) for a histogram of bins,
and has been further improved to achieve linear compleritysbme criteria, i.eO(kn),

by following the approach of [12].

4.2.4 Automatic Detection of the Best Number of Peaks

Finding the correct number of peaks (the number of regionsaich window) is one of
the most challenging issues. This stage is crucial in orddulty automate the whole
process. For this, we need to determine the correct numlaksparior to applying the
multi-level thresholding method. This is found by using adex of validity derived from
clustering techniques. We have recently proposeatt index [13], which is the result

of a combination of a simple indeR(K), and the well-known index [14] as follows:

k) _ (B0’
a(K) = JRA“() = VK p(t) (4.3)

whereEx = =K ;5% py||k—z]|, Dk :@Hzi —2zj||, nis the total number of bins in the
window, K is the number of clusterg |é]t?&a center of th&th clustery; is theith threshold
found by optimal multilevel thresholding amdt;) is the corresponding number of reads in
the histogram.

For maximizingl (K) and minimizingA(K), the value ofa(K) must be maximized.
Thus, the best number of threshokIs based on the index is given by:

(& x00)
K* = argmaxa(K) = argmax-——=———+—. (4.4)

1<K<3 1<k<s VKZIp(ti)
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To find the optimal number of clusters (thresholds), we caimpad compare values of
a(K) over all possible numbers of clusters (or thresholds) frolm ¢n/2, wheren is the
size of window. The one with the maximum valueaK) is the best number of clusters

(thresholds).

4.2.5 Relevant Peaks Selection

After finding the locations of the detected peaks, in a twp ptecess, significant peaks are
selected. In the first step, the effective area of each pdakingl by shrinking the peak. For
this, by starting from the summit of the peak, we move to laft aght separately until we
reach a zero number of reads. In the second step, the two e&nginer-von Mises non
parametric hypothesis test [15], with= 0.01, is used to accept/reject peaks based on the
comparison between experiment and control histogramesponding to each peak. The
reason for using the Cramer-von Mises test is that it canctdiferences in distributions
with higher statistical power than the commonly used twaoysi@ Kolmogorov-Smirnov
test [15]. Finally, those peaks which are accepted by then€raron Mises test are ranked

and returned as the final relevant peaks.

4.3 Experimental Results

To evaluate the proposed model, we have used various datadtiding thd=oxAldataset
[7] which contains experiment and control samples of 24 gfusomes, and four transcrip-
tion factors (with a total of 6 antibodies) f@rosophila melanogasteusing published
data from the Eisen lab [16] (available at the NCBI GEO databfd7] , accession no.

GSE20369). As in [9], the experiment and control histograrase generated separately
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by extending each mapped position (read) into an appreatyiatiented fragment, and then
joining the fragments based on their genome coordinates.fifkl histogram was gener-
ated by subtracting the control from the experiment higtogr To find significant peaks,
we used a non-overlapping window whose initial size is 3p@p0do avoid truncating peaks
in boundaries, each window is extended until the value ohikogram at the end of the
window becomes zero. Figure 4.2 shows three detected efpochromosomes 1,17 and
20 respectively, and their corresponding base pair coatéiin the FoxAl dataset. It is
clear from the plots that the peaks contain a very large nurmbeeads, and then these
regions are quite likely to represent binding sites, opadireg frames or other biomarkers.
Computing the enrichment score for each method proceeddlaw$. Random inter-
vals from the genome are created by selecting the same nwhingervals with the same
lengths from each chromosome as in the called peaks but aiithormn starting locations.
Then, the number of occurrences of the binding motif in tHeedgpeaks and the random
intervals are counted. The enrichment score is the ratibeohtimber of occurrences in the

called peaks divided by the number of occurrences in theorandtervals.

4.3.1 Comparison with Other Methods for ChlIP-Seq Analysis

Table 4.1 shows a comparison between OMT and two recentlyogerd methods, MACS
[7] and T-PIC [9]. As shown in the table, the number of siguifit peaks detected by
OMT is higher than those of the other two methods. This ingaiiet OMT is able to find

significant peaks that are not detected by the other two nmdsth&lso, the enrichment ratio
for OMT is far higher than MACS and higher than T-PIC. Moreg\tbe average size of
the peaks is smaller than the other two methods which imghigsOMT is able to detect

significant peaks more precisely.



CHAPTER 4. 89

450
400 -
30+
300 +
250 -

200~

0 I I I
112320412 112320612 112320812 112321012 2321212 112321412 112321612

6000
5000 - 4
4000 |
3000 |
2000

1000 - 4

o L T I I L L
SG788500 56788600  SG7S8700 56788800  SG7SRO00  S67R9000  S6TR9I00 56789200 56789300 56789400 56789500

1400 T T
1200 -
1000 -
200 -
600
400

200 -

a2 L L L N
52134754 52134854 52134954 52135054 52135154 52135254 52135354 52135454

Figure 4.2: Three detected regions from the FoxAl datagetifmomosomes 1 (top), 17
(middle) and 20 (bottom). The-axis corresponds to the genome position in bp and the
y-axis corresponds to the number of reads.
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Figure 4.3: Two true positive regions in chromosomes 3 andflBoxAl dataset. The
x-axis corresponds to the genome position in bp and/theis corresponds to the number
of reads. Both peaks are detected by OMT but only the bottoei®detected by T-PIC,
while none of them is detected by MACS.
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Table 4.1: Comparison between OMT and two recently propaosethods, MACS and
T-PIC, based on the number and mean length of detected maaksnrichment score.

| Dataset| Method of Comparison || OMT | T-PIC | MACS |

Detected peaks 20,032| 17,619| 13,639
FoxAl Mean length of peaks || 306 510 394
Enrichment ratio 2.62 2.54 1.68

Detected peaks 12,825| 8,119 | 4,652
CAD Mean length of peaks | 449 986 1,596
Enrichment ratio 1.08 0.84 0.96

Detected peaks 4,526 | 3,553 | 2,904
GT Mean length of peaks | 687 912 1,204
Enrichment ratio 3.42 2.33 1.54

Detected peaks 8,356 | 5,481 | 6,857
HB1 Mean length of peaks || 253 991 1,124
Enrichment ratio 1.93 1.69 1.62

Detected peaks 5,782 | 4,337 | 3,928
HB2 Mean length of peaks || 235 | 1,092 | 1,248
Enrichment ratio 1.96 1.63 1.59

Detected peaks 15,324| 11,891| 9,804
KR1 Mean length of peaks || 350 872 1,635
Enrichment ratio 2.14 1.75 1.54

Detected peaks 15,476| 11,717| 9,652

KR2 Mean length of peaks | 347 863 1,597
Enrichment ratio 2.23 1.78 1.58

Also, Table 4.2 shows a summary of prediction for the pratdiyn each method. Each
value shows the percentage of detected peaks by each mettichl ave also detected by
the other methods. For example, OMT detects 90.1% of thespstiected by MACS while
MACS only detects 59.7% of significant peaks detected by Oiieé FoxAl dataset. This
demonstrates the wide spectrum and specificity of the pegp@MT algorithm.

A conceptual comparison of OMT with other proposed algongtbased on their fea-

tures is shown in Table 4.3. As shown in the table, the othgorahms require some
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Table 4.2: Percentage of common peaks detected by eachahnetthe comparison, related
to each protein of interest.

OMT | T-PIC | MACS

FoxA1L OMT | 100 | 78.8 | 59.7
T-PIC | 99.4 | 100 64.4

MACS | 90.1 | 83.6 100
OMT | T-PIC | MACS

OMT | 100 | 50.8 | 28.8

CAD T-PIC | 79.3 | 100 62.2
MACS | 98.1 | 955 100
OMT | T-PIC | MACS

GT OMT | 100 | 50.5 | 21.2
T-PIC | 65.1 | 100 S57.7

MACS | 78.9 | 85.1 100
OMT | T-PIC | MACS

HB1 OMT | 100 | 49.6 | 42.7
T-PIC | 79.6 | 100 69.2

MACS | 84.1 | 90.7 100
OMT | T-PIC | MACS

HB2 OMT | 100 | 63.1 | 43.2
T-PIC | 81.7 | 100 68.9

MACS | 88.4 | 91.3 100
OMT | T-PIC | MACS

KR1 OMT | 100 | 73.1 | 50.5
T-PIC | 84.6 | 100 66.6

MACS | 97.4 | 98.1 100
OMT | T-PIC | MACS

KR2 OMT | 100 | 73.6 | 60.2
T-PIC | 84.4 | 100 66.9

MACS | 97.1 | 97.7 100

parameters to be set by the user based on the particularalbta grocessed, including
p-values,mfold, window length, among others. OMT is the algorithmtthequires the

smallest number of parameters. Only the average fragmegithes needed. However, the
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Table 4.3: Conceptual comparison of recently proposed aakstforChlP— Seqdata.

Peak

Method | Peak selection criteria . Parameters
ranking
n: Classification by heigh Peak height Target FDR, number nearest
GLITR . : and fold . :
and relative enrichment . neighbors for clustering
enrichment
MACS local region Poissop-value | p-value p-value th.resho.ld, tag lengthn-
fold for shift estimate
PeakSeq Local region binomial p g value Target FDR
value
Quest | height threshold, background KDE bandwidth, peaks height,
. g value sub-peak valley depth, ratio to
v2.3 ratio
background
p value from random backt Window length, gap size, FDR
SICER . :
v1.02 ground model, enrichmentq value (with control) or E-Value (no
' relative to control control)
SiSSRs N — N~ sign changeN™ + N B
vl1l.4 N~ threshold in region pvalue FDR,N™+N™ threshold
average fragment length, signif-
T-PIC local height threshold p-value icancep-value, minimum length

of interval

oMT number of Ch_IP r(_aads mlnusp—value average fragment length
control reads in window

fragment length could be easily estimated from the undeglylata, if enough computa-
tional resources were available, the fragment length waootdoe needed, since the OMT

algorithm could be run directly on the whole chromosome.

4.3.2 Biological Validation

We have also biologically validated the peaks detected byl @kithe results of indepen-
dent gPCR experiments for the FoxA1l protein. For this, wesmmred 25 true positives

and 7 true negatives (regions) reported in [18]. The residiltgher two well-known meth-
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ods, T-PIC and MACS, are included in the comparison. Tableshows the result of this
biological validation on each method. As the other two méthhdMT has been able to
reject all true negatives. Although OMT finds a larger nunmdfeegions, OMT shows very
high sensitivity, finding more true positives than T-PIC aMACS. As an example, two
true positive regions in chromosomes 3 and 13 of FoxAl argvsho Figure 4.3. Both

peaks are detected by OMT but only the bottom one is detegtdeFdC and none of them
is detected by MACS.

An issue that deserves attention is the fact that some trsigvas found by gPCR show
very low peaks in the CHIP-Seq experiments. We have visirdlgected all true positive
regions in the CHIP-Seq experiments, and found that 10 o@badf these regions have
a maximum number of reads less than 5. This indicates thaCHi®-Seq experiment
basically “disagrees” with qPCR on these genomic regioriatefest. Then, it would not
be up to the peak finding algorithm to detect these true pesitiThe proposed algorithm,
OMT, however, finds all other true positives.

Table 4.4: Comparison of OMT, MACS and T-PIC, based on thelbamof true positive
(TP) and true negative (TN) detected peaks.

| | OMT | T-PIC | MACS |

TP | 15 13 12
TN 0 0 0

4.4 Discussion and Conclusion

We have presented a multi-level thresholding algorithn tiaa be applied to an efficient

analysis of ChIP-Seq data to find significant peaks. OMT caapipéied to high-throughput
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next generation sequencing data with different charasties; and allows us to detect sig-
nificant regions on ChiP-Seq data. OMT has been shown to melsmd efficient in exper-
iments and has the ability to be applied to various types xf generation sequencing data.
When compared to other recently proposed methods, OMT stmlaesmore accurate, and
use fewer parameters.

The proposed method offers new avenues for future rese@neé.of these is to apply
the OMT algorithm on the whole chromosome instead of usingt @swindows as a way
to reduce the number of parameters. Also, using other inditgalidity and thresholding
criteria could increase the accuracy of the method. Monetive proposed method could be
applied on other datasets and proteins of interest. Allelags issues that we are currently

investigating.
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Chapter 5

CMT: A Constrained Multi-level
Thresholding Approach for ChlP-Seq

Data Analysis

5.1 Introduction

Determining the interaction between a protein and DNA tal&@g gene expression is a
very important step toward understanding of many bioldgicacesses and disease states.
ChIP-Seq is one of the techniques used for finding regionstefest in a specific protein
that interacts with DNA [1-7]. The main process consiststufdthatin-immunoprecipitation
(ChlIP) followed by sequencing of the immuno-precipitatedwith respect to the ref-
erence genome. In the first step, chromatin is isolated frelis or tissues and then frag-
mented. After pruning, the fragments are sequenced andeaitp the reference genome.
These aligned fragments produce a histogram in such a wayhthgaxis represents the

genome coordinates and tlgeaxis represents the frequency of the aligned fragments in

99
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each genome coordinate.

Detecting protein binding sites from large sequence-basgdsets with millions of
short reads represents a challenging bioinformatics protthat requires considerable com-
putational resources, despite the availability of a widegeaof tools for ChlP-chip data
analysis [8-11]. The growing popularity of ChiIP-Seq tedbgg has increased the need to
develop new algorithms for peak finding. Due to mapping emgles and biases in various
aspects of the existing protocols, identifying relevargkseis not a straightforward task.

Different approaches have been proposed for detectingsp@akChlP-Seq and RNA-
Seq mapped reads. Zhameg) al. presented anodel-based analysis of ChlIP-Seq data
(MACS), which analyzes the data generated by short reacesegus [12]. MACS models
the length of the sequenced ChIP fragments and uses it touapne spatial resolution of
predicted binding sites. A two-pass strategy caRedkSedpas been presented in [13]. This
strategy compensates for signals caused by open chroraatiayealed by the inclusion of
the controls. The first pass identifies putative bindingss&tied compensates for genomic
variation in mapping the fragment sequences. The secorgifiitass out sites not signif-
icantly enriched compared to the normalized control, catnguprecise enrichments and
significance of each detected pedkee shape Peak Identification for ChIP-S&ePIC) is a
statistical approach for calling peaks in ChlP-Seq dath [[His approach is based on eval-
uating the significance of a robust statistical test thatsuess the extent of pile-up reads.
Specifically, the shapes of putative peaks are defined amdedgd to differentiate between
random and non-random fragment placements on the genon@h&malgorithm for de-
tecting relevant peaks ste identification from paired-end sequenc{@PeS) [15], which
can be used for identification of binding sites from shortiseegenerated from paired-end

lllumina ChIP-Seq technology. Qeseq is another methodfalyaing the aligned sequence
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reads from ChIP-Seq data and identifying enriched regidhsThe algorithm consists of

three main modules: relative enrichment estimation, elus¢tection and filtering possible
artifacts. It cycles between its first two modules by remgwietected clusters and eval-
uating enrichment in the rest of signal. In the last step,tarfihodule is used to remove
artifacts from the results.

One of the downsides of the existing methods is that theyotfind all the enriched re-
gions regardless of their length. These regions can be glptheir length. For example,
histone modification sites normally have a length of 50 to I, kvhile some other regions
of interest like exons have a much smaller length of arourldf® Using these methods,
there is no way to focus on regions with a specific length alnaf #te relevant peaks should
be detected first. This is a time consuming task that foreesibdel to process all possible
regions. To deal with this issuegnstrained multi-level thresholdif@MT) is proposed in
this paper. Using CMT, we are able to search a specific regittmaacertain length which
consequently increases the performance of the model. CMIEd@sable to target as many
regions as the other methods simply by increasing the ramgmihimum and maximum
lengths of the regions. The minimum and maximum lengthsefdgions can be adjusted
by the user based on their needs. The results of the expasmbow that the proposed

model is able to achieve a higher degree of accuracy tharrévwépsly proposed methods.

5.2 Results

To evaluate the proposed model, we have used various datds$et first dataset iSOxAl
[12] which contains experiment and control samples of 2éwlusomes. The FoxAl pro-
tein is known to cooperatively interact with estrogen recem breast cancer cells [16,17].

We consider another six datasets which belong to four trgstgm factors (with a total
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of 6 antibodies) foDrosophila melanogastarsing published data from the Eisen lab [18]
(available at the NCBI GEO database [19], accession no. G3&®. These four transcrip-
tion factors, namely Hunchback (HB), Krppel (KR), Giant (Gind Caudal (CAD), have
been obtained by immunoprecipitating binding regions wiffimity purified rabbit poly-
clonal antibodies raised against tbe melanogasterersions of the key A-P regulators.
The other dataset is a genome-wide map ofHi3&4acantibody with ability to covalent
acetylations in histone [20], which occur mainly at the Kximal tails of the histone, and
that can affect transcription of genes.

As in [14], the experiment and control histograms were gateerseparately by extend-
ing each mapped position (read) into an appropriately tetbfragment, and then joining
the fragments based on their genome coordinates. We cor@péife MACS [12] and T-
PIC [14]. Figure 5.1 shows a typical region detected in chosome 1 by CMT, MACS and
T-PIC along with the corresponding base pair coordinatéisar-oxAl dataset. As shown
in the plot, all three methods found the position of the peaiueately.

Computing the enrichment score for each method proceedslag$. Random inter-
vals from the genome are created by selecting the same nwhingervals with the same
lengths from each chromosome as in the called peaks but aiithormn starting locations.
Then, the number of occurrences of the binding motif in tHiedgpeaks and the random in-
tervals are counted. Table 5.1 shows the binding motifesponding to each dataset. The
motifs for CAD, GT, HB, and KR datasets have been obtaineah fi2i.], while the binding
motif for the FOxA1 dataset has been obtained from [22]. Thir&cbment score is the ratio
of the number of occurrences in the called peaks divided eynthmber of occurrences at

random intervals.
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CMT
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Figure 5.1: A detected region from the FoxA1l dataset for clusome 1. The-axis cor-
responds to the genome position in bp andyaeis corresponds to the number of reads.

Table 5.1: Binding motifs corresponding to each dataset.

FoxAl CAD GT HB KR
TGCATG | TTTATTG, TTTATGA | TTACGTAA | TTTTTT | GANGGGT, AANGGGT
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5.2.1 Comparison with Other Methods

Figure 5.2 shows the Venn diagram corresponding to eaclsetafar all three methods.
We consider a peak detected by two methods to be overlappibe, summit of the peak
is located in the detected region by both of the methods. ¥amele, Figure 5.1 shows an
overlapping region detected by all three methods. In theAEpXR1 and KR2 datasets,
the number of regions selected by CMT is relatively highantthose of the other meth-
ods. These regions have mostly a small footprint which ha®eaen detected by T-PIC or
MACS. In the GT dataset, the numbers of regions detected by &hd T-PIC are compara-
ble. Interestingly, MACS detected only one fourth of theksedetected by two other meth-
ods. In the HB1 and HB2 datasets, this case is inverted and $3/é&tects more regions
than T-PIC and CMT. In the H3K4ac dataset, while the numbenistone modification
sites using CMT and T-PIC are comparable, we were not abldtammany regions with
minimum size of 2,000bp using MACS even after various patansajustments. Also, Ta-
ble 5.2 shows a summary of prediction for the proteins founddch method. Each value
represents the percentage of peaks detected by each métiaidare also detected by the
other methods. For example, CMT detects 95.1% of the pedakstdd by MACS, while
MACS only detects 50.8% of significant peaks detected by CWhThe FoxAl dataset.
This demonstrates the wide spectrum and specificity of thpgeed CMT algorithm. As
mentioned earlier, since MACS was not able to detect widépaaH3K4ac dataset, the
corresponding cells in Table 5.2 have been marked With(not applicable).

Table 5.3 shows a comparison between the three peak findjogthims considered in
this paper. As shown in the table, in terms of enrichmenb1@MT is the best among these
methods, overall. The difference between CMT, w.r.t. MACGE d-PIC is considerable

in some datasets such as GT, HB1 and HB2. On the other handyd¢hage size of the
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Figure 5.2: Venn diagrams corresponding to all datasetseh Efenn diagram shows the
number of detected regions by CMT, MACS and T-PIC in eachsddtalong with the
number of detected regions by each pair and all aformerdiomethods.
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Table 5.2: Percentage of common peaks detected by eachdnetthaded in the compari-
son and related to each protein of interest.

CMT | T-PIC | MACS
CMT | 100 | 79.8 | 50.8
FoxAl || T-PIC | 96.7 | 100 59.8
MACS | 95.1 | 92.3 100

CMT | 100 | 419 | 244
CAD T-PIC | 72.7 | 100 47.3
MACS | 79.0 | 88.4 100

CMT | 100 | 66.1 | 16.9
GT T-PIC | 70.1 | 100 18.0
MACS | 68.9 | 69.0 100

CMT | 100 | 82.9 | 93.1
HB1 T-PIC | 74.0 | 100 97.8
MACS | 66.1 | 77.7 100

CMT | 100 | 85.3 | 64.2
HB2 T-PIC | 73.4 | 100 55.6
MACS | 66.7 | 67.1 100

CMT | 100 | 54.0 | 28.2
KR1 T-PIC | 73.6 | 100 44.7
MACS | 76.4 | 88.7 100

CMT | 100 | 545 | 344
KR2 T-PIC | 74.2 | 100 54.8
MACS | 76.7 | 89.6 100

CMT | 100 | 16.1 | N/A
H3K4ac | T-PIC | 16.7 | 100 N/A
MACS | N/A | N/A N/A
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peaks is relatively smaller than those of the other two maghehich implies that CMT is
able to detect significant peaks more precisely. This hedpsrohine the actual footprint of
a binding site accurately. We do not report the enrichmemtescfor the H3K4ac dataset,
since the binding motifs for this dataset are not reporte@@). In another comparison,
using the FoxAl dataset, we evaluate the enrichment scafesé peaks that have been
detected by one of the methods and missed by the other twte $abshows the average
size and enrichment score of CMT, MACS and T-PIC.

A conceptual comparison of CMT and other peak finding methad®d on their fea-
turesis shown in Table 5.5. As shown in the table, differég@thms require different sets
of parameters for processing the data, includmgalue, m-fold, window length, among
others. CMT gives users the ability to fine tune the procedbaised on their needs. In-
cluding the minimum and maximum range for regions of intene$ps the procedure target
regions within a specific range easily. It also boosts CMTetedt very small (or very large
regions, depending on the parameters settings) more tii€ Bnd MACS, as shown in
Figure 5.2, where most of the peaks have a small footprinis fitakes the peak detection
process rather difficult for other methods. CMT overcomeéshoblem by using the spec-
ified ranges for minimum and maximum size of the target regamd scan the histogram
with more emphasis on peaks within the specified range.

To compare the prediction specificity of these three methedswapped the ChlP and
control samples, and calculated the false discovery rad&®jfof each of these methods as

follows:

No. control peaks

FDR= )
No. of experiment peaks

(5.1)

For example, if we have 100 peaks selected and by swappirxpeziment and control
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Table 5.3: Peak number, length and score comparison. Casopdretween CMT, MACS
and T-PIC based on the number and mean length of detected aedlenrichment score.

Dataset| Methodof | v+ 010 | MACS
Comparison

Mean
length  of || 277 303 373
peaks
Enrichment
ratio

Mean
length of|| 476 818 507
peaks
Enrichment
ratio

Mean
length  of || 303 866 194
peaks
Enrichment
ratio

Mean
length of|| 365 920 429
peaks
Enrichment
ratio

Mean
length of || 343 891 228
peaks
Enrichment
ratio

Mean
length  of || 517 728 492
peaks
Enrichment
ratio

Mean
length of || 513 737 500
peaks
Enrichment
ratio

FoxAl

239 | 242 1.83

CAD

0.92 | 0.88 0.93

GT

421 | 1.98 3.02

HB1

203 | 157 1.80

HB2

211 | 1.56 1.99

KR1

191 | 1.83 1.95

KR2

194 | 1.75 2.10




CHAPTER 5. 109

Table 5.4: Length and enrichement score comparison. Casapeloetween CMT, MACS
and T-PIC the average length of detected peaks and enri¢lsma®e on FoxAl dataset.

| | CMT | T-PIC | MACS |

Mean length of peakg 220 421 337
Enrichment ratio 2.74 | 2.92 1.67

samples and using the same parameters we obtain 30 peak#h¢hieDR would be 30%.
Figure 5.3 shows the comparison between CMT, MACS and T-RIthe FoxAl dataset
based on the false discovery rate (FDR) and the number aftsdlpeaks. As shown in the
figure, while CMT and MACS act similarly, T-PIC falls behindttvits higher FDR rate.
There is a clear advantage for CMT in finding the top 1,000amgi while from the 1,000
to 10,000 top regions, MACS vyields a slightly lower FDR rdbete to possible background
noise in the data and also because the size of regions ateeliamall, CMT is able to
find peaks with lower FDR than T-PIC and MACS when we target alksnbset of regions
with high enrichment level.

From another perspective, we compared the true positivie £me false positive (FP)
rates for each method. Figure 5.4 shows the ROC curve for GMPIC and MACS on the
FoxAl dataset. Also, Table 5.6 shows the correspondinguardar curve (AUC) values.

As shown in the plot and the table, CMT, again, performs béten the MACS and T-PIC.

5.2.2 Analysis of Genomic Features

We have also biologically validated the peaks detected by @M the results of indepen-
dent gPCR experiments for the FoxAl protein. We consider@d positives and 7 true
negatives (regions) reported in [23]. The results of theeotiwvo well-known methods,

T-PIC and MACS, are included in the comparison. Table 5.%shtbe results of this bio-
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Figure 5.3: Comparison between CMT, MACS and T-PIC basethe®DR rate and num-
ber of peaks.

=N

4
©
T

154
0
T

e
o
T
R—
|

e
o
T

!

True Positive Rate
(=] (=]
P&

\
\,
L |

e
w
T

L

e
i
T

|

—CMT
TPIC
---MACS

e
o

| | I 1 | | | I 1
01 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
False Positive Rate

=L

Figure 5.4: ROC curve corresponding to CMT, T-PIC and MACS.



CHAPTER 5. 111

Table 5.5: Conceptual comparison of recently proposed oalstfor finding peaks in ChlP-
Seq data.

Method Peak selection criteria ::]Zak rank- Parameters
n: Classification by Peak height Target FDR, number of
GLITR height and relative en- and fold en-| nearest neighbors far
richment richment clustering
Local region Poissop- p-value threshold, .tag
MACS p-value length, mfold for shift
value i
estimate
PeakSeq Local region binomial g value Target FDR
p value
KDE bandwidth, peaks
Height threshold, back- height, sub-peak valley
Questv2.3 ground ratio qvalue depth, ratio to backi
ground
p value from randomn Window length, gap
background model, size, FDR (with con-
SICERV1.02 enrichment relative toqvalue trol) or E-Value (no
control control)
N* — N~ sign change _
SiSSRsv1.4 | N* 4+ N~ threshold in| pvalue EBR’ N*+N" thresh-
region
average fragment
T-PIC Local height threshold | p-value length, S|gn_|f|_cance
p-value, minimum
length of interval
Qeseq L.O.C al enrichment sig p-value no parameter
nificance
average fragment
Height threshold and fold enrich- Iengf[h, minimum gnd
CMT . maximum region size,
volume difference ment .
cut-off, minimum
supported reads
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Table 5.6: Area under curve (AUC) comparison between CMTQ&Aand T-PIC, based
on the number of false positive (FP) and true positive (TR¢cted peaks.

| | CMT | T-PIC | MACS |
| AUC | 0.856] 0.794| 0.712 |

logical validation of each method. As the other two meth&@MT has been able to reject
all true negatives. Although CMT finds a larger number of eegi it shows a high sensi-
tivity, finding more true positives than T-PIC and MACS. Aseample, one of the true
positive regions in chromosome 3 is shown in Figure 5.5. Hggon is detected by CMT

but not by T-PIC or MACS.

Table 5.7: True positive and true negative peak comparigbe. comparison of CMT,
MACS and T-PIC is based on the number of true positive (TP) tamel negative (TN)
detected peaks.

[ [CMT [ T-PIC [ MACS |

TP | 14 13 12
TN 0 0 0

In another experiment, using the information gathered fiteerlJCSC Genome Browser
on theNCBI36/hgl%ssembly, the genomic features of each detected peak hewdrbe
vestigated. We assigned a genomic feature to a peak if tlat @esrlaps with the region
containing that genomic feature. A detected peak can beeaditp more than one genomic
feature. For example, if a specific peak overlaps with a gedesaon simultaneously, we
count that peak as both geaed exon. Table 5.8 shows the percentage of regions that are
located in gene, promoter, intron and exon areas as welt@asgenetic regions. CMT was
able to detect more regions corresponding to genes, prosnatel exons, while the per-

centage of detected regions within introns and inter-geraeeas by CMT is less than the
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Number of reads

169,624,856 169,625,479

oMt -

TPIC

MACS

Figure 5.5: One of the true positive regions located in clusome 3 of the FoxA1 dataset.
The red lines show the actual location of the previouslyfiegtitrue positive region. The
x-axis corresponds to the genome position in bp and/theis corresponds to the number
of reads. The peak is detected by CMT but not by T-PIC or MACS.

percentage of detected regions by MACS and T-PIC. We haveaalalyzed the genomic
features of the peaks detected by each method and not byhbesoffable 5.9 shows the
result of this analysis. As shown in the table, again, CMTnhbmore genes, exons and pro-

moters than T-PIC and MACS, while it found less peaks comrdmg to the non-coding

regions.
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Table 5.8: Comparison of CMT, MACS and T-PIC, based on thegenge of detected
regions that are associated with different genomic feature

Inter-genetic
Regions
Regions % | Regions % | Regions % | Regions % | Regions %
MACS | 14,026 | 12,249 | 87.3 967 6.9| 12,438 | 88.7 676 4.8| 7,338 | 52.3
T-PIC | 21,662 | 19,041 | 87.9 1,721 | 7.9| 18,731 | 86.5 934 4.3] 10,989 | 50.7
CMT | 26,253 | 23,311 | 88.§ 2,231 | 8.5| 22,143 | 84.3 1,226 | 4.7| 13,053 | 49.7

# of Genes Exons Introns Promoters

Method Region

Table 5.9: Comparison of CMT, MACS and T-PIC, based on thegenge of detected
regions detected by one method and not by the others.

Method || Genes| Exons | Introns | Promoters Inter-genetic

Regions
MACS || 70.5%| 7.5% | 71.4% 3.8% 57.4%
T-PIC || 67.7%| 9.8% | 68.4 % 2.8% 57.5%

CMT | 89.1%)| 10.2% | 68.5% 4.3 % 47.2%
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5.2.3 Targeting a Specific Range of Regions Using Constrast

There are different types of regions of interest within tlemgme with various lengths.
Some of the regions are long-range in the sense that havgth lehup to 60 kbp such as
histone modifications sites. Some other regions are migerauch as DNA polymerase
binding sites, or genes in which the length of the correspankgions can vary from 1 to
20 kbp. There are also some regions of interest with a veryl mogprint such as exons of
length approximately 100 bp and transcription factor bagdites of length around 10 bp.
To find a specific type of biomarker, it is better to search &gions within a certain
range in the genome. Finding all regions of interest comrdmg to a target protein and
selecting only those regions that are wide enough to be ar@smodification site or a
gene increase the computational complexity of the methalkowt adding any benefit to
the analysis. Using a constraint-based model helps usttanfjethose regions that are in
a specified range. Moreover, the sensitivity of the algarittan be adapted dynamically to

target the regions of interest based on the specified rartgenwgher accuracy.

5.3 Methods

The aim is to find significant peaks corresponding to regibasihteract with the protein of
interest. Roughly speaking, each peak can be seen as a olinéth is separated from its
neighbours by “valleys”. In that sense, the problem can baditated as ane-dimensional
clusteringproblem. Figure 5.6 depicts the process of finding the peak&gponding to
the regions of interest for the specified protein. After egiag each read to a fragment, a
histogram is created for each chromosome using those fratgime the next step, relevant

peaks are selected by CMT after fine tuning the exact positidhe regions. Finally, by
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comparing each region with the corresponding region in tmgrol histogram, the relevant

peaks are selected.

5.3.1 Creating the Histogram

The first step of the method consists of creating a histogrsinguhe input BED file con-
taining the position and direction of the reads. Each readlstbe extended to a fragment
length, which is related to the settings used to shearindtia. This parameter can be
input by the user, even though the fragment length can by estimated from the under-
lying data if enough computational resources are available

After extending each read to a fragment length based on thetatin of each read, each
fragment is aligned to the reference genome based on itdicabes. Afterwards, for each
chromosome, two separate histograms for experiment artdotalatasets are created for

further processing. Each bin in the histogram correspomdsiucleotide.

5.3.2 The Constrained Thresholding Algorithm

For each chromosome, the corresponding experiment hegtggwhich is obtained from
the previous step, is analyzed separately using the camshased algorithm. In this al-
gorithm, each region is treated as an independent clustestating from the beginning
of the chromosome and based on the minimum and maximum rafdes target regions
(determined by user), the best point to divide the histogsafound.

Although various parametric and non-parametric threshglohethods and criteria have
been proposed, the three most important streams are Otsti®d) which aims to maxi-
mize the separability of the classes measured by means stitheof between-class vari-

ances [24], the criterion that uses information theore@sures in order to maximize the
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Control reads Experiment reads

l Create histograms

l Isolate regions using CMT

Extract region from
histogram

weJs303s1y |043u0d ul
uol1e20| Sulpuodsaliod ay) 19|95

Shrink region by removing
the gaps

Superimpose experiment
and control regions

o ) B 3 X =9

Compare experiment and corresponding
control peaks and select enriched regions

Detected Regions

Figure 5.6: Schematic diagram of the pipeline for findingngigant peaks.
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separability of the classes [25], and the minimum erroedon [26]. In this work, we use
the between-class variance criterion [24] because it ges/higher accuracy.

Consider a histograri, an ordered sefl,2,...,n— 1 n}, where thdth value corre-
sponds to thé&h bin and has a probabilitg;. Also, consider a threshold skt defined as an
ordered seT = {to,t1,...,t,tki1}, Where O=tg <t; < ... <ty <tyy1 =nandt € {0} UH.
The aim of CMT is to find the values gfwithin a window starting from the current position
and based on the given minimum and maximum length definedeoygér.

The between class variance criterion is given by:

Wae = 5 + wpps3, (5.2)

wherewy = 3121 pi, b= & S1oqi % pi, w2 = 31 pi andpe = & 51 i x i
The aim is to obtain* for each potential region in such a way thidgc is maximized
for that window. Figure 5.7 depicts the procedure for findimgshold*. The sub-optimal
threshold™* can be found by sliding the blue line between min and max antpcteWsc
respectively. The best point to separate two neighbourgisdke one that maximizédgc.
The final output of the model consists of two vect&ss [sy, ..., S| andE; = [ey, ..., &),
wheres andg are the start and end position of t&detected region respectively and
is the number of detected peaks. Although this method is ptnal, its worst-case time
complexity isO(n), wheren is the number of genomic positions (nucleotides) in a chromo

some.

5.3.3 Gap Skipping

After aligning the reads to the reference genome, and depgmeh the number of reads

obtained from the experiment, the fragments may cover al $raefion of the genome and
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start

SN

min max

Figure 5.7: An example of finding the threshofdusing the CMT algorithm.

leave very large gaps between neighbour regions. To speéteypeak finding process,
gaps are skipped by computing the maximum height of eachomindf that height does

not surpass the minimum acceptable height for the regi@,window is skipped and no
further analysis is done on the regions within that windotre minimum acceptable height
is a user-adjustable value that specifies how many readsanrggould support to make it

acceptable as a possible region of interest.

5.3.4 Selecting Enriched Regions

After finding the potential regions, they have to be shrumkfithe borders for removing
possible empty gaps on the left and right sides of the re@tarting from the highest point
of the region, the start and end borders are moved to left igidl respectively until the
height of the region in both of those points reaches a vallieba cut-off level. The cut-
off level is adjustable by the user. The default value is liclvimeans that the algorithm

will isolate the continuous part of the region that contah&ast one fragment aligned to



CHAPTER 5. 120

those positions.
In the next step, the isolated experiment regions detentdtki previous step are com-
pared to their corresponding regions in the control histogrA region in the experiment

histogram is considered as an enriched region if it satitie$ollowing properties:

e the size of the region should be within the acceptable radgfsed by the user, and

e there should be &-fold difference between the squared density of the expaErm

region and the control region as follows:
Ve > K x Ve (5.3)

whereVe = 8N4 e, V. =284 c?; g andg are the heights of the experiment and
control regions at positionrespectively. AlsoK is a user-defined parameter (whose
default value is 2), and corresponds to the minimum accépfaladl change between

experiment and control.

The regions that satisfy the aforementioned criteria aresicered enriched and are

used for further processing and biological validation.

Implementation

CMT has been implemented G++. It runs on x86 systems using the Windows operating
system. The executable version of the code is availablet@t/hiisrueda.cs.uwindsor.ca/
software/CMT-ChIP-Seq.rar. The source code is availaptenuequest. A readme file is

included in the downloadable package.
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Chapter 6

ldentifying Informative Genes for

Prediction of Breast Cancer Subtypes

6.1 Introduction

Despite advances in treatment, breast cancer remains ¢bhadséading cause of cancer
related deaths among females in Canada and the United SRx®sgous studies have re-
vealed that breast cancer can be categorized into at leasiufibtypes, including basal-like
(Basal), luminal A, (LumA), luminal B (LumB), HER2-enricHHER?2), and normal-like
(Normal) types [1, 2]. These subtypes have their own gersggicatures, and response to
therapy varies dramatically from one subtype to anothee Mdriability among subtypes
holds the answer to how to better design and implement nexakatic approaches that
work effectively for all patients. It is clinically esseatito move toward effectively strati-
fying patients into their relevant disease subtype pridraéatment.

Techniques such as breast MRI, mammography, and CT scaexaarine the pheno-

typical mammary change, but provide little effective imf@tion to direct therapy. Genomic

125



CHAPTER 6. 126

techniques provide high-throughput tools in breast cadiegmosis and treatment, allowing
clinicians to investigate breast tumors at a molecularlléMee advance of microarray ap-
proaches have enabled genome-wide sampling of gene expreatues and/or copy num-
ber variations. The huge amount of data that has been gededrat allowed researchers
to use unsupervised machine learning approaches to drscbaeacteristic “signatures”
that have since established distinct tumor subtypes [1indruisubtyping has explained a
great deal about some of the mysteries of tumor pathologyadd has begun to enable
more accurate predictions with regard to response to teatid]. While offering enor-
mous opportunity for directing therapy, there are somelehges arising in the analysis of
microarray data. First, the number of available sampleas (patients) is relatively small
compared to the number of genes measured. The sample sizallyypanges from tens to
hundreds because of costs of clinical tests or ethical canst. Second, microarray data
is noisy. Although the level of technical noise is debatdb]eit must be carefully consid-
ered during any analysis. Third, due to technical reastiesjiata set may contain missing
values or have a large amount of redundant information. § bkallenges affect the design
and results of microarray data analysis.

This current study focuses on identifying a minimal numbiegenes that will reliably
predict each of the breast cancer subtypes. Being a field diimalearning, pattern recog-
nition can be formulated as a feature selection and claasdit problem for multi-class,
high-dimensional data using two traditional schemes. Tis¢ djpplies a multi-class “fea-
ture selection” method directly followed by a classifier teasure the dependency between
a particular feature and the multi-class information. Alvkelown example of the feature
selection method is the minimum redundancy maximum relevgmRMR) method pro-

posed in [6] and [7]. The second traditional scheme is thet mm®mon of the two and
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treats the multi-class feature selection as multiple lyitdeiss selections. Methods using
multiple binary class selections differ in how to bisect theltiple classes. The two most
popular ways to solve this problem are one-versus-one agversus-all [8]. In this paper,
we propose a novel and flexible hierarchial framework totelescriminative genes and
predict breast tumor subtypes simultaneously. The maitribotions of this paper can be

summarized as follows:

1. We implement our framework usirghi2 feature selection [9] and support vec-
tor machine (SVM) classifidl0] to obtain biologically meaningful genes, and to

increase the accuracy for predicting breast tumor subtypes

2. We use a novel feature selection scheme with a hierarstniadture, which learns in

a cross-validation framework from the training data.

3. We establish a flexible model where any feature selectioihctassifier can be em-

bedded for use.

4. We discover a new, compact set of biomarkers or genes lusefdistinguishing

among breast cancer types

6.2 Related Work

Using microarray techniques, scientists are able to meakerexpression levels for thou-
sands of genes simultaneously. Finding relevant genessmmnding to each type of can-
cer is not a trivial task. Using hierarchical clusteringrd®®eand colleagues developed the
original 5 subtypes of breast cancer based on the relatmeession of 500 differentially

expressed genes [1]. It has since been demonstrated thairéngplatforms to include
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DNA copy number arrays, DNA methylation, exome sequenamnigroRNA sequencing
and reverse-phase protein arrays may define these subtygesuether [2]. It is postu-
lated that there are, indeed, upward of over 10 differemhfoof breast cancer with differ-
ing prognosis [11]. Other groups have tailored analysisatowefining the patient groups
based on relative prognosis, reducing the profile for ongypetio a 14-gene signature [12].
Given any patient subtype, obtained through one or seviatibpns, we hypothesize that
machine learning approaches can be used to more accuratetynine the number of genes
required to reliably predict a subtype for a given patients.

On the other hand, modeling today’s complex biologicalexyst requires efficient com-
putational techniques designed in articulated model, a&ed to extract valuable informa-
tion from existing data. In this regard, pattern recogmitiechniques in machine learning
provide a wealth of algorithms for feature extraction anédcen, classification and clus-
tering. A few relevant approaches are briefly discussed then

An entropy-based method for classifying cancer types wagsqsed in [13]. In entropy-
classed signatures, the genes related to the differenécanbtypes are selected, while the
redundancy between genes is reduced simultaneously. sexdeature addition (RFA)
has been proposed in [14], which combines supervised leggmamd statistical similarity
measures to select relevant genes to the cancer type. Amnigtassification model con-
taining a two-layer structure named as mixture of rough B#R$) and support vector
machine (SVM) was proposed in [15]. This model is constmitie combining rough sets
and SVM methods, in such a way that the rough set classifisiagdhe first layer to deter-
mine some singular samples in the data, while the SVM classifits as the second layer
to classify the remaining samples. In [16], a binary pagt&lvarm optimization (BPSO)

was proposed. BPSO involves a simulation of the social behavorganisms such as bird
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flocking and fish schooling. In BPSO, a small subset of infdiveagenes is selected where
the genes in the subset are relevant for cancer classificatig17], a method for selecting
relevant genes in comparative gene expression studiesnopssed, referred to ascur-
sive cluster eliminatioiRCE). RCE combinek-Means and SVM to identify and score (or
rank) those gene clusters for the purpose of classificatidmeans is used initially to group
the genes into clusters. RCE is then applied to iterativetyave those clusters of genes
that contribute the least to classification accuracy. Invibek described in this paper we
used the original five breast cancer subtypes to determiegh&hour proposed hierarchial

tree-based scheme could reduce the gene signature toldealidoset of relevant genes.

6.3 Methods

First, we describe the training phase for gene selectionba@ast cancer subtyping, and
then we describe how the model can be used in predicting gebyn a clinical setting.

The complete gene profile of each breast cancer subtype iparesh against the others.
Each subtype varies in the genes that are associated vatidiin the accuracy with which
those genes predict that specific subtype. The subtypeh@neotrganized by two main
criteria. The first criterion is the level of accuracy with iath the selected genes identify
the given subtype. The second criterion is the number ofgeleatified. Clearly applying

two or more gene selection criteria is a multi-objectiveljdeon in optimization [18]. In

this study, we use the rule that select the smallest subsgtreds that yields the highest
accuracy. Therefore, a subtype that is predicted with 958@racy by five genes is ranked
higher than a subtype for which 20 genes are required to Becthe same accuracy. The
subtype that is ranked highest is removed and the procedsuepéated for the remaining

subtypes comparing each gene profile against the others.hijhest ranked subtype is
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again removed and becomes a leaf on the hierarchical tred-{ge 6.1). Therefore, each

leaf on the tree becomes a distinct subtype outcome.

6.3.1 Training Phase

We give an example of such a tree to illustrate our methodgn 6il. Suppose there are
five subtypes, namelyC;,--- ,Cs}. The training data is enx n matrixD = {D1,---,Ds}
corresponding to the five subtyped;, of sizem x nj, is the training data for clagg. m

is the number genes amgis the number of samples in subtyPe n = S, n; is the total
number of training samples from all five classes. First gffaliture selection and classifi-
cation are conducted, in a cross-validation fashion, fohedass against the other classes.
For example, suppose subtypgobtains the highest rank based on accuracy and the num-
ber of genes contributing to that accuracy. We thus recaedish of the particular genes
selected and create a leaf for that subtype. We then remevsatimples of the subtype,
which results irD = {Dj,D2,D4,Ds5} and continue the process in the same fashion. Thus,
at the second level, subty@g yields the highest rank, and hence its gene list is retained
and a leaf is created. Afterward the training data set besdine {D;,D,,D4} for the
third level. We repeat the training procedure in the sameidasuntil there is no subtype

to classify. At the last level, two leaves are createdCipandCy, respectively.

6.3.2 Prediction Phase

Once the training is complete, we can apply the scheme tagbieeast cancer subtypes.
Given the gene expression profile of a new patient, a sequefndassification steps are
performed by tracing a path from the root of the tree towardad. | At each node in the

path, only the genes selected in the training phase aralteBbe process starts at the first



CHAPTER 6. 131

Ci : the i-th class.
Gi : the subset of genes
selected for the class Ci.

Figure 6.1: Determining breast cancer type using selecadg)

level (root of the tree), in which case only the genes seteftteCs, namelyGs are tested.
If the patient’s gene profile is classified as a positive santplen the prediction outcome is
subtypeCs, and the prediction phase terminates. Otherwise, the sequad classification
tests is performed in the same fashion, until a leaf is re&dhewhich case the prediction

outcome is the subtype associated with the leaf that hasreeehed.

6.3.3 Characteristics of The Method

Our structured model has the following characteristicsstFit involves a greedy scheme
that tries the subtype which obtains the most reliable ptexti and the smallest number of
genes first. Second, it conducts feature selection andfatasen simultaneously. Essen-

tially, it is a specific type of decision tree for classificati The differences between the
proposed model and the traditional decision tree inclugesach leaf is unique, while one

class usually has multiple leaves in the later; ii) classfege learned at each node, while
the traditional scheme learns decision rules; and iii) ipldfeatures can be selected, while

in the traditional scheme each node corresponds to onlyeatare. Third, the proposed
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model is flexible as any feature selection method and classifin be embedded. Obvi-
ously, a classifier that can select features simultanealsty applies, (e.g. thik-norm

SVM [19]).

6.3.4 Implementation

In this study, we implement our model by using Chi2 featutec®n [9] and the state-of-
the-art SVM classifier [10]. These two techniques are brigéigcribed briefly next. Chi2
is an efficient feature selection method for numeric datdikersome traditional methods
which discretize numeric data before conducting featulectien, Chi2automaticallyand
adaptivelydiscretizes numeric features and selects features as Mvklbeps merging ad-
jacent discrete statuses with the lowg&walue until allx? values exceed their confidence
intervals determined by a decreasing significant level]evkeeping consistency with the
original data. If, finally, a feature has only one discretess, it is removed. Thg? value
of a pair of adjacent discrete statuses or intervals is coeapby thex? statistic, with 1

degree of freedom, as follows:

N

2 i~ &) 6.1)

wherenjj is the number of samples in tieh interval andj-th class, and; is the expected
value ofnjj. gj is defined asric—r{ wherer; = z‘j(:lnij, Cj = zizzlnij, andn is the total
number training samples.

Based on these selected genes, the samples are classifig&idil [10]. Soft-margin
SVMis applied in our current study. SVM is a linear maximurnasgin model with decision

functiond(x) = signf (x)] = signw"x+b] wherew is the normal vector of the separating
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hyperplane andb is the bias. Soft-margin SVM solves the following problenoiaer to

obtain the optimalv andb:

.1 2 T
min—=||lw C 6.2
in5[w3+CTg 6.2)

P gl

st.Z'w+by>1—¢

£>0,

whereé is a vector of slack variable€§ is a vector of constant that controls the trade-off
between the maximum margin and the empirical eryas, a vector that contains the class
information (either -1 or +1), and contains the normalized training samples withiith
column defined ag = y;x [20]. Since optimization of the SVM involves inner products
of training samples, by replacing the inner products by adleiunction, we can obtain a
kernelized SVM.

For the implementation, the Weka machine learning suite wgasl [21]. A gene se-
lection method based on tixé feature evaluation algorithm was first used to find a subset
of genes with the best ratio of accuracy/gene number [9] ckmsification, LIBSVM [22]
in Weka is employed. ThRadial basis functiofRBF) kernel is used with the LIBSVM

classifier without normalizing samples and with defauligpaeter settings.

6.4 Computational Experiments and Discussions

6.4.1 Experiments

In our computational experiment, we analyzed Hu’s data.[28]'s data (CEO accession

number GSE1992) were generated by three different plafonciuding Agilent-011521
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Human 1A Microarray G4110A (feature number version) (GPL)8&gilent-012097 Hu-
man 1A Microarray (V2) G4110B (feature number version) (88L), and Agilent Hu-
man 1A Oligo UNC custom Microarrays (GPL1390). Each platforontains 22,575
probesets, and there are 14,460 common probesets amoeghhes platforms. We used
SOURCE [24] to obtain 13,582 genes with unique unigene IRsder to merge data from
different platforms. The dataset contains 158 samples freensubtypes of breast can-
cer(13 Normal, 39 Basal, 22 Her2, 53 LumA and 31 LumB). Théhssxibtype Claudin is
excluded from our current analysis as the number of sampléssoclass is too few (only
five). However, we will investigate this subtype in our fugwvrork.

To evaluate the accuracy of the model, 10-fold cross-vatidas used. As shown
in Table 6.2, using all genes decreases the overall accufaitye model, since many of
the genes are irrelevant or redundant. For example, using3&@82 genes, the overall
accuracy is just 77.84%; while using a ranking algorithm taking the top 20 genes for
prediction brings the accuracy up to 86.70%. Table 6.1 shbwdop 20 genes ranked
by the Chi-Squared attribute evaluation algorithm to éfgssamples as one of the five
subtypes. Using the proposed hierarchical decisionieesed model, makes the prediction
procedure more accurate. While the accuracy of predictewden LumA and LumB is
relatively low compared to the other classes. This is bexatithe very high similarity and
overlap between samples of these two classes. The overalizay of the model, as shown
in Table 6.2, is 95.11%. This is very interesting since orBygknes are used to predict
the subtypes that the patient belongs to. these 18 genedbaneobtained by selecting 6
genes per node and decreasing them one by one as long asuhecgad the model keeps
consistent. As a matter of fact, our method is able to ine@asccuracy from around 86%

to 95% by using a new subset of genes based on the proposeddceethtaining only 18
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genes.

Table 6.1: Top 20 genes ranked by the Chi-Squared attribataation algorithm to classify
samples as one of the five subtypes.

Rank| Gene Namg | Rank| Gene Namg | Rank| Gene Namg | Rank| Gene Name
1 FOXAl1 6 THSD4 11 DACH1 16 ACOT4
2 AGR3 7 NDC80 12 GATA3 17 B3GNT5
3 CENPF 8 TFF3 13 INPP4B 18 IL6ST
4 CIRBP 9 ASPM 14 TTLL4 19 | FAM171A1
5 TBC1D9 10 FAM174A 15 VAV3 20 CYB5D2

Fig. 6.2 shows the tree learned in the training phase ancktltd genes selected at each
step. The selected genes are contained in each node, at’paj@re expression profile is
used to feed the tree for prediction, each leaf represenistg®e, and the accuracy at each
classification step is under the corresponding node.

From this figure, we can see that the Basal subtype is chosgrafirit obtains the
highest accuracy, 996% to classify patients from the other subtypes includirgrial,
Her2, LumA and LumB. Then the samples of Basal are removethé&second level. The
Normal subtype is chosen then, since it achieves the higloestacy (959%) to separate
samples from the other subtypes, including Her2, LumA anmdBuFrom previous studies,
itis well-known that the subtypes LumA and LumB are very difft to be identified among
all subtypes. This is the reason for why LumA and LumB appe#reabottom of the tree.
After removing other subtypes, LumA and LumB can avoid nassification on the other
subtypes. In spite of this drawback, the accuracy for séipgraumA and LumB is as high
as 881%.

As shown in Figure 6.2, there is no overlap between the geslested among the
different clusters. This result provides interesting neaniarkers for each breast cancer

subtype. Some of the selected genes have been previouslgted in cancer (highlighted
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FAM174B
AGR2
MLPH

HMGCS1
5100A9

Figure 6.2: Determining breast cancer type using selecadg

in black in Figure 6.2), while others have emerged as inteiggenes to be investigated.
For example, TFF3 and FoxAl genes are predictably indidat&asal subtype. Another
feature of the proposed hierarchical model is that the nurobgenes in each node has
been optimized to give the best ratio of accuracy and numbselected genes. For this,
at first, 10 genes with highest rank have been selected for made. Then, out of those
selected genes, those with lower rank are removed step pyastong as the accuracy of

classification using the remaining genes don’t get dectease
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Table 6.2: Accuracy of classification using LibSVM Classifie
Classification Gene Selection #  of

Accuracy, Precision Recall| F-measure

Method Method Genes

LibSVM — all 77.84% | 0.802 | 0.778| 0.749
genes

LibSVM Chi-Squared | 20 86.70% | 0.866 | 0.867 | 0.864

Proposed Proposed

0
Method Method 18 95.11% | 0.951 0.951] 0.951

6.4.2 Biological Insight

We used FABLE to determine if the genes selected by our apprai@ biologically mean-
ingful. Fast Automated Biomedical Literature Extractié#ABLE) is a web-based tool to
search through MEDLINE and PubMed databases. The genearthatlated to tumors
reported in the literature are highlighted in black in Fegér2. Those not yet reported are
underlined and colored in red. We can see that 15 out of 18sgesmee been found in the
literature. This implies that our approach is quite effexin discovering new biomarkers.
We also explored the reasons for the high performance of @tihed. First, the sub-
types that are easily classified are on the top of the treelevitve harder subtypes are
considered only after removing the easier ones. Such arbiecal structure can remove
the disturbance of other subtypes, thereby allowing us ¢cagmn the most difficult sub-
types, LUumA/B. Second, combining gene selection when mglthe classifier allows us
to select genes that contribute to prediction accuracyrdT lour tree-based methodology
is quite flexible; any existing gene selection measure aasisdication technique can be
embedded in our model. This will allow us to apply this moadestibtypes as they become
more rigorously defined using other platforms such as copylau variation. Furthermore,
our method could be applied to groups of patients stratifeesktd on responses to specific

treatments. Collectively, having a small, yet reliable tn@mof genes to screen is more cost
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effective and would allow for subtype information to be moeadily applied in a clinical

setting.

6.5 Conclusion and Future Work

In this study, we proposed a novel gene selection methodréashh cancer subtype predic-
tion based on a hierarchical, tree-based model. The redeit®nstrate an impressive ac-
curacy to predict breast cancer types using only 18 genagirj@ve propose a novel gene
selection method for breast cancer subtype predictiondoasen hierarchical, tree-based
model. The results demonstrate an impressive accuracyetbgpibreast cancer subtypes
using only 18 genes in total. Moreover, Most of the seleceteg are shown to be related
to breast cancer based on previous studies, while a few ate lge investigated. As future
work, we will validate these results using cell lines thak fdthin a known subtype. We
will determine whether our predicted 18 gene array can atelyr denote which subtype
each of these cell lines falls under. This hierarchicak-tsased model can narrow down
analysis to a relatively small subset of genes. Importatily method can be applied to
more refined stratification of patients in the future, suchudsypes derived using a combi-
nation of platforms, or for groups of patients that have badrdivided based on response
to therapy. Using this computational tool we can determieesmallest possible number
of genes that need to be screened for accurately placing pargulations of patients into
specific subtypes of cancer or specified treatment groups. cblld contribute to the de-
velopment of improved screening tools, providing increlagecuracy for a larger patient
population than that achieved by Oncotype DX, but allowiogd cost effective approach

that could be widely applied to the patient population.
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Chapter 7

Conclusion and Future Works

Transcriptomics provide a rich source of data suitable &ttgun analysis. We have shown
how multilevel thresholding algorithms can improve trai@ome data analysis in differ-
ent ways. We proposed OMTG, an efficient parameterless frankefor DNA microarray
image analysis. By adapting the method to analyze next geamrsequencing data, we
proposed OMT, a robust and versatile peak finder for findiggicant peaks in high-
throughput next generation sequencing (ChlP-Seq) datagd#ferent datasets, and var-
ious computational and biological analysis steps, it hanshown that both OMT and
OMTG are sound and robust to noise in experiments. It is dd#ota be used on different
approaches with a little change — this is one the most impbféatures of this algorithm.
We also proposed a constraint-based multi-level thregimglalgorithm to find enrichment
regions with a specific range using ChlP-Seq data. Moreaxeproposed a novel multi-
class breast cancer subtype prediction framework with lbiigyaof obtaining biologically

meaningful genes that can accurately predict breast tuniuygses.

142
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7.1 Conclusion

This thesis introduced new pattern recognition and imageq®sing and analysis methods
for transcriptomics data analysis. The methods propos#usrihesis have been shown to
work mostly free of parameters and perform efficiently or-tiéa datasets from different

sources. The main contributions of the thesis can be surmethais follows:
1. Chapters 2 and 3:

(a) Proposing OMTG, a new method for separating sub-gridssaot centers in

cDNA microarray images.

(b) OMTG uses no parameter which makes it a desirable metragridding mi-
croarray images with different structure and resolutiothaut any need for

adjustment and tuning.

(c) Proposing a new validity index for detecting the cornegtmber of sub-grids

and spots in microarray image.

(d) Proposing a refinement procedure used to increase thieaagoof spot detec-

tion.
2. Chapters 4 and 5:
(a) Proposing OMT, a multi-level thresholding based metioofinding significant

peaks in ChIP-Seq data.

(b) OMT can be applied to high-throughput next generatiaqusacing data with

different characteristics.

(c) It has been shown that OMT is statistically sound and sbluexperiments and

has the ability to be applied to various types of next gef@mratequencing data.
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(d) Comparing to other recently proposed methods, OMT shovie® more accu-

rate and use fewer parameters.

(e) Proposing CMT, a constraint based multi-level thredimgl method to find sig-

nificant peaks within a specific range in ChlP-Seq data.

(H Unlike other methods, which find all types of regions aterand then select
peaks with desired length, targeting specific regions witkréain range is one
of the main advantages of CMT that increase the performafnitee@lgorithm

in comparison with the other methods.
3. Chapter 6:
(a) Proposing a hierarchical, tree-based gene selectidhoghdor breast cancer

subtype prediction.

(b) Obtaining an impressive accuracy of more than 95% fadiptiag breast cancer

types using only 18 genes in total.

(c) Most of the selected genes are shown to be related totlreaser based on

previous studies

(d) Providing a computational tool for determining the sestl possible number
of genes that need to be screened for accurately placing f@gulations of

patients into specific subtypes of cancer or specified treatigroups.

7.2 Future Work

Considering the huge amount of data generated by differietddical platforms, manual

analysis of these data is simply impossible. Using supedvaad unsupervised machine
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learning techniques can provide a variety of efficient anulisb models to analyze data.

Some of the possible future works are the following:

e Thresholding algorithms are still emerging tools in thessas, and open the possi-

bility for further advancement.

e One of the problems that deserves attention is the use of tittessholding criteria,
including minimum error, entropy-based and others in figdhre optimal number of

spots in a sub-grid and the optimal number of sub-grids in &dDNcroarray image.

e Processing a whole genome or even a chromosome for finditkg pe&hlP or RNA-
seq is still a challenge, since it involves processing kistm with millions of bins.
Processing different part of the histogram in parallel dooiprove the performance

of the peak finding algorithm.

¢ Next generation sequence data analysis is an emerging amigang area for pattern
discovery and analysis, which deserves the attention oEearch community in the

field.

e One of the future works can be applying the OMT algorithm atnole chromo-

some instead of using a set of windows as a way to reduce thberushparameters.

e Using other indices of validity such as minimum error and@py-based; and other

thresholding criteria could increase the accuracy of ththote

e Pathway and biological analysis of selected genes in tefrtisedr real-life perfor-
mance in identifying breast cancer subtypes and accurdtatpte which subtype

each of these cell lines falls under.
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e The proposed hierarchical model can be applied to more tefitratification of pa-
tients in the future, such as subtypes derived using a catibmof platforms, or for

groups of patients that have been subdivided based on respotherapy.
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