
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2014

Novel pattern recognition approaches for
transcriptomics data analysis
Iman Rezaeian
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Rezaeian, Iman, "Novel pattern recognition approaches for transcriptomics data analysis" (2014). Electronic Theses and Dissertations.
5085.
https://scholar.uwindsor.ca/etd/5085

https://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F5085&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5085&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5085&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/5085?utm_source=scholar.uwindsor.ca%2Fetd%2F5085&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


NOVEL PATTERN RECOGNITION APPROACHES FOR
TRANSCRIPTOMICS DATA ANALYSIS

by
Iman Rezaeian

A Dissertation
Submitted to the Faculty of Graduate Studies

through School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy at the
University of Windsor

Windsor, Ontario, Canada
2014

c© 2014 Iman Rezaeian



NOVEL PATTERN RECOGNITION APPROACHES FOR
TRANSCRIPTOMICS DATA ANALYSIS

by
IMAN REZAEIAN

APPROVED BY:

M. R. El-Sakka, External Examiner
Department of Computer Science, Western University

E. Abdel-Raheem
Department of Electrical and Computer Engineering

J. Lu
School of Computer Science

X. Yuan
School of Computer Science

A. Ngom, Co-Advisor
School of Computer Science

L. Rueda, Advisor
School of Computer Science

May 15, 2014



Declaration of Co-Authorship and

Previous Publication

I. Co-Authorship Declaration:

I hereby declare that this Dissertation incorporates the outcome of a joint research un-

dertaken in collaboration with Yifeng Li, Martin Crozier, Dr. Eran Andrechek, Dr. Alioune

Ngom, Dr. Luis Rueda and Dr. Lisa Porter. The collaboration is covered in Chapter 6 of

the Dissertation. In this research, experimental designs,applying and optimizing different

machine learning methods for prediction, numerical and visual analysis were performed by

the author.

I am aware of the University of Windsor Senate Policy on Authorship and I certify

that I have properly acknowledged the contribution of otherresearchers to my Dissertation,

and have obtained written permission from each of the co-author(s) to include the above

material(s) in my Dissertation. I certify that, with the above qualification, this Dissertation,

and the research to which it refers, is the product of my own work.

II. Declaration of Previous Publications:

This Dissertation includes 5 original papers that have beenpreviously published/submitted

for publication in conferences and peer reviewed journals,as follows:

I certify that I have obtained a written permission from the copyright owner(s) to in-

iii



iv

Dissertation chapter Publication title

Chapter 2
Luis Rueda, Iman Rezaeian: A Fully Automatic Gridding Method for
cDNA Microarray Images. BMC Bioinformatics (2011) 12: 113.

Chapter 3

Luis Rueda, Iman Rezaeian: Applications of Multilevel Thresholding
Algorithms to Transcriptomics Data. Progress in Pattern Recognition,
Image Analysis, Computer Vision, and Applications - 16th Iberoameri-
can Congress (CIARP), Chile, 2011: 26-37.

Chapter 4

Iman Rezaeian, Luis Rueda: A new algorithm for finding enriched
regions in ChIP-Seq data. ACM International Conference on Bioin-
formatics, Computational Biology and Biomedicine (BCB), Chicago,
USA, 2012: 282-288.

Chapter 5
Iman Rezaeian, Luis Rueda: CMT: A Constrained Multi-Level Thresh-
olding Approach for ChIP-Seq Data Analysis. PLoS ONE 9(4):
e93873, 2014.

Chapter 6

Iman Rezaeian, Yifeng Li, Martin Crozier, Eran Andrechek, Alioune
Ngom, Luis Rueda, Lisa Porter: Identifying Informative Genes for Pre-
diction of Breast Cancer Subtypes. Pattern Recognition in Bioinformat-
ics - 8th IAPR International Conference (PRIB), France, 2013: 138-
148.

clude the above published material(s) in my Dissertation. Icertify that the above material

describes work completed during my registration as graduate student at the University of

Windsor.

I declare that, to the best of my knowledge, my Dissertation does not infringe upon any-

one copyright nor violate any proprietary rights and that any ideas, techniques, quotations,

or any other material from the work of other people included in my Dissertation, published

or otherwise, are fully acknowledged in accordance with thestandard referencing prac-

tices. Furthermore, to the extent that I have included copyrighted material that surpasses

the bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that I

have obtained a written permission from the copyright owner(s) to include such material(s)

in my Dissertation. I declare that this is a true copy of my Dissertation, including any final



v

revisions, as approved by my Dissertation committee and theGraduate Studies office, and

that this Dissertation has not been submitted for a higher degree to any other University or

Institution.



Abstract

We proposed a family of methods for transcriptomics and genomics data analysis based

on multi-level thresholding approach, such as OMTG for sub-grid and spot detection in

DNA microarrays, and OMT for detecting significant regions based on next generation

sequencing data. Extensive experiments on real-life datasets and a comparison to other

methods show that the proposed methods perform these tasks fully automatically and with a

very high degree of accuracy. Moreover, unlike previous methods, the proposed approaches

can be used in various types of transcriptome analysis problems such as microarray image

gridding with different resolutions and spot sizes as well as finding the interacting regions

of DNA with a protein of interest using ChIP-Seq data withoutany need for parameter

adjustment. We also developed constrained multi-level thresholding (CMT), an algorithm

used to detect enriched regions on ChIP-Seq data with the ability of targeting regions within

a specific range. We show that CMT has higher accuracy in detecting enriched regions

(peaks) by objectively assessing its performance relativeto other previously proposed peak

finders. This is shown by testing three algorithms on the well-known FoxA1 Data set, four

transcription factors (with a total of six antibodies) forDrosophila melanogasterand the

H3K4ac antibody dataset. Finally, we propose a tree-based approach that conducts gene

selection and builds a classifier simultaneously, in order to select the minimal number of

genes that would reliably predict a given breast cancer subtype. Our results support that this

vi
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modified approach to gene selection yields a small subset of genes that can predict subtypes

with greater than 95% overall accuracy. In addition to providing a valuable list of targets for

diagnostic purposes, the gene ontologies of the selected genes suggest that these methods

have isolated a number of potential genes involved in breastcancer biology, etiology and

potentially novel therapeutics.
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Chapter 1

Introduction

Pattern recognition and image processing and analysis approaches are some of the main

streams for analysis of biological data, especially in transcriptomics. One of the main aims

of pattern recognition techniques is to make the process of learning and detection of patterns

explicit, in such a way that it can be implemented on computers. Automatic recognition,

description and classification have become important problems in a variety of scientific

disciplines such as biology, medicine and artificial intelligence. Classification, as one of the

most well-known techniques in pattern recognition, is usedto build models for identifying

the correct class label corresponding to an unknown input sample. These methods are also

very useful for analyzing biological data, identifying diseases and biomarkers. On the other

hand, when there is no explicit class label corresponding toeach sample, the model should

figure out the appropriate label for each sample by analyzingthe data. Clustering techniques

are among these methods, which group similar samples together. Clustering methods has

been used vigorously for analyzing multi-dimensional transcriptomics data. Clustering one

dimensional data can be solved easily by using multi-level thresholding techniques, for

which efficient algorithms are known. Multilevel thresholding has been applied to many

1
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problems in signal and image processing and analysis. Examples are image segmentation,

vector and scalar quantization, finding peaks in histograms, processing microarray images

and finding enriched regions in next generation sequencing data [1–4].

1.1 Transcriptomics Data Analysis Using Machine Learn-

ing Methods

Transcriptomics data analysis is one of the areas that can benefit by using the computa-

tional methods. Clustering techniques are among those methods that can help scientists to

detect patterns in biological data. Clustering one dimensional data can be efficiently solved

using several techniques such as K-means, fuzzy K-means andmulti-level thresholding.

In particular, multilevel thresholding can solve this problem efficiently by using optimal,

polynomial time algorithms. In this thesis, multilevel thresholding is used for finding sub-

grids and spots in microarray images in Chapters 2 and 3. Thismethod is also used in

Chapters 4 and 5 for finding enriched regions in ChIP-Seq data. Feature selection methods

are among other machine learning techniques that can be usedto select a subset of relevant

features from a large set. There are different feature selection methods such as minimum

Redundancy Maximum Relevance (mRMR) [5] and chi-squared [6]. In this thesis we use

the chi-squared method in Chapter 6 to select a subset of genes that discriminate differ-

ent subtypes of beast cancer. Classification techniques areother types of machine learning

methods that can be used to train models for identifying unknown samples. There are dif-

ferent types of classification methods such as Decision tree[7], Bayes classifier [8], support

vector machines (SVMs) [9], fuzzy rule-based classification methods [10] and neural net-

works [11] among others. In this thesis, we use SVM in Chapter6 within a hierarchical
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scheme to classify different subtypes of breast cancer.

1.2 Microarray Image Processing and Analysis

A DNA microarray is a collection of microscopic DNA spots attached to a solid surface.

Using Microarrays, scientists are able to measure the expression levels of large numbers

of genes simultaneously. DNA microarray images are obtained by scanning DNA microar-

rays at high resolution and are composed of sub-grids of spots. There are different steps

toward analyzing DNA microarray images such as gridding, segmentation and quantifica-

tion among others. Gridding microarray images is one of the most important stages of

microarray image analysis, since any error in this step is propagated to further steps and

may reduce the integrity and accuracy of the analysis dramatically. DNA microarray im-

ages contain sub-grids, and each sub-grid contains a set of spots arranged in a grid with

a certain number of rows and columns. Figure 1.1 depicts a real DNA microarray image

downloaded from the Stanford Microarray Database (SMD) [12], which corresponds to a

study of the global transcriptional factors for hormone treatment ofArabidopsis thaliana

samples. The full image, Figure 1.1a, contains 12×4= 48 sub-grids. Each sub-grid, con-

tains 18× 18= 324 spots, which each has the resolution of 24× 24 pixels. One of the

sub-grids is shown in Figure 1.1b.

The aim of DNA microarray image processing and analysis is tofind the positions of

the spots and then identify the pixels that represent gene expression, separating them from

the background and noise. The main steps involved in processing and analyzing a DNA

microarray image are the following: spot addressing or gridding, segmentation, noise treat-

ment and removal and background correction, which are discussed in more detail below.

When producing DNA microarrays, many parameters are specified, such as the number
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Figure 1.1: (a) Original DNA microarray image, 20391-ch1 (green channel), from the
SMD; (b) sub-grid extracted from the 8th column and 3rd row.
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and size of spots, number of sub-grids, and even their exact locations. However, many

physicochemical factors produce noise, misalignment, andeven deformations in the sub-

grid template that it is virtually impossible to know the exact location of the spots after

scanning, at least with the current technology, without performing complex procedures.

Prior to applying the gridding process to find the locations of the spots, the sub-grids must

be identified, a process that is also known as sub-gridding. Once the sub-grids are identified,

the gridding step takes a sub-grid as input and aims to find theexact location of each spot.

Depending on how complex the mechanisms are, the gridding method may or may not

require some parameters about the sub-girds, namely the number of rows and columns of

spots, the size of the spots in pixels, and others. Various methods have been proposed for

solving this problem with some variations in terms of the amount of computer processing

time, user intervention and parameters required [13–17].

1.3 ChIP-Seq Data Analysis

There are certain types of proteins that bind to some regionsin DNA molecules, and these

events are related to transcription and translation of RNA molecules into proteins. Protein-

DNA binding has been studied using different biotechnological techniques such as ChIP-

chip, ChIP-on-chip and ChIP-Seq [18–22]. They all use chromatin immunoprecipitation

(ChIP), which precipitates a protein antigen out of the solution using a specific antibody

designed to attach to that protein of interest. Of these, ChIP-Seq combines ChIP tech-

nology with high throughput, next generation sequencing, which allows one to investigate

protein-DNA interactions more accurately. There are several advantages when using ChIP-

Seq as an alternative technology to ChIP-chip, which combines the ChIP with microarray

technology [23, 24]. Some of these are listed in Table 1.1, and include generating profiles
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Table 1.1: Comparison of ChIP-Seq and ChIP-chip technology.

ChIP-chip ChIP-Seq

Resolution 30-100 bp 1 bp
Coverage limited by sequence on the array whole genome

Required amount of ChIP DNA few micro grams 10-50 nano gram
cost $400-$800 per array $1000 per Illumina lane

with higher signal-to-noise ratios and a larger number of localized peaks. As observable

from the table, ChIP-Seq has much higher resolution in comparison with ChIP-chip tech-

nology. Also, one of the main issues in ChIP-chip technology, which is noise pollution due

to the hybridization step, does not exist in ChIP-Seq technology. Moreover, ChIP-Seq can

cover the whole genome, whereas in ChIP-chip the coverage islimited to the amount of

DNA attached to the array. Lastly, the amount of ChIP DNA required for performing the

analysis is much higher in ChIP-chip technology in comparison with ChIP-Seq.

Figure 1.2 shows the work flow of ChIP-Seq data analysis. First, the DNA chromatin

is sheared by sonication into small fragments (between 200-600 bp depends on the experi-

ment). Then, using an antibody specific to the protein of interest, the DNA-protein complex

is immunoprecipitated. Finally, after purifying DNA, the reads are sequenced and mapped

to the reference genome. In the peak calling module, which isthe step we focus on in this

thesis, the locations in DNA that interact with certain proteins of interest are determined.

After detecting those regions of interest, several analysis steps can be performed such as

visualization, motif discovery, combining the results with gene expression data, and others.
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Figure 1.2: Diagrammatic view of the work flow of ChIP-Seq data analysis.

1.4 Finding Transcriptomics Biomarkers

Finding relevant transcriptome biomarkers correspondingto a certain disease is a key step

toward efficient prediction and diagnosis of many diseases at early stages. Traditional gene

selection approaches usually consider transcriptome of cancer cells for comparison to the

patterns of normal cells in a cancer vs. non-cancer scenariofor finding relevant transcrip-

tome biomarkers. Here, we focus on a more challenging multi-class problem that consists

of determining relevant and informative transcriptomics biomarkers in various subtypes of
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a specific disease such as breast cancer.

While breast cancer is often thought of as a single disease, increasing evidence suggests

that there are multiple subtypes of breast cancer that occurat different rates in different

groups. They have their own specific treatment procedure, are more or less aggressive, and

even have different survival rates. Having their own genetic and transcriptomics signatures

makes the treatment procedure dramatically different fromone subtype to another. The

analysis in this case is more complicated, since each selected biomarker can be related to

one or more classes with different possibilities or impact levels and it is essential to stratify

patients into their relevant disease subtype prior to treatment. We address this problem by

proposing a hierarchical method that finds an optimal subsetof biomarkers for predicting a

patient’s subtype. It can be used for a wide range of diseasesconsisting a family of different

subtypes with the ability of using different machine learning techniques to optimize the

model based on the needs.

1.5 Motivation and Objectives

The first task in DNA microarray image processing is gridding, which, if done correctly,

substantially improves the efficiency of the subsequent tasks that include segmentation,

quantification, normalization and data mining [25]. Most ofthe proposed methods use

one or more parameters to adjust their algorithms to the input image. Using more param-

eters can decrease the flexibility of the method, since theseparameters are needed to be

adjusted carefully based on the features of each microarrayimage before running the grid-

ding algorithm. We introduced a parameterless and yet very powerful method for gridding

microarray images that removes the burden of fine-tuning theparameters while providing a

very high accuracy for finding the sub-grids within the microarray image as well as finding
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the spots within each sub-grid.

As mentioned earlier, next generation sequencing offers higher resolution, less noise,

and greater coverage in comparison with its microarray-based counterparts. Moreover, de-

termining the interaction between a protein and DNA to regulate gene expression is a very

important step toward understanding many biological processes and disease states. ChIP-

Seq is one of the techniques used for finding regions of interest in a specific protein that

interacts with DNA using next generation sequencing technology [26–32]. The growing

popularity of ChIP-Seq has increased the need to develop newalgorithms for peak finding.

Due to mapping challenges and biases in various aspects of the existing protocols, iden-

tifying relevant peaks is not a straightforward task. One ofthe problems of the existing

methods is that the locations of the detected peaks could be non-optimal. Moreover, for

detecting these peaks all methods use a set of parameters that may cause variations of the

results for different datasets. Thus, after some modifications, we proposed a new model for

finding the interaction sites between a protein of interest and DNA using multi-level thresh-

olding algorithm coupled with a model to find the best number of peaks based on clustering

techniques for pattern recognition that addresses both of these issues.

Another downside of the existing methods is that they try to find all the enriched regions

regardless of their length. These regions can be grouped by their length. For example,

histone modification sites normally have a length of 50 to 60 kbp, while some other regions

of interest like exons have a much smaller length of around 100 bp. Using these methods,

there is no way to focus on regions with a specific length and all of the relevant peaks should

be detected first. This is a time consuming task that forces the model to process all possible

regions. We also proposed a modified version of multi-level thresholding to deal with this

issue. Using the proposed method, we are able to search a specific region with a certain
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length which consequently increases the accuracy and performance of the model.

On the other hand, as discussed in Section 1.4, another problem that is relevant in tran-

scriptomics data analysis is finding the most informative genes associated with different

subtypes of breast cancer, which is an important problem in breast cancer biomarker dis-

covery. Finding relevant genes corresponding to each type of cancer is a key step toward

efficient diagnosis and treatment of cancer. Machine learning approaches can be used to

precisely determine the number of genes required to predicta patient subtype with a high

degree of reliability. Moreover, modeling today’s complexbiological systems requires ef-

ficient computational models to extract the most valuable information from existing data.

In this direction, pattern recognition techniques in machine learning provide a wealth of

algorithms for feature extraction and selection, classification and clustering.

1.6 Contributions

The contributions of the thesis are based on using machine learning techniques for tran-

scriptome data analysis. We propose various models and algorithms applicable on different

transcriptome analysis technology. The main contributions of this thesis are summarized as

follows:

• Proposing the optimal multi-level thresholding gridding (OMTG) method for finding

sub-grids in microarray image and spots within each detected sub-grid. The proposed

method is free of parameters (Chapter 2). We also proposed a new validity index (α)

for finding the optimal number of sub-grids in microarray image and optimal number

of spots within each sub-grid (Chapters 2 and 3). OMTG was originally proposed

in 2011 for gridding microarray images. Since then, different articles have cited the
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authors’ proposed method for microarray image gridding. Table 1.2 shows the list of

these publications.

• Adapting the proposed optimal multi-level thresholding model as a new framework

(OMT) to find the interaction points between a protein of interest and DNA (Chapter

4) . Also, proposing a new high performance constrained based approach (CMT)

used to find enriched regions in ChIP-Seq data (Chapter 5).

• Proposing a framework usingChi2 feature selection [33] and asupport vector ma-

chine (SVM) classifier[34] to obtain biologically meaningful genes, and to increase

the accuracy for predicting breast tumor subtypes. The proposed model is flexible, in

the sense that any feature selection and classifier can be embedded in it. The model

can be used for prediction and diagnosis of various diseaseswith different subtypes

(Chapter 6). We also discovered a new, compact set of biomarkers or genes useful for

distinguishing among breast cancer types (Chapter 6).

1.7 Thesis Organization

The thesis is organized in seven chapters. Chapters 2 and 3 cover the topics related to the

proposed optimal multilevel thresholding algorithm and its application in DNA microarray

image analysis as follows:

Chapter 2: Luis Rueda, Iman Rezaeian: A Fully Automatic Gridding Method for cDNA

Microarray Images. BMC Bioinformatics (2011) 12: 113.

Chapter 3: Luis Rueda, Iman Rezaeian: Applications of Multilevel Thresholding Algo-

rithms to Transcriptomics Data. Progress in Pattern Recognition, Image Analysis,
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Table 1.2: The list of papers that have cited the proposed method by the author.

Year Title Reference

2011
Automatic Spot Identification for High Throughput Mi-
croarray Analysis

[47]

2012
FPGA based system for automatic cDNA microarray im-
age processing

[35]

2012
Denoising and block gridding of microarray image using
mathematical morphology

[40]

2012
An improved automatic gridding based on mathematical
morphology

[42]

2012
An improved automatic gridding method for cDNA mi-
croarray images

[43]

2013
Two dimensional barcode-inspired automatic analysis for
arrayed microfluidic immunoassays

[48]

2013
A New Gridding Technique for High Density Microarray
Images Using Intensity Projection Profile of Best Sub Im-
age

[37]

2013
Recognition of cDNA micro-array image based on artifi-
cial neural network

[38]

2013
Using the Maximum Between-Class Variance for Auto-
matic Gridding of cDNA Microarray Images

[41]

2013
An improved SVM method for cDNA microarray image
segmentation

[44]

2013 A new method for gridding DNA microarrays [36]

2014
gitter: A Robust and Accurate Method for Quantification
of Colony Sizes from Plate Images

[46]

2014
Crossword: A fully automated algorithm for the image seg-
mentation and quality control of protein microarrays

[39]

2014
An Effective Automated Method for the Detection of Grids
in DNA Microarray

[45]
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Computer Vision, and Applications - 16th Iberoamerican Congress (CIARP), Chile,

2011: 26-37.

Chapters 4 and 5 cover two proposed methods for analyzing ChIP-Seq data as follows:

Chapter 4: Iman Rezaeian, Luis Rueda: A new algorithm for finding enriched regions in

ChIP-Seq data. ACM International Conference on Bioinformatics, Computational

Biology and Biomedicine (ACM-BCB), Chicago, USA, 2012: 282-288.

Chapter 5: Iman Rezaeian, Luis Rueda: CMT: A Constrained Multi-Level Thresholding

Approach for ChIP-Seq Data Analysis. PLoS ONE 9(4): e93873,2014.

Similarly, a novel method for finding a subset of most informative genes to classify

breast cancer subtypes is included in Chapter 6.

Chapter 6: Iman Rezaeian, Yifeng Li, Martin Crozier, Eran Andrechek, Alioune Ngom,

Luis Rueda, Lisa Porter: Identifying Informative Genes forPrediction of Breast Can-

cer Subtypes. Pattern Recognition in Bioinformatics - 8th IAPR International Con-

ference (PRIB), France, 2013: 138-148.

Finally, Chapter 7 concludes the thesis and identifies some problems arising from this

work and relevant future work.
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Chapter 2

A Fully Automatic Gridding Method for

cDNA Microarray Images

2.1 Background

Microarrays are one of the most important technologies usedin molecular biology to mas-

sively explore how the genes express themselves into proteins and other molecular ma-

chines responsible for the different functions in an organism. These expressions are moni-

tored in cells and organisms under specific conditions, and have many applications in med-

ical diagnosis, pharmacology, disease treatment, just to mention a few. We consider cDNA

microarrays which are produced on a chip (slide) by hybridizing sample DNA on the slide,

typically in two channels. Scanning the slides at a very highresolution produces images

composed of sub-grids of spots. Image processing and analysis are two important aspects

of microarrays, since the aim of the whole experimental procedure is to obtain meaningful

biological conclusions, which depends on the accuracy of the different stages, mainly those

at the beginning of the process. The first task in the sequenceis gridding [1–5], which if

21
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done correctly, substantially improves the efficiency of the subsequent tasks that include

segmentation [6], quantification, normalization and data mining. When producing cDNA

microarrays, many parameters are specified, such as the number and size of spots, num-

ber of sub-grids, and even their exact locations. However, many physicochemical factors

produce noise, misalignment, and even deformations in the sub-grid template that it is vir-

tually impossible to know the exact location of the spots after scanning, at least with the

current technology, without performing complex procedures. Roughly speaking, gridding

consists of determining the spot locations in a microarray image (typically, in a sub-grid).

The gridding process requires the knowledge of the sub-girds in advance in order to proceed

(sub-gridding).

Many approaches have been proposed for sub-gridding and spot detection. The Markov

random field (MRF) is a well known approach that applies different constraints and heuris-

tic criteria [1,7]. Mathematical morphology is a techniqueused for analysis and processing

geometric structures, based on set theory, topology, and random functions. It helps re-

move peaks and ridges from the topological surface of the images, and has been used for

gridding the microarray images [8]. Jain’s [9], Katzer’s [10], and Stienfath’s [11] mod-

els are integrated systems for microarray gridding and quantitative analysis. A method

for detecting spot locations based on a Bayesian model has been recently proposed, and

uses a deformable template to fit the grid of spots using a posterior probability model for

which the parameters are learned by means of a simulated-annealing-based algorithm [1,3].

Another method for finding spot locations uses a hill-climbing approach to maximize the

energy, seen as the intensities of the spots, which are fit to different probabilistic models [5].

Fitting the image to a mixture of Gaussians is another technique that has been applied to

gridding microarray images by considering radial and perspective distortions [4]. A Radon-
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transform-based method that separates the sub-grids in a cDNA microarray image has been

proposed in [12]. That method applies the Radon transform tofind possible rotations of the

image and then finds the sub-grids by smoothing the row or column sums of pixel intensi-

ties; however, that method does not automatically find the correct number of sub-grids, and

the process is subject to data-dependent parameters.

Another approach for cDNA microarray gridding is a griddingmethod that performs a

series of steps including rotation detection and compares the row or column sums of the

top-most and bottom-most parts of the image [13,14]. This method, which detects rotation

angles with respect to one of the axes, eitherx or y, has not been tested on images having

regions with high noise (e.g., the bottom-most1
3 of the image is quite noisy).

Another method for gridding cDNA microarray images uses an evolutionary algorithm

to separate sub-grids and detect the positions of the spots [15]. The approach is based on a

genetic algorithm that discovers parallel and equidistantline segments, which constitute the

grid structure. Thereafter, a refinement procedure is applied to further improve the existing

grid structure, by slightly modifying the line segments.

Using maximum margin is another method for automatic gridding of cDNA microarray

images based on maximizing the margin between rows and columns of spots [16]. Initially,

a set of grid lines is placed on the image in order to separate each pair of consecutive rows

and columns of the selected spots. Then, the optimal positions of the lines are obtained by

maximizing the margin between these rows and columns using amaximum margin linear

classifier. For this, a SVM-based gridding method was used in[17]. In that method, the

positions of the spots on a cDNA microarray image are first detected using image analysis

operations. A set of soft-margin linear SVM classifiers is used to find the optimal layout of

the grid lines in the image. Each grid line corresponds to theseparating line produced by
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one of the SVM classifiers, which maximizes the margin between two consecutive rows or

columns of spots.

2.2 Results and Discussion

For testing the proposed method (called Optimal Multi-level Thresholding Gridding or

OMTG), three different kinds of cDNA microarray images havebeen used. The images

have been selected from different sources, and have different scanning resolutions, in order

to study the flexibility of the proposed method to detect sub-grids and spots with different

sizes and features.

The first test suite consists of a set of images drawn from the Stanford Microarray

Database (SMD), and corresponds to a study of the global transcriptional factors for hor-

mone treatment ofArabidopsis thalianasamples. The images can be downloaded from

smd.princeton.edu, by selecting “Hormone treatment” as category and “Transcription fac-

tors” as subcategory. Ten images were selected, which correspond to channels 1 and 2 for

experiments IDs 20385, 20387, 20391, 20392 and 20395. The images have been named

using AT (which stands forArabidopsis thaliana), followed by the experiment ID and the

channel number (1 or 2).

The second test suite consists of a set of images from Gene Expression Omnibus (GEO)

and corresponds to an Atlantic salmon head kidney study. Theimages can be downloaded

from ncbi.nlm.nih.gov, by selecting “GEO Datasets” as category and searching the name

of the image. Eight images were selected, which correspond to channels 1 and 2 for ex-

periments IDs GSM16101, GSM16389 and GSM16391, and also channel 1 of GSM15898

and channel 2 of GSM15898. The images have been named using GSM followed by the

experiment ID, and the channel number (1 or 2).



CHAPTER 2. 25

The third test suite consists of two images, obtained from a dilution experiment (DILN)

and correspond to channels experiments IDs Diln4-3.3942.01A and Diln4-3.3942.01B [18].

The specifications of the cDNA microarray images for each of these three test suites are

summarized in Table 2.1.

Table 2.1: The specifications of the three datasets of cDNA microarray images used to
evaluate the proposed method.

Suite Name SMD GEO DILN

Database Name
Stanford
Microarray
Database

Gene Expression
Omnibus

Dilution Experiment

Image Format Tiff Tiff Tiff
No. of Images 10 8 2

Image Resolution 1910×5550 1900×5500 600×2300
Sub-grid Layout 12×4 12×4 5×2

Spot Layout 18×18 13×14 8×8
Spot Resolution 24×24 12×12 from 12×12 to 3×3

To assess the performance of the proposed method, we consider the percentage of the

grid lines that separate sub-grids/spots incorrectly, marginally and perfectly. Each spot

was evaluated as being perfectly, marginally or incorrectly gridded if the percentage of its

pixels within the grid cell is 100%, between 80% and 100%, or less than 80% respectively

[16]. These quantities were found by visually analyzing theresult of the gridding produced

by our method. For SMD and GEO, our gridding was not compared with the gridding

currently available in these databases. For DILN, apart from the visual analysis, we also

apply segmentation and quantification by computing the volume of log of intensity and

relate these to the rate of dilution in the biological experiment. For the implementation,

we used Matlab2010 on a Windows 7 platform and an Intel core i7870 cpu with 8GB of

memory. The average processing times for sub-grid and spot detections are shown in Table
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2.2.

Table 2.2: Average processing times (in seconds) for detecting sub-grids within each cDNA
microarray image and detecting spots within each detected sub-grid.

Sub-grid Detection Spot Detection
SMD 379.1 10.8
GEO 384.7 9.2
DILN 62.3 3.8

2.2.1 Sub-grid and Spot Detection Accuracy

Table 2.3 shows the results of applying the proposed method,OMTG, for spot detection on

the SMD dataset. With the proposed method, spot locations can be detected very efficiently

with an average accuracy of 98.06% for this dataset. The samesets of experiments were re-

peated for the GEO dataset and the results are shown in Table 2.4. Again, the spot locations

are detected very efficiently with an average accuracy of 99.26%. The experiments were

repeated for the DILN dataset and the results are shown in Table 2.5. Although the sizes of

the spots in each sub-grid are different in this dataset, thespot locations are detected very

efficiently with an average accuracy of 97.95%. In most of theimages, the performance

of the method is more than 98% and incorrectly and marginallyaligned rates are less than

1%. Only in a few images with noticeable noise and defects, the accuracy of the method

is less than 98%, while incorrectly aligned rates increase to more than 2%. This shows the

flexibility and power of the proposed method. For all the images, in the sub-grid detection

phase, the incorrect and marginal gridding rates are both 0%, yielding an accuracy of 100%.

This means the proposed method works perfectly in sub-grid detection for this case.

One of the reasons for the lower accuracy in spot detection isthat the distance between

spots is smaller than the distance between sub-grids. In allthree datasets, there are approxi-
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Table 2.3: Accuracy of detected sub-grids and spots for eachimage of the SMD dataset and
the corresponding incorrectly, marginally and perfectly aligned rates.

Sub-grid Detection Spot Detection
Image Incorrectly Marginally Perfectly Incorrectly Marginally Perfectly

AT-20385-CH1 0.0% 0.0% 100% 4.30% 0.46% 95.24%
AT-20385-CH2 0.0% 0.0% 100% 2.83% 0.09% 97.08%
AT-20387-CH1 0.0% 0.0% 100% 2.90% 0.14% 96.96%
AT-20387-CH2 0.0% 0.0% 100% 0.52% 0.11% 99.37%
AT-20391-CH1 0.0% 0.0% 100% 0.64% 0.17% 99.19%
AT-20391-CH2 0.0% 0.0% 100% 0.32% 0.26% 99.42%
AT-20392-CH1 0.0% 0.0% 100% 4.10% 0.33% 95.57%
AT-20392-CH2 0.0% 0.0% 100% 0.21% 0.25% 99.54%
AT-20395-CH1 0.0% 0.0% 100% 0.41% 0.12% 99.47%
AT-20395-CH2 0.0% 0.0% 100% 0.98% 0.31% 98.71%

Table 2.4: Accuracy of detected sub-grids and spots for eachimage of the GEO dataset and
the corresponding incorrectly, marginally and perfectly aligned rates.

Sub-grid Detection Spot Detection
Image Incorrectly Marginally Perfectly Incorrectly Marginally Perfectly

GSM15898-CH1 0.0% 0.0% 100% 0.58% 0.16% 99.26%
GSM15899-CH2 0.0% 0.0% 100% 1.00% 0.21% 98.79%
GSM16101-CH1 0.0% 0.0% 100% 0.00% 0.32% 99.68%
GSM16101-CH2 0.0% 0.0% 100% 1.57% 0.06% 98.37%
GSM16389-CH1 0.0% 0.0% 100% 0.79% 0.12% 99.09%
GSM16389-CH2 0.0% 0.0% 100% 0.57% 0.04% 99.39%
GSM16391-CH1 0.0% 0.0% 100% 0.00% 0.24% 99.76%
GSM16391-CH2 0.0% 0.0% 100% 0.14% 0.13% 99.73%

Table 2.5: Accuracy of detected sub-grids and spots for eachimage of the DILN dataset
and the corresponding incorrectly, marginally and perfectly aligned rates.

Sub-grid Detection Spot Detection
Image Incorrectly Marginally Perfectly Incorrectly Marginally Perfectly

Diln4-3.3942.01A 0.0% 0.0% 100% 2.23% 0.05% 97.72%
Diln4-3.3942.01B 0.0% 0.0% 100% 1.71% 0.11% 98.18%
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mately eight pixels between spots, and approximately 30 pixels horizontally and 100 pixels

vertically between sub-grids in the SMD dataset, 200 pixelsin the GEO dataset and 25 pix-

els horizontally, and 200 pixels vertically in the DILN dataset. Another possible reason for

this behavior is that the number of pixels in each sub-grid isfar lower than that of a microar-

ray image (around 1/50). Thus, the noise present in the image affects the spot detection

phase much more than the sub-grid extraction stage. It is important to highlight, however,

that because of the relatively large distance between sub-grids, the detection process is not

affected by the presence of noise.

Additionally, to evaluate the effectiveness of the refinement procedure, we tested the

accuracy of the proposed method with and without applying the refinement procedure. The

results are shown in Table 2.6. For simplicity, we only include those images in which

there is a change in accuracy. We observe that applying the refinement procedure slightly

improve the efficiency of the method in all the images in the table.

Table 2.6: The accuracy of the proposed method with and without using the refinement
procedure in the spot detection phase. Only images with changes in accuracy are listed.

Without Refinement Procedure With Refinement Procedure
Image Incorrectly Marginally Perfectly Incorrectly Marginally Perfectly

AT-20385-CH1 4.73% 0.79% 94.48% 4.30% 0.46% 95.24%
AT-20387-CH2 0.93% 0.54% 98.53% 0.52% 0.11% 99.37%
AT-20391-CH2 0.71% 0.58% 98.71% 0.32% 0.26% 99.42%
AT-20395-CH2 1.37% 0.76% 97.87% 0.98% 0.31% 98.71%

GSM16101-CH2 2.13% 0.21% 97.66% 1.57% 0.06% 98.37%
GSM16389-CH1 0.93% 0.19% 98.88% 0.79% 0.12% 99.09%
GSM16391-CH2 0.47% 0.26% 99.27% 0.14% 0.13% 99.73%

To analyze the results from a different perspective, we havealso performed a visual

analysis. Figure 2.1 shows the detected sub-grids in the AT-20387-ch2 image (left) and the

detected spots in one of the sub-grids (right). Also, Figure2.2 shows the sub-grids detected
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in the GSM16101-ch1 image (left) and the detected spots in one of the sub-grids (right),

while Figure 2.3 shows the sub-grids detected in the Diln4-3.3942B image (left) and the

detected spots in one of the sub-grids (right). As shown in the all three figures, the proposed

method finely detects the sub-grid locations first, and in thenext stage, each sub-grid is

divided precisely into the corresponding spots with the same method. The robustness of

OMTG is so high that spots in sub-grids can be detected very well even in noisy conditions,

such as those observable in the selected sub-grid in Figure 2.1. The ability to detect sub-

grids and spots in different microarray images with different resolutions and spacing is

another important feature of the proposed method.

As mentioned earlier, deformations, noise and artifacts can affect the accuracy of the

proposed method. Figure 2.4 shows an example in which the proposed method fails to

detect some spot regions due to the extremely contaminated regions with noise and artifacts.

In this particular sub-grid, noisy regions tend to be confused with spots. Also, most spots

have low intensities that are confused with the background.After testing other methods on

this image, we observed that they also fail to detect the correct gridding in these regions.

To further analyze the efficiency of the proposed method to automatically detect the

correct number of spots and sub-grids, we show in Figures 2.5, 2.6 and 2.7 the plots for

the indices of validity against the number of sub-grids for AT-20387-ch2 , GSM16101-ch1

and Diln4-3.3942B respectively. The plots on top of the figures represent the values of

the index functions (y axis) for detecting the horizontal lines for theI, A and α indices

respectively, while the plots of the indices for the vertical separating lines are shown at

the bottom of the figures. We observe that it would be rather difficult to find the correct

number of sub-grids using theI index or theA index, while theα index clearly reveals the

correct number of horizontal and vertical sub-grids by producing an almost flat curve with
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Figure 2.1: Sub-grid and spot detection in one of the SMD dataset images. Detected sub-
grids in AT-20387-ch2 (left), and detected spots in one of the sub-grids (right).

pronounced peaks at 4 and 12 respectively for SMD and GEO images, and pronounced

peaks at 2 and 5 respectively for DILN images. For example, itis clearly observable at the

bottom plots in Figures 2.5 and 2.6 that theI index misses the correct number of sub-grids,
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Figure 2.2: Sub-grid and spot detection in one of the GEO dataset images. Detected sub-
grids in GSM16101-ch1 (left), and detected spots in one of the sub-grids (right).
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Figure 2.3: Sub-grid and spot detection in one of the DILN dataset images. Detected sub-
grids in Diln4-3.3942B (left) and detected spots in one of the sub-grids (right).
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Figure 2.4: Failure to detect some spot regions due to the extremely contaminated images
with artifacts in the sub-grid located in the first row and fourth column of AT-20392-ch1
from the SMD dataset.

12, by showing a higher peak at 13, while theα index finds the correct number of vertical

sub-grids accurately.

2.2.2 Rotation Adjustment Accuracy

To test the effect of the Radon transform we rotate two of the images 5,10,15,20 and 25

degrees in both clockwise and counter-clockwise directions. Figure 2.8 shows the images

rotated by -20, -10, 10 and 20 degrees (left) and the result ofthe adjustment after applying

the Radon transform (right). Also, Table 2.7 shows the accuracy of the proposed method

on two of the rotated images. In all cases, the adjustment method works accurately and

corrects the rotations in both directions. Moreover, as shown in Table 2.7, the accuracy of

the method remains nearly constant for all cases regardlessof the degree of rotation.
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Figure 2.5: Plots of the index functions for AT-20387-ch2: (top) the values of theI, A and
α indices for horizontal separating lines, and (bottom) the values of theI, A andα indices
for vertical separating lines.

2.2.3 Comparison with other methods

A conceptual comparison between the proposed method, OMTG,and other microarray im-

age griding methods based on their features is shown in Table2.8. The methods included

in the comparison are the following: (i) Radon transform sub-gridding (RTSG) [12], (ii)

Bayesian simulated annealing gridding (BSAG) [3], (iii) genetic-algorithm-based gridding
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(GABG) [15], (iv) hill-climbing gridding (HCG) [5], (v) maximum margin microarray grid-

ding (M3G) [16], and the proposed method, OMTG. As shown in the table, as opposed to

other methods, OMTG does not need any number-based parameter, and hence making it

much more powerful than the previous ones. One could argue, however, that the index or

thresholding criterion can be considered as a “parameter”.We have “fixed” these two on the

α indexand thebetween classcriterion, and experimentally shown the efficiency of OMTG

Figure 2.6: Plots of the index functions for the GSM16101-ch1: (top) the values of theI,
A andα indices for horizontal separating lines, and (bottom) the values of theI, A andα
indices for vertical separating lines.
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Figure 2.7: Plots of the index functions for the Diln4-3.3942B: (top) the values of theI,
A andα indices for horizontal separating lines, and (bottom) the values of theI, A andα
indices for vertical separating lines.

on various cDNA microarray images with different configurations.

An experimental comparison of the proposed method with GABGand HCG is shown

in Table 2.9. As opposed to the proposed method that needs no parameters, GABG needs

to set several parameters such as the mutation rate,µ, the crossover rate,c, the maximum

threshold probability,pmax, the minimum threshold probability,plow, the percentage of lines

with low probability to be a part of the grid,fmax and the refinement threshold,Tp. Also,
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Figure 2.8: Rotation adjustment of AT-20387-ch2. Four different rotations from -20 to 20
degrees with steps of 10 degrees (left), and the adjusted image after applying the Radon
transform (right).

HCG needs to set some parameters such asλ andσ. As shown in the table, the accuracy

of our method is much higher than GABG and HCG. Since GABG and HCG use several

parameters, to obtain good results for the SMD, GEO and DILN datasets, all the parameters

must be set manually and separately for each dataset. If the same parameters for one of

datasets were used for the others, unpredictable and poor results would be obtained – the
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Table 2.7: Accuracy of detected spots for different rotations of AT-20395-CH1 and
GSM16391-CH2, and the corresponding incorrectly, marginally and perfectly aligned rates.

AT-20395-CH1 GSM16391-CH2
Rotation Incorrectly Marginally Perfectly Incorrectly Marginally Perfectly

none 0.41% 0.12% 99.47% 0.14% 0.13% 99.73%
5◦ 0.41% 0.12% 99.47% 0.14% 0.13% 99.73%
10◦ 0.43% 0.12% 99.45% 0.15% 0.14% 99.71%
15◦ 0.41% 0.13% 99.46% 0.14% 0.13% 99.73%
20◦ 0.42% 0.13% 99.45% 0.15% 0.14% 99.71%
25◦ 0.42% 0.15% 99.43% 0.14% 0.15% 99.71%
−5◦ 0.41% 0.12% 99.47% 0.14% 0.13% 99.73%
−10◦ 0.41% 0.12% 99.47% 0.14% 0.13% 99.73%
−15◦ 0.42% 0.13% 99.45% 0.14% 0.14% 99.72%
−20◦ 0.42% 0.14% 99.44% 0.15% 0.13% 99.72%
−25◦ 0.42% 0.16% 99.42% 0.14% 0.15% 99.71%

accuracy of both methods could decrease to as low as 50%. Thismakes these methods fully

dependent on the parameters, which have to be set manually and for specific datasets. The

proposed method, however, does not need any parameter at all, and works exceptionally

well in different kinds of images with different resolutions and noisy conditions.

2.2.4 Biological Analysis

In order to assess the proposed method on its suitability to perform in accordance with

the biological problem, we analyze the quantification results and their relationships with

the dilution experiment on the DILN dataset. To compute the volume intensity of each

spot, first, we useSobelmethod to detect the edge of each spot and then the region within

the edge is defined as the primary region of each spot. The Sobel method finds edges of

the spot using the Sobel approximation to the derivative andreturns edges at those points

where the gradient of image is maximum. In the next step, a setof morphological dilation

and erosion operators are used to decrease the noise and artifacts in the region identified
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Table 2.8: Conceptual comparison of our proposed method with other recently proposed
methods based on the required number and type of input parameters and features.

Method Parameters
Sub-grid
Detection

Spot De-
tection

Automatic
Detection
No. of
Spots

Rotation

RTSG n: Number of sub-grids
√ × × √

BSAG
α ,β: Parameters for bal-
ancing prior and posterior
probability rates

× √ √ √

GABG

µ , c :Mutation and
Crossover rate, pmax:
probability of maximum
threshold,plow: probabil-
ity of minimum threshold,
fmax : percentage of line
with low probability to
be a part of grid, Tp:
Refinement threshold

√ √ √ √

HCG
λ , σ: Distribution param-
eters

× √ √ ×
M3G c: Cost parameter × √ √ √

OMTG None
√ √ √ √

Table 2.9: The results of the comparison between the proposed method (OMTG) and the
GABG and HCG methods proposed in [5] and [15] respectively.

Dataset Method Incorrectly Marginally Perfectly

SMD
OMTG 1.72% 0.22% 98.06%
GABG 5.37% 0.51% 94.12%
HCG 2.12% 1.23% 96.65%

GEO
OMTG 0.58% 0.16% 99.26%
GABG 4.49% 0.32% 95.19%
HCG 2.55% 0.74% 96.71%

DILN
OMTG 1.97% 0.08% 97.95%
GABG 4.35% 0.34% 95.31%
HCG 3.78% 0.65% 95.57%
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for each spot. Finally, the summation of all pixel intensities in the spot are used as the

level of expression of the gene associated with that spot; this summation represents the

volumeof the spot. Table 2.10 shows the volume intensity of each dilution step for images

A and B respectively. As shown in the table, the proposed method estimates the average

intensities of dilution steps very well with near linear decreasing steps. Also, Figure 2.9

shows log-plots of the dilution steps for all 80 cases and themean of them with a red

line. The reference line with slope -1 is also shown in black.As shown in this figure, in

most parts of the dilution experiment, the estimated intensities of each case follow a linear

relationship. In step 4 of the dilution steps, there is an irregularity in the linearity of the

red curve as shown in Table 2.10 and Figure 2.9. The reason forthis irregularity is that, in

some sub-grids of Diln4-3.3942.01A and Diln4-3.3942.01B,the intensities of the spots in

step 4 are smaller than those of step 5. One example of this canbe seen in the third and

last rows of the sub-grids in Figure 2.10. As shown in Figure 2.10(b), this decrease in the

intensity of the spots causes a slight nonlinearity in step 4of the dilution steps. In general,

we observe that the proposed method is able to capture the nonlinear relationships present

in the dilution experiments. This is observable in the log-plots of Figure 2.9, as the black

line follows the array of logs of spot volumes.

Table 2.10: Logs of volume intensities of each dilution stepfor images A and B from the
DILN dataset.

Dilution steps Diln4-3.3942.01A Diln4-3.3942.01B
1 22.02 21.75
2 20.63 20.78
3 19.75 19.94
4 18.12 18.05
5 17.98 18.25
6 16.98 17.03
7 16.18 16.17
8 15.07 15.46
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2.3 Conclusions

A new method for separating sub-grids and spot centers in cDNA microarray images is pro-

posed. The method performs four main steps involving the Radon transform for detecting

rotations with respect to thex andy axes, the use of polynomial-time optimal multilevel

thresholding to find the correct positions of the lines separating sub-grids and spots, a new

index for detecting the correct number of sub-grids and spots and, finally, a refinement

procedure to increase the accuracy of the detection.

The proposed method has been tested on real-life, high-resolution microarray images

drawn from three sources, the SMD, GEO and DILN. The results show that (i) the rota-

tions are effectively detected and corrected by affine transformations, (ii) the sub-grids are

accurately detected in all cases, even in abnormal conditions such as noisy areas present in

the images, (iii) the spots in each sub-grid are accurately detected using the same method,

(iv) using the refinement procedure increases the accuracy of the method, and (v) because

of using an algorithm free of parameters, this method can be used for different microarray

images in various situations, and also for images with various spot sizes and configurations

effectively. The results have also been biologically validated on dilution experiments.

2.4 Methods

A cDNA microarray image typically contains a number of sub-grids, and each sub-grid

contains a number of spots arranged in rows and columns. The aim is to perform a two-

stage process in such a way that the sub-grid locations are found in the first stage, and

then spots locations within a sub-grid can be found in the second stage. Consider an image

(matrix) A= {ai, j}, i = 1, ....,n and j = 1, ....,m, whereai j ∈ Z
+, andA is a sub-grid of a
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Figure 2.9: The logs of spot volumes that correspond to the dilution steps in Diln4-
3.3942.01A (top) and Diln4-3.3942.01B (bottom). The red lines show the average of logs
of spot volumes in different dilution steps. The black line corresponds to the reference line
with slope equal to -1.
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Figure 2.10: Detected sub-grids and the corresponding horizontal and vertical histogram.
(a) detected sub-grids in Diln4-3.3942.01A, (b) vertical histogram (c) horizontal histogram.
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cDNA microarray image. The method is first applied to a microarray image that contains a

template of rows and columns of sub-grids (usually,ai j is in the range [0..65,535] in a TIFF

image). The aim of the first stage, sub-gridding, is to obtainvectors,h = [h1, ...hp−1]
t and

v = [v1, ...vq−1]
t , wherevi ∈ [1,m], h j ∈ [1,n] andp andq are the number of horizontal and

vertical sub-grids respectively. These horizontal and vertical vectors are used to separate

the sub-grids.

Ones the sub-grids are obtained, the gridding process, namely finding the locations of

the spots in a sub-grid, can be defined analogously. The rectangular area between two adja-

cent horizontal vectorsh j andh j+1, and two adjacent vertical vectorsvi andvi+1 delimit the

area corresponding to a spot (spot region). The aim of gridding is to find the correspond-

ing spot locations given by the horizontal and vertical adjacent vectors. Post-processing or

refinement allows us to find a spot region for each spot, which is enclosed by four lines.

To perform the gridding procedure our method may not need to know the number of

sub-grids or spots. Although in many cases, based on the layout of the printer pins, the

number of sub-grids or spots are known, due to misalignments, deformations, artifacts or

noise during producing the microarray images, these numbers may not be accurate or un-

available. On the other hand, the optimal multi-level thresholding method needs the number

of thresholds (sub-grids or spots) to be specified. Thus, we use an iterative approach to find

the gridding for every possible number of thresholds, and then evaluate it with the proposed

α index to find the best number of thresholds.

The sub-grids in a microarray image are detected by applyingthe Radon transform as a

pre-processing phase and then using optimal multilevel thresholding in the next stage. By

combining the optimal multilevel thresholding method and theα index (2.12) , the correct

number of thresholds (sub-grids) can be found. Figure 2.11 depicts the process of finding
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Figure 2.11: Schematic representation of the process for finding sub-grids (spots) in a
cDNA microarray image.

the sub-grids in a microarray image and the spots in a sub-grid. The input to the Radon

transform is a cDNA microarray image and the output of the whole process is the location

(and partitioning) of the sub-grids. Analogously, the locations of the spots in each sub-grid

are found by using optimal multilevel thresholding combined with the proposedα index

to find the best number of rows and columns of spots. The input for this process is a sub-

grid (already extracted from the sub-gridding step) and theoutput is the partitioning of the

sub-grids into spots (spot regions).
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2.4.1 Rotation Adjustment

Rotations of the images are seen in two different directions, with respect to thex andy axes.

To find two independent angles of rotation for an affine transformation, the Radon trans-

form is applied. Given an imageA= {ax,y}, the Radon transform performs the following

transformation:

R(p, t) =
∫ ∞

−∞
ax,t+pxdx, (2.1)

wherep is the slope andt its intercept. The rotation angle of the image with respect to

the slopep is given byφ = arctanp. For the sake of the notation,R(φ, t) is used to denote

the Radon transform of imageA. Each rotation angleφ gives a different one-dimensional

function, and the aim is to obtain the angle that gives the best alignment with the lines. This

will occur when the lines areparallel to they-axis. The best alignment will occur at the

angleφmin that minimizes theentropyas follows [1]:

H(φ) =−
∞

∑
t=−∞

R′(φ, t) logR′(φ, t)dt . (2.2)

R(φ, t) is normalized intoR′(φ, t), such that∑t R′(φ, t) = 1. The positions of the pixels in

the new image,[uv], are obtained as follows:

[u v] = [x y]






cosφminx sinφminy

−sinφminy cosφminx




 , (2.3)

whereφminx andφminy are the best angles of rotation found by the Radon transform.
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2.4.2 Optimal Multilevel Thresholding

Image thresholding is one of the most widely-used techniques that has many applications

in image processing, including segmentation, classification and object recognition. Given a

sub-grid, we compute the row or column sums of pixel intensities, obtaining a discrete one

dimensional function, where the domain is given by the positions of the rows/columns of

pixels. In this work, that function is considered as a histogram or projection in which each

bin represents one column (or row respectively), and the rowor column sum of intensities

corresponds to the frequency of that bin. We use the terms “histogram” or “sum” indis-

tinctly. The frequencies are then normalized in order to be considered as probabilities of

the corresponding bins. Figure 2.12 depicts a typical cDNA microarray image (AT-20387-

ch2) that contains 12× 4 sub-grids, along with the corresponding row or column sums.

Also, Figure 2.13 depicts one of its sub-grids along with thecorresponding row and col-

umn sums. Each row or column sum is then processed (see below)to obtain the optimal

thresholding that will determine the locations of the sub-grids (spots).

Although various parametric and non-parametric thresholding methods and criteria have

been proposed, the three most important streams are Otsu’s method, which aims to maxi-

mize the separability of the classes measured by means of thesum of between-class vari-

ances [19], the one that uses information theoretic measures in order to maximize the sep-

arability of the classes [20], and the minimum error criterion [21]. In this work, we use the

between-class variance criterion [19].

Consider a histogramH, an ordered set{1,2, . . . ,n− 1,n}, where theith value cor-

responds to theith bin and has a probability,pi . Given an image,A = {ai, j} , as dis-

cussed earlier,H can be obtained by means of the horizontal (vertical) sum as follows:

pi = ∑m
j=1ai, j (p j = ∑n

i=1ai, j). We also consider a threshold setT, defined as an ordered
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Figure 2.12: Sub-grid detection in a microarray image from the SMD dataset. (a) detected
sub-grids in AT-20387-ch2 from the SMD dataset, (b) horizontal histogram and detected
valleys corresponding to horizontal lines, (c) vertical histogram and detected valleys corre-
sponding to vertical lines.
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Figure 2.13: Spot detection in a sub-grid from AT-20387-ch2. (a) detected spots in one of
the sub-grids in AT-20387-ch2, (b) horizontal histogram and detected valleys corresponding
to horizontal lines, (c) vertical histogram and detected valleys corresponding to vertical
lines.

set T = {t0, t1, . . . , tk, tk+1}, where 0= t0 < t1 < .. . < tk < tk+1 = n and ti ∈ {0} ∪H.

The problem of multilevel thresholding consists of finding athreshold set,T∗, in such a

way that a functionf : Hk× [0,1]n→ R+ is maximized/minimized. Using this threshold

set, H is divided intok+ 1 classes:ζ1 = {1,2, . . . , t1}, ζ2 = {t1 + 1, t1+ 2, . . . , t2}, . . .,

ζk = {tk−1+1, tk−1+2, . . . , tk}, ζk+1 = {tk+1, tk+2, . . . ,n}. The between class variance
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criterion is given by:

ΨBC(T) =
k+1

∑
j=1

ω jµ
2
j , (2.4)

whereω j = ∑
t j
i=t j−1+1 pi , µj =

1
ω j

∑
t j
i=t j−1+1 ipi .

We use the dynamic programming algorithm foroptimal multilevel thresholding pro-

posed in [22], which is an extension for irregularly sampledhistograms. To implement the

between-class variance criterion,ΨBC(T) is expressed as follows:ΨBC(T) = ∑k+1
j=1 ω jµ2

j =

∑k+1
j=1 ψt j−1+1,t j , whereψt j+1,t j+1 = ω jµ2

j . We consider the temporary variablesa and b

,which are computed as follows:

a ← pt j−1+1+
t j

∑
i=t j−1+2

pi , and (2.5)

b ← (t j−1+1)pt j−1+1+
t j

∑
i=t j−1+2

ipi . (2.6)

Since from (2.5) and (2.6),a andb are known, thenψt j−1+2,t j , for the next step, can be

re-computed as follows inΘ(1) time:

a ← a− pt j−1+1 , (2.7)

b ← b− (t j−1+1)pt j−1+1 , and (2.8)

ψt j−1+2,t j ←
b2

a
. (2.9)

Full details of the algorithm, whose worst-case time complexity is O(kn2), can be found

in [22].
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Automatic Detection of the Number of Sub-grids and Spots

Finding the correct number of sub-grids and spots in each sub-grid is one of the most

challenging issues in sub-grid and spot detection. This stage is crucial in order to fully

automate the whole process. Multi-level thresholding usesthe number of sub-grids (spots)

as a single parameter. Thus, we need to determine the correctnumber of sub-grids (spots)

prior to using multi-level thresholding methods. For this,we resort on validity indices

used for clustering. By analyzing the traditional indices for clustering validity and their

suitability to be combined with our measure, we propose a newindex of validity for this

specific problem. From the different indices of validity forclustering (cf. [23, 24]), we

consider theI index as the basis of the proposed index. TheI index is defined as follows:

I(K) =

(
1
K
× E1

EK
×DK

)2

, (2.10)

whereEK = ΣK
i=1Σni

k=1pk||k−zi||, DK =
K

max
︸︷︷︸

i, j=1

||zi−zj ||, n is the total number of points in the

dataset (bins in the histogram), andzk is the center of thekth cluster. We also consider the

average frequency value of the thresholds in a histogram, which is computed as follows:

A(K) =
1
K

K

∑
i=1

p(ti) , (2.11)

whereti is theith threshold found by optimal multilevel thresholding andp(ti) is the corre-

sponding probability value in the histogram.

The proposed index,α(x), is the result of a combination of theI index, (2.10)andA(K),

(2.11), as follows:

α(K) =
√

K
I(K)

A(K)
=

(
E1
EK
×DK

)2

√
KΣK

i=1p(ti)
. (2.12)
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For maximizingI(K) and minimizingA(K), the value ofα(K) must be maximized.

Thus, the best number of thresholdsK∗ based on theα index is given by:

K∗ = argmax
1≤K≤δ

α(K) = argmax
1≤K≤δ

(
E1
EK
×DK

)2

√
KΣK

i=1p(ti)
. (2.13)

To find the best number of thresholds,K∗, we perform an exhaustive search on all

positive values ofK from 1 toδ and find the value ofk that maximizes theα index. In our

experiment we setδ to
√

n (cf. [25]).

The Refinement Procedure

In some cases, the detected grid or sub-grid may not separatespots completely or may

separate them marginally. In these cases, a refinement procedure can be used to boost the

performance of method. For this, each horizontal or vertical line is replaced with a new

line. Consider two horizontal linesh j and h j+1 where j ∈ [1,K∗] and a vertical linevi

wherei ∈ [1,K∗], andvi is bounded betweenh j andh j+1. GivenA= {ai j}, line vi can be

moved to left and right in such way thatΣh j+1
i=h j

aik is minimized. In other words, the vertical

line vi can be replaced with a new vertical line,vr , in such a way that:

r = argmin
vi−1≤k≤vi+1

Σh j+1
i=h j

aik . (2.14)

Analogously, this procedure can be applied to each horizontal line. Figure 2.14 shows

an example in which a vertical line is replaced by a new one during the refinement proce-

dure. As shown in the figure, the vertical linevi is originally located in the wrong place and

does not separate two adjacent spots correctly. By moving itto left and right, the new line
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vr is found in such way that those adjacent spots are separated correctly.

Figure 2.15 shows the detected spots in one of the sub-grids of 20387-ch2 of SMD be-

fore and after using the refinement procedure. It is clear that there are some misalignments

in separating the adjacent spots in the top part of the sub-grid before using the refinement

procedure. After the refinement, all the spots are separatedprecisely as shown in the figure.

Figure 2.14: The refinement procedure. During the refinementprocedure each line can be
moved to left or right (for vertical lines) and up or down (forhorizontal lines) to find the best
location separating the spots. In this image,vi is the sub-line before using the refinement
procedure andvr is the sub-line after adjusting it during refinement procedure.
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Figure 2.15: Effect of the refinement procedure to increase the accuracy of the proposed
method. Detected spots in one of the sub-grids of AT-20387-ch1 from the SMD dataset
before using the refinement procedure (top), and detected spots in the same part of the
sub-grid after using the refinement procedure (bottom).
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Chapter 3

Applications of Multilevel Thresholding

Algorithms to Transcriptomics Data

3.1 Introduction

Among other components, the genome contains a set of genes required for an organism to

function and evolve. However, the genome is only a source of information and in order to

function, the genes express themselves into proteins. The transcription of genes to produce

RNA is the first stage of gene expression. The transcriptome can be seen as the complete set

of RNA transcripts produced by the genome. Unlike the genome, the transcriptome is very

dynamic. Despite having the same genome regardless of the type of cell or environmental

conditions, the transcriptome varies considerably in differing circumstances because of the

different ways the genes may express.

Transcriptomics, the field that studies the role of the transciptome, provides a rich source

of data suitable for pattern discovery and analysis. The quantity and size of these data may

vary based on the model and underlying methods used for analysis. In gene expression mi-
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croarrays, the raw data are represented in terms of images, typically in TIFF format which

are approximately 20-30MB per array. These TIFF files are processed and transformed into

quantified data used for posterior analysis. In contrast, high throughput sequencing meth-

ods (e.g. ChIP-seq and RNA-seq) generate more than 1TB of data, while the sequence files

(approximately 20-30GB) are typically used as a starting point for analysis [1]. Clearly,

these sequence files are an order of magnitude larger than those from arrays.

3.1.1 DNA Microarray Image Gridding

Various technologies have been developed to measure the transcriptome, including hy-

bridization or sequence-based approaches. Hybridization-based approaches typically in-

volve processing fluorescently labeled DNA microarrays. Microarrays are one of the most

important technologies used in molecular biology to massively explore the abilities of the

genes to express themselves into proteins and other molecular machines responsible for

different functions in an organism. These expressions are monitored in cells and organisms

under specific conditions, and are present in many applications in medical diagnosis, phar-

macology, disease treatment, among others. If we consider DNA microarrays, scanning

the slides at a very high resolution produces images composed of sub-grids of spots. Im-

age processing and analysis are two important aspects of microarrays, and involve various

steps. The first task is gridding, which is quite important aserrors are propagated to sub-

sequent steps. Roughly speaking, gridding consists of determining the spot locations in a

microarray image (typically, in a sub-grid). The gridding process requires the knowledge of

the sub-girds in advance in order to proceed, which is not necessarily available in advance.

Many approaches have been proposed for microarray image gridding and spot detec-

tion, being the most widely known the following. The Markov random field (MRF) is
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one of them, which applies specific constraints and heuristic criteria [2]. Other gridding

methods used for gridding include mathematical morphology[3], Bayesian model-based

algorithms [4, 5], the hill-climbing approach [6], a Gaussian mixture model approach [7],

Radon-transform-based method [8], a genetic algorithm forseparating sub-grids and spots

[9], and the recently introduced maximum margin method [10]. A method that we have pro-

posed and has been successfully used in microarray griddingis the multilevel thresholding

algorithm [11], which is discussed in more detail later in the paper.

3.1.2 ChIP-Seq and RNA-Seq Peak Finding

Hybridization-based approaches are high throughput and relatively inexpensive, except for

high-resolution tiling arrays that interrogate large genomes. However, these methods have

several limitations, which include reliance upon existingknowledge about the genome,

high background levels owing to cross-hybridization, and alimited dynamic range of de-

tection owing to both background and saturation of signals [1, 12]. Moreover, comparing

expression levels across different experiments is often difficult and can require complicated

normalization methods.

Recently, the development of novel high-throughput DNA sequencing methods has pro-

vided a new method for both mapping and quantifying transcriptomes. These methods,

termed ChIP-seq (ChIP sequencing) and RNA-seq (RNA sequencing), have clear advan-

tages over existing approaches and are emerging in such a waythat eukaryotic transcrip-

tomes are to be analyzed in a high-throughput and more efficient manner [12].

Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq)

is a technique that provides quantitative, genome-wide mapping of target protein binding

events [13, 14]. In ChIP-seq, a protein is first cross-linkedto DNA and the fragments sub-
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sequently sheared. Following a size selection step that enriches for fragments of spec-

ified lengths, the fragments ends are sequenced, and the resulting reads are aligned to

the genome. Detecting protein binding sites from massive sequence-based datasets with

millions of short reads represents a truly bioinformatics challenge that has required con-

siderable computational innovation in spite of the availability of programs for ChIP-chip

analysis [7,15–17].

With the increasing popularity of ChIP-seq technology, a demand for peak finding meth-

ods has emerged and it causes developing new algorithms. Although due to mapping chal-

lenges and biases in various aspects of existing protocols,identifying peaks is not a straight-

forward task.

Different approaches have been proposed for detecting peaks based ChIP-seq/RNA-

seq mapped reads so far. Zhang et al. presents a Model-based Analysis of ChIP-seq data

(MACS), which analyzes data generated by short read sequencers [18]. It models the shift

size of ChIP-seq tags, and uses it to improve the spatial resolution of predicted binding sites.

A two-pass strategy called PeakSeq has been presented in [19]. This strategy compensates

for signal caused by open chromatin, as revealed by the inclusion of the controls. The first

pass identifies putative binding sites and compensates for genomic variation in mapping

the sequences. The second pass filters out sites not significantly enriched compared to the

normalized control, computing precise enrichments and significance. A statistical approach

for calling peaks has been recently proposed in [20], which is based on evaluating the

significance of a robust statistical test that measures the extent of pile-up reads. Specifically,

the shapes of putative peaks are defined and evaluated to differentiate between random and

non-random fragment placements on the genome. Another algorithm for identification of

binding sites is site identification from paired-end sequencing (SIPeS) [21], which can be
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used for identification of binding sites from short reads generated from paired-end solexa

ChIP-seq technology.

In this paper, we review the application of optimal multilevel thresholding (OMT) to

gridding and peak finding problems in transcriptomics. Moreover, a conceptual and practi-

cal comparison between OMT and other state-of-the-art approaches is also presented.

3.2 Optimal Multilevel Thresholding

Multilevel thresholding is one of the most widely-used techniques in different aspects of

signal and image processing, including segmentation, classification and object discrimina-

tion. Given a histogram with frequencies or probabilities for each bin, the aim of multilevel

thresholding is to divide the histogram into a number of groups (or classes) of contiguous

bins in such a way that a criterion is optimized. In microarray image gridding, we compute

vertical (or horizontal) running sums of pixel intensities, obtaining histograms in which

each bin represents one column (or row respectively), and the running sum of intensities

corresponds to the frequency of that bin. The frequencies are then normalized in order to

be considered as probabilities. Each histogram is then processed (see below) to obtain the

optimal thresholding that will determine the locations of the separating lines.

Consider a histogramH, an ordered set{1,2, . . . ,n−1,n}, where theith value corre-

sponds to theith bin and has a probability,pi . Given an image,A= {ai j} , H can be obtained

by means of the horizontal (vertical) running sum as follows: pi = ∑m
j=1ai j (p j = ∑n

i=1ai j ).

We also consider a threshold setT, defined as an ordered setT = {t0, t1, . . . , tk, tk+1},

where 0= t0 < t1 < .. . < tk < tk+1 = n and ti ∈ {0} ∪H. The problem of multilevel

thresholding consists of finding a threshold set,T∗, in such a way that a functionf :

Hk× [0,1]n→R+ is maximized/minimized. Using this threshold set,H is divided intok+1
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classes:ζ1 = {1,2, . . . , t1}, ζ2 = {t1+1, t1+2, . . . , t2}, . . ., ζk = {tk−1+1, tk−1+2, . . . , tk},

ζk+1 = {tk+1, tk+2, . . . ,n}. The most important criteria for multilevel thresholding are the

following [22]:

Between class variance:

ΨBC(T) =
k+1

∑
j=1

ω jµ
2
j (3.1)

whereω j = ∑
t j
i=t j−1+1 pi , µj =

1
ω j

∑
t j
i=t j−1+1 ipi ;

Entropy-based:

ΨH(T) =
k+1

∑
j=1

H j (3.2)

whereH j =−∑
t j
i=t j−1+1

pi
ω j

log pi
ω j

;

Minimum error:

ΨME(T) = 1+2
k+1

∑
j=1

ω j(logσ j − logω j) (3.3)

whereσ2
j = ∑

t j
i=t j−1+1

pi(i−µj)
2

ω j
.

A dynamic programming algorithm foroptimalmultilevel thresholding was proposed

in a previous work [22], which is an extension for irregularly sampled histograms. For this,

the criterion has to be decomposed as a sum of terms as follows:

Ψ(T0,m) = Ψ({t0, t1, . . . , tm}),
m

∑
j=1

ψt j−1+1,t j , (3.4)

where 1≤ m≤ k+ 1 and the functionψl ,r , where l ≤ r, is a real, positive function of

pl , pl+1, . . . , pr , ψl ,r : H2× [0,1]l−r+1→ R
+ ∪ {0}. If m= 0, thenΨ({t0}) = ψt0,t0 =

ψ0,0 = 0. The thresholding algorithm can be found in [22]. In the algorithm, a tableC is

filled in, whereC(t j , j) contains the optimal solution forT0, j = t0, t1, . . . , t j , Ψ∗(T0, j), which

is found from min{t j}≤ t j ≤max{t j}. Another table,D(t j , j), contains the value oft j−1 for
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whichΨ∗(T0, j) is optimal. The algorithm runs inO(kn2), and has been further improved to

achieve linear complexity, i.e.O(kn), by following the approach of [23].

3.2.1 Using Multi-level Thresholding for Gridding DNA Micr oarray

Images

A DNA microarray image contains spots arranged into sub-grids. The image contains var-

ious sub-grids as well, which are found in the first stage. Once the sub-grids are found,

the spots centers are to be identified. A microarray image canbe considered as a matrix

A= {ai, j}, i = 1, ....,n and j = 1, ....,m, whereai j ∈ Z
+, andA is a sub-grid of a DNA mi-

croarray image. The aim of sub-gridding is to obtain vectors, namelyh = [h1, ...hp−1]
t and

v = [v1, ...vq−1]
t , that separate the sub-grids. Finding the spot locations isdone analogously

– more details of this, as well as those of the whole process can be found in [11]. The aim

of gridding is to find the corresponding spot locations givenby the horizontal and vertical

adjacent vectors. Post-processing or refinement allows us to find a spot region for each

spot, which is enclosed by four lines.

When producing the microarrays, based on the layout of the printer pins, the number of

sub-grids or spots are known. But due to misalignments, deformations, artifacts or noise

during producing the microarray images, these numbers may not be available. Thus, it is

important that the gridding algorithm allows some flexibility in finding these parameters,

as well as avoiding the use of other user-defined parameters.This is what the thresholding

methods endeavor to do, by automatically finding the best number of thresholds (sub-grids

or spots) – more details in the next section.
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3.2.2 Using Multi-level Thresholding for Analyzing ChIP-Seq/RNA-

Seq Data

In ChIP-seq and RNA-seq analysis, a protein is first cross-linked to DNA and the fragments

subsequently pruned. Then, the fragments ends are sequenced, and the resulting reads are

aligned to the genome. The result of read alignments produces a histogram in such a way

that thex axis represents the genome coordinate and they axis the frequency of the aligned

reads in each genome coordinate. The aim is to find the significant peaks corresponding to

enriched regions. For this reason, a non-overlapping moving window is used. By starting

from the beginning, a dynamic window of minimum sizet is being applied to the histogram

and each window that could be analyzed separately. The size of the window could be dif-

ferent for each window to prevent truncating a peak before its end. Thus, for each window

a minimum number oft bins is used and, by starting from the end of previous window,the

size of window is increased until a zero value in the histogram is reached.

The aim is to obtain vectorsCwi = [c1
wi
, ...cn

wi
]t , wherewi is the ith window andCwi is

the vector that containsn threshold coordinates which correspond to theith window. Figure

3.1 depicts the process of finding the peaks corresponding tothe regions of interest for

the specified protein. The input to the algorithm includes the reads and the output of the

whole process is the location of the detected significant peaks by using optimal multilevel

thresholding combined with our recently proposedα index.

3.3 Automatic Detection of the Number of Clusters

Finding the correct number of clusters (number of sub-gridsor spots or the number of re-

gions in each window in ChIP-seq/RNA-seq analysis) is one ofthe most challenging issues.
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Figure 3.1: Schematic representation of the process for finding significant peaks.

This stage is crucial in order to fully automate the whole process. For this, we need to de-

termine the correct number clusters or thresholds prior to applying multi-level thresholding

methods. This is found by applying an index of validity (derived from clustering tech-

niques) and testing over all possible number of clusters (orthresholds) from 2 to
√

n, where

n is the number of bins in the histogram. We have recently proposed theα(x) index, which

is the result of a combination of a simple index and the well-knownI index [24] as follows:

α(K) =
√

K
I(K)

A(K)
=

(
E1
EK
×DK

)2

√
KΣK

i=1p(ti)
. (3.5)
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For maximizingI(K) and minimizingA(K), the value ofα(K) must be maximized.

Thus, the best number of thresholdsK∗ based on theα index is given by:

K∗ = argmax
1≤K≤δ

α(K) = argmax
1≤K≤δ

(
E1
EK
×DK

)2

√
KΣK

i=1p(ti)
. (3.6)

3.4 Comparison of Transcriptomics Data Analysis Algo-

rithms

3.4.1 DNA Microarray Image Gridding Algorithms Comparison

A conceptual comparison of microarray image griding methods based on their features is

shown in Table 3.1. The methods included in the comparison are the following: (i) Radon

transform sub-gridding (RTSG) [8], (ii) Bayesian simulated annealing gridding (BSAG) [4],

(iii) genetic-algorithm-based gridding (GABG) [9], (iv) hill-climbing gridding (HCG) [6],

(v) maximum margin microarray gridding (M3G) [10], and the optimal multilevel thresh-

olding algorithm for gridding (OMT) [11]. As shown in the table, OMT does not need any

number-based parameter, and hence making it much more powerful than the other methods.

Although the index or thresholding criterion can be considered as a “parameter”, this can

be fixed by using the between class criterion. In a previous work, we have “fixed” the index

of validity to theα indexand thebetween classas the thresholding criterion [11]. As can

also be observed in the table, most algorithms and methods require the use of user-defined

and subjectively fixed parameters. One example is the GABG, which needs to adjust the

mutation and crossover rates, probability of maximum and minimum thresholds, among

others. It is critical then to adjust these parameters for specific data, and variations may
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occur across images of different characteristics.

3.4.2 Comparison of Algorithms for ChIP-Seq and RNA-Seq Analysis

A conceptual comparison between thresholding algorithms and other ChIP and RNA-Seq

methods based on their features is shown in Table 3.2. The methods included in the com-

parison are the following: (i) GLobal Identifier of Target Regions (GLITR) [25], (ii) Model-

based Analysis of ChIP-seq (MACS) [18], (iii) PeakSeq [19],(iv) quantitative enrichment

of sequence tags (Quest) [26], (v) SICER [27], (vi) Site Identification from Short Sequence

Reads (SiSSRs) [28], (vii) Tree shape Peak Identification for ChIP-seq (T-PIC) [20], and

(viii) the optimal multilevel thresholding algorithm, OMT. As shown in the table, all al-

gorithms require some parameters to be set by the user based on the particular data to

be processed, includingp-values, FDR, number os nearest neighbors, peak height, valley

depth, window length, gap size, among others. OMT is the algorithm that requires almost

no parameter at all. Only the average fragment length is needed, but this parameter can be

easily estimated from the underlying data. In practice, if enough computational resources

are available, the fragment length would not be needed, since the OMT algorithm could be

run directly on the whole histogram.

3.5 Experimental Analysis

This section is necessarily brief and reviews some experimental results as presented in

[11]. For the experiments, two different kinds of DNA microarray images have been used,

which were obtained from the Stanford Microarray Database (SMD) the Gene Expression

Omnibus (GEO). The images have different resolutions, number of sub-grids and spots.
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Table 3.1: Conceptual comparison of recently proposed DNA microarray gridding methods.

Method Parameters
Sub-grid
Detection

Spot
Detection

Automatic
Detection
No. of
Spots

Rotation

RTSG n: Number of sub-grids
√ × × √

BSAG

α ,β: Parameters for
balancing prior and
posterior probability
rates

× √ √ √

GABG

µ , c :Mutation and
Crossover rates,pmax:
probability of maxi-
mum threshold, plow:
probability of mini-
mum threshold, fmax

: percentage of line
with low probability to
be a part of grid,Tp:
Refinement threshold

√ √ √ √

HCG
λ , σ: Distribution pa-
rameters

× √ √ ×
M3G c: Cost parameter × √ √ √

OMT None1
√ √ √ √

1 The only parameters that would be needed in the proposed method are the “thresholding criterion” and the

“index of validity”. These two “parameters” are methodological, not number-based, and hence making OMT

less dependent on parameters.
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Table 3.2: Conceptual comparison of recently proposed methods for ChIP-seq and RNA-
seq data.

Method Peak selection criteria Peak ranking Parameters

GLITR
n: Classification by
height and relative en-
richment

Peak height
and fold
enrichment

Target FDR, number
nearest neighbors for
clustering

MACS
v1.3.5

Local region Poissonp
value

p value
p-value threshold, tag
length, m-fold for shift
estimate

PeakSeq
Local region binomial
p value

q value Target FDR

Quest
v2.3

height threshold, back-
ground ratio

q value

KDE bandwidth, peaks
height, sub-peak valley
depth, ratio to back-
ground

SICER
v1.02

p value from random
background model,
enrichment relative to
control

q value

Window length, gap
size, FDR (with con-
trol) or E-Value (no
control)

SiSSRs
v1.4

N+ −N− sign change,
N+ + N− threshold in
region

p value
FDR, N+ +N− thresh-
old

T-PIC Local height threshold p value

Average fragment
length, significancep
value, minimum length
of interval

OMT
number of ChIP reads
minus control reads in
window

volume
Average fragment
length

We have used the between-class variance as the thresholdingcriteria, since it is the one that

delivers the best results. All the sub-grids in each image are detected with a 100% accuracy,

and also spot locations in each sub-grid can be detected efficiently with an average accuracy

of 96.2% for SMD dataset and 96% for GEO dataset. Figure 3.2 shows the detected sub-
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Figure 3.2: Detected sub-grids in AT-20387-ch2 microarrayimage (left) and detected spots
in one of sub-grids (right).

grids from the AT-20387-ch2 image (left) and the detected spots in one of sub-grids (right).

As shown in the figure, the proposed method precisely detectsthe sub-grids location at first,

and in the next stage, each sub-grid is divided precisely into the corresponding spots with

the same method.

In addition to this, some experimental, preliminary results for testing performance of

the OMT algorithm on ChIP/RNA-seq data are shown here. We have used the FoxA1

dataset [18], which contains experiment and control samples of 24 chromosomes. The ex-
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periment and control histogram were generated separately by extending each mapped po-

sition (read) into an appropriately oriented fragment, andthen joining the fragments based

on their genome coordinates. The final histogram was generated by subtracting the control

from the experiment histogram. To find significant peaks, we used a non-overlapping win-

dow with the initial size of 3000bp. To avoid truncating peaks in boundaries, each window

is extended until the value of the histogram at the end of the window becomes zero. Fig-

ure 3.3 shows three detected regions for chromosomes 9 and 17and their corresponding

base pair coordinates. It clear from the pictures that the peaks contain a very high number

of reads, and then these regions are quite likely to represent binding sites, open reading

frames or other bio-markers. A biological assessment of these bio-markers can corroborate

this.

3.6 Discussion and Conclusion

Transcriptomics provide a rich source of data suitable for pattern analysis. We have shown

how multilevel thresholding algorithms can be applied to anefficient analysis of transcrip-

tomics and genomics data by finding sub-grids and spots in microarray images, as well as

significant peaks in high-throughput next generation sequencing data. OMT can be applied

to a wide range of data from different sources and with different characteristics, and allows

data analysis such as sub-grid and spot detection in DNA microarray image gridding and

also for detecting significant regions on ChIP and RNA-seq data. OMT has been shown to

be sound and deal with noise in experiments and it is able to use on different approaches

with a little change – this is one the most important featuresof this algorithm.

Thresholding algorithms, though shown to be quite useful for transcriptomics and ge-

nomics data analysis, are still emerging tools in these areas, and open the possibility for
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Figure 3.3: Three detected regions from FoxA1 data for chromosomes 9 and 17. Thex axis
corresponds to the genome position in bp and they axis corresponds to the number of reads.

further advancement. One of the problems that deserves attention is the use of other thresh-

olding criteria, including minimum error, entropy-based and others. For these two criteria

the algorithm still runs in quadratic orn-logarithmic complexity, and which make the whole

process sluggish. Processing a whole genome or even a chromosome for finding peaks in

ChIP or RNA-seq is still a challenge, since it involves histograms with several million bins.

This makes it virtually impossible to process a histogram atonce, and so it has to be divided

into several fragments. Processing the whole histograms atonce is one of the open and chal-

lenging problems that deserve more investigation. Next generation sequence data analysis
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is an emerging and promising area for pattern discovery and analysis, which deserve the

attention of the research community in the field.
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Chapter 4

A New Algorithm for Finding Enriched

Regions in ChIP-Seq Data

4.1 Introduction

Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq) is a

technique that provides quantitative and genome-wide mapping of target protein binding

events [1, 2]. In ChIP-Seq, a protein is first cross-linked toDNA and the fragments sub-

sequently sheared. Following a size selection step that enriches for fragments of speci-

fied lengths, the fragments ends are sequenced, and the resulting reads are aligned to the

reference genome. Detecting protein binding sites from massive sequence-based datasets

with millions of short reads represents a truly bioinformatics challenge that requires con-

siderable computational resources, in spite of the availability of programs for ChIP-chip

analysis [3–6].

With the increasing popularity of ChIP-Seq technology, thedemand for peak finding

methods has increased the need to develop new algorithms. Although due to mapping

80
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challenges and biases in various aspects of existing protocols, identifying peaks is not a

straightforward task.

Different approaches have been proposed for detecting peaks on ChIP-Seq/RNA-Seq

mapped reads. Zhang et al. presented amodel-based analysis of ChIP-Seq data(MACS),

which analyzes data generated by short read sequencers [7].It models the length of the se-

quenced ChIP fragments and uses it to improve the spatial resolution of predicted binding

sites. A two-pass strategy calledPeakSeqhas been presented in [8]. This strategy compen-

sates for signals caused by open chromatin, as revealed by the inclusion of the controls. The

first pass identifies putative binding sites and compensatesfor genomic variation in map-

ping the sequences. The second pass filters out sites not significantly enriched compared to

the normalized control, computing precise enrichments andsignificance.Tree shape Peak

Identification for ChIP-Seq(T-PIC) is a statistical approach for calling peaks that hasbeen

recently proposed in [9]. This approach is based on evaluating the significance of a robust

statistical test that measures the extent of pile-up reads.Specifically, the shapes of putative

peaks are defined and evaluated to differentiate between random and non-random fragment

placements on the genome. Another algorithm for identification of binding sites issite iden-

tification from paired-end sequencing(SIPeS) [10], which can be used for identification of

binding sites from short reads generated from paired-end Illumina ChIP-Seq technology.

One of the problems of the existing methods is that the locations of the detected peaks

could be non-optimal. Moreover, for detecting these peaks all methods use a set of param-

eters that may cause variations of the results for differentdatasets. In the proposed method,

both of these issues have been addressed by proposing a new peak finder algorithm based

on optimal multi-level thresholdingcoupled with a model to find the best number of peaks

based on clustering techniques for pattern recognition. The results of our experiments show
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that our method can achieve a higher degree of accuracy than previously proposed peak

finders while providing flexibility when applying it to different datasets.

4.2 The Peak Detection Method

4.2.1 Overview of the Method

In ChIP-Seq, a protein is first cross-linked to DNA and the fragments subsequently pruned.

Then, the fragments ends are sequenced, and the resulting reads are aligned to the genome.

The result of reading the alignments produces a histogram insuch a way that thex-axis rep-

resents the genome coordinates (i.e., each bin correspondsto a single base in the genome),

and they-axis represents the frequency of the aligned reads in each genome coordinate.

The aim is to find significant peaks corresponding to enrichedregions. Each peak can be

seen as homogeneous group (cluster) which is well separatedfrom the others by means

of “valleys”. In that sense, the problem can be formulated asone-dimensional clustering.

Figure 4.1 depicts the process of finding the peaks corresponding to the regions of interest

for the specified protein. Each module is explained in detailin the next few sections.

4.2.2 Creating Histogram

The first step of the algorithm consists of converting the Input BED file containing the

position and direction of each read to a histogram. Each readshould be extended to a

fragment length. The fragment length is the only parameter to be input by the user, even

though the fragment length can be easily estimated from the underlying data. In practice,

if enough computational resources are available, the fragment length would not be needed,

since the OMT algorithm could be run directly on a whole chromosome.
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Input reads

Extend size of 
reads to fragment 

Create histogram 
based on fragments 
for each chromosome

Divide each 
histogram into a set of 

non-overlapping windows

Use OMT to find 
significant peaks 
in each window

Use the     index to find the 
correct number of significant 

peaks in each window

Shrink peaks

Use two sample Cramer-von 
Mises non parametric hypothesis 

test to select relevant peaks

Rank peaks

Relevant peaks

Figure 4.1: Schematic representation of the process for finding significant peaks by using
OMT.
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After extending each read to a fragment based on the direction of each read (forward

or backward), each of them is aligned to the reference genomebased on its coordinates.

Afterwards, for each chromosome, separate histograms for experiment and control data

are created for further processing. However, when dealing with a full chromosome, the

number of bins is sufficiently large that it is rather difficult to process it all at once; this is

also due to the fact that we need to find the optimal number of peaks. For this reason, a non-

overlapping sliding window is used. By starting from the beginning of the chromosome, a

sliding window of minimum sizet is applied to the histogram and each window is analyzed

separately. The sizes of the windows are not necessarily equal to prevent truncating a peak

before its end. Thus, for each window, a minimum number oft bins is used and, by starting

from the end of the previous window, the size of the window is increased until a zero value

in the histogram is reached. We consider a minimum oft = 3,000 in order to ensure that a

window covers at least one peak of typical size.

The aim is to obtain vectorsCwi = [c1
wi
, ...cni

wi
]t , wherewi is theith window andCwi is the

vector that containsni thresholds which correspond to theith window.

4.2.3 Using OMT for Analyzing ChIP-Seq Data

Multi-level thresholding is one of the most widely-used techniques in different problems of

signal and image processing, including segmentation, classification and object discrimina-

tion. This technique is an excellent approach for one-dimensional clustering, since it finds

an optimal solution efficiently, e.g., in polynomial time. Given a histogram with frequencies

or probabilities for each bin, the aim of multi-level thresholding is to divide the histogram

into a number of groups (or classes) of contiguous bins in such a way that a criterion is

optimized. In peak detection, we create a histogram based onfragments (reads). The his-
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togram is then processed (see below) to obtain the optimal thresholding that will determine

the locations of the peaks.

Consider a histogramH, an ordered set{1,2, . . . ,n− 1,n}, where theith value cor-

responds to theith bin and has a probability,pi . The histogram,H, can be obtained by

counting the number of aligned reads. We also consider a threshold setT, defined as an

ordered setT = {t0, t1, . . . , tk, tk+1}, where 0= t0< t1 < .. . < tk < tk+1 = n andti ∈ {0}∪H.

The problem of multi-level thresholding consists of findinga threshold set,T∗, in such a

way that a functionf : Hk× [0,1]n→ R
+ is maximized/minimized. Using this threshold

set, H is divided intok+ 1 classes:ζ1 = {1,2, . . . , t1}, ζ2 = {t1 + 1, t1+ 2, . . . , t2}, . . .,

ζk = {tk−1+1, tk−1+2, . . . , tk}, ζk+1 = {tk+1, tk+2, . . . ,n}. A few criteria for multi-level

thresholding have been proposed [11]. We consider the between-class variance criterion,

which aims to maximize the inter-class separability of the classes, and which is proportional

to:

ΨBC(T) =
k+1

∑
j=1

ω jµ
2
j (4.1)

whereω j = ∑
t j
i=t j−1+1 pi , µj =

1
ω j

∑
t j
i=t j−1+1 ipi .

A dynamic programming algorithm foroptimalmulti-level thresholding was proposed

in our previous work [11], which is an extension for irregularly sampled histograms. For

this, the criterion has to be decomposed as a sum of terms as follows:

Ψ(T0,m) = Ψ({t0, t1, . . . , tm}),
m

∑
j=1

ψt j−1+1,t j , (4.2)

where 1≤ m≤ k+ 1 and the functionψl ,r , where l ≤ r, is a real, positive function of

pl , pl+1, . . . , pr , ψl ,r : H2× [0,1]l−r+1→ R
+ ∪ {0}. If m= 0, thenΨ({t0}) = ψt0,t0 =
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ψ0,0 = 0. Full details of the thresholding algorithm can be found in[11]. The optimal

thresholding is the one that maximizes the between-class variance (or, conversely, it mini-

mizes the within-class variance). The algorithm runs inO(kn2) for a histogram ofn bins,

and has been further improved to achieve linear complexity for some criteria, i.e.O(kn),

by following the approach of [12].

4.2.4 Automatic Detection of the Best Number of Peaks

Finding the correct number of peaks (the number of regions ineach window) is one of

the most challenging issues. This stage is crucial in order to fully automate the whole

process. For this, we need to determine the correct number peaks prior to applying the

multi-level thresholding method. This is found by using an index of validity derived from

clustering techniques. We have recently proposed theα(K) index [13], which is the result

of a combination of a simple index,A(K), and the well-knownI index [14] as follows:

α(K) =
√

K
I(K)

A(K)
=

(
E1
EK
×DK

)2

√
KΣK

i=1p(ti)
. (4.3)

whereEK = ΣK
i=1Σni

k=1pk||k−zi ||, DK =
K

max
︸︷︷︸

i, j=1

||zi−zj ||, n is the total number of bins in the

window,K is the number of clusters,zk is the center of thekth cluster,ti is theith threshold

found by optimal multilevel thresholding andp(ti) is the corresponding number of reads in

the histogram.

For maximizingI(K) and minimizingA(K), the value ofα(K) must be maximized.

Thus, the best number of thresholdsK∗ based on theα index is given by:

K∗ = argmax
1≤K≤δ

α(K) = argmax
1≤K≤δ

(
E1
EK
×DK

)2

√
KΣK

i=1p(ti)
. (4.4)
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To find the optimal number of clusters (thresholds), we compute and compare values of

α(K) over all possible numbers of clusters (or thresholds) from 2to
√

n/2, wheren is the

size of window. The one with the maximum value ofα(K) is the best number of clusters

(thresholds).

4.2.5 Relevant Peaks Selection

After finding the locations of the detected peaks, in a two step process, significant peaks are

selected. In the first step, the effective area of each peak isfound by shrinking the peak. For

this, by starting from the summit of the peak, we move to left and right separately until we

reach a zero number of reads. In the second step, the two sample Cramer-von Mises non

parametric hypothesis test [15], withα = 0.01, is used to accept/reject peaks based on the

comparison between experiment and control histograms corresponding to each peak. The

reason for using the Cramer-von Mises test is that it can detect differences in distributions

with higher statistical power than the commonly used two-sample Kolmogorov-Smirnov

test [15]. Finally, those peaks which are accepted by the Cramer-von Mises test are ranked

and returned as the final relevant peaks.

4.3 Experimental Results

To evaluate the proposed model, we have used various datasets, including theFoxA1dataset

[7] which contains experiment and control samples of 24 chromosomes, and four transcrip-

tion factors (with a total of 6 antibodies) forDrosophila melanogasterusing published

data from the Eisen lab [16] (available at the NCBI GEO database [17] , accession no.

GSE20369). As in [9], the experiment and control histogramswere generated separately



CHAPTER 4. 88

by extending each mapped position (read) into an appropriately oriented fragment, and then

joining the fragments based on their genome coordinates. The final histogram was gener-

ated by subtracting the control from the experiment histogram. To find significant peaks,

we used a non-overlapping window whose initial size is 3,000bp. To avoid truncating peaks

in boundaries, each window is extended until the value of thehistogram at the end of the

window becomes zero. Figure 4.2 shows three detected regions for chromosomes 1,17 and

20 respectively, and their corresponding base pair coordinates in the FoxA1 dataset. It is

clear from the plots that the peaks contain a very large number of reads, and then these

regions are quite likely to represent binding sites, open reading frames or other biomarkers.

Computing the enrichment score for each method proceeds as follows. Random inter-

vals from the genome are created by selecting the same numberof intervals with the same

lengths from each chromosome as in the called peaks but with random starting locations.

Then, the number of occurrences of the binding motif in the called peaks and the random

intervals are counted. The enrichment score is the ratio of the number of occurrences in the

called peaks divided by the number of occurrences in the random intervals.

4.3.1 Comparison with Other Methods for ChIP-Seq Analysis

Table 4.1 shows a comparison between OMT and two recently proposed methods, MACS

[7] and T-PIC [9]. As shown in the table, the number of significant peaks detected by

OMT is higher than those of the other two methods. This implies that OMT is able to find

significant peaks that are not detected by the other two methods. Also, the enrichment ratio

for OMT is far higher than MACS and higher than T-PIC. Moreover, the average size of

the peaks is smaller than the other two methods which impliesthat OMT is able to detect

significant peaks more precisely.
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Figure 4.2: Three detected regions from the FoxA1 dataset for chromosomes 1 (top), 17
(middle) and 20 (bottom). Thex-axis corresponds to the genome position in bp and the
y-axis corresponds to the number of reads.
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Figure 4.3: Two true positive regions in chromosomes 3 and 13of FoxA1 dataset. The
x-axis corresponds to the genome position in bp and they-axis corresponds to the number
of reads. Both peaks are detected by OMT but only the bottom one is detected by T-PIC,
while none of them is detected by MACS.
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Table 4.1: Comparison between OMT and two recently proposedmethods, MACS and
T-PIC, based on the number and mean length of detected peaks,and enrichment score.

Dataset Method of Comparison OMT T-PIC MACS

FoxA1
Detected peaks 20,032 17,619 13,639

Mean length of peaks 306 510 394
Enrichment ratio 2.62 2.54 1.68

CAD
Detected peaks 12,825 8,119 4,652

Mean length of peaks 449 986 1,596
Enrichment ratio 1.08 0.84 0.96

GT
Detected peaks 4,526 3,553 2,904

Mean length of peaks 687 912 1,204
Enrichment ratio 3.42 2.33 1.54

HB1
Detected peaks 8,356 5,481 6,857

Mean length of peaks 253 991 1,124
Enrichment ratio 1.93 1.69 1.62

HB2
Detected peaks 5,782 4,337 3,928

Mean length of peaks 235 1,092 1,248
Enrichment ratio 1.96 1.63 1.59

KR1
Detected peaks 15,324 11,891 9,804

Mean length of peaks 350 872 1,635
Enrichment ratio 2.14 1.75 1.54

KR2
Detected peaks 15,476 11,717 9,652

Mean length of peaks 347 863 1,597
Enrichment ratio 2.23 1.78 1.58

Also, Table 4.2 shows a summary of prediction for the proteins by each method. Each

value shows the percentage of detected peaks by each method which are also detected by

the other methods. For example, OMT detects 90.1% of the peaks detected by MACS while

MACS only detects 59.7% of significant peaks detected by OMT in the FoxA1 dataset. This

demonstrates the wide spectrum and specificity of the proposed OMT algorithm.

A conceptual comparison of OMT with other proposed algorithms based on their fea-

tures is shown in Table 4.3. As shown in the table, the other algorithms require some
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Table 4.2: Percentage of common peaks detected by each method in the comparison, related
to each protein of interest.

FoxA1

OMT T-PIC MACS
OMT 100 78.8 59.7
T-PIC 99.4 100 64.4
MACS 90.1 83.6 100

CAD

OMT T-PIC MACS
OMT 100 50.8 28.8
T-PIC 79.3 100 62.2
MACS 98.1 95.5 100

GT

OMT T-PIC MACS
OMT 100 50.5 21.2
T-PIC 65.1 100 57.7
MACS 78.9 85.1 100

HB1

OMT T-PIC MACS
OMT 100 49.6 42.7
T-PIC 79.6 100 69.2
MACS 84.1 90.7 100

HB2

OMT T-PIC MACS
OMT 100 63.1 43.2
T-PIC 81.7 100 68.9
MACS 88.4 91.3 100

KR1

OMT T-PIC MACS
OMT 100 73.1 50.5
T-PIC 84.6 100 66.6
MACS 97.4 98.1 100

KR2

OMT T-PIC MACS
OMT 100 73.6 60.2
T-PIC 84.4 100 66.9
MACS 97.1 97.7 100

parameters to be set by the user based on the particular data to be processed, including

p-values,m-fold, window length, among others. OMT is the algorithm that requires the

smallest number of parameters. Only the average fragment length is needed. However, the
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Table 4.3: Conceptual comparison of recently proposed methods forChIP−Seqdata.

Method Peak selection criteria
Peak
ranking

Parameters

GLITR
n: Classification by height
and relative enrichment

Peak height
and fold
enrichment

Target FDR, number nearest
neighbors for clustering

MACS local region Poissonp-value p-value
p-value threshold, tag length,m-
fold for shift estimate

PeakSeq
Local region binomial p
value

q value Target FDR

Quest
v2.3

height threshold, background
ratio

q value
KDE bandwidth, peaks height,
sub-peak valley depth, ratio to
background

SICER
v1.02

p value from random back-
ground model, enrichment
relative to control

q value
Window length, gap size, FDR
(with control) or E-Value (no
control)

SiSSRs
v1.4

N+−N− sign change,N++

N− threshold in region
p value FDR,N++N− threshold

T-PIC local height threshold p-value
average fragment length, signif-
icancep-value, minimum length
of interval

OMT
number of ChIP reads minus
control reads in window

p-value average fragment length

fragment length could be easily estimated from the underlying data, if enough computa-

tional resources were available, the fragment length wouldnot be needed, since the OMT

algorithm could be run directly on the whole chromosome.

4.3.2 Biological Validation

We have also biologically validated the peaks detected by OMT on the results of indepen-

dent qPCR experiments for the FoxA1 protein. For this, we considered 25 true positives

and 7 true negatives (regions) reported in [18]. The resultsof other two well-known meth-



CHAPTER 4. 94

ods, T-PIC and MACS, are included in the comparison. Table 4.4 shows the result of this

biological validation on each method. As the other two methods, OMT has been able to

reject all true negatives. Although OMT finds a larger numberof regions, OMT shows very

high sensitivity, finding more true positives than T-PIC andMACS. As an example, two

true positive regions in chromosomes 3 and 13 of FoxA1 are shown in Figure 4.3. Both

peaks are detected by OMT but only the bottom one is detected by T-PIC and none of them

is detected by MACS.

An issue that deserves attention is the fact that some true positives found by qPCR show

very low peaks in the CHIP-Seq experiments. We have visuallyinspected all true positive

regions in the CHIP-Seq experiments, and found that 10 out of25 of these regions have

a maximum number of reads less than 5. This indicates that theCHIP-Seq experiment

basically “disagrees” with qPCR on these genomic regions ofinterest. Then, it would not

be up to the peak finding algorithm to detect these true positives. The proposed algorithm,

OMT, however, finds all other true positives.

Table 4.4: Comparison of OMT, MACS and T-PIC, based on the number of true positive
(TP) and true negative (TN) detected peaks.

OMT T-PIC MACS

TP 15 13 12
TN 0 0 0

4.4 Discussion and Conclusion

We have presented a multi-level thresholding algorithm that can be applied to an efficient

analysis of ChIP-Seq data to find significant peaks. OMT can beapplied to high-throughput
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next generation sequencing data with different characteristics, and allows us to detect sig-

nificant regions on ChIP-Seq data. OMT has been shown to be sound and efficient in exper-

iments and has the ability to be applied to various types of next generation sequencing data.

When compared to other recently proposed methods, OMT showsto be more accurate, and

use fewer parameters.

The proposed method offers new avenues for future research.One of these is to apply

the OMT algorithm on the whole chromosome instead of using a set of windows as a way

to reduce the number of parameters. Also, using other indices of validity and thresholding

criteria could increase the accuracy of the method. Moreover, the proposed method could be

applied on other datasets and proteins of interest. All these are issues that we are currently

investigating.
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Chapter 5

CMT: A Constrained Multi-level

Thresholding Approach for ChIP-Seq

Data Analysis

5.1 Introduction

Determining the interaction between a protein and DNA to regulate gene expression is a

very important step toward understanding of many biological processes and disease states.

ChIP-Seq is one of the techniques used for finding regions of interest in a specific protein

that interacts with DNA [1–7]. The main process consists of Chromatin-immunoprecipitation

(ChIP) followed by sequencing of the immuno-precipitated DNA with respect to the ref-

erence genome. In the first step, chromatin is isolated from cells or tissues and then frag-

mented. After pruning, the fragments are sequenced and aligned to the reference genome.

These aligned fragments produce a histogram in such a way that thex-axis represents the

genome coordinates and they-axis represents the frequency of the aligned fragments in

99



CHAPTER 5. 100

each genome coordinate.

Detecting protein binding sites from large sequence-baseddatasets with millions of

short reads represents a challenging bioinformatics problem that requires considerable com-

putational resources, despite the availability of a wide range of tools for ChIP-chip data

analysis [8–11]. The growing popularity of ChIP-Seq technology has increased the need to

develop new algorithms for peak finding. Due to mapping challenges and biases in various

aspects of the existing protocols, identifying relevant peaks is not a straightforward task.

Different approaches have been proposed for detecting peaks on ChIP-Seq and RNA-

Seq mapped reads. Zhanget al. presented amodel-based analysis of ChIP-Seq data

(MACS), which analyzes the data generated by short read sequencers [12]. MACS models

the length of the sequenced ChIP fragments and uses it to improve the spatial resolution of

predicted binding sites. A two-pass strategy calledPeakSeqhas been presented in [13]. This

strategy compensates for signals caused by open chromatin,as revealed by the inclusion of

the controls. The first pass identifies putative binding sites and compensates for genomic

variation in mapping the fragment sequences. The second pass filters out sites not signif-

icantly enriched compared to the normalized control, computing precise enrichments and

significance of each detected peak.Tree shape Peak Identification for ChIP-Seq(T-PIC) is a

statistical approach for calling peaks in ChIP-Seq data [14]. This approach is based on eval-

uating the significance of a robust statistical test that measures the extent of pile-up reads.

Specifically, the shapes of putative peaks are defined and evaluated to differentiate between

random and non-random fragment placements on the genome. Another algorithm for de-

tecting relevant peaks issite identification from paired-end sequencing(SIPeS) [15], which

can be used for identification of binding sites from short reads generated from paired-end

Illumina ChIP-Seq technology. Qeseq is another method for analyzing the aligned sequence
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reads from ChIP-Seq data and identifying enriched regions [4]. The algorithm consists of

three main modules: relative enrichment estimation, cluster detection and filtering possible

artifacts. It cycles between its first two modules by removing detected clusters and eval-

uating enrichment in the rest of signal. In the last step, a filter module is used to remove

artifacts from the results.

One of the downsides of the existing methods is that they try to find all the enriched re-

gions regardless of their length. These regions can be grouped by their length. For example,

histone modification sites normally have a length of 50 to 60 kbp, while some other regions

of interest like exons have a much smaller length of around 100 bp. Using these methods,

there is no way to focus on regions with a specific length and all of the relevant peaks should

be detected first. This is a time consuming task that forces the model to process all possible

regions. To deal with this issue,constrained multi-level thresholding(CMT) is proposed in

this paper. Using CMT, we are able to search a specific region with a certain length which

consequently increases the performance of the model. CMT isalso able to target as many

regions as the other methods simply by increasing the range for minimum and maximum

lengths of the regions. The minimum and maximum lengths of the regions can be adjusted

by the user based on their needs. The results of the experiments show that the proposed

model is able to achieve a higher degree of accuracy than the previously proposed methods.

5.2 Results

To evaluate the proposed model, we have used various datasets. The first dataset isFoxA1

[12] which contains experiment and control samples of 24 chromosomes. The FoxA1 pro-

tein is known to cooperatively interact with estrogen receptor in breast cancer cells [16,17].

We consider another six datasets which belong to four transcription factors (with a total
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of 6 antibodies) forDrosophila melanogasterusing published data from the Eisen lab [18]

(available at the NCBI GEO database [19], accession no. GSE20369). These four transcrip-

tion factors, namely Hunchback (HB), Krppel (KR), Giant (GT) and Caudal (CAD), have

been obtained by immunoprecipitating binding regions withaffinity purified rabbit poly-

clonal antibodies raised against theD. melanogasterversions of the key A-P regulators.

The other dataset is a genome-wide map of theH3K4acantibody with ability to covalent

acetylations in histone [20], which occur mainly at the N-terminal tails of the histone, and

that can affect transcription of genes.

As in [14], the experiment and control histograms were generated separately by extend-

ing each mapped position (read) into an appropriately oriented fragment, and then joining

the fragments based on their genome coordinates. We compareCMT, MACS [12] and T-

PIC [14]. Figure 5.1 shows a typical region detected in chromosome 1 by CMT, MACS and

T-PIC along with the corresponding base pair coordinates inthe FoxA1 dataset. As shown

in the plot, all three methods found the position of the peak accurately.

Computing the enrichment score for each method proceeds as follows. Random inter-

vals from the genome are created by selecting the same numberof intervals with the same

lengths from each chromosome as in the called peaks but with random starting locations.

Then, the number of occurrences of the binding motif in the called peaks and the random in-

tervals are counted. Table 5.1 shows the binding motifs corresponding to each dataset. The

motifs for CAD, GT, HB, and KR datasets have been obtained from [21], while the binding

motif for the FoxA1 dataset has been obtained from [22]. The enrichment score is the ratio

of the number of occurrences in the called peaks divided by the number of occurrences at

random intervals.
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Figure 5.1: A detected region from the FoxA1 dataset for chromosome 1. Thex-axis cor-
responds to the genome position in bp and they-axis corresponds to the number of reads.

Table 5.1: Binding motifs corresponding to each dataset.

FoxA1 CAD GT HB KR
TGCATG TTTATTG , TTTATGA TTACGTAA TTTTTT GANGGGT, AANGGGT
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5.2.1 Comparison with Other Methods

Figure 5.2 shows the Venn diagram corresponding to each dataset for all three methods.

We consider a peak detected by two methods to be overlapped, if the summit of the peak

is located in the detected region by both of the methods. For example, Figure 5.1 shows an

overlapping region detected by all three methods. In the FoxA1, KR1 and KR2 datasets,

the number of regions selected by CMT is relatively higher than those of the other meth-

ods. These regions have mostly a small footprint which has not been detected by T-PIC or

MACS. In the GT dataset, the numbers of regions detected by CMT and T-PIC are compara-

ble. Interestingly, MACS detected only one fourth of the peaks detected by two other meth-

ods. In the HB1 and HB2 datasets, this case is inverted and MACS detects more regions

than T-PIC and CMT. In the H3K4ac dataset, while the number ofhistone modification

sites using CMT and T-PIC are comparable, we were not able to obtain any regions with

minimum size of 2,000bp using MACS even after various parameter adjustments. Also, Ta-

ble 5.2 shows a summary of prediction for the proteins found by each method. Each value

represents the percentage of peaks detected by each method which are also detected by the

other methods. For example, CMT detects 95.1% of the peaks detected by MACS, while

MACS only detects 50.8% of significant peaks detected by CMT in the FoxA1 dataset.

This demonstrates the wide spectrum and specificity of the proposed CMT algorithm. As

mentioned earlier, since MACS was not able to detect wide peaks in H3K4ac dataset, the

corresponding cells in Table 5.2 have been marked withN/A (not applicable).

Table 5.3 shows a comparison between the three peak finding algorithms considered in

this paper. As shown in the table, in terms of enrichment ratio CMT is the best among these

methods, overall. The difference between CMT, w.r.t. MACS and T-PIC is considerable

in some datasets such as GT, HB1 and HB2. On the other hand, theaverage size of the
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Figure 5.2: Venn diagrams corresponding to all datasets. Each Venn diagram shows the
number of detected regions by CMT, MACS and T-PIC in each dataset along with the
number of detected regions by each pair and all aformentioned methods.
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Table 5.2: Percentage of common peaks detected by each method included in the compari-
son and related to each protein of interest.

CMT T-PIC MACS

FoxA1
CMT 100 79.8 50.8
T-PIC 96.7 100 59.8
MACS 95.1 92.3 100

CAD
CMT 100 41.9 24.4
T-PIC 72.7 100 47.3
MACS 79.0 88.4 100

GT
CMT 100 66.1 16.9
T-PIC 70.1 100 18.0
MACS 68.9 69.0 100

HB1
CMT 100 82.9 93.1
T-PIC 74.0 100 97.8
MACS 66.1 77.7 100

HB2
CMT 100 85.3 64.2
T-PIC 73.4 100 55.6
MACS 66.7 67.1 100

KR1
CMT 100 54.0 28.2
T-PIC 73.6 100 44.7
MACS 76.4 88.7 100

KR2
CMT 100 54.5 34.4
T-PIC 74.2 100 54.8
MACS 76.7 89.6 100

H3K4ac
CMT 100 16.1 N/A
T-PIC 16.7 100 N/A
MACS N/A N/A N/A
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peaks is relatively smaller than those of the other two methods, which implies that CMT is

able to detect significant peaks more precisely. This helps determine the actual footprint of

a binding site accurately. We do not report the enrichment scores for the H3K4ac dataset,

since the binding motifs for this dataset are not reported in[20]. In another comparison,

using the FoxA1 dataset, we evaluate the enrichment score ofthose peaks that have been

detected by one of the methods and missed by the other two. Table 5.4 shows the average

size and enrichment score of CMT, MACS and T-PIC.

A conceptual comparison of CMT and other peak finding methodsbased on their fea-

tures is shown in Table 5.5. As shown in the table, different algorithms require different sets

of parameters for processing the data, includingp-value,m-fold, window length, among

others. CMT gives users the ability to fine tune the procedurebased on their needs. In-

cluding the minimum and maximum range for regions of interest helps the procedure target

regions within a specific range easily. It also boosts CMT to detect very small (or very large

regions, depending on the parameters settings) more than T-PIC and MACS, as shown in

Figure 5.2, where most of the peaks have a small footprint. This makes the peak detection

process rather difficult for other methods. CMT overcomes this problem by using the spec-

ified ranges for minimum and maximum size of the target regions and scan the histogram

with more emphasis on peaks within the specified range.

To compare the prediction specificity of these three methods, we swapped the ChIP and

control samples, and calculated the false discovery rate (FDR) of each of these methods as

follows:

FDR=
No. control peaks

No. of experiment peaks
(5.1)

For example, if we have 100 peaks selected and by swapping theexperiment and control
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Table 5.3: Peak number, length and score comparison. Comparison between CMT, MACS
and T-PIC based on the number and mean length of detected peaks and enrichment score.

Dataset
Method of

CMT T-PIC MACS
Comparison

FoxA1

Mean
length of
peaks

277 303 373

Enrichment
ratio

2.39 2.42 1.83

CAD

Mean
length of
peaks

476 818 507

Enrichment
ratio

0.92 0.88 0.93

GT

Mean
length of
peaks

303 866 194

Enrichment
ratio

4.21 1.98 3.02

HB1

Mean
length of
peaks

365 920 429

Enrichment
ratio

2.03 1.57 1.80

HB2

Mean
length of
peaks

343 891 228

Enrichment
ratio

2.11 1.56 1.99

KR1

Mean
length of
peaks

517 728 492

Enrichment
ratio

1.91 1.83 1.95

KR2

Mean
length of
peaks

513 737 500

Enrichment
ratio

1.94 1.75 2.10
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Table 5.4: Length and enrichement score comparison. Comparison between CMT, MACS
and T-PIC the average length of detected peaks and enrichment score on FoxA1 dataset.

CMT T-PIC MACS

Mean length of peaks 220 421 337
Enrichment ratio 2.74 2.92 1.67

samples and using the same parameters we obtain 30 peaks, then the FDR would be 30%.

Figure 5.3 shows the comparison between CMT, MACS and T-PIC on the FoxA1 dataset

based on the false discovery rate (FDR) and the number of selected peaks. As shown in the

figure, while CMT and MACS act similarly, T-PIC falls behind with its higher FDR rate.

There is a clear advantage for CMT in finding the top 1,000 regions, while from the 1,000

to 10,000 top regions, MACS yields a slightly lower FDR rate.Due to possible background

noise in the data and also because the size of regions are relatively small, CMT is able to

find peaks with lower FDR than T-PIC and MACS when we target a small subset of regions

with high enrichment level.

From another perspective, we compared the true positive (TP) and false positive (FP)

rates for each method. Figure 5.4 shows the ROC curve for CMT,T-PIC and MACS on the

FoxA1 dataset. Also, Table 5.6 shows the corresponding areaunder curve (AUC) values.

As shown in the plot and the table, CMT, again, performs better than the MACS and T-PIC.

5.2.2 Analysis of Genomic Features

We have also biologically validated the peaks detected by CMT on the results of indepen-

dent qPCR experiments for the FoxA1 protein. We consider 25 true positives and 7 true

negatives (regions) reported in [23]. The results of the other two well-known methods,

T-PIC and MACS, are included in the comparison. Table 5.7 shows the results of this bio-
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Figure 5.3: Comparison between CMT, MACS and T-PIC based on the FDR rate and num-
ber of peaks.

Figure 5.4: ROC curve corresponding to CMT, T-PIC and MACS.
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Table 5.5: Conceptual comparison of recently proposed methods for finding peaks in ChIP-
Seq data.

Method Peak selection criteria
Peak rank-
ing

Parameters

GLITR
n: Classification by
height and relative en-
richment

Peak height
and fold en-
richment

Target FDR, number of
nearest neighbors for
clustering

MACS
Local region Poissonp-
value

p-value
p-value threshold, tag
length, m-fold for shift
estimate

PeakSeq
Local region binomial
p value

q value Target FDR

Quest v2.3
Height threshold, back-
ground ratio

q value

KDE bandwidth, peaks
height, sub-peak valley
depth, ratio to back-
ground

SICER v1.02

p value from random
background model,
enrichment relative to
control

q value

Window length, gap
size, FDR (with con-
trol) or E-Value (no
control)

SiSSRs v1.4
N+ −N− sign change,
N+ + N− threshold in
region

p value
FDR, N+ +N− thresh-
old

T-PIC Local height threshold p-value

average fragment
length, significance
p-value, minimum
length of interval

Qeseq
Local enrichment sig-
nificance

p-value no parameter

CMT
Height threshold and
volume difference

fold enrich-
ment

average fragment
length, minimum and
maximum region size,
cut-off, minimum
supported reads
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Table 5.6: Area under curve (AUC) comparison between CMT, MACS and T-PIC, based
on the number of false positive (FP) and true positive (TP) detected peaks.

CMT T-PIC MACS

AUC 0.856 0.794 0.712

logical validation of each method. As the other two methods,CMT has been able to reject

all true negatives. Although CMT finds a larger number of regions, it shows a high sensi-

tivity, finding more true positives than T-PIC and MACS. As anexample, one of the true

positive regions in chromosome 3 is shown in Figure 5.5. The region is detected by CMT

but not by T-PIC or MACS.

Table 5.7: True positive and true negative peak comparison.the comparison of CMT,
MACS and T-PIC is based on the number of true positive (TP) andtrue negative (TN)
detected peaks.

CMT T-PIC MACS

TP 14 13 12
TN 0 0 0

In another experiment, using the information gathered fromthe UCSC Genome Browser

on theNCBI36/hg19assembly, the genomic features of each detected peak have been in-

vestigated. We assigned a genomic feature to a peak if that peak overlaps with the region

containing that genomic feature. A detected peak can be aligned to more than one genomic

feature. For example, if a specific peak overlaps with a gene and exon simultaneously, we

count that peak as both geneandexon. Table 5.8 shows the percentage of regions that are

located in gene, promoter, intron and exon areas as well as inter-genetic regions. CMT was

able to detect more regions corresponding to genes, promoters and exons, while the per-

centage of detected regions within introns and inter-genetic areas by CMT is less than the
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Figure 5.5: One of the true positive regions located in chromosome 3 of the FoxA1 dataset.
The red lines show the actual location of the previously verified true positive region. The
x-axis corresponds to the genome position in bp and they-axis corresponds to the number
of reads. The peak is detected by CMT but not by T-PIC or MACS.

percentage of detected regions by MACS and T-PIC. We have also analyzed the genomic

features of the peaks detected by each method and not by the others. Table 5.9 shows the

result of this analysis. As shown in the table, again, CMT found more genes, exons and pro-

moters than T-PIC and MACS, while it found less peaks corresponding to the non-coding

regions.
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Table 5.8: Comparison of CMT, MACS and T-PIC, based on the percentage of detected
regions that are associated with different genomic features.

Method
# of

Regions
Genes Exons Introns Promoters

Inter-genetic
Regions

Regions % Regions % Regions % Regions % Regions %
MACS 14,026 12,249 87.3 967 6.9 12,438 88.7 676 4.8 7,338 52.3
T-PIC 21,662 19,041 87.9 1,721 7.9 18,731 86.5 934 4.3 10,989 50.7
CMT 26,253 23,311 88.8 2,231 8.5 22,143 84.3 1,226 4.7 13,053 49.7

Table 5.9: Comparison of CMT, MACS and T-PIC, based on the percentage of detected
regions detected by one method and not by the others.

Method Genes Exons Introns Promoters
Inter-genetic

Regions
MACS 70.5 % 7.5 % 71.4 % 3.8 % 57.4%
T-PIC 67.7 % 9.8 % 68.4 % 2.8 % 57.5%
CMT 89.1 % 10.2 % 68.5 % 4.3 % 47.2 %
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5.2.3 Targeting a Specific Range of Regions Using Constraints

There are different types of regions of interest within the genome with various lengths.

Some of the regions are long-range in the sense that have a length of up to 60 kbp such as

histone modifications sites. Some other regions are mid-range such as DNA polymerase

binding sites, or genes in which the length of the corresponding regions can vary from 1 to

20 kbp. There are also some regions of interest with a very small footprint such as exons of

length approximately 100 bp and transcription factor binding sites of length around 10 bp.

To find a specific type of biomarker, it is better to search for regions within a certain

range in the genome. Finding all regions of interest corresponding to a target protein and

selecting only those regions that are wide enough to be a histone modification site or a

gene increase the computational complexity of the method without adding any benefit to

the analysis. Using a constraint-based model helps us target only those regions that are in

a specified range. Moreover, the sensitivity of the algorithm can be adapted dynamically to

target the regions of interest based on the specified range with higher accuracy.

5.3 Methods

The aim is to find significant peaks corresponding to regions that interact with the protein of

interest. Roughly speaking, each peak can be seen as a cluster which is separated from its

neighbours by “valleys”. In that sense, the problem can be formulated as aone-dimensional

clusteringproblem. Figure 5.6 depicts the process of finding the peaks corresponding to

the regions of interest for the specified protein. After extending each read to a fragment, a

histogram is created for each chromosome using those fragments. In the next step, relevant

peaks are selected by CMT after fine tuning the exact positionof the regions. Finally, by
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comparing each region with the corresponding region in the control histogram, the relevant

peaks are selected.

5.3.1 Creating the Histogram

The first step of the method consists of creating a histogram using the input BED file con-

taining the position and direction of the reads. Each read should be extended to a fragment

length, which is related to the settings used to shearing theDNA. This parameter can be

input by the user, even though the fragment length can be easily estimated from the under-

lying data if enough computational resources are available.

After extending each read to a fragment length based on the direction of each read, each

fragment is aligned to the reference genome based on its coordinates. Afterwards, for each

chromosome, two separate histograms for experiment and control datasets are created for

further processing. Each bin in the histogram corresponds to a nucleotide.

5.3.2 The Constrained Thresholding Algorithm

For each chromosome, the corresponding experiment histogram, which is obtained from

the previous step, is analyzed separately using the constraint-based algorithm. In this al-

gorithm, each region is treated as an independent cluster. By starting from the beginning

of the chromosome and based on the minimum and maximum rangesof the target regions

(determined by user), the best point to divide the histogramis found.

Although various parametric and non-parametric thresholding methods and criteria have

been proposed, the three most important streams are Otsu’s method, which aims to maxi-

mize the separability of the classes measured by means of thesum of between-class vari-

ances [24], the criterion that uses information theoretic measures in order to maximize the
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Figure 5.6: Schematic diagram of the pipeline for finding significant peaks.
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separability of the classes [25], and the minimum error criterion [26]. In this work, we use

the between-class variance criterion [24] because it provides higher accuracy.

Consider a histogramH, an ordered set{1,2, . . . ,n−1,n}, where theith value corre-

sponds to theith bin and has a probability,pi . Also, consider a threshold setT, defined as an

ordered setT = {t0, t1, . . . , tk, tk+1}, where 0= t0< t1 < .. . < tk < tk+1 = n andti ∈ {0}∪H.

The aim of CMT is to find the values ofti within a window starting from the current position

and based on the given minimum and maximum length defined by the user.

The between class variance criterion is given by:

ΨBC = ω1µ2
1+ω2µ2

2 , (5.2)

whereω1 = ∑t∗
i=1 pi , µ1 =

1
ω1

∑t∗
i=1 i× pi , ω2 = ∑n

i=t∗ pi andµ2 =
1

ω2
∑n

i=t∗ i× pi .

The aim is to obtaint∗ for each potential region in such a way thatΨBC is maximized

for that window. Figure 5.7 depicts the procedure for findingthresholdt∗. The sub-optimal

thresholdt∗ can be found by sliding the blue line between min and max and computeΨBC

respectively. The best point to separate two neighbour peaks is the one that maximizesΨBC.

The final output of the model consists of two vectors,Si = [s1, ...,sn]
t andEi = [e1, ...,en]

t,

wheresi andei are the start and end position of theith detected region respectively andn

is the number of detected peaks. Although this method is not optimal, its worst-case time

complexity isO(n), wheren is the number of genomic positions (nucleotides) in a chromo-

some.

5.3.3 Gap Skipping

After aligning the reads to the reference genome, and depending on the number of reads

obtained from the experiment, the fragments may cover a small fraction of the genome and
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Figure 5.7: An example of finding the thresholdt∗ using the CMT algorithm.

leave very large gaps between neighbour regions. To speed upthe peak finding process,

gaps are skipped by computing the maximum height of each window. If that height does

not surpass the minimum acceptable height for the region, that window is skipped and no

further analysis is done on the regions within that window. The minimum acceptable height

is a user-adjustable value that specifies how many reads a region should support to make it

acceptable as a possible region of interest.

5.3.4 Selecting Enriched Regions

After finding the potential regions, they have to be shrunk from the borders for removing

possible empty gaps on the left and right sides of the region.Starting from the highest point

of the region, the start and end borders are moved to left and right respectively until the

height of the region in both of those points reaches a value below a cut-off level. The cut-

off level is adjustable by the user. The default value is 1, which means that the algorithm

will isolate the continuous part of the region that containsat least one fragment aligned to
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those positions.

In the next step, the isolated experiment regions detected in the previous step are com-

pared to their corresponding regions in the control histogram. A region in the experiment

histogram is considered as an enriched region if it satisfiesthe following properties:

• the size of the region should be within the acceptable rangesdefined by the user, and

• there should be ak-fold difference between the squared density of the experiment

region and the control region as follows:

Ve≥ K×Vc (5.3)

whereVe= Σend
i=starte

2
i , Vc = Σend

i=startc
2
i ; ei andci are the heights of the experiment and

control regions at positioni respectively. Also,K is a user-defined parameter (whose

default value is 2), and corresponds to the minimum acceptable fold change between

experiment and control.

The regions that satisfy the aforementioned criteria are considered enriched and are

used for further processing and biological validation.

Implementation

CMT has been implemented inC++. It runs on x86 systems using the Windows operating

system. The executable version of the code is available at http://luisrueda.cs.uwindsor.ca/

software/CMT-ChIP-Seq.rar. The source code is available upon request. A readme file is

included in the downloadable package.
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Chapter 6

Identifying Informative Genes for

Prediction of Breast Cancer Subtypes

6.1 Introduction

Despite advances in treatment, breast cancer remains the second leading cause of cancer

related deaths among females in Canada and the United States. Previous studies have re-

vealed that breast cancer can be categorized into at least five subtypes, including basal-like

(Basal), luminal A, (LumA), luminal B (LumB), HER2-enriched (HER2), and normal-like

(Normal) types [1, 2]. These subtypes have their own geneticsignatures, and response to

therapy varies dramatically from one subtype to another. The variability among subtypes

holds the answer to how to better design and implement new therapeutic approaches that

work effectively for all patients. It is clinically essential to move toward effectively strati-

fying patients into their relevant disease subtype prior totreatment.

Techniques such as breast MRI, mammography, and CT scan, canexamine the pheno-

typical mammary change, but provide little effective information to direct therapy. Genomic
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techniques provide high-throughput tools in breast cancerdiagnosis and treatment, allowing

clinicians to investigate breast tumors at a molecular level. The advance of microarray ap-

proaches have enabled genome-wide sampling of gene expression values and/or copy num-

ber variations. The huge amount of data that has been generated has allowed researchers

to use unsupervised machine learning approaches to discover characteristic “signatures”

that have since established distinct tumor subtypes [1]. Tumor subtyping has explained a

great deal about some of the mysteries of tumor pathology [3], and has begun to enable

more accurate predictions with regard to response to treatment [4]. While offering enor-

mous opportunity for directing therapy, there are some challenges arising in the analysis of

microarray data. First, the number of available samples (e.g. patients) is relatively small

compared to the number of genes measured. The sample size typically ranges from tens to

hundreds because of costs of clinical tests or ethical constraints. Second, microarray data

is noisy. Although the level of technical noise is debatable[5], it must be carefully consid-

ered during any analysis. Third, due to technical reasons, the data set may contain missing

values or have a large amount of redundant information. These challenges affect the design

and results of microarray data analysis.

This current study focuses on identifying a minimal number of genes that will reliably

predict each of the breast cancer subtypes. Being a field of machine learning, pattern recog-

nition can be formulated as a feature selection and classification problem for multi-class,

high-dimensional data using two traditional schemes. The first applies a multi-class “fea-

ture selection” method directly followed by a classifier to measure the dependency between

a particular feature and the multi-class information. A well-known example of the feature

selection method is the minimum redundancy maximum relevance (mRMR) method pro-

posed in [6] and [7]. The second traditional scheme is the most common of the two and
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treats the multi-class feature selection as multiple binary-class selections. Methods using

multiple binary class selections differ in how to bisect themultiple classes. The two most

popular ways to solve this problem are one-versus-one and one-versus-all [8]. In this paper,

we propose a novel and flexible hierarchial framework to select discriminative genes and

predict breast tumor subtypes simultaneously. The main contributions of this paper can be

summarized as follows:

1. We implement our framework usingChi2 feature selection [9] and asupport vec-

tor machine (SVM) classifier[10] to obtain biologically meaningful genes, and to

increase the accuracy for predicting breast tumor subtypes.

2. We use a novel feature selection scheme with a hierarchialstructure, which learns in

a cross-validation framework from the training data.

3. We establish a flexible model where any feature selection and classifier can be em-

bedded for use.

4. We discover a new, compact set of biomarkers or genes useful for distinguishing

among breast cancer types

6.2 Related Work

Using microarray techniques, scientists are able to measure the expression levels for thou-

sands of genes simultaneously. Finding relevant genes corresponding to each type of can-

cer is not a trivial task. Using hierarchical clustering, Perou and colleagues developed the

original 5 subtypes of breast cancer based on the relative expression of 500 differentially

expressed genes [1]. It has since been demonstrated that combining platforms to include
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DNA copy number arrays, DNA methylation, exome sequencing,microRNA sequencing

and reverse-phase protein arrays may define these subtypes even further [2]. It is postu-

lated that there are, indeed, upward of over 10 different forms of breast cancer with differ-

ing prognosis [11]. Other groups have tailored analysis toward refining the patient groups

based on relative prognosis, reducing the profile for one subtype to a 14-gene signature [12].

Given any patient subtype, obtained through one or several platforms, we hypothesize that

machine learning approaches can be used to more accurately determine the number of genes

required to reliably predict a subtype for a given patients.

On the other hand, modeling today’s complex biological systems requires efficient com-

putational techniques designed in articulated model, and used to extract valuable informa-

tion from existing data. In this regard, pattern recognition techniques in machine learning

provide a wealth of algorithms for feature extraction and selection, classification and clus-

tering. A few relevant approaches are briefly discussed then.

An entropy-based method for classifying cancer types was proposed in [13]. In entropy-

classed signatures, the genes related to the different cancer subtypes are selected, while the

redundancy between genes is reduced simultaneously. Recursive feature addition (RFA)

has been proposed in [14], which combines supervised learning and statistical similarity

measures to select relevant genes to the cancer type. A mixture classification model con-

taining a two-layer structure named as mixture of rough set (MRS) and support vector

machine (SVM) was proposed in [15]. This model is constructed by combining rough sets

and SVM methods, in such a way that the rough set classifier acts as the first layer to deter-

mine some singular samples in the data, while the SVM classifier acts as the second layer

to classify the remaining samples. In [16], a binary particle swarm optimization (BPSO)

was proposed. BPSO involves a simulation of the social behavior in organisms such as bird
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flocking and fish schooling. In BPSO, a small subset of informative genes is selected where

the genes in the subset are relevant for cancer classification. In [17], a method for selecting

relevant genes in comparative gene expression studies was proposed, referred to asrecur-

sive cluster elimination(RCE). RCE combinesk-Means and SVM to identify and score (or

rank) those gene clusters for the purpose of classification.k-Means is used initially to group

the genes into clusters. RCE is then applied to iteratively remove those clusters of genes

that contribute the least to classification accuracy. In thework described in this paper we

used the original five breast cancer subtypes to determine whether our proposed hierarchial

tree-based scheme could reduce the gene signature to a reliable subset of relevant genes.

6.3 Methods

First, we describe the training phase for gene selection andbreast cancer subtyping, and

then we describe how the model can be used in predicting subytpes in a clinical setting.

The complete gene profile of each breast cancer subtype is compared against the others.

Each subtype varies in the genes that are associated with it,and in the accuracy with which

those genes predict that specific subtype. The subtypes are then organized by two main

criteria. The first criterion is the level of accuracy with which the selected genes identify

the given subtype. The second criterion is the number of genes identified. Clearly applying

two or more gene selection criteria is a multi-objective problem in optimization [18]. In

this study, we use the rule that select the smallest subset ofgenes that yields the highest

accuracy. Therefore, a subtype that is predicted with 95% accuracy by five genes is ranked

higher than a subtype for which 20 genes are required to acquire the same accuracy. The

subtype that is ranked highest is removed and the procedure is repeated for the remaining

subtypes comparing each gene profile against the others. Thehighest ranked subtype is
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again removed and becomes a leaf on the hierarchical tree (see Fig. 6.1). Therefore, each

leaf on the tree becomes a distinct subtype outcome.

6.3.1 Training Phase

We give an example of such a tree to illustrate our method in Fig. 6.1. Suppose there are

five subtypes, namely{C1, · · · ,C5}. The training data is am×n matrix D = {D1, · · · ,D5}

corresponding to the five subtypes.Di, of sizem×ni , is the training data for classCi. m

is the number genes andni is the number of samples in subtypeCi . n= ∑5
i=1ni is the total

number of training samples from all five classes. First of all, feature selection and classifi-

cation are conducted, in a cross-validation fashion, for each class against the other classes.

For example, suppose subtypeC3 obtains the highest rank based on accuracy and the num-

ber of genes contributing to that accuracy. We thus record the list of the particular genes

selected and create a leaf for that subtype. We then remove the samples of the subtype,

which results inD = {D1,D2,D4,D5} and continue the process in the same fashion. Thus,

at the second level, subtypeC5 yields the highest rank, and hence its gene list is retained

and a leaf is created. Afterward the training data set becomes D = {D1,D2,D4} for the

third level. We repeat the training procedure in the same fashion until there is no subtype

to classify. At the last level, two leaves are created, forC4 andC2, respectively.

6.3.2 Prediction Phase

Once the training is complete, we can apply the scheme to predict breast cancer subtypes.

Given the gene expression profile of a new patient, a sequenceof classification steps are

performed by tracing a path from the root of the tree toward a leaf. At each node in the

path, only the genes selected in the training phase are tested. The process starts at the first
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Figure 6.1: Determining breast cancer type using selected genes.

level (root of the tree), in which case only the genes selected for C3, namelyG3 are tested.

If the patient’s gene profile is classified as a positive sample, then the prediction outcome is

subtypeC3, and the prediction phase terminates. Otherwise, the sequence of classification

tests is performed in the same fashion, until a leaf is reached, in which case the prediction

outcome is the subtype associated with the leaf that has beenreached.

6.3.3 Characteristics of The Method

Our structured model has the following characteristics. First, it involves a greedy scheme

that tries the subtype which obtains the most reliable prediction and the smallest number of

genes first. Second, it conducts feature selection and classification simultaneously. Essen-

tially, it is a specific type of decision tree for classification. The differences between the

proposed model and the traditional decision tree includes:i) each leaf is unique, while one

class usually has multiple leaves in the later; ii) classifiers are learned at each node, while

the traditional scheme learns decision rules; and iii) multiple features can be selected, while

in the traditional scheme each node corresponds to only one feature. Third, the proposed
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model is flexible as any feature selection method and classifier can be embedded. Obvi-

ously, a classifier that can select features simultaneouslyalso applies, (e.g. thel1-norm

SVM [19]).

6.3.4 Implementation

In this study, we implement our model by using Chi2 feature selection [9] and the state-of-

the-art SVM classifier [10]. These two techniques are brieflydescribed briefly next. Chi2

is an efficient feature selection method for numeric data. Unlike some traditional methods

which discretize numeric data before conducting feature selection, Chi2automaticallyand

adaptivelydiscretizes numeric features and selects features as well.It keeps merging ad-

jacent discrete statuses with the lowestχ2 value until allχ2 values exceed their confidence

intervals determined by a decreasing significant level, while keeping consistency with the

original data. If, finally, a feature has only one discrete status, it is removed. Theχ2 value

of a pair of adjacent discrete statuses or intervals is computed by theχ2 statistic, with 1

degree of freedom, as follows:

χ2 =
2

∑
i=1

k

∑
j=1

(ni j −ei j )
2

ei j
, (6.1)

whereni j is the number of samples in thei-th interval andj-th class, andei j is the expected

value ofni j . ei j is defined asr i
c j
n wherer i = ∑k

j=1ni j , c j = ∑2
i=1ni j , andn is the total

number training samples.

Based on these selected genes, the samples are classified using SVM [10]. Soft-margin

SVM is applied in our current study. SVM is a linear maximum-margin model with decision

functiond(x) = sign[ f (x)] = sign[wTx+b] wherew is the normal vector of the separating
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hyperplane andb is the bias. Soft-margin SVM solves the following problem inorder to

obtain the optimalw andb:

min
w,b,ξ

1
2
‖w‖22+CTξ (6.2)

s.t.ZTw+by≥ 1−ξ

ξ≥ 0,

whereξ is a vector of slack variables,C is a vector of constant that controls the trade-off

between the maximum margin and the empirical error,y is a vector that contains the class

information (either -1 or +1), andZ contains the normalized training samples with itsi-th

column defined aszi = yixi [20]. Since optimization of the SVM involves inner products

of training samples, by replacing the inner products by a kernel function, we can obtain a

kernelized SVM.

For the implementation, the Weka machine learning suite wasused [21]. A gene se-

lection method based on theχ2 feature evaluation algorithm was first used to find a subset

of genes with the best ratio of accuracy/gene number [9]. Forclassification, LIBSVM [22]

in Weka is employed. TheRadial basis function(RBF) kernel is used with the LIBSVM

classifier without normalizing samples and with default parameter settings.

6.4 Computational Experiments and Discussions

6.4.1 Experiments

In our computational experiment, we analyzed Hu’s data [23]. Hu’s data (CEO accession

number GSE1992) were generated by three different platforms including Agilent-011521
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Human 1A Microarray G4110A (feature number version) (GPL885), Agilent-012097 Hu-

man 1A Microarray (V2) G4110B (feature number version) (GPL887), and Agilent Hu-

man 1A Oligo UNC custom Microarrays (GPL1390). Each platform contains 22,575

probesets, and there are 14,460 common probesets among these three platforms. We used

SOURCE [24] to obtain 13,582 genes with unique unigene IDs inorder to merge data from

different platforms. The dataset contains 158 samples fromfive subtypes of breast can-

cer(13 Normal, 39 Basal, 22 Her2, 53 LumA and 31 LumB). The sixth subtype Claudin is

excluded from our current analysis as the number of samples of this class is too few (only

five). However, we will investigate this subtype in our future work.

To evaluate the accuracy of the model, 10-fold cross-validation is used. As shown

in Table 6.2, using all genes decreases the overall accuracyof the model, since many of

the genes are irrelevant or redundant. For example, using all 13,582 genes, the overall

accuracy is just 77.84%; while using a ranking algorithm andtaking the top 20 genes for

prediction brings the accuracy up to 86.70%. Table 6.1 showsthe top 20 genes ranked

by the Chi-Squared attribute evaluation algorithm to classify samples as one of the five

subtypes. Using the proposed hierarchical decision-tree-based model, makes the prediction

procedure more accurate. While the accuracy of prediction between LumA and LumB is

relatively low compared to the other classes. This is because of the very high similarity and

overlap between samples of these two classes. The overall accuracy of the model, as shown

in Table 6.2, is 95.11%. This is very interesting since only 18 genes are used to predict

the subtypes that the patient belongs to. these 18 genes havebeen obtained by selecting 6

genes per node and decreasing them one by one as long as the accuracy of the model keeps

consistent. As a matter of fact, our method is able to increase its accuracy from around 86%

to 95% by using a new subset of genes based on the proposed method containing only 18
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genes.

Table 6.1: Top 20 genes ranked by the Chi-Squared attribute evaluation algorithm to classify
samples as one of the five subtypes.
Rank Gene Name Rank Gene Name Rank Gene Name Rank Gene Name

1 FOXA1 6 THSD4 11 DACH1 16 ACOT4
2 AGR3 7 NDC80 12 GATA3 17 B3GNT5
3 CENPF 8 TFF3 13 INPP4B 18 IL6ST
4 CIRBP 9 ASPM 14 TTLL4 19 FAM171A1
5 TBC1D9 10 FAM174A 15 VAV3 20 CYB5D2

Fig. 6.2 shows the tree learned in the training phase and the set of genes selected at each

step. The selected genes are contained in each node, a patient’s gene expression profile is

used to feed the tree for prediction, each leaf represents a subtype, and the accuracy at each

classification step is under the corresponding node.

From this figure, we can see that the Basal subtype is chosen first as it obtains the

highest accuracy, 99.36% to classify patients from the other subtypes including Normal,

Her2, LumA and LumB. Then the samples of Basal are removed forthe second level. The

Normal subtype is chosen then, since it achieves the highestaccuracy (95.79%) to separate

samples from the other subtypes, including Her2, LumA and LumB. From previous studies,

it is well-known that the subtypes LumA and LumB are very difficult to be identified among

all subtypes. This is the reason for why LumA and LumB appear at the bottom of the tree.

After removing other subtypes, LumA and LumB can avoid misclassification on the other

subtypes. In spite of this drawback, the accuracy for separating LumA and LumB is as high

as 88.1%.

As shown in Figure 6.2, there is no overlap between the genes selected among the

different clusters. This result provides interesting new biomarkers for each breast cancer

subtype. Some of the selected genes have been previously indicated in cancer (highlighted
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Figure 6.2: Determining breast cancer type using selected genes.

in black in Figure 6.2), while others have emerged as interesting genes to be investigated.

For example, TFF3 and FoxA1 genes are predictably indicatedin Basal subtype. Another

feature of the proposed hierarchical model is that the number of genes in each node has

been optimized to give the best ratio of accuracy and number of selected genes. For this,

at first, 10 genes with highest rank have been selected for each node. Then, out of those

selected genes, those with lower rank are removed step by step as long as the accuracy of

classification using the remaining genes don’t get decreased.
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Table 6.2: Accuracy of classification using LibSVM Classifier
Classification
Method

Gene Selection
Method

# of
Genes

Accuracy Precision Recall F-measure

LibSVM —
all
genes

77.84% 0.802 0.778 0.749

LibSVM Chi-Squared 20 86.70% 0.866 0.867 0.864
Proposed
Method

Proposed
Method

18 95.11% 0.951 0.951 0.951

6.4.2 Biological Insight

We used FABLE to determine if the genes selected by our approach are biologically mean-

ingful. Fast Automated Biomedical Literature Extraction (FABLE) is a web-based tool to

search through MEDLINE and PubMed databases. The genes thatare related to tumors

reported in the literature are highlighted in black in Figure 6.2. Those not yet reported are

underlined and colored in red. We can see that 15 out of 18 genes have been found in the

literature. This implies that our approach is quite effective in discovering new biomarkers.

We also explored the reasons for the high performance of our method. First, the sub-

types that are easily classified are on the top of the tree, while the harder subtypes are

considered only after removing the easier ones. Such a hierarchical structure can remove

the disturbance of other subtypes, thereby allowing us to focus on the most difficult sub-

types, LumA/B. Second, combining gene selection when building the classifier allows us

to select genes that contribute to prediction accuracy. Third, our tree-based methodology

is quite flexible; any existing gene selection measure and classification technique can be

embedded in our model. This will allow us to apply this model to subtypes as they become

more rigorously defined using other platforms such as copy number variation. Furthermore,

our method could be applied to groups of patients stratified based on responses to specific

treatments. Collectively, having a small, yet reliable number of genes to screen is more cost
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effective and would allow for subtype information to be morereadily applied in a clinical

setting.

6.5 Conclusion and Future Work

In this study, we proposed a novel gene selection method for breast cancer subtype predic-

tion based on a hierarchical, tree-based model. The resultsdemonstrate an impressive ac-

curacy to predict breast cancer types using only 18 genes. Herein, we propose a novel gene

selection method for breast cancer subtype prediction based on a hierarchical, tree-based

model. The results demonstrate an impressive accuracy to predict breast cancer subtypes

using only 18 genes in total. Moreover, Most of the selected genes are shown to be related

to breast cancer based on previous studies, while a few are yet to be investigated. As future

work, we will validate these results using cell lines that fall within a known subtype. We

will determine whether our predicted 18 gene array can accurately denote which subtype

each of these cell lines falls under. This hierarchical, tree-based model can narrow down

analysis to a relatively small subset of genes. Importantly, the method can be applied to

more refined stratification of patients in the future, such assubtypes derived using a combi-

nation of platforms, or for groups of patients that have beensubdivided based on response

to therapy. Using this computational tool we can determine the smallest possible number

of genes that need to be screened for accurately placing large populations of patients into

specific subtypes of cancer or specified treatment groups. This could contribute to the de-

velopment of improved screening tools, providing increased accuracy for a larger patient

population than that achieved by Oncotype DX, but allowing for a cost effective approach

that could be widely applied to the patient population.
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Chapter 7

Conclusion and Future Works

Transcriptomics provide a rich source of data suitable for pattern analysis. We have shown

how multilevel thresholding algorithms can improve transcriptome data analysis in differ-

ent ways. We proposed OMTG, an efficient parameterless framework for DNA microarray

image analysis. By adapting the method to analyze next generation sequencing data, we

proposed OMT, a robust and versatile peak finder for finding significant peaks in high-

throughput next generation sequencing (ChIP-Seq) data. Using different datasets, and var-

ious computational and biological analysis steps, it has been shown that both OMT and

OMTG are sound and robust to noise in experiments. It is also able to be used on different

approaches with a little change – this is one the most important features of this algorithm.

We also proposed a constraint-based multi-level thresholding algorithm to find enrichment

regions with a specific range using ChIP-Seq data. Moreover,we proposed a novel multi-

class breast cancer subtype prediction framework with the ability of obtaining biologically

meaningful genes that can accurately predict breast tumor subtypes.
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7.1 Conclusion

This thesis introduced new pattern recognition and image processing and analysis methods

for transcriptomics data analysis. The methods proposed inthis thesis have been shown to

work mostly free of parameters and perform efficiently on real-life datasets from different

sources. The main contributions of the thesis can be summarized as follows:

1. Chapters 2 and 3:

(a) Proposing OMTG, a new method for separating sub-grids and spot centers in

cDNA microarray images.

(b) OMTG uses no parameter which makes it a desirable method for gridding mi-

croarray images with different structure and resolution without any need for

adjustment and tuning.

(c) Proposing a new validity index for detecting the correctnumber of sub-grids

and spots in microarray image.

(d) Proposing a refinement procedure used to increase the accuracy of spot detec-

tion.

2. Chapters 4 and 5:

(a) Proposing OMT, a multi-level thresholding based methodfor finding significant

peaks in ChIP-Seq data.

(b) OMT can be applied to high-throughput next generation sequencing data with

different characteristics.

(c) It has been shown that OMT is statistically sound and robust in experiments and

has the ability to be applied to various types of next generation sequencing data.
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(d) Comparing to other recently proposed methods, OMT showsto be more accu-

rate and use fewer parameters.

(e) Proposing CMT, a constraint based multi-level thresholding method to find sig-

nificant peaks within a specific range in ChIP-Seq data.

(f) Unlike other methods, which find all types of regions at once and then select

peaks with desired length, targeting specific regions with acertain range is one

of the main advantages of CMT that increase the performance of the algorithm

in comparison with the other methods.

3. Chapter 6:

(a) Proposing a hierarchical, tree-based gene selection method for breast cancer

subtype prediction.

(b) Obtaining an impressive accuracy of more than 95% for predicting breast cancer

types using only 18 genes in total.

(c) Most of the selected genes are shown to be related to breast cancer based on

previous studies

(d) Providing a computational tool for determining the smallest possible number

of genes that need to be screened for accurately placing large populations of

patients into specific subtypes of cancer or specified treatment groups.

7.2 Future Work

Considering the huge amount of data generated by different biological platforms, manual

analysis of these data is simply impossible. Using supervised and unsupervised machine
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learning techniques can provide a variety of efficient and robust models to analyze data.

Some of the possible future works are the following:

• Thresholding algorithms are still emerging tools in these areas, and open the possi-

bility for further advancement.

• One of the problems that deserves attention is the use of other thresholding criteria,

including minimum error, entropy-based and others in finding the optimal number of

spots in a sub-grid and the optimal number of sub-grids in a DNA microarray image.

• Processing a whole genome or even a chromosome for finding peaks in ChIP or RNA-

seq is still a challenge, since it involves processing histogram with millions of bins.

Processing different part of the histogram in parallel could improve the performance

of the peak finding algorithm.

• Next generation sequence data analysis is an emerging and promising area for pattern

discovery and analysis, which deserves the attention of theresearch community in the

field.

• One of the future works can be applying the OMT algorithm on the whole chromo-

some instead of using a set of windows as a way to reduce the number of parameters.

• Using other indices of validity such as minimum error and entropy-based; and other

thresholding criteria could increase the accuracy of the method.

• Pathway and biological analysis of selected genes in terms of their real-life perfor-

mance in identifying breast cancer subtypes and accuratelydenote which subtype

each of these cell lines falls under.



CHAPTER 7. 146

• The proposed hierarchical model can be applied to more refined stratification of pa-

tients in the future, such as subtypes derived using a combination of platforms, or for

groups of patients that have been subdivided based on response to therapy.
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