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Abstract

Proteins are known to interact with each other to perform specific living organism functions

by forming functional modules or protein complexes. Many community detection meth-

ods have been devised for the discovery of functional modules or protein complexes in

protein interaction networks. One common problem in current agglomerative community

detection approaches is that vertices with just one neighbor are often classified as sepa-

rated clusters, which does not make sense for module or complex identification. In this

thesis, we propose a new agglomerative algorithm, FAC-PIN, based on a local premetric

of relative vertex-to-vertex clustering value. Our proposed FAC-PIN method is applied

to PINs from different species for validating functional modules and protein complexes

generated from FAC-PIN with experimentally verified functional modules and complexes

respectively. The preliminary computational results show that FAC-PIN can discover func-

tional modules and protein complexes from PINs more accurately. As well as we have

also compared the computational times for different species with HC-PIN and CNM algo-

rithms. Our algorithm outperforms two algorithms. Our FAC-PIN algorithm is faster and

accurate algorithm which is the current state-of-the-art agglomerative approach to complex

prediction and functional module identification.
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Chapter 1

Introduction

In the current Chapter, we discuss necessary background and the objective of the thesis. In

Section 1.1, we describe the important terminologies which help to understand the objec-

tives of the thesis. In Section 1.2, we have described the objectives of the thesis in detail.

Finally in Section 1.3, we have shown the organization of the thesis.

1.1 Background

1.1.1 Protein

Proteins are large biological molecules consisting of multiple chains of amino acids 1 [28].

Proteins perform a vast array of functions within living organisms, including catalyzing

metabolic reactions, replicating DNA, responding to stimuli, and transporting molecules

from one location to another. Proteins were first described by the Dutch chemist Gerardus

Johannes Mulder and named by the Swedish chemist Jöns Jacob Berzelius in 1838.

1Amino acids are biologically important organic compounds made from amine (-NH2) and carboxylic
acid (-COOH) functional groups, along with a side-chain specific to each amino acid

1
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Figure 1.1: Levels of protein structures [28]

A protein having multiple chains of amino acids has four levels of structure [28]: The

four levels of the protein structure are shown in Figure 1.1. Primary structure of a protein

is the linear sequence of its amino acid structural units and partly comprises its overall

biomolecular structure [28]. The primary structure is held together by covalent or peptide

bonds, which are made during the process of protein biosynthesis2. The two ends of the

polypeptide chain are referred to as the carboxyl terminus (C-terminus) and the amino

terminus (N-terminus) based on the nature of the free group on each extremity. Counting

of residues3 always starts at the N-terminal end (-NH2 group) and ends at the C-terminal

2Biosynthesis is an enzyme-catalyzed process in cells of living organisms by which substrates are con-
verted to more complex products [4]

3residue refers to a specific amino acid within the polymeric chain of a protein or nucleic acid
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end (-COOH group). The sequence of a protein is unique to that protein, and defines the

structure and function of the protein. The sequence of a protein can be determined by

methods such as Edman degradation4 or Tandem mass spectrometry5 [28]. Often however,

it is read directly from the sequence of the gene using the genetic code. There are more

than thousands types of proteins in our body which are composed of different arrangements

of 20 types of amino acid residues.

Secondary structure refers to highly regular local sub-structures. The secondary struc-

ture consists of two major strcutures: the alpha helix (are often the basis of fibrous poly-

mers) and the beta strand or beta sheets (often has twists that increase the strength and

rigidity of the structure), were suggested in 1951 by Linus Pauling and co-workers [24].

These secondary structures are defined by patterns of hydrogen bonds between the main-

chain peptide groups. Both the alpha helix and the beta-sheet represent a way of saturating

all the hydrogen bond donors and acceptors in the peptide backbone. α helix and β sheet

of secondary structure of proteins are shown in Figure 1.2

Figure 1.2: α helix and β sheet of secondary structure of proteins [3]

Tertiary structure of a protein is when the molecule is further folded and held in a

particular complex shape forming precise and compact structure, unique to that protein.
4Edman degradation, developed by Pehr Edman, is a method of sequencing amino acids in a protein
5Tandem mass spectrometry refers to the application of mass spectrometry to the study of proteins
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The shape is maintained permanently by the intra- molecular bonds:

Hydrogen bond of one hydrogen atom shared by two other atoms

Van der Waals force is the weak force that incurs when two or more atoms are very close

Disulphide bond is a strong covalent bond formed between two adjacent cysteine amino

acids. The bond stabilizes the tertiary shape of a protein

Ionic bond is the electrostatic interaction between oppositely charged ions

Quaternary structure formed by several protein molecules (polypeptide chains), usu-

ally called protein subunits in this context, which function as a single protein complex.

The quaternary structure is stabilized by the same non-covalent interactions and disulphide

bonds as the tertiary structure. Quaternary structure of protein arise when a number of ter-

tiary polypeptides joined together forming a complex or time to time modules, biologically

active molecule.

1.1.2 Protein complex and Functional Modules

Protein complex are groups of proteins that interact with each other at the same time and

place, forming a single multimolecular machine [29]. These are the form of quaternary

structure of proteins. Identified protein complexes include several large transcription factor

complexes, the anaphase-promoting complex, RNA splicing and polyadenylation machin-

ery, protein export and transport complexes etc. Protein complexes of Baker’s yeast is

shown in Figure 1.3.

Functional modules are consisted of proteins that participate in a common elementary

biological process while binding each other at a different time and place (different condi-

tions or phases of the cell cycle, in different cellular compartments etc.) [29]. Example of
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Figure 1.3: Protein complexes of Baker’s yeast [15]

identified functional modules including the CDK/ cyclin module responsible for cell-cycle

progression, the yeast pheromone response pathway, MAP signaling cascades etc. A 3D

structural view of hyperclique pattern of functional modules within a protein complex is

shown in Figure 1.4. It is very important to remember, functional modules contain multiple

protein complexes [5, 10]. On the other hand, protein complexes carry out a specific task,

but functional modules carry out a set of tasks which are carried out by individual protein

complexes [10].

1.1.3 Protein Interaction Networks

Network representation of proteins and their interactions are known as Protein Interaction

Network [29]. In short it is called PIN. In PINs, proteins are represented as nodes or vertices

and interactions are as edges. Maximum PINs are undirected networks with edge weight

or not [13, 29]. In Figure 1.5, an unweighted PIN of baker’s yeast is shown.

Girvan and Newman [12] and Fortunato [9] discuss about the five properties of protein
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Figure 1.4: Hyperclique pattern of functional modules in a protein complex [32]

Figure 1.5: Protein Interaction Network of Baker’s yeast [14]

interaction networks in their papers:

Small world effect which is the name given to the finding that the average distance be-

tween vertices in a network is small.

Power law degree distribution is a distribution where the number of the vertices with low

degree is higher than the number of vertices with high degree.

Network transitivity is a property that two vertices that are both neighbor of same third

vertex have a heightened probability of also being neighbor of one another.
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Community structure is a property where intrales or both.-connectivity of a subset of

vertices of graph G is higher than inter-connectivity between others. It is briefly

discussed in Subsection 1.1.4.

Preferential attachment is a property where a new node u is likely to attach to a high-

degree node v than to a low degree node.

In PINs, all protein complexes and functional modules are strong subgraphs6 [29]. To

identify the protein complexes or functional modules from PINs means strong subgraphs,

authors of the algorithms were used any of five properties. Third and fourth properties are

commonly used to discover protein complexes or functional modules. But unfortunately,

fifth property have not still used by any authors which helps to identify the more significant

strong subgraph having biological significance.

1.1.4 Community

A community is defined as a subgraph (a subset of vertices of graph G) within the graph

G such that connections inside the subgraph are denser than connections with the rest of

the network [26]. Luo et al [21] gave the more formal definition of community. Their

definition is as followed-

Definition 1.1.1. Community U is a subgraph of a graph G in which in-degree of U is

higher than out-degree and the ratio of in-degree and out-degree of U should be higher than

1.

In-degree of a community U is the number of edges connected between the vertices

of community U and out-degree of a community U is the number of edges between other

6A subgraph has high concentration of edges
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communities and U . From the formal definition of community, two properties of the com-

munity are revealed-

Homogeneity: Vertices of a community are highly similar or compact to each other.

Separability: Vertices of different communities have lower similarity or compactness.

Figure 1.6: Community structure of a graph G

On the other hand, inhomogeneity or separability property suggests that the network

has certain natural divisions within it. The communities are often defined in terms of the

partition of the set of vertices, that is each node is put into either only one community just

as in the Figure 1.6 or into multiple communities. Depends on the distribution of the nodes

among the communities, community can be classified into two groups-

Overlapping communities share one or more common nodes among them. In Figure 1.7,

yellow, green and purple colored communities are sharing red colored vertices. These
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communities are the examples of overlapping communities

Non-overlapping communities do not share any node between them. In Figure 1.7, blue

and purple; blue and yellow colored communities do not share a single vertex be-

tween. So, these communities are the example of non-overlapping communities.

Figure 1.7: Overlapping and non-overlapping communities of a graph G [23]

In the Figure 1.7, blue and green colored communities are not connected by any edge.

These communities are known as disjoint communities.

Moreover, Radicchi et al. [26] also classified the communities into two groups accord-

ing their connectivities:

Strong community is a community U in which in-degree7 of all vertices are higher than

out-degree8.
7The number of connected edges between internal vertices of community U .
8The number of connected edges between external vertices to community U .
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Weak community is a community U in which in-degree of some vertices are higher than

out-degree.

In PINs, protein complexes and functional modules are formed by interacting proteins.

PINs organize into densely linked complexes where interactions appear with high con-

centration among the proteins of the complex [33]. It indicates the protein complexes or

functional modules are the communities in PINs in respect to the network and community

definition. Generally, in PINs, the number of interactions are very large than the number of

proteins, like Figure 1.5. It is not easy and simple to identify the protein complexes or func-

tional modules. Some computational methods are required for detecting protein complexes

or functional modules from PINs. Community detection algorithms are very common to

identify the complexes or modules from PINs.

1.1.5 Community Detection Algorithm

Community detection in PINs is a computationally hard task. Conventional clustering al-

gorithms are not well suited for this task [25, 34]. Efficient, accurate, robust, and scalable

methods are therefore required for mining large PINs. There are three approaches of com-

munity detection methods according to their working principles [9]:

Density based technique finds the subgraphs in the network whose density is higher [9].

But this method cannot find the communities or clusters efficiently for scale free

networks9, see Figure 1.8). Moreover all PINs are scale free networks. For this

reason, density based algorithms are not used in clustering of PINs [9].

Graph partition techniques find the bridge edges which connect the communities. By

9A scale-free network is a network whose degree distribution follows a power law, at least asymptotically.
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removing bridge edges, these algorithms discover the communities [8, 16]. These

algorithms are very efficient, but suffered by execution time.

Hierarchical method finds the communities by calculating similarity or compactness be-

tween the nodes [9]. But this method cannot classify the vertices of degree one in

same community with their neighbors which does not make sense biologically [9].

Time complexity is another problem of this method.

Figure 1.8: Scale Free Network G [9]

In this thesis, we put our emphasis on the problems of hierarchical method. We have

designed a new algorithm which is known as FAC-PIN algorithm to solve the problems of

hierarchical method.
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1.2 Objectives

The objectives of the thesis are as follows:

To design a prematric to solve the problem of classifying vertices with one neighbor:

In any hierarchical method, a metric or measure is used to cluster any PIN. But all proposed

metric cannot solve the problem of clustering the vertices having degree one. In this thesis,

we have proposed a new pre-metric10 - Relative vertex-to-vertex clustering value which

solves the problem of clustering vertices of degree one.

To design a hierarchical algorithm to improve the clustering processes for PINs: No

hierarchical method can solve the problem of classifying the vertices of degree one. In this

thesis, we have proposed a new agglomerative approach of hierarchical method to solve the

problem of classifying nodes containing one neighbor by using Relative vertex-to-vertex

clustering value. As well as our proposed algorithm has produced/ discovered more dense

subgraphs in PINs than previous hierarchical algorithms.

To design a faster method for hierarchical approach: In 2011, Wang et al. [30] pro-

posed a faster agglomerative hierarchical method for clustering PINs. The worst case time

complexity of their algorithm is O(d̄2m) where m is the number of interaction and d̄ is the

average degree of any network G. It is the fastest algorithm so far published. On the other

hand, we have proposed an agglomerative algorithm which is known as FAC-PIN algo-

rithm. The worst case time complexity of FAC-PIN algorithm is O(d̄2n). In any protein

interaction network, the number of proteins n is smaller than the number of interactions m.

10A metric satisfies axiom of positivity and axiom of positive definiteness
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1.3 Thesis Organization

We organize our thesis into another four chapters. In Chapter 2, we discusse the previ-

ous works related to the clustering of PINs. We describe our proposed pre-metric Rela-

tive vertex-to-vertex clustering values and new agglomerative algorithm: FAC-PIN in the

Chapter 3. After designing the algorithm, we carry out computation experiments on sev-

eral PINs. We discuss the computation experiments and results in the Chapter 4. Finally

in Chapter 5, we conclude our thesis with the discussion of FAC-PIN algorithms and its

future works.





Chapter 2

Relative Works

In this Chapter, we discuss only the community detection algorithms which are directly

involved in Protein interaction networks. All algorithms are designed on the definitions

of the community structures. For PINs, community detection algorithms are classified

into three groups according to their working principles: Density based methods, Graph

partitioning based approaches and Hierarchical methods. In Section 2.1, we discuss the

algorithms which are designed on the principle of the density of the subgraphs. We discuss

the graph partitioning algorithms in Section 2.2 and hierarchical methods in Section 2.3.

2.1 Density based methods

All density based methods find the dense subgraph by several density measures or metrics

(density functions, edge clustering coefficient, clustering property, network affinity, ran-

dom walk etc.) The authors of the algorithms of this method introduced different density

measure techniques to find the dense subgraphs in PIN. In the current Section, we dis-

cuss the density based algorithms which are only involved in protein interaction network

15
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clustering.

2.1.1 Spirin et al 2003

First Spirin et al. [29] designed an algorithm for finding protein complexes and functional

modules from PINs based on density. In their method, at first it finds all cliques from a

PIN. After finding all possible cliques1, it uses the concept of Markov Cluatering algorithm

(MCL which is discussed in Subsection 2.2.1) and Super Paramagnetic Clustering (SPC)

for predicting dense subgraphs. In this method, MCL is used for identifying highly dense

subgraph and SPC for predicting clusters that have very few connections to the rest of the

network. The time complexity of the algorithm is O(n2k2), where n and k are the number of

vertices and the maximum size of cliques in the graph. It can find clusters of PIN efficiently

by taking more time.

2.1.2 Li et al. 2006

Li et al [20] proposed a new method based on Local clique merging process in 2006. At

first they have identified the local cliques in a PIN by using the density of a subgraph. They

designed the equation of density of a subgraph based on clustering coefficient

cc(Ǵ) =
2× | É |

| V́ | × | V́ −1 |
(2.1)

where Ǵ is a subgraph of a graph G, V́ is subset of vertex set V and É is the subset of

edge set E. After finding all cliques, their algorithm has merged the cliques to forms big-

ger dense subgraph by using Neighborhood affinity and a threshold ω. The neighborhood

1Clique in an undirected graph G = (V , E) is a subset of the vertex set C ⊆ V , such that for every two
vertices in C, there exists an edge connecting the two
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affinity follows following equation-

NA(A,B) =
| A∪B |2

| A | × | B |
(2.2)

Their algorithm is known as Local Clique Merging Algorithm or LCMA. The worst

case time complexity of the algorithm is O(lk2v), where l, k and v are the number of

iterations, the maximum size of local cliques and the average number of proteins in the

local clique. LCMA can detect any size of complex except smaller size. But it suffers a

common problem, that is- it classify the vertices of degree one are in different clusters from

their neighbors.

2.1.3 Altaf et al. 2006

Altaf et al [1] has designed another density based clustering approach which solve one

shortcoming (separating smaller cluster from larger one) of Li et al [20]. To do this, they

have introduced new definition of density which is as follows-

dk =
| É |
| É |max

(2.3)

Where | É | is the number of edges present in a subgraph Ǵ and | É |max is the maxi-

mum possible number of edges in same subgraph Ǵ. Except density, They have also used

Clustering Property which is as follows-

cpnk =
| Enk |

dk× | Nk |
(2.4)

Here, | Enk | is the total number of edges between the node n and each of the nodes of

cluster k; and Nk is the total number of vertices of cluster k. Using Clustering property
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and density of each node with its neighbors forms clusters. This process continues until it

reaches density threshold. The algorithm is known as DPClus. The time complexity of the

algorithm is O(n2). This algorithm cannot solve the second and common shortcoming of

Li et al. [20]. As well as its computational time is very high for larger protein interaction

networks.

2.1.4 Pei et al. 2007

Pei et al [25] has designed a new algorithm based on density of the network. Their algo-

rithm is faster than Altaf et al [1]’s algorithm. They have also solved the first problem of

Li et al [20]. To do this, they have modified the equation of density which is as follows-

den(Ǵ) =
∑vεV́ |Nv∩V́

|V́−1|

| V́ |
(2.5)

where Nv is the neighbour list of vertex v and V́ is the list of the vertices of subgraph Ǵ.

As well as they have introduced a new measure called SIGnificance BOUNDary subgraph

quality, denoted as QSigBound(Ǵ). It calculates the boundary significance of a subgraph

Ǵ with its neighbor subgraphs. In the algorithm, at first a seed edge is selected by using

the definition of center of a graph. In the second step, it selects a seed vertex among the

connected vertices of seed edge. After selecting seed vertex and edge, it calculates the

density and QSigBound(Ǵ) for each vertex and edge to form cluster with seed edge or vertex.

This process continues till the density and QSigBound(Ǵ) of a cluster increase. After that,

the cluster is separated from the network. The algorithm starts again for finding the rest of

the clusters. This algorithm is known as Seed-Refine algorithm. The time complexity of the

algorithm is O(nC̄) where C̄ is the average size of clusters of a PIN. Though this algorithm
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solves the first shortcomings of Li et al’s [20] algorithm, it has three major problems-

• Seed edge has two vertices. There is a possibility to select wrong vertex as seed

vertex which cause improper clustering

• It cannot solve the second problem of Li et al [20].

• It cannot work on PINs which have parallel edges and self loops.

2.1.5 Summary

Here we have shown the summery of the density based methods designed for clustering

protein interaction networks in Table- 2.1. In the Table- 2.1, we have arrayed major contri-

bution, worst case time complexity and major shortcomings of each algorithms of density

based method.

Table 2.1: Summary of previous algorithms based on density based method
Algorithm Major Contribution Worst

case time
complex-
ity

Major problem

Seed Re-
fine [25]

Introduces and uses new definition
of density and QSigBound

O(nC̄) Cannot work on PINs having paral-
lel edges and self loops and cannot
classify vertices of degree one with
their neighbors and time consuming
method

DPClus [1] Uses newly defined density defini-
tion and clustering property to clus-
ter PINs

O(n2) Cannot classify vertices of degree
one with their neighbors and time
consuming method

LCMA [20] Introduces and uses clustering co-
efficient to identify the cliques
and Network affinity to predict the
densed subgraph

O(lk2v) Cannot classify vertices of degree
one with their neighbors

Spirin et al
[29]

Combines the concepts of MCL and
SPC algorithms to find the clusters

O(n2k2) Not time efficient
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2.2 Graph partitioning approaches

In the current Section, we discuss the graph partitioning approaches to predict the commu-

nities in PINs. All partitioning algorithms detect the edges which are acted as the bridge

between communities. By removing bridge edges, the algorithms identify the clusters of

PINs.

2.2.1 Dongen 2000

S. V. Dongen designed an algorithm based on graph partition in his Ph.D. thesis. This

algorithm is known as Markov Cluatering algorithm, in short MCL. MCL algorithm was

designed based on random walk between the nodes of the graph. Random walk is calculated

by exponential normalized adjacency matrix and inflation parameter r. After calculating

random walk, MCL removes the edges with lower random walk values to separate the

clusters from network. This algorithm is commonly used in graph clustering. The worst

case time complexity of the MCL algorithm is O(n2 p) where n and p are the number

of nodes in PINs and passes or random walk respectively. Its efficiency depends on the

selection of inflation parameter r and power parameter e. Wrong selection of r and e makes

the algorithm inefficient.

2.2.2 King et al. 2004

In the year 2004, a cost function based community detection algorithm was designed by

King et al [17] for predicting protein complexes. Their algorithm is known as Restricted

Neighborhood Search Clustering (RNSC) algorithm. This algorithm is devised on basically

Tabu search meta-heuristics. RNSC algorithm searches the space of the partition (bridge



CHAPTER 2. RELATIVE WORKS 21

edges) and assign a cost by using cost function which is not clearly mentioned in their

paper. After that, the algorithm separates the clusters from others by removing low cost

edges. RNSC gives good results for Giot et al [11]’s fruit fly’s protein interaction network.

Except this species, RNSC algorithm finds fewer complexes for all species. Besides, the

result of the algorithm heavily depends on the initial value which is random.

2.2.3 Graph Entropy Algorithm

Recently, Kenley et al [16] has designed a new graph partition algorithm based on graph

entropy. The graph entropy is defined based on the probability distribution of its inner links

and outer links. It is denoted as e(G).

e(G) = ∑vεV e(v) (2.6)

where

e(v) =−pi(v) log2 pi(v)− po(v) log2 po(v) (2.7)

Here po(v) and pi(v) denotes the probability of v having outer link and inter links

respectively. The graph entropy measure the cluster quality effectively. A graph with lower

entropy indicates that the vertices in the cluster have more inner links and less outer links.

The algorithm starts it working by selecting a random seed vertex and its neighbors

as seed cluster. After that, it iteratively adds or delete the vertices on the border of the

cluster to minimize the graph entropy. To produce a final set of cluster, the process of

seed selection and optimal cluster generation is repeatedly performed until no seed vertex

is remaining. This algorithm is known as Graph Entropy algorithm. The time complexity

of the algorithm is O(n2). Though it is time consuming algorithm, it can efficiently find the
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complexes and modules.

2.2.4 Summary

Here we have shown the summery of the graph partition based methods designed for clus-

tering protein interaction networks in Table- 2.2. In the Table- 2.2, we have arrayed major

contribution, worst case time complexity and major shortcomings of each algorithms of

graph partition based method.

Table 2.2: Summary of previous algorithms based on graph partitioning method
Algorithm Major Contribution Worst

case time
complex-
ity

Major problem

Graph En-
tropy [16]

Introduces and uses graph entropy
concept

O(n2) Time consuming approach

RNSC [17] Introduces and uses tabu search
meta heuristic and cost functions

Not men-
tioned

Except fruit fly, it can detect very
few clusters or communities accu-
rately

MCL [8] Uses random walk approach to find
the clusters

O(n2 p) Dependency on the parameters r
and e

2.3 Hierarchical based methods

In this Section, we have discussed the previous hierarchical methods which are used to

identify the communities in PINs. Hierarchical methods use some measures to calculated

the similarity or compactness between nodes or communities for forming clusters. These

methods can be classified into two groups: agglomerative and divisive.

In agglomerative approach, at first all vertices are considered as individual clusters

which are known as singletons. After calculating similarity or compactness by using sev-

eral measures or metrics (edge betweenness, edge clustering coefficient, edge clustering



CHAPTER 2. RELATIVE WORKS 23

value etc.), this approach merges two communities according to their most similarity or

compactness. This process continues until the graph remains one community.

Divisive approach is opposite of agglomerative approach. In this approach, a network is

considered as a community. After calculating similarity or compactness by using measure,

it divides the community into multiple communities according to their less similarity or

compactness. It continues until all vertices are represented as singletons.

2.3.1 Ravasz et al. 2002

Ravasz et al [27] proposed an agglomerative hierarchical clustering approach to identify the

protein complexes from PINs. Their algorithm has been designed on the basis of density

of the clusters. For identifying or calculating the density of the subgraph, they have used

Clustering Coefficient Values which is as followed-

cc(Ǵ) =
2× e

| ki | ×(| ki | −1)
(2.8)

where e is the number of edges connecting the ki nearest neighbors of node i. They are first

designers for introducing hierarchical methods for clustering protein interaction networks.

The time complexity of the algorithm is O(n2). The problem of this method- it cannot work

properly on scale free PINs. It takes more time to execute the algorithm for larger PINs

having more than hundred thousands proteins.

2.3.2 Girvan et al. 2002

Girvan and Newman proposed a new approach in hierarchical methods to classify PINs

into multiple clusters in their paper [12]. This algorithm is known as GN algorithm. In
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this algorithm, Girvan and Newman introduced a new measure for clustering PINs. This

measure is known as edge betweenness. The edge betweenness of an edge is the number of

shortest paths between pairs of nodes that run along it. If there is more than one shortest

path between a pair of nodes, each path is assigned equal weight such that the total weight

of all of the paths is equal to unity. If a network contains communities or groups that are

only loosely connected by a few intergroup edges, then all shortest paths between different

communities must go along one of these few edges. Thus, the edges connecting commu-

nities will have high edge betweenness (at least one of them). By removing these edges,

the groups are separated from one another and so the underlying community structure of

the network is revealed. This algorithm follows divisive approach. The time complexity of

GN algorithm is O(m2n) where m and n are the number of edges and vertices respectively.

GN algorithm is one of the most used algorithm in the field of bioinformatics. Though it is

most commonly used, GN algorithm has two major shortcomings-

• It is very time consuming algorithm. Generally, the number of edges in PINs are

larger than the number of vertices.

• It also faces the problem of clustering vertices of degree one.

2.3.3 Newman 2003

Newman designed a new hierarchical algorithm which is faster than GN algorithm. He

proposed his algorithm in his paper ”Fast algorithm for detecting community structure in

network” [22]. This agglomerative algorithm was designed on the basis of modularity, Q-

Q =
k

∑
i=1

(eii−a2
i ), (2.9)
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where, where eii is the fraction of edges with both end vertices in the same community i,

and ai is the fraction of edges with at least one end vertex in community i. In agglomerative

steps, two communities are merged together if ∆Q increases or fixed. ∆Q follows following

equation-

∆Q = 2(ei j−ai ∗a j) (2.10)

The time complexity of the Newman’s algorithm is O((m+ n)n) for PINs. Though

Newman’s algorithm is faster in comparison with GN algorithm, for PINs still it is time

consuming algorithm. On the other hand, for rat and mouse PINs, it suffers the second

problem of GN algorithm.

2.3.4 Radicchi et al 2004

Radicchi et al. [26] designed a new hierarchical algorithm based on the definition of weak

and strong communities. According to the definitions of weak and strong modules, they

introduced edge clustering coefficient in hierarchical algorithm to improve time complex-

ity. After calculating edge clustering value of each edge, their algorithm works like GN

algorithm but at every step, the removed edges are those with the smallest value of ˜Ci, j.

˜Ci, j =
Z(3)

i, j

min[(ki−1),(k j−1)]
(2.11)

Here, ˜Ci, j is the modified edge clustering coefficient, Z(3)
i, j is the number of triangles

built on that edge (i, j) and min[ki− 1,k j − 1] is the maximal possible number of them.

The time complexity of the algorithm is O(m2). Though the algorithm is faster than GN

algorithm, still it is slow method for large PINs. On the other hand, it has another problem-
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if a community does not have any triangle or having a cycle, this algorithm is not efficient

enough [30].

2.3.5 Clauset et al 2004

Dr. Aaron Clauset and his supervisors Dr. M.E.J. Newman and Dr. C. Moore has designed

a new agglomerative hierarchical algorithm which used the concept of ∆Q. Their algorithm

is the improved version of Newman’s ∆Q hierarchical algorithm [22]. For improving the

performance, they modified ∆Q-

∆Qi, j =


1

2m −
di∗d j
(2m)2 if i and i are connected

0 otherwise.
(2.12)

Where di is the degree of vertex i. For improving time complexity, they used max heap

and sparse matrix to store the value of ∆Q. Their proposed algorithm is known as CNM

algorithm. They algorithm works as follows-

• It calculates the initial values of ∆Qi, j and store the largest value of each row of the

sparse matrix in max heap.

• It selects the largest ∆Qi, j, merge two communities i and j.

• After merging, it recalculates the ∆Qi, j and repeats the above step until one commu-

nity remains.

The time complexity of the algorithm is O(mh log2 n) where h is the depth of dendro-

gram. This algorithm improves the time complexity in significant amount. But it suffers

the common problem in hierarchical approach- clustering vertices of degree one in separate

community from their neighbours.
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2.3.6 Luo et al 2007

In 2007, a new agglomerative approach was introduced based on edge betweenness by Luo

et al [21]. Like GN algorithm, it calculates the edge-betweenness of all edges and sorted

them in ascending order. After that it follows-

• If the edge connects the vertices in same subgraph, it is added to the subgraph [21].

• If the edge connects the vertices in two different subgraph, two subgraphs are added

with satisfying one of two conditions-

– Two subgraphs are non-modules (non-module subgraph contains only one ver-

tex).

– One subgraph is module and another one is non-module.

The process continues till | E |6= 0. This algorithm is known as MoNet algorithm. The

time complexity of MoNet algorithm is O(m2n). This algorithm also suffers same the

shortcomings as the GN algorithm.

2.3.7 Li et al. 2008

Min Li and her colleagues designed an agglomerative hierarchical algorithm based on edge

clustering value [19]. They have modified the formula of edge clustering coefficient. Their

modified edge clustering coefficient is as follows:

CC =
| Ni∩N j |+1

min(di,d j)
(2.13)

where, Ni and di are the neighbor list and degree of vertex i respectively. As per their

algorithm, edge clustering coefficient values are calculated and sorted in descending order
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for all edges. After that, all singletons are merged together by the edges which are sorted in

descending order according to edge clustering coefficient values. The algorithm is known

as FAG-EC algorithm. The time complexity of the algorithm is O(d̄2m). Here d̄ is the

average degree of the network. The algorithm has one major problem. If in a PIN, a

good cluster has no triangle or has cycle, the edge clustering coefficient formula produces

low values for its (cluster’s inside) edges. For this reason, the FAG-EC algorithm cannot

produce accurate clusters.

2.3.8 Wang et al 2011

Min Li and her colleagues proposed a new algorithm based on the problem of their previous

algorithm FAG-EC which is known as HC-PIN algorithm [30]. In their algorithm, they

introduced a new measure to overcome the problem of FAG-EC algorithm. This measure

is called Edge Clustering Value (ECV).

ECV =
| Nu∩Nv |2

| Nu | × | Nv |
(2.14)

Where Nu is the set of neighbors of vertex v. They also redesigned ECV for weighted

PINs which is as follows-

ECV ∗ =
∑kεIu,v w(u,k)×∑kεIu,v w(v,k)

∑sεNu w(u,s)×∑sεNu w(u,s)
(2.15)

where Iu,v denotes the set of common vertices Nu and Nv. The Equation 2.14 is the

special case of Equation 2.15. Except the calculation of ECV , HC-PIN algorithm works

like FAG-EC algorithm. The time complexity of HC-PIN algorithm is O(d̄2m). Though

the HC-PIN algorithm solves the problem of FAG-EC algorithm and its working capability
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over weighted PINs, it suffers a common problem of hierarchical approach: classifying the

vertices of degree one in separate clusters from their neighbors.

2.3.9 Summary

Here we have shown the summery of the hierarchical methods designed for clustering pro-

tein interaction networks in Table- 2.3. In the Table- 2.3, we have arrayed major contribu-

tion, worst case time complexity and major shortcomings of each algorithms of hierarchical

method.

Table 2.3: Summary of previous algorithms based on hierarchical method
Algorithm Major Contribution Time com-

plexity
Major problem

HC-PIN [30] Solves the problem of using edge
clustering coefficient

O(d̄2m) Cannot classify vertices of degree
one with their neighbors

FAG-EC [19] Improves the time complexity O(d̄2m) Cannot classify vertices of degree
one with their neighbors and can-
not identify the cluster with no tri-
angle or having cycle

MoNet [21] Uses edge betweenness in agglom-
erative approach

O(m2n) Execution time and cannot classify
vertices of degree one with their
neighbors

CNM [7] Improves the time complexity by
modifying ∆Q, sparse matrix and
Max heap

O(mh log2 n) Cannot classify vertices of degree
one with their neighbors

Radicchi et al
[26]

Defines strong and weak commu-
nity, uses edge clustering coeffi-
cient in divisive approach

O(m2) Cannot classify vertices of degree
one with their neighbors and can-
not identify the cluster with no tri-
angle or having cycle

Newman [22] Introduces ∆Q to improves time
complexity

O((m+n)n) Cannot classify vertices of degree
one with their neighbors.

GN [12] Introducing edge concept in Divi-
sive hierarchical approach and uses
edge betweenness

O(m2n) Cannot classify vertices of degree
one with their neighbors.

Ravasz et al
[27]

First hierarchical algorithm for
clustering PINs

O(n2) Cannot classify vertices of degree
one with their neighbors and can-
not identify the cluster with no tri-
angle or having cycle.





Chapter 3

Fast Agglomerative Clustering

Algorithms

We have discussed our proposed algorithm: FAC-PIN and premetric: relative vertex-to-

vertex clustering value in detail in this Chapter. Our designed FAC-PIN algorithm has

been developed based on the second, third and fourth properties of PINs. We have briefly

described the premetric relative vertex-to-vertex clustering value in Section 3.1 and FAC-

PIN algorithm with its computational complexity in Section 3.2.

3.1 Relative Vertex-to-Vertex Clustering Value

The edge clustering value, ECV(u,v), used in HC-PIN [30], is a similarity metric between

the two vertices u and v of an edge (u,v) and which, roughly speaking, tells how likely u

and v lie in the same module (i.e., cluster). This is also true with the edge clustering coeffi-

cient, C(3)
u,v , of [26]. However, in complex networks following the power law (i.e., scale-free

networks), it is reasonable to assume that the likelihood of a vertex u to lie in the same mod-

31
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ule as v (or, to lie in the module containing v), is not equal to the likelihood of v to lie in the

module containing u. This assumption stems from the principle of preferential attachment

in scale-free networks which states that a new node u is likely to attach to a high-degree

node v than to a low degree node. This is not reciprocal, and hence, clearly suggesting that

the likelihood is not symmetric and that it is larger for u to be in a cluster with v than for v

to be in cluster with u (if we assume that v is a high-degree node). The similarity metrics

ECV(u,v) and C(3)
u,v treat equally both endpoints of edges (u,v) irrespective of their degrees.

Also, another issue is that both ECV(u,v) and C(3)
u,v require vertices u and v be connected

by an edge. This requirement is quite restrictive and we aim to extend to the case in which

pair (u,v) is not an edge while still being able to decide if both vertices are in the same

cluster. Finally, as stated earlier in previous section, current hierarchical approaches have

the common problem of classifying low-degree vertices (peripheral to dense subnetwork

modules) into separate clusters rather than merging them with their neighboring modules.

In the following paragraph, we present a new measure which aims to address these issues.

Let Nu be the set of neighbors of vertex u in an undirected graph G = (V,E). We define

N+
u = Nu∪{u} as the neighbor set of u augmented with u itself. Given two vertices u and

v, we define the clustering value of u relative to v as:

R(u 99K v) =
|N+

u ∩N+
v |

|N+
u |

(3.1)

R(u 99K v) is a premetric that ranges from 0 to 1; that is, it is a measure which does not

satisfy the axiom of symmetry and the triangle inequality but satisfies the axioms of self-

similarity and minimality. A vertex u with a larger clustering value given another vertex v

is more likely to lie in the cluster containing v. In the following C(a) denotes the cluster

containing a given vertex a, and we assume that C(a) satisfies the weak sense definition
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of a community [26] (we use the term ws-cluster, hereafter). The following describe the

properties of R(u 99K v).

Given an edge (u,v), R(u 99K v) is maximal (i.e. equals 1) if and only if |N+
u |= |N+

u ∩

N+
v |. There are two cases achieving the maximum given edge (u,v):

1. when u has degree one

2. when both u and v have the same degree and |N+
u |= |N+

v | that is, they have the same

neighbors.

In either case, If sub-network C(v) (respectively, the induced sub-network of G for

subset N+
v ) is a ws-cluster then {u}∪C(v) (respectively, {u}∪N+

v ) is a also a ws-cluster.

Given an edge (u,v), R(u 99K v) is minimal when u is the highest degree vertex in G

and v has degree 1; that is, R(u 99K v) = 2
1+deg(u,G) and deg(u,G) is maximal. In such case,

R(v 99K u) is maximal (i.e. equals 1), and hence, C(u)∪{v} (respectively, N+
u ∪{v}) is a

ws-cluster if C(u) (respectively, N+
u ) is a ws-cluster. Here, we have found that R(v 99K u)

solves the problem of clustering the vertices of degree one.

Given an edge (u,v), assume the degrees of vertices u and v in G are such that deg(u,G)=

deg(v,G) = d is maximal and that u and v do not share any other neighbors. Then, we have

R(u 99K v) = R(v 99K u) = 2
1+d ≤ 0.5 assuming d ≥ 3. In this case, {u}∪C(v) (or N+

v ) is

not a ws-cluster, and, {v}∪C(u) (or N+
u ) is not a ws-cluster. Consider the induced subgraph

of G on N+
u ∪N+

v , we define the local betweenness value of edge (u,v) as the percentage of

paths from vertices in Nu rNv to vertices in Nv rNu going through edge (u,v). Given the

number of common neighbors between u and v, |Nu ∩Nv|, the local betweenness of edge

(u,v) is thus l(u,v) = 100 · 1
|Nu∩Nv|+1 . Given two connected high-degree vertices u and v,

the local edge betweenness value l(u,v) increases when |Nu ∩Nv| decreases, and hence,
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it corresponds to when both R(u 99K v) and R(v 99K u) values are small at the same time.

Edges with high local betweenness values are edges connecting two clusters, and therefore,

vertices u and v should not lie in the same cluster.

Finally, our relative vertex clustering values implements the ideas behind the edge clus-

tering coefficient, C(k)
u,v , of [26], since for a given vertex v and a neighbor u the number of

triangles given edge (u,v) is exactly |Nu∩Nv|; and u will be included into C(v) whenever

most of the neighbors of u (excluding v) are in Nu∩Nv. This is also true even when (u,v)

is not an edge; in such case, |Nu∩Nv| relates to the number of squares containing vertices

u and v. On the other hand, we break through the limitations of [26] as in the edge cluster-

ing value, ECV(u,v) of [30], by not assuming the existence of closed loops in a network,

such as triangles or high-order loops. The relative vertex clustering value R(u 99K v) also

improves ECV(u,v) since neighbors u of v which have most of their neighbors forming

a triangle with v are selected for inclusion in C(v). Searching for vertices u which form

a cluster with v is also more efficient than searching for edges (u,v) that makes a cluster

since the number of edges is larger than the number of vertices in dense subgraphs.

In summary, the values R(u 99K v) and R(v 99K u) for edge (u,v) can be used as a

quick test for deciding whether u (respectively, v) should be merged with the cluster C(v)

(respectively, C(u)) such that {u}∪C(v) (respectively, {v}∪C(u)) remains a ws-cluster.

We have designed R(u 99K v) based on the concept of preferential attachment property

of protein interaction networks. It calculates the likelihood value of any vertex v to form

cluster with another vertex u. On the other hand, Edge Clustering Value of Equation 2.14

was designed for each edge not for vertices. Our designed R(u 99K v) is a premetric 1. But

ECV of HC-PIN algorithm is similarity metric.

1A metric satisfies axioms of positivity and positive definiteness
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3.2 The FAC-PIN Algorithm

3.2.1 The algorithm

Our proposed fast agglomerative clustering algorithm for protein interaction networks,

FAC-PIN in Algorithm 1, goes as follows. Given a PIN G = (V,E), we initially con-

sider each vertex as a singleton, and sort the vertices v ∈ V in descending order of their

degrees deg(v,G) in G. Here we have used the second property of community structure.

After sorting, in an iterative manner, we select the next highest-degree vertex v from the

sorted list, and compute the values R(u 99K v) and R(v 99K u) for each neighbor u of v, and

then decide depending on these two values and a threshold α,0≤ α≤ 1, whether u should

be included in C(v) or not.

In the FAC-PIN algorithm, a neighbor u of vertex v is added to the current C(v) when

the majority of the neighbors of u are in N+
u ∩N+

v , that is when:

1. R(u 99K v) = 1, in which case either u has degree 1, or u and v have the same degree

and the same set of neighbors;

2. R(u 99K v) > R(v 99K u) > α, in which case u have smaller degree than v and most

of the neighbors of u are in the intersection; and

3. R(u 99K v) = R(v 99K u) and the size of the intersection is larger than the total set of

neighbors of u and v which are not in the intersection.

3.2.2 Computational Complexity

Let n = |V | be the number vertices, m = |E| be the number of edges, and d̄ be the average

degree of all vertices, that is d̄ = 1
n ∑v∈V deg(v,G). The complexity of sorting the vertices by
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Algorithm 1 The FAC-PIN Algorithm
Input: G = (V,E): undirected PIN graph

α: threshold parameter
Output: Pk = {C1, . . . ,Ck}: identified collection of modules
{Initialization phase}
for every vi ∈V do

C(vi)←{ {vi}, /0 }; {each vertex is a singleton cluster}
end for
Sort all vertices to a priority-queue H in non-increasing order of their degrees;
{Community detection phase}
repeat

v← H; {select next highest-degree vertex in H}
for all u ∈ Nv not yet merged into a cluster do

if [R(u 99K v) = 1] Or [R(u 99K v)> R(v 99K u)> α] then
C(v)←C(v)∪{ {u},{(u,v)} };
C(u)←C(v);

else
if [R(u 99K v) = R(v 99K u)] ≥ α And [deg(u,G) + deg(v,G)− 1 ≤ |Nu ∩Nv|]
then

C(v)←C(v)∪{ {u},{(u,v)} };
C(u)←C(v);

end if
end if

end for
until H = /0

U ←V ;
i← 1;
{Compute the partition Pk}
while U 6= /0 do

v← randomly select a vertex from U ;
Ci←C(v);
U ←U r{u |C(u) =C(v)};
i← i+1;

end while
return Pk←{C1, . . . ,Ck};
Evaluate modularity Q(Pk) of partition Pk = {C1, . . . ,Ck};
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their degree is O(n) by using the counting sort method, and the complexity of computing

the partition after the community detection phase is also O(n). Let the maximum node

degree in G be dmax = maxv∈V deg(v,G). The complexity of computing R(u 99K v) given

vertices u and v in the ”for-loop” of FAC-PIN is O(dmax). The complexity of the ”for-loop”

is then O(d2
max), and hence, the total complexity of the ”repeat-loop” (and thus of FAC-

PIN) is O(nd2
max)� O(n3). Since PINs are power-law networks then the majority of the

proteins interact with only very few proteins, and thus the average degree d̄ is generally

small and can be considered a constant [30]; that is, we can use d̄ as the principal variable

for measuring the complexity of community detection methods. As such, then the worst

case time complexity of FAC-PIN is O(nd̄2)� O(nd2
max)� O(n3). The worst case time

complexity of the HC-PIN algorithm of [30] is O(md̄2) and is larger than that of FAC-PIN

since n ≪ m in PINs. We note that HC-PIN is currently the fastest hierarchical method

described in literature for clustering PINs, as far as we know.





Chapter 4

Computation experiments, results and

discussions

We tested our FAC-PIN algorithm using several test procedures to understand its work-

ing capability on PINs. For experiment purpose we used protein interaction networks of

sixteen different species. We set the threshold parameter α in the FAC-PIN algorithm to

values 0.75, 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.0156, 0.0078 and 0.0039 and ran FAC-

PIN with each of these values. After generating clusters of each protein interaction network

for each α, a mathematical function is used to evaluate the clusters of a protein interaction

network. This mathematical function is known as scoring function. Scoring function de-

fines the compactness or density of a cluster. Most of the cases, higher scoring function

indicates clusters of the PIN are dense and loosely connected with rest of the clusters. In

the experiments, modularity Q [7, 22] and w- log-v [18] are used as scoring functions. In

this case, the clustered protein interaction network of highest scoring function is considered

as clustered PIN of a specific species. After clustering, clusters of PIN compared with the

physical complexes and identified functional modules of PIN of a species by using complex

39
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Table 4.1: Dataset used in experiments
Species Scientific name Proteins Interactions Used

symbol
Database

Baker’s yeast Saccharomyces cerevisiae 4572 49830 Y4K
2

5697 50675 Y5K
3

Cattle Bos taurus 5737 113888 C5K
3

Dog Canis lupus familiaris 2932 38647 D2K
3

E. coli Escherichia coli 2817 13841 E2K
1

Finch bird Taeniopygia Guttata 3929 74314 FB3K
3

Flowering plant
(Thale cress)

Arabidopsis thaliana 2651 5236 FP2K
1

Fruit fly Drosophila melanogaster 8366 25611 FF8K
1

Frog Xenopus Tropicalis 5473 122706 FG5K
3

Jungle fowl
(Chicken)

Gallus gallus 4960 112250 J4K
3

Human Homo sapiens 12994 135935 H12K
3

8997 34935 H8K
1

Mouse Mus musculus 2888 4372 M2K
1

Rat Rattus norvegicus 1148 1307 RA1K
1

Rice Oryza sativa 3778 320570 RI3K
3

Round worm Caenorhabditis elegans 4303 7747 RW4K
1

Wild boar Sus Scrofa 5303 119920 W5K
3

Zebra fish Danio rerio 8188 274358 Z8K
3

validation and functional module testing process respectively. we also compared the results

of FAC-PIN algorithm with HC-PIN and CNM algorithms. Whole experiment process and

results are discussed in different sections of current Chapter.

4.1 Datasets

The PINs of sixteen different species were obtained from the PINALOG site1, the Bi-

oGRID database2 and REACTOME database3. The sixteen species are listed along with

their number of proteins and interactions in Table- 4.1.

From the Table- 4.1, it is found that the number of edges (interactions) is quite larger

than the number of vertices (proteins).

1http://www.sbg.bio.ic.ac.uk/˜pinalog/downloads.html
2thebiogrid.org
3http://www.reactome.org/download/all_interactions.html
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4.2 Testing by Scoring Functions

For given a clustering result (i.e. a partition) Pk = {C1, . . . ,Ck} with k clusters, we used the

popular modularity function Q as one of the scoring function, introduced by Newman and

Girvan [7].

Q =
k

∑
i=1

(eii−a2
i ), (4.1)

where eii is the fraction of edges with both end vertices in the same community i, and

ai is the fraction of edges with at least one end vertex in community i. k is the number of

clusters of the PIN. Larger values of Q correspond to more distinct community structures

in PINs. It means in-degree of a community i is larger than the out-degree of the same

community i. Though Q is widely used, it is known to have serious limitations which has

been discussed at length in [9]. The second partition scoring function we used has been

introduced in [18] and is defined as

w- log-v =
k

∑
i=1

(eii× logai). (4.2)

Function w- log-v allows for more diverse cluster sizes than function Q, It produces

negative values. Its smaller values corresponds to better clustered structures.

As said above, we ran FAC-PIN many times (each with different values of threshold

parameter α), then evaluate the clustered structure of the communities obtained by FAC-

PIN, and then retain the results giving the best scoring values. We also implemented the

best-performing HC-PIN algorithm of [30] and the hierarchical method of [7] which we

denote as the CNM algorithm. The HC-PIN and CNM methods were run on the same PIN

data as the FAC-PIN approach. For HC-PIN, we set the two parameters λ and s as in [30]
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(CNM has no parameters). The results of the three methods are given in Tables 4.2, 4.3,

4.4, 4.5, 4.6 and 4.7, respectively in terms of scoring values Q and w- log-v, and running

times obtained by each method for each species. As well as we have showed the histogram

of modularity Q, w- log-v and log-log plot of time comparison of FAC-PIN, HC-PIN and

CNM algorithms in Figures- 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6 respectively.

Table 4.2: Q results of FAC-PIN, CNM and HC-PIN for Baker’s yeast, Cattle, Dog, E.coli,
Finch bird, Flowering plant, Fruit fly and Frog.

Algorithms Y4K Y5K C5K D2K E2K FB3K FP2K FF8K FG5K
FAC-PIN 0.5415 0.5110 0.7288 0.7566 0.1492 0.7874 0.9422 0.6486 0.7432
CNM 0.5391 0.1412 0.6969 0.6850 0.0587 0.7199 0.7861 0.3116 0.6909
HC-PIN 0.5401 0.0387 0.5265 0.6405 0.0023 0.6075 0.7819 0.0086 0.4907

Table 4.3: Q results of FAC-PIN, CNM and HC-PIN for Human, Jungle fowl, Mouse, Rat,
Rice, Round worm, Wild boar and Zebra fish.

Algorithms H8K H12K J4K M2K RA1K RI3K RW4K W5K Z8K
FAC-PIN 0.5893 0.7827 0.7540 0.7644 0.7897 0.5401 0.7484 0.7536 0.7692
CNM 0.4768 0.2858 0.7000 0.4781 0.5457 0.5215 0.4057 0.7040 0.2294
HC-PIN 0.2768 0.0126 0.6527 0.5015 0.4502 0.1791 0.2928 0.5180 0.7527

Table 4.4: −(w- log-)v results of FAC-PIN, CNM and HC-PIN for Baker’s yeast, Cattle,
Dog, E.coli, Finch bird, Flowering plant, Fruit fly and Frog.

Algorithms Y4K Y5K C5K D2K E2K FB3K FP2K FF8K FG5K
FAC-PIN 1.301 0.521 1.141 1.630 0.262 1.359 3.603 1.517 1.208
CNM 1.299 0.481 0.7173 1.278 0.192 1.119 2.866 1.233 0.997
HC-PIN 1.299 0.028 0.3162 0.998 0.019 0.847 3.071 0.072 0.516

Table 4.5: −(w- log-v) results of FAC-PIN, CNM and HC-PIN for Human, Jungle fowl,
Mouse, Rat, Rice, Round worm, Wild boar and Zebra fish.

Algorithms H8K H12K J4K M2K RA1K RI3K RW4K W5K Z8K
FAC-PIN 1.366 1.941 1.568 2.634 2.525 1.615 2.094 1.048 0.773
CNM 1.197 1.269 1.488 1.530 1.699 1.585 1.819 1.283 0.756
HC-PIN 0.566 0.113 1.283 1.805 1.558 0.237 1.809 0.760 0.262

As we see in both Tables 4.2, 4.3, 4.4 and 4.5, FAC-PIN outperformed both the HC-PIN

and CNM methods in all given PINs. We note that, as the size of the PINs increases, in
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Figure 4.1: Modularity comparison among FAC-PIN, CNM and HC-PIN algorithms for
Baker’s yeast, Cattle, Dog, E.coli, Finch bird, Flowering plant, Fruit fly and Frog
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Figure 4.2: Modularity comparison among FAC-PIN, CNM and HC-PIN algorithms for
Human, Jungle fowl, Mouse, Rat, Rice, Round worm, Wild boar and Zebra fish
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Figure 4.3: -(w- log-v) comparison among FAC-PIN, CNM and HC-PIN algorithms for
Baker’s yeast, Cattle, Dog, E.coli, Finch bird, Flowering plant, Fruit fly and Frog
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Figure 4.4: -(w- log-v) comparison among FAC-PIN, CNM and HC-PIN algorithms for
Human, Jungle fowl, Mouse, Rat, Rice, Round worm, Wild boar and Zebra fish
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Figure 4.5: Log-log plot of execution time comparison among FAC-PIN, CNM and HC-
PIN algorithms for Baker’s yeast, Cattle, Dog, E.coli, Finch bird, Flowering plant, Fruit fly
and Frog
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Figure 4.6: Log-log plot of execution time comparison among FAC-PIN, CNM and HC-
PIN algorithms for Human, Jungle fowl, Mouse, Rat, Rice, Round worm, Wild boar and
Zebra fish
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Table 4.6: Time comparison results of FAC-PIN, CNM and HC-PIN for Baker’s yeast,
Cattle, Dog, E.coli, Finch bird, Flowering plant, Fruit fly and Frog (in seconds).

Algorithms Y4K Y5K C5K D2K E2K FB3K FP2K FF8K FG5K
FAC-PIN 10.44 25.12 112.7 29.02 3.66 54.04 4.77 54.85 104.05
CNM 598.96 645.03 1394.71 170.38 144.94 426.86 119.40 1428.98 1205.93
HC-PIN 607.25 663.50 818.91 73.42 55.02 340.67 55.02 234.69 1004.13

Table 4.7: Time comparison results of FAC-PIN, CNM and HC-PIN for Human, Jungle
fowl, Mouse, Rat, Rice, Round worm, Wild boar and Zebra fish (in seconds).

Algorithms H8K H12K J4K M2K RA1K RI3K RW4K W5K Z8K
FAC-PIN 73.63 372.59 102.02 7.44 1.00 156.15 22.25 24.54 295.74
CNM 1653.28 2743.28 856.06 155.33 8.46 370.57 484.25 41.68 4102.23
HC-PIN 1381.23 3372.31 830.45 13.99 2.78 9001.37 34.52 953.92 7461.35

terms of either the number of proteins or the number of interactions, the difference between

the performances of FAC-PIN and HC-PIN (or CNM) also increase greatly. In Tables 4.2

and 4.4, it is found that for small baker’s yeast protein interaction network (Y4K) modularity

Q and w- log-v of three algorithms are almost same. The reason behind that the most of

the vertices of this PIN are distributed in almost clustered manners (please see Figures 4.7,

4.8, 4.9 and 4.10 ). This is also true in Tables 4.6, 4.7 and Figures 4.5, 4.6 showing the

execution times (seconds) and log-log plot of the time comparisons of the three algorithms.

Clearly FAC-PIN is much faster than the other two methods (even large gaps between log-

log plots of FAC-PIN algorithms and HC-PIN, CNM algorithms), and again, the difference

in performance increases as either the number of proteins or the number of interactions

increases. All experiments were performed on an Intel machine (Core TM i7-2600, 3.400

GHz, CPU with 8 GB RAM).

4.3 Protein Complex Discovery

We validated our results by comparing the communities detected by FAC-PIN with a list

of protein complexes obtained from the MIPS (Munich Information center for Protein
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Figure 4.7: Protein Interaction Network of Baker’s yeast (Y4K)
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Figure 4.8: Clustered Network of Baker’s yeast (Y4K) using FAC-PIN algorithm
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Figure 4.9: Clustered Network of Baker’s yeast (Y4K) using CNM algorithm
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Figure 4.10: Clustered Network of Baker’s yeast (Y4K) using HC-PIN algorithm
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Sequences) databases, which we consider as a gold standard data. Our validation were

done only for four species which we could download corresponding complexes from MIPS.

For Baker’s yeast’s PIN, we obtained complexes from the MIPS Comprehensive Yeast

Genome Database-CYGD4. For the PINs of Human, Mouse and Rat, the corresponding

complexes were downloaded from the MIPS Comprehensive Resource of Mammalian Pro-

tein Complexes- CORUM 5.

We proceeded similarly to Laarhoven et al. [18] for baker’s yeast and considered only

the known complexes (i.e., not those obtained by computational means) containing at least

three proteins. Since FAC-PIN generates non-overlapping communities, we considered

only complexes which are at the bottom of the MIPS hierarchy of complexes and subcom-

plexes. The unconfirm complexes, that is those in category 550, were excluded.

Before computing complex validation testing, we generated the clusters from FAC-PIN,

HC-PIN and CNM algorithms for baker’s yeast, human, mouse and rat using same proteins

which were present in their corresponding protein complexes. We used modularity function

Q as scoring function to select the best clustered network for each species.

The validation proceeds by determining the degree of overlap between the communities

identified by FAC-PIN and the protein complexes; in effect, determining how effectively a

community matches a known complex. We used the same scoring scheme used in [2,6,18,

30]. The overlapping score, O(C,K), between a community C and a known complex K is

given as:

O(C,K) =
|C∩K|2

|C|× |K|
(4.3)

4ftp://ftpmips.gsf.de/yeast/catalogues/complexcat/
5http://mips.helmholtz-muenchen.de/genre/proj/corum/
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Community C and known complex K are considered a match whenever O(C,K) ≥ τ,

where 0 < τ ≤ 1 is the matching threshold. We have a perfect match only if O(C,K) = 1.

Threshold value τ = 0.2 is used in [2, 6, 30], whereas τ = 0.25 is in [18]. They considered

the threshold values where the average number of matched predicted clusters and protein

complexes are higher. We used both values of τ in our complex validation. After determin-

ing the overlapping scores between all communities and all known complexes for a given

PIN, we determined the ability of FAC-PIN to correctly classify the known complexes. The

reason for doing this is that a given complex K1 may match many communities with dif-

ferent degrees of overlap, while another complex K2 may match with a single community

only. Hence, we computed the Specificity, the Sensitivity, and the F-score, as our measures

of accuracy, and which are given below

Sensitivity =
TP

TP+FN
(4.4)

Specificity =
TP

TP+FP
(4.5)

F-score =
2× specificity× sensitivity

specificity+ sensitivity
(4.6)

where, TP (true positive) is the number of the identified communities C matched by the

known complexes K, FN (false negative) is the number of known complexes that are not

matched by the communities, and FP (false positive) is the total number of the identified

communities C minus TP. Tables 4.8, 4.9, 4.10 and 4.11 show the comparative results

of the Specificity SP, the Sensitivity SN, and the F-score FS of FAC-PIN, HC-PIN and

CNM for baker’s yeast, human, mouse and rat respectively. In these Tables, we have also
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showed the number of proteins n that were used in complex validation process, the number

of complexes C, the average size of complex | C̄ |, the number of clusters k, the average

size of cluster | k̄ |, the number of matched km and perfectly matched clusters kmp for easy

comparison.

Table 4.8: Comparison of the Specificity, Sensitivity and F-score FAC-PIN, CNM and HC-
PIN for Baker’s yeast

Computed results
n C | C̄ | Algorithms τ k | k̄ | km kmp SN SP FS

1237 267 4.63 FAC-PIN 0.2 285 4.34 165 12 0.61 0.58 0.594
CNM 300 4.12 99 5 0.37 0.33 0.348
HC-PIN 111 11.14 56 3 0.21 0.51 0.297
FAC-PIN 0.25 285 4.34 148 12 0.55 0.52 0.534
CNM 300 4.12 99 5 0.37 0.33 0.348
HC-PIN 111 11.14 55 3 0.21 0.50 0.296

Table 4.9: Comparison of the Specificity, Sensitivity and F-score FAC-PIN, CNM and HC-
PIN for Human

Computed results
n C | C̄ | Algorithms τ k | k̄ | km kmp SN SP FS

2555 575 4.44 FAC-PIN 0.2 607 4.21 291 8 0.50 0.48 0.489
CNM 639 3.99 255 5 0.44 0.40 0.419
HC-PIN 119 21.47 58 3 0.10 0.49 0.166
FAC-PIN 0.25 607 4.21 450 8 0.78 0.74 0.759
CNM 639 3.99 198 5 0.34 0.31 0.324
HC-PIN 119 21.47 52 3 0.09 0.44 0.149

Table 4.10: Comparison of the Specificity, Sensitivity and F-score FAC-PIN, CNM and
HC-PIN for Mouse

Computed results
n C | C̄ | Algorithms τ k | k̄ | km kmp SN SP FS

935 460 2.03 FAC-PIN 0.2 568 1.64 335 13 0.72 0.59 0.64
CNM 605 1.54 338 6 0.73 0.56 0.63
HC-PIN 151 6.19 75 3 0.163 0.50 0.25
FAC-PIN 0.25 568 1.64 312 13 0.68 0.55 0.61
CNM 605 1.54 332 6 0.71 0.55 0.61
HC-PIN 151 6.19 75 3 0.163 0.50 0.25

In Tables 4.8, 4.9, 4.10 and 4.11 we see that FAC-PIN identifies communities whose

average sizes (column 7) are closer to the average sizes of known proteins complexes (col-

umn 3) whereas HC-PIN and CNM yield larger averages of cluster sizes. The consequence
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Table 4.11: Comparison of the Specificity, Sensitivity and F-score FAC-PIN, CNM and
HC-PIN for Rat

Computed results
n C | C̄ | Algorithms τ k | k̄ | km kmp SN SP FS

557 328 1.69 FAC-PIN 0.2 389 1.42 167 7 0.51 0.43 0.466
CNM 475 1.17 138 3 0.42 0.29 0.343
HC-PIN 117 4.76 38 1 0.116 0.33 0.172
FAC-PIN 0.25 389 1.42 128 7 0.39 0.33 0.356
CNM 475 1.17 109 2 0.33 0.23 0.271
HC-PIN 117 4.76 25 1 0.076 0.22 0.113

of this is that smaller FAC-PIN communities produce higher accuracy (Specificity, Sensitiv-

ity or F-score) in the great majority of cases. This because, most of the known complexes

are small, and that the smaller a complex the higher the accuracy. In particular, we obtain

a larger number of perfectly matched complexes to communities with FAC-PIN than with

HC-PIN or CNM.

4.4 Functional Module Identification

We validated our results by comparing the communities detected by FAC-PIN with a list

of functional modules obtained from the Gene Ontology Annotation databases, which we

consider as a gold standard data. Our validation were done only for two species (Baker’s

yeast and rat) which we could download corresponding functional modules from Gene

Ontology Annotation databases. For Baker’s yeast’s PIN, we obtained modules from the

Yeast Genome database6. For the PIN of Rat, the corresponding modules were downloaded

from the Genome Ontology Annotation database7.

Like overlapping score of protein complex validation process, we used a measure called

p-value to detect significant modules. the p-value is calculated from cumulative distribu-

6http://downloads.yeastgenome.org/curation/literature/go_slim_mapping.tab
7http://www.geneontology.org/GO.downloads.annotations.shtml
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tion function, cdf of hypergeometric distribution:

p-value = 1−
k−1

∑
j=0

(|Fi|
j

)(|V |−|Fi|
|M|− j

)
( |V |
|M|
) (4.7)

Where Fi is a functional category mapped to module M. The proteins in functional cat-

egory Fi are considered as true predictions (physical functional modules), the proteins in

module M are considered as positive predictions (computer identified functional modules)

and the common proteins of Fi and M are considered as true positive predictions k. It is

understood as the probability that at least k proteins in M are included in Fi. Low p-value

indicates that the positive predicted module closely corresponds to the true predicted mod-

ule, because the network has a lower probability to produce community by chance [16].

For this reason we have used a term called cutoff value to detect the significant modules.

If the p-value of a positive predicted module (computer generated modules) (in short it is

called ppm) is less than cutoff value, we considered it as significant module. This process

was also used by Wang et al. [30] for validating their HC-PIN algorithm. Both Wang et

al. [30] and we considered the cutoff value is 0.05. Besides p-value, We used also another

two important aspects- Recall and Precision to estimate the performance of the algorithms

for detecting functional modules [30]. Recall is the fraction of the true positive predictions

out of all true prediction and Precision is the fraction of true positive predictions out of all

positive predictions. The formulas of Recall and Precision follow as below-

Recall =
|M∩Fi|
|Fi|

(4.8)

Precision =
|M∩Fi|
|M|

(4.9)
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Recall indicates how effectively proteins with the same functional category in the net-

work are extracted and Precision illustrated how consistently proteins in the same module

are annotated [30]. In general, the module with large size will have higher Recall and mod-

ule with smaller size will have higher Precision. Thus, a harmonic mean of Recall and

Precision, f-measure is defined as follow-

f -measure =
2×Recall×Precision

Recall+Precision
(4.10)

The accuracy of an algorithm is defined as the average of f -measure of the signifi-

cant modules generated by it. In the experiment, we considered only positive predicted

modules which have three or more proteins. On the other hand, we have separated func-

tional modules into three ontologies- Biological Process abbreviated as BP, Molecular

Function abbreviated as MF and Cellular Component abbreviated as CC. For each on-

tology, we computed functional module test. As well as we computed the functional

module test on the combination of all three ontologies. The results of functional mod-

ules validation for baker’s yeast is shown in Table 4.12. In the Table-4.12, we have

listed the number of identified modules whose p-values falls within p-value < E − 15,

[E− 15 to E− 10], [E− 10 to E− 5], [E− 5 to E− 1], average -log(p-value) as −log p

and average f −measure as f m. As well as we have listed the number of ppm as kp, the

number of ppm with three or more proteins as k3p, the average size of ppm as | kp | and the

number of significant clusters as ks.

From the Table-4.12, we found that FAC-PIN gave more accurate results than HC-PIN

and CNM algorithm for baker’s yeast because of higher average f-measure. As well as the

percentage value of the column-6 of Table 4.12 shows that, FAC-PIN found more functional

modules than other two algorithms.
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Table 4.12: Functional enrichment of the identified Modules which comprises of three or
more proteins of Baker’s yeast

ks for different p-value

Algorithm kp k3p | kp | Ontology ks

<
E
−

15

[E
-1

5
to

E
-1

0]

[E
-1

0
to

E
-5

]

[E
-5

to
E

-1
]

−log p
f m

FAC-PIN 702 522 7.18 Combine 241 (46.2%) 64 17 10 150 4.66 0.165
BP 168 10 8 9 141 4.14 0.171
CC 168 60 10 8 90 4.52 0.133
MF 168 8 14 9 137 3.94 0.106

HC-PIN 218 159 23.13 Combine 72 (45.3%) 4 4 10 54 3.17 0.024
BP 61 2 4 3 52 2.52 0.025
CC 61 3 2 9 47 3.09 0.012
MF 61 3 4 3 51 3.21 0.019

CNM 609 226 8.27 Combine 19 (8.4%) 5 0 2 12 4.45 0.031
BP 12 0 0 2 10 3.93 0.035
CC 12 3 0 1 8 4.33 0.040
MF 12 0 0 0 12 3.90 0.032

In Tables-4.13 , we have listed the number of identified larger modules (size ≥ 20),

percentage of significant larger modules, average -log(p-value) as −log p and average f-

measures as f m. FAC-PIN, HC-PIN and CNM algorithms successfully identifies all larger

modules for all types ontologies. On the other hand, in the Table-4.14, we have listed the

number of identified smaller modules (size ≤ 6), percentage of significant smaller mod-

ules, average -log(P-value) and average f-measures. In this case, our FAC-PIN algorithm

outperformed HC-PIN and CNM algorithms.

Table 4.13: Performance comparison of clustering algorithms for the identification of large-
sized (size≥ 20) modules of Baker’s yeast

Ontologies Algorithms k≥20 k≥20s % − log p f m
BP FAC-PIN 24 24 100% 6.20 0.1702

HC-PIN 2 2 100% 5.52 0.0055
CNM 4 4 100% 4.61 0.0249

CC FAC-PIN 24 24 100% 7.13 0.1337
HC-PIN 2 2 100% 6.09 0.0033
CNM 4 4 100% 5.95 0.0368

MF FAC-PIN 24 24 100% 6.20 0.1059
HC-PIN 2 2 100% 5.19 0.0148
CNM 4 4 100% 5.72 0.0258

We have showed the functional module testing results in the Tables 4.15, 4.16 and 4.17
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Table 4.14: Performance comparison of clustering algorithms for the identification of
small-sized (size≤ 6) modules of Baker’s yeast

Ontologies Algorithms k≤6 k≤6s % − log p f m
BP FAC-PIN 101 101 100.00% 4.63 0.0702

HC-PIN 13 11 84.61% 4.22 0.0158
CNM 5 4 80.00% 4.54 0.0121

CC FAC-PIN 101 101 100.00% 5.07 0.0133
HC-PIN 13 12 92.31% 5.04 0.0129
CNM 5 5 100.00% 4.95 0.0118

MF FAC-PIN 101 101 100.00% 4.28 0.0148
HC-PIN 13 13 100.00% 4.19 0.0108
CNM 5 4 80.00% 4.22 0.0115

for Rat. Accept cellular component (CC) ontology, FAC-PIN algorithm generated the better

positive predicted modules because of higher average f -measure compare to other two

algorithms. For cellular component, CNM algorithm found the large modules having more

than 20 proteins more accurately than FAC-PIN and HC-PIN algorithms. It affected the

total results of cellular component. Similar to baker’s yeast, FAC-PIN, HC-PIN and CNM

algorithms perform excellent to identify the large modules. On the other hand, for small

modules, FAC-PIN identifies the modules more accurately then others. But for molecular

function ontology, though the accuracy is higher, unfortunately all small modules of FAC-

PIN algorithms are not significant. Only 95% small modules are matched or significant.

Despite the cellular component ontology result, FAC-PIN outperformed the HC-PIN and

CNM algorithms.

4.5 Conclusion

The modularity Q and w- log-v results of sixteen different species for FAC-PIN, HC-PIN

and CNM algorithm indicates that FAC-PIN algorithm finds the more dense subgraph. The

reason behind it: FAC-PIN algorithm solves the problem of clustering the vertices of degree

one. As well as our proposed FAC-PIN algorithm ran faster than other algorithm. For all
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Table 4.15: Functional enrichment of the identified Modules which comprises of three or
more proteins of Rat

ks for different p-value

Algorithm kp k3p | kp | Ontology ks

<
E
−

15

[E
-1

5
∼

E
-1

0]

[E
-1

0
∼

E
-5

]

[E
-5
∼

E
-1

]

−log p
f m

FAC-PIN 627 268 2.09 Combine 93 (34.7%) 10 7 4 72 4.66 0.165
BP 93 10 7 4 72 5.47 0.004
CC 72 2 3 5 62 5.11 0.012
MF 86 2 14 4 66 5.21 0.018

HC-PIN 218 269 23.13 Combine 93 (34.5%) 4 4 5 80 3.17 0.024
BP 70 0 0 2 68 5.37 0.002
CC 90 3 3 5 79 4.92 0.011
MF 82 4 0 5 73 5.06 0.008

CNM 576 261 2.27 Combine 78 (28.8%) 5 3 6 64 4.45 0.031
BP 65 0 0 1 64 5.32 0.004
CC 66 4 1 3 58 4.68 0.014
MF 65 0 3 5 57 5.22 0.012

Table 4.16: Performance comparison of clustering algorithms for the identification of large-
sized (size≥ 20) modules of Rat

Ontologies Algorithms k≥20 k≥20s % − log p f m
BP FAC-PIN 8 8 100.00% 6.38 0.0034

HC-PIN 14 14 100.00% 6.17 0.0007
CNM 15 15 100.00% 5.93 0.0032

CC FAC-PIN 8 8 100.00% 6.96 0.0084
HC-PIN 14 12 85.71% 6.02 0.0053
CNM 15 15 100.00% 5.48 0.0094

MF FAC-PIN 8 8 100.00% 7.67 0.0171
HC-PIN 14 10 71.42% 6.65 0.0039
CNM 15 12 80.00% 6.67 0.0101

Table 4.17: Performance comparison of clustering algorithms for the identification of
small-sized (size≤ 6) modules of Rat

Ontologies Algorithms k≤20 k≤20s % − log p f m
BP FAC-PIN 45 45 100.00% 6.85 0.0002

HC-PIN 45 45 100.00% 6.67 0.0001
CNM 34 34 100.00% 6.83 0.0001

CC FAC-PIN 45 45 100.00% 5.80 0.0029
HC-PIN 67 67 100.00% 5.51 0.0027
CNM 34 32 94.12% 5.79 0.0025

MF FAC-PIN 45 43 95.55% 5.44 0.0010
HC-PIN 66 66 100.00% 5.70 0.0010
CNM 34 28 82.35% 5.84 0.0007

species it took several minutes even several seconds to find the best clustered PINs. On the

other hand, HC-PIN and CNM algorithms took more time (even two or three hours).
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In complex validation testing, FAC-PIN identifies the protein complexes more accu-

rately than other algorithms (CNM and HC-PIN). it is known that sensitivity determines

the fraction of complexes which are matched with computer generated communities. The

sensitivity of FAC-PIN algorithm is higher than the others. It means FAC-PIN algorithm

can identify the more complexes than CNM and HC-PIN. On the other hand, specificity

determines the fraction of communities which are matched with experimentally defined

complexes. In this case, FAC-PIN also outperformed the CNM and HC-PIN algorithms.

F-score determines the overall performance of the test. Both specificity and sensitivity

of FAC-PIN algorithm is higher than others, so its overall performance is also better than

others.

Except, cellular component ontology of rat species, FAC-PIN can identify the func-

tional modules for all ontologies of baker’s yeast and rat efficiently.

We cannot compute the protein complex validation and functional module identification

testing for all species due to the limitation of time and shortage of computer memory.

Cattle, Frog, Human, Rice, Wild boar and Zebra fish species have large PINs which cause

the memory limitation for performing protein complex prediction and functional module

identification process.

Though, limitation of time and computer physical memory, our FAC-PIN algorithm

outperforms existing fast algorithm for PIN: HC-PIN and popular community detection

algorithm: CNM in respect to execution time, dense community structures, complex vali-

dation and function module prediction tests.





Chapter 5

Conclusion and future work

This thesis presents an efficient algorithm (FAC-PIN) for finding the communities more

accurately than others. FAC-PIN algorithm is designed on the basis of newly defined pre-

metric Relative vertex-to-vertex clustering value. It computes likelihood value of a vertex

u to merge with another vertex v to form a cluster. This premetric deals with the problem

of clustering the vertices of degree one efficiently.

Our designed FAC-PIN algorithm solves the problem of classifying the vertices of de-

gree one efficiently by using relative vertex-to-vertex clustering value. After solving this

problem, we have found that testing (scoring functions) results represent that our proposed

FAC-PIN algorithm gives better dense subgraph than other algorithms for sixteen different

species.

Our proposed FAC-PIN algorithm runs faster than known best and fast hierarchical

algorithms: HC-PIN and CNM. The running time complexity of HC-PIN and CNM algo-

rithms are O(md̄2) and O(mh log2 n) respectively. In PINs, the number of interactions are

quite larger than the number of proteins. So, for large PINs, these two algorithm require

more execution time. Whereas, our proposed FAC-PIN algorithm needs O(nd̄2) times to

63
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find the clusters or communities from PINs. The number of proteins are very less than the

number of interactions, it helps FAC-PIN algorithm to run faster than others.

From the computational results of evaluating clusters or communities, complex vali-

dation, functional modules identification testing, we can say that, our proposed FAC-PIN

algorithm is more efficient than CNM and HC-PIN algorithms. As well as it is faster algo-

rithm than other twos due to fastest execution time over HC-PIN and CNM algorithm.

Still several new doors are opened to continue research on FAC-PIN and relative vertex-

to-vertex clustering values. We have listed them as follows:

• Some protein interaction networks are weighted. There is a door opened to improve

FAC-PIN algorithm and relative vertex-to-vertex clustering value for weighted pro-

tein interaction networks.

• We have designed our algorithm only for protein networks. It can be redesigned for

social networks.

• FAC-PIN algorithm has been designed on the basis of Relative vertex-to-vertex clus-

tering value. The FAC-PIN algorithm can be improved by introducing ∆Q [7],

QSigBound [1] etc.

• FAC-PIN algorithm has been designed by using the concept of first order neigh-

bouring concept. It can be improvised by introducing the concept of second order

neighbouring concept [].

• In FAC-PIN algorithm, we considered a random values for threshold α for clustering

any PIN. There is another door opened for determining best α for PIN of each species.

• FAC-PIN algorithm has been designed based on the concept of Preferential attach-
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ment property. Active protein [31] concept can be introduced in FAC-PIN algorithm

which will produce improved clustered PINs.
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organization of modularity in metabolic networks. Science, 297:1551 – 1555, 2002.

[28] J.S. Richardson. The anatomy and taxonomy of protein structure. Advances in Protein

Chemistry, 34, 1981.

[29] V. Spirin and L.A. Mirny. Protein complexes and functional modules in molecular

networks. Proceedings of Natural Academy of Science USA, 100(21):12123 – 12128,

2003.

[30] J. Wang, Chen Li, M., and Y. J., Pan. A fast hierarchical clustering algorithm for

functional modules discovery in protein interaction networks. IEEE/ACM Transaction

on Computational Biology and Bioinformatics, 8(3):607 – 620, 2011.

[31] J. Wang, X. Peng, Q. Xiao, M. Li, and Y. Pan. An effective method for refining

predicted protein complexes based on protein activity and the mechanism of protein

complex formation. BMC Systems Biology, 7(28):30 – 53, 2013.



BIBLIOGRAPHY 70

[32] H. Xiong, P. Tan, and V. Kumar. Mining strong affinity association patterns in data

sets with skewed support distribution. Proceeding of the Third IEEE International

Conference on Data Mining (ICDM), pages 221– 232, 2003.

[33] J. Yang and J. Leskovec. Defining and evaluating network communities based on

ground-truth. Proceedings of IEEE 12th International Conference on Data Mining,

12:745 – 754, 2012.

[34] S. Yook, Z. Olvai, and A.L. Barabsi. Functional and topological characterization of

protein interaction networks. Protenomics, 4:928 – 942, 2004.



Vita Auctoris

Mohammad Rahman was born in 1984 in Dhaka, Bangladesh. He received his Bache-

lors degree from the University of Dhaka in Computer Science and Engineering in 2005

and masters degree from Bangladesh University of Engineering and Technology (BUET)

in Information and Communication Technology in 2010. He has 2 journal papers and 4

conference papers. His research interests include pattern recognition and bioinformatics.

71


	University of Windsor
	Scholarship at UWindsor
	2013

	FAC-PIN: An efficient and fast agglomerative clustering algorithm for protein interaction networks to predict protein complexes and functional modules
	Mohammad Shamsur Rahman
	Recommended Citation


	tmp.1377716923.pdf.Ot0Mf

