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ABSTRACT 

 

Grid computing is the computing paradigm that is concerned with coordinated resource 

sharing and problem solving in dynamic, autonomous multi-institutional virtual 

organizations. Data exchange and service allocation between virtual organizations are 

challenging problems in the field of Grid computing, due to the decentralization of Grid 

systems. The resource management in a Grid system ensures efficiency and usability. The 

required efficiency and usability of Grid systems can be achieved by building a 

decentralized multi-virtual Grid system. 

In this thesis we present a decentralized multi-virtual resource management 

framework in which the system is divided into virtual organizations, each controlled by a 

broker. An overlay network of brokers is responsible for global resource management 

and managing the allocation of services. We address two main issues for both local and 

global resource management: 1) decentralized allocation of tasks to suitable nodes to 

achieve both local and global load balancing; and 2) handling of both regular and broker 

failures. Experimental results verify that the system achieves dependable performance 

with various loads of services and broker failures. 
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CHAPTER 1  

Introduction 

1.1  Introduction to research topic area 
 

A distributed network computing system [1] is a virtual computer formed by a networked 

set of heterogeneous machines that agree to share their local resources with each other. 

Distributed Computing is being transformed to a model consisting of services that are 

commoditized and delivered in a manner similar to traditional utilities such as water, 

electricity, gas, and telephony. In such a model, users access services based on their 

requirements without regard to where the services are hosted or how they are delivered. 

  Several computing paradigms [2] have promised to deliver this utility computing 

vision that includes Cluster computing, Grid computing and, more recently, Cloud 

computing. The latter term denotes the infrastructure as a somewhat diffuse and 

transparent entity, hence “Cloud”, by which businesses and users are able to access 

applications from anywhere in the world on demand, using virtualization of management. 

Thus, the computing world is rapidly transforming towards developing software for 

millions to consume as a service rather than to run on their individual computers. 

1.1.1  Grid Computing 
 

Grid computing is the computing paradigm that is concerned with “coordinated resource 

sharing and problem solving in dynamic, multi-institutional virtual organizations” [1, 2]. 

A virtual organization (VO) can be defined as a collection of computing nodes in which 
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each participating node can acquire or provide services from/to other nodes inside/outside 

the organization [3]. Grid computing uses middleware  

  

Figure 1. Illustrating the Grid computing paradigm with an example of User 
Management-Resource interaction. 
 
 
 to coordinate disparate IT resources across a network, allowing them to function as a 

virtual whole. Grids address two distinct but related goals: providing remote access to IT 

assets, and aggregating processing power. The most obvious resource included in a grid 

is a processor, but grids also encompass sensors, data-storage systems, applications, and 

other resources. The Grid computing paradigm with an example of user management- 

resource interaction are depicted in Figure 1. 

The grid provides a series of distributed computing resources through LAN or 

WAN. It is using a super virtual computer as terminal user of the application. This idea 

will not only realize safe and coordinate resource sharing among persons, organizations, 

and resources, but also  create a virtual and dynamic organization. Grid computing is a 

method of distributed computing. It includes location and organization, software, and 

hardware to provide unlimited power. Each source can cooperate and access others, but 
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cloud computing is better; it has many advantages over grid computing in many ways. 

Cloud computing evolves from grid computing and provides on-demand resource 

provisioning. Grid computing may or may not be in the cloud depending on what type of 

users who are using it. If the users are systems administrators and integrators, what they 

care is how things are maintained in the cloud. They upgrade, install, and virtualize 

servers and applications. If the users are consumers, they do not care how things are 

running in the system. Grid computing requires the use of software that can divide and 

form the pieces of a program from different resources as one large system image . One 

concern about the grid is that if one piece of the software on a node fails, then other 

pieces of the software on other nodes may also fail. This is alleviated if that component 

has a failover component on another node, but problems can still arise if components rely 

on other pieces of software to accomplish one or more grid computing tasks. Large 

system images and associated hardware to operate and maintain them can contribute to 

large capital and operating expenses [4]. 

1.1.1.1  Brief Description of Resource Management Concepts in Grid 
 

A grid-computing system makes use of computer resources from multiple administrative 

domains that are applied collectively to solve a problem that has demanding requirements 

such as a large amount of processing power, storage space, bandwidth and so on. 

However, a more generalized and formal definition of a Grid system can be described as 

“a large-scale, geographically distributed, hardware and software infrastructure composed 

of heterogeneous networked resources owned and shared by multiple administrative 

organizations, which are coordinated to provide transparent, dependable, pervasive, and 

consistent computing support to a wide range of applications. These applications can 
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perform distributed computing, high throughput computing, on-demand computing, data-

intensive computing, collaborative computing or multimedia computing”[5]. 

 From the definitions above, it can be clearly seen that the base of grid technology 

is the concept of resource sharing/management. The term resource management in grid 

computing can be defined as those operations that control the way that grid resources and 

services are made available for use by entities like users, applications, and services [6] to 

ensure efficient utilization of computer resources and for optimal performance of specific 

tasks. Due to the complexity, heterogeneity, and the dynamic nature of grid computing 

environments, resource management is faced with challenges making it a complex task to 

match the capabilities of available resources to the needs of the entities listed above [6, 

7]. Some grid resource classifications are storage resources, network resources, and 

computational resources which have capabilities like storage capacity available on disk, 

bandwidth of the network, and processor speed [8]. To handle the wide variety of the 

software applications and hardware’s used in grid environments over different forms of 

grid networks, software known as middleware is used. One of the most important 

components of the middleware is the resource manager which handles resource selection 

and job scheduling [9, 10].  

The discovery of resources becomes more difficult when resources owned by 

many organizations having different resource management policies and cost models are 

distributed over a wide geographic area and are heterogeneous in nature. To handle these 

problems, a number of different scheduling and resource management algorithms and 

methods have been developed and implemented. 
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Resource Manager as Middleware:  Middleware, which does not have a 

unanimous definition [11], can generally be described as a layer of software that handles 

the heterogeneous functions of a distributed system like in grids or clouds. It exists 

between the application and the underlying components such as the operating system, 

networks, and hardware connecting them together and creating a useful environment. 

There are a number of different grid middleware kits such as Globus toolkit, ARC, gLite, 

UNICORE etc. 

Resource Discovery: As one of the key issues in a grid system is how to manage 

all types of distributed resources for job executions. A mechanism should be provided by 

the grid infrastructure to discover the relevant resource for its corresponding requests. In 

relation to this [12], pointed that one of the main capabilities of a grid infrastructure is the 

need to support a resource discovery mechanism which in turn plays an important role in 

the management of grid resources. Resource discovery mechanisms in grid systems, 

which make use of trust relationship between resource requesters and providers prevent 

malicious attempts in the environment and also reduce extra overhead in the existing 

complex grid systems. An efficient trust based resource discovery mechanism ensures a 

safer environment for communication; enhance the quality of service (QoS) and also 

easier decision making for allocating resources between the requesters and providers. 

 
Resource Allocation and Scheduling: Grid resources are distributed 

heterogeneously over a large geographical area to numerous users simultaneously. To 

manage the use of these resources and others properly, tasks need to be scheduled 

precisely and allocated the corresponding demanded resources accordingly. Grid is a 

dynamic system, which changes continuously with time as a result of a number of factors 
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such as availability of new resources, system/resource failure, new requests, completion 

of an executing task etc. When any of these occurs, there is a need for jobs to be 

rescheduled or re-allocation of resources for execution. 

1.1.2  Cloud Computing 
 

Cloud computing provides a large-scale distributed computing paradigm that is driven by 

economics of scale [13, 14], in which a pool of abstracted, virtualized, dynamic, scalable, 

managed computing power, storage, platform, and services are delivered on demand to 

external customers over the Internet. The Cloud computing paradigm with an example of 

user management- resource interaction are depicted in Figure 2. 

  

Figure 2.  Illustrating the Cloud computing paradigm with an example of User 
Management-Resource interaction. 

Following are a few key points for defining cloud computing. 1) it is massively 

scalable,which driven by the economics of scale [13, 14],  2) it can be encapsulated as an 

abstract entity that delivers different levels of services to customers outside the Cloud, 3) 

the services can be dynamically configured (via virtualization or other approaches) and 

delivered on demand.  
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Governments, research institutes, and industry leaders have rushed to adopt Cloud 

Computing in order to solve their ever increasing computing and storage problems arising 

in the Internet Age. There are three main factors contributing to the surge and interests in 

Cloud Computing: 1) rapid decrease in hardware cost and increase in computing power 

and storage capacity, and the advent of multi-core architecture and modern 

supercomputers consisting of hundreds of thousands of cores; 2) the exponentially 

growing data size in scientific instrumentation/simulation and Internet publishing and 

archiving, and 3) the wide-spread adoption of Services of Computing and Web 

applications 

1.1.2.1  Cloud Computing Economics 
 
 Based on recent work by Haas et al [15] and Sharma et al [16], we make the following.  

Observations about Cloud Computing economic models: 1) In deciding whether hosting a 

service in the cloud makes sense over the long term, the fine grained economic models 

enabled by Cloud Computing make tradeoff decisions more fluid and, in particular, the 

elasticity offered by clouds serves to transfer risk as well. Although hardware resource 

costs continue to decline, they do so at varying rates; for example, computing and storage 

costs are falling faster than WAN costs. Cloud Computing can track these changes and 

potentially pass any derived benefits through to the customer more effectively than 

building one’s own data center, resulting in a closer match of expenditure to actual 

resource usage. 2) In making the decision about whether to move an existing service to 

the cloud, one must additionally examine the expected average and peak resource 

utilization, especially if the application may have highly variable spikes in resource 

demand.This  places practical limits on real-world utilization of purchased equipment and 
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various operational costs that vary depending on the type of cloud environment being 

considered. 

1.1.3  The comparison between Cloud Computing and Grid Computing 
 
 
First, we can compare those from job scheduling of grid computing. Job scheduling is the 

core value and aim of grid technology, its aim is to use all kinds of resources. It can 

divide a huge task into a lot of independent and no related sub tasks, and then let every 

node do the jobs. Even any node fails and doesn’t return a result, it doesn’t matter; the 

whole process will not be affected. Even one node crashes, the task should be reassigned 

to other nodes. Just like grid computing, cloud computing will make a huge resource pool 

through grouping all the resources. But the resource provided by the cloud is to complete 

a special task. For example, a user may apply resource from the resource pool to deploy 

its application, not submit its task to the grid and let grid complete it [17]. From this 

point, the construction of the grid is to complete a specified task, and then there will be 

biology grid, geography grid, and national educational grid and so on. Cloud computing 

is designed to meet general application requirement.  

Second comparison, the cloud will have effects in three aspects: the application in 

internet, product application model, and IT product development direction [18]. Of 

course, this change is not subversion but some new characters that have been added. This 

advantage is a challenge to grid technology. When grid come it into being, it has some 

advantages, such as: you can provide unlimited compute power through any computer, 

and can get a great deal of information. This environment can help an enterprise to 

complete tasks that are very hard before use their systems efficiently to meet the user’s 

requirement and decrease the management cost. Cloud computing extends these 
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advantages. More and more applications will be completed through the internet by cloud 

computing. Cloud computing will extend the application of hardware and software, and 

will change the application model of hardware and software. Users can get an application 

environment or the application itself not buying new servers and new software. To the 

users, the hardware or the software need not on his side or only used by himself, it can be 

available and virtual resources. And available resources are not limited inside the 

enterprise, it can be extended hardware and software attained through the internet. 

 The development direction of IT product will be changed to meet the above two 

conditions. Cloud computing provides services in the following ways: 1) SAAS 

(Software as a service). This kind of cloud computing transfer programs to many users 

through a web browser. In the user’s eyes, he/she can save a lot of money in the servers 

and the authorization of software. In the supporters’ eyes, he needs to maintain only one 

program, which will also save costs [19]. 2) Utility Computing. This is an old idea; but, it 

is used by Amazon, IBM, Sun and other companies that provide storage services and 

virtual servers in recent years. This cloud computing creates virtual data centers for IT 

business to collect memory, IO device, storage and computing power to make a huge 

virtual resource to serve the whole net [20]. 3) Network service. It has a close relation 

with SAAS, network service providers provide API to make developers develop more 

applications based on the internet, not only the PC program. 4) Platform as a service. This 

kind of cloud computing provides a development environment. You can use the 

middleman’s device to develop your own program and deliver it to users through the 

internet and servers. 5) Management Service Provider. It is one of the oldest application 

in cloud computing. This kind of application faces IT business not terminal users, it is 



 

10 
 

often used virus scanning and program monitoring. 6) Business Service Platform. It is the 

mixture of SAAS and MSP. This kind of cloud computing provides a platform for the 

interaction between users and providers, such as personal budget management system, it 

can manage his budget and coordinate all the services he has booked according to the 

user’s setup. 7) Integration of internet. It is to integrate all the companies that are doing 

the similar jobs. That will make it easier for users to choose and select the service 

providers. 8) Infrastructure as a Service and more a consumer can get the service from a 

full computer infrastructure through the Internet [21]. This type of service is called 

Infrastructure as a Service (IaaS). Internet-based services such as storage and databases 

are part of the IaaS. Other types of services on the Internet are Platform as a Service 

(PaaS) and Software as a Service (SaaS). PaaS offers full or partial application 

development that users can access, while SaaS provides a complete turnkey application, 

such as Enterprise Resource Management through the Internet. The IaaS divides into two 

types of usage: public and private. Amazon EC2 uses public server pools in the 

infrastructure cloud [22]. A more private cloud service uses groups of public or private 

server pools from an internal corporate data center. You can use both types to develop 

software within the environment of the corporate data center with EC2, temporarily 

extend resources at low cost say for testing purposes. The mix may provide a faster way 

of developing applications and services with shorter development and testing cycles. To 

grid computing, though its resources have been pooled, it looks like a huge resource pool 

from outside. But to the user who has submitted a special task, he doesn’t know which 

node will complete his job. What he need do is to submit his job to the grid according to a 

special style, and then what he will do next is waiting for the result. And the grid job 
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schedule system will look for the resource that is matched to job, and find idle physical 

node, send out the job until the job will be finished. Though grid can realize parallel job 

processing, the user has to prepare the algorithm himself, and send them to different 

physical nodes. This process is a little complicated, that is why many grid computing is 

built to complete special requirements. Cloud computing will cut the physical resource 

through virtual method. From this point it can realize allocate resource according to the 

need and increase automatically. This kind of increase can’t exceed the up limit of the 

physical nodes. Though from the view of a control point, the cloud will look all the IT 

resources as a resource pool, different physical node will be divided within different 

resource pool. That is the difference between grid computing and cloud computing in the 

allocation of resource. From the concept, cloud computing is actually a kind of 

distributed computing; this computing model has advantages and huge potential over the 

compute model in traditional databases. At the same time, some experts have pointed out 

that automation technology is the base of any cloud computing infrastructure. 

Automation technology is also the base of any advanced computing technology. If you 

want to use cloud computing in any case, it means you have no reusable process, and it 

also means you are trying to let others do the job that you are not qualified to do. 

1.1.4  Resource management in both Grid and Cloud Computing 
 

This section describes the resource management found in Grids and Clouds, covering 

topics such as the compute model, data model, virtualization, and monitoring. These 

topics are extremely important to understand the main challenges that both Grids and 

Clouds face today, and will have to overcome in the future. 
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Compute Model: Most Grids use a batch-scheduled compute model, in which a 

local resource manager (LRM), such as PBS, Condor, SGE manages the compute 

resources for a Grid site and users submit batch jobs (via GRAM) to request some 

resources for some time. Many Grids have policies in place that enforce these batch jobs 

to identify the user and credentials under which the job will run for accounting and 

security purposes, the number of processors needed, and the duration of the allocation. 

For example, a job could say, stage in the input data from a URL to the local storage, run 

the application for 60 minutes on 100 processors, and stage out the results to some FTP 

server. The job would wait in the LRM’s wait queue until the 100 processors were 

available for 60 minutes, at which point the 100 processors would be allocated and 

dedicated to the application for the duration of the job. Due to the expensive scheduling 

decisions, data staging in and out, and potentially long queue times, many Grids don’t 

natively support interactive applications; although there are efforts in the Grid 

community to enable lower latencies to resources via multi-level scheduling, to allow 

applications with many short-running tasks to execute efficiently on Grids [23]. Cloud 

Computing compute model will likely look very different, with resources in the Cloud 

being shared by all users at the same time (in contrast to dedicated resources governed by 

a queuing system). This should allow latency sensitive applications to operate natively on 

Clouds, although ensuring a good enough level of QoS is being delivered to the end users 

will not be trivial, and will likely be one of the major challenges for Cloud Computing as 

the Clouds grow in scale, and number of users. 

Data Model: While some people boldly predict that future Internet Computing 

will be towards Cloud Computing centralized, in which storage, computing, and all kinds 
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of other resources will mainly be provisioned by the Cloud. The Internet Computing will 

be centralized around Data, Clouding Computing, as well as Client Computing. Cloud 

Computing and Client Computing will coexist and evolve hand in hand while data 

management (mapping, partitioning, querying, movement, caching, replication, etc.) will 

become more and more important for both Cloud Computing and Client Computing with 

the increase of data-intensive applications. The critical role of Cloud Computing goes 

without saying, but the importance of Client Computing cannot be overlooked either for 

several reasons: 1) For security reasons, people might not be willing to run mission-

critical applications on the Cloud and send sensitive data to the Cloud for processing and 

storage, 2) Users want to get their things done even when the Internet and Cloud are 

down, or the network communication is slow, 3) With the advances of multi-core 

technology, the coming decade will bring the possibilities of having a desktop 

supercomputer with 100s to 1000s of hardware threads/cores. Furthermore, many end-

users will have various hardware driven end-functionalities, such as visualization and 

multimedia playback, which will typically run locally. The importance of data has caught 

the attention of the Grid community for the past decade; Data Grids [24] have been 

specifically designed to tackle data intensive applications in Grid environments, with the 

concept of virtual data [25] playing a crucial role. Virtual data capture the relationship 

between data, programs and computations and prescribes various abstractions that a data 

grid can provide: location transparency where data can be requested without regard to 

data location, a distributed metadata catalog is engaged to keep track of the locations of 

each piece of data (along with its replicas) across grid sites, and privacy and access 

control are enforced; materialization transparency: data can be either recomputed on the 
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fly or transferred upon request, depending on the availability of the data and the cost to 

re-compute. There is also representation transparency where data can be consumed and 

produced no matter what their actual physical formats and store are, data are mapped into 

some abstract structural representation and manipulated in that way. 

Data Locality: As CPU cycles become cheaper and data sets double in size every 

year, the main challenge for efficient scaling of applications is the location of the data 

relative to the available computational resources – moving the data repeatedly to distant 

CPUs is becoming the bottleneck. [26] There are large differences in IO speeds from 

local disk storage to wide area networks, which can drastically affect application 

performance. To achieve good scalability at Internet scales for Clouds, Grids, and their 

applications, data must be distributed over many computers, and computations must be 

steered towards the best place to execute in order to minimize the communication costs 

[26]. Google Map Reduce [27] system runs on top of the Google File System, within 

which data is loaded, partitioned into chunks, and each chunk replicated. Thus, data 

processing is collocated with data storage: when a file needs to be processed, the job 

scheduler consults a storage metadata service to get the host node for each chunk, and 

then schedules a “map” process on that node so that data locality is exploited efficiently. 

In Grids, data storage usually relies on a shared file system (e.g. NFS, GPFS, PVFS, 

Luster), where data locality cannot be easily applied. One approach is to improve 

schedulers to be data-aware, and to be able to leverage data locality information when 

scheduling computational tasks; this approach has shown to improve job turnaround time 

significantly [28]. 
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Combining computer and data management: Even more critical is the 

combination of the computer and data resource management, which leverages data 

locality in access patterns to minimize the amount of data movement and improve end 

application performance and scalability. Attempting to address the storage and 

computational problems separately forces much data movement between computational 

and storage resources, which will not scale to tomorrow’s peta-scale datasets and millions 

of processors, and will yield significant underutilization of the raw resources. It is 

important to schedule computational tasks close to the data, and to understand the costs 

of moving the work as opposed to moving the data. Data-aware schedulers and dispersing 

data close to the processors are critical in achieving good scalability and performance. 

Finally, as the number of processors-cores is increasing (the largest now a days 

supercomputers  have over 200K processors and Grids surpassing 100K processors), 

there is an ever-growing emphasis for support of high throughput computing with high 

sustainable dispatch and execution rates. We believe that data management architectures 

are important to ensure that the data management implementations scale to the required 

data set sizes in the number of files, objects, and dataset disk space usage while at the 

same time, ensuring that data element information can be retrieved fast and efficiently. 

Grids have been making progress in combining computing and data management with 

data-aware schedulers [28], but we believe that Clouds will face significant challenges in 

handling data-intensive applications without serious efforts invested in harnessing the 

data locality of application access patterns. Although data-intensive applications may not 

be typical applications that Clouds deal with today, as the scales of Clouds grow, it may 

just be a matter of time for many Clouds. 
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Virtualization: Virtualization has become an indispensable ingredient for almost 

every cloud; the most obvious reasons are for abstraction and encapsulation. Just like 

threads were introduced to provide users the “illusion” as if the computer were running 

all the threads simultaneously, and each thread was using all the available resources, 

Clouds need to run multiple (or even up to thousands or millions of) user applications, 

and all the applications appear to the users as if they were running simultaneously and 

could use all the available resources in the Cloud. Virtualization provides the necessary 

abstraction such that the underlying fabric (raw compute, storage, network resources) can 

be unified as a pool of resources and resource overlays (e.g. Data storage services, Web 

hosting environments) can be built on top of them. Virtualization also enables each 

application to be encapsulated such that they can be configured, deployed, started, 

migrated, suspended, resumed, stopped, etc., And thus provides better security, 

manageability, and isolation. 

There are also many other reasons that Clouds tend to adopt virtualization: 1) 

server and application consolidation, as multiple applications can be run on the same 

server, resources can be utilized more efficiently; 2) configurability, as the resource 

requirements for various applications could differ significantly, some require large 

storage, some compute, in order to dynamically configure and bundle (aggregate) 

resources for various needs, virtualization is necessary as this is not achievable at the 

hardware level; 3) increased application availability, virtualization allows quick recovery 

from unplanned outages as virtual environments can be backed up and migrated with no 

interruption in service; 4) improved responsiveness: resource provisioning, monitoring 

and maintenance can be automated, and common resources can be cached and reused. All 
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these features of virtualization provide the basis for Clouds to meet stringent SLA 

(Service Level Agreement) requirements in a business setting, which cannot be easily 

achieved with a non-virtualized environment in a cost-effective manner as systems would 

have to be over provisioned to handle peak load and waste resources in idle periods. After 

all, a virtualization infrastructure can be just thought as a mapping from IT resources to 

business needs. Grids do not rely on virtualization as much as Clouds do, but that might 

be more due to policy and having each individual organization maintain full control of 

their resources (i.e. by not virtualizing them). However, there are efforts in Grids to use 

virtualization as well, such as Nimbus [29] (previously known as the Virtual Workspace 

Service [30]), which provide the same abstraction and dynamic deployment capabilities. 

A virtual workspace is an execution environment that can be deployed dynamically and 

securely on the Grid. Nimbus provides two levels of guarantees: 1) quality of life: users 

get exactly the (software) environment they need, and 2) quality of service: provision and 

guarantee all the resources the workspace needs to function correctly (CPU, memory, 

disk, bandwidth, availability), allowing for dynamic renegotiation to reflect changing 

requirements and conditions. In addition, Nimbus can also provision a virtual cluster for 

Grid applications (e.g. A batch scheduler, or a workflow system), which is also 

dynamically configurable, a growing trend in Grid Computing. It is also worth noting that 

virtualization – in the past – had significant performance losses for some applications, 

which has been one of the primary disadvantages of using virtualization. However, over 

the past few years, processor manufacturers such as AMD and Intel have been 

introducing hardware support for virtualization, which is helping narrow the performance 
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gap between application performance on virtualized resources as it compares with that on 

traditional operating systems without virtualization. 

Monitoring: Another challenge that virtualization brings to the Clouds is the 

potential difficulty with fine-control over the monitoring of resources. Although many 

Grids (such as TeraGrid) also enforce restrictions on what kind of sensors or long-

running services a user can launch, Cloud monitoring is not as straightforward as in Grids 

because Grids in general have a different trust model in which users via their identity 

delegation can access and browse resources at different Grid sites, and Grid resources are 

not highly abstracted and virtualized as in Clouds; for example, the Ganglia [31] 

distributed (and hierarchical) monitoring system can monitor a federation of clusters and 

Grids and has seen wide adoption in the Grid community. In a Cloud, different levels of 

services can be offered to an end user the user is only exposed to a predefined API, and 

the lower level resources are opaque to the user (especially at the PaaS and SaaS level, 

although some providers may choose to expose monitoring information at these levels). 

The user does not have the liberty to deploy her own monitoring infrastructure, and the 

limited information returned to the user may not provide the necessary level of details for 

her to figure out what the resource status is. The same problems potentially exist for 

Cloud developers and administrators as the abstract/unified resources usually go through 

virtualization and some other level of encapsulation, and tracking the issues down the 

software/hardware stack might be more difficult. Essentially monitoring in Clouds 

requires a fine balance of business application monitoring, enterprise server management, 

virtual machine monitoring, and hardware maintenance, and will be a significant 

challenge for Cloud Computing as it sees wider adoption and deployments. On the other 
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hand, monitoring can be argued to be less important in the Clouds as users are interacting 

with a more abstract layer that is potentially more sophisticated; this abstract layer could 

respond to failures and quality of service (QoS) requirements automatically in a general-

purpose way irrespective of application logic. In the near future, user-end monitoring 

might be a significant challenge for Clouds, but it will become less important as Clouds 

become more sophisticated and more self-maintained and self-healing. 

1.2  Motivation towards building a decentralized multi virtual Grid System 
 

The main aspect for both Grid and cloud computing (i.e. decentralized multi virtual grid 

System): 1) Cloud computing provides transparency.2) Grid computing provides 

coordinated resource sharing. The common aim of both paradigms is to achieve a 

decrease in the need for additional expensive hardware and increase in computing power 

and storage capacities. Building a decentralized system for both Grid and Cloud 

computing (i.e. building a decentralized multi virtual Grid system), it is required to 

implement both, local resource management within each virtual organization and global 

resource management among the grid. 

1.3  Problem statement 
 

Building a decentralized multi-virtual grid system, which fulfills the requirements of both 

Grid computing and cloud computing, faces a number of issues and challenges for 

resource management. I consider the following main issues and challenges in my 

research.  
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1.3.1  Main issues 
 

 It is very essential for both local and global resource management that: 

 1) How can we assign decentralized allocation of tasks to suitable nodes to achieve both 

local and global load balancing?  

2) How we can handle both regular node and broker failures? 

1.3.2  Main Challenges 
 

1) Stability with Scalability: How the system can achieve dependable performance with 

various loads of services and broker failure?; How the systems can maintain throughput 

under failure with the bigger environment to achieve load balancing and avoid job 

starvation? 

2) System Transparency: How system can achieve transparency in a multi-virtual 

organization system in which the complexity of the entire system must be transparent to 

regular participants? 

1.4  Hypothesis 
 

Building a decentralized system for both Grid and Cloud computing can achieve both 

local and global load balancing and handle both regular node and broker failures by 

implementing both local resource management within each virtual organization, and 

global resource management among the grid. Moreover, decentralized systems can solve 

problems based stability and scalability and can achieve system transparency: 1) by 

implementing decentralized allocation of the task to suitable nodes for both local global 



 

21 
 

resource management (i.e. Efficient job scheduling). 2) By implementing efficient failure 

handling algorithm. 3) By choosing appropriate topologies at broker overlay. 

1.5  Research Objectives 
 

Design, implement and simulate a decentralized computing infrastructure that maintains 

stability with scalability, together with achieving system transparency for resource 

management. Develop two algorithms for both local and global resource management in 

order to achieve local and global load balancing and handling of both regular and broker 

failures. Two main algorithms are: 1) Service allocation algorithm. 2) Failure handling, 

and resource information sending/exchange algorithm. To evaluate the performance of 

both algorithms with a different broker overlay topologies in the presence of broker 

failures. 

1.6  Research Contributions 
 

The main contributions to this proposed framework are: 1) I have designed and proposed 

architecture as an infrastructure to maintain stability with scalability. 2) The proposed 

model retains the system decentralization and increase the scalability. 3) I have addressed 

the issue, based on decentralized allocation of  the task to suitable nodes to  achieve local 

and global load balancing and handling of both regular node and broker failures. For this, 

I have described two main algorithms: resource information exchange and service 

allocation algorithms. 

  Moreover, my proposed framework provides a cost effective alternative to 

hierarchical structured P2P systems requiring costly merging because it is allowing 
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exploring the whole overlay without the need for hierarchical systems due to one broker 

periodical allocation. 

1.7  Thesis organization 
 

The remainder of the thesis is organized as follows; Chapter 2 provides background 

studies, related works and identified issues and problems. Chapter 3 describes a brief 

overview of the proposed architecture by discussing services and several components 

involved in architecture design. It also describes the resource information exchange 

mechanism, service allocation model and failure handling mechanism. Chapter 4 

describes the simulation model and presents the performed experiments and discussion of 

the results. Chapter 5 concludes the thesis, and as a future work, we propose other 

collaboration aspects in a multi- virtual organization environment.  
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CHAPTER 2  

Background studies, Related works and Identified issues and problems 

2.1  Background Studies 
 

We studied the OGSA vision [32] of a broadly applicable and adopted framework for 

distributed system integration, virtualization, and management that requires the definition 

of a core set of interfaces, behaviors, resource models, and bindings. This document, 

produced by the OGSA working group within the Open Grid Forum (OGF) [33], 

provides a first version of this OGSA definition. It focuses on the requirements and the 

scope of important capabilities required for supporting Grid systems and applications in 

both e-science and e-business. The capabilities described are Execution Management, 

Data, Resource Management, Security, Self-Management, and Information. The 

description of the capabilities is at a high-level and includes, to some extent, the 

interrelationships between the capabilities. Grid systems and applications aim to 

integrate, virtualize, and manage resources and services within distributed, 

heterogeneous, dynamic “virtual organizations” [Grid Anatomy] [3], [Grid Physiology] 

[1]. The realization of this goal requires the disintegration of the numerous barriers that 

normally separate different computing systems within and across organizations so that 

computers, application services, data, and other resources can be accessed as and when 

required, regardless of physical location. 

Further we studied a service-oriented architecture, the OGSA [32] that addresses 

this need for standardization by defining a set of core capabilities, and behaviors that 

address key concerns in Grid systems. These concerns raise several questions, including: 
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How do I establish identity and negotiate authentication? How is policy expressed and 

negotiated? How do I discover services? How do I negotiate and monitor service level 

agreements? How do I manage the membership of, and communication within, virtual 

organizations? How do I organize service collections hierarchically so as to deliver 

reliable and scalable service semantics? How do I integrate data resources into 

computations? How do I monitor and manage collections of services? 

Furthermore, we studied the above compared infrastructure services and 

assumptions that constrain the development of the OGSA design, in particular it was 

explaining how OGSA builds on, and is contributing to the development of the growing 

collection of technical specifications that form the emerging Web Services Architecture 

[34, 35]. 

We also studied the current state of any work known to be underway to define 

such extensions or definitions. In [32], information is provided to the community 

regarding the specification of the Open Grid Services Architecture (OGSA). It does not 

define any standards, or technical recommendations i.e. distribution is unlimited. 

Finally, we studied that the Open Grid Forum (OGF) [33] has embraced the Open 

Grid Services Architecture as the industry blueprint for standards-based grid computing. 

“Open” refers to the process used to develop standards that achieve interoperability. 

“Grid” is concerned with the integration, virtualization, and management of services and 

resources in a distributed, heterogeneous environment. It is “service-oriented” because it 

delivers functionality as loosely coupled interacting services aligned with industry-

accepted Web service standards. The “architecture” defines the components, their 
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organizations, interactions, and the design philosophy used. OGSA-WG manages an 

architectural process of OGSATM 1 standards by working to collect requirements, 

evaluate the maturity of specifications, and produces periodic updates to OGSA 

informational documents and OGSA recommendation profiles. 

The purpose for studying OGSA and others to understand their architectures. For 

example, OGSA does not denote a decentralized non-exclusive policy model and it 

provides information to the community but does not define any standards or technical 

recommendations. 

2.2  Related Works 
 

The resource management system is the central component of distributed network 

computing systems. There have been many frameworks [36, 37, 38, 39, 40, 41, 42, 51, 

52, 53, 54, 55, 56, 57] that have focused on network computing, and have designed and 

implemented resource management systems with a variety of architectures and services. 

Basically, there are three types of distributed systems in most existing Grid systems: a) 

flat, b) Hierarchical and c) Interconnected. The three types of distributed systems are 

depicted in Figure 3. 

In a flat organization, all distributed systems can directly communicate with each 

other without going through an intermediary. In a hierarchical organization, distributed 

systems at the same level can directly communicate with the distributed system directly 

above them or below them, or peer to them in the hierarchy. The fan out below a 

distributed system in the hierarchy is not relevant to the classification. Most current Grid 

systems use this organization since it has proven to be scalable. In an interconnected  
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a) Figure shows: Centralized  system   b) Figure shows: Hierarchical system 

                                                        

                                                               c) Figure shows: Interconnected system 

Figure 3. Different types of distributed system. 

structure, the distributed systems within the cell to communicate between themselves 

using flat organization.Designated distributed systems within the cell function act as 

boundary elements that are responsible for all communication outside the cell. The 

internal structure of a cell is not visible from another cell; only the boundary distributed 

systems are visible. Cells can be further be organized into flat or hierarchical structures. 

A Grid that has a flat cell structure has only one level of cells whereas a hierarchical cell 

structure can have cells that contain other cells. The major difference between a cell 

structure and hierarchical structure is as follows: a) an interconnected structure has a 

designated boundary with a hidden internal structure, b) whereas in a hierarchical 

structure, the structure of the hierarchy is visible to all elements in the Grid. 

The resource model determines how applications and the resource management 

system (RMS) describe Grid resources. Distributed Systems, in most existing Grid 

systems are either flat [36, 37, 38, and 39] or hierarchical [40, 41, 42, 43, 44, 45, 46, and 
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35] in a single VO. Multi-VO model is implemented in some Grid systems: Arigatoni 

[40, 41, 42 44, 45 46, 47, 48] and interconnected systems [40, 42, 44, 45, 49, 50], and 

EGEE [51], and D4Science [52] implements centralized task allocation using a central 

broker. Grid3 [53], which is based on VOMS [54], implements centralized RM through 

management servers. DEISA [55] uses a central batch scheduler for task allocation. In 

[56], each VO implements the local RM model, and the framework implements 

centralized global RM. In NorduGrid [57], information about available resources is 

stored on dedicated database servers, and task allocation is carried out by local brokers on 

client nodes. None of these systems provide an efficient failure handling for both regular 

nodes and brokers. A detail description of some other most related resource management 

models is given below. 

2.2.1  Condor: Cycle stealing technology for high throughput computing 
 

Condor [36] is a high-throughput computing environment that can manage a large 

collection of diversely owned machines and networks. Although it is well known for 

harnessing idle computers, it can be configured to share resources. The Condor 

environment follows a layered architecture and supports sequential and parallel 

applications. The Condor system allocates the resources in the Condor pool as per the 

usage conditions defined by resource owners. Through its remote system call capabilities, 

Condor preserves the job’s originating machine environment on the execution machine, 

even though if the originating and execution machines do not share a common file system 

and/or user ID scheme. Condor jobs with a single process are automatically check 

pointed and migrated between workstations as needed to ensure eventual completion. 

Condor can have multiple Condor pools and each pool follows a flat RMS organization. 
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The Condor collector, which provides the resource information store, listens for 

advertisements of resource availability. A Condor resource agent runs on each machine 

periodically advertising its services to the collector. Customer’s agents advertise their 

requests for resources to the collector. The Condor matchmaker queries the collector for 

resource discovery which it uses to determine compatible resource requests and offers. 

Compatible agents contact each other directly and if they are satisfied the customer 

agents initiate computation on the resources. Resource requests and offers are described 

in the Condor classified advertisement (ClassAd) language [58]. ClassAds uses a semi-

structured data model for resource description. The ClassAd language includes a query 

language as part of the data model, allowing advertising agents to specify their 

compatibility by including constraints in their resource offers and requests. Condor can 

be considered a computational Grid with a flat organization. It uses an extensible schema 

with a hybrid namespace. It has no QoS support, and the information store is a network 

directory that does not use X.500/LDAP technology. Resource discovery which is 

centralized queries with periodic push dissemination. The scheduler is centralized. 

 

Figure 4. Condor work as a central manager [42]. 



 

29 
 

2.2.2  Globus: A toolkit for Grid computing 
 
The Globus system [59] enables modular deployment of Grid systems by providing the 

required basic services and capabilities in the Globus Metacomputing Toolkit (GMT). 

This toolkit consists of a set of components that implement basic services, such as 

security, resource location, resource management, data management, resource 

reservation, and communications. Globus is constructed as a layered architecture in 

which higher level services can be developed using the low-level core services [60]. Its 

emphasis is on the hierarchical integration of Grid components and their services. Globus 

offers Grid information services via an LDAP-based network directory called 

Metacomputing Directory Services (MDS) [61]. MDS currently consists of two 

components: Grid Index Information Service (GIIS) and Grid Resource Information 

Service (GRIS). GRIS provides resource discovery services on a Globus based Grid. The 

directory information is provided by a Globus component running on a resource or other 

external information providers. The resource information providers use a push protocol to 

update GRIS periodically. GIIS provides a global view of the Grid resources and pulls 

information from multiple GRIS to combine into a single coherent view of the Grid. 

Globus is placed into the push resource dissemination category since the resource 

information is initially periodically pushed from the resource providers. Resource 

discovery is performed by querying MDS. Globus supports soft QoS via resource 

reservation [62]. The predefined Globus scheduling policies can be extended by using 

application level schedulers such as Nimrod/G, AppLeS, and Condor/G. The Globus 

scheduler in the absence of application level scheduler has a decentralized organization 

with an ad hoc extensible scheduling policy. 
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Figure 5. Globus- a toolkit for grid computing [59]. 

2.2.3  Nimrod/G: Resource broker and economy Grid 
 
Nimrod/G [63, 64] is a Grid resource broker for managing and steering task farming 

applications such as parameter studies on computational Grids. It follows a computational 

market-based model for resource management. Nimrod/G provides support for  the 

formulation of parameter studies, a single window to manage and control experiments, 

resource discovery, resource trading, and scheduling. The task farming engine of 

Nimrod/G coordinates resource management and results gathering. This engine can be 

used for creating user-defined scheduling policies. For example, Active Sheets are used 

to execute Microsoft Excel computations/cells on the Grid [65]. Nimrod/G is being used 

as a scheduling component in a new framework called Grid Architecture for 

Computational Economy (GRACE), which is based on using economic theories for a 

Grid resource management system. Nimrod/G has a hierarchical machine organization 

and uses a computational market model for resource management [66]. It uses the 

services of other systems such as Globus and Legion for resource discovery and 

dissemination. State estimation is performed through heuristics using historical pricing 

information. The scheduling policy is fixed-application oriented and is driven by user-
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defined requirements such as deadline and budget limitations. Load balancing is 

performed through periodic rescheduling. 

 

Figure 6. The Architecture of Nimrod/G [63]. 

2.2.4  Arigatoni Overlay Network: Super Broker and multi-virtual Grid system 
 

 Arigatoni [40], a light weight model and a communication network called ArigatoNet 

that is suitable to deploy the Global Computing Paradigm over the Internet. I defined a 

simple but very efficient communication protocol, called Global Internet Protocol (GIP) 

on the top of TCP or UDP protocol [19]. Basic global computers and colonies of global 

computers can communicate by first registering to a brokering service and then by 

mutually asking for, or offering services. In this model, the resources are encapsulated in 

the colony in which they reside, and request for resources located in another colony 

traverse a broker-2-broker negotiation using a P2P overlay network. The model is 

suitable to fit with various global scenarios for classical P2P applications, like file 

sharing, band-sharing, memory space, to more sophisticated GRID applications like 

remote and distributed big (and small) computations, web services, computation 
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migration (i.e. ask to transfer one non completed the local run in another global computer 

unit(GCU) saving the partial results, under the case of a catastrophic scenario, like, e.g., 

fire, terrorist attack, earthquake etc., e.g. truly mobile ubiquitous computations) and 

Human computer interaction. 

Compared to OGSA-based middleware [32] (e.g. Globus [33]), the Arigatoni 

model is much simpler and exploits the lower levels of the OSI stack. In principle, it 

could be deployed firstly in an intranet and further from intranet to intranet by 

overlapping an Overlay Network on the top of the actual network. For this, I could 

consider the Arigatoni model, with related middleware, as one prototypical example of 

overlay networks. Recall that an overlay network is an abstraction that can be 

implemented on top of a Global network to yield another global network. Overlay 

examples are resource discovery services (notion of resource sharing in distributed 

networks), search engines (abstraction of informal repository) or systems of trusted 

mobile agents (notion of autonomic, exploratory behavior) [67]. Since the Arigatoni 

model is P2P, it is worth noticing that a global computer unit (GCU) can also be a 

resource provider (or play both roles). Hence, a GCU can also be a supercomputer, a high 

performance visualizer (e.g. connect to a virtual reality center), or any particular resource 

provider that is linked to the Internet. This symmetry is another key feature of the 

Arigatoni model. Typically, a global computer unit (GCU) could ask for big 

computational power as when Grid users ask for memory space or for a particular piece 

of software. The Arigatoni model is depicted in Figure7. 
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a)   ArigatoNet. 

 

b)  Arigatoni model based on Hierarchical tree. 

 
Figure 7.  Arigatoni Model [40]. 

Summarizing, the original contributions of the work are: a) A simple distributed 

communication model that is suitable to make resource discovery transparent; b) A 

Global Internet Protocol that allows Global Computers to negotiate resources; c)  

Complete independence with the classical scenarios of the arena, i.e. Grid, memory 

space, file/band sharing, web services, etc. This domain independence is a key feature of 

the model and for the protocol since it allows a complete abstraction from any given 

scenario.  
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2.2.5  Comparison between Arigatoni Model and OGSA Architecture 
 

OGSA Architecture [32] proposes high level mechanisms or algorithms and does not 

address the overlaying Internet low level network protocols as I intend in my Arigatoni 

model [40]. Compared to OGSA-based architecture [32], the Arigatoni model is much 

simpler and exploits the lower levels of the OSI stack. In principle, at first it could be 

deployed in an intranet and then from intranet to intranet by overlapping an Overlay 

Network on the top of the actual network. Since the Arigatoni model is P2P, It is worth 

noticing that a  global computer unit (GCU) can also be a resource provider (or plays 

both roles). Hence, a GCU can also be a supercomputer, and high performance visualizer 

(e.g. connected to a virtual reality center), or any particular resource provider which is 

linked to the Internet. This symmetry is another key feature of the Arigatoni model. 

Typically, a GCU could ask for big computational power, e.g. the Grid, ask for a 

particular piece of software or ask for memory space etc. However, OGSA architecture 

could not ask for big computational power. OGSA architecture [32] does not define a 

mechanism for devices to interoperate by offering services. However, Arigatoni model 

defines a mechanism for devices to interoperate by offering services. This way to 

understand common behavior of virtual organization has some theoretical basis on Game 

theory. Classical results from Game Theory are based on the assumption that basic shared 

currency connectivity (i.e. different resources such as CPU, Memory, Bandwidth, Data, 

etc.) is available and then the task is to design trustful mechanisms where users have an 

incentive to collaborate. Moreover, OGSA architecture [32] does not denote a 

decentralized non-exclusive policy model, and it provides information to the community 

but does not define any standards or technical recommendations. However, this means 
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that Arigatoni fits with motivations and cooperation behavior of different communities 

using ArigatoniNet. It tries to be policy neutral, leaving policy choices for each node at 

the implementation or configuration level, or at the community or organization level. 

Policy domains can overlap (one node can define itself as belonging “much” to colony 

foo and “a little bit” to colony bar). This denotes a decentralized non-exclusive policy 

model. 

 In OGSA architecture [32], extension does not define how to join a third party 

auction server. However, in Arigatoni, some Arigatoni extensions may define: 1) How to 

create and call third party services for on-line payment of services; 2) How to exchange 

digital cash for payment of services; 3) How to negotiate service condition between client 

and servant, including price and quality of service. The one-to-many natures of the SREQ 

GIP protocol requests are of particular interest in this case. An Arigatoni extension may 

define how to join a third party auction server. Candidate servant for a SREQ would 

contact the auction server and make their bid. The trusted auction server chooses the 

elected candidate and service conditions based on auction terms. The client would then 

contact the auction server and get this information. These extensions may take advantage 

of the GIP options’ field, for example to transmit location and parameter information to 

call a third party system. Both Arigatoni model and OGSA architecture [32] can be 

extended to support various trust models. Moreover, reputation score could be expanded 

to a multiple-dimensional value, for example, adding a score for quality of the service 

offered by a node. However, Arigatoni encourages cooperation and enables gratuitous 

resource offering. But it may also suit for business extensions: a) A servant can sell 

resource usage, creating a resource business; b) A global broker unit (GBU) can sell 
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research service, creating a brokering business (“I point you to the best resources, more 

quickly than anyone else”). In Arigatoni model, the information about available resources 

is stored on dedicated database servers, and task allocation is carried out by local brokers 

on client nodes. 

There are many different approaches and models for developing Grid resource 

management systems. The systems surveyed have for the most part focused on either a 

computational Grid or a service Grid. The other category of the system is the Grid 

scheduler such as Nimrod/G and AppLeS that is integrated with other Grid resource 

management system such as Globus or Legion. These combinations are then used to 

create application oriented computational Grids that provide certain levels of QoS. 

2.3  Identified Issues and Problems 

2.3.1  Identified Issues 
 

Most existing Grid Systems fall within the following categories: a) Flat (Condor [36], 

Globus [41], gLite [68]; b) Hierarchical (Arigatoni [40], UNICORE [69], GridWay [70], 

BOINC [68]; c) Interconnected (Arigatoni [40, 41], Condor (flocking) [71], NorduGrid 

[57], EGEE [51]. All these architectures implemented centralized task allocation using a 

central broker; but, none of these systems provides an efficient failure handling for both 

regular nodes and brokers. For Examples, a) EGEE [51] implements centralized task 

allocation using a central broker while NorduGrid [57] the information about available 

resources is stored on dedicated database servers and task allocation is carried out by 

local brokers on client nodes. 
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Failure to service Issue in a centralized system: In centralized system, the entire 

network is controlled by a centralized broker. If the main broker fails, the entire network 

will undergo failure. If any resource fails the entire system will undergo partial failure. 

The centralized system is depicted in Figure 4. 

 

Figure 8. Failure services issues in centralized broker systems. 

Designing issue: a) Typical issues in structure overlays are the size of each virtual 

organization (load balancing of the colony in the case of Arigatoni), and the internal 

coherence of the resources offered and requested by each colony (homogeneity of the 

colony). b) Typical bottlenecks of structure overlays are reliability, service availability 

(related to a few points of failure), and load balancing.  

Routing, Scalability, transparency and security Issues: a) Crossing 

administrative barriers ( Adm. Domains), Security (PKI certificate). b) Scaling up to the 

Large overlay computer, reliability (point of failure). c) Algorithms for routing requests 

and discover resources. 
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2.3.2  Problems  
 

Effective use of computational grids via P2P systems requires up-to-date information 

about widely distributed resources. This is a challenging problem for very large 

distributed resources particularly taking into account the continuously changing state of 

the resources. Discovering dynamic resources must be scalable in number of resources 

and users and hence, as much as possible, fully decentralized. It should tolerate 

intermittent participation and dynamically changing status/availability. Many resource 

discovery algorithms and protocols have been proposed recently. As an example, in [72], 

the random forwarding algorithm has the advantage that no additional storage space is 

required for the node to record history. The learning-based algorithm performs constantly 

well. In Gnutella, the rather aggressive membership protocol maintains the highly 

dynamic nodes connected at a significant communication cost. Membership protocols 

based on epidemic communication mechanism are scalable with the number of 

participants. For example in [72], a P2Papproach to resource discovery in a grid 

environment is proposed. More precisely, the author presents a framework that guides the 

design of any resource discovery architecture. In [73], non-uniform information 

dissemination protocols are used to efficiently propagate information to distributed 

repositories, without requiring flooding or centralized approaches. Results indicate a 

significant reduction in the overhead compared to uniform dissemination to all 

repositories. In [74], a distributed resource discovery in the grid is proposed using a P2P 

network to distribute and query to the resource catalog. Each peer can provide resource 

descriptions and background knowledge, and each peer can query the network for 

existing resources. However, all these works propose high level mechanisms or 



 

39 
 

algorithms and do not address the overlaying Internet low level network protocols as 

intended in this work.  

2.3.2.1  Problem in OGSA Architecture 
 

OGSA architecture is not lightweight and provides complexity. Moreover it does not 

exploit the lower levels of the OSI stack. Considering these issues I have designed a 

model which is lightweight, much simpler and able to exploit the lower levels of the OSI 

stack. In OGSA architecture, there is a problem to define the mechanism for devices to 

interoperate, by offering services, in a cooperative manner based on reciprocity. 

Moreover, OGSA architecture does not denote a decentralized non-exclusive policy 

model and it provides information to the community, but it does not define any standards 

or technical recommendations. 

I studied the OGSA architecture and found that it is not flexible enough to serve a 

mixture of different social structures, including: a) Independent end-user connecting 

through his/her ISP or migrating from hot-spot to hot-spot; b) Cooperating communities 

of disseminated people; c) More regulated or hierarchical communities (may be a better 

picture of the corporate network); d) Cooperative or competitive resource providers. In 

OGSA architecture, the extension did not define how to join a third party auction server. 

2.3.2.2  Problem in Merging overlay Network 
 

Some other work attempt to merge several overlay networks into one overlay network. 

The authors in [75] provide an analysis of the problem of merging two different overlays  

The authors in [76] introduce an algorithm of merging two rings based overlays however, 
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merging overlay require modifying the key space, as well as rearranging  keys and data 

these tasks are expensive in terms of time and massages. 

Summary of Identified Issues and Problems are shown below in Table1. 

All these architectures implemented centralized task allocation using a central broker; 

but, none of these systems provides an efficient failure handling for both regular nodes 

and brokers. For Examples, a) EGEE [51] implements centralized task allocation using a 

central broker while NorduGrid [57] the information about available resources is stored 

on dedicated database servers and task allocation is carried out by local brokers on client 

nodes. b) Arigatoni [40] implemented centralized tasks allocation using a centralized 

broker within each virtual organization. If the main broker fails, the entire network will 

undergo failure. If any resource fails the entire system will undergo partial failure. 

 

 Table 1.  Summary of Identified Issues and Problems. 
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CHAPTER 3  

Overview of the Proposed Architecture and Related mechanism 

3.1  Proposed Architecture 
 

The proposed architecture for this thesis is based on global resource sharing within a 

collaboration of virtual organizations. Each virtual organization is set up as a domain. 

Each domain consists of one domain controller (i.e. Broker), and a collection of regular 

nodes. Fig. 9 shows the architecture of the Grid as collections of virtual organizations 

managed by a Broker Overlay structure. 

 

Figure 9. Proposed Grid architecture. 

 

The proposed framework presents a decentralized multi-virtual resource 

management model based on hybrid peer-to-peer communication [40]. Rules of resource 

sharing within a virtual organization are well known by each node and controlled and 

managed by brokers. A broker is responsible for receiving requests for resources, 

comparing the requirements in each request with the resource specifications of the 



 

42 
 

available nodes, and direct requests to suitable nodes. Brokers from different virtual 

organizations construct a cooperative collection called, Broker Overlay. The idea is to 

provide each participating node with the ability to offer and claim computational 

resources. In addition, the complexity of the system is transparent to regular nodes in the 

broker overlay as each node interacts only with the attached broker. The regular node 

failures are managed using the same failure handling mechanism as Arigatoni does in 

[40]. In this thesis work, the broker failures are addressed. 

3.1.1  Components Description 
 

Components of the proposed framework are as follows: 

A service in this architecture refers to a computational task. It has five execution 

parameters: 1) Required CPU, the computational power required for running the service. 

2) Required Memory, the memory size required for running the service. 3) Expiration 

Time, the amount of time to wait before the allocation. 4) Creation Time, the time at 

which the service is created for the allocation. 5) Allocation attempts, the maximum 

number of attempts to deploy the service before it is expired. 

A regular node refers to each non-broker node in the Grid. Each regular node can 

be a member of one virtual organization and can submit and/or run a service. A regular 

node is also responsible for periodically sending information about the current available 

resource state of the node to its broker. Each regular node has two resource parameters: 

1) Available CPU, which refers to the available computational power in the node, and 2) 

Available Memory space. Regular is equivalent to Peer in Arigatoni[40], which contains 
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two components: Broker (Br), which is responsible for task execution, and Client (Cu), 

which is responsible for task submission1 [40]. 

A broker is a node which works as a virtual organization controller, can also 

work as a regular node in case of lack of available regular nodes. It is responsible for: 1) 

Allocating services to suitable nodes. A suitable node for a service is elected by 

performing a matchmaking process between the service requirements and the available 

resources of attached Grid nodes [24]. 2) Storing the current resource state for local 

nodes (i.e. in the same virtual organization) as well as global nodes (i.e. in other virtual 

organizations). 

A virtual organization is an overlay of nodes which may be allocated in different 

regions and members of different organizations. Each VO is composed of one broker and 

regular nodes. Each VO is structured as a star logical topology, so that; communication is 

between the broker and regular nodes. There is no communication between regular nodes 

within the same virtual organization. 

The broker overlay is the overlay network between brokers through which 

communication and data exchange between different virtual organizations is performed. 

For the broker overlay, four different network topologies are assumed: Ring, hypercube, 

star and fully connected. Based on the communication topology, each broker will have a 

number of neighbor brokers, those brokers with which direct communication can be 

established. 

  A Colony is a simple virtual organization composed by exactly one leader and 

some individuals. Individuals are regular node, or (sub) colonies. A simple definition of  
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the colony is given using the BNF syntax. Let Br denote the broker (the leader of the 

colony), and Cu denotes the regular node   

Colony :: = { Br} / colony U {Cu} / colony U {colony}  

 The rules are: 1) every colony has exactly one leader Br and at least one individual (the 

Br itself); 2) every colony contains individuals (some Cu's, other colonies)  

Some examples of the colonies are shown in Figure 10. 

{Br} is a (small) colony  

{Br1, Cu1…… Cum} is a colony  

{Br1,Cu1….Cum, {Br2,Cum+1…….Cum+n}} is a colony (it contains subcolony).  

{Br1,Cu1…Cum,Br2,Cum+1………Cum+n} is not a colony(two Br's)  

{Br3, {Br1, Cu1…Cum}, {Br2, Cum+1..Cum+n}} is a colony (with two sub colonies)  

{Br1,{Br1,Cu1..Cum},{Br2,Cum+1..Cum+n}} is a colony(Br1 is elected as the common 

leader)  

{Br1,Cu1..Cum},{Br2,Cum+1..Cum+n}} is not a colony (no leader in the top level 

colony. 

   

1

53 4

116 7 8 9 10

c1

c7c6

c2 c5

c9 c10 c11c8

c4c32

T(2)={2,6,7} T(3)={3,8} T(4)={4,9,10} T(5)={5,11}

T(1)={1,2, ….,11}

Figure 10.  Some Colony’s Examples. 
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3.2  Resource Information exchange mechanism 
 

The broker overlay is the overlay network between broker through which communication 

and data exchange between different virtual organization is performed. The performance 

of the proposed framework depends on broker overlay topologies. Detailed mechanism 

has been described below in sub-section (3.2.1). 

3.2.1  Resource Information exchange between broker to broker in broker overlay 
and between nodes and broker (i.e. within organization) 
 
Resource information for each participating node is stored in a three field Resource 

Information Data Block, RIDB. The three fields represent: 1) Available CPU, 2) 

Available Memory, and 3) Time of last read. The third field, time of last read, is included 

to indicate if this read is too old so that it may not be dependable for allocation actions. 

Each broker maintains a set of RIDBs for all nodes in the system. Periodically, each 

regular node in a virtual organization reads the local current resource state (i.e. available 

CPU, and available Memory) in a data block and sends this block along with the reading 

time to its broker. Each time a broker receives a resource information block from a local 

node; it removes the previously stored reading, and replaces it with the current. Brokers 

also periodically exchange resource information through the broker overlay. Each broker 

performs one exchange operation with a single neighbor broker2 each time unit. The 

exchange operation is done by updating each resource information data set in each of the 

two brokers with the newest data blocks. The resource information model depicted in 

Figures11, and its algorithm is depicted in high-level form in Figure 12. 
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a) Resource information exchange within VOs.  b) Resource information exchange    
between broker to broker 

Figure 11. The resource information model. 

Figure 12. Resource information exchange algorithm. 

Following is the stepwise explanation of resource information algorithm: 

Sept 0: Regular node read the local current resource state in a data block. 

Sept 1: Regular node sends the current available resource information to brokers in order 

to check whether my broker is alive or not. 

Step 2: If the broker is alive, broker receives a resource information block from a local 

node. 

Step 3 :  Boker updates its data block with the new information. 
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3.3  Service Allocation model and Mechanism 
 

Allocation of services to nodes is done through brokers. Submitting new services to 

brokers for allocation can be implemented in two ways: centrally, through a service 

allocation server connected to all brokers, or through the brokers by including a service 

allocation portal in each broker. In this work, allocation through the brokers is 

implemented. A service allocator component is included in each regular node for 

forwarding services to the attached broker. The service allocation model is depicted in 

Figure 13. 

 

Figure 13. Service allocation Model. 

Each broker has a service queue. When a service allocator sends a new service to 

a broker, it is automatically appended to the end of the service queue. Each time unit a 

broker picks the first service from the queue and starts a lookup process among the 

RIDBs, in order to find a suitable node with matching resource state of the resource 

requirements of the service. The Allocation algorithm is described in Fig. 14. The broker 

starts the lookup first among RIDBs of the local nodes. If no suitable resource found, the 
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broker repeats the operation among RIDBs of global nodes. If a global node matches, the 

broker passes the service to that node’s broker with high priority so that it will be placed 

at the first position in the queue. The reason is to reduce the allocation time since there 

has been already previous allocation attempt(s). If there is no matching global node 

found, the service is passed to any neighbor broker, based on the topology. The allocation 

attempts parameter of a service is decremented each time the service is transferred to a 

new broker queue. 

 

Figure 14. Grid Service allocation algorithm. 

Following is the stepwise explanation of Service allocation algorithm: 

Step 1:  Each broker has service queue, first broker start checking whether its service 

queue is empty or not. 
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Step 2: If the service queue is empty, broker add new service to its local queue by 

requesting service allocator to submit a sevice S. 

Step 3:  If the service queue is not empty, broker picks the first service from the queue 

and start a lookup process among local resource information data block in order to find a 

suitable local nodes N with maching resource state to the resource requirement of the 

service. 

Step 4:  If suitable resource found, broker deploy to local node N. 

Step 5:  If no suitable resourse found, the broker repeats the operation among global node 

M by decrementing the allocation parameter 1( each time). 

Step 6: If a global node M matches,the broker passes the service to that node’s broker 

with high priority. 

Step 7:  If there is no matching global node found, the service is passed to any neighbor 

broker B. 

Step 8:  For service S, If the servicc expiration time less than current time minus service 

creation time, service S remove from service queue. 

3.3.1  Service Validation Parameters 
 

The Purpose of using expiration time and allocation attempts value to check maximum 

attempt before service get expire. The reason is to reduce the allocation time since there 

has been already previous allocation attempts. Detailed explanation already described in 

Section 3.3. Each time unit, a broker checks the expiration time and allocation attempts 

values for each service in the local service queue. For a service S: 
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If (S. ExpirationTime < (CurrentTime – S. CreationTime) OR  

S. AllocationAttempts ==0) 

                         // Service S is expired 

                         Remove(S); //from the local service queue 

3.4  Broker Failure Handling mechanism 
 

Two types of failure are considered: regular node failure and broker failure. Regular node 

failures are managed in the same failure handling mechanism in Arigatoni [40, 48]. In 

this master thesis research, the focus is on the broker failure. In a virtual organization, it 

is assumed that each regular node has direct communication only with its broker. In 

addition, each node in the Grid holds a list of information about all existing brokers in the 

broker overlay. This information is updated periodically in regular nodes through their 

local brokers. 

When a broker failure occurs, a regular node will detect the broker failure when it 

attempts to send its resource information to the broker. In case of broker failure, all 

regular nodes in the local virtual organization of the failed broker will be detached from 

the Grid. Once a broker failure is detected, a regular node sends a membership request to 

the first broker in the list. If the request is granted, the node will set the new broker as the 

attached broker, and adds it as a neighbor; otherwise the request is repeated to the next 

broker in the list. Fig 15a-15c shows failure handling steps and Fig. 15d describes the 

failure handling algorithm implemented in regular nodes. The algorithm is repeated each 

time unit. 
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Figure 15. (a) Service broker failure occurs. Figure 15. (b) The detached grid node 
sends a membership request to the first broker in the list. 
 

    
Figure15. (c)  Regular nodes granted a membership request. Figure 15. (d)  Failure 
handling algorithm and resource information sending algorithm. 

Following is the stepwise explanation of Failure handling, and information sending 

algorithm: 

Sept 0: Regular node reads the current available resource state in a data block ( regular 

node data block) 
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Sept 1: Regular node sends the current available resource information to broker to check 

whether my broker is alive or not . 

Step 2: If the broker is alive, broker receives a resource information block from a local 

regular node. 

Step 3:  Boker updates its data block with the new information. 

Step 4: If the broker is not alive, each nodes detached from the grid and request 

membership from another broker B. 

Step 5: If request granted, regular set broker B as leader Boker. 

Step 6: If broker request not granted, it request membership from another boker in list 

until granted the request. 

Step 7:  Broker node updates its data block with new resource nformation. 
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CHAPTER 4 
 

Simulation Model, Performance Evaluation, and Comparison of various research 
works with Proposed Framework 

 

4.1  PeerSim 
 

PeerSim [77], a Java-based simulation-engine designed to help protocol designers in 

simulating their P2P protocols, has been designed to support dynamicity and scalability, 

and it offers predefined models for P2P simulation. The engine consists of components 

which may be ‘plugged in’ and used a simple ASCII file based configuration mechanism 

which helps to reduce the overhead. This PerSim simulator supports two  types of 

simulation, which includes cycle-based and event-based. The cycle based engine is 

simplified by ignoring transport layer in the protocol stack, and increase scalability. The 

event driven engine, which supports dynamicity, is more realistic but decreases 

scalability. It supports both structured and unstructured overlay network. 

PeerSim simulation life-cycle: PeerSim was designed to encourage modular 

programming based on objects (building blocks). Every block is easily replaceable by 

another component implementing the same interface (i.e., the same functionality). 

Following are the  objects, interface and cycle driven protocols classes.  

a) Node object: The P2P network is composed of nodes. A node is a container of 

protocols. The node interface provides access to the protocols it holds, and to a fixed ID 

of the node. 

b) CD Protocol:  It is a specific protocol, that is designed to run in the cycle-driven 

model. Such a protocol simply defines an operation to be performed at each cycle. 
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c) Linkable: Typically implemented by protocols, this interface provides a service to 

other protocols to access a set of neighbor nodes. The instances of the same linkable 

protocol class over the nodes define an overlay network. 

d)  Control: Classes implementing this interface can be scheduled for execution at certain 

points during the simulation. These classes typically observe or modify the simulation. 

4.2  Simulation Model 
 

My proposed framework is based on structured overlay network. There are two types of 

communication and data exchange between the node and broker which include node 

broker, and broker to broker in an overlay network. Node to a broker and broker to broker 

communications are cycle based.  PeerSim has been used in this model due to its support 

for cycle based simulation We also have built three different driven classes along with 

three reference classes for performance evaluation of the model. Under the simulation 

model, the proposed framework system can adapt at some extent to the service deploying 

load in order to achieve required performance. 

4.2.1  Simulation Model Life-cycle 
 

The life-cycle of a cycle-based simulation model is as follows. The first step is to read the 

configuration file, given as a command-line parameter. The configuration contains all the 

simulation parameters concerning all the objects involved in the experiment. 

Then the simulator sets up the network initializing the nodes in the network, and 

the protocols in them. Each node has the same kinds of protocols; that is, instances of a 

protocols form an array in the network, with one instance in each node. The instances of 
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the nodes and the protocols are created by cloning. That is, only one instance is 

constructed using the constructor of the object, which serve as prototypes, and all the 

node cloned from this point. 

At this point, initialization needs to be performed, that sets up the initial states of 

each protocol. The initialization phase is carried out by both GridAllocator and 

GridFailureControl classes that are scheduled to run only at the beginning of each  

experiment. In the configuration file, the initialization components are easily recognizable 

by the init prefix. The GridNode class  are simply controls, configured to run in the 

initialization phase. 

After initialization, the cycle driven engine calls all components (protocols and  

both GridAllocator, GridFailureControl ) once in each cycle, until a given number of 

cycles, or until a component decides to end the simulation. Each classes in Simulation 

Model (GridAllocator, GridFailureControl and Protocols) is assigned a Scheduler class, 

which defines when they are executed exactly. By default, all classes are executed in each 

cycle. However, it is possible to configure a protocol or both GridAllocator and 

GridFailureControl to run only in certain cycles, and it is also possible to control the 

order of the running of the components within each cycle. When both GridAllocator and 

GridFailureControl collect data, they are formatted and sent to the standard output that 

can be easily redirected to a file to be collected for further work. Following is the detailed 

explanation for both reference and cycle driven protocol classes. 

4.2.1.1 GridNode class:  A reference for node objects. All the GridNode class created 

during the simulation are instances of classes that implement one or more interfaces. 
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4.2.1.2  GridAllocator and GridFailureControl classes: Both are included as 

references for Control objects, which simulate service allocation and failure handling.  

4.2.1.3  Grid CD Protocol: It includes in each regular node, which is responsible for 

communicating with the attached broker and sending the resource information in each 

simulation cycle. 

4.2.1.4 Allocation Protocol: It includes in each regular node, which is responsible for 

responding to the allocation requests from the broker. 

4.2.1.5 Grid Broker Protocol: It is included in each broker node for performing the 

tasks associated with the broker. 

4.2.1.6 The IdleProtocol: It is in the main PeerSim package, which is included in each 

node to be responsible for establishing communication with neighboring nodes. Fig. 16 

describes the Grid simulation model and communication between different protocols. 

          

      Figure 16. Grid simulation model 
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4.2.2  The purpose of using Simulation Model 
 

The main purpose of designing this simulation model is to evaluate the performance of 

the both algorithms with different overlay topologies. Since proposed framework is based 

on a decentralized multi-virtual resource management that can achieve both local and 

global load balancing. It also the handles both regular and broker failure by implementing 

an efficient failure handling and resource information exchange algorithms. Furthermore, 

it can solve problems based on stability, and achieves system transparency by 

implementing efficient service allocation algorithms. 

Since a major cause of failure service is based on load balancing due to lack of 

data updation between broker to broker communications at the overlay network in the 

proposed framework, therefore, we have implemented above algorithms in order to solve 

this issue. 

4.3  Performance factors 
 

To evaluate the performance of the proposed architecture, three performance factors are 

used: Validity of stored resource information, Efficiency of service allocation, and 

Impact of broker failure on resource information updating. There are four topologies for 

the broker overlay have been used as shown in Figure 5: ring, star, fully connected (pure 

peer-to-peer) and hyper-cube. 

Let N denote the total Grid size, and M are the number of virtual organizations. We 

performed experiments based on theses three factors in order to evaluate the performance 

of both algorithms with different broker overlay topologies. 
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   a) Ring                  b) Fully connected            c) Hyper-cube                      d) Star 

Figure 17. Shows four topologies for the broker overlay has been used for 
experimental results. 

4.3.1  Validity of the stored resource information 
 

The validity of the stored resource information is implemented through measuring the 

efficiency of the resource information exchange algorithm in keeping resource 

information up to date. The implemented methodology is to depict the deviation of the 

reading time values of RIDBs stored in the resource information data set, from the 

current cycle in a broker, with the simulation cycles. The results are read from one 

broker. For this performance metric, topologies for the broker overlay are ring and fully 

connected. A total of 120 simulation cycles has been used. Two experiments are 

performed with the following configuration: 1) N = 100, M = 20. 2) N = 500, M = 100. 

The results are shown in Figure 18. 

 

Experimen1 N= 100,   M=20 (small scale)     Experiment 2   N=500, M= 100 (long scale) 
 
Figure 18. Shows deviation of resource information reading time from the current 
cycle among simulation cycles. 
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4.3.1.1  Experimental results 
 

As expected, figure 18 shows that the deviation is much more less for the fully connected 

topology than for the ring topology. In addition, when the network size and the number of 

brokers were increased, in experiment 2, the deviation remained at the same level for 

fully connected topology but increased for the ring topology. This can be attributed to the 

fact that, in a fully connected topology, all brokers are neighbors and can exchange 

resource information. This increases the probability of getting fresher data. In the ring 

topology, a broker has only two neighbors. Increasing the number of brokers, the number 

of broker neighbors increases for the fully connected topology but remains two for the 

ring topology. This reduces the chance of reaching data stored in far brokers (i.e. with  

the large number of hops between) in a ring topology, so, the deviation increases. 

4.3.2  Efficiency of Service Allocation 
 

The factor based on service allocation, we measure the efficiency of the allocation 

algorithm for distributing services among available suitable nodes, using different broker 

overlays. The network size is fixed to 500 nodes, and 100 virtual organizations. The 

implemented methodology is to depict the total number of waiting services, in broker 

queues, and the number of expired services with the simulation cycle. The results are 

collected from all brokers. 
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Figure 19. Number of waiting services plotted against simulation cycles for periodic 
allocation using a fully connected broker overlay topology, for 10 and 20 services 
per 10 cycles. 
 

4.3.2.1  The main allocation method and results 
                                     

The main allocation method is: One broker periodical allocation. In this method, nodes of 

one VO deploy a number of services to the broker each specific number of cycles. The 

idea is to focus all the allocation traffic on one broker as the worst case, to measure the 

efficiency of service exchange. Only the fully connected topology is tested with a total 

number of cycles of 1500. Two experiments are performed with the following 

configuration: 1) Total of 1500 services deployed as 10 services per 10 cycles. 2) A total 

of 3000 services deployed as 20 services per 10 cycles. The results are depicted for 

experiment 1 and experiment 2 in figure 19 using a logarithmic scale. 

In Figure 19, it is clear that in case of allocating 10 services every 10th cycle, the 

system can produce a dependable performance. It is noticed that some bottlenecks can 

occur, but the system can recover. In case of allocating 20 services every 10th cycle, it is 
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clear that the system becomes overloaded with service allocation requests. This occurs as 

a result of submitting all services to one broker. It can be concluded that, in periodical 

allocation, the allocation ratio of 10 services every 10th cycle (i.e. 1 Service/ cycle), is 

acceptable and can be handled in a Grid system of N >= 500, and 100 brokers with fully 

connected broker topology. If the ratio increased to 2 services/ cycle, the system, with the 

same network size would become overloaded. 

4.3.3  Impact of Broker Failure on Resource Information Updating 
 

The aim of the experiments in this section is to measure the impact of broker failures on 

the validity of stored resource information. Experiment 2 in section 7.1 is repeated with 

adding injected broker failures during the simulation. With the existence of broker 

failures, it is expected that the deviation of the reading time values of RIDBs from the 

current cycle will increase due to failure. The reason is that resource information of the 

regular nodes which have been attached to the failed broker, will remain old and not 

updated until they are attached to other brokers and start sending resource information 

blocks. In the following experiments, a new parameter is taken into account: Data Age, 

the maximum age, in cycles, of resource information in a broker resource data set. In 

each simulation cycle, the broker protocol checks the reading time of each block in the 

resource information data set. If the reading time of a block is < (Current time – Data 

Age), then, this block is removed from the data set. If a new block for the same node is 

received later, in an exchange operation, it is added to the data set. The following 

experiments are performed by varying the value of Data Age. 

Four topologies are used: ring, fully connected, star and hyper-cube. The network 

size is fixed to N = 500, and M = 100. The number of simulation cycles is 300. Two 
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experiments are performed with varying the total number of failures: 1) Data age of 10 

cycles with 4 injected broker failures, and 2) Data age of 20 cycles with 8 injected broker 

failures. The results are depicted in figure 20. 

 

a) Ring broker overlay topology                     b) Fully Connected broker overlay topology 

 

  c)  Star broker overlay topology                         d) Hyper-cube broker overlay topology 

 
Figure 20. Shows impact of failures on the deviation of the resource information for 
data age of 10 cycles with 4 injected broker failures, and data age of 20 cycles with 8 
injected broker failures. 
 

4.3.3.1  Experimental Results 
 
In Figure 20, it is clear that when the Data Age value decreases, the impact of failure 

decreases. This is because old data associated with unreachable nodes is periodically 

deleted from the resource information data sets. It is also clear that for fully connected, 

star and hyper-cube topologies, the system can recover from failures and return to a 
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stable state. In case of ring topology, the deviation has terrible variation and unstable. 

This can be described that, because of the lack of possible direct communications 

between brokers, it takes time for a broker to reach data stored in non-neighbor brokers. 

  It can also be noticed that the magnitude of deviation caused by failure increases 

each time a new failure occurs, in fully connected, star and hyper-cube topologies. This 

increase is not noticed in a ring topology. This increase can be described as follows: 

when a broker fails, all attached nodes attempt to join virtual organizations of other 

brokers. As the number of failures increase, the number of regular nodes attached to 

existing brokers also increase, so when a failure occurs then the number of detached 

nodes will be larger than those in the previous failures, which causes an increase in the 

number of old data blocks in brokers’ data sets. 

It can be concluded that the ring topology which is implemented in many hybrid 

peer-to-peer systems, is not applicable in case of assuming broker failures. 

 4.4  The Summary and Comparison of various research works  
 

From the experimental results mentioned in Figure 19 and Figure 20, we observed that 

both algorithms performed well. The proposed framework retains the system 

decentralization and increases the scalability. The summary of the experimental results is 

as follows: a) Summary of the experimental results from the Service allocation 

algorithms with 1500 simulation cycles. The network size is fixed to 1500 nodes, and 100 

virtual organizations.The results are shown in Table 2. 

Total services deployed Number of Services/Cycles Results from Figure 19 
1500 10/10 System performed well 
3000 20/10 System becomes overloaded 
Table 2. Summary of the experimental results 1. 
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b) Summary of the experimental results from failure handling algorithms with 300 

simulation cycles. The network size is fixed to 500 nodes, and 100 virtual organizations. 

 Broker 
Topology 

Ring Fully connected  Star Hyper-cube 

Data Age of 10 
cycles with 4 
injected broker 
failure as 
shown in 
Figure 

System can 
recover from 
failure 

System 
performed well 
under broker 
failure 

System 
performed well 
under broker 
failure 

System can 
recover from 
failure 

Data Age of 20 
cycles with 8 
injector broker 
failures as 
shown in 
Figure 

System can’t 
recover from 
failure 

System can 
recover from 
failure 

System can 
recover from 
failure 

System can 
recover from 
failure 

Table 3. Summary of the experimental results 2. 

The summary and comparison of various research works with my proposed framework 
has shown in Table 4. 

Table4. Comparison of various research works with the Proposed framework. 
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 I do believe that my approach from the experimental results, and simulation design is 

complementary to the proposed framework in the sense that it provides the basic 

infrastructure to real deployment of the broker overlay itself.  
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CHAPTER 5  

Conclusions and Future Work 

5.1  Conclusions 
 

I have proposed architecture as an infrastructure to maintain stability with scalability. The 

proposed model retains the system decentralization and increases the scalability. A Grid 

simulation model, which is built based on the concept of collaboration of virtual 

organizations, has been presented. Global data exchange between virtual organizations 

has been implemented using the overlay network between brokers, based on different 

topologies. There are four topologies for the broker overlay has been discussed and 

implemented. Two main algorithms have been described: resource information exchange, 

and service allocation algorithm. I have compared various research works with the 

proposed work. We Performed experiments to evaluate the performance of both 

algorithms with different broker overlay topologies in the presence of broker failures. 

Results show that, the system can adapt to some extent to the service deploying load, and 

achieve required performance. The resource information exchange algorithm is efficient 

for the tested topologies, but in case of ring topology, it biases to instability in case of 

failures, and slow in updating resource information data due to the lack of possible direct 

communications between brokers. 

The proposed model provides a cost effective alternative to hierarchical structured 

P2P systems requiring costly merging because it’s allowing exploring the whole overlay 

without the need for hierarchical systems due to one broker periodical allocation used in 
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the experiment for checking the efficiency of service allocation and for resource 

information updating. 

5.2  Future work 
 

As part of future work, I have planned to propose an extended framework for resource 

discovery in Grid environments based on a hierarchical structured peer-to-peer 

architecture. The proposed organization will have the advantage of being scalable while 

providing fault-isolation, effective bandwidth utilization, and hierarchical access control. 

In addition, it will lead to a reliable, guaranteed sub-linear search which returns results 

within a bounded interval of time. 

Another direction for future work, should focus on collaboration aspects within a multi-

virtual organization environment encompassing security and rules of sharing, or policy. 
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