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Abstract

The theme of this dissertation is geometric optimization and its applications. We

study geometric proximity problems and several bioinformatics problems with a geo-

metric content, requiring the use of geometric optimization tools.

We have investigated the following type of proximity problems. Given a point-

set in a plane with n distinct points, for each point in the set find a pair of points

from the remaining points in the set such that the three points either maximize or

minimize some geometric measure defined on these. The measures include (a) sum

and product; (b) difference; (c) line-distance; (d) triangle area; (e) triangle perimeter;

(f) circumcircle-radius; and (g) triangle-distance in three dimensions.

We have also studied the application of a linear time incremental geometric algo-

rithm to test the linear separability of a set of blue points from a set of red points, in

two and three-dimensional euclidean spaces. We have used this geometric separability

tool on 4 different gene expression data-sets, enumerating gene-pairs and gene-triplets

that are linearly separable. Pushing on further, we have exploited this novel tool to

identify some bio-marker genes for a classifier. The gene selection method proposed

in the dissertation exhibits good classification accuracy as compared to other known

feature (or gene) selection methods such as t-values, FCS (Fisher Criterion Score)

and SAM (Significance Analysis of Microarrays). Continuing this line of investiga-

tion further, we have also designed an efficient algorithm to find the minimum number
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of outliers when the red and blue point sets are not fully linearly separable.

We have also explored the applicability of geometric optimization techniques to the

problem of protein structure similarity. We have come up with two new algorithms,

EDAlignres and EDAlignsse, for pairwise protein structure alignment. EDAlignres

identifies the best structural alignment of two equal length proteins by refining the

correspondence obtained from eigendecomposition and to maximize the similarity

measure for the refined correspondence. EDAlignsse, on the other hand, does not

require the input proteins to be of equal length. These have been fully implemented

and tested against well-established protein alignment programs.
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Chapter 1

Introduction

Computational geometry is now a well-established discipline, dealing with problems

emerging from the applications of geometric principles to objects such as points, lines,

polygons, to name a few. Its origin can be traced to the publication of a thesis by

Shamos [8] that established a connection between computing and geometry. In retro-

spect, its roots lie in the branch of mathematics that deals with the measurement of

the shape, size and relative position of geometric objects and properties of the space

in which these are embedded.

Computational geometry has great practical importance with a large number of ap-

plications to different problems related to geometric optimization, including facility

location, proximity problems, statistical estimators and metrology, placement and in-

tersection of polygons and polyhedra, ray shooting and other query-type problems [9].

Geometric optimization problems involve a constant number of variables with large

number of constraints induced by the collection of geometric objects. One approach to

such problems is to exploit the geometric nature of the problem. Much work has been

done on geometric optimization problems and its applications, tools and techniques
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to other areas, offering scope for exploring exciting problems. Thus my dissertation

includes (a) problems on geometric proximity, which has applications that include

object classification in pattern recognition, computer graphics, geographic informa-

tion systems, and robotics; (b) application of linear separability to gene expression

analysis which has an important application to the discovery of bio-markers, leading

to effective diagnosis and treatment of various diseases; (c) protein structure sim-

ilarity, which is useful for understanding biological functions of proteins and their

evolutionary relationships.

1.1 Outline of Dissertation

The primary motivation of this dissertation is the application of geometric optimiza-

tion tools to some proximity and bioinformatics problems. We address problems and

their applications that arise in the context of proximity for a given point set or a pair

of point sets. The objective is to identify subset(s) of a point set or a pair of point sets

having desired properties. As an application to bioinformatics we use linear geometric

separability to extract suitable genes from gene expression data which can be used

for classification purposes. Another interesting application of geometric optimization

is the study of protein structure similarity, which is an active and promising area of

research in bioinformatics.

The Introductory chapter includes background study to establish the importance of
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each problem addressed in the dissertation.

In Chapter 2, we investigate the following type of proximity problems: given a set of

n points in the plane P = {p1, p2, p3, . . . , pn}, for each point pi find a pair {pj, pk},

where i 6= j, i 6= k, j 6= k, such that a measure M defined on the triplet of points

{pi, pj, pk} is maximized or minimized. We also discuss the all-farthest triangle prob-

lem in the triangle-distance measure when P is a set of points in 3 dimensions.

In Chapter 3, we discuss a new profiling tool based on linear programming. Given

gene expression data from two subclasses of the same disease (e.g. leukemia), we

are able to determine efficiently if the samples are linearly separable with respect

to triplets of genes. We have used this geometric tool to propose an effective gene

selection strategy.

In Chapter 4, we present an efficient algorithm to determine when two point sets

are not linearly separable. In the presence of a few outliers, say k (or violated con-

straints), we present an output sensitive O(nk2) time algorithm, where n is the total

number of data points or samples. It works better than known algorithms by Everett

et al. [10], Matausek [11] and Chan [12] when k = o(log2 n).

In Chapter 5, we examine the application of geometric optimization to the problem of
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protein structure similarity. The alignment of two protein structures is a fundamental

problem in structural bioinformatics. Their structural similarity carries with it the

connotation of similar functional behavior that could be exploited in various applica-

tions. Thus the structural similarity of a new protein with unknown functionalities

and a protein with known functionalities could reveal some common behavior.

In Chapter 6, we summarize our results, provide a list of open problems and suggest

avenues for future work.

1.2 Background and Motivation

1.2.1 Geometric proximity

Proximity problems in computational geometry involve computation of distances be-

tween geometric objects. Typically, such problems require the construction of ge-

ometric structures like Voronoi diagram, Delaunay triangulation and related graph

structures such as the relative neighborhood graph, using suitable distance metrics.

Algorithms for geometric proximity problems also has applications to nearest neigh-

bor searching as well as range searching [13].

The motivation of such problems lies in various application areas that include pattern

recognition [14], computer graphics [15,16], image processing [17], operations research,
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statistics [18,19], computer-aided design and robotics [20]. Geometric proximity also

has applications to some geometric optimization problems in manufacturing, such as

wire layout [21], cutting stock [22] and facility location [23].

In a typical proximity problem a finite point set is provided as input and the the

objective is to find a subset of this point set having some desired properties. For

example given a set of n points in the plane P = {p1, p2, p3, . . . , pn}, for each point pi

find a pair {pj, pk}, where i 6= j 6= k, such that a measure M defined on the triplet

of points {pi, pj, pk} is maximized or minimized. A more natural version of this type

of problem, studied by Barquet et al. [24], is the 2-point site Voronoi diagram under

different measures.

In view of the importance of the problem, a number of variations have been been

studied by different researchers, giving rise to an extensive literature. [24–29].

In Figure 1.1 an interesting application of the Voronoi diagram data structure is

shown. The United States is home to 59 national parks and the figure shows the area

closest to each national park.
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Figure 1.1: The United States partitioned by closest national park [Figure from [1]]

1.2.2 Geometric separability and gene expression data sets

Classification is an important and significant tool for biologists to extract information

from gene expression data sets. One of the conventional approaches to learning a new

object or phenomenon is to look into the features that describe it. Taking note of this

approach, formulating the analysis of gene expression data sets in geometric setting

is an important step for identifying bio-marker genes, leading to effective diagnosis

and treatment of various diseases [30–34].
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The transcriptome, or mRNA expressed by the genome, reflects the activity of all

genes within a cell. The quantitative measure of mRNA concentration, known as

expression level, in a cell can be obtained by microarray technologies. In Figure 1.2

we explain how microarrys are used to measure expression levels of mRNA in cells

Figure 1.2: Steps followed in microarray experiment [Figure from [2]]

1. extract mRNA from samples (e.g. sample from cancer cell and normal cell)

2. make labelled cDNA through reverse transcription

3. mix samples and hybridize to cDNA microarray

4. wash to remove non-specific bindings

5. scan and calculate expression levels of mRNA
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For more details on microarrays refer to Riva et al. [35].

Figure 1.3: Geometric separability on expression profiles of lymphoblastic leukemia
(ALL) and acute myeloid leukemia (AML) samples [Figure taken from
[3]]

Unger and Chor [31] studied linear separability on 10 different publicly available gene

expression data sets and observed that 7 out of 10 are highly separable. The term

linear separability means two classes are completely separable by a line in a two-

dimensional Euclidean space. Each sample is a point in Euclidean space whose co-

ordinates are expression values of pair of genes. The concept can be extended to any

dimensions. In this dissertation we propose a geometric tool for linear separability

which is used to achieve a larger objective of identifying bio-marker genes for an effi-

cient classifier. We also study the linear separability of gene triplets, which was left

as an open problem by Unger and Chor [31]

Figure 1.3 shows the linear separability of the gene pairs MARKSL1 and Zyxin. The
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figure shows two-dimensional expression profiles of lymphoblastic leukemia (ALL)

and acute myeloid leukemia (AML) samples. Each dimension corresponds to the

measured mRNA expression level of a given gene. The separating line can be used as

a classifier to determine whether an unknown sample belongs to ALL or AML.

Figure 1.4: Geometric separability on expression profiles of lymphoblastic leukemia
(ALL) and acute myeloid leukemia (AML) samples with a violated
constraint (e.g. red dot within a blue circle) [Figure taken from [3]]

1.2.3 Geometric separability with few violated constraints

More often than not data is noisy. This motivates us to study almost linear sepa-

rability. The term “almost linear separability” means a two class point set (e.g. in

the Figure 1.4, ALL belongs to one class where as AML belongs to other) is linearly

separable for all but k of given points. The parameter k is the measure of number of

outliers present in the point set.
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Figure 1.4 illustrates an example of almost linear separability for a given gene pair

where as each co-ordinate represents expression levels of the pair of gene taken from

a data set. The outlier is represented as red dot within a blue circle. Identifying and

pruning of outliers is an oft-recurring problem and has attracted much attention from

various researches [10–12], and is also studied in this dissertation.

Superposition of protein A and protein B

Protein A Protein B

Figure 1.5: Geometric reduction of protein structure similarity as a point pattern
matching

1.2.4 Point pattern matching and protein structure similarity

The study of protein structure similarity is a very promising area of research. It is

important to our understanding of the biological activities of proteins. This includes
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(a) finding homology between distantly related proteins; (b) inferring functional prop-

erties of an unannotated protein; (c) evaluating accuracy of protein folding algorithms.

From a geometric optimization perspective, the protein structure alignment problem

can be viewed as a point pattern matching problem in three-dimensional space (see

Figure 1.5). Each protein is considered as a collection of points in three dimensional

space, where the points represent the co-ordinate of α-carbon atoms along the back-

bone of the protein chain. Figure 1.6 shows structural superposition lipid transfer

proteins (LPT1) of rice and maize. Lipid transfer proteins are believed to participate

in membrane biogenesis and regulation of the intracellular fatty acid pools [36].

To make the dissertation self-contained we include some basics facts about protein

structures. We also describe how a structure of a protein store in the Protein Data

Bank [37] as it is helpful when using PDB file as an input to a structure alignment

program.

Preliminaries

Proteins are large linear macromolecules built from an “alphabet” of 20 different

amino acids (see Figure 1.7). These are the molecules along a protein and are called

”residues”. The amino acids are organic compounds composed of a backbone and a

side chain (see Figure 1.8 and Figure 1.7). Depending on the side chain, an amino
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(a) (b)

(c) (d)

(e) (f)

Figure 1.6: Structure superposition of LTP1 from maize (PDB code 1MZL [4]) and
LTP1 from rice (PDB code 1RZL [5]). (a) cartoon representation of
1MZL (b) ribbon representation of 1MZL (c) cartoon representation
of 1RZL (d) ribbon representation of 1RZL (e) superposition of 1MZL
and 1RZL (cartoon) (f) superposition of 1MZL and 1RZL (ribbon)
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acid can be classified into one of 5 different groups. In Figure 1.7 the name and

background shading indicates (a) hydrophobic amino acids as yellow; (b) hydrophilic

non-charged amino acids as white; (c) positive charged amino acids as blue; (d) neg-

ative charged amino acids as red; (e) cysteine as green. In Figure 1.7 atom types are

color-coded: carbon with gray, oxygen with red, nitrogen with blue, and sulfur with

yellow.

The backbone of an amino acid has two functional groups: (1) amino group (−NH2)

and (2) caboxyl group (−COOH) which are responsible for formation of linear poly-

mers by linking each other with a peptide bond. A peptide bond is formed when two

amino acids chemically bond, releasing a water molecule. The amino acid residue

sequence along a protein is known as a primary structure. Segments of polypeptides

often fold locally into secondary structures, for example α-helices and β-sheets.

The three dimensional tertiary structure is built up from secondary structure elements

and determines the biological functions of the protein. Thus the tertiary structure of

a protein is a subject of interest in the study of protein structure similarity (for more

details on protein structures refer to [38]).
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Figure 1.7: The 20 amino acids [Figure taken from [6]]
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Figure 1.8: The 20 amino acids as sidechain [Figure taken from [7]]
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The tertiary structure of a protein is represented in a standard format known as the

PDB (Protein Data bank) file format [37]. The data contained in such a file is derived

form X-ray diffraction and NMR (Nuclear magnetic resonance) studies. The PDB

file format contains the three dimensional coordinates of every atom in a protein.

Proteins are tightly packed globs of atomic spheres where each atom is assumed to

be a sphere of radius ai(xi, yi, zi). A typical value of ai lies between 1Ao and 2Ao.

Each protein structure archived in the Protein Data Bank [37, 39] assigned a 4-

character unique identifier known as its PDB-id. To describe the structure of a

protein molecule the PDB file contains different types of records. The Table 1.1

presents some selected record types while a sample PDB file is given in Appendix B.

In the dissertation we have used molecular graphics software Pymol [40] to generate

protein figures.

1.3 Contributions

The main contributions of this dissertation are as follows.

1. Geometric proximity: We studied the following optimization problem form a

geometric proximity perspective. Given a point set P = {p1, p2, p3, . . . , pn}, for

each point pi find a pair {pj, pk}, where i 6= j, i 6= k, j 6= k, such that a measure

M defined on the triplet of points {pi, pj, pk} is maximized or minimized. We
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Table 1.1: Selected Protein Data Bank Record Types
Record Type Data Provided by Record

HEADER provides the information like PDB-id, classification for
entry and the date when deposited to PDB archive

SEQRES provides the information about the residues covalently
linked in a linear fashion to form a polymer

HELIX provides the information like position of helix in the
molecule and type of the helix

SHEET provides the information to identify position of sheet in
the molecule and number of strand in the sheet

ATOM provides the information like atomic co-ordinates, oc-
cupancy and temperature factor of each atom of the
residues in the polymer

HETATM provides the information about atomic co-ordinates of
non-polymer or other non-standard” chemical compound
such water molecule

TER indicates the end of chain

propose efficient algorithms for each of the following distance measures

(a) Sum and product measures

(b) Difference measure

(c) Line-distance measure

(d) Triangle area measure

(e) Triangle perimeter measure

(f) Circumcircle-radius measure

(g) Triangle-distance measure in three dimension
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2. Geometric separability and gene expression data set:

We also study the geometric separation of gene expression data sets. Our con-

tributions are as follows

(a) An offline adaption of Megiddo’s algorithm to test linear separability by

gene pairs/triplets, fully implemented and tested.

(b) An incremental version of Megiddo’s algorithm that is particularly useful

for gene expression datasets, fully implemented and tested.

(c) Demonstration of the usefulness of linear separability as a tool to build a

good classifier with application to concrete examples.

(d) Reformulation of Unger and Chor’s [31] method in the linear programming

framework.

The dissertation highlights the advantage of using a “linear time” incremental

algorithm as compared to a “quadratic time” algorithm of Unger and Chor [31].

3. Geometric separability with few violated constraints: We also extend

the idea of linear separability to almost linear separability. We propose an

efficient algorithm to find a minimum set of outliers (or violated constraints),

say k, when two point sets (colored respectively red and blue) are not completely

separable.

We propose an O(nk2) time algorithm for this problem. When k = o(log n),

this is better than the so-far-best O((n + k2) log n) time algorithm known for
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this problem. For k = O(1), which holds for the application to gene expression

analysis that we have in mind, we have the first linear time algorithm known

for this problem.

4. Point pattern matching and protein structure similarity: We also study

the problem of protein structure similarity from a point pattern matching per-

spective. We propose two new algorithms, EDAlignres and EDAlignsse, for

pairwise protein structure alignment.

(a) EDAlignres identifies the best structural alignment of two equal length

proteins by refining the correspondence obtained from eigendecomposition

and to maximize similarity measure, TM-score [41], for the refined corre-

spondence.

(b) EDAlignsse, on the other hand, does not require the input proteins to be

of equal length.

We report the TM-score and cRMSD as measures of structural similarity. These

new methods are able to report sequence and topology independent alignments,

with similarity scores that are comparable to those of the state-of-the-art algo-

rithms such as, TM align [42] and SuperPose [43].
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Chapter 2

All-maximum and all-minimum problems
under some measures

2.1 Overview

In this chapter [44] we investigate the following type of proximity problems: given

a set of n points in the plane P = {p1, p2, p3, . . . , pn}, for each point pi find a pair

{pj, pk}, where i 6= j, i 6= k, j 6= k, such that a measure M defined on the triplet

of points {pi, pj, pk} is maximized or minimized. The cases where M is the distance

from pi to the segment or line defined by {pj, pk} have been extensively studied. We

study the cases where M is the sum, product or the difference of the distances from

pi to the points pj and pk; distance from pi to the line defined by pj and pk; the

area, perimeter of the triangle defined by pi, pj and pk, as well as the radius of the

circumcircle defined by them. We also discuss the all-farthest triangle problem in the

triangle-distance measure when P is a set of points in 3 dimensions.

2.2 Introduction

In computational geometry, an oft-recurring problem is to identify subsets of a point

set having desirable properties. The following type of proximity problems belong to
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this genre: for each point pi in a planar point-set P = {p1, p2, p3, . . . , pn}, find a pair

{pj, pk}, i 6= j, i 6= k, j 6= k, such that a measure M defined on the points {pi, pj, pk}

is maximized or minimized. The cases whereM is the distance from pi to the segment

or line defined by {pj, pk} have been extensively studied (see [28], [25], [26]). In this

chapter, we study a number of other measures in two and higher dimensions.

A more general and natural version of the problem is to allow the query to be any point

in the plane, which would make all the problems in this genre solvable, in principle, in

the 2-point site Voronoi diagram scheme of Barequet et al. [24]. However, restricting

the queries to the points in P often allows us to solve the problems more efficiently by

defining suitable data structures on the point set P . An example that readily comes

to mind is the construction of the Voronoi diagram data structure on P to find the

nearest neighbor of each point in P .

2.2.1 Motivation

Our motivation is primarily theoretical, originally triggered by an interest in knowing

whether an O(n2) algorithm for the segment distance problem for the all-nearest mea-

sure problem in the plane [25] is also 3sum-hard for the all-farthest measure. In [26]

it was shown that it is not so, and this work also initiated investigation into the sur-

prisingly unexplored problem of computing farthest-segment Voronoi diagrams [27].

In this vein, we extend our investigation to other measures. From a theoretical per-
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spective, what also interests us is the intimate connection of this problem to the

combinatorial complexities of 2-point site Voronoi diagrams studied in [24].

In [28], for the segment distance measure an interesting and more practical motivation

in the form of an application to graph drawing is discussed, while in [29] for the line

distance measure a military application in the form of communication disruption is

described. There may possibly be other interesting practical applications that we are

not aware of or even some that are awaiting discovery.

2.2.2 Prior Work

Ovidiu et al. [28] introduced a type of proximity problem which can be stated this

way: for each of a given set of n points, P = {p1, p2, p3, . . . , pn}, find a segment de-

fined by two other points that is nearest with respect to some measure M.

Following up on [45], Duffy et al. [25] proposed an algorithm for solving the all-nearest

version of the problem in O(n2) time, while Mukhopadhyay et al. [26] solved the all-

farthest version of the problem in O(n log n) time.

In this chapter, we explore this line of work further by systematically looking at the

restricted version of the query problem with respect to several other measures, viz.

when M is the sum, product, or the difference of the distances from pi to the points
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pj and pk; the closest and farthest distance from pi to the line spanned by pj and

pk; the area, perimeter of the triangle defined by pi, pj and pk, as well as the radius

of the circumcircle defined by them. Barequet et al. [24] studied the combinatorial

complexities of the farthest and nearest point Voronoi diagrams in all these measures,

except for the circumcircle-radius measure that they left open. We propose a novel

solution to this last problem in this restricted setting. In addition, we have also

studied the all-farthest triangle-distance problem as a generalization to 3 dimensions

of the all-farthest segment distance problem [26].

2.2.3 Our results

We summarize our results in Table 2.1 for a planar set of points, where in the minimum

column for the Triangle Perimeter measure, φji is a parameter related to the i-th point

pi. In some of these cases we have also discussed the extension of the results to higher

dimensions.

Table 2.1: Our Results

Measure all-maximum all-minimum
Sum O(n log n) O(n log n)

Product O(n log n) O(n log n)
Difference O(n log n) O(n2 log n)

Line-distance O(n2) O(n2)
Triangle Area O(nh) O(n2)

Triangle Perimeter O(nh) O(n2 log n+ ΣiΣj(φ
j
i )

2)
Circumradius O(n2 log n) O(n2 log n)

Triangle-distance O(nhh′) O(n4)
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2.3 Sum and Product Measures

The sum S(pi, pj, pk) and product P(pi, pj, pk) measures are respectively |pipj|+ |pipk|

and |pipj| ∗ |pipk|, where |s| is the length of a segment s.

The computational problem is to find for each pi in P a pair {pj, pk} in P − {pi},

j 6= k, such that the sum measure S(pi, pj, pk) and the product measure P(pi, pj, pk)

is maximum (minimum).

We have the following obvious characterization.

Claim 1 For a point pi ∈ P , S(pi, pj, pk) and P(pi, pj, pk) is maximum (minimum)

when pj, pk ∈ P − {pi}, realize the farthest (nearest) and second farthest (second

nearest) distance from the point pi.

An O(n2) algorithm for the all-maximum as well as the all-minimum in both the

measures is immediate from the above claim.

For a more efficient O(n log n) algorithm, we construct the third order nearest and

second order farthest Voronoi diagrams on P and construct point location structures

on both that allow (point) location of pi in O(log n) time.

The all-minimum problem solves the closest pair problem and thus has a lower bound
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of Ω(n log n) in the algebraic decision tree model. The all-maximum problem solves

the all-farthest pairs problem and has a lower bound of Ω(n log n) in the same model.

Thus the O(n log n) algorithms are optimal in the algebraic decision tree model.

2.4 Difference Measure

The difference measure is D(pi, pj, pk) = ||pipj|− |pipk||. The computational problem

is to find for each pi in P a pair {pj, pk} in P − {pi}, j 6= k such that D(pi, pj, pk) is

maximum (minimum).

The following characterization is again obvious.

Claim 2 For a point pi ∈ P , the pair {pj, pk} ∈ P − {pi} realize the maximum

D(pi, pj, pk) iff pj and pk are respectively the nearest and farthest point from pi or

vice versa.

For the maximum D{pi, pj, pk} for all pi ∈ P , a brute-force O(n2) algorithm is im-

mediate. We can improve on this by constructing the nearest-point Voronoi diagram

of P [46] to obtain for each pi its nearest point in P − {pi}; for the farthest point of

each pi, we have to construct the farthest-point Voronoi diagram as well as a point

location structure [46] on top of this. This is because we need to locate pi in the

farthest-point Voronoi region of a point pj it is farthest from.
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This gives us an O(n log n) time algorithm for the maximum problem. The brute-

force version is easily extended to d-dimensions to run in O(dn2) time, the additional

factor d accounting for the distance calculations.

The maximum problem has a lower bound of Ω(n log n) in the algebraic decision

tree model since it implicitly solves the closest pair problem.

For each pi ∈ P , we can determine the minimum D{pi, pj, pk} by finding a pair of

points {pj, pk} that have the smallest difference in their Euclidean distances from pi.

This amounts to solving the closest-pair problem on the line by mapping the dis-

tances from pi onto it. This takes O(n log n) time, which is optimal in the algebraic

decision-tree model. Thus the time complexity for the minimum of D(pi, pj, pk), for

all pi ∈ P , is in O(n2 log n).

The time complexity of the minimum version of the problem can be reduced to ex-

pected time O(n2), since finding a pair pj, pk is equivalent to finding a closest pair on

the line when the distances from pi are measured from an origin point, O, on the line.

The latter problem can be solved in expected O(n) time by a randomized algorithm,

assuming that floor and square-root operations can be done in constant time [47].

However, coming up with an O(n2) deterministic algorithm remains an interesting

open question.
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It is worth investigating the special case when the points lie on a line. Assume that

the points are in sorted order. For the two extreme points the solution consists of a

closest pair of points. For an intermediate point pi, we reduce the problem to the ex-

treme points case by embedding into the points, say, on the right of pi the reflections

in pi of the points to its left and then find a closest pair of the combined set. Thus

the all-minimum problem can be solved in this special case in O(n2) time.

Since we implicitly solve the closest pair problem for the point set, we have a lower

bound of Ω(n log n) in the for the all-minimum problem in the algebraic decision

tree model.

The difference in the time-complexities of these two problems is noteworthy. Clearly,

in the second case relative to a pi any pair of points pj, pk can realize the minimum

distance, whereas the maximum distance is realized by a definite pair of points.

The minimum version is also easily extended to d-dimensions to run in O(dn2 log n)

time, the additional factor d accounting for the distance calculations.
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2.5 Line Distance Measure

The line-distance measure is LD(pi, pj, pk) = d(pi,
←→
pjpk), where d(p, l) denotes the

minimum distance from a point p to a line l.

For the all-farthest line distance problem we borrow an idea that Duffy et al. [25] used

for the all-nearest segment distance problem. Assume we know the angular order of

the points in P − {pi} about pi. Call the polygon obtained by joining the points in

this angular order the surrounding polygon of pi. Fix a pj in P −{pi}. As we traverse

the boundary of this polygon, we find a point pk, k 6= j, such that line incident on

pi and pk is farthest from pj. This is updated vis-a-vis pj as we consider the angular

orders about the remaining n− 2 points in P . We search for pk, following the scheme

below.

Consider a circle of radius |pipj|, centered at pj. The line through pi tangent to this

circle is a farthest line if there is another point pk incident on it; otherwise, we de-

termine at most four candidate points on the surrounding polygon, at most one in

each of the 4 quadrants determined by the supporting line of pipj and the tangent to

the circle at pi, and lying immediately above and below the tangent line. The line

farthest from pj is the one incident on one of these candidate points and pi, making

the largest acute angle with pipj.
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As we move counterclockwise to the next point pj+1 on the polygon, we either find a

point incident on the new tangent line, else find a new set of at most four candidate

points in constant time. As no backtracking is involved in this latter update, for each

pj in P − {pi} we can find the farthest line incident on pi in O(n) time, including

the time that it takes to find the intersection of the initial tangent line with the sur-

rounding polygon of pi, all by a single tour of the boundary.

pi

pj

pk

Figure 2.1: A farthest line from pj, incident on pi

We repeat the above steps for each of the angular orders about the remaining n− 1

points in P . Since we can determine the angular orders about all the pi’s in O(n2)

time [48], [49], the time-complexity of the all-farthest problem in the line-distance

measure is in O(n2).

An interesting open problem is to establish if the above algorithm is optimal in the

algebraic decision tree model. It would also be interesting to generalize the above
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algorithm to d-dimensions with time complexity in O(nd). When d = 3, we can use

the algorithm of Bespamyatnikh and Segal [29] to obtain an algorithm whose time-

complexity is in O(n3 log2 n). Paring away the log2 n factor is another interesting

problem.

We next consider the all-closest problem in the line-distance measure.

For a fixed pi, Mount et al. [28] gave an optimal O(n log n) time and O(n) space

algorithm to find the line closest to it spanned by a pair of points pj, pk ∈ P − {pi}.

Here we show that the all-closest problem can be solved in O(n2) time.

pi

pj

pk

Figure 2.2: A closest line from pj, incident on pi

Indeed, exactly the same approach as used for the all-farthest problem also works,

except that the closest line to pj, incident on a candidate point in a quadrant and
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pi, makes the smallest acute angle with the supporting line of pipj. Thus we have an

O(n2) algorithm again.

Since the above algorithm allows us to determine a point-and-closest-line pair such

that the distance from the point to the line is minimum among all such pairs, as in

Duffy et al. [25], we can argue that this problem is 3sum-hard by 1-reduction from

the problem of determining if 3 of n points p1, p2 . . . , pn in the plane are collinear (see

also [50]).

An interesting open problem is to design an algorithm for the all-closest problem to

d dimensions. This would probably require a different approach than what we have

used for the 2-d case.

2.6 Triangle Area Measure

Let A(pi, pj, pk) denote the area of the triangle formed by the points pi, pj and pk. In

this measure, for each pi in P , we have to find out a pair of points {pj, pk} in P −{pi}

such that A(pi, pj, pk) is maximum (minimum).

For a fixed pi, this problem has been solved in [28] for both the maximum and

minimum measures inO(n log n) time andO(n) space that are optimal in the algebraic

decision tree model. This gives O(n2 log n) algorithms for the all-maximum as well
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as the all-minimum version. The proposed algorithms employ the dynamic convex

hull maintenance algorithm of Brodal and Jakob [51]. Below, we propose a simple

O(nh) algorithm for the all-maximum area problem and then, by dualization, an

O(n2) algorithm for the all-minimum version.

2.6.1 Maximum Area Triangle

The following claim gives a structural characterization of a maximum area triangle,

anchored at a point pi.

Claim 3 For an anchor point pi, A(pi, pj, pk) is maximum when the points pj and

pk lie on the boundary of the convex hull, CH(P ).

Proof: Assume that at least one of the points pj and pk does not lie on CH(P ).

Without loss of generality let it be pk. If we draw a line l through pk, parallel to

pipj, then there exists a point p′k on the convex hull boundary in the open half-space

defined by l that does not contain pi (see Figure 2.3) such that A(pi, pj, p
′
k) is greater

than A(pi, pj, pk). This contradicts our assumption that A(pi, pj, pk) is of maximum

area. Thus pj and pk both lie on the convex hull boundary. 2

Claim 4 For a point pi, if A(pi, pj, pk) is maximum for a pair {pj, pk}, then pj is

a farthest point from the supporting line of pipk and pk is a farthest point from the

supporting line of pipj.
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pi

pj

pk

l

p′k

Figure 2.3: When pk is an internal vertex of the convex hull, CH(P )

Proof: Suppose pj is not farthest point from the line pipk. This implies that there

exists another point p′j, which is farthest from pipk. Thus A(pi, p
′
j, pk) is greater than

A(pi, pj, pk). This contradicts our assumption. By a similar argument, pk is farthest

from pipj. 2

pia

b

d

fa

ab bc

cd

de
ef

c = pk

e = pj

f = p′k

Figure 2.4: Convex hull and its corresponding ray diagram
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For an efficient algorithm for computing a maximum area triangle for a pi ∈ P we

borrow the ‘rotating calipers’ idea that Shamos [8] used to find diameter of a set.

In a preprocessing step, we first construct the convex hull of P and then the ray

diagram of the convex hull. Next, we scan the boundary of the convex hull, CH(P ),

in counter-clockwise order, starting with some vertex pj, say. If pk is the farthest

antipodal vertex corresponding to pipj, we tag pk with the index j; when the scan

reaches pk, we determine its farthest antipodal vertex and use the tag attached to pk

to check if it is the same as pj. If so, this is another candidate pair. We determine

the area of 4(pi, pj, pk) and update the current maximum area triangle if necessary.

Doing this for each pi, gives an O(n(h+ log h)) algorithm for the all-maximum prob-

lem.

It is also possible to devise an O(n2) time algorithm (matching the worst case of the

previous algorithm) by dualization which can be generalized to 3-dimensions. We first

note that for a fixed anchor point pi if 4pipjpk has maximum area then pk is farthest

from the supporting line of pipj. Thus we have to find the farthest pk for each of

n− 1 different line segments pipj. The dual version helps us solve our problem if for

each intersection point, which corresponds to a point pair {pi, pj} in the dual plane,

we determine the line that is vertically farthest from this intersection point. This

line will be part of the lower or upper envelope in the arrangement, each of which is

of size O(h). The upper and lower envelopes can be obtained in O(n log n) from the

33



convex hull of the points in the primal plane.

Now, we do a topological sweep of the arrangement in the dual plane. This sweep

discovers the intersection points on each line in a left to right order. This means that

we can determine the intersection of a vertical line through each intersection point

on this line with the upper and lower envelopes in a left to right order. We maintain

an intersection history for each line. This requires O(h) time for each line and hence

O(nh) time for all the lines. Now that we have the farthest point for each line, we can

determine the maximum area triangle for an anchored point by selecting from among

the intersection points on the dual of pi the one whose farthest line is the farthest of all.

Since topological sweep can be done in O(n2) time, the time complexity of this alter-

nate algorithm is in O(n2). This algorithm can be generalized to 3-dimensions, using a

topological sweep algorithm to compute an arrangement of planes in 3-dimensions [52]

to find a maximum volume tetrahedron for each pi in O(n3) time.

In [53] an Ω(n log n) lower bound has been established in the algebraic decision

tree model for the complexity determining a maximum area k-gon, such that the

k vertices of this polygon are a subset of a given set of n points. Since we solve this

problem for k = 3 by solving the all-maximum triangle area problem, we have the

same lower bound for this problem. Closing the complexity gap is an interesting open
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problem.

2.6.2 Minimum Area Triangle

A minimum area triangle 4(pi, pj, pk) anchored at pi must be empty, for if it con-

tained a point pl, then4(pi, pl, pk), for example, has a smaller area. This observation,

however, does not yield an efficient algorithm for if the points in P are the vertices of

a convex polygon, we have to consider O(n2) empty simplexes for each anchored point.

The main difficulty with the minimum area triangle computation lies in the absence

of locality. A triangle of small area can have very long edges. Chazelle et al. [54] and

Edelsbrunner et al. [52] used geometric duality to find a triangle 4(pi, pj, pk) whose

area is globally minimum. We explore this approach for finding anchored minimum

area triangles.

We can view the computation of a minimum area triangle anchored at a point pi this

way: choose a pj from among the remaining n − 1 points and for this pair choose a

third point pk such that the area of the triangle4(pi, pj, pk) is a minimum. This gives

us the following alternate characterization of an anchored minimum area triangle.

Claim 5 If A(pi, pj, pk) is the minimum area of a triangle anchored at the point pi,

then pk is vertically closest to the supporting line, `, of pi and pj.

Proof: If there is a point p′k ∈ P which is vertically closer to ` than pk, it would have
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to lie in the strip defined by ` and a line through pk parallel to `. In that case the

area of 4(pi, pj, p
′
k) would be smaller than that of 4(pi, pj, pk). 2

`

pj

pk

pi

a′

b′

a
b

p′k

Figure 2.5: Similar triangles 4a′b′p′i and 4abpi

The above characterization is helpful because dualization preserves vertical distances;

in the dual plane a fixed pi corresponds to a fixed line pi
∗, and for each pj, the pair

(pi, pj) corresponds to an intersection on the line pi
∗. For each intersection point we

have to find a line pk
∗ that is vertically closest to it.

We can solve our problem by simulating Chazelle et al.’s [54] construction of an

arrangement of lines (in the dual plane for the given point set in the primal plane)

with some additional book-keeping.

We use any reasonable data structure (e.g doubly connected edge list) to represent

the planar graph corresponding to the arrangement. To ensure that the addition

of each new line to the current arrangement takes linear time, we assume that the
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arrangement lies inside a large bounding box. Since a line intersects the boundary of

this bounding box twice, we can easily determine the entry face of the i-th line `i of

the arrangement. The arrangement can be updated by walking along the lower parts

of zone(`i) (i.e. zone of `i) as shown in Figure 2.6. As the combinatorial complexity

of the faces of the arrangement that intersect `i is at most 8i [54], the walk along

the zone(`i) takes O(i) time. While updating the data structure, we maintain the

vertically closest line from each vertex.

Since computing the arrangement takes O(n2) time and O(n2) space, the same com-

plexities hold for the all-minimum area triangle problem. This problem is 3sum-hard

since we can use this to determine if 3 of n points in the plane are collinear.

We can also generalize the algorithm to d-dimensions to run in O(nd) time since the

size of a zone is O(nd−1) [55].

2.7 Triangle Perimeter Measure

In this measure, for each pi, we want to find a pair of points {pj, pk} ∈ P −{pi}, such

that P(pi, pj, pk) = |pipj|+ |pjpk|+ |pipk| is maximum or minimum.
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`

Figure 2.6: Walking the lower part of zone(`)

2.7.1 Maximum perimeter

We have the following characterization of a pair {pj, pk} in P that gives the maximum

perimeter for a given pi ∈ P .

Claim 6 If for a point pi ∈ P , the pair {pj, pk} ∈ P − {pi} realizes the maximum

perimeter P(pi, pj, pk) then pj and pk are vertices on the convex hull of P , CH(P ).

Proof. Let the maximum perimeter be realized by a pair {pj, pk}, both of which

are internal to the hull boundary. Extend pipj and pipk to meet the boundary of

CH(P ) at x and y respectively. If both of the latter points are vertices of CH(P ),

we are done. Otherwise assume that at least x or y is internal point of convex hull

edge. Without loss of generality assume that x is internal point of convex hull edge.

Consider an ellipse, one of whose axis lies along piy, the other orthogonal to it, foci

at the points pi and y and focal radius |pix|+ |yx| (see Figure 2.7). This crosses the

convex hull boundary at x and from convexity of the ellipse and CH(P ), there will
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be a point pl on CH(P ) that lies outside this ellipse. This implies that the triangle

4(pi, y, pl) has larger perimeter than 4(pi, x, y) and hence 4(pi, pj, pk). 2

pi

pj

pk

x

y

Figure 2.7: A maximum perimeter triangle rooted at pi has the other two points
on CH(P )

For all the pi’s on the convex hull boundary, we can find the maximum perimeter dis-

tance by using the monotone matrix method of [56] in O(h log h) time. If pi is internal

to the hull boundary we have the problem of finding a maximal perimeter triangle,

rooted at pi, with the other two points on the hull boundary. Boyce et al. [57] gave

an ingenious reduction of this problem to the problem of computing the diameter of

a convex polygon bounded by circular arcs and segments that are common external

tangents to two circles (see Figure 2.8 below). The circles in question are obtained by

centering them at the points in P − {pi} and letting them pass through the anchor

point pi. The diameter is the distance between parallel lines of support that are tan-

gents to a pair of antipodal circular arcs. Moreover, the segment joining the points
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of contact passes through the centers of the two circles and is easily seen to be the

perimeter of the triangle on pi and the centers of the circles in question. This takes

O(h) time for a fixed pi and thus O((n− h) ∗ h) time for all the n− h points inside

the convex hull.

pi

Figure 2.8: Diameter of the convex figure is equal to the maximum perimeter tri-
angle rooted at pi

Thus the complexity of the all-farthest problem in this distance measure is in O(h+

(n− h) ∗ h), that is in O(nh).

In [53] an Ω(n log n) lower bound has been established in the algebraic decision tree-

model for the complexity determining a maximum perimeter k-gon, such that the k

vertices of this polygon are a subset of a given set of n points. Since we solve this

problem for k = 3 by solving the all-maximum triangle perimeter problem, we have

the same lower bound for this problem. Closing the complexity gap is an interesting

40



open problem.

2.7.2 Minimum perimeter

The following interesting observation helps in localizing the search, relative to a given

pi, for a pair of points pj and pk that minimizes the perimeter of 4(pi, pj, pk).

Pi
2

pi pj

pk

Figure 2.9: The perimeter of 4(pi, pj, pk) > Pi

Claim 7 If Pi is the perimeter of any triangle anchored at pi, then neither pj nor pk

of a minimum perimeter triangle 4pipjpk can be at a distance greater than or equal

to Pi
2

from pi.

Proof: If |pipj| ≥ Pi
2

, then the perimeter of 4pipjpk is greater than Pi no matter

what the value of |pipk| is (see Figure 2.9, where |pipj| = Pi
2

). Therefore, 4pipjpk

cannot be of minimum perimeter. Thus pj, and by an identical argument pk, lies
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inside a circle of radius Pi/2 centered at pi. 2

Let S(pi,Pi/2) denote the set of points that lie strictly inside a circle of radius Pi
2

,

centered at pi. An algorithm for the all-minimum perimeter problem, based on the

above observation, is given below.

Algorithm MinimumPerimeterTriangle

Input: The set P .
Output: For each pi ∈ P , a pair {pj, pk} such that P(pi, pj, pk) is minimum.

begin
for each point pi ∈ S do

Step 1: Sort the points in P − {pi} by their distances from pi.

Step 2: Compute the perimeter Pi of the triangle formed by pi and two points closest to it.

Step 3: Compute S(pi,Pi/2).

Step 4: while {there exists another pair of points pj, pk ∈ S(pi, Pi/2) }

Step 4.1: Compute perimeter Pi′ of 4(pi, pj, pk).

Step 4.2: If Pi′ < Pi, set Pi ← Pi′ and go to Step 3, else continue.

Step 5: Return Pi.

endfor
end
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Let ∆i be the smallest difference of distances of a pair of points in P − {pi} relative

to pi. We determine this by sorting the distances relative to pi. Then, Pi/2∆i is an

upper bound on the number of points inside a circle of radius Pi/2. Thus the running

time of the above algorithm is O(n2 log n + ΣiΣj(Pij/2∆i)
2)), where, in the second

term, the outer sum is over all the pi’s, while the inner sum accounts for the number

of times we reset Pi for a fixed pi.

Note that inasmuch as the time complexity for this problem depends on the ∆i’s as

well as the input size, it is anomalous vis-a-vis the time complexities of the remaining

problems studied in this chapter that depend only on the size of the input. It is an

interesting open problem to obtain a solution that depends entirely on the input size.

2.8 Circumcircle radius measure

The circumcircle radius measure R(pi, pj, pk) of {pi, pj, pk} is defined to be the ra-

dius of a circle that circumscribes the 4(pi, pj, pk). The computational problem is

to determine for each pi a pair {pj, pk} such that the circumradius, R(pi, pj, pk) of

{pi, pj, pk} is maximum (minimum).

The combinatorial complexities of the farthest and nearest 2-point site Voronoi di-

agrams in this distance measure were left open by Barequet et al. [24]. For the

restricted query case, we can use the inversion transformation to reduce the maxi-

43



mum and minimum problem to finding a nearest and farthest line respectively from

pi, spanned by pairs of points in the inverted set.

An inversion transformation is defined as follows. Let C be a circle of unit radius

centered at the origin of a rectangular coordinate system. A point p′ is said to be

the inverse of another point p with respect to the unit circle if |op| ∗ |op′| = 1 (Figure

10(a)). Thus inversion maps circles passing through the center of inversion into lines

not passing through the center of inversion and conversely (Figure 10(b)). More de-

tails on this transformation are available in [58].

Daescu et al. [28] has given an O(n log n) solution for the nearest and farthest line

problem for a fixed pi. Using these algorithms, we can solve the all-maximum and

all-minimum radius circle problem in O(n2 log n) time.

In [29] Bespamyatnikh and Segal considered the problem of selecting a hyperplane

spanned by d of n points in d-dimensional space the rank of whose distance from the

origin is k. They showed that the 3-dimensional version of this problem is almost

3-SUM hard and proposed an O(n2 log2 n) algorithm. Thus using each pi as the

origin of coordinates we can determine the farthest and nearest planes spanned by 3

points in P − {pi} in the same time and hence solve the all-farthest and all-nearest

problems in this measure in O(n3 log2 n) time. Thus by using inversion we can solve
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O pi

p′j

pjp′

p

Figure 2.10: (a) Inversion transformation (b) Transforming a circle r = d cos θ to a
line 1/d = r′ cos θ

the all-nearest and all-farthest measures in the same time.

2.9 Triangle Distance Measure

Let P = {p1, p2, p3, . . . , pn} be a point set in E3. For the purpose of our discus-

sion below, a triangle on a set of three points {pi, pj, pk} is the area bounded by

the segments obtained by joining the points in pairs. The triangle distance measure

is T D(pi, pj, pk, pl) = d(pi,4(pj, pk, pl)), i 6= j 6= k 6= l, where d(p,4) denotes the

distance from a point p to a triangle 4. It is thus a generalization of the segment

distance measure discussed in [26], [59], where an O(n log n) algorithm was proposed

for the all-farthest version.
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The computational problem is to find for each pi a triangle formed by 3 distinct

points pj, pk, pl ∈ P −{pi} such that the distance from pi to this triangle is maximum

(minimum). Below, we discuss the all-maximum version of the problem.

2.9.1 Characterizing farthest triangles

Let 4(pj, pk, pl) be a triangle that is farthest from pi, i 6= j 6= k 6= l. The farthest

distance is realized in one of the following 3 ways.

• Type A distance: The perpendicular distance from pi to an interior point of

4(pj, pk, pl) (Figure 2.11)

pj

pk pl

pi

Figure 2.11: Type A distance

• Type B distance: The distance from pi to the nearest of the vertices pj, pk, or

pl of 4(pj, pk, pl) (Figure 2.12)
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pj

pk pl

pi

Figure 2.12: Type B distance

• Type C distance: The perpendicular distance from pi to the nearest (open)

edge of 4(pj, pk, pl) (Figure 2.13).

pj

pk pl

pi

Figure 2.13: Type C distance

Let us call the vertices internal to the convex hull of P , CH(P ), interior vertices.

Intuitively, it seems plausible that the vertices of the triangle farthest from a given

pi should lie as far as possible on the “boundary” of the point set P . The following

theorem confirms this intuition.

Theorem 1 If T = 4(pj, pk, pl) is a triangle that is farthest from pi, then pj, pk,

and pl cannot all be interior vertices.
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Proof: Assume otherwise.

• Type A distance:

Let the distance from pi to T be realized by a point q interior to T . Clearly,

piq is orthogonal to T . Let P (T ) be the plane containing T . Consider the part

of CH(P ) that lies on the side of P (T ) that does not contain pi. Because of

convexity, there must be a point pm in P on this side of P (T ) that is a convex-

hull vertex. We claim that the triangle T ′ = 4(pk, pl, pm) is farther from pi

than T . Let q′ be the point on T ′ that is closest to pi. Consider the sphere

B(pi, |piq|), centered at pi, of radius |piq|. The plane P (T ) separates the points

{pk, pl, pm} from B, putting T ′ entirely outside B. Thus |piq| < |piq′| and the

claim is established in this case.

• Type B distance:

Let the distance from pi to T be realized by the segment pipj. Let P (pj) be a

plane through pj orthogonal to pipj. From the convexity of CH(P ) there exists

a vertex pm of CH(P ) on the side of P (pj) not containing pi. Consider the

sphere B(pi, |pipj|), centered at pi, with radius |pipj|. Now pkpl and B are on

opposite sides of P (pj). So also are pm and B. Thus all points of the triangle

T ′ = 4(pk, pl, pm) are separated from B by P (pj). Hence T ′ must be farther

from pi than T .
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• Type C distance:

Let the distance from pi to T be realized by the segment piq orthogonal to the

triangle edge pjpk, q being an internal point of this edge. Let P (pjpk) be a plane

through pjpk orthogonal to piq. From the convexity of CH(P ) there exists a

vertex pm of CH(P ) on the side of P (pjpk) not containing pi. Thus the triangle

T ′ = 4(pk, pl, pm) lies outside the sphere B(pi, |piq|), centered at pi and radius

|piq|. Therefore T ′ must be farther from pi than T .

Thus in all cases we can find a triangle, with a vertex on CH(P ), that is farther from

pi than T . 2

Therefore, the vertex configuration of a farthest triangle from a point pi can be

categorized into the following cases:

• Case I: One vertex on CH(P ), while the other two vertices are points internal

to CH(P );

• Case II: Two of its vertices are on CH(P ), while the third vertex is a point

internal to CH(P );

• Case III: All three vertices are on CH(P ).

Over the next few lemmas, we sharpen the above characterizations further to help us

design efficient algorithms for computing a farthest triangle. Indeed, the first of these
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shows that we can be more precise about the location of the farthest triangle when

the farthest distance is of Type A.

Lemma 1 If the distance from pi to a farthest triangle 4(pj, pk, pl) is of type A,

then 4(pj, pk, pl) is a facet of CH(P ).

Proof: If the triangle 4(pj, pk, pl) is not a convex hull facet, then there exists a point

pm of P in the open half-space defined by the supporting plane through pj, pk, and

pl that does not contain pi (Figure 2.14). This gives a triangle 4(pj, pk, pm) that is

farther from pi than 4(pj, pk, pl) since every point on the triangle 4(pj, pk, pm) is

farther from pi than the distance from pi to triangle 4(pj, pk, pl). 2

This implies that for Case I or Case II, the farthest distance cannot be of Type A.

Lemma 2 For the vertex configuration of Case I, let the vertices pj and pk of the

farthest triangle T be interior vertices. Then pjpk is the farthest from pi among all

edges that can be formed by taking pairs of interior vertices.

Proof: Let the point q of T be closest to pi. If r is the point on the internal edge

pjpk closest to pi, then |piq| ≤ |pir|. Assume that there is another completely internal

edge, papb, that is farthest from pi. If q′ is the point on papb that is closest to pi, then

|pir| < |piq′| and hence |piq| < |piq′|. Consider a plane P (q′) through q′ orthogonal to

piq′. There exists a vertex pc of CH(P ) on the side of P (q′) not containing pi. Now

all points of T ′ = 4(pa, pb, pc) are at least as far from pi as q′ is. Thus triangle T ′ is

50



pj

pk pl

pi

pm

Figure 2.14: If a type A triangle is not a convex hull facet

farther from pi than T , giving us a contradiction. 2

Lemma 2 reaffirms the intuition that the vertices of the farthest triangle T should be

as near the “boundary” as possible even when some of its vertices are interior vertices.

Let us call the convex hull of the points internal to CH(P ), namely CH(P−CH(P )),

the iterated convex hull. With the help of this we can be more precise about the

location of the internal edge in Case I.
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Lemma 3 The farthest internal edge pjpk is: (a) either the farthest edge of CH(P −

CH(P )) from pi; (b) or has one endpoint as a vertex of CH(P − CH(P )) and the

other endpoint as the farthest point of P − CH(P )− CH(P − CH(P )) from pi.

Proof: Let pf be the farthest point of P −CH(P )−CH(P −CH(P )) from pi. Let

P (pf ) be the plane containing pf that is perpendicular to pipf . There must be a vertex

pg of CH(P −CH(P )) such that pg and pi are on opposite sides of P (pf ). If there is

another such vertex, ph, then the it must be that pjpk is an edge of CH(P −CH(P )),

since pgph is farther from pi than pfpg is. But if pg is the only such vertex, then

pjpk must be either pfpg or some edge of CH(P − CH(P )). Thus in all cases the

conclusion of the lemma holds. 2

Note that for the above vertex-configuration, we know pl up to being a vertex of

CH(P ) and the distance from pi to 4(pj, pk, pl) up to being of Type B or Type C.

Lemma 4 For the vertex configuration of Case II, if the vertices pk and pl of T lie

on CH(P ), then pkpl is an edge of CH(P ).

Proof: Assume that pkpl is not an edge of the convex hull boundary. We can once

again imitate the proof of Theorem 1 to find a convex hull vertex that lies below the

plane of the triangle 4(pj, pk, pl) which, along with pk and pl, forms a triangle that

is farther from pi than T is, giving us a contradiction. 2
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The remaining (interior) vertex pj of T has the following characterization.

Lemma 5 For Case II, the vertex internal to CH lies on the iterated convex hull,

CH(P − CH(P )).

Proof: Assume otherwise. Let q be the point of T closest to pi. By Lemma 1, q is

either an internal point of an edge or a vertex of T . Several cases arise, depending on

the location of q. In each case, we find a point p ∈ P such that p along with 2 of the

points in {pj, pk, pl} form a triangle that is farther from pi than T , thus obtaining a

contradiction.

Let q = pl be the point of T closest to pi. Consider the sphere B(pi, |piq|), center

pi and radius |piq|, and a plane π tangent to it at pl. Let π′ be a plane through pj

parallel to π. Two cases arise:

(a) Vertex pk of triangle T is below π′

Let pa be a vertex of the iterated hull that also lies below π′. Such a vertex exists

since pj is assumed to be internal to the iterated hull CH(P − CH(P )). Thus the

triangle T ′ = 4(pjpkpa) is farther from pi than T since its vertices are separated from

B by the plane π.
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(b) Vertex pk of triangle T is above π′

In this case we consider a plane π′′ through pk parallel to π. Let the point pa be as in

the previous case. Again the triangle T ′ = 4(pjpkpa) is farther from pi than T since

its vertices are separated from B by the plane π.

If q is interior to pkpl, consider a sphere B(pi, |piq|), center pi and radius |piq|, and

a plane π tangent to it at q. Let π′ be a plane through pj parallel to π. Since, by

assumption, pj is an interior point of CH(P −CH(P )), there exists a point pa on the

iterated hull that lies below π′. The triangle T ′ = 4(pj, pk, pa) is farther from q than

the triangle T since the segment joining any point on T ′ to q intersects the plane π.

The above argument holds even in the limiting case when any of the points pk or pl

lies on π.

Let q be on pjpk or pjpl. Consider the plane P (q) through q that is orthogonal to

piq. If q is pj, then P (q) contains pj. If q is an internal point of pjpk (pjpl), then pjpk

(pjpl) is perpendicular to piq and so P (q) contains pj. and so there must be some

point pb on CH(P −CH(P )) such that pb and pi are on opposite sides of P (q). Then

T ′′ = 4(pb, pk, pl) is farther from pi than T is. 2
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Thus for the vertex configuration of Case II, we know the edge pkpl up to being an

edge of CH(P ) and the vertex pj up to being a vertex of the iterated convex hull

CH(P − CH(P )).

Lemma 6 For the vertex configuration of Case III, T is a facet of CH(P ).

Proof: If we assume that at least one pair of the convex hull vertices pj, pk, and pl

are not adjacent in the face-graph structure of CH(P ) so that 4(pj, pk, pl) is not a

facet of CH(P ), then the arguments adduced in the proof of Theorem 1 shows that

T cannot be the farthest triangle. Of course, the farthest triangle will be the farthest

facet. 2

2.9.2 Algorithm

For each pi in P , the farthest triangle is found by finding a farthest triangle for each

of the 3 types of vertex configuration and then returning the farthest of the 3 as the

answer.

We start with the simplest vertex configuration, viz., Case III. In this case, we find

a convex hull facet that is farthest from pi. Assuming that CH(P ) is fully trian-

gulated, the number of facets are in O(h). So we can find the farthest facet by a

simple brute-force search whose complexity is in O(h). Here, it would help to have a

farthest-triangle Voronoi diagram in the special case that the triangles are the facets
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of a convex polyhedron.

For the vertex configuration of Case II, we proceed in somewhat a brute-force manner.

We consider all the triangles that can be formed by choosing an edge on the convex

hull of P , CH(P ), and a vertex on the iterated convex hull CH(P − CH(P )) and

compute the minimum distance from the query point to these triangles, returning the

corresponding triangle. The complexity of this is in O(hh′) as the number of edges

of CH(P ) are in O(h) and the number of vertices of the iterated convex hull of P is

in O(h′).

Finally, we consider the vertex configuration of Case I. The search for the edge pjpk

of the farthest 4(pj, pk, pl) is guided by Lemmas 2 and 3. Since the farthest edge on

CH(P −CH(P ) from pi is a candidate, we first find this edge papb. Here once again

we remark that it would be helpful to have a farthest-segment Voronoi diagram when

the segments are edges of a convex polytope.

For the other candidate edge, we find the farthest point pf in P −CH(P )−CH(P −

CH(P )) from pi. Here we take advantage of a farthest-point Voronoi diagram for the

point set P −CH(P )−CH(P −CH(P )). To find the point on CH(P −CH(P )), we

shoot a ray ~r from pi, through pf , to intersect CH(P −CH(P )), using an algorithm

due to Matousek and Schwarzkopf [60]. We set the other end point pg to one of the
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vertices of the facet that is hit by the ray.

Of the segments papb and pfpg, we set pjpk to be the one that is farther from pi .

Next, we locate a vertex pl on CH(P ), and join it to pjpk to complete the construc-

tion of the farthest triangle. Let q be a point on the support line of pjpk such piq is

orthogonal to it. We now shoot a ray ~r from pi in the direction of q to hit CH(P ).

Let P (pjpk) be the plane containing pjpk, orthogonal to ~r. We look at the vertices

adjacent to the face of CH(P ) that was hit by ~r. Assuming CH(P ) has been trian-

gulated, we have to examine at most three vertices before we find one that is on the

opposite side of P (pjpk) (we are guaranteed to find at least one because of convexity).

We only need to find one vertex on that side of P (pjpk) because if there is more than

one, then Case I does not result in a farthest triangle. We set this vertex to pl.

Let h be the number of vertices of CH(P ) and h′ the number of vertices of CH(P −

CH(P )). The complexity of finding a farthest internal edge is in O(h′ + (n − h −

h′+ log h′)), where the first term accounts for the case when the farthest edge lies on

the iterated hull boundary. The second term accounts for the case when the farthest

internal edge has one point internal to the iterated hull boundary that is farthest from

pi, and the other end point is obtained by ray-shooting, following [60]. The complex-

ity of finding the third vertex on the outer hull boundary is in O(log h), found again

57



by ray-shooting, following [60]. Thus the complexity of finding a farthest triangle of

this type is in O(h′ + (n− h− h′) + log h′ + log h).

The farthest of the three triangles found from the three cases above gives us the

triangle 4(pj, pk, pl) that is farthest from pi. Summarizing the above discussions, we

have the following theorem.

Theorem 2 The complexity of the all-farthest triangles problem is in O(nhh′), where

h is the number of vertices of CH(P ) and h′ the number of vertices of CH(P−CH(P ))

.

Proof. This follows from the fact that the complexity of computing the two iterated

convex hulls is in O(n log n+ (n− h) log(n− h)) [46], while the complexity of finding

a farthest triangle for a point pi is in O(hh′). 2

2.10 Summary

We have made an exhaustive study of a restricted kind of proximity problem under

various measures. A number of problems remain open. These are: (a) an O(n2)

deterministic algorithm for the all-minimum problem in the line-difference measure;

(b) closing the complexity gaps for the all-maximum problems for the area and perime-

ter measures; (c) improving the complexity of the all-minimum problem in the perime-
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ter measure and establishing a corresponding lower bound; (d) whittling away the

log n factor from the complexities of the all-minimum and all-maximum problems in

the circumcircle measure; (e) the design of an O(n3) algorithm for the all-minimum

problem in the triangle distance measure to improve on the trivial O(n4) algorithm;

for this last problem, an effective characterization will have to be found as a first step.

In [28] a randomized algorithm was suggested for finding the k-th closest distance

from a given point q to a line determined by a pair of n given points whose time

complexity is in O(n log n). It would be interesting to design algorithms for the all-

k-closest problems in all of the above the measures we have discussed.

In the line of the study in [27], the problems of constructing the farthest-segment

Voronoi diagram of a set of segments that are edges of a convex polytope, or the

farthest-triangle Voronoi diagram of the facets of a triangulated polytope are also

worthy of further investigation.
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Chapter 3

An Incremental Linear Programming
Based Tool for Analyzing Gene
Expression Data

3.1 Overview

The availability of large volumes of gene expression data from microarray analysis

(cDNA and oligonucleotide) has opened a new door to the diagnoses and treatments

of various diseases based on gene expression profiling. In this chapter [61], we discuss

a new profiling tool based on linear programming. Given gene expression data from

two subclasses of the same disease (e.g. leukemia), we are able to determine efficiently

if the samples are linearly separable with respect to triplets of genes. This was left

as an open problem in an earlier study that considered only pairs of genes as linear

separators. Our tool comes in two versions - offline and incremental. Tests show that

the incremental version is markedly more efficient than the offline one. This chapter

also introduces a gene selection strategy that exploits the class distinction property

of a gene by separability test by pairs and triplets. We applied our gene selection

strategy to 4 publicly available gene-expression data sets. Our experiments show that

gene spaces generated by our method achieves similar or even better classification

accuracy than the gene spaces generated by t-values, FCS(Fisher Criterion Score)
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and SAM(Significance Analysis of Microarrays).

3.2 Introduction

The availability of large volumes of gene expression data from microarray analysis

(cDNA and oligonucleotide) has opened a new door to the diagnoses and treatments

of various diseases based on gene expression profiling.

In a pioneering study, Golub et al [62] identified a set of 50 genes that can distinguish

an unknown sample with respect to 2 kinds of leukemia with a low classification error

rate. Following this work, other researchers attempted to replicate this effort in the

diagnoses of other diseases. There were several notable successes. van’t Veer et al. [63]

found that 231 genes are significantly related to breast cancer. Their FDA approved

MammaPrint uses 70 genes as biomarkers to predict the relapse of breast-cancer in

patients whose condition has been detected early [63]. Khan et al. [64] found 96 genes

to classify small, round, blue-cell cancers. Ben-Dor et al. [65] used 173-4,375 genes to

classify various cancers. Alon et al. [66] used 2,000 genes to classify colon cancers.

A major bottleneck with any classification scheme based on gene expression data is

that while the sample size is small, numbering in hundreds, the feature space is much

larger, running into tens of thousands of genes. Using too many genes as classifiers

results in over-fitting, while using too few leads to under-fitting. Thus the main dif-
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ficulty of this effort is one of scale: the number of genes is much larger than the

number of samples. The consensus is that genes numbering between 10 and 50 may

be sufficient for good classification [62,67].

In [31], Computational Geometry tools were used for testing the linear separability

of gene expression data by pairs of genes. Applying their tool to 10 different publicly

available gene-expression data-sets, they determined that 7 of these are highly sepa-

rable. From this they inferred that there might be a functional relationship “between

separating genes and the underlying phenotypic classes”. Their method of linear sep-

arability, applicable to pairs of genes only, checks for separability incrementally. For

separable datasets, the running time is quadratic in the sample size m.

Alam et al. [32] in a short abstract, proposed a different geometric tool for testing

the separability of gene expression data sets. This is based on a linear programming

algorithm of Megiddo [68–70] that can test linear separability with respect to a fixed

set of genes in time proportional to the size of the sample set.

In this chapter, we extend this work to testing separability with respect to triplets

of genes. Since most gene sets do not separate the sample expression data, we have

proposed and implemented an incremental version of Megiddo’s scheme that termi-

nates as soon as linear inseparability is detected. The usefulness of such incremental
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algorithm to detect inseparability in gene expression dataset is also observed by [31].

The performance of the incremental version turned out to be better than the offline

version when we tested the separability of 5 different data sets by pairs/triplets of

genes. In the chapter we have also conclusively demonstrated that linear separability

can be put to good use as feature for classification. The chapter also reformulates

Unger and Chor’s method as a linear programming framework. A conference version

of the chapter is appeared in the proceedings of ICCSA 2013 [61].

In a study, Anastassiou [71] reveals that diseases (e.g. cancer) are due to the col-

laborative effect of multiple genes within complex pathways, or to combinations of

multiple SNPs. Motivated by this, we illustrate the effect of the separability property

of a gene to build a good classifier. In order to do so this chapter introduces a gene

selection strategy, based upon the individual ranking of a gene. The ranking scheme

uses the above geometric tools and exploits class distinction of a gene by testing sep-

arability with respect to pairs and triplets of genes.

An important biological consequence of perfect linear separability in low dimensions

is that the participating genes can be used as biomarkers. These genes can be used

in clinical studies to identify samples from the input classes. This objective of linear

separability in low dimensions can be achieved in an efficient way by an adaptation of

Megiddo’s algorithm. Since in gene expression dataset(s) the total number of possible
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combination of genes which may be considered for good classification is too high, we

are justified in confining ourselves to separability in low dimensions and thus limiting

the group size to pairs and triplets. Furthermore, taking a cue from the observation

in [31] that most of gene pairs are not separating, we have laid particular emphasis on

an incremental version of Megiddo’s algorithm that is more efficient in this situation

than an offline one. For any classification purpose as groups of two or three genes

may lead to under-fitting we have also discussed a feature selection method by using

the above geometric tool of linear separability.

The major contributions of this chapter can be summarized as follows:

1. An offline adaptation of Megiddo’s algorithm to test separability by gene

pairs/triplets, fully implemented and tested.

2. An incremental version of Megiddo’s algorithm that is particularly useful for

gene expression datasets, fully implemented and tested.

3. Demonstration of the usefulness of linear separability as a tool to build a good

classifier with application to concrete examples.

4. Reformulation of Unger and Chor’s method [31] in a linear programming frame-

work.

For the completeness of the chapter, in the following section we briefly discuss about

LP formulation of separability [32], [61].
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3.3 LP Formulation of Separability

We have m samples, m1 from a cancer type C1 and m2(= m−m1) from a cancer type

C2 (for example, m1 from ALL and m2 from AML [62]). Each sample is a point in

a d-dimensional Euclidean space, whose coordinates are the expression values of the

samples with respect to the d selected genes. This d-dimensional space is called the

primal space. If a hyperplane in this primal space separates the sample-points of C1

from those of C2, then the test group of genes is a linear separator and the resulting

linear program in dual space has a feasible solution. Suppose there is a separating

hyperplane in primal space and, say, the sample points of C1 are above this plane,

while the sample points of C2 are below (Figure 3.1(a) is a 2-dimensional illustration

of this). Figure 3.1(b) shows that the separating line maps to a point inside a convex

region. The set of all points inside this convex region make up the feasible region of a

linear program in dual space and correspond to all possible separating lines in primal

space.

Thus there is a separating hyperplane in primal space if the resulting linear program

in dual space has a feasible solution. Note, however, that we will have to solve 2

linear programs since it is not known a priori if the m1 samples of C1 lie above or

below the separating hyperplane H.

Thus if d = 2 and the selected genes are g1 and g2, then the gene pair {g1, g2} is a
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linear separator of the m1 samples from C1 and the m2 samples from C2.

We reformulate the above problem as a linear program in dual space. This is an-

other d-dimensional Euclidean space such that points(planes) in the primal space are

mapped into planes(points) in this space such that if a point is above(below) a plane

in the primal space, the mapping preserves this point-plane relationship in the dual

space. For d = 2, read the text of this paragraph by substituting all occurrences of

the word “plane” with the word “line”.

For d = 2 (see [72]), one such mapping of a point p and a line l in the primal space

(x, y) to the line p∗ and the point l∗ respectively in the dual space (u, v) is:

p = (px, py)→ p∗ : v = pxu− py

l : y = lux− lv → l∗ = (lu, lv)

(3.1)

It is straightforward to extend this definition to any dimension greater than 2.

Suppose there is a separating hyperplane in primal space and, say, the sample points

of C1 are above this plane, while the sample points of C2 are below (Figure 3.1(a)

is a 2-dimensional illustration of this). Figure 3.1(b) shows that the separating line

maps to a point inside a convex region. The set of all points inside this convex region
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make up the feasible region of a linear program in dual space and correspond to all

possible separating lines in primal space.

Thus there is a separating hyperplane in primal space if the resulting linear program

in dual space has a feasible solution. Note, however, that we will have to solve 2

linear programs since it is not known a priori if the m1 samples of C1 lie above or

below the separating hyperplane H.

Formally, one of these linear programs in d-dimensional dual space

(u1, u2, . . . , ud) is shown below:

minimize ud

pi1u1 + ...+ pid−1ud−1 − ud − pid < 0, i = 1, ...,m1

p
′i
1u1 + ...+ p

′i
d−1ud−1 − ud − p

′i
d > 0, i = 1, ...,m2

(3.2)

where (pi1, p
i
2, . . . , p

i
d) is the i-th sample point from C1, and the first set of m1 linear

inequalities express the conditions that these sample points are above the separating

plane, while the second set of m2 linear inequalities express the conditions that the

sample points (p
′i
1 , p

′i
2 , . . . , p

′i
d ) from C2 are below this plane. The linear inequalities

above that describe the linear program are called constraints, a term that we shall

also use from now on.
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Figure 3.1: A separating line H in primal space is a feasible solution H∗ in dual
space.

Megiddo in [68, 69] and Dyer in [70] both proposed an ingenious prune-and-search

technique for solving the above linear program that, for fixed d (dimension of the lin-

ear program), takes time linear in (proportional to) the number of constraints. Over

the next two sections, we discuss how the above LP-framework achieve the more

limited goal of testing separability of the samples from the two input classes by an

offline algorithm and an incremental one, both of which are based on an adaptation

Megiddo’s (and Dyer’s) technique.

This approach is of interest for two reasons: (a) in contrast to the algorithm of Unger

and Chor [31], the worst case running time of this algorithm is linear in the sample

size; and (b) in principle it can be extended to study the separability of the sample
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classes with respect to any number of genes.

In what follows, we adopt a coloring scheme to refer to the points that represent the

samples: those in the class C1 are colored blue and make up the set SB, while those

in C2 are colored red and make up the set SR.

If a pair of genes separate the sample classes, then a (blue) segment that joins a pair of

blue points is disjoint from a (red) segment that joins a pair of red points. Unger and

Chor (p. 375, para. 6) [31] suggests an algorithm to test separability by testing if each

blue segment is disjoint from a red segment. Figure 3.2 shows that the above test suc-

ceeds even when the point sets are not separable. Unger and Chor’s [31] conclusions

on separability by pairs of genes is, however, based on an incremental algorithm that

works correctly. Its extension to testing separability by 3 or more genes is not obvious.

Figure 3.2: A counterexample: black circles represent red points, white ones blue
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3.4 Offline Approach

As Megiddo’s algorithm is central to our discussion, we briefly review this algorithm

for d = 2 and refer the reader to [69] for the cases d ≥ 3. A bird’s eye view is

this: in each of logm iterations it prunes away at least a quarter of the constraints

that do not determine the optimum (minimum in our formulation), at the same time

reducing the search space (an interval on the u-axis) in which the optimal solution lies.

Definition: If f1, f2, ..., fn is a set of real single-valued functions defined in an inter-

val [a, b] on the real line, their point wise minimum (maximum) is another function

f such that for every x ∈ [a, b]

f(x) = min(f1(x), f2(x), ..., fn(x)) (f(x) = max(f1(x), f2(x), ..., fn(x))

Let us call the point wise minimum (maximum) of the heavy (light) lines in Figure

3.1(b) the min-curve (max-curve). These are also called the upper and lower envelope

respectively.

Assume that after i iterations we have determined that the minimum lies in the inter-

val [u1, u2]. Let us see how to prune redundant constraints from the set of constraints

that determine the min-curve. We make an arbitrary pairing of the bounding lines

of these constraints. With respect to the interval [u1, u2], the intersection of such a

constraint pair can lie as shown in Figure 3.3(a). For the ones that lie to the left
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(b)

Figure 3.3: (a) Pruning Constraints (b) Testing Feasibility

(right) of the line u = u1(u = u2), we prune the constraint whose bounding line has

larger (smaller) slope. We can likewise prune redundant constraints from the set of

constraints that determine the max-curve.

In order to further narrow down the interval on the u-axis where the minimum lies,
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for all other pairs of constraints whose intersections lie within the interval [u1, u2], we

find the median umed of the u-coordinates of the intersections and let l : u = umed be

the line with respect to which we test for the location of the minimum. We do this

test by examining the intersections of the min-curve and max-curve with l. This is

accomplished by using the residual constraint sets that implicitly define the min-curve

and max-curve. From the relative positions of these intersections and the slopes of the

bounding lines of the constraints that determine these intersections, we can determine

on which side of l, the minimum lies (see Figure 3.3(b)). Next we prune a constraint

from each pair whose intersections lie within [u1, u2] but on the side opposite to which

the minimum lies. Because of our choice of the test-line, we are guaranteed to throw

a quarter of the constraints from those that determine these intersections. We now

reset the interval that contains the minimum to [umed, u2] or [u1, umed].

The above algorithm allows us to determine feasibility as soon as we have found a

test line such that the intersection of the min-curve with l lies above its intersection

with the max-curve.

We have implemented the above offline algorithm both in 2 and 3 dimensions from

scratch. Ours is probably the first such implementation in 3 dimensions. In Appendix

A we provide the pseudo code for offline implementation for both 2 and 3 dimensions.
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Offline algorithms are effective for determining linear separability. However, as most

of the gene-pairs and gene-triplets are not linearly separating, incremental algorithms

would be more efficient than offline ones. This was also observed by Unger and

Chor [31]. In view of this, in the next section we discuss in details an incremental

version of the above algorithm.

3.5 Incremental Approach

The following obvious but useful theorem (true in any dimension d ≥ 1) underlies

our algorithm in dual space.

Theorem 3 Let S ′B and S ′R be arbitrary subsets of SB and SR respectively. If S ′B

and S ′R are linearly inseparable, then so are SB and SR.

Proof: Straightforward, since if SB and SR are linearly separable, then so are S ′B

and S ′R. 2

3.5.1 Incremental approach-2d

First, we choose a small constant number of lines from each of the duals of SR and SB,

and use the offline approach of the previous section to determine if there is a feasible

solution to this constant-size problem. If not, we declare infeasibility (Theorem 3)
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and terminate. Otherwise, we have an initial feasible region and a test-line l : u = u.

max-curve

min-curve

max-curve

min-curve

max-cuve

min-curve

max-curve

min-curve

l: test line l: test line

l: test line l: test line

l1

l2

(a) (b)

(c) (d)

Figure 3.4: Updation of min-curve (a) addition of line l1 (b) test line continues to
pass through feasible region on updating of min-curve (c) addition of
line l2 (d) test line goes out of feasible region on updating of min-curve

We continue, adding a line from one of the residual sets S∗A or S∗B, also chosen ran-

domly. Several cases arise. This line (a) either becomes a part of the boundary of

the feasible region, or (b) leaves it unchanged or (c) establishes infeasibility, in which

case the algorithm terminates. Case(a) spawns two sub-cases as shown in Figure 3.4.

(a.1) the test line l still intersects the feasible region. (a.2) the test line l goes outside

the feasible region. The lines belonging to the case (b) always leads to a condition

mentioned in (a.1).
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If the test line l goes outside the feasible region, constraint-pruning is triggered. This

consists of examining pairs of constraints whose intersections lie on the side of l that

does not include the feasible region. One of the constraints of each such pair does not

intersect the feasible region and is therefore eliminated from further consideration.

However, if l lies inside the new feasible interval, we continue to add new lines.

If we are able to add all lines without hitting case (c), then we have a feasible region

and hence a separating line in the primal space.

A formal description of the iterative algorithm is as below.

Algorithm IncrementallySeparatingGenepairs
Input: Line duals S∗R and S∗B of the point sets SR and SB.
Output: LP feasible or infeasible.
1: Choose S∗

′
R ⊂ S∗R and S∗

′
B ⊂ S∗B so that

∣∣S∗′R ∣∣ =
∣∣S∗′B ∣∣ = 2.

2: Apply the offline approach to S∗
′
R and S∗

′
B , distinguishing between the following

cases:
Case 1: If infeasible then report this and halt.
Case 2: If feasible then return the vertical test line l and continue with Step 3.
3: Repeatedly add a line from

∣∣S∗R − S∗′R ∣∣ or
∣∣S∗B − S∗′B ∣∣ until no more lines remain to

be added or there exists no feasible point on the test line l.
4: If there is a feasible point on the test line l we report separability and halt.
5: If there is no feasible point on the test line l, determine on which side of l the
feasible solution lies.
6: Update S∗

′
R and S∗

′
B by eliminating a line from each pair whose intersection does

not lie in the feasible region and was earlier used to determine l.
7: Update S∗

′
R and S∗

′
B by including all those lines added in step 3 and go to Step 2.
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When SR and SB are linearly separable the running time of the incremental algorithm

is linear in the total number of inputs. Otherwise, as the algorithm terminates when

a line added that reveals inseparability, the time complexity for this case is linear in

the number of lines added so far.

In an Appendix A we provide the pseudo code for the extension of this incremental

algorithm to 3 dimensions.

Theorem 4 If m is the total number of samples then time complexity of the incre-

mental algorithm is O(m).

Proof: In each iteration, the algorithm prunes one quarter of the constraints (i.e.

samples) from the current set S∗
′
R ∪ S∗

′
B . The time complexity of each iteration is

O(m). The run-time T (m) satisfies the recurrence T (m) = O(m) + T (3m
4

), whose

solution is T (m) = O(m). 2

3.5.2 Incremental approach-3d

Suppose constraints (i.e. planes) belong to three-dimensional Cartesian coordinate

system with axes labelled as U, V and Z and the position of any point in three-

dimensional space is given by an ordered triple of real numbers (u1, u2, u3). These
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numbers giving the distance of that point from the origin measured along the axes.

First, we apply 3 dimensional offline approach on a small constant numbers con-

straints (i.e. planes) from each duals of SR and SB. If this constant size problem

is infeasible then we report infeasibility and terminate (see Theorem 3). Otherwise,

we have a vertical test plane that pass through the feasible region. This vertical test

plane is parallel to either VZ-plane (say U) or UZ-plane (say V ) and chosen suitably

(see pseudo-code in the appendix) as suggested by Megiddo.

A formal description of the iterative algorithm is as below.

Algorithm IncrementalySeparatingGeneTriplets
Input: Plane duals S∗R and S∗B of the point sets SR and SB.
Output: LP feasible or infeasible.
1: Initialize S∗

′
R ⊂ S∗R and S∗

′
B ⊂ S∗B. We can choose

∣∣S∗′R ∣∣ =
∣∣S∗′B ∣∣ = 4.

2: Apply Megiddo’s approach to S∗
′
R and S∗

′
B . We distinguish with following cases

Case 1 : If infeasible then report the inseparability and halt.
Case 2 : If feasible then return a vertical test plane U (or V ) and continue with step 3.
3: Repeatedly add a constraint from

∣∣S∗R − S∗′R ∣∣ or
∣∣S∗B − S∗′B ∣∣ and initiate an incre-

mental 2-D approach on vertical test plane U (or V ). We distinguish with following
cases
Case 1 : If the test plane U (or V ) is feasible after all the constraints being considered
then report separability and halt.
Case 2 : If the test plane U (or V ) is infeasible then solve two 2D linear program to
determine which side of test plane the feasible region lies.
Case 2.1 : If any one of 2D linear program is feasible then identify the side of feasible
solution and continue with step 4.
Case 2.2 : If both 2D linear program are not feasible or both are feasible then report
the inseparability and halt.
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4: Identify a second vertical test plane V (or U) and initiate an incremental 2-
D approach by resuming the addition of constraints from

∣∣S∗R − S∗′R ∣∣ or
∣∣S∗B − S∗′B ∣∣

excluding those which are already being considered with U (or V ). In case if we do
not have any second vertical test plane then continue with step 5. We distinguish
with following cases
Case 1 : If the test plane V (or U) is feasible after all the constraints being considered
then report separability and halt.
Case 2 : If the test plane V (or U) is infeasible then solve two 2D linear program to
determine which side of test plane the feasible region lies.
Case 2.1 : If any one of 2D linear program is feasible then identify the side of feasible
solution and continue with step 5.
Case 2.2 : If both 2D linear program are not feasible or both are feasible then report
the inseparability and halt.
5: Update S∗

′
R and S∗

′
B by eliminating a constraint from each coupled line which does

not pass through the feasible quadrant U and V .
6: Update S∗

′
R and S∗

′
B by including all those constraints considered in step 3 and step

4.
7: Repeat the algorithm for updated set of S∗

′
R and S∗

′
B .

3.5.3 Linear programming formulation of Unger and Chor’s

incremental algorithm

In [31], Unger and Chor proposed an incremental algorithm for testing separability

with respect to gene pairs. They consider m1.m2 vectors, obtained by joining every

point in the class SR (or SB) to every point of the class SB (or SR) (see Figure 3.5).

The directions corresponding to these vectors map to m1.m2 points on a unit circle,

with center at O. In this formulation, the sample classes SR and SB are linearly

separable if the points on the unit circle span an arc less than π.
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We can reformulate this in our linear programming framework. Let pi(xi, yi), 1 ≤ i ≤

m1 ∗m2 be the coordinates of the points corresponding to all the directions on the

perimeter of the unit circle. We have the following observation.

Observation 1 The points pi(xi, yi), 1 ≤ i ≤ m1 ∗m2, span an angle less than π iff

there exists a line, l, through O such that all the points lie on one side of it.

maximize/minimize u

u >
yi
xi
, xi > 0

u <
yi
xi
, xi < 0

(3.3)

Or

maximize/minimize u

u <
yi
xi
, xi > 0

u >
yi
xi
, xi < 0

(3.4)

We summarize the above discussion in the following claim:

Claim 8 If there ∃u, then l∗(u, 0) is a point in dual plane such that it is either above

or below of all the lines p∗i (v = u.xi − yi), 1 ≤ i ≤ m1.m2.

Equivalently,
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Claim 9 If there ∃u, then l(y = ux) is a line in primal plane such that all the points

pi(xi, yi), 1 ≤ i ≤ m1.m2 lie on one side of this line.

The incremental implementation based on the above LP formulation is as simple as

Class SR

Class SB

(a)

X

Y

O

P1

P2

P3

P4

P5

P6

(b)

U

V

P ∗1 P ∗2

P ∗3

P ∗4
P ∗5P ∗6

(c)

Figure 3.5: Linear programming formulation of ‘180 strict containment condition’
(a) construction of vectors (b) projection of the vectors onto unit circle
(c) mapping of points on the unit circle to dual plane
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the one [31], and also provide for early termination when inseparability is detected.

In the worst case, the running time of both formulations is quadratic in the sample

size m.

3.6 Gene Selection

Gene selection is an important preprocessing step for the classification of gene ex-

pression dataset. This helps (a) to reduce the size of the gene expression dataset

and improve classification accuracy; (b) to cut down the presence of noise in the gene

expression dataset by identifying informative genes; and (c) to improve the compu-

tation by removing irrelevant genes that not only add to the computation time but

also make classification harder.

3.6.1 Background

In this subsection we briefly discuss some popular score functions used for gene se-

lection. We compare these with our gene selection method, proposed in the next

section. A simple approach to feature selection is to use the correlation between

gene expression values and class labels. This method was first proposed by Golub et

al [62]. The correlation metric defined by Nguyen and Rocke [73] and by Golub et

al [62] reflects the difference between the class mean relative to standard deviation

within the class. High absolute value of this correlation metric favors those genes
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that are highly expressed in one class as compared to the other class, while their sign

indicates the class in which the gene is highly expressed. We have chosen to select

genes based on a t-statistic defined by Nguyen and Rocke [73].

For ith gene, a t-value is computed using the formula

ti =
µi1 − µi2√
σi1

2

n1
+

σi2
2

n2

(3.5)

where nk, µ
i
k and σik

2
are the sample size, mean and variance of ith gene respectively

of class k = 1, 2.

Another important feature selection method is based on the Fisher Score [74] [75].

The Fisher Score Criterion(FCS) for ith gene can be defined as

Fi =
n1(µi1 − µi)2 + n2(µi2 − µi)2

n1(σi1)2 + n2(σi2)2
(3.6)

where nk, µ
i
k and σik

2
are the sample size, mean and variance of ith gene respectively

of class k = 1, 2. µi represents mean of the ith gene.

Significance Analysis of Microarrays (SAM) proposed by Tusher et al [76] is another

important gene filter technique for finding significant genes in a set of microarray
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experiments. The SAM score for each gene can be defined as

Mi =
µi2 − µ2

1

si + s0

(3.7)

For simplicity the correcting constant s0 is set to 1 and si is computed as follows

si =

( 1

n1

+
1

n2

) {∑
j∈C1

(xij − µi1)2 +
∑

j∈C2
(xij − µi2)2

∑
j∈C2

}
(n1 + n2 − 2)


1
2

(3.8)

where xij is j th sample of ith gene. The classes 1 and 2 are represented by C1 and

C2. Similarly nk, µ
i
k and σik

2
are the sample size, mean and variance of ith gene re-

spectively of class k = 1, 2. For the purpose of generating significant genes by SAM

we have used the software written by Chu et al [77] which is publicly available at

http://www-stat.stanford.edu/ tibs/clickwrap/sam/academic.

3.7 A new methodology for gene selection

To find a set of genes of suitable size that is large enough to be robust against noise

and small enough to be applied to the clinical setting, we propose a simple gene

selection strategy based on an individual gene ranking approach. This consists of two

steps: coarse filtration, followed by fine filtration.
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3.7.1 Coarse Filtration

The purpose of coarse filtration is to remove most of the attributes that contribute to

noise in the gene expression dataset. This noise can be categorized into (i) biological

noise and (ii) technical noise [78]. Biological noise refers to the genes in gene ex-

pression dataset that are irrelevant for classification. Technical noise refers to errors

incurred at various stages during data preparation.

For coarse filtration we follow an established approach based upon t-metric discussed

in the previous section. Following a general consensus [62, 67], we chose to select a

sufficient number genes that can be further considered for fine filtration. This is a

set of 100 genes obtained by taking 50 genes with the largest positive t-values and

another 50 genes with the smallest negative t-values.

3.7.2 Fine Filtration

One of the problems with the above correlation metric is that the t-value is calculated

from the expression values of a single gene, ignoring the information available from

the other genes. To rectify this, we propose the following scheme.

Let the set of genes ∆ = {g1, g2, ..., gn} be the output of the coarse filtration step

where n = 100. For a gene gi ∈ ∆, let Si = {gj|(gi, gj) is an LS(Linearly Separable)

pair, gj ∈ ∆ and i 6= j}. In words, Si consists of all genes that form linearly separable
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pairs with gi. For each gene gi ∈ ∆, its Pi-value is set to be Pi = |Si|.

The intuition underlying the above definition is that the informative genes have quite

different expression values in the two classes. If such genes exist in the gene expres-

sion data set then the above ranking strategy will assign the highest rank to those

genes.

A drawback of this gene selection method is that it is applicable only to those gene

expression datasets that have linearly separable pairs. For those datasets that have

few linearly separable pairs, such as Lung Cancer [79] and Breast Cancer [63], we can

extend the definition, using linearly separable gene triplets.

For a gene gi ∈ ∆, set

Qi = {(gj, gk)|(gi, gj, gk) is an LS(Linearly Separable) triplet, gj, gk ∈ ∆, and

i 6= j, i 6= k, j 6= k},

In words, Qi consists of all gene-pairs (gj, gk) that make up a linearly separable triplet

with the gene gi. For each gene gi ∈ ∆, define Ti = |Qi|. Clearly, Ti lies between 0

and n−1C2.
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Table 3.1: Five Gene Expression Datasets

Dataset No. of Genes Total Samples
1. Lung Cancer [79] 12533 181(31+150)
2. Leukemia [80] 12582 52(24+28)
3. SRBCT [64] 2308 43(23+20)
4. Colon [66] 2000 62(40+22)
5. Breast Cancer [63] 21682 77(44+33)

3.8 Results and Discussions

In this chapter we have developed an offline as well as an incremental version of a

geometric tool to test linear separability of pairs and triplets of genes, followed by a

simple gene selection strategy that uses this tool to rank the genes. Based upon this

ranking, we choose a suitable number of top-scoring genes for a good classifier.

We demonstrate the usefulness of the proposed methodology by testing with five pub-

licly available gene expression datasets: (a) Lung Cancer [79] (b) Leukemia Data [80]

(c) SRBCT [64] (d) Colon Data [66] (e) Breast Cancer [63] (see Appendix A for detail

about the datasets). Table 3.1 shows number of samples belongs to different datasets

and the number of samples from each class appear in the parenthesis.

The 100 genes that we select from each of these datasets in the Coarse Filtration step

effectively prunes away most of the attributes(genes) that are irrelevant for classifi-

cation. On the other hand, this number is large enough to provide us with a number
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attributes(genes) that may be over fitting for classifier construction.

To get the best subset of genes for good classification we chose to populate the at-

tribute space with 5, 10, 15, 25 and 30 genes from each dataset by applying Fine

Filtration. The choices of these attribute/feature-space sizes are somewhat arbitrary

but the chosen attribute/feature-spaces are sufficiently large in comparison to the size

of the sample spaces as Table 3.1 shows.

The computational time of the Fine Filtration step depends upon the geometric tool

that we use to check the separability of gene expression data. In this chapter, we have

presented linear time incremental algorithms for both gene pairs and gene triplets. In

order to illustrate the effectiveness of this approach we ran both versions (offline and

incremental) on each of the five datasets obtained by Coarse Filtration. The comput-

ing platform was a Dell inspiron 1545 model-Intel Core2 Duo CPU, 2.00 GHz and 2

GB RAM, running under Windows Vista. The run-time efficiency of the incremental

version over the offline one is evident from Table 3.2.

A group of genes that is being tested for linear separability may include a gene that is

a perfect 1-D separator with TNoM score zero, using the terminology of [65]. In this

case, such a group will provide a positive separability test. In order to exclude such

groups, we checked for the existence of such 1-D separators, and found that no such
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genes exists in the above datasets. Likewise, if a gene pair shows linear separability

then all gene triplets that include these gene pairs will also be linearly separating. In

order to count gene triplets that exhibit pure 3-D linear separability, we avoid testing

gene triplets that include a linearly separable pair. Thus our 3-D test results shown

here include only such gene triplets. We call such gene triplets as Perfect Linearly

Separable Triplet(PLST ). The percentage of Linearly Separable Pairs(LSP), Linearly

Separable Triplets(LST ) and Perfect Linearly Separable Triplets(PLST ) are calcu-

lated using the formulas below.

% of LSP = # of LSP
Total possible LSP

× 100 = # of LSP
2Cn

× 100

% of LST = # of LST
Total possible LST

× 100 = # of LST
3Cn

× 100

% of PLST = # of PLST
Total possible LST−((# of LSP )×(n−2))

× 100

= # of PLST
3Cn−((# of LSP )×(n−2))

× 100

where n is total number genes in the gene expression data set.

The above formulas show that the total number of triplets relative to the PLST s is

much higher than the total number of pairs relative to the LSPs. Thus the increase
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in the actual number of PLST over the number of LSP is suppressed by the high

value of the denominator in the former case. The separability test shows that Colon

Data [66] has neither any LSP nor any PLST. The Lung Cancer [79] and Breast

Cancer [63] datasets have a few LSP, whereas the number of PLST is respectively

41 and 5 times (approximately) the number of LSP. The Leukemia Data [80] and

SRBCT [64] show a good number of LSP, while the number of PLST is respectively

6 and 11 times (approximately) the number of LSP.

The motive underlying our gene selection strategy is to identify if a gene, jointly with

some other genes, has the class distinction property or not. In the current study, we

identify the class distinction property by separability tests where we restricted the

group size to pairs and triplets. As the Colon Data [66] did not show any positive

separability result we continued our study with the remaining four gene expression

datasets. This result in Colon Data [66] is not surprising at all since according to

Alon et al. [66] some samples such as T2, T30, T33, T36, T37, N8, N12, N34 in

Colon Data have been identified as outliers and presented with anomalous muscle-

index. This confirms the uncertainty of these samples.

To continue, in the Fine Filtration stage we use the incremental version of our al-

gorithm to test separability by gene pairs and assign a Pi value to a gene gi ∈ ∆.

Based on the ranking, we choose a set of top-scoring genes to populate five different
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feature spaces of size 5, 10, 15, 20, 25 and 30. If more than one gene have same rank

then we choose an arbitrary gene from that peer group. To compare our method with

other selection methods such as t-metric, FCS and SAM, we populate similar feature

spaces respectively.

For classification we used machine learning tools supported by WEKA version 3.6.3

[81]. We used the following two classifiers :(a) Support Vector Classifier : WEKA

SMO class implements John C. Platt’s [82] sequential minimal optimization algo-

rithm for training a support vector classifier. We used a linear kernel. (b) Bayes

Network Classifier : Weka BayesNet class implements Bayes Network learning using

various search algorithms and quality measures [83]. We have chosen Bayes Network

classifier based on K2 for learning structure [84]. Both of the above classifiers nor-

malized the attributes by default to provide a better classification result. We used

a 10-fold cross-validation [85] for prediction. as shown in Figure 3.6. As suggested

by Kohavi [85] we have used ten-fold stratified cross-validation. In stratified cross-

validation the folds are stratified so that they contain approximately same proportions

of labels as original datasets.

A comparative classification accuracy of the feature spaces generated from P -values,

t-values, FCS and SAM is shown in Figure 3.7 - 3.10. The results clearly show that

the gene spaces generated by P -values yields a good classifier. Specifically, the feature
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Gene expression dataset
(10 fold on sample size)

Fold i left out

Tested Sample

9 Fold temporary training set

Feature Selection

Algorithm Classifier

Fold i Classification

Sum

Predicted

10 iteration (i = 1 to 10)

1. Coarse Filtration

2. Fine Filtration

Figure 3.6: 10 Fold cross validation on gene expression data-set

spaces of sizes 10, 15, 20, 25 and 30 generated by the P -values perform mostly better

than or as good compared to the feature spaces generated by the t-values, FCS and

SAM.

To illustrate the performance of the classifiers with respect to the feature spaces

generated by the T -values we considered two datasets with few LSP, such as Lung

Cancer [79] and Breast Cancer [63]. To make sure that the dataset has no LSP we

removed all genes that are responsible for pair separability in feature the selection

process. Then feature spaces of size 5, 10, 15, 20, 25 and 30 are populated based upon

the T -values. The classification results are shown in Figure 3.7 - 3.10. It is interesting
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to note that the feature space generate from lung Cancer [79] dataset by T -values

achieves similar or even better classification accuracy as compared to t-values, FCS

and SAM. In Figure 3.11 - 3.14. we have shown the classification accuracy of feature

space confined to 25 and 30.
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(a) Leukemia SVM

(b) Leukemia BayesNet

Figure 3.7: Accuracy vs Feature Space (Leukemia)
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(a) SRBCT SVM

(b) SRBCT BayesNet

Figure 3.8: Accuracy vs Feature Space (SRBCT)
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(a) Lung Cancer SVM

(b) Lung Cancer BayesNet

Figure 3.9: Accuracy vs Feature Space (Lung Cancer)
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(a) Breast Cancer SVM

(b) Breast Cancer BayesNet

Figure 3.10: Accuracy vs Feature Space (Breast Cancer)
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(a) 25 FS of Leukemia

(b) 30 FS of Leukemia

Figure 3.11: Classifier Accuracy of gene expression dataset on 25 and 30 Feature
Space(FS) - Leukemia
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(a) 25 FS of SRBCT

(b) 30 FS of SRBCT

Figure 3.12: Classifier Accuracy of gene expression dataset on 25 and 30 Feature
Space(FS) - SRBCT
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(a) 25 FS of Lung Cancer

(b) 30 FS of Lung Cancer

Figure 3.13: Classifier Accuracy of gene expression dataset on 25 and 30 Feature
Space(FS) - Lung Cancer
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(a) 25 FS of Breast Cancer

(b) 30 FS of Breast Cancer

Figure 3.14: Classifier Accuracy of gene expression dataset on 25 and 30 Feature
Space(FS) - Breast Cancer
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3.9 Summary

Our empirical study of the four datasets shows that the feature space generated by

our methods, particularly by the use of P-values, is as good as the feature selection

methods based on t-values, SAM and FCS. Towards the broader objective of iden-

tifying important biomarkers to distinguish between input classes, in Table 3.3 we

enumerate the top 10 genes (or genes attached to probe set in respective microarray

experiment) from each of the datasets.

We presented a gene selection strategy to achieve a high classification accuracy. The

gene selection strategy exploits the class distinguishing property of genes by test-

ing separability by pairs and triplets. To test for separability we have provided two

versions of a linear time algorithm, and demonstrated that the run-time of the incre-

mental version is markedly better than that of the offline version. The importance of

the given method lies in the fact that it can be easily extended to higher dimensions,

allowing us to test if groups of genes of size greater than 3 can separate the datasets.

In the current study, we have limited the separability tests to gene pairs and triplets

and used this criterion to rank the genes.
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Table 3.3: Top Ten Significant Genes based upon P-values

Dataset Probe Set
or image

Gene Name or Description

Leukemia
Data

39318 at Hs.2484 gnl—UG—Hs#S4305 H.sapiens mRNA for Tcell
leukemia

36571 at Hs.75248 gnl—UG—Hs#S5526 H.sapiens topIIb mRNA for topoi-
somerase IIb

41462 at Hs.11183 gnl—UG—Hs#S1055230 Homo sapiens sorting nexin 2
(SNX2) mRNA, complete cds

266 s at M26692 /FEATURE=exon#1 /DEFINITION=HUMLCKPR02
Homo sapiens lymphocyte-specific protein tyrosine kinase (LCK)
gene, exon 1, and downstream promoter region

34168 at Hs.272537 gnl—UG—Hs#S1611 Human terminal transferase
mRNA, complete cds

40285 at Hs.58927 gnl—UG—Hs#S876152 Homo sapiens nuclear VCP-like
protein NVLp.2 (NVL.2) mRNA, complete cds

40533 at Hs.1578 gnl—UG—Hs#S1266737 tg78b04.x1 Homo sapiens
cDNA, 3’ end

38017 at Hs.79630 gnl—UG—Hs#S551444 Human MB-1 gene, complete
cds

40282 s at Hs.155597 gnl—UG—Hs#S779 Human adipsin
39520 at Hs.100729 gnl—UG—Hs#S1526847 wn60d01.x1 Homo sapiens

cDNA, 3énd

Lung
Cancer

33328 at
36533 at
33833 at
31684 at
41388 at
1662 r at
33904 at
36105 at
33245 at
39756 g at

Breast
Cancer

Contig53226 RC
AI147042 RC
NM 000790
Contig1789 RC
NM 000238
AB037821
AB033007
NM 000353
NM 002073
AF053712

SRBCT

770394 Fc fragment of IgG, receptor, transporter, alpha
377461 caveolin 1, caveolae protein, 22kD
1435862 antigen identified by monoclonal antibodies 12E7, F21 and O13
814260 follicular lymphoma variant translocation 1
866702 protein tyrosine phosphatase, non-receptor type 13 (APO-1/CD95

(Fas)-associated phosphatase)
52076 olfactomedinrelated ER localized protein
357031 tumor necrosis factor, alpha-induced protein 6
43733 glycogenin 2
207274 Human DNA for insulin-like growth factor II (IGF-2); exon 7 and

additional ORF
898219 mesoderm specific transcript (mouse) homolog
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Chapter 4

On the linear separability of a bichromatic
point set with violated constraints

4.1 Overview

Let SR be a set of red points and SB a set of blue points in the plane, with n =

|SR|+ |SB|. If the sets are linearly separable, a separating line can be found in O(n)

time by the well-known linear programming technique of Megiddo or Dyer. Otherwise,

it gives rise to the interesting problem of finding the smallest set SRB ⊂ SR∪SB such

that SR \ SRB and SB \ SRB are linearly separable. In this chapter, we propose an

O(nk2) time algorithm for this problem, where k = |SRB|. When k = o(log n), this is

better than the so-far-best O((n+ k2) log n) time algorithm known for this problem.

For k = O(1), which holds for the application to gene expression analysis that we

have in mind, we have the first linear time algorithm known for this problem.

4.2 Introduction

4.2.1 Problem statement

Let SR be a set of red points and SB a set of blue points in the plane, with n =

|SR| + |SB|. Assuming that SR and SB are “almost” linearly separable, it is an
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interesting problem to find a line l and a set SRB ⊂ SR ∪ SB of minimum size such

that the points of the sets SR \ SRB and SB \ SRB lie on opposite sides of l. In this

chapter, we study the above problem and show that when |SRB| = O(1) it can be

solved in linear time.

4.2.2 Motivation

This problem is motivated by the following fundamental classification problem in ma-

chine learning. Given n sample points (the training set), n1 from cancer type C1 (say

red points SR, |SR| = n1) and n2 from cancer type C2 (say blue points SB, |SB| = n2),

construct a predictor (separating line) that facilitate classification of a new sample

point into either C1 or C2. Clarkson [86], Dyer [70], Megiddo [68, 69], Seidel [87],

Sharir and Welzl [88] showed that this problem can be solved in linear time if the red

and blue points are linearly separable.

However, these algorithms are not designed to handle the case when the point sets

are almost linearly separable. Practically, this case arises due to the presence of

faulty data points (outliers) as a result of noise or sampling or round-off errors. This

variant of the problem was addressed by Matousek [11], Chan [12, 89, 90], Efrat et

al. [91], Roos and Widmayer [92]. For a given k, k ≤ n, their methods find a line

that separates all but k of the given points. These k violations can be points of either

color.
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4.2.3 Prior work

Everett et al. [10] were among the first to investigate this problem, assuming that

the red and blue point sets have the same cardinality. Note that such an assumption

does not hold for most classification problems. Their proposed dual-space algorithm

explores the solution space by constructing in optimal O(n log n+nk) time all (≤ k)-

levels of the blue and red lines, and intersecting pairs of blue and red levels to find

the minimum k. As the (≤ k)-levels in the arrangement of n lines have combinato-

rial complexity O(nk) [93,94], the algorithm has time complexity O(n log n+nk log k).

Matousek [11] proposed an efficient O(n log n + k3 log2 n) time algorithm that finds

a line that separates all but k of given points. This method works differently for (a)

the feasible case - when the point sets are completely separable and (b) the infeasible

case - when the point sets are not completely separable. Like Everett’s algorithm,

this method also uses the arrangement of lines in dual space. To find the minimum

k, the smaller levels (≤ k) in the arrangement have to be searched first.

Nearly a decade later, Chan [12] revisited the result of Everett et. al [10], propos-

ing an improved algorithm that runs in O((n+ k2) log n) expected time. His method

avoids constructing all (≤ k)-levels, using instead a concave/convex-chain decomposi-

tion technique that involves a small O(k) number of chains of total size O(n) [95–97].

This algorithm has same limitation as that of Matousek [11] in requiring an upper
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bound on the number of outliers in order to find the minimum.

Megiddo [69], O’Rourke et al. [98], Vapnik [99] studied this problem in higher di-

mensions with hyperplane or sphere as separator. Arkin et al. [100], Hurtado et

al. [101, 102] discussed the problem of separability in the plane with separators that

are strips or wedges or double-wedges. The problem with convex polygons or sim-

ple polygons as a separator was addressed by Edelsbrunner and Preparata [103],

Fekete [104] and Mitchell [105].

4.2.4 Our contributions

We propose an output-sensitive algorithm that runs in O(nk2) time. If k2 = o(log n)

this algorithm is more efficient than existing algorithms; and if k = O(1) the algo-

rithm runs in linear time as compared to existing O(n log n) time algorithms [10–12].

Moreover, the proposed algorithm does not require that the red and blue point sets

have the same cardinality as in Everett’s algorithm [10], nor does it require an upper

bound on the number of violated constraints as in the algorithms of Matousek [11]

and Chan [12].

107



4.3 Preliminaries

The problem of finding a linear separator in primal space that minimizes the number

of outliers k can be reduced to a 2-dimensional linear programming problem in dual

space [92]. The point sets SR and SB in primal space transform to line sets S∗R and

S∗B in dual space. If a line l that separates all but k points of SR and SB then in dual

there exists a point l∗ that separates all but k lines of S∗R and S∗B.

To simplify the formulation in dual space, we make the following general position

assumptions: (a) the lines of the arrangement have distinct and finite slopes; (b)

no three lines are concurrent (see [106], Roos and Widmayer [92]). Note that there

are well-known techniques for dealing with the situation where these general position

assumptions do not hold.

4.3.1 Megiddo’s algorithm

Megiddo’s algorithm solves the following linear program in the uv plane.

v ≥ uxi − yi (xi, yi) ∈ SR

v ≤ uxi − yi (xi, yi) ∈ SB
(4.1)

where |SR| = n1, |SB| = n2 and n1 + n2 = n.

108



x

y

u

v

(a) (b)

Primal P lane
Dual P lane

Outliers

l

l∗

Red

Blue

Red

Blue

Figure 4.1: Classification of red set (dots (primal) or lines (dual)) from blue set
(solid dots (primal) or dark lines (dual)). A separating line l in the
primal space has a feasible point l∗ in the dual space. Two points in
primal (lines in dual) are misclassified.

Its output is a point such that all red lines are below this point and all blue lines are

above. Call the point-wise minimum (maximum) of the blue (red) lines as min-curve

(max-curve). These are also known as upper and lower envelope respectively. In the

feasible case, the max-curve intersects the min-curve. If they do not intersect the

blue and red sets are not completely separable.

Megiddo’s algorithm performs O(log n) iterations. In each iteration it prunes at least

a quarter of the constraints (i.e. lines) that do not determine the boundary of the

feasible region. At the same time it reduces the search interval on the u-axis. Each
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iteration involves a vertical test line lT that is used to check for feasibility, leading to

the following cases:

1. max-curve is below the min-curve at lT , indicating separability

2. max-curve is above the min-curve at lT , indicating two possibilities

(a) there exists a possible feasible region either to the left of lT or to its right;

(b) or there is inseparability

In case (2.a), the algorithm continues with the next iteration. In the other cases, the

algorithm reports separability or inseparability. The inseparable case is determined

from the relative slopes of lines belonging to max-curve and min-curve that inter-

sects the test line lT . Call these lines eccentric-lines. In view of our general position

assumptions, this includes either two lines from each curve (or envelope) or one from

one curve and two from the other (see Figure 4.2). Assuming |S∗R|+ |S∗B| > 2, we can

prove the following result.

Claim 10 If S∗R and S∗B are not completely separable then there exists either 3 or 4

eccentric-lines.

4.4 Proposed Algorithm

The following useful theorem underlies our algorithm.
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Figure 4.2: Eccentric-lines from max and min curve. In all cases slope(llmin) ≥
slope(llmax) and slope(lrmax) ≥ slope(lrmin).

Theorem 5 If S∗R and S∗B are not completely separable then at least one of the

eccentric-lines is an outlier.

Proof: Assume otherwise. If we run Megiddo’s algorithm on an input consisting of

these eccentric-lines alone, we will arrive at the same situation where the max-curve

does not intersect the min-curve, indicating inseparability. 2

Suppose we have k outliers that cause inseparability. The algorithm identifies a su-

perset of m constraints that contains these k outliers (m ≤ 4k as we will see latter).

Call this set of m constraints as the tentative set, T , and the remaining set of n−m

constraints as the residual set D.

The proposed algorithm consists of the following main steps.
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1. Construct the tentative-set T .

2. Explore the arrangement of the lines in the tentative-set, T , for outlier sets.

3. Validate each outlier set.

The details of the above three steps appear in the following sections.

4.4.1 Construct the tentative-set T

Initialize the residual-set, D, with all the constraints in the sets S∗R and S∗B and the

tentative-set, T , to empty. In this step, we run Megiddo’s algorithm with the con-

straints of D as input. If we reach the inseparable case, remove the eccentric-lines

from D and add them to T . Repeat the above process in a loop till Megiddo’s algo-

rithm detects separability. Suppose Megiddo’s algorithm is called i+ 1 times (i ≥ 0)

before it detects separability then m ≤ 4i.

Theorem 6 If k is the minimum number of outliers whose removal from SR ∪ SB

results in a feasible solution then i ≤ k ≤ m.

Proof: The first inequality holds because in each of the first i runs of Megiddo’s

algorithm the eccentric-set generated has at least one outlier. The second holds

because T contains all possible outliers. 2
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4.4.2 Explore the arrangement of the lines in the tentative-set ,

T , for outlier sets

Construction of arrangement

Incrementally construct the arrangement of the lines in T by simulating Chazelle et

al.’s algorithm [54], with some additional book-keeping. We use any reasonable data

structure (e.g. a doubly-connected edge list (DCEL)) to represent the planar graph.

We enclose the arrangement inside a large bounding box B. Consider updating the

already-constructed arrangement, A(j), on j lines when introducing the j + 1-th line

lj+1. While updating the data structure, we maintain incident constraints (or lines) of

each vertex. Notice that the order of the insertion of the lines is arbitrary. Chazelle

et al.’s method takes O(j) time for the j-th insertion. Since a line intersects the

boundary of B twice, we can easily determine the entry face in the arrangement A(j)

of lj+1. The arrangement is updated by walking along the lower part of the zone

of lj+1, denoted by zone(lj+1). This is the set of faces whose closure intersects lj+1

which is of combinatorial complexity O(j). Thus running time of this incremental

construction is O(m2), where m is the number of lines in the tentative-set.

Compute the levels of the arrangement

A point in the arrangement is feasible if it is above the red lines but below the

blue lines. Each edge e in the arrangement is assigned a level (a, b) where a is the

113



number of red lines above e and b is the number of blue lines below it. The level

(a, b) represents number of lines k (k = a+ b) that are misclassified by a point on e.

The DCEL data structure also maintains the outliers for each edge. The assignment

of level to each edge can be done by traversing each line of the arrangement. For

a line lj calculate the level of the leftmost edge which requires checking of above-

below relationship with respect to that edge of all other lines. This takes linear time

i.e. O(m). To calculate the levels of the other edges on lj, we walk along the line

using the DCEL, stopping at vertices to update the level information (see Figure 4.3).

Definition: A line lj crosses a line li from above (from below) if lj intersects every

vertical line above (below) li before its intersection with li.

Suppose eLij and eRij are edges on the line li respectively to the left and to the right

of its intersection with lj. If eLij(a, b) is the level of the edge eLij then we have the

following level change rules.

eLij(a, b) → eRij(a− 1, b) if lj ∈ S∗R and crosses li from above

eLij(a, b) → eRij(a+ 1, b) if lj ∈ S∗R and crosses li from below

eLij(a, b) → eRij(a, b+ 1) if lj ∈ S∗B and crosses li from above

eLij(a, b) → eRij(a, b− 1) if lj ∈ S∗B and crosses li from below
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Figure 4.3: The levels to the edges on the line lR
∗

1 of arrangement.

The assignment of levels to the edges of a line takes O(m) time. Thus we have an

O(m2) algorithm for m lines.

Search for potential feasible regions

In this step, we scan the faces of the arrangement for potential feasible regions. The

number of lines that are misclassified by any feasible point within a face is related

to the levels of the edges bounding that face. Every edge in an arrangement has two

faces adjacent to it. A face is above (below) an edge if all the points belonging to that

face are above (below) the line incident on the edge. Thus if a face is above (below) an

edge eij(a, b) on a red line then every point in the face misclassifies a (a+ 1) red lines

and b (b) blue lines. Similarly, if a face is above (below) an edge eij(a, b) on a blue

line then every point in the face misclassifies a (a) red lines and b + 1 (b) blue lines.

A face is a potential feasible region if it misclassifies k lines such that i ≤ k ≤ m (see

Theorem 6). As we walk along the line lj in the arrangement we look for potential
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feasible regions in the zone of lj. Since the complexity of zone(lj) is O(m) [54], the

search along all the lines in the arrangement takes O(m2) time. This step can be

carried out in parallel with the computation of the levels in the arrangement.

4.4.3 Validate the outlier set

We know the outliers for each face in the arrangement. For each potential feasible

region (face in the arrangement) with k outliers, we check for the feasible region with

n−k constraints, belonging to the red and blue sets. We run Megiddo’s algorithm for

this validation. During the validation we keep track of the minimum k for which two

sets are separable for all but k of the given constraints. Since we have O(k2) faces in

the arrangement the validation takes O(nk2) time.

Theorem 7 If SRB, |SRB| = k, is a set of minimum violations such that SR \ SRB

and SB\SRB are linearly separable then there exists a line l that separates red and blue

points in the sets (SR∪SB)\SRB and SRB where all red (blue) points of (SR∪SB)\SRB

are on one side of l and all red (blue) points of SRB are on opposite side.

Proof: If there exists a line l that separates red and blue points of (SR ∪ SB) \ SRB

but not SRB, where all red (blue) points (SR ∪ SB) \ SRB are on one side of l and all

red (blue) points of SRB are on opposite side, then |SRB| is not minimum. 2
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A formal description of the above iterative algorithm is given below.

Algorithm SWkVC (Separability With k Violated Constraints)

Input: (a) Line duals S∗R and S∗B of the point sets SR and SB
(b) Upper bound K to the number of violated constraints, where K = O(1)

Output: A minimum set of outliers SRB of size k (i.e. k = |SRB|)

Step 1: Initialize T = φ, D = S∗R ∪ S∗B, i = 0, k = K + 1.
Step 2: do

call Megiddo(D)
if(infeasible)
i = i+ 1
if (i > K)

exit and report “not almost-separable”
identify the set of eccentric-lines, Se
D = D/Se
T = T ∪ Se

while (infeasible)
Step 3: if (|T | == 0)

report “linearly separable with k = 0” and exit
Step 4: Construct the arrangement of the lines in T
Step 5: Assign levels to all the edges of the arrangement
Step 6: repeat (for each l ∈ T )

repeat (for each face F ∈ zone(l) )
if ((|S∗RB| < k) && (|S∗RB| ≥ i))

call Megiddo((S∗R ∪ S∗B) \ S∗RB )
if (feasible)
k = |S∗RB|
SRB =Primal(S∗RB)

Step 7: if (k ≤ K)
report SRB and k

else
report “not almost-separable”’
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Theorem 8 The algorithm SWkVC is correct.

Proof: At the end of Step 2, the tentative-set, T , contains all potential outliers. Oth-

erwise Megiddo’s algorithm when run with D would report infeasibility. Otherwise,

Megiddo’s algorithm with input D returns infeasibility. If i > K then from Theo-

rem 6 k > K and the algorithm correctly reports ”not almost-separable”. Otherwise

the algorithm checks for a minimum number of violations such that k ≤ K.

All potential feasible regions with k violations are contained in the arrangement of

T . From Theorem 6, the minimum k satisfies the inequality i ≤ k ≤ K. The

rest of the algorithm scans for faces of the arrangement that satisfies i ≤ |S∗RB| ≤

K. Each potential feasible region is validated by Megiddo’s algorithm with input

(S∗R∪S∗B)\S∗RB and keeps record of the minimum |S∗RB| that returns feasibility. From

Theorem 7, the algorithm returns a minimum |SRB| that separates red and blue points

of (SR ∪ SB) \ SRB.

2

4.4.4 Time Complexity

The algorithm takes O(nk) time for identifying the constraints of T , where n is total

number constraints and k is the minimum number of outliers. The construction of the

arrangement from T as well as the scanning of the arrangement for potential feasible

regions (or faces), takes O(k2) time. The validation step is run for at most O(k2)

faces, each validation taking O(n) time. Thus we have an O(nk2) algorithm.
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4.5 Experiment on gene expression datasets

We tested the above algorithm with five publicly available gene expression datasets:

(a) Lung Cancer [79] (b) Leukemia Data [80] (c) SRBCT [64] (d) Colon Data [66]

(e) Breast Cancer [63] (see Appendix A for detail about the datasets). To satisfy the

general position assumption, we prune all the genes that have duplicate values in any

two samples. This turns out to be a strong assumption for three out of the five gene

expression datasets and prunes most of the genes. Table 4.1 shows numbers of genes

in each dataset before and after the pruning.

Table 4.1: Five gene expression datasets before and after pruning

Dataset Number of Genes Total Samples
before pruning after pruning

1. Lung Cancer [79] 12533 263 181(31+150)
2. Leukemia [80] 12582 4702 52(24+28)
3. SRBCT [64] 2308 2079 43(23+20)
4. Colon [66] 2000 1982 62(40+22)
5. Breast Cancer [63] 21682 119 77(44+33)

Finally, we select 100 genes based on the correlation between gene expression values

and class labels. This method was first proposed by Golub et al [62]. The correlation

metric defined by Nguyen and Rocke [73] and by Golub et al [62] reflects the difference

between the class mean relative to standard deviation within the class. High absolute

value of this correlation metric favors those genes that are highly expressed in one

class as compared to the other class, while their sign indicates the class in which the

119



gene is highly expressed. We have chosen to select genes based on a t-statistic defined

by Nguyen and Rocke [73].

For ith gene, a t-value is computed using the formula

ti =
µi1 − µi2√
σi1

2

n1
+

σi2
2

n2

(4.2)

where nk, µ
i
k and σik

2
are the sample size, mean and variance of ith gene respectively

of class k = 1, 2.

The set of 100 genes obtained by taking 50 genes with the largest positive t-values

and another 50 genes with the smallest negative t-values. In Table 4.2 and Figure 4.4,

we show percentage of linear separability for k = 0, 1, ..., 10 on all possible gene pairs

(i.e. 4950 gene pairs) out the 100 genes in each datasets.

In Leukemia and SRBCT, the percentage of linear separable pairs grow 10% to 20%

approximately as k increase from 0 to 5. The datasets (i.e. Leukemia and SRBCT)

show a less than 10% growth as k increases from 6 to 10. The other datasets (i.e.

Colon, Lung Cancer and Breast Cancer) show a small growth as k increases from

0 to 4. These datasets (i.e. Colon, Lung Cancer and Breast Cancer) show a small

number of linear separable pairs i.e. 39.03%, 16.85%, 15.47% respectively with k = 10.

Figure 4.5 shows rate of growth of linear separable pairs for each dataset as k grows
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Table 4.2: Almost linear separability for k = 0, 1, ..., 10

k Percentage of Linear separable pair
Colon Leukemia Lung Cancer SRBCT Breast Cancer

0 0.00 1.25 0.00 0.87 0.00
1 0.00 11.80 0.00 10.59 0.00
2 0.00 31.90 0.04 28.67 0.10
3 0.00 51.03 0.46 45.09 0.61
4 0.24 66.91 1.07 60.28 2.59
5 1.90 80.08 2.00 74.55 5.62
6 5.56 88.02 3.76 86.08 6.20
7 11.64 92.95 6.44 92.71 8.14
8 20.61 95.98 8.87 96.57 9.52
9 30.46 97.39 12.10 98.63 13.07

10 39.03 98.51 16.85 99.37 15.47

from 0 to 10.

Figure 4.4: Percentage of linear separable pairs vs number of outliers (k)

The case when a dataset exhibits a low linearly separable pairs, the proposed geo-

metric tool can be used to select genes for a good classifier by simulating the steps

discussed in chapter 3.

121



(a) Colon dataset (b) Leukemia dataset

(c) Lung cancer dataset (d) SRBCT dataset

(e) Breast cancer dataset

Figure 4.5: Rate of growth of linear separable pairs with increase in k
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4.6 Summary

This chapter presents an efficient technique for detecting linear separability with a

minimum number of violations. These violations are due to noise, sampling error or

round off error. Practically, if the allowable number of violations k is O(1) then to

our knowledge, this is the only linear time algorithm known for this problem. When

k = o(log2 n) the proposed algorithm is better than the known algorithms by Everett

et al. [10], Matausek [11] and Chan [12].

We also tested the above algorithm on five publicly available datasets and report the

rate of growth of linear separable pairs as k increases from 0 to 10. In this line of

the study, some promising directions for future works are (a) extend the proposed

technique to higher dimensions (b) to demonstrate the use of the proposed geometric

tool to select genes for a good classifier.
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Chapter 5

An eigendecomposition method for
protein structure alignment

5.1 Overview

The alignment of two protein structures is a fundamental problem in structural bioin-

formatics. Their structural similarity carries with it the connotation of similar func-

tional behavior that could be exploited in various applications. In this chapter, we

model a protein as a polygonal chain of α carbon residues in three dimension and

investigate the application of an eigendecomposition method due to Umeyama to the

protein structure alignment problem. This method allows us to reduce the structural

alignment problem to an approximate weighted graph matching problem.

The chapter introduces two new algorithms, EDAlignres and EDAlignsse, for pair-

wise protein structure alignment. EDAlignres identifies the best structural alignment

of two equal length proteins by refining the correspondence obtained from eigende-

composition and to maximize similarity measure, TM-score, for the refined corre-

spondence. EDAlignsse, on the other hand, does not require the input proteins to

be of equal length. It works in three stages: (1) identifies a correspondence be-

tween secondary structure elements (i.e SSE-pairs); (2) identifies a correspondence
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between residues within SSE-pairs; (3) applies a rigid transformation to report struc-

tural alignment in space. The latter two steps are repeated until there is no further

improvement in the alignment. We report the TM-score and cRMSD as measures of

structural similarity. These new methods are able to report sequence and topology

independent alignments, with similarity scores that are comparable to those of the

state-of-the-art algorithms such as, TM align and SuperPose.

5.2 Introduction

Along with DNA and RNA, protein molecules are the main drivers of all life pro-

cesses at the molecular level. A protein molecule is a linear polypeptide chain, with

adjacent pairs of amino acids, joined together by a peptide bond, giving rise to the

nomenclature “polypeptide”. In order to perform its particular biological function,

the linear polypeptide chain folds into a stable, low-energy 3-dimensional tertiary

structure. The latter structure is formed by the joining together of two types of sec-

ondary structures, known as α-helices and β-sheets.

The two important aspects of this process are: (1) how the folding takes place; (2)

how does the particular structure it assumes allows it to perform its designated func-

tion. The first is well-known as the protein folding problem, predicting how a protein

will fold, given the amino acid sequence that makes up its polypeptide chain struc-

ture. This problem still awaits a comprehensive solution. The second problem is
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that of predicting function from structure. Here a reductionist approach is a popular

one: structural comparisons with proteins of known functions. Thus the problem of

structural alignments of proteins, which is the subject of this chapter.

As Taylor et al. [107] observed, “The most important things we know about pro-

teins have come therefore not from theory but from observation and comparison of

sequences and structures”. In view of the importance of the problem, numerous

heuristics have been proposed, consequently giving rise to an extensive literature and

several large structural databases of proteins [108–110]. These databases help in

the classification of the large space of protein sequences into structurally equivalent

classes by means of alignment or structure comparison algorithms.

In order to design an alignment algorithm, it is important to enunciate clearly the

protein model that will be used. Some of the earliest alignment algorithms [111,112]

assumed a model in which the central α carbon atom of each residue are joined suc-

cessively to form a polygonal chain in three dimensions. A more primitive model is

to view a protein as a collection of points (again the α carbon atoms) in three space,

which allows one to view the alignment problem as that of matching two point sets.

We must point out that in order to draw biologically meaningful conclusions from an

alignment, it is important to supplant these models with features of the proteins like

hydrophobicity, exposure to solvents, mutual affinities of amino acids etc.
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The alignment of two protein structures is the 3-dimensional analogue of linear se-

quence alignment of peptide or nucleotide sequences. An initial equivalence set can be

obtained by various methods such as comparison of distance matrix [113], maximal

common subgraph detection [114, 115], geometric hashing [116, 117], local geome-

try matching [118], spectral matching [119], contact map overlap [120–124] and dy-

namic programming [42,125]. This equivalence set is optimized by different methods

such as a Monte Carlo algorithm or simulated annealing [113], dynamic program-

ming [42, 125–127], incremental combinatorial extension of the optimal path [128]

and genetic algorithm [129]. Indeed the goal is to determine an alignment of protein

residues to measure the extent of structural similarity. To quantify this similarity,

various measures have been defined and can be broadly classified into four cate-

gories: (1) distance map similarity [113, 130–132] (2) root mean square deviation

(RMSD) [42,119,128,133,134] (3) contact map overlap [135] (4) universal similarity

matrix [136,137]. A comprehensive list of different similarity measures are discussed

by Hasegawa and Holm [138]. Surprisingly, even after so many years of research there

is no universally acknowledged definition of similarity score to measure the extent of

structural similarity [138,139].

In [122], alignment of eigenvectors is used for fast overlapping of contact maps. The

chapter uses Needleman-Wunch’s algorithm to compute a global alignment of two
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protein sequences, where the cost function is derived from an approximation of the

contact map M (of the two protein structures), obtained from the spectral decomposi-

tion of M . Using a graph theoretic approach, Taylor et al. [140] obtained a structural

similarity measure by matching pairs of secondary structural elements(SSEs) of the

input proteins. The set of matching pairs of SSEs is obtained by a bipartite graph-

matching algorithm.

In this chapter we introduce two new algorithms, EDAlignres and EDAlignsse, for

the protein structure alignment problem. These algorithms rely on a matrix eigen-

decomposition approach due to Umeyama [141] for an approximate solution to the

weighted graph matching problem. EDAlignres identifies best structural alignment of

two equal length proteins by refining the correspondence obtained from the eigende-

composition technique and to maximize similarity measure, TM-score, for the refined

correspondence. EDAlignsse, on the other hand, does not require the input proteins

to be of equal length. It works in three stages: (1) identifies correspondence between

secondary structure elements (i.e SSE-pairs); (2) identifies a correspondence between

residues within SSE-pairs; (3) applies a rigid transformation to report structural align-

ment in space. The latter two steps are repeated until there is no improvement in the

alignment. These methods are able to provide sequence and topology independent

similarities. The reason for this is that the primary equivalence set (residues-pairs for

equal length proteins and SSE-pairs for unequal length proteins) depends on the in-
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trinsic geometry of α-the carbon atoms within the tertiary structure that is revealed

by eigendecomposition. We report the TM-score and cRMSD as measures of the

structural similarity. The similarity scores of both the algorithms are comparable to

those of the state-of-the-art algorithms such as, TM align and SuperPose.

5.3 Preliminaries

5.3.1 Notations and Definitions

The following definitions help us formulate the problem precisely.

Definition: A protein P is a sequence of points, P = {pi|pi ∈ R3, i = 1, 2, 3, ...,m},

in a 3-dimensional Euclidean space, where m(= |P |) is the number residues and pi

represents the coordinates of the central α-carbon atom of the i-th residue.

Definition: Given two proteins P and Q of length m and n respectively. An align-

ment of P and Q is:

• a sequence of corresponding pairs of points of P and Q,

S(P,Q) = {(pi1 , qj1), (pi2 , qj2), ..., (pik , qjk)}, where 1 ≤ i1 < i2 < ... < ik ≤ m

and 1 ≤ j1 6= j2 6= ... 6= jk ≤ n, together with

• a rigid transformation t, t(Q) = {t(qj) = q
′
j|q
′
j ∈ R3, j = 1, 2, 3, ..., n}, that

optimizes some similarity measure for the above correspondence.
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Definition: A residue pi of a protein P is known as a k-neighbor of another residue

pj if |i− j| = k, where 1 ≤ i, j ≤ |P |.

5.3.2 Similarity measures

To measure the extent of structural similarity of two proteins, the root mean square

deviation (RMSD) is widely used [139, 142]. Two different RMSD measures have

been proposed in the literature: (1) coordinate root mean square deviation (cRMSD)

and (2) distance root mean square deviation (dRMSD). In the proposed algorithms,

EDAlignres and EDAlignsse, we obtain a correspondence (i.e. residue-pairs for

equal length proteins and SSE-pairs for unequal length proteins) that minimizes the

dRMSD measure (see equation 5.5) and finally reports an alignment that minimizes

the cRMSD measure and maximizes the TM-score [41, 42]. For completeness, the

cRMSD and dRMSD measures are defined below.

Definition: The similarity measure between two aligned substructures of proteins P

and Q of length k can be defined as follows

dRMSD =

√√√√ 2

k2 − k
k−1∑
u=1

k∑
v=u+1

(‖piu − piv‖ − (‖qju − qjv‖)2; and (5.1)

cRMSD =

√√√√1

k

k∑
u=1

‖piu − t(qju)‖2. (5.2)
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Since the similarity measures, cRMSD and dRMSD, are in terms of absolute dis-

tances, a small presence of outliers may result in a poor RMSD even if the two

structures are globally similar. A similar observation has been made by other re-

searchers [42, 139, 143, 144]. To circumvent this problem, Zhang and Skolnick [41]

introduced a sequence independent structural alignment measure (TM-score) that is

a variation of a measure originally defined by Levitt and Gerstein [145]. A critical

assessment of this TM-score has been given by Xu and Zhang [146].

Definition: Given two proteins, a template protein P and a target protein Q, |P | ≥

|Q|, the structural similarity is obtained by a spatial superposition of P and Q that

maximizes the following score

TM-score =
1

|Q|
k∑
i=1

1

1 + ( di
d0

)2
, (5.3)

where k is the number of aligned residues of P and Q; di is the distance between i-th

pair of aligned residues and d0(= 1.24 3
√
|Q| − 15− 1.8) is a normalization factor.

When the value of d0 in equation (5.3) is set to 5Ao, the resulting TM-score is known

as a raw TM-score (rTM-score). In EDAlignsse, to report the TM-score the protein

lengths are set to the number of residues in the aligned SSEs, ignoring the residues
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in the fragments that connects these SSEs. Despite this, the modified score success-

fully reveals the extent of similarity between the aligned SSEs. Xu and Zhang [146]

observed that two proteins are structurally similar and belong to same fold when the

TM-score > 0.5.

5.3.3 Umeyama’s matrix eigendecomposition method

The algorithms proposed in this chapter rely on Umeyama’s matrix eigendecompo-

sition method for weighted graph matching [141] to generate sequence independent

alignments, i.e. residue-pairs for equal length proteins and SSE-pairs for unequal

length proteins. To make the chapter self-contained, we briefly describe Umeyama’s

technique.

Let P and Q be two proteins of length N each. Let PG (QG) be the adjacency ma-

trix corresponding to a weighted graph G(H) whose vertices are the central α-carbon

atoms of P (Q) and w(pi, pj) (w(qi, qj)) is the Euclidean distance between i-th and

j-th residues of P (Q). This reduces the protein structure alignment problem to a

weighted undirected graph matching problem. This problem is NP-Complete as this

is a special case of largest common subgraph problem [147].

In particular, Umeyama’s method seeks to obtain a node correspondence
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S = {(pi, φ(pi)) |pi ∈ P and φ(pi) ∈ Q} (5.4)

that minimizes the following distance measure

J(φ) =
N∑
i=1

N∑
j=1

((w(pi, pj)− w(φ(pi), φ(pj)))
2. (5.5)

Umeyama showed that the mapping φ() can be approximated by a permutation matrix

Π, and instead minimizes the following measure:

J(Π) =
∥∥ΠPGΠT −QG

∥∥2
(5.6)

where ‖.‖ represents the Euclidean norm.

The proposed approximation algorithm is based on Theorem 3 below, which is proved

[141] using the next two theorems.

Theorem 9 The eigendecompositions of the real symmetric matrices PG and QG are

given by

PG = UPΛPU
T
P

QG = UQΛQU
T
Q

(5.7)
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where UP (UQ) is an orthogonal matrix and ΛP (ΛQ) is diagonal. The entries of the

diagonal matrix ΛP (ΛQ) are the (real) eigenvalues of PG (QG) and the columns of

the orthogonal matrix UP (UQ) are the eigenvectors of PG (QG).

Theorem 10 If PG and QG are symmetric matrices then

‖PG −QG‖2 ≥
n∑
i=1

(λi − µi)2 (5.8)

where λi (µi), i = 1, 2, ..n are the eigenvalues of PG (QG) with λi ≥ λi+1 (µi ≥ µi+1).

Theorem 11 Let PG and QG two real symmetric matrices with distinct eigenvalues.

If O is an orthogonal matrix, ranging over the set of all orthogonal matrices, then∥∥OPGOT −QG

∥∥2
attains its minimum when

O = UQSU
T
P , (5.9)

where S = {si|si = 1 or − 1, i = 1, 2, ..., n}.

If there exists a protein homology, without any conformational changes, between P

and Q then the two weighted graphs G and H are isomorphic. Thus from equation

(5.6) we have:

ΠPGΠT = QG. (5.10)

134



Since the eigenvalues of two isomorphic graphs G and H are the same, from theo-

rem 11 we have

OPGO
T = QG. (5.11)

Thus

OPGO
T = ΠPGΠT

UQSU
T
P UPΛPU

T
P UPSU

T
Q = ΠUPΛPU

T
P ΠT

ΠUP = UQS

Π = UQSU
T
P .

Though the matrix Π in the last line above is orthogonal, it is not necessarily a

permutation matrix. Umeyama [141] showed that the desired permutation matrix Π

can be obtained using the Hungarian method on a suitably defined matrix as below:

Π = Hungarian(|UQ|
∣∣UT

P

∣∣), (5.12)

where
∣∣UT

P

∣∣ and |UQ| are matrices whose entries are the absolute values of the corre-

sponding entries of UT
P and UQ. This enables us to obtain a residue correspondence

S(P,Q).
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5.4 Methods

To design algorithm EDAlignres, we first reformulate the pairwise structural align-

ment problem as a weighted graph matching problem, and apply the matrix eigende-

composition method due to Umeyama [141] to obtain an equivalence set of residues.

Next, we use the primary sequences of the proteins to refine the equivalence set by

a two-stage strategy: (1) pruning outliers; (2) replacing outliers (patching). During

the pruning step, we identify φ(pi), 1 < i < N(= |P |), as an outlier if it is neither

a 1-neighbor of φ(pi−1) nor of φ(pi+1). Similarly φ(p1) (φ(pN)), is an outlier if it is

neither a 1-neighbor of φ(p2) (φ(pN−1)) nor a 2-neighbor of φ(p3) (φ(pN−2)). Once we

have identified all outliers, we substitute each suitably, whenever possible. We call

this patching.

Thus if φ(pi), 1 < i < N, is an outlier then we identify two non outliers, qh ∈

{φ(pi−k) | k = 1, 2} and qj ∈ {φ(pi+l) | l = 1, 2} such that qh and ql are (k + l)-

neighbor along Q. We replace φ(pi) with residue qh+k (= qj−l). For i = N , we

have qh ∈ {φ(pi−k1) | k1 = 1, 2, 3, 4} and qj ∈ {φ(pi−k2) | k2 = 1, 2, 3, 4} such that

k1 6= k2 and qh and qj are |k1 − k2|-neighbor along Q. Thus φ(pN) can be replace by

qh−k1 (= qj−k2). We replace φ(p1) similarly when it is an outlier.

Finally, the aligned residue order with non outliers are used to obtained an alignment

that maximizes the TM-score. This involves an application of Kabsch’s method to
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get an initial alignment of two proteins in space. The alignment is refined by repet-

itive application of dynamic programming followed by Kabsch’s rotation that only

considers the corresponding pairs, separated by a distance di < d0 (see equation 5.3),

1 ≤ i ≤ N .

We note once again that the applicability EDAlignres is limited to equal length

proteins. In EDAlignsse, we overcome this limitation by using matrix eigendecom-

position to obtain SSE-pairs and subsequently residue-pairs from these. The details

are as follows.

Identifying SEEs: In this step, we map the residues to secondary structure el-

ements(SSEs) which are limited to α-helices and β-sheets. Based on the hydrogen

bond patterns of secondary structure elements (SSEs), Kabsch and Sander [148] came

up with following inequalities for assigning a residue to α-helix (β-sheet)

∣∣∣dj,j+k − λα(β)
k

∣∣∣ < δα(β), (j = i− 2, i− 1, i; k = 2, 3, 4) (5.13)

The optimized parameters for the above inequalities [42, 148] are λα2 = 5.45Ao, λα3 =

5.18Ao, λα4 = 6.37Ao, δα = 2.1Ao, λβ2 = 6.1Ao, λβ3 = 10.4Ao, λβ4 = 13Ao, δβ = 1.42Ao.

To identify such structures we have used the DSSP program that implements these

inequalities [148,149].
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Representations of SSEs: Let SSEα
i denote the i-th α-helix of a residue chain

with n α-carbon atoms. We use following set of α-carbon atoms to represent the

α-helix

{
Ck|k = 1, 2, 3,m, n− 2, n− 1, n and m =

n+ 1

2
, n ≥ 7

}
. (5.14)

If n is even Cm represents a virtual α-carbon atom whose coordinates are obtained

by averaging the coordinates of α-carbon atoms Cn
2

and Cn
2

+1.

Similarly, to represent a β-sheet, SSEβ
i , with n α-carbon atoms, we use the following

representative set of α-carbon atoms

{
Ck|k = 1,m1,m2, n and m1 =

⌊n
2

⌋
,m2 =

⌈
n+ 1

2

⌉
, n ≥ 4

}
. (5.15)

Since SSEs such as α-helices and β-sheets show regular patterns of hydrogen bonds,

the above representation does not affect the overall topology. For this reason such

structures have even been represented as vectors in some earlier protein structure

alignment algorithms [131,150].

Identifying SSEs for alignment: Let protein P (Q) have n1 (m1) α-helices and

n2 (m2) β-sheets. Assume that n1 > m1 and n2 > m2. This gives us
∏2

i=1
niCmi ,

possible combinations of SEEs from P that can be aligned with those from Q. This

value becomes impractically large when the differences mi−ni are large. Fortunately,
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proteins pairs do not differ much with respect to the number of SSEs. Nevertheless,

in cases where the differences exceed a prescribed threshold value, noting that the

SSEs are ordered along a protein chain, we allow only the following combinations of

SSEs from P as candidates for alignment with those from Q.

SPi,j =
{
SSEα

i+1, SSE
α
i+2, ..., SSE

α
i+m1

, SSEβ
j+1, SSE

β
j+2, ..., SSE

β
j+m2

}
, (5.16)

where the values of i, j are in the range of [0, n1 −m1] and [0, n2 −m2]. Such a

selection is consistent with other alignment techniques such as dynamic program-

ming and combinatorial extension that also consider residues along the chain with

reasonable gaps, and also reduces the number of possible combinations of SSEs to a

quadratic order:
∏2

i=1(ni −mi). The cases where n1 < m1 and n2 > m2 or n1 > m1

and n2 < m2, with (n1+n2) > (m1+m2) in each case, can be handled in a similar way.

Identifying SSE-pairs: It is reasonable to assume that regions of P and Q that

are perfectly aligned have an equal number of α-helices as well as β-sheets in both.

Suppose we know the candidate sets SPi,j and SQ
i′ ,j′

that are to be aligned. We can

represent these sets of SSEs, SPi,j and SQ
i′ ,j′

, as complete weighted graphs on their

constituent α-carbon atoms which are input to Umeyama’s method. The output of

Umeyama’s method is a symmetric matrix M (see equation 5.12), each entry being
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the cost of the correspondence between a pair of alpha carbon atoms one in SPi,j and

the other in SQ
i′ ,j′

. We coalesce the α-carbon atoms that belong to an SSE into a

single entity and create a modified cost matrix, M
′
, each entry being the cost of the

correspondence of a pair of SSEs, one in SPi,j and the other in SQ
i′ ,j′

. When both the

SSEs are α-helices the cost is:

M
′
[SSEα

P , SSE
α
Q] =

∑
Ca∈SSEαP , Cb∈SSE

α
Q
M(Ca, Cb)

49
, (5.17)

while if both are β-sheets the cost is:

M
′
[SSEβ

P , SSE
β
Q] =

∑
Ca∈SSEβP , Cb∈SSE

β
Q
M(Ca, Cb)

16
. (5.18)

To avoid a correspondence between an α-helix and a β-sheet, we set the cost of such

a correspondence to zero. Finally, we apply the Hungarian method to this modified

cost matrix M
′

to get a correspondence that optimizes the total cost. The aligned

SSE pairs are used to obtain an initial spatial structural alignment.

Reordering of residues: In a structural alignment the order of the SSEs may not

be same as the primary sequence order. Therefore we reorder the residues, accord-

ing to the SSE-pairs obtained from the previous step. To make this precise we set

the smaller length protein Q as the template and arrange its SSEs as these appear

along the chain. We order the SSEs of the P according to their correspondence with
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the SSEs of Q, ignoring those SSEs that do not have a corresponding SSE in Q.

Now a corresponding SSE-pair may align with each other either in forward or reverse

direction. To determine the correct direction we have exhaustively checked all pos-

sible 2m combinations where m is the number of SSEs. Of these combinations, we

choose the one with minimum J(φ). Here we also consider the topological ordering

of alignment set as one candidate as a majority of protein structural alignment al-

gorithms use the conventional sequence order, primarily for biological reasons [151].

In the above rearrangement, we ignore residues in the loops that connect the SSEs.

Finally, we reorder the residues according to their appearance in the ordering of SSEs.

Apply Dynamic Programming: To refine the alignment, the residue order ob-

tained from the previous step is input to a dynamic programming [41, 42, 145] algo-

rithm. The entries of the scoring matrix are defined by

S(i, j) =
1

1 +
(
dij
d0

)2 (5.19)

where dij is the distance between the i-th residue in P and the j-th residue in Q

and d0 is scale factor that normalizes the distances between residue pairs of P and

Q (see equation 5.3). Setting an opening gap penalty of -0.6, and considering pair

correspondences that are at distances less than d0, we apply Kabsch’s method to

superimpose P and Q. The process is repeated until the alignment becomes stable
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with maximum TM-score. Based on our experiments, it takes typically 2-3 steps to

get the best alignment - a fact also observed by Zhang and Skolnick [42].

5.5 Results and Discussions

To illustrate the proposed methods, we apply both to pairs of proteins in the fol-

lowing two categories [43]: (1) same primary sequence with slightly different tertiary

structures; (2) same primary sequence with vastly different tertiary structures.

As can be see from Table 5.1, the scores computed by both EDAlignres and

EDAlignsse are as good or better than the scores computed by SuperPose [43] and

TM-align [42]. The number of residues aligned by EDAlignsse is smaller than that

of TM-align as it ignores the residues in the loop fragments that join pairs of SSEs

and this fact is reflected in the computation of the TM-score. Nevertheless, the TM-

score of EDAlignsse compares remarkably well with that of TM-align. The results

also show that EDAlignres is more successful in detecting the structural similarity of

homologous proteins of equal length and therefore might be potentially useful dur-

ing NMR spectroscopy. To further illustrate the effectiveness of EDAlignres and its

improvement over the basic Umeyama method, we ran this algorithm on NMR mod-

els 1m2f A 1 − 1m2f A 25 to an average model 1m2e A. Table 5.2 also includes

results from the refinement stages (i.e. pruning outliers and replacing outliers) of

EDAlignres.
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Unlike EDAlignres, EDAlignsse can detect the structural similarity of any pair of

proteins. To substantiate this, we have run EDAlignsse on pairs of proteins (see

Table 5.3) that are in the following categories [43]: (1) have modestly dissimilar se-

quences, lengths and structures (2) have vastly different lengths but similar structures

or sequences. Table 5.3 shows that the TMscore of EDAlignsse is as good as that of

TM align and on top of that is able to locate conserved regions between protein pairs.

EDAlignsse is also able to detect structural similarity independent of topological

order (see Figure 5.1). To support this claim, we have run EDAlignsse to compare the

protein Apolipophorin III (PDB ID:1aep) to a theoretical model of four-helix bundle

protein (PDB ID:1flx). As a further demonstration of the versatility of EDAlignsse

we consider a difficult case for alignment: (1) Core-binding factor alpha subunit (PDB

ID:1e50, Chain A) with Riboflavin synthase alpha chain (PDB ID: 1pkv, Chain A)

(2) Hemoglobin (Deoxy) (PDB ID:2hbg) with Tyrosine-protein kinase ABL2 (PDB

ID:2ecd). The alignment of SSEs obtained by EDAlignsse is shown in Figure 5.2.

Notably, the two proteins 1e50A and 1pkvA have three aligned
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(a) 1flx with four helices Ha
i , i = 1 to 4 (b) 1aep with five helices Hb

i , i = 1 to 5

(c) EDAlignsse (cRMSD: 5.36 - 61,

TM-score*: 0.7)

(d) TM-align (cRMSD: 2.4 - 77, TM-

score: 0.68)

(e) SuperPose (cRMSD: 14.69 - 76, TM-

score: 0.09 )

EDAlignsse

TM Align

1flx

1aep

1flx

1aep

Ha
1 Ha

2 Ha
3 Ha

4

Ha
1 Ha

2 Ha
3 Ha

4

Hb
1 Hb

2 Hb
3 Hb

4 Hb
5

Hb
1 Hb

2 Hb
3 Hb

4 Hb
5

SuperPose

1flx

1aep

Ha
1 Ha

2 Ha
3 Ha

4

Hb
1 Hb

2 Hb
3 Hb

4 Hb
5

(f) SSE correspondence

Figure 5.1: Structural Alignment of 1flx with 1aep
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(a) 1e50A with 1pkvA (b) 2hbg with 2ecd

Figure 5.2: EDAlignsse on difficult alignment (a) EDAlignsse: cRMSD 1.94 - 20
and TM-score* 0.81 TM-align: cRMSD 4.2 - 68 and TM-score 0.42
SuperPose: cRMSD 13.21 - 72 and TM-score 0.07 (b) EDAlignsse:
cRMSD 2.42 - 16 and TM-score* 0.77 TM-align: cRMSD 4.23 - 63 and
TM-score 0.31 SuperPose: cRMSD 13.77 - 111 and TM-score 0.2

β-sheets where as the proteins 2hbg and 2ecd have two aligned α-helices. On top of

that, these pairs do not share any structural similarity. This has also been observed

by TM align, as reflected in the TM-scores of 0.42 and 0.31 respectively.

5.6 Summary

In this chapter we have exploited matrix eigendecomposition to design two new al-

gorithms, EDAlignres and EDAlignsee, for the structural alignment of two proteins.

The former outputs an alignment of residue-pairs, while the latter reports aligned

SSE-pairs. EDAlignres can measure the structural similarity of two equal length

148



proteins only; the more general algorithm, EDAlignsse, combines eigendecomposi-

tion with dynamic programming and TM-score rotation matrix, and is able to handle

proteins of unequal lengths. Experimental results show that EDAlignsse is able to

align successfully common SSEs of any pair of proteins and also reveal potential con-

served regions. Unlike other dynamic programming approaches, EDAlignsse is able

to detect alignments that are independent of the order of the SSEs.
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Chapter 6

Conclusions and Future works

We have proposed efficient algorithms for optimizing various distance measures for

proximity problems defined on a point set. Many open problems remain; some are

listed below.

1. Find an O(n2) deterministic algorithm for the all-minimum problem in the line-

difference measure.

2. Close the time-complexity gaps for the all-maximum problems in the area and

perimeter measures.

3. Improve the upper bound on the time-complexity of the all-minimum problem

in the perimeter measure and establish a corresponding lower bound.

4. Whittle away the log n factor from the time-complexities of the all-minimum

and all-maximum problems in the circumcircle measure.

5. Design an O(n3)-time algorithm for the all-minimum problem in the triangle

distance measure to improve on the trivial O(n4) algorithm; for this last prob-

lem, an effective characterization needs to be found as the first step.
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6. Design algorithms for the all-k-closest problems in all of the above the measures

we have discussed.

7. Along the the line of the study in [27], the problems of constructing the farthest-

segment Voronoi diagram of a set of segments that are the edges of a convex

polytope, or the farthest- triangle Voronoi diagram of the facets of a triangulated

polytope merit further investigation.

We have also proposed efficient incremental geometric tools, in both two and three

dimensions, to test the linear separability of two point sets (colored red and blue

respectively). We have highlighted the effectiveness of the “incremental” algorithm

over the “offline” algorithm for 5 different gene expression data sets. The disserta-

tion also quantifies the number of separable gene-pairs and gene-triplets on 4 gene

expression data-sets. The effective testing of linear separability of gene-triplets was

left as an open problem by Unger and Chor [31]. To achieve the larger objective

of finding bio-marker genes, we have propose a gene selection method that works as

well as other known feature selection method like as t-values, FCS (Fisher Criterion

Score) and SAM (Significance Analysis of Microarrays).

The dissertation also extends the idea of “linear separability” to “almost linear sep-

arability”. This an oft-recurring problem while collecting sample data due to noises

or sampling errors or round off errors. We propose an O(nk2) time algorithm for

this problem. For k = O(1), we have the first linear time algorithm known for this
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problem. There are several promising directions for further work, some of which are

listed below.

1. Extend the incremental algorithm from the linear separability paradigm to non-

linear separability.

2. Design an efficient algorithm for testing polygonal separability and almost polyg-

onal separability

We have shown how geometric optimization can play a role in designing algorithms

for testing protein structure similarity. We have proposed two heuristics for pair-

wise protein structure alignment that uses an eigendecomposition technique due to

Umeyama [141]. Of the proposed algorithms, (a) EDAlignres identifies structural

similarity for equal length proteins; (b) EDAlignsse, on the other hand, does not re-

quire the input proteins to be of equal length. We have used the TM-score and cRMSD

as measures of structural similarity. The algorithms are able to report sequence and

topology independent alignments, with similarity scores that are comparable to those

of the state-of-the-art algorithms such as TM align [42] and SuperPose [43]. Some

promising directions for further work in the domain of structural similarities are:

1. Develop protein classification algorithm that take into account the overall struc-

ture of the proteins.

2. Design an efficient algorithm for finding motifs along a protein chain.
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3. Find pharmacophore (i.e. a common sub-structure) in ligands.

4. Develop an algorithm for finding a ligand with a given pharmacophore.
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der N. Gorban, Balázs Kégl and A. Y. Zinovyev, eds.), vol. 58 of Lecture Notes

in Computational Science and Engineering, ch. 12, pp. 271–292, Springer Berlin

Heidelberg, 2007.

[31] G. Unger and B. Chor, “Linear separability of gene expression data sets,”

IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 7,

pp. 375–381, 2010.

[32] M. S. Alam, S. Panigrahi, P. Bhabak, and A. Mukhopadhyay, “A multi-gene

linear separability of gene expression data in linear time,” in Short Abstracts

in ISBRA 2010: 6th International Symposium on Bioinformatics Research and

Applications, May 23-26, (Connecticut, USA), pp. 51–54, 2010.

[33] A. Ben-Israel and Y. Levin, “The geometry of linear separability in data sets,”

Linear Algebra and its Applications, vol. 416, no. 1, pp. 75 – 87, 2006. Special

Issue devoted to the Haifa 2005 conference on matrix theory.

[34] M. R. Anderberg, Cluster Analysis for Applications. New York: Academic

Press, 1973.

158



[35] A. Riva, A.-S. Carpentier, B. Torrsani, and A. Hnaut, “Comments on selected

fundamental aspects of microarray analysis,” Computational Biology and Chem-

istry, vol. 29, no. 5, pp. 319 – 336, 2005.

[36] J.-C. Kader, “Lipid-transfer proteins in plants,” Annual Review of Plant Phys-

iology and Plant Molecular Biology, vol. 47, no. 1, pp. 627–654, 1996. PMID:

15012303.

[37] H. Berman, K. Henrick, H. Nakamura, and J. L. Markley, “The worldwide

Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data.,”

Nucleic acids research, vol. 35, pp. D301–D303, Jan. 2007.

[38] C. Branden and J. Tooze, Introduction to protein structure. Garland, 2 ed.,

1998.

[39] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig,

I. N. Shindyalov, and P. E. Bourne, “The protein data bank,” Nucleic Acids

Res, vol. 28, pp. 235–242, 2000.

[40] Schrödinger, LLC, “The PyMOL molecular graphics system, version 1.3r1.”

August 2010.

[41] Y. Zhang and J. Skolnick, “Scoring function for automated assessment of protein

structure template quality,” Proteins: Structure, Function, and Bioinformatics,

vol. 57, no. 4, pp. 702–710, 2004.

159



[42] Y. Zhang and J. Skolnick, “TM-align: A protein structure alignment algorithm

based on TM-score.,” Nucleic Acids Research, vol. 33, pp. 2302–2309, 2005.

[43] R. Maiti, G. H. V. Domselaar, H. Zhang, and D. S. Wishart, “SuperPose: a sim-

ple server for sophisticated structural superposition.,” Nucleic Acids Research,

vol. 32, no. Web-Server-Issue, pp. 590–594, 2004.

[44] A. Mukhopadhyay and S. C. Panigrahi, “All-maximum and all-minimum prob-

lems under some measures,” Journal of Discrete Algorithms, vol. 21, no. 0,

pp. 18 – 31, 2013.

[45] O. Daescu and J. Luo, “Proximity problems on line segments spanned by

points,” in Proc. of 14th Annual Fall Workshop on Computational Geometry,

pp. 9–10, 2004.

[46] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction.

Springer-Verlag, 1985.

[47] S. Khuller and Y. Matias, “A simple randomized sieve algorithm for the closest-

pair problem,” Information and Computation, vol. 118, pp. 34–37, 1995.

[48] M. Overmars and E. Welzl, “New methods for computing visibility graphs,”

in Proceedings of the fourth annual symposium on Computational geometry,

pp. 164–171, 1988.

160



[49] H. Edelsbrunner and L. Guibas, “Topologically sweeping an arrangement,”

Journal of Computer and System Sciences, vol. 38, no. 1, pp. 165–194, 1989.

[50] A. Gajentaan and M. Overmars, “On a class of o(n2) hard problems in compu-

tational geometry,” Computational Geometry: Theory and Applications, vol. 5,

no. 3, pp. 165–185, 1995.

[51] G. S. Brodal and R. Jacob, “Dynamic planar convex hull,” in FOCS ’02: Pro-

ceedings of the 43rd Symposium on Foundations of Computer Science, (Wash-

ington, DC, USA), pp. 617–626, IEEE Computer Society, 2002.

[52] H. Edelsbrunner, J. O’Rourke, and R. Seidel, “Constructing arrangements of

lines and hyperplanes with applications,” SIAM J. Comput., vol. 15, pp. 341–

363, 1986.

[53] R.L.Drysdale and J.W.Jaromczyk, “A note on lower bounds for the maximum

area and maximum perimeter k-gon problems,” Information Processing Letters,

vol. 32, pp. 301–303, 1989.

[54] B. Chazelle, L. J. Guibas, and D. T. Lee, “The power of geometric duality,”

BIT, vol. 25, pp. 76–90, 1985.

[55] H. Edelsbrunner, M. Sharir, and R. Seidel, “On the zone therem for hyperplane

arrangements,” SIAM J. Comput., vol. 22, no. 2, pp. 418–429, 1993.

161



[56] A. Aggarwal and J. Park, “Notes on searching in multidimensional monotone ar-

rays,” in SFCS ’88: Proceedings of the 29th Annual Symposium on Foundations

of Computer Science, (Washington, DC, USA), pp. 497–512, IEEE Computer

Society, 1988.

[57] J. E. Boyce, D. P. Dobkin, R. L. S. Drysdale, and L. J. Guibas, “Finding

extremal polygons,” SIAM J. Computing, vol. 14, no. 1, pp. 134–147, 1985.

[58] H. Coxeter, Introduction to Gometry, Second Edition. John Wiley, 1969.

[59] R. Drysdale and A. Mukhopadhyay, “An o(n log n) algorithm for the all-

farthest-segments problem for a planar set of points,” Information Processing

Letters, vol. 105, pp. 47–51, 2008.

[60] J. Matousek and O. Schwarzkopf, “On ray shooting in convex polytopes,” Dis-

crete Comput. Geom., vol. 10, pp. 215–232, 1993.

[61] S. Panigrahi, M. Alam, and A. Mukhopadhyay, “An incremental linear pro-

gramming based tool for analyzing gene expression data,” in Computational

Science and Its Applications ICCSA 2013 (B. Murgante, S. Misra, M. Car-

lini, C. Torre, H.-Q. Nguyen, D. Taniar, B. Apduhan, and O. Gervasi, eds.),

vol. 7975 of Lecture Notes in Computer Science, pp. 48–64, Springer Berlin

Heidelberg, 2013.

162



[62] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov,

H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S.

Lander, “Molecular classification of cancer: class discovery and class prediction

by gene expression monitoring,” Science, vol. 286, pp. 531–537, Oct. 1999.

[63] L. J. van ’t Veer, H. Dai, M. J. van de Vijver, Y. D. He, A. A. M. Hart,

M. Mao, H. L. Peterse, K. van der Kooy, M. J. Marton, A. T. Witteveen, G. J.

Schreiber, R. M. Kerkhoven, C. Roberts, P. S. Linsley, R. Bernards, and S. H.

Friend, “Gene expression profiling predicts clinical outcome of breast cancer,”

Nature, vol. 415, pp. 530–536, Jan. 2002.

[64] J. Khan, J. S. Wei, M. Ringnér, L. H. Saal, M. Ladanyi, F. Westermann,

F. Berthold, M. Schwab, C. R. Antonescu, C. Peterson, and P. S. Meltzer,

“Classification and diagnostic prediction of cancers using gene expression pro-

filing and artificial neural networks.,” Nature medicine, vol. 7, pp. 673–679,

June 2001.

[65] A. Ben-Dor, L. Bruhn, N. Friedman, I. Nachman, M. Schummer, and Z. Yakhini,

“Tissue classification with gene expression profiles,” Journal of Computational

Biology, vol. 7, no. 3-4, pp. 559–583, 2000.

[66] U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J.

Levine, “Broad patterns of gene expression revealed by clustering analysis of tu-

163



mor and normal colon tissues probed by oligonucleotide arrays.,” in Proceedings

of the National Academy of Science USA, vol. 96, pp. 6745–6750, 1999.

[67] S. Kim, E. R. Dougherty, J. Barrera, Y. Chen, M. L. Bittner, and J. M. Trent,

“Strong feature sets from small samples.,” Journal of Computational Biology,

vol. 9, no. 1, pp. 127–146, 2002.

[68] N. Megiddo, “Linear-time algorithms for linear programming in R3 and related

problems,” SIAM Journal of Computation, vol. 12, no. 4, pp. 759–776, 1983.

[69] N. Megiddo, “Linear programming in linear time when the dimension is fixed,”

J. ACM, vol. 31, pp. 114–127, 1984.

[70] M. E. Dyer, “Linear time algorithms for two- and three-variable linear pro-

grams,” SIAM J. Comput., vol. 13, no. 1, pp. 31–45, 1984.

[71] D. Anastassiou, “Computational analysis of the synergy among multiple inter-

acting genes.,” Molecular systems biology, vol. 3, Feb. 2007.

[72] J. O’Rourke, Computational Geometry in C. New York, NY, USA: Cambridge

University Press, 2nd ed., 1998.

[73] D. V. Nguyen and D. M. Rocke, “Tumor classification by partial least squares

using microarray gene expression data,” Bioinformatics, vol. 18, no. 1, pp. 39–

50, 2002.

164



[74] C. M. Bishop, Neural Networks for Pattern Recognition. New York, NY, USA:

Oxford University Press, 1995.

[75] D. Zhang, S. Chen, and Z.-H. Zhou, “Constraint score: A new filter method for

feature selection with pairwise constraints,” Pattern Recogn., vol. 41, pp. 1440–

1451, May 2008.

[76] V. G. Tusher, R. Tibshirani, and G. Chu, “Significance analysis of microar-

rays applied to the ionizing radiation response.,” Proceedings of the National

Academy of Sciences of the United States of America, vol. 98, pp. 5116–5121,

Apr. 2001.

[77] C. Gil, L. Jun, N. Balasubramanian, T. Robert, and T. Virginia, ”Significance

Analysis of Microarrays” Users guide and technical document. Stanford CA

94305: Stanford University.

[78] Y. Lu and J. Han, “Cancer classification using gene expression data,” Inf. Syst.,

vol. 28, no. 4, pp. 243–268, 2003.

[79] G. J. Gordon, R. V. Jensen, L.-L. Hsiao, S. R. Gullans, J. E. Blumenstock,

S. Ramaswamy, W. G. Richards, D. J. S. , and R. Bueno, “Translation

of mi-croarray data into clinically relevant cancer diagnostic tests using gene

expres- sion ratios in lung cancer and mesothelioma,” Cancer Research, vol. 62,

pp. 4963–4967, Sept. 2002.

165



[80] S. A. Armstrong, J. E. Staunton, L. B. Silverman, R. Pieters, M. L. den Boer,

M. D. Minden, S. E. Sallan, E. S. Lander, T. R. Golub, and S. J. Korsmeyer,

“Mll translocations specify a distinct gene expression profile that distinguishes

a unique leukemia,” Nature Genetics, vol. 30, pp. 41 – 47, Jan 2002.

[81] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten,

“The WEKA data mining software: An update,” in SIGKDD Explorations,

vol. 11, pp. 11 –18, 2009.

[82] J. C. Platt, Fast training of support vector machines using sequential minimal

optimization, pp. 185–208. Cambridge, MA, USA: MIT Press, 1999.

[83] R. R. Bouckaert, “Bayesian Network Classifiers in WEKA,” Internal Notes,

vol. 11, no. 3, pp. 1–23, 2004.

[84] G. F. Cooper and E. Herskovits, “A Bayesian Method for the Induction of

Probabilistic Networks from Data,” Machine Learning, vol. 9, pp. 309–347,

1992.

[85] R. Kohavi, “A study of cross-validation and bootstrap for accuracy estimation

and model selection,” in Proceedings of the 14th international joint conference

on Artificial intelligence - Volume 2, (San Francisco, CA, USA), pp. 1137–1143,

Morgan Kaufmann Publishers Inc., 1995.

166



[86] K. L. Clarkson, “Las vegas algorithms for linear and integer programming when

the dimension is small,” J. ACM, vol. 42, pp. 488–499, Mar. 1995.

[87] R. Seidel, “Small-dimensional linear programming and convex hulls made easy,”

Discrete and Computational Geometry, vol. 6, no. 1, pp. 423–434, 1991.

[88] M. Sharir and E. Welzl, “A combinatorial bound for linear programming and

related problems,” in STACS 92 (A. Finkel and M. Jantzen, eds.), vol. 577 of

Lecture Notes in Computer Science, pp. 567–579, Springer Berlin Heidelberg,

1992.

[89] T. M. Chan, “Fixed-dimensional linear programming queries made easy,” in

Proceedings of the Twelfth Annual Symposium on Computational Geometry,

SCG ’96, (New York, NY, USA), pp. 284–290, ACM, 1996.

[90] T. M. Chan, “Geometric applications of a randomized optimization technique,”

Discrete and Computational Geometry, vol. 22, no. 4, pp. 547–567, 1999.

[91] A. Efrat, M. Lindenbaum, and M. Sharir, “Finding maximally consistent sets

of halfspaces.,” in CCCG, pp. 432–436, University of Waterloo, 1993.

[92] T. Roos and P. Widmayer, “k-violation linear programming,” in System Mod-

elling and Optimization (J. Henry and J.-P. Yvon, eds.), vol. 197 of Lecture

Notes in Control and Information Sciences, pp. 855–862, Springer Berlin Hei-

delberg, 1994.

167



[93] J. E. Goodman and R. Pollack, “On the number of k-subsets of a set of n points

in the plane,” Journal of Combinatorial Theory, Series A, vol. 36, no. 1, pp. 101

– 104, 1984.

[94] N. Alon and E. Gyri, “The number of small semispaces of a finite set of points

in the plane,” Journal of Combinatorial Theory, Series A, vol. 41, no. 1, pp. 154

– 157, 1986.

[95] P. K. Agarwal, B. Aronov, T. M. Chan, and M. Sharir, “On levels in arrange-

ments of lines, segments, planes, and triangles,” Discrete and Computational

Geometry, vol. 19, no. 3, pp. 315–331, 1998.

[96] T. K. Dey, “Improved bounds on planar k-sets and k-levels,” Discrete and

Computational Geometry, vol. 19, pp. 156–161, 1997.

[97] M. Sharir, S. Smorodinsky, and G. Tardos, “An improved bound for k-sets

in three dimensions,” in Proceedings of the Sixteenth Annual Symposium on

Computational Geometry, SCG ’00, (New York, NY, USA), pp. 43–49, ACM,

2000.

[98] J. O’Rourke, S. Rao Kosaraju, and N. Megiddo, “Computing circular separa-

bility,” Discrete and Computational Geometry, vol. 1, no. 1, pp. 105–113, 1986.

[99] V. N. Vapnik, The nature of statistical learning theory. New York, NY, USA:

Springer-Verlag New York, Inc., 1995.

168



[100] E. M. Arkin, F. Hurtado, J. S. B. Mitchell, C. Seara, and S. S. Skiena, “Some

lower bounds on geometric separability problems,” International Journal of

Computational Geometry and Applications, vol. 16, no. 01, pp. 1–26, 2006.

[101] F. Hurtado, M. Mora, P. A. Ramos, and C. Seara, “Two problems on separa-

bility with lines and polygonals,” in Proc. 15th European Workshop on Com-

putational Geometry, pp. 33–35, Citeseer, 1999.

[102] F. Hurtado, M. Noy, P. A. Ramos, and C. Seara, “Separating objects in the

plane by wedges and strips,” Discrete Applied Mathematics, vol. 109, no. 12,

pp. 109 – 138, 2001. 14th European Workshop on Computational Geometry.

[103] H. Edelsbrunner and F. Preparata, “Minimum polygonal separation,” Informa-

tion and Computation, vol. 77, no. 3, pp. 218 – 232, 1988.

[104] S. Fekete, “On the complexity of min-link red-blue separation,” Manuscript,

Department of Applied Mathematics, SUNY Stony Brook, NY, 1992.

[105] J. S. Mitchell, “Approximation algorithms for geometric separation problems,”

in Technical Report, Department of Applied Mathematics, SUNY Stony Brook,

NY, Citeseer, 1993.

[106] H. Edelsbrunner and L. J. Guibas, “Topologically sweeping an arrangement,”

Journal of Computer and System Sciences, vol. 38, no. 1, pp. 165 – 194, 1989.

169



[107] W. Taylor, A. May, N. Brown, and A. Aszódi, “Protein structure: geometry,
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Appendix A

Offline implementation

A.1 Code for linearly separating gene pairs

Algorithm: LinearlySeparatingGenePairs

Input: Line duals S∗R and S∗B of the point sets SR and SB.

Output: LP feasible or infeasible.

1: if |S∗R| ≤ 1 and |S∗B| ≤ 1 then use the trivial method to solve the problem.
2: Pair up the lines in each set, ignoring a odd residual line in each, under the assump-
tion that if two lines are parallel then one of them can be eliminated immediately as
that will not determine the feasible region.
3: Find a test line,U , through the point of intersection with median u-coordinate.
4: Check for the feasibility solution of one dimensional linear program along test line
U . We distinguish with following cases :
Case 1 : Line U pass through feasible region. Report the solution and halt.
Case 2 : Line U detects inseparability. Report the solution and halt.
Case 3 : If line does not pass through the feasible region then find the side of feasible
region with respect to test line U .
Case 3.1 : If the solution lies to the left of U restrict the feasible range to the left of
U .
Case 3.2 : If the solution lies to the right of U restrict the feasible range to the right
of U .
5: Update S∗R and S∗B by eliminating a line from each pair whose intersection does
not lie in the feasible region.
6: Repeat the algorithm for updated set of S∗R and S∗B.
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A.2 Code for linearly separating gene triplets

Algorithm: LinearlySeparatingGeneTriplets

Input: Plane duals S∗R and S∗B of the point sets SR and SB.

Output: LP feasible or infeasible.

1: if |S∗R|+ |S∗B| ≤ 4 then use a brute-force method to solve the problem.
2: Pair up the planes in each set, ignoring a odd residual plane in each, under
the assumption that if two planes are parallel then one of them can be eliminated
immediately as that will not determine the feasible region. Take the projection of
paired constraints on uv-plane.
3: Transform the coordinate system such that half the lines will have negative slope
and half of the lines will have positive slope.
4: Pair the lines such that in every pair we will have one line from positive slope and
other line from negative slope. Identify, the point of intersection of non disjoint pairs;
say (uij, vij). If two lines are parallel (must be parallel to u-axis) then identify vij to
be the mean of their v-coordinates.
5: Let vm be the median of all vij. Solve a 2D linear programming problem along the
test line v = vm.
Case 1 : If feasible then report the separability and halt the program.
Case 2 : If not feasible obtain a point on the lower envelop where we realize a minimum
difference between upper and lower envelop. Identify the set of constraints tight to
this point and solve two 2D linear programs to determine which side of test line
v = vm the feasible region lies.
Case 2.1 : If any one of 2D linear program is feasible then identify the side of feasible
solution and continue with step 6.
Case 2.2 : If both 2D linear program are not feasible or both are feasible then report
the inseparability and halt.
6: Identify a test line u = um, where um be the median of all uij on the feasible side of
test line v = vm. Solve a 2D linear programming problem along the test line u = um.
Case 1 : If feasible then report the separability and halt the program.
Case 2 : If not feasible obtain a point on the lower envelop where we realize a minimum
difference between upper and lower envelop. Identify the set of constraints tight to
this point and solve two 2D linear programs to determine which side of test line
u = um the feasible region lies.
Case 2.1 : If any one of 2D linear program is feasible then identify the side of feasible
solution and continue with step 7.
Case 2.2 : If both 2D linear program are not feasible or both are feasible then report
the inseparability and halt.
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7: Update S∗R and S∗B; by eliminating a constraint that does not pass through feasible
quadrant defined v = vm and u = um.
8: Repeat the algorithm for the updated set of S∗R and S∗B.

A.3 Data Sets

We tested our algorithms on the following 5 publicly available gene expression data

sets.

Colon Data: The Colon Data, published by Alon et al. [66], consists of gene ex-

pression values of 2000 genes. The data set was generated using Affymetrix oligonu-

cleotide arrays. The sample set consists of 40 colon tumor samples and 22 normal

colon tissue samples for a total of 62 samples. The dataset is publicly available at

http://microarray.princeton.edu/oncology/affydata/index.html

Leukemia Data: This data set was published by Scott et al. [80]. The data

set contains three kind of leukemia samples compared to the binary class leukemia

dataset. The data set consists of 72 leukemia samples with 24 ALL (Acute lym-

phoblastic leukemia), 20 MLL (Mixed-lineage leukemia) and 28 AML (Acute Myeloid

leukemia). We considered only ALL and AML samples for our study. The gene ex-

pression intensities were obtained from Affymetrix high density oligonucleotide micro

arrays and there are 12582 genes in the data set. The dataset is publicly available at

http://research.dfci.harvard.edu/korsmeyer/MLL.htm
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Breast Cancer: This data set was published by Van’t Veer et al. [63] and consists

of gene expressions of 24481 genes from cDNA experiments. The data set contains

34 samples from patients who developed distance metastases within five years of

treatment and 44 samples from the patients who continued to be disease-free for

a period of at least five years. The raw gene expression data set generated from

cDNA microarray usually contains missing values. We chose to remove one sam-

ple(number 54 in original data) that contained many missing values. We also re-

moved all genes that had missing values for any of the samples. The final data set

we used contained expression levels of 21682 genes. The dataset is publicly available

at http://www.rii.com/publications/2002/vantveer.htm

Lung Cancer: This data set was published by Gordon et al. [79]. It consists of

31 malignant pleural mesothelima (MPM) and 150 adenocarcinoma (ADCA) tumors,

a total of 181 samples. Each sample is described by 12533 genes generated from

Affymetrix high density oligonucleotide micro arrays. The dataset is publicly avail-

able at http://www.chestsurg.org/publications/2002-microarray.aspx

SRBCT: This data set was published by Khan et al. [64] consists of five classes

of small round blue-cell tumors (SRBCT). We chose two 23 samples from Ewing

family of tumors (EWS) and 20 rhabdomyosarcoma (RMS), a total of 43 samples.
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We excluded the sample group ‘TEST’ in which there are additional EWS and RMS

samples. The gene expression intensities were obtained from Affymetrix high density

oligonucleotide micro arrays for 2308 genes. The dataset is publicly available at

http://research.nhgri.nih.gov/microarray
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Appendix B

A sample PDB file

Find the sample PDB file (PDB id: 1GCN) downloaded from http://www.rcsb.org

HEADER HORMONE 17-OCT-77 1GCN

TITLE X-RAY ANALYSIS OF GLUCAGON AND ITS RELATIONSHIP TO RECEPTOR

TITLE 2 BINDING

COMPND MOL_ID: 1;

COMPND 2 MOLECULE: GLUCAGON;

COMPND 3 CHAIN: A;

COMPND 4 ENGINEERED: YES

SOURCE MOL_ID: 1;

SOURCE 2 ORGANISM_SCIENTIFIC: SUS SCROFA;

SOURCE 3 ORGANISM_COMMON: PIG;

SOURCE 4 ORGANISM_TAXID: 9823

KEYWDS HORMONE

EXPDTA X-RAY DIFFRACTION

AUTHOR T.L.BLUNDELL,K.SASAKI,S.DOCKERILL,I.J.TICKLE

REVDAT 6 24-FEB-09 1GCN 1 VERSN

REVDAT 5 30-SEP-83 1GCN 1 REVDAT

REVDAT 4 31-DEC-80 1GCN 1 REMARK

REVDAT 3 22-OCT-79 1GCN 3 ATOM

REVDAT 2 29-AUG-79 1GCN 3 CRYST1

REVDAT 1 28-NOV-77 1GCN 0

JRNL AUTH K.SASAKI,S.DOCKERILL,D.A.ADAMIAK,I.J.TICKLE,

JRNL AUTH 2 T.BLUNDELL

JRNL TITL X-RAY ANALYSIS OF GLUCAGON AND ITS RELATIONSHIP TO

JRNL TITL 2 RECEPTOR BINDING.

JRNL REF NATURE V. 257 751 1975

JRNL REFN ISSN 0028-0836

JRNL PMID 171582

JRNL DOI 10.1038/257751A0

REMARK 1

REMARK 1 REFERENCE 1

182



REMARK 1 EDIT M.O.DAYHOFF

REMARK 1 REF ATLAS OF PROTEIN SEQUENCE V. 5 125 1976

REMARK 1 REF 2 AND STRUCTURE,SUPPLEMENT 2

REMARK 1 PUBL NATIONAL BIOMEDICAL RESEARCH FOUNDATION, SILVER

REMARK 1 PUBL 2 SPRING,MD.

REMARK 1 REFN ISSN 0-912466-05-7

REMARK 2

REMARK 2 RESOLUTION. 3.00 ANGSTROMS.

REMARK 3

REMARK 3 REFINEMENT.

REMARK 3 PROGRAM : NULL

REMARK 3 AUTHORS : NULL

REMARK 3

REMARK 3 DATA USED IN REFINEMENT.

REMARK 3 RESOLUTION RANGE HIGH (ANGSTROMS) : 3.00

REMARK 3 RESOLUTION RANGE LOW (ANGSTROMS) : NULL

REMARK 3 DATA CUTOFF (SIGMA(F)) : NULL

REMARK 3 DATA CUTOFF HIGH (ABS(F)) : NULL

REMARK 3 DATA CUTOFF LOW (ABS(F)) : NULL

REMARK 3 COMPLETENESS (WORKING+TEST) (%) : NULL

REMARK 3 NUMBER OF REFLECTIONS : NULL

REMARK 3

REMARK 3 FIT TO DATA USED IN REFINEMENT.

REMARK 3 CROSS-VALIDATION METHOD : NULL

REMARK 3 FREE R VALUE TEST SET SELECTION : NULL

REMARK 3 R VALUE (WORKING SET) : NULL

REMARK 3 FREE R VALUE : NULL

REMARK 3 FREE R VALUE TEST SET SIZE (%) : NULL

REMARK 3 FREE R VALUE TEST SET COUNT : NULL

REMARK 3 ESTIMATED ERROR OF FREE R VALUE : NULL

REMARK 3

REMARK 3 FIT IN THE HIGHEST RESOLUTION BIN.

REMARK 3 TOTAL NUMBER OF BINS USED : NULL

REMARK 3 BIN RESOLUTION RANGE HIGH (A) : NULL

REMARK 3 BIN RESOLUTION RANGE LOW (A) : NULL

REMARK 3 BIN COMPLETENESS (WORKING+TEST) (%) : NULL

REMARK 3 REFLECTIONS IN BIN (WORKING SET) : NULL

REMARK 3 BIN R VALUE (WORKING SET) : NULL

REMARK 3 BIN FREE R VALUE : NULL

REMARK 3 BIN FREE R VALUE TEST SET SIZE (%) : NULL

REMARK 3 BIN FREE R VALUE TEST SET COUNT : NULL

REMARK 3 ESTIMATED ERROR OF BIN FREE R VALUE : NULL

REMARK 3

REMARK 3 NUMBER OF NON-HYDROGEN ATOMS USED IN REFINEMENT.
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REMARK 3 PROTEIN ATOMS : 246

REMARK 3 NUCLEIC ACID ATOMS : 0

REMARK 3 HETEROGEN ATOMS : 0

REMARK 3 SOLVENT ATOMS : 0

REMARK 3

REMARK 3 B VALUES.

REMARK 3 FROM WILSON PLOT (A**2) : NULL

REMARK 3 MEAN B VALUE (OVERALL, A**2) : NULL

REMARK 3 OVERALL ANISOTROPIC B VALUE.

REMARK 3 B11 (A**2) : NULL

REMARK 3 B22 (A**2) : NULL

REMARK 3 B33 (A**2) : NULL

REMARK 3 B12 (A**2) : NULL

REMARK 3 B13 (A**2) : NULL

REMARK 3 B23 (A**2) : NULL

REMARK 3

REMARK 3 ESTIMATED COORDINATE ERROR.

REMARK 3 ESD FROM LUZZATI PLOT (A) : NULL

REMARK 3 ESD FROM SIGMAA (A) : NULL

REMARK 3 LOW RESOLUTION CUTOFF (A) : NULL

REMARK 3

REMARK 3 CROSS-VALIDATED ESTIMATED COORDINATE ERROR.

REMARK 3 ESD FROM C-V LUZZATI PLOT (A) : NULL

REMARK 3 ESD FROM C-V SIGMAA (A) : NULL

REMARK 3

REMARK 3 RMS DEVIATIONS FROM IDEAL VALUES.

REMARK 3 BOND LENGTHS (A) : NULL

REMARK 3 BOND ANGLES (DEGREES) : NULL

REMARK 3 DIHEDRAL ANGLES (DEGREES) : NULL

REMARK 3 IMPROPER ANGLES (DEGREES) : NULL

REMARK 3

REMARK 3 ISOTROPIC THERMAL MODEL : NULL

REMARK 3

REMARK 3 ISOTROPIC THERMAL FACTOR RESTRAINTS. RMS SIGMA

REMARK 3 MAIN-CHAIN BOND (A**2) : NULL ; NULL

REMARK 3 MAIN-CHAIN ANGLE (A**2) : NULL ; NULL

REMARK 3 SIDE-CHAIN BOND (A**2) : NULL ; NULL

REMARK 3 SIDE-CHAIN ANGLE (A**2) : NULL ; NULL

REMARK 3

REMARK 3 NCS MODEL : NULL

REMARK 3

REMARK 3 NCS RESTRAINTS. RMS SIGMA/WEIGHT

REMARK 3 GROUP 1 POSITIONAL (A) : NULL ; NULL

REMARK 3 GROUP 1 B-FACTOR (A**2) : NULL ; NULL
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REMARK 3

REMARK 3 PARAMETER FILE 1 : NULL

REMARK 3 TOPOLOGY FILE 1 : NULL

REMARK 3

REMARK 3 OTHER REFINEMENT REMARKS: NULL

REMARK 4

REMARK 4 1GCN COMPLIES WITH FORMAT V. 3.15, 01-DEC-08

REMARK 100

REMARK 100 THIS ENTRY HAS BEEN PROCESSED BY BNL.

REMARK 200

REMARK 200 EXPERIMENTAL DETAILS

REMARK 200 EXPERIMENT TYPE : X-RAY DIFFRACTION

REMARK 200 DATE OF DATA COLLECTION : NULL

REMARK 200 TEMPERATURE (KELVIN) : NULL

REMARK 200 PH : NULL

REMARK 200 NUMBER OF CRYSTALS USED : NULL

REMARK 200

REMARK 200 SYNCHROTRON (Y/N) : NULL

REMARK 200 RADIATION SOURCE : NULL

REMARK 200 BEAMLINE : NULL

REMARK 200 X-RAY GENERATOR MODEL : NULL

REMARK 200 MONOCHROMATIC OR LAUE (M/L) : NULL

REMARK 200 WAVELENGTH OR RANGE (A) : NULL

REMARK 200 MONOCHROMATOR : NULL

REMARK 200 OPTICS : NULL

REMARK 200

REMARK 200 DETECTOR TYPE : NULL

REMARK 200 DETECTOR MANUFACTURER : NULL

REMARK 200 INTENSITY-INTEGRATION SOFTWARE : NULL

REMARK 200 DATA SCALING SOFTWARE : NULL

REMARK 200

REMARK 200 NUMBER OF UNIQUE REFLECTIONS : NULL

REMARK 200 RESOLUTION RANGE HIGH (A) : NULL

REMARK 200 RESOLUTION RANGE LOW (A) : NULL

REMARK 200 REJECTION CRITERIA (SIGMA(I)) : NULL

REMARK 200

REMARK 200 OVERALL.

REMARK 200 COMPLETENESS FOR RANGE (%) : NULL

REMARK 200 DATA REDUNDANCY : NULL

REMARK 200 R MERGE (I) : NULL

REMARK 200 R SYM (I) : NULL

REMARK 200 <I/SIGMA(I)> FOR THE DATA SET : NULL

REMARK 200

REMARK 200 IN THE HIGHEST RESOLUTION SHELL.
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REMARK 200 HIGHEST RESOLUTION SHELL, RANGE HIGH (A) : NULL

REMARK 200 HIGHEST RESOLUTION SHELL, RANGE LOW (A) : NULL

REMARK 200 COMPLETENESS FOR SHELL (%) : NULL

REMARK 200 DATA REDUNDANCY IN SHELL : NULL

REMARK 200 R MERGE FOR SHELL (I) : NULL

REMARK 200 R SYM FOR SHELL (I) : NULL

REMARK 200 <I/SIGMA(I)> FOR SHELL : NULL

REMARK 200

REMARK 200 DIFFRACTION PROTOCOL: NULL

REMARK 200 METHOD USED TO DETERMINE THE STRUCTURE: NULL

REMARK 200 SOFTWARE USED: NULL

REMARK 200 STARTING MODEL: NULL

REMARK 200

REMARK 200 REMARK: NULL

REMARK 280

REMARK 280 CRYSTAL

REMARK 280 SOLVENT CONTENT, VS (%): 50.74

REMARK 280 MATTHEWS COEFFICIENT, VM (ANGSTROMS**3/DA): 2.50

REMARK 280

REMARK 280 CRYSTALLIZATION CONDITIONS: NULL

REMARK 290

REMARK 290 CRYSTALLOGRAPHIC SYMMETRY

REMARK 290 SYMMETRY OPERATORS FOR SPACE GROUP: P 21 3

REMARK 290

REMARK 290 SYMOP SYMMETRY

REMARK 290 NNNMMM OPERATOR

REMARK 290 1555 X,Y,Z

REMARK 290 2555 -X+1/2,-Y,Z+1/2

REMARK 290 3555 -X,Y+1/2,-Z+1/2

REMARK 290 4555 X+1/2,-Y+1/2,-Z

REMARK 290 5555 Z,X,Y

REMARK 290 6555 Z+1/2,-X+1/2,-Y

REMARK 290 7555 -Z+1/2,-X,Y+1/2

REMARK 290 8555 -Z,X+1/2,-Y+1/2

REMARK 290 9555 Y,Z,X

REMARK 290 10555 -Y,Z+1/2,-X+1/2

REMARK 290 11555 Y+1/2,-Z+1/2,-X

REMARK 290 12555 -Y+1/2,-Z,X+1/2

REMARK 290

REMARK 290 WHERE NNN -> OPERATOR NUMBER

REMARK 290 MMM -> TRANSLATION VECTOR

REMARK 290

REMARK 290 CRYSTALLOGRAPHIC SYMMETRY TRANSFORMATIONS

REMARK 290 THE FOLLOWING TRANSFORMATIONS OPERATE ON THE ATOM/HETATM
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REMARK 290 RECORDS IN THIS ENTRY TO PRODUCE CRYSTALLOGRAPHICALLY

REMARK 290 RELATED MOLECULES.

REMARK 290 SMTRY1 1 1.000000 0.000000 0.000000 0.00000

REMARK 290 SMTRY2 1 0.000000 1.000000 0.000000 0.00000

REMARK 290 SMTRY3 1 0.000000 0.000000 1.000000 0.00000

REMARK 290 SMTRY1 2 -1.000000 0.000000 0.000000 23.55000

REMARK 290 SMTRY2 2 0.000000 -1.000000 0.000000 0.00000

REMARK 290 SMTRY3 2 0.000000 0.000000 1.000000 23.55000

REMARK 290 SMTRY1 3 -1.000000 0.000000 0.000000 0.00000

REMARK 290 SMTRY2 3 0.000000 1.000000 0.000000 23.55000

REMARK 290 SMTRY3 3 0.000000 0.000000 -1.000000 23.55000

REMARK 290 SMTRY1 4 1.000000 0.000000 0.000000 23.55000

REMARK 290 SMTRY2 4 0.000000 -1.000000 0.000000 23.55000

REMARK 290 SMTRY3 4 0.000000 0.000000 -1.000000 0.00000

REMARK 290 SMTRY1 5 0.000000 0.000000 1.000000 0.00000

REMARK 290 SMTRY2 5 1.000000 0.000000 0.000000 0.00000

REMARK 290 SMTRY3 5 0.000000 1.000000 0.000000 0.00000

REMARK 290 SMTRY1 6 0.000000 0.000000 1.000000 23.55000

REMARK 290 SMTRY2 6 -1.000000 0.000000 0.000000 23.55000

REMARK 290 SMTRY3 6 0.000000 -1.000000 0.000000 0.00000

REMARK 290 SMTRY1 7 0.000000 0.000000 -1.000000 23.55000

REMARK 290 SMTRY2 7 -1.000000 0.000000 0.000000 0.00000

REMARK 290 SMTRY3 7 0.000000 1.000000 0.000000 23.55000

REMARK 290 SMTRY1 8 0.000000 0.000000 -1.000000 0.00000

REMARK 290 SMTRY2 8 1.000000 0.000000 0.000000 23.55000

REMARK 290 SMTRY3 8 0.000000 -1.000000 0.000000 23.55000

REMARK 290 SMTRY1 9 0.000000 1.000000 0.000000 0.00000

REMARK 290 SMTRY2 9 0.000000 0.000000 1.000000 0.00000

REMARK 290 SMTRY3 9 1.000000 0.000000 0.000000 0.00000

REMARK 290 SMTRY1 10 0.000000 -1.000000 0.000000 0.00000

REMARK 290 SMTRY2 10 0.000000 0.000000 1.000000 23.55000

REMARK 290 SMTRY3 10 -1.000000 0.000000 0.000000 23.55000

REMARK 290 SMTRY1 11 0.000000 1.000000 0.000000 23.55000

REMARK 290 SMTRY2 11 0.000000 0.000000 -1.000000 23.55000

REMARK 290 SMTRY3 11 -1.000000 0.000000 0.000000 0.00000

REMARK 290 SMTRY1 12 0.000000 -1.000000 0.000000 23.55000

REMARK 290 SMTRY2 12 0.000000 0.000000 -1.000000 0.00000

REMARK 290 SMTRY3 12 1.000000 0.000000 0.000000 23.55000

REMARK 290

REMARK 290 REMARK: NULL

REMARK 300

REMARK 300 BIOMOLECULE: 1

REMARK 300 SEE REMARK 350 FOR THE AUTHOR PROVIDED AND/OR PROGRAM

REMARK 300 GENERATED ASSEMBLY INFORMATION FOR THE STRUCTURE IN
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REMARK 300 THIS ENTRY. THE REMARK MAY ALSO PROVIDE INFORMATION ON

REMARK 300 BURIED SURFACE AREA.

REMARK 350

REMARK 350 COORDINATES FOR A COMPLETE MULTIMER REPRESENTING THE KNOWN

REMARK 350 BIOLOGICALLY SIGNIFICANT OLIGOMERIZATION STATE OF THE

REMARK 350 MOLECULE CAN BE GENERATED BY APPLYING BIOMT TRANSFORMATIONS

REMARK 350 GIVEN BELOW. BOTH NON-CRYSTALLOGRAPHIC AND

REMARK 350 CRYSTALLOGRAPHIC OPERATIONS ARE GIVEN.

REMARK 350

REMARK 350 BIOMOLECULE: 1

REMARK 350 AUTHOR DETERMINED BIOLOGICAL UNIT: MONOMERIC

REMARK 350 APPLY THE FOLLOWING TO CHAINS: A

REMARK 350 BIOMT1 1 1.000000 0.000000 0.000000 0.00000

REMARK 350 BIOMT2 1 0.000000 1.000000 0.000000 0.00000

REMARK 350 BIOMT3 1 0.000000 0.000000 1.000000 0.00000

REMARK 500

REMARK 500 GEOMETRY AND STEREOCHEMISTRY

REMARK 500 SUBTOPIC: COVALENT BOND LENGTHS

REMARK 500

REMARK 500 THE STEREOCHEMICAL PARAMETERS OF THE FOLLOWING RESIDUES

REMARK 500 HAVE VALUES WHICH DEVIATE FROM EXPECTED VALUES BY MORE

REMARK 500 THAN 6*RMSD (M=MODEL NUMBER; RES=RESIDUE NAME; C=CHAIN

REMARK 500 IDENTIFIER; SSEQ=SEQUENCE NUMBER; I=INSERTION CODE).

REMARK 500

REMARK 500 STANDARD TABLE:

REMARK 500 FORMAT: (10X,I3,1X,2(A3,1X,A1,I4,A1,1X,A4,3X),1X,F6.3)

REMARK 500

REMARK 500 EXPECTED VALUES PROTEIN: ENGH AND HUBER, 1999

REMARK 500 EXPECTED VALUES NUCLEIC ACID: CLOWNEY ET AL 1996

REMARK 500

REMARK 500 M RES CSSEQI ATM1 RES CSSEQI ATM2 DEVIATION

REMARK 500 TYR A 10 CZ TYR A 10 OH -0.387

REMARK 500 TRP A 25 CD1 TRP A 25 NE1 0.287

REMARK 500 TRP A 25 NE1 TRP A 25 CE2 0.109

REMARK 500

REMARK 500 REMARK: NULL

REMARK 500

REMARK 500 GEOMETRY AND STEREOCHEMISTRY

REMARK 500 SUBTOPIC: COVALENT BOND ANGLES

REMARK 500

REMARK 500 THE STEREOCHEMICAL PARAMETERS OF THE FOLLOWING RESIDUES

REMARK 500 HAVE VALUES WHICH DEVIATE FROM EXPECTED VALUES BY MORE

REMARK 500 THAN 6*RMSD (M=MODEL NUMBER; RES=RESIDUE NAME; C=CHAIN

REMARK 500 IDENTIFIER; SSEQ=SEQUENCE NUMBER; I=INSERTION CODE).
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REMARK 500

REMARK 500 STANDARD TABLE:

REMARK 500 FORMAT: (10X,I3,1X,A3,1X,A1,I4,A1,3(1X,A4,2X),12X,F5.1)

REMARK 500

REMARK 500 EXPECTED VALUES PROTEIN: ENGH AND HUBER, 1999

REMARK 500 EXPECTED VALUES NUCLEIC ACID: CLOWNEY ET AL 1996

REMARK 500

REMARK 500 M RES CSSEQI ATM1 ATM2 ATM3

REMARK 500 TRP A 25 CG - CD1 - NE1 ANGL. DEV. = 6.7 DEGREES

REMARK 500 TRP A 25 CD1 - NE1 - CE2 ANGL. DEV. = -21.5 DEGREES

REMARK 500 TRP A 25 NE1 - CE2 - CZ2 ANGL. DEV. = -11.0 DEGREES

REMARK 500 TRP A 25 NE1 - CE2 - CD2 ANGL. DEV. = 9.6 DEGREES

REMARK 500

REMARK 500 REMARK: NULL

REMARK 500

REMARK 500 GEOMETRY AND STEREOCHEMISTRY

REMARK 500 SUBTOPIC: TORSION ANGLES

REMARK 500

REMARK 500 TORSION ANGLES OUTSIDE THE EXPECTED RAMACHANDRAN REGIONS:

REMARK 500 (M=MODEL NUMBER; RES=RESIDUE NAME; C=CHAIN IDENTIFIER;

REMARK 500 SSEQ=SEQUENCE NUMBER; I=INSERTION CODE).

REMARK 500

REMARK 500 STANDARD TABLE:

REMARK 500 FORMAT:(10X,I3,1X,A3,1X,A1,I4,A1,4X,F7.2,3X,F7.2)

REMARK 500

REMARK 500 EXPECTED VALUES: GJ KLEYWEGT AND TA JONES (1996). PHI/PSI-

REMARK 500 CHOLOGY: RAMACHANDRAN REVISITED. STRUCTURE 4, 1395 - 1400

REMARK 500

REMARK 500 M RES CSSEQI PSI PHI

REMARK 500 SER A 2 -57.57 -21.14

REMARK 500 THR A 5 54.62 -63.85

REMARK 500 SER A 11 9.62 -51.97

REMARK 500 MET A 27 -93.98 -145.30

REMARK 500 ASN A 28 64.02 15.67

REMARK 500

REMARK 500 REMARK: NULL

REMARK 500

REMARK 500 GEOMETRY AND STEREOCHEMISTRY

REMARK 500 SUBTOPIC: PLANAR GROUPS

REMARK 500

REMARK 500 PLANAR GROUPS IN THE FOLLOWING RESIDUES HAVE A TOTAL

REMARK 500 RMS DISTANCE OF ALL ATOMS FROM THE BEST-FIT PLANE

REMARK 500 BY MORE THAN AN EXPECTED VALUE OF 6*RMSD, WITH AN

REMARK 500 RMSD 0.02 ANGSTROMS, OR AT LEAST ONE ATOM HAS
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REMARK 500 AN RMSD GREATER THAN THIS VALUE

REMARK 500 (M=MODEL NUMBER; RES=RESIDUE NAME; C=CHAIN IDENTIFIER;

REMARK 500 SSEQ=SEQUENCE NUMBER; I=INSERTION CODE).

REMARK 500

REMARK 500 M RES CSSEQI RMS TYPE

REMARK 500 ASN A 28 0.08 SIDE_CHAIN

REMARK 500

REMARK 500 REMARK: NULL

REMARK 500

REMARK 500 GEOMETRY AND STEREOCHEMISTRY

REMARK 500 SUBTOPIC: MAIN CHAIN PLANARITY

REMARK 500

REMARK 500 THE FOLLOWING RESIDUES HAVE A PSEUDO PLANARITY

REMARK 500 TORSION, C(I) - CA(I) - N(I+1) - O(I), GREATER

REMARK 500 10.0 DEGREES. (M=MODEL NUMBER; RES=RESIDUE NAME;

REMARK 500 C=CHAIN IDENTIFIER; SSEQ=SEQUENCE NUMBER;

REMARK 500 I=INSERTION CODE).

REMARK 500

REMARK 500 M RES CSSEQI ANGLE

REMARK 500 HIS A 1 19.48

REMARK 500 GLN A 3 -15.78

REMARK 500 GLY A 4 -17.23

REMARK 500 THR A 5 -10.38

REMARK 500 PHE A 6 -12.06

REMARK 500 THR A 7 -14.66

REMARK 500 SER A 11 -15.10

REMARK 500 LYS A 12 14.46

REMARK 500 ALA A 19 -10.92

REMARK 500 GLN A 20 -13.40

REMARK 500 VAL A 23 -15.87

REMARK 500 LEU A 26 -14.56

REMARK 500 MET A 27 -16.22

REMARK 500

REMARK 500 REMARK: NULL

DBREF 1GCN A 1 29 UNP P01274 GLUC_PIG 33 61

SEQRES 1 A 29 HIS SER GLN GLY THR PHE THR SER ASP TYR SER LYS TYR

SEQRES 2 A 29 LEU ASP SER ARG ARG ALA GLN ASP PHE VAL GLN TRP LEU

SEQRES 3 A 29 MET ASN THR

HELIX 1 A PHE A 6 LEU A 26 1 21

CRYST1 47.100 47.100 47.100 90.00 90.00 90.00 P 21 3 12

ORIGX1 0.021231 0.000000 0.000000 0.00000

ORIGX2 0.000000 0.021231 0.000000 0.00000

ORIGX3 0.000000 0.000000 0.021231 0.00000

SCALE1 0.021231 0.000000 0.000000 0.00000
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SCALE2 0.000000 0.021231 0.000000 0.00000

SCALE3 0.000000 0.000000 0.021231 0.00000

ATOM 1 N HIS A 1 49.668 24.248 10.436 1.00 25.00 N

ATOM 2 CA HIS A 1 50.197 25.578 10.784 1.00 16.00 C

ATOM 3 C HIS A 1 49.169 26.701 10.917 1.00 16.00 C

ATOM 4 O HIS A 1 48.241 26.524 11.749 1.00 16.00 O

ATOM 5 CB HIS A 1 51.312 26.048 9.843 1.00 16.00 C

ATOM 6 CG HIS A 1 50.958 26.068 8.340 1.00 16.00 C

ATOM 7 ND1 HIS A 1 49.636 26.144 7.860 1.00 16.00 N

ATOM 8 CD2 HIS A 1 51.797 26.043 7.286 1.00 16.00 C

ATOM 9 CE1 HIS A 1 49.691 26.152 6.454 1.00 17.00 C

ATOM 10 NE2 HIS A 1 51.046 26.090 6.098 1.00 17.00 N

ATOM 11 N SER A 2 49.788 27.850 10.784 1.00 16.00 N

ATOM 12 CA SER A 2 49.138 29.147 10.620 1.00 15.00 C

ATOM 13 C SER A 2 47.713 29.006 10.110 1.00 15.00 C

ATOM 14 O SER A 2 46.740 29.251 10.864 1.00 15.00 O

ATOM 15 CB SER A 2 49.875 29.930 9.569 1.00 16.00 C

ATOM 16 OG SER A 2 49.145 31.057 9.176 1.00 19.00 O

ATOM 17 N GLN A 3 47.620 28.367 8.973 1.00 15.00 N

ATOM 18 CA GLN A 3 46.287 28.193 8.308 1.00 14.00 C

ATOM 19 C GLN A 3 45.406 27.172 8.963 1.00 14.00 C

ATOM 20 O GLN A 3 44.198 27.508 9.014 1.00 14.00 O

ATOM 21 CB GLN A 3 46.489 27.963 6.806 1.00 18.00 C

ATOM 22 CG GLN A 3 45.138 27.800 6.111 1.00 21.00 C

ATOM 23 CD GLN A 3 45.304 27.952 4.603 1.00 24.00 C

ATOM 24 OE1 GLN A 3 46.432 28.202 4.112 1.00 24.00 O

ATOM 25 NE2 GLN A 3 44.233 27.647 3.897 1.00 26.00 N

ATOM 26 N GLY A 4 46.014 26.394 9.871 1.00 14.00 N

ATOM 27 CA GLY A 4 45.422 25.287 10.680 1.00 14.00 C

ATOM 28 C GLY A 4 43.892 25.215 10.719 1.00 14.00 C

ATOM 29 O GLY A 4 43.287 26.155 11.288 1.00 14.00 O

ATOM 30 N THR A 5 43.406 23.993 10.767 1.00 14.00 N

ATOM 31 CA THR A 5 42.004 23.642 10.443 1.00 12.00 C

ATOM 32 C THR A 5 40.788 24.146 11.252 1.00 12.00 C

ATOM 33 O THR A 5 39.804 23.384 11.410 1.00 12.00 O

ATOM 34 CB THR A 5 41.934 22.202 9.889 1.00 14.00 C

ATOM 35 OG1 THR A 5 41.080 21.317 10.609 1.00 15.00 O

ATOM 36 CG2 THR A 5 43.317 21.556 9.849 1.00 15.00 C

ATOM 37 N PHE A 6 40.628 25.463 11.441 1.00 12.00 N

ATOM 38 CA PHE A 6 39.381 25.950 12.104 1.00 12.00 C

ATOM 39 C PHE A 6 38.156 25.684 11.232 1.00 12.00 C

ATOM 40 O PHE A 6 37.231 25.002 11.719 1.00 12.00 O

ATOM 41 CB PHE A 6 39.407 27.425 12.584 1.00 12.00 C

ATOM 42 CG PHE A 6 38.187 27.923 13.430 1.00 12.00 C
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ATOM 43 CD1 PHE A 6 36.889 27.518 13.163 1.00 12.00 C

ATOM 44 CD2 PHE A 6 38.386 28.862 14.419 1.00 12.00 C

ATOM 45 CE1 PHE A 6 35.813 27.967 13.909 1.00 12.00 C

ATOM 46 CE2 PHE A 6 37.306 29.328 15.177 1.00 12.00 C

ATOM 47 CZ PHE A 6 36.019 28.871 14.928 1.00 12.00 C

ATOM 48 N THR A 7 38.341 25.794 9.956 1.00 12.00 N

ATOM 49 CA THR A 7 37.249 25.666 8.991 1.00 12.00 C

ATOM 50 C THR A 7 36.324 24.452 9.101 1.00 12.00 C

ATOM 51 O THR A 7 35.111 24.637 9.387 1.00 12.00 O

ATOM 52 CB THR A 7 37.884 25.743 7.628 1.00 13.00 C

ATOM 53 OG1 THR A 7 37.940 27.122 7.317 1.00 14.00 O

ATOM 54 CG2 THR A 7 37.073 25.003 6.585 1.00 14.00 C

ATOM 55 N SER A 8 36.964 23.356 9.442 1.00 12.00 N

ATOM 56 CA SER A 8 36.286 22.063 9.486 1.00 12.00 C

ATOM 57 C SER A 8 35.575 21.813 10.813 1.00 11.00 C

ATOM 58 O SER A 8 35.203 20.650 11.111 1.00 10.00 O

ATOM 59 CB SER A 8 37.291 20.958 9.189 1.00 16.00 C

ATOM 60 OG SER A 8 37.917 21.247 7.943 1.00 20.00 O

ATOM 61 N ASP A 9 35.723 22.783 11.694 1.00 10.00 N

ATOM 62 CA ASP A 9 35.004 22.803 12.977 1.00 10.00 C

ATOM 63 C ASP A 9 33.532 23.121 12.749 1.00 10.00 C

ATOM 64 O ASP A 9 32.645 22.360 13.210 1.00 10.00 O

ATOM 65 CB ASP A 9 35.556 23.874 13.919 1.00 11.00 C

ATOM 66 CG ASP A 9 36.280 23.230 15.096 1.00 13.00 C

ATOM 67 OD1 ASP A 9 36.088 22.010 15.324 1.00 16.00 O

ATOM 68 OD2 ASP A 9 36.821 23.974 15.951 1.00 16.00 O

ATOM 69 N TYR A 10 33.316 24.220 12.040 1.00 10.00 N

ATOM 70 CA TYR A 10 31.967 24.742 11.748 1.00 10.00 C

ATOM 71 C TYR A 10 31.203 23.973 10.685 1.00 10.00 C

ATOM 72 O TYR A 10 29.980 23.772 10.885 1.00 10.00 O

ATOM 73 CB TYR A 10 31.951 26.230 11.367 1.00 10.00 C

ATOM 74 CG TYR A 10 30.613 26.678 10.713 1.00 10.00 C

ATOM 75 CD1 TYR A 10 30.563 26.886 9.350 1.00 10.00 C

ATOM 76 CD2 TYR A 10 29.463 26.824 11.461 1.00 10.00 C

ATOM 77 CE1 TYR A 10 29.377 27.275 8.733 1.00 10.00 C

ATOM 78 CE2 TYR A 10 28.272 27.214 10.848 1.00 10.00 C

ATOM 79 CZ TYR A 10 28.226 27.452 9.483 1.00 10.00 C

ATOM 80 OH TYR A 10 27.365 27.683 9.060 1.00 11.00 O

ATOM 81 N SER A 11 31.796 23.909 9.491 1.00 10.00 N

ATOM 82 CA SER A 11 31.146 23.418 8.250 1.00 10.00 C

ATOM 83 C SER A 11 30.463 22.048 8.303 1.00 10.00 C

ATOM 84 O SER A 11 29.615 21.759 7.422 1.00 10.00 O

ATOM 85 CB SER A 11 32.004 23.615 6.998 1.00 14.00 C

ATOM 86 OG SER A 11 32.013 24.995 6.632 1.00 19.00 O
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ATOM 87 N LYS A 12 30.402 21.619 9.544 1.00 10.00 N

ATOM 88 CA LYS A 12 29.792 20.460 10.189 1.00 9.00 C

ATOM 89 C LYS A 12 28.494 20.817 10.932 1.00 9.00 C

ATOM 90 O LYS A 12 27.597 19.943 10.980 1.00 9.00 O

ATOM 91 CB LYS A 12 30.811 20.013 11.224 1.00 10.00 C

ATOM 92 CG LYS A 12 30.482 18.661 11.833 1.00 14.00 C

ATOM 93 CD LYS A 12 31.413 18.365 12.999 1.00 18.00 C

ATOM 94 CE LYS A 12 31.243 16.937 13.498 1.00 22.00 C

ATOM 95 NZ LYS A 12 32.121 16.717 14.652 1.00 26.00 N

ATOM 96 N TYR A 13 28.583 21.742 11.894 1.00 9.00 N

ATOM 97 CA TYR A 13 27.396 22.283 12.612 1.00 8.00 C

ATOM 98 C TYR A 13 26.214 22.497 11.670 1.00 8.00 C

ATOM 99 O TYR A 13 25.037 22.245 12.029 1.00 8.00 O

ATOM 100 CB TYR A 13 27.730 23.578 13.385 1.00 8.00 C

ATOM 101 CG TYR A 13 26.516 24.500 13.692 1.00 8.00 C

ATOM 102 CD1 TYR A 13 25.798 24.377 14.867 1.00 8.00 C

ATOM 103 CD2 TYR A 13 26.185 25.498 12.796 1.00 8.00 C

ATOM 104 CE1 TYR A 13 24.713 25.228 15.120 1.00 8.00 C

ATOM 105 CE2 TYR A 13 25.108 26.342 13.035 1.00 8.00 C

ATOM 106 CZ TYR A 13 24.370 26.210 14.196 1.00 8.00 C

ATOM 107 OH TYR A 13 23.202 26.933 14.347 1.00 10.00 O

ATOM 108 N LEU A 14 26.522 22.993 10.494 1.00 8.00 N

ATOM 109 CA LEU A 14 25.461 23.263 9.523 1.00 8.00 C

ATOM 110 C LEU A 14 24.912 21.978 8.907 1.00 8.00 C

ATOM 111 O LEU A 14 24.122 22.025 7.933 1.00 8.00 O

ATOM 112 CB LEU A 14 25.923 24.242 8.447 1.00 13.00 C

ATOM 113 CG LEU A 14 25.064 25.509 8.412 1.00 19.00 C

ATOM 114 CD1 LEU A 14 25.564 26.496 7.505 1.00 25.00 C

ATOM 115 CD2 LEU A 14 23.582 25.209 8.199 1.00 25.00 C

ATOM 116 N ASP A 15 25.556 20.886 9.263 1.00 8.00 N

ATOM 117 CA ASP A 15 25.075 19.552 8.885 1.00 8.00 C

ATOM 118 C ASP A 15 24.208 19.002 10.009 1.00 8.00 C

ATOM 119 O ASP A 15 23.550 17.940 9.861 1.00 8.00 O

ATOM 120 CB ASP A 15 26.246 18.601 8.644 1.00 11.00 C

ATOM 121 CG ASP A 15 26.260 18.121 7.196 1.00 16.00 C

ATOM 122 OD1 ASP A 15 26.021 18.946 6.280 1.00 21.00 O

ATOM 123 OD2 ASP A 15 26.732 16.984 6.946 1.00 21.00 O

ATOM 124 N SER A 16 24.015 19.861 10.986 1.00 8.00 N

ATOM 125 CA SER A 16 23.180 19.548 12.149 1.00 7.00 C

ATOM 126 C SER A 16 21.923 20.414 12.167 1.00 7.00 C

ATOM 127 O SER A 16 20.841 19.941 12.598 1.00 7.00 O

ATOM 128 CB SER A 16 23.981 19.746 13.437 1.00 9.00 C

ATOM 129 OG SER A 16 23.327 19.102 14.524 1.00 11.00 O

ATOM 130 N ARG A 17 22.037 21.605 11.597 1.00 7.00 N
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ATOM 131 CA ARG A 17 20.875 22.504 11.583 1.00 6.00 C

ATOM 132 C ARG A 17 19.868 22.156 10.491 1.00 6.00 C

ATOM 133 O ARG A 17 18.665 22.015 10.809 1.00 6.00 O

ATOM 134 CB ARG A 17 21.214 23.997 11.557 1.00 7.00 C

ATOM 135 CG ARG A 17 20.010 24.800 12.063 1.00 9.00 C

ATOM 136 CD ARG A 17 19.570 25.929 11.132 1.00 11.00 C

ATOM 137 NE ARG A 17 20.149 27.218 11.537 1.00 12.00 N

ATOM 138 CZ ARG A 17 19.828 28.351 10.936 1.00 13.00 C

ATOM 139 NH1 ARG A 17 19.319 28.304 9.720 1.00 14.00 N

ATOM 140 NH2 ARG A 17 20.351 29.485 11.362 1.00 14.00 N

ATOM 141 N ARG A 18 20.378 21.725 9.348 1.00 6.00 N

ATOM 142 CA ARG A 18 19.530 21.258 8.235 1.00 5.00 C

ATOM 143 C ARG A 18 19.148 19.796 8.478 1.00 5.00 C

ATOM 144 O ARG A 18 18.326 19.189 7.741 1.00 5.00 O

ATOM 145 CB ARG A 18 20.237 21.481 6.888 1.00 8.00 C

ATOM 146 CG ARG A 18 19.384 21.236 5.634 1.00 9.00 C

ATOM 147 CD ARG A 18 19.623 19.860 5.005 1.00 11.00 C

ATOM 148 NE ARG A 18 20.029 19.997 3.600 1.00 12.00 N

ATOM 149 CZ ARG A 18 19.398 19.415 2.597 1.00 13.00 C

ATOM 150 NH1 ARG A 18 18.483 18.493 2.835 1.00 14.00 N

ATOM 151 NH2 ARG A 18 19.831 19.597 1.364 1.00 14.00 N

ATOM 152 N ALA A 19 19.560 19.319 9.623 1.00 6.00 N

ATOM 153 CA ALA A 19 19.126 17.991 10.053 1.00 6.00 C

ATOM 154 C ALA A 19 18.002 18.136 11.071 1.00 6.00 C

ATOM 155 O ALA A 19 16.933 17.494 10.922 1.00 7.00 O

ATOM 156 CB ALA A 19 20.285 17.187 10.629 1.00 15.00 C

ATOM 157 N GLN A 20 18.094 19.241 11.783 1.00 7.00 N

ATOM 158 CA GLN A 20 17.013 19.632 12.689 1.00 7.00 C

ATOM 159 C GLN A 20 15.897 20.314 11.905 1.00 7.00 C

ATOM 160 O GLN A 20 14.701 20.031 12.162 1.00 7.00 O

ATOM 161 CB GLN A 20 17.513 20.538 13.821 1.00 11.00 C

ATOM 162 CG GLN A 20 16.699 21.829 13.936 1.00 16.00 C

ATOM 163 CD GLN A 20 16.591 22.277 15.393 1.00 22.00 C

ATOM 164 OE1 GLN A 20 17.533 22.060 16.194 1.00 24.00 O

ATOM 165 NE2 GLN A 20 15.356 22.544 15.773 1.00 24.00 N

ATOM 166 N ASP A 21 16.292 20.724 10.714 1.00 7.00 N

ATOM 167 CA ASP A 21 15.405 21.490 9.835 1.00 7.00 C

ATOM 168 C ASP A 21 14.451 20.565 9.120 1.00 7.00 C

ATOM 169 O ASP A 21 13.245 20.850 8.962 1.00 7.00 O

ATOM 170 CB ASP A 21 16.212 22.278 8.809 1.00 14.00 C

ATOM 171 CG ASP A 21 15.427 23.525 8.413 1.00 21.00 C

ATOM 172 OD1 ASP A 21 15.031 24.298 9.321 1.00 28.00 O

ATOM 173 OD2 ASP A 21 15.316 23.827 7.200 1.00 28.00 O

ATOM 174 N PHE A 22 14.987 19.373 8.843 1.00 7.00 N
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ATOM 175 CA PHE A 22 14.216 18.253 8.289 1.00 7.00 C

ATOM 176 C PHE A 22 13.098 17.860 9.246 1.00 7.00 C

ATOM 177 O PHE A 22 11.956 17.556 8.818 1.00 7.00 O

ATOM 178 CB PHE A 22 15.134 17.038 8.105 1.00 8.00 C

ATOM 179 CG PHE A 22 14.349 15.761 7.724 1.00 10.00 C

ATOM 180 CD1 PHE A 22 14.022 15.527 6.410 1.00 12.00 C

ATOM 181 CD2 PHE A 22 13.992 14.842 8.689 1.00 12.00 C

ATOM 182 CE1 PHE A 22 13.302 14.391 6.050 1.00 14.00 C

ATOM 183 CE2 PHE A 22 13.269 13.708 8.340 1.00 14.00 C

ATOM 184 CZ PHE A 22 12.917 13.483 7.018 1.00 16.00 C

ATOM 185 N VAL A 23 13.455 17.883 10.517 1.00 7.00 N

ATOM 186 CA VAL A 23 12.574 17.403 11.589 1.00 7.00 C

ATOM 187 C VAL A 23 11.283 18.205 11.729 1.00 7.00 C

ATOM 188 O VAL A 23 10.233 17.600 12.052 1.00 7.00 O

ATOM 189 CB VAL A 23 13.339 17.278 12.906 1.00 10.00 C

ATOM 190 CG1 VAL A 23 12.441 17.004 14.108 1.00 13.00 C

ATOM 191 CG2 VAL A 23 14.455 16.248 12.794 1.00 13.00 C

ATOM 192 N GLN A 24 11.255 19.253 10.941 1.00 8.00 N

ATOM 193 CA GLN A 24 10.082 20.114 10.818 1.00 8.00 C

ATOM 194 C GLN A 24 9.158 19.638 9.692 1.00 8.00 C

ATOM 195 O GLN A 24 7.959 19.990 9.663 1.00 8.00 O

ATOM 196 CB GLN A 24 10.575 21.521 10.498 1.00 14.00 C

ATOM 197 CG GLN A 24 9.505 22.591 10.661 1.00 20.00 C

ATOM 198 CD GLN A 24 9.964 23.862 9.956 1.00 26.00 C

ATOM 199 OE1 GLN A 24 10.079 24.941 10.587 1.00 32.00 O

ATOM 200 NE2 GLN A 24 10.086 23.739 8.649 1.00 32.00 N

ATOM 201 N TRP A 25 9.723 19.074 8.651 1.00 8.00 N

ATOM 202 CA TRP A 25 8.899 18.676 7.495 1.00 9.00 C

ATOM 203 C TRP A 25 8.118 17.395 7.751 1.00 9.00 C

ATOM 204 O TRP A 25 6.860 17.395 7.725 1.00 9.00 O

ATOM 205 CB TRP A 25 9.761 18.442 6.262 1.00 11.00 C

ATOM 206 CG TRP A 25 8.871 18.331 5.004 1.00 12.00 C

ATOM 207 CD1 TRP A 25 8.097 19.279 4.442 1.00 12.00 C

ATOM 208 CD2 TRP A 25 8.640 17.180 4.249 1.00 12.00 C

ATOM 209 NE1 TRP A 25 7.041 18.780 3.259 1.00 12.00 N

ATOM 210 CE2 TRP A 25 7.873 17.564 3.121 1.00 12.00 C

ATOM 211 CE3 TRP A 25 9.124 15.884 4.378 1.00 12.00 C

ATOM 212 CZ2 TRP A 25 7.726 16.765 2.003 1.00 12.00 C

ATOM 213 CZ3 TRP A 25 8.870 15.038 3.296 1.00 12.00 C

ATOM 214 CH2 TRP A 25 8.216 15.469 2.140 1.00 12.00 C

ATOM 215 N LEU A 26 8.857 16.484 8.346 1.00 9.00 N

ATOM 216 CA LEU A 26 8.377 15.159 8.741 1.00 10.00 C

ATOM 217 C LEU A 26 7.534 15.279 10.012 1.00 11.00 C

ATOM 218 O LEU A 26 6.755 14.347 10.331 1.00 11.00 O
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ATOM 219 CB LEU A 26 9.611 14.267 8.924 1.00 10.00 C

ATOM 220 CG LEU A 26 9.342 12.810 9.303 1.00 10.00 C

ATOM 221 CD1 LEU A 26 8.223 12.149 8.505 1.00 10.00 C

ATOM 222 CD2 LEU A 26 10.637 11.982 9.250 1.00 10.00 C

ATOM 223 N MET A 27 7.281 16.544 10.320 1.00 11.00 N

ATOM 224 CA MET A 27 6.446 16.959 11.451 1.00 11.00 C

ATOM 225 C MET A 27 5.607 18.227 11.219 1.00 13.00 C

ATOM 226 O MET A 27 4.823 18.240 10.244 1.00 13.00 O

ATOM 227 CB MET A 27 7.327 17.118 12.679 1.00 11.00 C

ATOM 228 CG MET A 27 6.518 17.289 13.953 1.00 11.00 C

ATOM 229 SD MET A 27 7.301 18.326 15.196 1.00 11.00 S

ATOM 230 CE MET A 27 5.833 18.677 16.178 1.00 11.00 C

ATOM 231 N ASN A 28 6.147 19.366 11.620 1.00 14.00 N

ATOM 232 CA ASN A 28 5.399 20.637 11.728 1.00 14.00 C

ATOM 233 C ASN A 28 3.878 20.587 11.716 1.00 17.00 C

ATOM 234 O ASN A 28 3.252 21.114 10.763 1.00 19.00 O

ATOM 235 CB ASN A 28 5.874 21.774 10.843 1.00 14.00 C

ATOM 236 CG ASN A 28 6.246 22.905 11.791 1.00 14.00 C

ATOM 237 OD1 ASN A 28 6.929 22.629 12.807 1.00 14.00 O

ATOM 238 ND2 ASN A 28 6.271 24.085 11.229 1.00 14.00 N

ATOM 239 N THR A 29 3.391 19.940 12.762 1.00 21.00 N

ATOM 240 CA THR A 29 2.014 19.761 13.283 1.00 21.00 C

ATOM 241 C THR A 29 0.826 19.943 12.332 1.00 23.00 C

ATOM 242 O THR A 29 0.932 19.600 11.133 1.00 30.00 O

ATOM 243 CB THR A 29 1.845 20.667 14.505 1.00 21.00 C

ATOM 244 OG1 THR A 29 1.214 21.893 14.153 1.00 21.00 O

ATOM 245 CG2 THR A 29 3.180 20.968 15.185 1.00 21.00 C

ATOM 246 OXT THR A 29 -0.317 20.109 12.824 1.00 25.00 O

TER 247 THR A 29

MASTER 344 1 0 1 0 0 0 6 246 1 0 3

END
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