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Abstract 

 

Modeling the progress of an epidemic in a population has received significant 

attention among various fields of science. Many epidemiological models assume 

random mixing of the population, homogeneous hosts, and a static environment. 

We are interested in modeling epidemic spread in a dynamic evolving ecosystem 

with behavioral models associated to its individuals. To this end, we present 

EcoDemics; which integrates the classical SIR (Susceptible-Infected-Removed) 

disease model to an individual-based evolutionary predator-prey ecosystem 

simulation, EcoSim. The behavioral model of each agent in EcoDemics is based on 

a fuzzy cognitive map (FCM) that determines the heterogeneous interactions 

between individuals. We present the disease model used and we demonstrate how 

the epidemic spread in a random mixing ecosystem differs from a heterogeneous 

ecosystem with its behavioral model. We observed that dynamics of the 

ecosystem, along with the spatial distribution of agents, play a significant role in 

disease progression.  

Due to the high mitigation capacity and significance of the immunization 

intervention, we explore vaccination techniques with various time delays and 

population proportions in EcoDemics. Based on the herd immunity theory, the 

whole population can be protected against a contagious disease by vaccination of a 

fraction of individuals. We investigate this principle in EcoDemics and compare 

our results with real epidemics data. 

A number of mathematical simulations have been used to analyze host-pathogen 

dynamics in the presence of predators; however, to the best of our knowledge, this 

is the first individual-based modeling study exploring the effect of predators on 

prey infection dynamics in a predator-prey ecosystem simulation. We used the 

EcoDemics framework to investigate the effect of predation on infection dynamics 

in EcoDemics. Our results are in agreement with both numerical and field studies. 
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Chapter 1  

Introduction 

1.1 Epidemic Modeling 

Epidemics that spread in wide geographic areas for both animals and humans, impose a 

threat to global public health security. Pandemic influenza results in an estimated three to 

five million cases of severe illness and between 250,000 and 500,000 deaths according to 

different health reports [124]. Deadly infectious pandemics transmitted from animals to 

humans such as rabies, H1N1, and SARS had deadly effect throughout the globe. As an 

example, rabies is a viral disease of the central nervous system, transmitted by direct 

contact. The highly fatal nature of this disease resulting in approximately one death every 

10 minutes, and its widespread survival that can infect any warm blooded animal and 

humans, makes it a great health concern worldwide. Although the final number of 

infections, illnesses, and deaths could vary tremendously depending on the pandemic and 

other multiple factors, it is certain that without adequate planning and preparations, a 

pandemic in the 21st century has the potential to cause enough illnesses to overwhelm 

public health system at all levels. This points out the great importance of modeling and 

simulating the spread of diseases, among both humans and animals. Recent research 

studies modeled and examined the effect of spread of diseases and different disease 

control strategies to suppress the infection.  

The overwhelming majority of disease models are based on a compartmentalization of 

individuals or hosts according to their disease stages [2], [6], [71]. The basic models 

describe the number of individuals (or proportion of the population) that are susceptible 

to, infected with and recovered from a particular disease [68], [22]. The foundations of 

almost all mathematical infectious disease epidemiology are obtained by the differential 

equation based SIS (Susceptible-Infected-Susceptible) or SIR (Susceptible-Infected-

Removed) models [6]. These mathematical models have had a long and successful 

history of obtaining analytical expressions for a number of interesting parameters 

including the total numbers of infections. These models assume homogenous hosts 



2 
 

meaning that each individual in the population is considered to have equal probability of 

contracting the disease. Additionally, random-mixing of the individuals in the population 

has been assumed and therefore the spatial distribution of the population has been 

ignored.  

To overcome the inaccuracies caused by the random mixing of the individuals in the 

population, the use of network-based models in epidemiology has become an active topic 

in scientific literature. Network-based models have roots in graph theory in which nodes 

and edges of a graph are used to represent hosts and contacts in epidemiology [29], [67], 

and [82]. Several network-based models have been developed to emphasize the role of 

modeling heterogeneity [10], [98], clustering [86], [55], and spatial dynamics [97], [104]. 

These models, however, assume fixed contact structure during the course of the outbreak 

and the clustering is simplified by measuring the number of triangles and short cycles in 

the network.  

In order to model heterogeneity and dynamic structure, current simulation works have 

incorporated a variety of techniques, including individual-based modeling and cellular 

automata (CA), into network simulations [42]. Mikler, Jacob, and Gunupudi have 

introduced the global stochastic cellular automata paradigm, addressing the issue of 

neighborhood saturation in a classical CA [83], [85], and [84]. Both CA and individual-

based systems are bottom up approaches where the systems are described by defining the 

local interactions. Among existing simulators in individual-based models, EpiFast, 

EpiSims, and EpiSimdemics were built upon the Simdemics framework [13], [14], [16], 

[30], [29], and [112] to model epidemics in the human population. Contact patterns are 

usually modeled by census data and statistics; however, these data are often very difficult 

to gather [81], [68] and involve a high level of inaccuracy [119].  

1.2 Thesis Motivation 

In the case of animal epidemics, although several mathematical and network-based 

models have been developed to mimic outbreaks of diseases such as foot-and-mouth 

disease (FMD) [68], classical swine fever (CSF) [65] and rabies ‎‎[97], far less attention 

has been concentrated on employing individual-based modeling of animals with 
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behavioral model in an ecosystem. The need for individual-based modeling has been 

emphasized by Real and Biek who highlighted the importance of spatial dynamics and 

geographical landscape to the spread of rabies [97]. One of the most frequently studied 

diseases in the SIR model is rabies. Several methodologies exist that help predict the 

local, spatial and temporal dynamics for rabies viral infection [18], [107], and [43]. These 

models are mainly concerned with mathematically modeling the epidemic using the 

available databases. However, the population properties of different animals in an 

ecosystem, for example, population densities, individual movements and contact rates, 

are extremely hard to measure [97], and data regarding which individuals are responsible 

for the disease transfer is difficult to gather [81]. This imposes the development of a 

behavioral model that determines the interaction patterns of individuals in an ecosystem.  

1.3 Thesis Contribution 

There are a number of artificial life systems that model evolutionary ecosystem, the most 

notable ones are Tierra [96], Avida [1], Echo [56], PolyWorld [118], Framsticks [57] and 

EcoSim [44]. None of the above systems, to our knowledge, has integrated disease 

progression stages. We have used EcoSim [44] which was designed to simulate agents’ 

behavior in a dynamic, evolving ecosystem. The agents (or individuals) of EcoSim are 

prey and predators acting in natural simulated environment. Each individual has a 

behavioural model that determines its actions in the ecosystem. In this thesis, we present 

EcoDemics which integrates a disease model to EcoSim for studying epidemic spread in 

a predator-prey simulation. Here, we are not interested in modeling a specific disease in a 

particular ecosystem, but rather to model the influence of the behavioral model of the 

individuals and consequent spatial distributions on disease dynamics. We have made 

realistic assumptions about our virtual ecosystem and disease model and tried to make as 

few assumptions as possible to maintain generality and applicability of the EcoDemics 

model for future studies. 

1.4 Thesis Outline 

This thesis is organized as follows: 
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Chapter 2 is dedicated to the literature review of modeling infectious diseases. It 

describes the mathematical, network based, and individual based modeling of the 

epidemics. 

Chapter 3 explains the individual-based predator prey evolutionary ecosystem simulation, 

EcoSim. It includes the design concepts regarding this simulation, and the parameters 

regulating the system dynamics. Also, the Neutral version of this simulation will be 

explained in this chapter. 

Chapter 4 introduces EcoDemics, which extends EcoSim to model epidemic spread in the 

predator-prey ecosystem simulation. This chapter explains all the technical modifications 

and parameters added to the simulation to model the disease phase. The disease phase is 

added to both EcoSim and the Neutral version of it, and the differences will be explained 

extensively. 

Chapter 5 is devoted to include vaccination as a powerful mitigation strategy to 

EcoDemics. Variations in time and in proportion of the individuals being vaccinated 

along with the herd immunity are discussed in this chapter. 

Chapter 6 describes the effect of predation in disease dynamics. Infection with or without 

predators, and with predators having different attack rates are the discussion topics of this 

chapter. Finally in Chapter 7, conclusions and recommendations for the future work will 

be explained. 
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Chapter 2  

Review of the Literature 

 

 Modeling the progress of an epidemic in a population has received significant attention 

among various fields of science. An epidemic model is a simplified tool to describe the 

transmission of contagious disease in a population of individuals. Some basic concepts in 

epidemiology and different epidemic modeling techniques will be discussed in this 

chapter. 

2.1 Sources of transmission and infectiousness levels 

2.1.1 Transmission of pathogens 

An infectious disease is transmitted from a source. Means of transmission of infectious 

disease and their characteristic features, play an important role in understanding the 

biology of an infectious disease, and in developing proper interventions of disease control 

[70].Transmission may occur through several different mechanisms: 

 Contact: This type of diseases require direct or indirect contact. 

 Food or water-borne: Food or water-borne diseases are any illnesses resulting 

from the consumption of infected food. 

 Air- borne: Air-borne transmission requires inhalation of contaminated air. 

 Vertical transmission: In the case of some diseases such as AIDS or Hepatitis B, it 

is possible for the offspring of infected parents to be born infected. This type of 

transmission is called vertical transmission. 

 Vector transmission: Disease transmitted indirectly and through a vector. For 

example, malaria spread in individuals through mosquitoes. 

2.1.2 Levels of infectiousness 

The spectrum of occurrence of disease in a defined population includes: 
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 Sporadic: occasional occurrence 

 Endemic: regular cases often occurring in a region 

 Epidemic: an unusually high number of cases in a region 

 Pandemic: a global epidemic or an epidemic occurring in multiple countries 

2.2 Mathematical Modelling of infectious disease 

2.2.1 The SIR Model 

Starting point of epidemic models was carried out by Kermack and McKendrick in 1927 

[71], which was followed by Bailey in 1957 [6], and Anderson & May in 1992 [2]. They 

considered a fixed population with three states: susceptible (S), infected (I), and 

recovered (R); therefore, this model is called the SIR model. The states of the disease in 

mathematical epidemiology are usually referred to as compartments. The pioneers of SIR 

model derived these differential equations: 

  

  
    

  

  
         

  

  
      

                 

 

Between states S and I, the transition rate is β I, where β is the contact rate, between I and 

R, the transition rate is γ (simply the rate of recovery). 

An individual in the population N must be considered as having the same probability as 

every other individual of contracting the disease. The processes of transition between 

susceptible to infectious, and infectious to recovered, which occur simultaneously in SIR 
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model, are referred to as the Law of Mass Action, a widely accepted idea that the rate of 

contact between two groups in a population is proportional to the size of each of the 

concerned groups [17]. Finally, it is assumed that the rate of infection and recovery is 

much faster than the time scale of births and deaths and therefore, these factors are 

ignored in this model. 

There is a threshold quantity in the SIR model which determines whether an epidemic 

occurs, or the disease simply dies out. This quantity is called the basic reproduction 

number, denoted by R0. It can be defined as the number of secondary infections caused 

by a single infective introduced into a population made up entirely of susceptible 

individuals (S(0) =N -1) over the course of the infection of this single infective. This 

infected individual makes βN contacts per unit time producing new infections with a 

mean infectious period of 1/γ, so 

R0 = (βN)/γ 

If R0 > 1 there is an epidemic in the population. When R0 = 1, the disease becomes 

endemic, meaning the disease remains in the population at a consistent rate, as one 

infected individual transmits the disease to one susceptible. If R0 < 1 the infection dies 

out. It is worth noting that R0 is only a threshold value and cannot be used to compare 

different diseases. The usefulness of R0 is very limited as it is calculated only via a 

mathematical model, and rarely observed in the field. 

2.2.2 Extensions of the SIR Model  

There are many extensions of SIR model. This section will review some of them.  

The SIRS model: It allows members of the recovered class to lose immunity and rejoin 

the susceptible class. The parameter f is the rate of loss of immunity. The differential 

equations are thus: 

  

  
  - βSI + μ(N - S) + fR  

  

  
 = βSI - γI - μI 

  

  
 = γI - μR - fR 
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The SEIR model: Many diseases have a latent or exposed phase, during which the 

individual is said to be infected but not infectious. The SEIR model includes this phase 

by taking parameter E into account. This parameter is the mean rate at which exposed 

individuals go to the infected compartment. 

 
  

  
  = B - βSI – μS   

  

  
 = βSI - (ε + μ)E 

  

  
 = εE - (γ + μ)I    

  

  
 = γI – μR  

The MSIR model: For many infections, including measles, babies do not born into the 

susceptible state but are immune to the disease for the first few months of life due to 

protection from maternal antibodies. This added detail can be shown by including an M 

class (for maternally derived immunity) in the model: 

  

  
= B - δMS – μM   

  

  
= δMS - βSI - μS 

  

  
= βSI - γI – μI   

  

  
= γI - μR 

The age-structured model: “The most specific parameter of a biological system is the 

age" (M. Iannelli). For some infectious diseases it has a deep influence on the dynamics 

spreading in a population. The simple SIR model assumes that everyone in the population 

has the same contact rates, regardless of age. Many of the parameters we have seen may 

depend on age, and especially the contact rate. In mathematical epidemic models, 

modeling the age-structure are very complex since we have to deal with population 

density through the ages of the epidemic compartments. 

2.2.3 Limitations of Mathematical Models 

In the mathematical models populations are considered to be uniformly 

distributed over the world. Also the population is well mixed meaning that there is 

homogeneous motion around the world. It is usually the case, however, that the number 

of contacts each individual has is considerably smaller than the population size, and in 

such circumstances, random mixing does not occur. Moreover, it can vary from place to 

place depending on the heterogeneity of the world or some specific properties of some 

individuals. Another major drawback of these models is the rapid growth of the 

http://en.wikipedia.org/wiki/Measles
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mathematical complexity of the systems used to describe the various aspects of 

phenomena in sufficient details.  Therefore, many details of the progression of infection 

are neglected in these models. 

2.3 Network Models 

Unlike mathematical modeling assumption, usually the random mixing does not 

occur in the population; therefore, network modeling techniques has become popular. 

Network models include heterogeneous mixing in the population by defining the number 

of contacts that each host holds. 

2.3.1 Standard Network Theory 

Study of networks has its grounding in social sciences and graph theory. In graph theory 

we have nodes and edges of a graph, whereas in epidemiology, we speak of hosts and 

contacts. The set of contacts of a host is their ‘neighbourhood’ and the size of this 

neighbourhood is the host’s degree. In order to describe the contacts in the population, an 

adjacency matrix can be used. An adjacency matrix A, summarizes all connections within 

the network. Aij=1 if there is a connection for passing infection from individual i to 

individual j; otherwise, Aij=0; and  Aii=0.  

One interest of the network representation is that it has strong tools to analyze its 

properties. These properties can bring some insight about the epidemiological 

characteristics of the whole system. The average number of contacts that an individual 

has for a population of size N, is:  

   
 

 
    

  

 

  
 

 
         

 

 
                              

 

where the trace of matrix A is defined to be the sum of the elements on the main diagonal 

[67]. The matrix A
m

 has the information about the paths of length m within the network. 
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As a very simple example, consider the network presented in figure 1. The adjacency 

matrix A, and matrix A
2
 for this network are: 

A =  

       
       
       
       

 ,  A
2 

=  

       
       
       
       

   

It can be concluded from the matrix A
2  

that from individual 1 to individual 3 and vice 

versa there is a path of length 2 within the network.  

Figure 1.1. A simple network of hosts and contacts 

We can calculate the number of connected pairs and triples in the graph: 

number of pairs =||A|| =  N, 

number of triples =||A
2
|| - trace(A

2
). 

Here, ||A|| is the sum of all the elements in the matrix and n is therefore the average 

number of neighbours per node. The number of triples is calculated as the number of 

nodes which are joined by two connections, given that the nodes are distinct. Powers of 

the adjacency matrix are used to calculate the measures of transitivity or clustering.  

As an example, the following measure is the ratio of the number of triangles (three linked 

nodes with the same start and end point) within the network to the number of connected 

triples: 
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The larger this measure, the higher the level of clustering within the network. Similar 

measures can be defined by using squares instead of triangles but also by using longer 

paths. 

All the population of individuals can be infected from any starting point, if the following 

matrix has no zero terms: 

   
 

   
 

Equivalently, zeros in the following matrix indicates that the network is divided into two 

or more separated components, which has no link to any of the others: 

               

Practically, a network is connected if any individual can be reached from any other by 

following network links; If there is a path from individual i to individual j, it cannot have 

length more than N-1. Hence the connectivity is determined in log(N-1) matrix 

multiplications. 

2.3.2 Data Collection 

There are three main techniques to gather network information: infection tracing, contact 

tracing, and diary-based studies. Each of these methods has its own benefits and 

purposes, and requires different resources.  

Infection tracing: This method aims to identify the source of infection by constructing a 

transmission network. This network is built by connecting every infected individual to 

whom it caught the infection from, and to those whom it transmitted the infection to [51] 

[99]. 

Contact tracing: This method identifies potential transmission routes from an infected 

source to recognise asymptomatic infected individuals who can then be treated or 

quarantined [94] [27] [34]. The process of constructing the network is time consuming 

and requires individuals to provide complete and accurate data about personal 

relationships.  
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Diary-based studies: In this method, subjects record contacts as they occur (for example, 

in cattle diseases, to investigate patterns of livestock infection [38]). The great advantage 

of this network is that individuals are responsible for collecting the data rather than the 

researcher. 

Figure 1.2. The type of network information that is achieved using infection tracing (left), contact 

tracing (middle) and diary-based studies (right). For infection and contact tracing, circles represent 

infected individuals, while the square shows the primary infectious case; for the diary-based study, 

those taking part are shown with open circles. For infection tracing, only sources of infection are 

traced and some individuals (e.g. top left) have multiple potential sources of infection. For contact 

tracing, a subset of all contacts from infectious individuals is traced. Finally, with a diary based 

study, although almost all links can be traced, the lack of a supervisor for identification means that 

often links from different individuals cannot be connected [68]. 

2.3.3 Most Popular Types of Networks 

Several forms of networks have been studied for disease transmission. Here we briefly 

review the five most popular types for epidemic spread: 

Random Networks:  In this type of network connections are random and the spatial 

distributions of individuals are not taken into account. In other words, any two nodes are 

connected with a given probability p. Epidemic dynamics in random networks are 

equivalent to an SIR epidemic in a randomly mixed population [11]. 
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Lattices: In this type of network, individuals are positioned on a two dimensional grid of 

nodes and adjacent individuals are connected. Lattices are homogeneous at the individual 

level and because of the localized nature of contacts are highly clustered. Two best-

known examples of disease transmission through lattices are the contact process [49] and 

the forest-fire model [9]. The contact process models a SIS disease with “on” and “off” 

nodes while the forest-fire models a SIR infection: trees burn, leaving empty nodes that 

can be recolonized, which can be interpreted as a SIR disease with births. In lattices a 

wave-like spread of infection can appear, in which, from an initial node, infection spreads 

through a circular motion. 

Small-world networks: In this type of networks, a small number of random connections 

are added to a lattice. The few long-range connections have a significant effect in disease 

spread in the way that infection can reach all parts of the lattice quickly. This type of 

network has received considerable attention because it includes high level of clustering as 

most of the infection occurs locally, but random connections enable the infection to reach 

other parts of the world. 

Spatial networks: In this type of network, nodes are located in a given area and two nodes 

are connected with a probability that is defined by a connection kernel. These types of 

networks are very flexible as changing the location of the nodes and connection kernel 

generates wide variety of different networks. 

Scale free networks: This type of network is constructed dynamically by adding new 

nodes to a network one by one. Each node that is added to the network connects 

preferably to the nodes with large number of contacts. The reason behind this is the fact 

that highly connected individuals (termed super-spreaders) are important in disease 

spread. Scale free networks provide extreme levels of heterogeneity to model core groups 

that has pivotal role in the spread and maintenance of infection. Table 2.1 summarizes the 

above mentioned networks according to their specifications for disease spread. 
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Table 2.1. Summary of network types and their specifications for epidemic spread

 

2.3.4 Examples of Applications of the Network Based Models 

Network based models are active topics in modeling epidemics. They have been used as 

an explanatory tool to describe the evolution and spread of epidemics [30], [67], and [82]. 

Pourbohloul, et al. used contact network epidemiology to predict several control policies 

for a mildly contagious disease [95]. Moreover, several network-based models have been 

developed to emphasize the role of modeling heterogeneity [10],‎ [98], clustering [86]‎, 

[55], and spatial dynamics ‎[97], [104]. These models, however, assume fixed contact 

structure during the course of the outbreak and the clustering is simplified by measuring 

the number of triangles and short cycles in the network. Kim, et al. presented a spatial 

network which focuses on the disease spread from the central point of a static vertices 

graph but he was not able to model the dynamics of the network structure in which the 

vertices and the connections are constant over time [72] 

2.3.5 Limitations of Network-Based Models 

In spite of the importance of having dynamic network structure for long term results, 

most of the network models are static, which means that the connections are constant 

over time. Moreover, behaviour of the population may change as a consequence of an 

outbreak of infection. Another important drawback is the fact that there is no simple way 
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to correlate the epidemiological results with the properties of the network structure. Data 

collection and dealing with complexity of the models are other challenges regarding the 

network-based models. 

2.4 Agent-based models 

Over the past several years, large-scale, agent-based, disaggregate models have been 

studied. Agent-based models are designed to capture the behavior of each unique agent 

(individual) with explicit interactions between these agents. An agent can have several 

properties, the most notable ones are as follows: 

 Each agent operates independently in its environment and in its dealings with 

other agents. 

 Agents are goal-oriented. 

 Each agent is flexible and has the ability to learn and adapt its behaviors over time 

based on experience. 

 Agents are capable of making independent decisions. 

 A set of characteristics and rules exists to govern agents behavior and decision-

making capability 

 Meta-rules can be defined for an agent that modifies its behavioural rules during 

time 

2.4.1 Disease Stages, Parameters, and Measurements 

For an agent-based disease simulation different stages of the disease and the parameters 

and variables of the model has to be defined clearly. Stages of the disease describe the 

compartments of the infectious disease and their transition. Typical parameters and 

variables of the model include: population, contact, movement, type of disease, time step, 

and number of simulations performed for each parameter change. Also the typical 

measurements of an agent-based disease simulation may include: 

 Number of individuals in each state of the epidemic model 

 Duration of the epidemic 

 Peak number of infected individuals 

 Time step of the peak of the infection 
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 The total number and percentage of individuals infected 

 

2.4.2 Examples of Applications of the Agent-based Models 

In the past few years several epidemic models have been developed using agent-based 

techniques. In this section we briefly review three of the most important models. 

Carpenter simulated the spread of the 1918 influenza pandemic through the Norway 

House community in Manitoba [2]. Archival, ethnographic, epidemiological, and 

biological information were used to aid in designing the structure of the model and to 

estimate values of the model’s parameters. The model was used to examine how seasonal 

community structures and associated population movement patterns may have influenced 

disease transmission and epidemic spread. An important agent-based model in the 

literature of epidemic modeling is called Simdemics. It is an integrated modeling 

environment that aids public health officials in pandemic planning [3]. Simdemics 

defines four models to simulate the epidemic spread: A statistical model of the population 

(based on age, gender or geographical density), a social interaction model, a disease 

model, and intervention models e.g., public policy changes, agent behavioral changes, 

etc. The biggest strengths of this approach are its scalability and its extensibility. An 

epidemiologist using the system can easily design a new intervention and run the 

corresponding simulation for a large urban area like Los Angeles in minutes. From data 

analysis she can find critical pathways as well as assess the indirect effect for example, 

the economic impact of certain policies. However, this model requires integrating a 

variety of databases from commercial and public sources to define the statistical model of 

the individuals which restrains the applicability of the model. The authors advocate for 

the necessity to have accurate individual behavioral models that reveal mobility and 

interaction patterns. EpiSimdemics is another simulator in literature. In this model a 

synthetic population was built from the United States Census, characterizing each 

individual with different variables [13]. Individuals are mapped to geographically located 

housing units and daily activities are modeled from education statistics to model school 

attendance and transport surveys to model mobility patterns. The disease model in 

EpiSimdemics consists of two parts: Within-hosts progression which is implemented by a 

finite state machine with probabilistic transitions, and between-hosts transmission which 
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is modeled by a probability function for contracting the susceptible individuals. Authors 

claim that straightforward simulations do not scale well, limiting the use of individual-

based models to very small populations. Therefore, they tried to specifically design 

EpiSimdemics to scale to social networks with 100 million individuals. They 

demonstrated that the model scales well and can be used in policy planning. 

2.4.3 Advantages and Challenges of Agent-Based Models 

Agent-based models are able to capture complexity of individual behavior with the use of 

a bottom-up approach. An epidemic can be introduced into a dynamic environment with 

detailed social context which overcomes the limitations of static network models. The 

stochastic nature of the modeling technique ensures that randomness is involved in the 

model which is a significant factor in infection spread. In agent-based models, several 

experiments can be made to examine contributing factors to specific outcomes. This 

again outperforms the limitations of previous disease models: In the mathematical SIR 

models it is rough trying to simulate complex scenarios (for example spatially 

inhomogeneous populations or special events, etc.) ([20], [109]); in network-based 

models it is difficult to answer “what if” questions or to correlate the epidemiological 

results to the properties of the network structure [67]. 

On the other hand, there is a trade-off in agent-based models between simplicity and 

complexity: the model should be simple enough to yield useful insights and complex 

enough not to misrepresent what is going on in the real world. There is also a challenge in 

adequate relevance to reality, which can be overcome by the use of empirical data for 

parameter values, behaviors, and decision rules.  
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Chapter 3  

Underlying Platform for Ecosystem Simulation 

In order to model disease in an individual-based ecosystem simulation, we used EcoSim 

[44] as an underlying platform. EcoSim was designed to simulate agents’ behavior in a 

dynamic, evolving ecosystem. The agents (or individuals) of EcoSim are prey and 

predators acting in a simulated environment.  

This chapter presents EcoSim, and a simplified version of this ecosystem simulation, the 

Neutral model along with the protocol to describe these models. 

3.1 EcoSim 

In this section we explain EcoSim using the updated 7-points Overview-Design concepts-

Details (ODD) standard protocol [45], [46] for describing the individual-based models. 

3.1.1 Purpose 

EcoSim is an individual-based predator-prey ecosystem simulation which was designed 

to simulate agents’ behavior in a dynamic, evolving ecosystem. The main purpose of 

EcoSim is to study biological and ecological theories by constructing a complex adaptive 

system which leads to a generic ecosystem with behaviors similar to those found in 

existing ecosystems. Due to complexity in real nature, and long time and difficult process 

required to observe and study such theories, the role of these kinds of tools are crucial. 

EcoSim uses, for the first time, a fuzzy cognitive map (FCM) to model each agent 

behavior. The FCM of each agent, being coded in its genome, allows the evolution of the 

agent behavior through the epochs of the simulation. 

EcoSim as a virtual ecosystem has shown coherent behaviors of the whole simulation 

with the emergence of patterns also observed in existing ecosystems providing a general 

framework for the study of several specific ecological problems. Several studies have 

been done using EcoSim. Devaurs et al. [24] have shown that the behaviour of this model 

is realistic by comparing the species abundance patterns observed in the simulation with 
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real communities of species. Furthermore, the complexity has been evaluated [77] and the 

chaotic behaviour [42] and multi-fractal property [40] of the system, have been proven. 

These kind of behaviours and properties as it has been observed in real ecosystems as 

well. Golestani et al. [41] have also measured the effect of small geographic barriers on 

the speciation in EcoSim. 

It can be also used in studying important phenomena in nature such as speciation [79], 

extinction [54], sexual selection mechanism, and etc. which gives new and more realistic 

insight about them. 

3.1.2 Entities, state variables, and scales 

Individuals: EcoDemics has two types of individuals: predator and prey. Each individual 

possesses several characteristics (see Table 3.1) such as: age, minimum age for breeding, 

speed, vision distance, level of energy, and amount of energy transmitted to the offspring. 

Energy is provided to the individuals by the resources (food) they find in their 

environment. Prey consumes grass, which is dynamic in quantity and location, whereas 

predator hunts for prey individuals. Each individual performs one unique action during a 

time step, based on its perception of the environment. Each agent possesses its own FCM 

that represents its genome and also its behaviors are determined by the interaction 

between the FCM and the environment.  

Table 3.1. Several physical and life history characteristics of individuals from 10 independent runs. 

Characteristic    Predator                                 Prey 

Maximum age 42 time steps (+/- 6) 46 time steps (+/-18) 

Minimum age of reproduction 8 time steps 6 time steps 

Maximum speed 11 cells / time step 6 cells / time step 

Vision distance 25 cells maximum 20 cells maximum 

Level of energy at initialization of the 

system 

1000 units 650 units 

Average speed 1.4 cells / time step (+/- 0.3) 1.2 cells / time step (+/- 0.2) 

Average level of energy 415 units (+/- 82) 350 units (+/- 57) 

Maximum level of energy 1000 units 650 units 
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Average number of reproduction action 

during life 

1.14 (+/- 0.11) 1.49 (+/- 0.17) 

Average length of life 16 time steps (+/- 5) 12 time steps (+/- 3) 

The energy is provided by the primary or secondary resources found in their 

environment. For example, prey individuals gain 250 units of energy by eating one unit 

of grass and predators gain 500 units of energy by eating one prey. At each time step, 

each agent spends energy depending on its action (e.g. breeding, eating, running) and on 

the complexity of its behavioral model (number of existing edges in its FCM). On 

average, a movement action such as escape and exploration requires 50 units of energy, a 

reproduction action uses 110 units of energy and the choice of no action results in a small 

expenditure of 18 units of energy.  

Cells and virtual world: The smallest units of the environment are cells. Each cell 

represents a large space which may contain an unlimited number of individuals and/or 

some amount of food. The virtual world consists of a matrix of 1000×1000 cells. The 

world is large enough in order to observe migration patterns, an individual moving in the 

same direction during its whole life cannot even cross half of the world. The virtual world 

wraps around to remove any spatial bias. In addition, the dimensions of the world are 

adjustable but dimensions growth can increases the computation complexity of the 

simulation by allowing more individuals to co-exist.  

Time step: Each time step involves the time needed for each agent to perceive its 

environment, make a decision, perform its action, as well as the time required to update 

the species membership, including speciation events and record relevant parameters (e.g. 

the quantity of available food). In terms of computational time, the speed of simulation 

per generation is related to the number of individuals. Recent executions of the 

simulation with an average of 250,000 individuals produced approximately 15,000 time 

steps in 35 days.  

Population and Species:  

In average in every time step of the simulation, there are 250,000 individuals each of one 

or more species. A species is a set of individuals with similar genome.  
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3.1.3 Process overview and scheduling 

The possible actions for the prey agents are: perceive the environment to obtain 

information of the vicinity in terms of grass, predators, and sexual partner, evasion 

(escape from predator), search for food (if there is not enough grass available in the its 

habitat cell, prey can move to another cell to find grass), socialization (moving to the 

closest prey in the vicinity), exploration, resting (to save energy), eating and breeding.  

Predator also perceive the environment to gather information used to choose an action 

among: hunting (to catch a prey), search for food, socialization, exploration, resting, 

eating and breeding. For every individual, after doing one action, the energy is adjusted. 

Updating the age of every individual at each time step is also another process. There are 

also two environmental processes: after all individuals perform their actions, the amount 

of grass and meat are adjusted.     

At each time step, the value of the state variables of individuals and cells are updated. 

The overview and scheduling of every time step is as follows: 

1. For every prey:  

1.1. Perception of the environment  

1.2. Computation of the next action  

1.3. Performing  their actions and update of the energy level  

1.4. Updating the list of prey  

1.5. Updating prey species 

2. For every predator  

2.1. Perception of the environment  

2.2. Computation of the next action  

2.3. Performing their action and update of the energy level  

2.4. Updating the list of predators and prey 

2.5. Updating predator species 

3. For every cell in the world 

3.1 Updating the grass level  

3.2 Updating the meat level  

4. Updating of the age of the individuals  
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The complexity of the simulation algorithm is mostly linear in the number of individuals. 

If we consider that there are N1 preys and N2 predators then the complexity of part 1 and 

part 2 of the above algorithm, including the clustering algorithm used for speciation, will 

be O(N1) and O(N2) respectively [4]. This virtual world of the simulation has 

1000×1000 cells, therefore the complexity of part 3 will be O(k = 1000×1000). The 

complexity of part 4 will be O(N1 + N2). As a result the overall complexity of the 

algorithm will be calculated as O(2N1 + 2N2 + k), which is O(N = 2N1 +2N2). 

3.1.4 Design concepts 

3.1.4.1 Basic principles 

To observe the evolution of individual behaviour and ultimately ecosystems over 

thousands of generations, several conditions need to be fulfilled: (i) every individual 

should possess genomic information; (ii) this genetic material should affect the individual 

behaviour and consequently its fitness; (iii) the inheritance of the genetic material has to 

be done with the possibility of modification; (iv) a sufficiently high number of 

individuals should coexist at any time step and their behavioural model should allow for 

complex interactions and organizations to emerge; (v) a model for species identification, 

based on a measure of genomic similarity, has to be defined; and (vi) a large number of 

time steps need to be performed. These complex conditions pose computational 

challenges and require the use of a model which allies the compactness and easiness of 

computation with a high potential of complex representation. 

 In EcoSim, a Fuzzy Cognitive Map [74] is the base for describing and computing the 

agent behaviors. Each agent possesses a FCM to compute its next action. Their FCM is 

represented in their genome which is assigned to each individual at birth. A FCM is a 

directed graph containing nodes representing concepts and edges representing the 

influence of concepts on each other (Figure 3.1). When a new offspring is created, it is 

given a genome which is a combination of the genomes of its parents with some possible 

mutations. 
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Figure 3.1. A sample of Predator’s FCM including concepts and edges. The width of each edge shows 

the influence value of that edge. Color of an edge shows inhibitory (red) or excitatory (blue) effects. 

 

Formally, an FCM is a graph which contains a set of nodes C, each node Ci being a 

concept, and a set of edges I, each edge Iij representing the influence of the concept Ci on 

the concept Cj. A positive weight associated with the edge Iij corresponds to an excitation 

of the concept Cj from the concept Ci, whereas a negative weight is related to an 

inhibition (a zero value indicates that there is no influence of Ci on Cj). The influence of 

the concepts in the FCM can be represented in an n×n matrix, L, in which Lij is the 

influence of the concept Ci on the concept Cj. If Lij = 0, there is no edge between Ci and 

Cj. 

3.1.4.2 Emergence 

In each FCM, three kinds of concepts are defined: sensitivity-based (such as distance to 

foe or food, amount of energy, etc.), internal-based (fear, hunger, curiosity, satisfaction, 
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etc.), and motor-based (evasion, socialization, exploration, breeding, etc.). The activation 

level of a sensitivity-based concept is computed by performing a fuzzification of the 

information the individual perceives in the environment. For an internal-based or motor-

based concept C, the activation level is computed by applying the defuzzification 

function on the weighted sum of the current activation level of all the concepts having an 

edge directed toward C. Finally, the action of an individual is selected based on the 

maximum value of motor-based concepts' activation level. Activation levels of the motor-

based concepts are used to determine the next action of the individual. For example in 

Figure 3.2 there are two sensitivity-based concepts (foeClose and foeFar), one internal-

based (fear), and one motor-based (evasion). There are also three influence edges: 

closeness to a foe excites fear, distance to a foe inhibits fear, and fear causes evasion. 

Activations of the concepts foeClose and foeFar are computed by fuzzification of the real 

value of the distance to the foe, and the defuzzification of the activation of evasion tells 

us about the speed of the evasion. 

 

 

Figure 3.2. An FCM for detection of foe (predator) and decision to evade with its corresponding 

matrix (0 for ‘Foe close’, 1 for ‘Foe far’, 2 for ‘Fear’ and 3 for ‘Evasion’) and the fuzzification and 

defuzzification functions[108]. 
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At the initiation of the simulation prey and predators scattered randomly all around the 

virtual world. Through the epochs of the simulation, distribution of the individuals in the 

world is changed drastically based on many different factors: prey escape from predators, 

individuals socialize and form groups, individuals migrate gradually to find sources of 

food, species emerge, etc. Figure 3.3 shows an example of a snapshot of the virtual world 

after thousands of time steps with emerging grouping patterns. 

It has been shown that the data generated by EcoSim present the same kind of 

multifractal properties as the ones observed in real ecosystems [103]. Individuals' 

distribution forming spiral waves is one property of prey-predator models. The prey near 

the wave break has the capacity to escape from the predators sideways. A subpopulation 

of prey then finds itself in a region relatively free from predators. In this predator-free 

zone, prey starts expanding intensively and form a circular expanding region. The whole 

pressure process and spiral formation will be applied to this subpopulation of prey and 

predators again leading to the formation of a second scale [40]. This process repeats over 

and over and this is a common property of self-similar processes [15]. Because there are 

consecutive interactions between prey and predators during time, the same pattern repeats 

over and over and then self-similarity emerges in spatial distribution of individuals.  

As can be seen in the figure individuals grouped together, and different species emerged. 

In addition migration phenomena can be observed, as relocation of the individuals leads 

to the redistribution in the population. 
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Figure 3.3: The snapshot of the virtual world in one specific time step, white color represents 

predator species and the other colors show different prey species 

3.1.4.3 Adaptation 

The genome maximal length is fixed (390 sites), where each site corresponds to an edge 

between two concepts of the FCM. But, as many edges have an initial value of zero, only 

114 edges for prey and 107 edges for predators exist at initialization. One more gene is 

used to code for the amount of energy which is transmitted for the parent to their child at 

birth. The value of a site, which is a real number, corresponds to the intensity of the 

influence between the two concepts. The genome of an individual is transmitted to its 

offspring after being combined with the one of the other parent and after the possible 

addition of some mutations. The behavior model of each individual is therefore unique. 

Step after step as more individuals are created, changes in the FCM occur due to the 

formation of new edges (with probability of 0.001), removal of existing edges (with 

probability of 0.0005) and changes in the weights associate to existing edges (with 

probability of 0.005). New genes may emerge from among the 265 initial edges of zero 

value. This emergence and disappearance of the genes in FCM is due to environmental 

changes and genetic drift which lead to adaptability of individuals.  
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3.1.4.4 Fitness 

We calculate the fitness for every species as the average fitness of its individuals. The 

fitness of an individual is defined as the age of death of the individual plus the sum of the 

age of death of its direct offspring. Accordingly, the fitness value mirrors the individual's 

capability to survive longer and produce high number of strong adaptive offspring. There 

is no pre-defined explicit fitness-seeking process in the simulation but rather it is a 

consequence of natural selection. Individuals that are more adapt to the environment live 

longer, have a higher level of energy, and therefore are able to have more offspring, and 

can transfer them efficient genomes. 

3.1.4.5 Prediction 

So far, there is no learning mechanism for individuals and they cannot predict the 

consequences of their decision. The only available information for every individual to 

make decision is the information coming from their perceptions at the current time step 

and the value of the activation level of the internal-based and motor-based concepts at the 

previous time steps. The activation levels of the concepts of an individual are never reset 

during its life. As the previous time step activation level of a concept is involved in the 

computation of its next activation level, this means that all previous states of an 

individual during its life participate in the computation of its current state. It means 

therefore that an individual has a basic memory of its own past that will influence its 

future states. As the action undertaken by an individual at a given time step depends on 

the current activation level of its motor-based concepts, the global behavior of an 

individual dynamically depends on a complex combination of the information it currently 

receives from its environment, its current internal states, and the past states it went 

through during its life.  

3.1.4.6 Sensing 

Every individual in EcoSim is able to sense its local environment inside of its vision 

range. For instance, every prey can sense the five closest foes, cells with food units and 

mates within the vision range, the number of grass units in its cell, and the number of 

possible mates in its cell. Moreover, every individual is capable of recognizing its current 

level of energy.  



28 
 

It should be noticed that the FCM process explained in section 3.1.4.2, enables for 

example, to distinguish between perception and sensation: the sensation is the real value 

coming from the environment, and the perception is the sensation modified by the 

internal states. For example, it is possible to add three edges to the previous map: one 

autoexcitatory edge from the concept fear to itself, one excitatory edge from fear to 

foeClose, and one inhibitory edge from fear to foeFar (Figure 3.4). A given real distance 

to the foe seems higher or lower to the individual depending on the activation level of 

fear. Also, the fact that the individual is frightened at time t influences the level of fear of 

the individual at time t + 1. This kind of mechanism gives the possibility of modeling a 

degree of paranoia and a degree of stress for the individual. It also allows the individual 

to memorize information from previous time steps: fear maintains fear. It is therefore 

possible to build very complex dynamic systems involving feedback and memory using 

an FCM, which is needed to model complex behaviors and abilities to learn from 

evolution. 

 

Figure 3.4. An FCM for detection of foe (predator) - difference between perception and 

sensation[108]. 

3.1.4.7 Interaction 

The only action that requires a coordinate decision of two individuals is reproduction. For 

reproduction to be successful, the two parents need to be in the same cell, to have enough 

energy, to choose the reproduction action and to be genetically similar. The individuals 

cannot determine their genetic similarity with their potential partner. They try to mate and 

if the partner is too dissimilar, that is the dissimilarity between the two genomes is greater 

than a threshold (half of the speciation threshold), the reproduction fails.  

Predator’s hunting introduces another type of interaction in the simulation. For a predator 

to succeed in the hunting action, its distance to the closest prey requires to be less than 
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one. When a predator’s hunting action succeeds, a new meat unit is added in the 

corresponding cell and the energy level of the predator is also increased by one unit of 

meat energy. 

Furthermore, there is a competition for prey and predators for food. For example, if in a 

given cell there is only one food unit and two agents have chosen the action of eating, the 

younger will act first, and so it will be the only one that can eat (in this cell) at this time 

step. This is a way to simulate the fact that the older help the younger to survive. 

3.1.4.8 Stochasticity 

To produce variability in the ecosystem simulation, several processes include 

stochasticity. For instance, at initialization time the number of grass units is randomly 

determined for each cell. Moreover, the maximum age of an individual is determined 

randomly at birth from a uniform distribution centered at a value associated with the type 

of agent. Stochasticity is also included in several actions of the individuals; in evasion 

and socialization: if there is no predator or partner respectively in the vision range of the 

individual, the direction of the movement would be random. Furthermore, the direction of 

the exploration action is always random. 

Moreover, to understand what is the amount of randomness in EcoSim, Golestani et al. 

[42]  examined whether a chaotic behavior exists in signals (time series) generated by the 

simulation. To enforce the result, they used four different methods: Higuchi fractal 

dimension, correlation dimension, largest Lyapunov exponent, P&H method. For each of 

them, in order to obtain a statistically significant evaluation, they applied the surrogate 

test method on 24 samplings of the considered data. According to the results obtained 

after applying these different methods, all of them providing clear predictions, they 

concluded that behavior of simulation is non-random and chaotic. 

3.1.4.9 Collectives 

In EcoSim, the notion of species is implemented in a way that species emerge from the 

evolving population of agents. Species can become extinct if all of their members die. 

EcoSim implements a species concept directly related to the genotypic cluster definition 

[78] in which a species is a set of individuals sharing a high level of genomic similarity. 

In addition, in EcoSim, each species is associated with the average of the genetic 

characteristics of its members, called the ‘species genome’ or the ‘species center’. The 
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speciation mechanism implemented in EcoSim is based on the gradual divergence of 

individual genomes. The speciation method begins by finding the individual in a species 

S with the greatest distance from the species center. If this distance is greater than a 

predefined threshold for speciation (which is two time greater than the threshold for 

reproduction), a 2-means clustering is performed [4]. Otherwise, species S remains 

unchanged. If clustering is to be performed, two new species are created – one centered 

on a random individual, denoted Ir, and another centered on the individual which is the 

most genetically different from Ir. Subsequently, all remaining individuals in S are added 

to one of the two new sister species – whichever species the individual is more 

genetically similar. After recalculating the new centers for the two new species, the 

process of clustering is repeated for convergence. 

Several studies have been made in EcoSim at the level of species. Devaurs et al. [24] 

have compared the species abundance patterns emerging from EcoSim with those 

observed in natural ecosystems using Fisher's logseries [33]. Species abundance is a key 

component of macroecological theories and Fisher's logseries is one of the most classical 

models of species abundance distribution. The results of this study proved that at any 

level in sample size, EcoSim gives coherent results in terms of relative species 

abundance, when compared with classical ecological results. In another study, Golestani 

et al. [41] investigated how small, randomly distributed physical obstacles influence the 

distribution of populations and species. They added various numbers of obstacles in the 

world and observed a direct and continuous increase in the speed of evolution (e.g. the 

rate of speciation). The spatial distribution of species was also more compact in the world 

with obstacles than in the world without obstacles (see figure 3.5). These results suggest 

that environmental heterogeneity and other factors affecting demographic stochasticity 

can directly influence speciation and extinction rates. 
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Figure 3.5 Genetic (top) and spatial (bottom) distance between two species after splitting 

In another study, the fitness values of hybrid and non-hybrid individuals have been 

compared. This study concluded that hybrid individuals demonstrated lower values of 

fitness during their lifetime (see figure 3.6). 
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Figure 3.6 Comparison of fitness value between hybrid and non-hybrid individuals 

 

3.1.4.10 Observation 

EcoSim produces a large amount of data in every time step, including number of 

individuals, new and extinct species, geographical and internal characteristics of every 

individual, and status of the cells of the virtual world. Information regarding each 

individual includes position, level of energy, choice of action, specie, parents, FCM, etc. 

Information about the individuals and species are stored in one file with an average size 

of 30MB, and information for the virtual world is stored in another file with an average 

size of 5MB. Also there is a possibility to store all of the values of every variable in the 

current state of the simulation in a separate file, giving the possibility to restore the 

simulation from that state afterwards. The overall size of this file, which is only stored 

once in a while during a run of a simulation, is a few hundred MBs depending on the size 

of population and species. All the data is stored in a compact special format, to facilitate 

the storage and future analysis. There is a program which can be used to extract all the 

data. This program reads one file at a time and extracts all the required variables with a 

linear complexity for different analysis.   

3.1.5 Initialization and input data 

A parameter file is defined for EcoSim which is used to assign the values for each state 

variable at initial time of the simulation. These parameters are as follows: width and 



33 
 

height of the world, initial numbers of individuals, threshold of genetic distance for 

prey/predator speciation, maximum age, energy, speed, vision range, and initial values of 

FCM for prey/predator. Any of these parameters can be changes for specific experiments 

and scenarios. An example of a list of most common user specified parameters for 

initially running the EcoSim are presented in Table 3.2. 

Table 3.2.Values for user specified parameters.  

User Specified Parameter 
Used 

Value 

Number of Prey 12000 

Number of Predators 500 

Grass Quantity 5790000 

Maximum Age Prey 46 

Maximum Age Predator 42 

Prey Maximum Speed 6 

Predator Maximum Speed 11 

Prey Energy 650 

Predator Energy 1000 

Distance for Prey Vision 20 

Distance for Predator Vision 25 

Reproduction Age for Prey 6 

Reproduction Age for Predator 8 

 

3.1.6 Submodels 

As mentioned earlier, each individual performs one unique action during a time step 

based on its perception of the environment. EcoSim iterates continuously, and each time 

step consists of the computation of the activation level of the concepts, the choice and 

application of an action for every individual. A time step also includes the update of the 

world: emergence and extinction of species and growth and diffusion of grass, or decay 

of meat. 
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At initialization time there is no meat in the world and the number of grass units is 

randomly determined for each cell. For each cell, there is a probability, probaGrass, that 

the initial number of units is strictly greater than 0. In this case, the initial number is 

generated uniformly between 1 and maxGrass. Each unit provides a fixed amount of 

energy to the agent that eats it. The preys can only eat the grass, and the predators have 

two modes of predation: hunting and scavenging. When a predatorʼs hunting action 

succeeds, a new meat unit is added in the corresponding cell and the predator is 

considered consuming another one. When a predatorʼs eating action succeeds (which can 

be viewed as a scavenging action), one unit of meat is removed in the corresponding cell. 

The amount of energy is energyGrass for one grass unit when eaten by a prey and is 

energyMeat for one meat unit eaten by a predator. The number of grass units grows at 

each time step, and when a prey dies in a cell, the number of meat units in this cell 

increases by 2. The number of grass units in a cell decreases by 1 when a prey eats, and 

the number of meat units decreases by 1 when a predator eats. The number of meat units 

in a cell also decreases at each time step, even if no meat has been eaten in this cell. 

1. Evasion (for prey only). The evasion direction is the direction opposite to the direction 

of the barycenter of the 5 closets foes within the vision range of the prey, with respect to 

the current position of the prey. If no predator is within the vision range of the prey, the 

direction is chosen randomly. Then the new position of the prey is computed using the 

speed of the prey and the direction. The current activation level of fear is divided by 2. 

2. Hunting (for Predator only). The predator selects the closest cell (including its current 

cell) that contains at least one prey and moves towards that cell. If it reaches the 

corresponding cell based on its speed, the predator kills the prey, eating one unit of food 

and having another unit of food added to the cell. When there are several prey in the 

destination cell, one of them is chosen randomly. If the speed of the predator is not 

enough to reach the prey, it moves at its speed toward this prey. If there is no prey in the 

current cell and in the vicinity or it does not have enough energy to reach to a prey, 

hunting action is failed. 

3. Search for food. The direction toward the closest food (grass or meat) within the vision 

range is computed. If the speed of the agent is high enough to reach the food, the agent is 
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placed on the cell containing this food. Otherwise, the agent moves at its speed toward 

this food. 

4. Socialization. The direction toward the closest possible mate within the vision range is 

computed. If the speed of the agent is high enough to reach the mate, the agent is placed 

on the cell containing this mate, and the current activation level of sexualNeeds is divided 

by 3. Otherwise, the agent moves at its speed toward this mate. If no possible mate is 

within the vision range of the agent, the direction is chosen randomly. 

5. Exploration. The direction is computed randomly. The agent moves at its speed in this 

direction. The activation level of curiosity is divided by 1.5. 

6. Resting. Nothing happens. 

7. Eating. If the current number of grass (or meat) units is greater than 1, then this 

number is decreased by 1 and the preyʼs (predatorʼs) energy level is increased by 

energyGrass (energyMeat ). Its activation level for hunger is divided by 4. Otherwise 

nothing happens. 

8. Breeding. The following algorithm is applied to the agent A: 

if A.energyLevel > 0.125 × maxEnergyPrey then 

for all A of the same type in the same cell 

if  A.energyLevel > 0.125 × maxEnergyPrey and D(A,A) < T and 

    A′has not acted at this time step yet and 

    Aʼs choice of action is also breeding 

then 

interbreeding(A,A) 

A.sexualNeeds ← 0 

A.sexualNeeds ← 0 
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If  A′ satisfies all the criteria, the loop is canceled 

If none of the A′agents satisfies all the criteria, the breeding action of A fails.  

For every action requiring that the agent move, its speed is computed by the formula 

Speed = Ca _× maxSpeedPrey  =>  for the preys 

Speed = Ca × maxSpeedPredator  => for the predators 

with Ca the current activation level of the motor-based concept associated with this 

action. 

The process of generating a new offspring (interbreeding function) consists of following 

steps. First, the value of birthEnergyPrey is transmitted with possible mutations from one 

randomly chosen parent to the offspring. Second, the edges’ values are transmitted with 

possible mutations, and the initial energy of the offspring is computed. To model the 

crossover mechanism, the edges are transmitted by block from one parent to the 

offspring. For each concept, its incident edges’ values are transmitted together from the 

same randomly chosen parent. Third, the maximum age of the offspring is computed. 

Finally, the energy level of the two parents is updated. 

3.2 Neutral model 

In order to understand the importance of behavioural model and its consequence in 

different aspects of EcoSim, in this section we define a simplified model of our 

simulation, which includes random mixing at the predator-prey level. This model is 

derived from the “unified neutral theory of biodiversity” by ecologist Stephen Hubbell 

[59]. Hubbell’s theory treats individuals in the population as essentially identical in their 

per capita probabilities of giving birth, dying, migration, and speciation. This implies a 

random behaviour at the individual level. 

In the neutral version of the simulation, the Neural model, the behavioural model 

responsible for different actions of each individual is removed and the actions of the 

individuals are narrowed down to movement and reproduction: 
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 Movement of the individuals in the virtual world is random; however, the 

distribution of movements and the size of the world are kept the same as in the 

EcoSim. 

 Predator-Prey population dynamics are determined by the Lotka-Volterra 

competition model [76], [113], and [114]. This model controls the number of 

births and deaths of individuals at each time step.  The following formulas have 

been used to compute the variation in number of both of prey and predators: 

   

  
       

  

  
              

   

  
                

Where n2 is the number of predator, n1 is the number of prey, dn1/dt and dn2/dt 

represent the variation of the two populations with time, t represents the time; and 

r1, a1, r2, a2 and k1 are parameters representing the interaction of the two species. 

The individuals that die are randomly selected. 

 Reproduction action is also random, and unlike EcoSim there is no need for 

genetic similarity of the parents. The parents and the offspring’s initial location 

are also randomly chosen. 

For the sake of consistency, all of the initial parameters are identical, or as close as 

possible to those in the EcoSim. Also the evolutionary process of the EcoSim has been 

preserved in the Neutral model, but without having the natural selection pressure. The 

complexity of the Neutral model is also maintained as linear with the number of 

individuals. 

In order to investigate the characteristics of individuals' positions in our simulations, we 

compare the spatial distribution of the individuals in both the Neutral model and EcoSim 

(Figure 3.7 (a), and 3.7 (b)). Compared to the emerging herd patterns observed in the 

original simulation (3.7 (b)), the spatial distribution of individuals in the neutral model of 

the simulation seems somehow random. Complex patterns of population variations and 

species organization do not emerged in the Neutral model. 
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Figure 3.7 (a) Spatial distribution of Individuals in the Neutral model 
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Figure 3.7 (b) Spatial distribution of Individuals in the EcoSim  
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3.3 Appendix 1 

Table 3.3 The initial parameters of the EcoSim. 

Parameter 
Initial 
Value 

Comments 

Width  1000 width of the world 

Height  1000 height of the world  

ProbaGrass  0.187 initial probability of grass per cell 

ProbaGrowGrass  0.0028 probability of diffusion of grass 

ValueGrass  250 energy value for a consumed grass 

ValuePrey  500 energy value for a consumed prey  

MaxGrass  8 maximum number of grass in a cell  

SpeedGrowGrass  0.5 speed of growing grass  

MaxMeat  8 maximum number of meat in a cell  

NbResources  2 number of food resources in the world 

ProbaMut  0.005 probability of mutation to a nonzero gene 

ProbaMutLow  0.001 probability of mutation to a zero gene  

MinArc  0.075 threshold for an arc to be counted as nonzero  

InitNbPrey  12000 initial number of prey  

InitNbPredator  2000 initial number of predator 

DistanceSpeciesPrey  1.5 threshold of genetic distance for prey species 

DistanceSpeciesPred  1.3 threshold of genetic distance for predator species  

AgeMaxPrey  46 maximum age for prey  

AgeMaxPred  42 maximum age for predator  

AgeReprodPrey  6 minimum reproduction age for prey 

AgeReprodPred  8 Minimum reproduction age for predator  

ClusterPrey  10 number of prey per  clusters at initialization 

ClusterPredator  20 number of predators per clusters at initialization   

RadiusCluster  5 radius in number of cell of each initial cluster 

EnergyPrey  650 maximum energy of prey 

EnergyPredator  1000 maximum energy of predator  

SpeedPrey  6 maximum speed of prey  

SpeedPredator  11 maximum speed of predator 

VisionPrey  20 maximum vision of prey 

VisionPredator  25 maximum vision of predator 

StateBirthPrey  30 initial parental energy investment for prey 

StateBirthPred  40 initial parental energy investment for predator  

nbSensPrey  12 number of sensitivity-based concepts in prey 

nbConceptsPrey  7 number of internal-based concepts in prey  

nbMotorPrey  7 number of motor-based concepts in prey  

nbSensPredator  12 number of sensitivity-based concepts in predator 
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nbConceptsPredator  7 number of internal-based concepts in predator 

nbMotorPredator  7 number of motor-based concepts in predator 

Restore  1 0-no restore, 1-restore 

MaxSave  500 0-no save, #-save every # states 

MinSave  0 0-no save, #-save every # states 

WorldSave  0 0-no save, 1-save world 

 

Table 3.4 Initial FCM values for Prey (See the abbreviation table): 

  FR  HG SP CU SD ST NU ES SF SC XP WT ET RP 

PC 4 0 0 0.1 0 -1 1 0 0 0 0 0 0 0 

PF -4 0 0 0 0 0.5 -0.5 0 0 0 0 0 0 0 

OC 0 0.5 0 -0.1 0.1 0.5 -0.5 0 0 0 0 0 0 0 

OF 0 0 -0.4 0.2 -0.2 -0.7 0.7 0 0 0 0 0 0 0 

FC 0 0 0.5 -0.1 0.1 0.5 -0.5 0 0 0 0 0 0 0 

FF 0 0 -0.4 0.2 -0.2 -0.5 0.5 0 0 0 0 0 0 0 

EL 0.4 4 -1.5 0 0 -2.2 2.2 0 0 0 0 0 0 0 

EH 0 -1 1.5 0.2 -0.2 1.5 -1.5 0 0 0 0 0 0 0 

OH 0 -0.2 0 -0.3 0.3 1.1 -1.1 0 0 0 0 0 2.6 0 

OL 0 0.2 0 1 -1 -1.1 1.1 0 0 0 0 0 -4 0 

PY 0 0 0 -0.4 0.4 0.5 -0.5 0 0 0 0 0 0 1.5 

PN 0 0 0.5 0.3 -0.3 -0.8 0.8 0 0 0 0 0 0 -4 

FR  0.5 0 0 0 0 0 0 1.5 -0.8 -1 0.3 -1 -1 -1 

HG 0 0.3 0 0 0 0 0 -0.8 2.1 -0.7 0.7 -0.5 4 -1.8 

SP 0 0 0.2 0 0 0 0 -0.2 0 1.5 0.5 -0.3 -0.4 3 

CU 0 0 0 0.1 0 0 0 -0.1 0.5 0.3 1.5 -0.2 -0.3 -0.2 

SD 0 0 0 0 0.1 0 0 0 -0.5 -0.3 -1.2 0.2 0.3 0.2 

ST 0 0 0 0 0 0 0 -0.1 -0.8 -0.2 -2 1.5 0.8 0.7 

NU 0 0 0 0 0 0 0 0.4 1 0.2 2 -1.2 -0.7 -0.7 

ES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

XP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

WT 0 0 0 0 0 0 0 0 0 0 0 0.2 0 0 

ET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

RP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table 3.5 Prey/predator FCM abbreviation table: 

NodeName Abbreviation NodeName Abbreviation 

Fear FR  PredClose PC 

Hunger HG PredFar PF 

SearchPartner SP FoodClose OC 

CuriosityStrong CU FoodFar OF 

Sedentary SD FriendClose FC 

Satisfaction ST FriendFar FF 

Nuisance NU EnergyLow EL 

Escape ES EnergyHigh EH 

SearchFood SF FoodLocalHigh OH 

Socialize SC FoodLocalLow OL 

Exploration XP PartnerLocalYes PY 

Wait WT PartnerLocalNo PN 

Eat ET PreyClose YC 

Reproduce RP PreyFar YF 

ChaseAway CA 
  SearchPrey SY 
   

3.6 Parameters of prey defuzzification function (see figure A1): 

NodeName Activation 
Fuzzy 

Parameter1 
Fuzzy 

Parameter2 
Fuzzy 

Parameter3 

PredClose 0 1 3.5 3.5 

PredFar 0 2 3.5 3.5 

FoodClose 0 1 6 6 

FoodFar 0 2 6 6 

FriendClose 0 1 5 5 

FriendFar 0 2 5 5 

EnergyLow 0 1 4 4 

EnergyHigh 0 2 4 4 

FoodLocalHigh 0 2 4 4 

FoodLocalLow 0 1 4 4 

PartnerLocalYes 0 2 1000 20 

PartnerLocalLow 0 1 1000 20 

Fear 0 0 1 3.5 

Hunger 0 0 1 3 

SearchPartner 0 0 1 3 
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Curiosity 0 0 1 2.5 

Sedentary 0 0 1 2.5 

Satisfaction 0 0 1 3 

Nuisance 0 0 1 3 

Escape 0 0 1 3.5 

SearchFood 0 0 2 3 

Socialize 0 0 4 3 

Exploration 0 0 6 2.5 

Wait 0 0 7 3 

Eat 0 0 8 3.5 

Reproduce 0 0 10 3.5 

 

 

Figure 3.8. The three parameters that specify the shape of the curve. The first parameter specifies the center 

of curve in the horizontal axis, the second parameter specifies the lower band of curve in the vertical axis 

and the third parameter specifies the width of curve. 
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Table 3.7 Initial FCM for Predator (See the abbreviation table): 

  CA HG SP CU SD ST NU SY SF SC XP WT ET RP 

YC 0.7 0 0 -0.1 0 0.5 -0.5 0 0 0 0 0 0 0 

YF -0.5 0.7 0.1 0.4 -0.4 -0.5 0.5 0 0 0 0 0 0 0 

OC -0.5 0.7 0 -0.1 0.1 0.5 -0.5 0 0 0 0 0 0 0 

OF 0.8 -0.2 0.1 0.2 -0.2 -0.6 0.6 0 0 0 0 0 0 0 

FC 0 0 0.7 0 0 0.4 -0.4 0 0 0 0 0 0 0 

FF 0 0 -0.5 0.3 -0.3 -0.4 0.4 0 0 0 0 0 0 0 

EL 3.5 5 -1.2 0 0.2 -1.5 1.5 0 0 0 0 0 0 0 

EH -2 -3 1.4 0.3 -0.3 1 -1 0 0 0 0 0 0 0 

OH -1.5 0.3 -0.2 -0.3 0.3 1 -1 0 0 0 0 0 4 0 

OL 1.7 0 0.2 1 -1 -1 1 0 0 0 0 0 -5 0 

PY -0.3 0 0 -0.4 0.4 0.8 -0.8 0 0 0 0 0 0 2 

PN 0.3 0 0.5 0.3 -0.3 -0.8 0.8 0 0 0 0 0 0 -5 

CA 0.2 0 0 0 0 0 0 1.5 -0.2 -0.4 0.3 -0.4 0 -0.4 

HG 0 0.3 0 0 0 0 0 4 2.5 -1.2 0.3 -0.4 3.5 -0.8 

SP 0 0 0.2 0 0 0 0 -0.8 -0.8 1.5 0.3 -0.5 -0.6 3 

CU 0 0 0 0.1 0 0 0 0.3 0.3 0.3 1.5 -0.4 -0.3 -0.2 

SD 0 0 0 0 0.1 0 0 -0.3 -0.3 -0.3 -1.5 0.4 0.3 0.2 

ST 0 0 0 0 0 0 0 -0.8 -0.8 -0.2 -1.8 1 0.8 0.8 

NU 0 0 0 0 0 0 0 1 0.8 0.2 2 -1 -0.6 -0.8 

SY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

XP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

WT 0 0 0 0 0 0 0 0 0 0 0 0.2 0 0 

ET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

RP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Table 3.8 Parameters of predator defuzzification function (see figure A1): 

NodeName Activation 
Fuzzy 

Parameter1 
Fuzzy 

Parameter2 
Fuzzy 

Parameter3 

PreyClose 0 1 4 4 

PreyFar 0 2 4 4 

FoodClose 0 1 5 5 

FoodFar 0 2 5 5 

FriendClose 0 1 5 5 

FriendFar 0 2 5 5 
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EnergyLow 0 1 4.5 4.5 

EnergyHigh 0 2 4.5 4.5 

FoodLocalHigh 0 2 1000 20 

FoodLocalLow 0 1 1000 20 

PartnerLocalYes 0 2 1000 20 

PartnerLocalNo 0 1 1000 20 

ChaseAway 0 0 1 3 

Hunger 0 0 1 3.5 

SearchPartner 0 0 1 3 

Curiosity 0 0 1 2.5 

Sedementary 0 0 1 2.5 

Satisfaction 0 0 1 3 

Nuisance 0 0 1 3 

SearchPrey 0 0 1 3 

SearchFood 0 0 3 3.5 

Socialize 0 0 5 3 

Exploration 0 0 7 2.5 

Wait 0 0 8 3 

Eat 0 0 9 3.5 

Reproduce 0 0 11 3.5 
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Chapter 4  

EcoDemics: Modeling Epidemic Spread in EcoSim 

Modeling the progress of an epidemic in a population has received significant attention 

among various fields of science. Many epidemiological models assume random mixing of 

the population, homogeneous hosts, and a static environment. We are interested in 

modeling epidemic spread in a dynamic evolving ecosystem with a behavioral model for 

the individuals. In this chapter, we present EcoDemics; which integrates the classical SIR 

(Susceptible-Infected-Removed) disease model with EcoSim. We present the disease 

model used and we demonstrate how the epidemic spread in a random mixing ecosystem 

differs from a heterogeneous ecosystem with behavioral model. We further validate our 

results by comparing it against an EcoDemics Neutral model, classical SIR results and 

real field data.  

4.1 Introduction 

Several mathematical and network-based models have been developed to mimic 

outbreaks of animal epidemics such as foot-and-mouth disease (FMD) [120], [121],  [68], 

classical swine fever (CSF) [65], porcine high fever disease (PHFD) [123], and 

rabies ‎‎[97]; however, far less attention has been concentrated on employing individual-

based modeling of animals with behavioral model in an ecosystem. The need for 

individual-based modeling has been emphasized by Real and Biek who highlighted the 

importance of spatial dynamics and geographical landscape on the spread of rabies [97]. 

One of the most frequently studied diseases in the SIR model is rabies. Rabies is a viral 

disease of the central nervous system, transmitted by direct contact. The highly fatal 

nature of rabies and its widespread prevalence that can infect any warm blooded animal 

and humans, makes it a great health concern worldwide. Several methods exist that help 

predict the local, spatial and temporal dynamics for this viral infection [18], [107], and 

[43]. These models are mainly concerned with mathematically modeling the epidemic 

using the available databases; however, the population properties of different animals in 
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an ecosystem, for example, population densities, individual movements and contact rates, 

are extremely hard to measure [97], and data regarding which individuals are responsible 

for the disease transfer is difficult to gather [81]. This points out the development of a 

behavioral model that determines the interaction patterns of individuals in an ecosystem 

and that can be integrated in a simulation. There are a number of artificial life systems 

that model evolutionary ecosystem, the most notable ones are Tierra [96], Avida [1], 

Echo [56], PolyWorld [118], Framsticks [57] and EcoSim [44]. None of the above 

systems, to our knowledge, has integrated notions of disease progression. In this chapter, 

we present EcoDemics which integrates a disease model with EcoSim for studying 

epidemic spread in a predator-prey simulation. Here, we are not interested in modeling a 

specific disease in a particular ecosystem, but rather to model the influence of the 

behavioral model of the individuals and their consequent spatial distributions on disease 

dynamics. We have made realistic assumptions about our virtual ecosystem and disease 

model and tried to make as few assumptions as possible to maintain generality and 

applicability of the EcoDemics model for multiple future studies. 

The rest of the chapter is organized as follows. The next two sections are dedicated to a 

brief description of the ecosystem simulation. We present the disease model used, and the 

neutral model in Section 3, followed by the experiments and results. We then conclude 

and discuss our future plans in the conclusion section. 

4.2 Disease model in EcoDemics 

We modified EcoSim by integrating a disease model to study disease outbreak. As 

described in Chapter 2, in the SIR (Susceptible-Infected-Removed) model, an individual 

passes from susceptible to infected to removed (removed includes both those that develop 

immunity and recover and those that are dead). The interest of EcoDemics is that the 

spatial distribution and interactions of the individuals emerge naturally from the 

behavioural model itself. For the study of disease we focus on patterns of epidemic 

outbreaks in prey as they have higher populations. We have not set our parameters for a 

specific disease, but in the experiments section, we will compare the pattern of the 

infection curve generated by the EcoDemics with the field data corresponding to the rabid 

infected raccoons and cats in different parts of USA. The disease model we use is a 
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probabilistic time-controlled model. The system is based on a plug and play architecture, 

which simplifies the addition, modification, or removal of the disease phases.  

 

 

Figure 4.1 The disease model representing different states of within host disease progression. The 

solid lines represent the transition between states along with their probabilities. The dotted line 

represents the time controlled state transition along with the affecting parameters. 
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The disease starts at a user specified time step and not from the beginning of the 

simulation. This provides the system with a chance to stabilize and for individuals to 

group together. The initial location of the infection is set afterwards, and prey individuals 

are infected according to the probability pInitInfection. The window in which the initial 

infection happens is 1/256 of the size of the world. This location is not completely 

random as it should be occupied and surrounded with a reasonable number of individuals 

based on the total population size (at least 1/200 of the total number of prey). This 

process of randomly selecting a location and checking the density of individuals 

continues until a suitable location for initially spreading the disease is found. This only 

happens once in the simulation and the spread of the disease is monitored at each time 

step. Individuals subject to the disease become infected based on a probability function 

presented later in equation (4.1). The infected individuals then enter different SIR disease 

stages; infected and then recovered based on the probabilities presented in Table 4.1. 

In addition, we set a minimum time (minInfected) for the individual to carry the disease 

before it can recover. This time represents both the subclinically infectious state 

(shedding individual without visible signs of disease) and clinically infectious state 

(shedding individual with visible signs of disease). In more detail, individuals are given 

immunity to disease according to a probability pimmune. Infected individuals can spread the 

disease to other individuals in the same cell and to the 8 closest adjacent cells (Moore 

neighborhood). The interaction between individuals comes from the fact that individuals 

belonging to the same species tend to group together: individuals from the same prey 

species are not randomly distributed in the world but are spatially close to each other [4]. 

At each time step, the uninfected individuals have the possibility to be infected based on 

a probability function pi introduced in equation (4.1). The function parameters vary 

according to the individual’s characteristics. These function variables provide the disease 

model with more details to account for real life characteristics. These variables are the 

number of infected individuals surrounding the susceptible individual, and the susceptible 

individual’s age, which determines the risk of contracting the disease. We chose to 

include age structure in our disease model since for some infectious diseases, it has a 

significant influence on the dynamics of the epidemic in the population.  
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Table 4.1 Probabilities of the disease model along with their description. 

Name Description 

pInitInfection Probability of initially infecting an individual with the disease. 

It is only used at initialization of the simulation. 

pimmune Probability of the individual being immune to the disease. 

pheal Probability of recovering from infection. 

pkill Probability for the infected individual to be killed by the 

disease at each time step. 

 

In our experiment, the life span of an individual is from 1 to maxAge, where maxAge is 

computed randomly for each individual to be centered around 46. Individuals are divided 

into two groups: 

 High risk are in age range of 1-15 or 31-maxAge     

 Low risk are in age range of 16-30 

The probability pi is the probability of individual i being infected with the disease 

and is: 

    
                                                                                           
                                                

               (4.1) 

This equation specifies the probability that a particular susceptible individual, i is infected 

at a specific time and location, where s is the number of infected individuals in the same 

cell as i, and r represents the number of infected individuals in the adjacent cells. Each 

cell is a square, and has 8 adjacent cells including the cells located at the corners. If there 

is no infected individual in the adjacent cells, the disease transmission probability will be 

zero. 

In our experiment, a higher weight is given to the number of infected individuals in the 

same cell as i, than to the number of infected individuals in nearby cells. The values of   
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and   are the parameters of the infection, where   determines the minimum probability of 

getting the disease having the smallest number of adjacent infections (compare figure 

4.2(a) and 4.2(b) to see the effect of two different   values), and   affects the slope of the 

probability function that determines how the number of adjacent infections increase the 

probability of new infection (compare figure 4.2(a) and 4.2(b) to see the effect of two 

different   values). This mechanism allows one to finely vary the transmissibility level of 

the disease. We define different values of    and   for the two age groups. Figure 4.2 (a) 

and (b) show the described functions for high risk individuals, with   = -0.2 and   = 2, 

and low risk individuals, with   = -0.15 and   = 4, respectively. 

 

Figure 4.2. Probability of getting the infection for (a) high risk individuals and (b) low risk 

individuals. 
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At each time step, some individuals will recover based on the probability parameter pheal, 

given that they have passed the minimum time to carry the disease (minInfected). This 

model is based on the SIR-type epidemic, which is characterized by the fact that 

recovered individuals will become immune to the disease. In addition, individuals can die 

from the disease based on the probability parameter pkill. Each individual in the ecosystem 

is given a unique to enable tracing his behaviour throughout his life. For each time step, 

we save the state of the simulation, including major information about all individuals, in a 

file. This enables us to keep track of all of the individuals, and study different interesting 

aspects with minimum computational time and complexity.  

Our model overcomes limitations found in mathematical and differential equations 

modeling such as random mixing of the population, and the difficulty of capturing 

individual level interactions. The computational complexity of this model remains 

reasonable as it is linear relative to the population size, and it is able to capture many 

characteristics of the environment along with the individuals’ behavior. The 

complications faced by network based systems to maintain dynamics of the networks is 

easily overcome in our model as the dynamics are integrated into the model through the 

dynamic environment and evolution of individuals over time. Our model makes some 

improvements compared to other individual based modeling systems because it contains a 

higher level of detail by modeling predator-prey behavior and uses an evolutionary 

process. These properties will permit us to enhance epidemiological studies by 

investigating the effect of a disease’s spread on different aspects of evolution; however, 

these subjects are beyond the scope of this thesis.   

The shape of the environment plays a great role in the epidemic spread as the density of 

regions affect the magnitude of the disease spread. As individuals from the same species 

tend to be found in a connected region, species population and densities play a role in the 

spreading of disease. The predators also force the escape of prey, which affects the 

migration of prey species from one place to another. The predator-prey interaction had its 

share of interest in biological studies as it has a direct effect on population dynamics, 

adaptation, behavior and biodiversity of communities [47], and [61]. EcoDemics is able 

to model hundreds of thousands of individuals during tens of thousands of time steps. The 
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birth and death of individuals are included in the mathematical models by including birth 

and death rates in the differential equations that express the models. Therefore, these 

mathematical models fall short in capturing any behavior or individual interactions, and 

model birth and death only as global functions. In our simulation, a birth is associated 

with the transmission of genomic information with crossover and mutation, allowing 

model evolution. The death of an individual is linked to a specific reason, including 

individual fitness and environment, which can be further studied, such as lack of energy, 

reaching maximum age or being eaten by a predator. In order to highlight the importance 

of predator-prey interactions, and the significance of the behavioral model of each 

individual in forming the population regions as well as its consequence on spreading the 

infection, we present the epidemic spread in the Neutral model as well. We have 

developed the same disease model in the neutral version of the simulation, and we have 

compared the infection behaviour and the patterns of spread with the one in EcoDemics 

in the next section. For the sake of consistency, all of the initial parameters are identical, 

or as close as possible to those in the EcoDemics model, including the number of 

individuals, and the time of initiation of the infection. 

4.3 Implementation, analysis, and comparison 

In this section we compare the infection dynamics in EcoDemics and the Neutral model. 

The objective of this section is to understand the effect of individuals’ behavior and 

spatial distribution in the disease spread. At the end of this section, we will present the 

results of the mathematical modeling of the SIR model and a real field data epidemic, and 

compare them to the EcoDemics and the Neutral model.  

4.3.1 Parameters and initialization of the simulation 

The simulation is implemented in C++ and all experiments are performed on Sharcnet 

[105] using the Linux XC cluster. Although this simulation models complex behaviors, 

its global complexity is still linear and each of the experiments is done in only a few 

hours. Due to the large number of parameters in the EcoDemics, numerous scenarios can 

be defined and experimented on. In order to determine the appropriate values for disease 

parameters, we have tested different values and observed their effect on the epidemic 

(Table 4.2). Although selecting the disease parameter values depend on a wide variety of 
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aspects, such as specific type of disease as well as different scenarios for the epidemic, 

we have selected parameters that provide reasonable timing and spread of infection for 

studying different aspects of the epidemic in EcoDemics (Table 4.2, last column). 

Table 4.2. Disease parameters and range of experimented values along with their principal effect on 

the Epidemic; last column: values selected for further experiments in the EcoDemics. 

Parameter 
Experimented 

Range 

Major Effect on 

Epidemic 

Values Selected for 

Further Experiments 

pInitInfection 2% - 40% Epidemic Spread 5% 

pimmune 0% - 95% Epidemic Duration 60% 

pheal 20% - 80% Epidemic Spread 60% 

pkill 0% - 80% Epidemic Duration 1% 

minInfectedTime 5 – 50 Epidemic Peak Time 10 

 

At the initialization stage of the simulation, the prey and predator number of individuals 

are set to 12000 and 500, respectively. These individuals, along with sources of food, are 

located randomly in the entire environment of 1000×1000 cells. An initial 750 time steps 

gap is used as a stabilization stage for the simulation. This allows the individuals to 

socialize, find mates, and group together or displace to locations with enough resources. 

At this stage of the simulation run, the prey and predator populations grow to around 

200,000 and 30,000 respectively. Considering only the cells occupied by at least one 

individual, the average number of prey per cell is 4 while having an average of 2 for 

predators. Figure 4.3 shows spreading the infection during 8 time steps in a small part of 

the environment. The green and red dots are related to the cells containing at least one 

susceptible individual and one infected individual respectively. 

The initiation of the infection occurs after the stabilization stage in the square-shaped 

window of the environment which has a top left coordinate of (600, 800). The window 
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area is 1/256 of the environment. Using infection parameters as presented in Table 4.2, 

susceptible prey are infected and passed through different states of the disease model. 

(a)                                                                                  (b) 

     

Figure 4.3. Example of spreading the disease among prey individuals in a sub-part of the 

environment. (a) Susceptible and infected cells at the initial stages of the disease. (b) Susceptible and 

infected cells after 8 time steps. 

 

4.3.2 Pattern of spread in the EcoDemics and the Neutral model 

To understand the effect of the behaviour of individuals and their spatial distribution in 

disease spread, we have focused on the comparison between the patterns of spread in the 

EcoDemics and in the Neutral model. Figure 4.4 (a) shows the pattern of spread in the 

EcoDemics. This figure shows an area representing 10% of the virtual world. The white 

dots represent predator cells (cells with at least one predator), green dots susceptible cells 

and red dots represent infected cells. Prey and predator individuals have migrated and 

formed a spiral wave pattern. This pattern is in direct agreement with many previous 

predator-prey models: both simulation results and mathematical theory predict that 

organisms are more likely to disperse in spiral waves [102] [90]. Also spirals have been 

shown to potentially play a very important role in ecological systems [101]. This 

phenomenon in the EcoDemics is due to many short term or long term factors such as 

socialization, force of predation and speciation. These types of phenomenon that arise 

from the behavioural model of the agents, occur during hundreds of generations through 

the course of evolution.  
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The spread of epidemic in the Neutral model is shown in Figure 4.4 (b). Although the 

same stabilization state (the initial 750 time steps) is used in this model, the spread of the 

individuals in the virtual world remained random. As it can be seen from this image, 

spatial distribution is different in the Neutral model due to the removal of the behaviour 

component of the model that influences the actions taken, and therefore the spatial 

distribution of individuals.  The spatial spread of the infection, as a result of lack of 

density patches, is noticeably less than that of EcoDemics. The infection curves 

corresponding to the two aforementioned models are presented in the next section.  

  

Figure 4.4 (a) Patterns of spread in EcoDemics. The white dots represent predator cells, green dots 

susceptible cells and red dots represent infected cells. 
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Figure 4.4 (b) Patterns of spread in Neutral model (bottom figure). The white dots represent 

predator cells, green dots susceptible cells and red dots represent infected cells. 

4.3.3 General Infection Curve and Numeric Comparisons 

4.3.3.1 The EcoDemics Infection Curve 

Figure 4.5 illustrates the epidemic curve corresponding to the EcoDemics model. This 

figure shows the mean of 10 independent runs of the simulation. The time steps provided 

here are given after the outbreak of the disease and not from the beginning of the 

simulation; in other words, the figure does not include the stabilization stage of the 

simulation during which the disease is inactive. The number of infected individuals in the 

population at the first occurrence of the disease is about 124 on average, and reaches an 

average peak of 1222 just before 10 time steps. The average outbreak length is 136 time 

steps in average. The standard deviations of the number of infected individuals at each 

time step for 10 different runs ranged between 1 and 347. These two extreme values 

correspond to the time steps 133 and 67 respectively.  
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Figure 4.5. Average Epidemic spread curve in EcoDemics. The bold line represents the mean curve 

and the top and bottom lines represent one standard deviation. 

4.3.3.2 The Neutral model Infection Curve 

Figure 4.6 illustrates the epidemic curve corresponding to the Neutral model. The figure 

shows the average of 10 independent runs of the simulation. The time steps provided in 

this figure are given starting at the outbreak of the disease, which occurs after the 

stabilization step of the simulation. The average number of infected individuals reaches a 

peak of 170 at time step 9 and the average outbreak length is 52 time steps.  

Although the neutral version of the simulation is initiated with the same parameters, 

number of individuals, and stabilization time (initial 750 time steps), the infection curve 

shows differences both for numerical value and shape in comparison to the EcoDemics 

curve. The extended discussion is presented in the comparison section. 
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Figure 4.6. Average epidemic spread curve for the Neutral model. The bold line represents the 

mean curve and the top and bottom lines represent one standard deviation. 

 

   

Figure 4.7 (a) Comparison of epidemiological signatures regarding epidemic peak. Blue boxplots 

show the distribution for EcoDemics and red boxplots show the corresponding distribution for the 

Neutral model. 
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Figure 4.7 (b) Comparison of epidemiological signatures regarding epidemic duration and peak time. 

Blue boxplots show the distribution for EcoDemics and red boxplots show the corresponding 

distribution for the Neutral model. 

4.3.3.2 Epidemiological signature comparisons 

In this section we compare the epidemic peak, epidemic peak time and epidemic duration 

for the EcoDemics and the Neutral model. For both approaches, Figure 4.7 (a), (b) shows 

the boxplots for 10 independent runs of each simulation. The signatures of the 

EcoDemics model are shown by blue boxplots, while the signatures for the Neutral model 

are represented by red boxplots. These boxplots highlight the differences between the two 

models, especially in epidemic peak, for which the Neutral model shows a much lower 

value. Although both models have the same number of individuals at the initiation of the 

infection, and the same parameters have been used for the infection function, the size of 

epidemic is significantly different. This emphasizes the role of the population distribution 

in epidemic size. 
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4.3.3.3 Mathematical SIR model infection curve 

The SIR model has a long history in modeling epidemics. We present the mathematical 

SIR model results using Mathematica [58], based on the same parameters that we have 

used in the previous section (duration of Infection = 10, initially immunized = 0.6, 

contact number = 20, initially infected = 0.05 - see Figure 4.8). The mathematical SIR 

model includes the unrealistic assumption that all individuals are equally susceptible to 

disease; therefore, parameters such as age and geographical dispersal are not taken into 

account.  

 

Figure 4.8. The Mathematica SIR model with parameters: duration of infection = 10, initially 

immunized = 0.6, contact number = 20, initially infected = 0.05. Red and blue curves represent the 

infected and susceptible individuals respectively. 

4.3.3.4 Comparison and analysis 

In this section we have compared the results of the EcoDemics model with the 

mathematical SIR model and related field data. In order to make fair comparisons of the 



62 
 

curves that are not all in the same range of value, we define epidemic size and duration 

ratio as follows 

                    
                  

                             
                                                  

                        
                       

 
 
                    

                         
             

 

Figure 4.9. Epidemic duration ratio for an epidemic curve. Vertical arrow represents the epidemic 

peak size, upper green arrow represents the width of the distribution at 1/3 of the epidemic peak, and 

the lower green arrow represents the average epidemic duration. Epidemic size ratio can be 

computed by the ratio of the two green arrows. 

 

Equation (4.2), describes the ratio of the total number of infected individuals at the 

epidemic peak to the mean number of infected individuals, during the whole period of the 

epidemic. Equation (4.3) is the ratio of the width of the epidemic curveat 1/3 of the 

epidemic peak height to the average duration of the epidemic. Figure 4.9 clarifies this 
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equation in which the epidemic size ratio can be computed by the ratio of the two green 

arrows. 

These ratios for EcoDemics, the Neutral model, and the SIR model are given in Table 

4.3. Unlike mathematical SIR model which is a deterministic system, random and chaotic 

features influence the dynamics in EcoDemics and Neutral model. The differences 

between EcoDemics and Neutral model in the epidemic size and duration ratios are 

statistically analysed with Welch’s t-test (t=34.46, d.f.=9, p=0.99 for epidemic size, and 

t=1.95, d.f.=10, p=0.90 for epidemic duration) showing that the values observed in the 

two situations are significantly different. Although the Neutral model is a simplification 

of EcoDemics with the same initial parameters, the numerical results confirm the 

similarity between the Neutral model and its counterpart in the mathematical SIR model. 

This similarity between a completely random population and the mathematical SIR model 

demonstrates the inaccuracies caused by the random mixing assumption of the 

mathematical SIR based epidemic modeling. Both models fall short in capturing real life 

distributions and behaviours that affect the results of epidemic modeling. 

To further confirm the EcoDemics results we compare it to a real epidemic field data in 

the next section.  

Table 4.3. Numeric comparison of epidemic size and duration ratio 

  
Epidemic 

Size Ratio 

Ep. Size Ratio 

Standard 

Deviation 

Epidemic 

Duration 

Ratio 

Ep. Dur. Ratio 

Standard 

Deviation 

EcoDemics 5.9 0.06 0.1 0.04 

Neutral Model 3.5 0.001 0.2 0.08 

SIR Model  4 --- 0.3 --- 
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4.3.4 Field data 

The inclusion of the behavioural component of the model to the population and the 

spatial distribution of the individuals in the virtual world, explained in Section 2, leads to 

a heterogeneous model as opposed to the assumptions of classical mathematical SIR 

model. We wished to see which one comes closer to reality. For this purpose, we 

compare the EcoDemics epidemic curve with the field data of a real epidemic.  

Figure 4.10 shows the number of raccoons and cats reported rabid at different epizootic 

temporal stages in different parts of USA. The patterns of a real epidemic clearly do not 

follow the mathematical SIR model since complex heterogeneous features are involved in 

the real ecosystems that affect the real epidemics. The fluctuations and ‘residual 

infections’ (tail of the epidemic) are very common in real infections; for instance, it has 

also been observed in FMD outbreaks in several parts of UK [93], and SARS outbreaks 

in Hong Kong, Vietnam, Singapore, and Canada [114]. The fluctuations and irregularity 

found in the field data curve is also found in EcoDemics but is missing from the SIR 

model and the Neutral model. Often, as an epidemic spreads, the leading front is 

irregular, reflecting spatial variation in local transmission rates [18], [107]. By including 

the complex behavior of the agents in EcoDemics and having the parameters of spatial 

distributions to influence the epidemic spread, we observed patterns  similar to those of 

real epidemics (see figure 4.5 and 4.10).  
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Figure 4.10. Number of raccoons and cats reported rabid at different epizootic temporal stages in 

Oswego, Washington, Rensselaer, Dutchess, Broome, and Niagara counties [19]. 

The spatial variation of the individual plays a great role in the epidemic spread as the 

density of regions affects the magnitude of the disease spread. In a real ecosystem, some 

individuals are grouped within densely populated regions and others in disconnected 

ones. Species population sizes and densities play a major role in the spreading of disease. 

The predators also force the escape of prey, which affects the movement of prey from one 

place to another. The behavioral model, which accounts for predator-prey interactions 

along with the prey’s spatial distribution in the virtual world, produces a more realistic 

epidemic spread in the EcoDemics model. 

4.4 Conclusions 

As it has been discussed in chapter III, the individual-based evolving predator-prey 

ecosystem simulation, EcoSim, first introduced by Gras, et al [44] has been designed to 

simulate agents’ behavior in a dynamic, evolving ecosystem. In this framework, each 
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agent behavior is modeled by a fuzzy cognitive map (FCM), allowing the evolution of the 

agent behavior through the epochs of the simulation. This chapter introduced the 

extension of this complex simulation to model the spread of epidemics.  

We presented EcoDemics, a simulated predator-prey ecosystem for modeling the spread 

of directly transmitted diseases. We were able to represent epidemic spread among prey 

individuals based on a probabilistic timely controlled model that follows the general 

behavior of classical SIR model. The strength of this model comes from integrating SIR 

disease spread in a dynamic heterogeneous ecosystem simulation in which spatial 

distribution and interactions of the individuals emerge naturally as a consequence of 

including a complex behavioural model. The simplified assumptions like constant 

population size in classical mathematical SIR model or fixed structure in network-based 

models have been avoided by modelling births and deaths as well as mobility patterns. 

Also, the age structure has been included in the model since, for some infectious diseases, 

the age characteristic has a significant influence on the dynamics of the epidemic in the 

population. Again, unlike mathematical models that assume individuals to be uniformly 

distributed, individuals in EcoDemics are capable of socializing to form groups based on 

many environmental conditions such as predator pressure or sources of food. Comparing 

EcoDemics, the Neutral model, the classical mathematical SIR model and a field data 

about rabies spread, we have shown that the heterogeneity in the ecosystem influenced by 

a behavioral model plays a significant role in the epidemic spread in prey individuals, as 

the density of regions affect the magnitude of the disease spread.   

This study highlights the significance of heterogeneous ecosystem in modelling disease 

progression compared to random mixing ecosystems. The unique values of our approach 

rely on the fact that we did not design a system dedicated to disease spread modeling and 

that the heterogeneity of the predator-prey population emerged from the ecosystem itself. 

This overcomes the extremely difficult task of gathering population properties of animals 

in an ecosystem. Analysing all of the EcoSim’s features that can contribute to disease 

spread in the EcoDemics model such as genomic representation and evolution is beyond 

the scope of this study; however, the built in framework in EcoDemics provides us with 

the opportunity to utilize these attributes for future studies. 
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Chapter 5  

Analyzing Vaccination Control and Herd Immunity 

Threshold in EcoDemics 

As presented in the previous chapter, EcoDemics gave us a rich ground, with more depth 

and details to study epidemic outbreaks. In this chapter we are interested in analyzing 

vaccination strategy to control the spread of the infection. In the next section a short 

background of mitigation strategies will be presented. Section 5.2 is dedicated to the 

vaccination and herd immunity explanation. The experiments and results will be 

discussed afterwards. We then conclude this chapter in the final section. 

5.1 Introduction 

During the last few decades, several models have been developed to explore mitigation 

strategies in disease models. Tsunoda, et al. simulated the spread of influenza for 

exploring the most efficient mass vaccination strategies to prevent an epidemic [110]. In 

another study, the role of travel restrictions in delaying and ending the H1N1 pandemic 

has been explored [8]. A large-scale epidemic simulation was used in [31] to examine 

intervention options in an influenza outbreak. Keeling, et al. modeled vaccination 

strategies against foot-and-mouth disease [66]. The roles of individual imitation behavior 

and population structure in vaccination were explored in [35] to control infectious 

diseases. In these models, however, many details of the progression of infection and 

individual behaviors are neglected. Additionally, either unrealistic mixed-populations 

have been assumed or the number of different subpopulation types is small. Pourbohloul 

et al. used contact network epidemiology to predict several control policies for a mildly 

contagious disease [95]. 

Due to the high mitigation capacity and significance of the immunization intervention in 

the literature of epidemiology, we explore vaccination technique with various scenarios.  
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5.2 Vaccination and herd immunity threshold 

We assume no initial immunity to the infection for individuals in the disease model and 

full immunity for those susceptible individuals being vaccinated. 

5.2.1 Variation in time delay 

Intervention timing has received a great deal of interest in many disease mitigation 

studies including mathematical models [36], [69], and simulations that use real epidemic 

data to parameterize their model [31]. For this reason, we explore the effect of 

immunization delay in the first experiment. We apply the vaccination with various time 

delays from the initiation of the infection and observe the difference in the magnitude of 

infection. 

5.2.2 Variation in proportion of population and herd immunity 

In another experiment we study the effect of vaccinating various population percentages. 

In this case, vaccination starts immediately after the initiation of the disease and is 

performed in 3 different phases. Each phase consists of 3 steps in which the number of 

vaccinated individuals are the same. In the first phase, the number of vaccinated 

individuals in each step is high to accelerate the mitigation process. We call this number 

Vaccination Capacity (VC). In the second and third phase, the number of vaccinated 

individuals in each step decreased to 2/3 and 1/3 of VC, respectively. Therefore, to 

ascertain the immunization of the chosen total percentage, VP, of the population during 

the whole 3 phases of vaccination, maximum vaccination capacity is defined as follows: 

                               (5.1) 

where VC is maximum vaccination capacity in a step, VP is total vaccination percentage 

of the population, and S is the number of susceptible agents. This process guaranties that 

the total number of individuals vaccinated during the 9 steps that cover the 3 phases is 

equal to VP * S.  

There is an important theory in epidemiology known as herd immunity which proposes 

that, all the individuals can be protected against a contagious disease by the vaccination 

of a fraction of a population [63]. The minimum proportion of vaccinated individuals in a 
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population for which a contagious disease is eradicated is the herd immunity threshold. 

This value depends on the type of the infection and population parameters, such as 

individual interactions and spatial distribution [32]. We are interested in investigating this 

principle in EcoDemics. This will be explored by varying the VP value and observe the 

epidemic trend over time in the next section. 

5.3 Implementation, results, and analysis 

The simulation is implemented in C++ and all experiments are performed on Sharcnet 

[105] using the Linux XC cluster. At the beginning stage of the simulation, the prey and 

predator populations are set to 12000 and 500 respectively. Initiation of the infection 

occurs after the stabilization stage that is, after 750 time steps of the simulation. At this 

stage of the simulation run, the prey and predator populations grow to 178340 and 29656 

respectively. Due to the large number of parameters in our EcoDemics, numerous 

scenarios can be defined and experimented on. Different range of values for the disease 

parameters along with their principal effect on the epidemic have been studied in 

EcoDemics (previous chapter). For this experiment we chose one set of parameters but 

many such sets have been tested and led to the same results. Using probability of 

pInitInfection = 0.05, only 5% of the susceptible prey in the initial window are set to be 

infected during the initial infection stage. The infected individual goes through different 

states based on the parameters and probabilities of the disease model. We define the 

infection model with the following specifications: susceptible individuals become 

infected with the disease based on the probability function (1) with   = -0.2 and   = 2 for 

high risk individuals, and   = -0.15 and   = 4 for low risk individuals, infected 

individuals may recover from the disease after a minimum of 10 time steps (minInfected) 

and with the probability (pheal) of 60% and the recovered individual is naturally immune. 

The killing rate of 1% is also assigned to this infection model according to pkill. 

5.3.1 Variation in time delay 

In order to study the effect of timing in vaccination, we applied various time delays to the 

vaccination from the initiation of the infection, and then observe the corresponding 

values of the total number of infections. We vaccinated 90% of the population in delays 

ranging from 1 to 8 time steps after the initiation of the infection. We computed the 
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average of 10 different independent runs of the simulation. Our results show that with the 

early initiation of the vaccination, which correspond to an intervention delay of 1, the 

number of infections would be around 900, 5% of the population; however, having an 

intervention delay of 3, would increase the number of infections to 2500, 14% of the 

population. In other words, an intervention delay corresponding to 25% of the maximum 

delay increases the magnitude of infection in the population by a factor of 2.7 (Figure 

5.1). This result follows the process of the studies presented in [69]. They presented 

similar curves considering 8 time steps for intervention delays, one time step being a 

week of delay. In this study final attack rates in a worst case epidemic increased by a 

factor of 3.2 in a delay of only 25% of the maximum intervention delay which is very 

similar to our results. 

Figure 5.1. Effect of varying the vaccination delay on the total number of infections. Dotted lines 

represent one standard deviation. 

 

5.3.2 Variation in percentage of population vaccinated 

To study the importance of the number of individuals vaccinated, different proportions of 

the population are vaccinated. For this purpose, the value of VP is varied from 10% to 

90% of the population. The average numbers of infected individuals and epidemic 

duration for 10 runs using the same VC value are computed. Figure 5.2 shows the effect 

of different vaccination rates on the total infected population. Similarly, Figure 5.3 shows 
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the effect of different vaccination rates on the total duration of the infection. These results 

are similar to other vaccination models such as [66], which used the 2001 real cattle 

epidemic as a template (see Appendix 2). As shown in the Figure 5.2, the infection has a 

maximum value of almost 355,000 individuals, which is a cumulative value over more 

than 100 time steps, while the number of vaccinated individuals is around 10,000, which 

represents approximately 10% of the population. However, the number of infections 

decreases drastically to less than 10,000 agents when the number of vaccinated 

individuals is more than 60% of the population and even decreases to 2000 infections 

when 90% of the population is vaccinated. The comparison of actual infections with the 

study that used a real cattle epidemic [66] is not applicable, as it considered the number 

of infected farms instead of the infected population; however, the obtained curves have 

the same trend: the average size of epidemic declines rapidly with the vaccination rate at 

each time step, reaching a lower plateau that corresponds to a disease eradication 

threshold [66]. 

Figure 5.2. Effect of varying the number of vaccinated individuals on total infected population. The 

total number of vaccinated individuals is in abscissa and the cumulative total number of infected 

individual during the whole epidemic duration is in ordinate. Highest and lowest values in infected 

population correspond to the lowest (10%) and highest (90%) VP values respectively. Dotted lines 

represent one standard deviation. 

In Figure 5.3, it can be seen that the epidemic lasts for an average period of 466 time 

steps with 10% vaccination; however, the duration is substantially reduced to less than 22 
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time steps while the vaccination percentage is more than 70% of the population. 

Similarly, this trend matches the reactive vaccination for cattle [66] which started with 

400 days for the lowest vaccination rate, versus 466 time steps in our study, and achieved 

the herd immunity threshold in around 25 days, versus 22 time steps in our study.  

 

Figure 5.3. Effect of varying the number of vaccinated individuals on the infection duration. The 

total number of vaccinated individuals is in abscissa and the duration of the epidemic is in ordinate. 

Highest and lowest values in epidemic duration correspond to the lowest (10%) and highest (90%) 

VP values respectively. Dotted lines represent one standard deviation. 
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Figure 5.4. Effect of varying the percentage of vaccinated individuals on the epidemic curve. Each 

curve is the average of 10 independent runs for the corresponding VP value. 

Figure 5.4 depicts epidemic curves for different VP values. The curves with the highest 

and lowest peak represent the VP values of 10% and 90% respectively, and each curve is 

the average for 10 independent runs. Only the first 50 time steps of the infection are 

depicted, as they are the most characteristic part of the epidemic patterns. For the VP of 

60%, 70%, 80% and 90%, which are the four lowest curves, the epidemic was 

significantly mitigated and finally eradicated. For the lower VP values, although the trend 

of the epidemic over the first 15 time steps is similar to the 4 aforementioned curves, the 

vaccination strategy was unable to fully suppress the infection at the desired time and we 

observed jumps of infection after the global decline. This phenomenon suggests an 

immunity threshold to ensure the eradication of the epidemic over an acceptable duration. 

For this study the vaccination percentage of the total population needs to be equal or 

above a threshold of 60% to stop the disease diffusion. In qualitative context, this result is 

validated by the study about the herd immunity: high levels of herd immunity in cattle 

can prevent the long tail of the epidemic and is necessary to inhibit stochastic jumps of 

infection for a given special transmission kernel [66]. This correspondence only applies 

to the threshold for eradication of infection by vaccination: lower levels of vaccination 

can generate complex, nonlinear, spatio-temporal disease dynamics [66]. As mentioned 

earlier, we observed this nonlinear complex behaviour in lower VP values that are unable 

to eradicate the disease. 
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The above results show that our system, which includes much more complex mechanisms 

than the others, like the ability to model concepts such as complex individual behaviours, 

multi-level food chains, reproduction, evolution or speciation, produces results similar to 

the ones observed in systems dedicated to epidemic modeling. This is a significant result 

for the evaluation of EcoDemics’ potential as a platform for studying open complex 

problems in epidemiology that are unable to be tackled in simpler simulations. 

5.4 Conclusions 

We simulated vaccination strategies in EcoDemics to model the mitigation of epidemics. 

We explored the effect of this technique with various timing and population percentage 

parameters. Our experiments revealed that there is a threshold value for the parameter 

setting the percentage of the population that is vaccinated. This is the same result 

observed in the herd immunity study (for more details see also Appendix 2): lower levels 

of vaccination can generate complex, nonlinear, spatio-temporal disease dynamics [66]. 

We observed that with a value greater than 60%, the pattern of the disease spread changes 

abruptly. However, these measures may not be appropriate to apply directly as 

quantitative values, as extensive disease specific parameters need to be adjusted 

depending on the different situations [50] [66] [53]. Nevertheless, this study highlighted 

the importance of effective vaccination policies in mitigating the infection and confirms 

the fundamental role of increasing individual’s immunity over a relatively wide area to 

inhibit stochastic jumps of infection [66].  



75 
 

5.5 Appendix 2 

 

Figure 5.5: Effect of varying the number of vaccinated cattle on total infected population using the 

2001 epidemic of Great Britain as a template [66]. 

Figure 5.5 shows how an epidemic can be controlled by the rapid vaccination of cattle 

during the early stages, using the 2001 epidemic of Great Britain as a template. 

Throughout, the vaccination is only performed on cattle and assumed to be at 90% 

efficacy. Expected number of farms reporting infection against the number of cattle 

vaccinated per day (bottom axis) or the corresponding time to achieve the disease 

eradication threshold of about 5.5 million cattle (top axis). Solid and dashed lines show 

the result when different culling is performed. Solid lines depict the average size of the 

simulated epidemic, which declines rapidly with daily vaccination rate, reaching a lower 

plateau at a rate of around 300,000 cattle per day. This rate allows achieving the 

vaccination threshold in about 25 days. Similarly, Figure 5.6 represents the expected 

duration of the epidemic by varying the number of vaccinated cattle [66]. 
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Figure 5.6 : Effect of varying the number of vaccinated cattle on the epidemic duration using the 

2001epidemic of Great Britain as a template [66]. 
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Chapter 6  

Prey Infection and Effect of Predators 

As presented in the previous chapters, EcoDemics framework provides us with the 

opportunity to realistically model disease in a predator-prey ecosystem and analyze 

strategies to control the spread of the infection. Having infection in prey individuals, the 

main focus of this chapter is to study the effect of predation on infection dynamics in the 

EcoDemics. Section 6.1 describes the background of predator-prey studies that have a 

pathogen in prey species. Section 6.2 is dedicated to the effect of predators in the system. 

The experiments and results will be discussed afterwards. We then conclude this chapter 

in the final section. 

6.1 Introduction 

To date, the effect of infection of prey species by a pathogen on predator-prey dynamics 

has been investigated in a variety of studies primarily employing numerical simulations 

([7], [23], [48], [52], [62], [89], [91], [100], [117]). A key result of these studies, viz., that 

infected prey are more vulnerable to predation than uninfected prey tend to agree with 

empirical findings. Arthurs et al. found that locusts infected with a fungal pathogen are 

more vulnerable to predation due to reduced mobility and hence capability of escape [5]. 

Hudson et al. found following post mortem examinations that worm burdens in grouse 

killed by predation were significantly lower than worm burdens in grouse that died due to 

the parasite [60]. Further, Krumm et al., report that mountain lions prey on prion-infected 

mule deer more than on uninfected deer [75]. Johnson et al., claim also that yellow perch 

and bluegill fish demonstrated selective preference for Daphnia with chytrid infection vs. 

uninfected Daphnia suggesting that chytrid infection in Daphnia is a predictor of 

predation risk [64]. As a result of vulnerability to predation, field biologists found that 

predation in low-density populations is usually high enough to eliminate outbreaks [28], 

[92], [73].  

 A number of additional related results regarding host-pathogen dynamics in the presence 

of predators have been obtained using numerical simulations. First, introduction of 
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predation reduces the virus production and prey infected population[37]. Further, 

selective predation on infected prey may lead to an eradication of the disease in the prey 

population which could avoid extinction of the prey species[52], and [106]. A possible 

reason for eradication of the disease in the prey community is not simply a reduction in 

the number of infected prey due to morbidity and predation, but also selection pressure 

due to predation resulting in a higher number of immune prey individuals [100]. 

Moreover, in one numerical simulation study, it was found that predators have a tendency 

to switch to susceptible prey when the numbers of infected prey have been depleted [89]. 

The results of a numerical simulation study piloted by Bairagi et al., 2007 also suggest 

that predators, prey and prey-pathogens cannot co-exist in a stable state of equilibrium 

[7]. 

However, limitations of the numerical studies investigating predator-prey-pathogen 

dynamics are the unrealistic assumptions they rest on along with a limited number of 

parameters. For example, the numerical models developed by Haque et al. [48], 

Mukhopodhyay et al. [89], and Xiao et al. [117], assume that only susceptible prey 

reproduce and that infected prey do not recover nor develop immunity to the disease. A 

more realistic assumption is that prey sometimes recover (depending on the virulence of 

the disease) and acquire immunity to the disease, which is consistent with the SIR 

(susceptible-infected-recovered) epidemiological model. These limitations can be 

overcome by using our individual behavior based simulation that employs an SIR disease 

model. As explained in Chapter 4, EcoDemics is able to model births and deaths of 

individuals, as opposed to merely global functions in numerical simulations, along with 

being able to link the death of individuals to concrete reasons such as lack of energy, 

disease, or capture by a predator. Also, in an EcoDemics simulation, prey individuals that 

are immune due to their genetic make-up (innate immunity) will be naturally selected 

implying that it could be easy to model the transmission of their immunity to future 

generations. However, this feature of inter-generational immunity is beyond the scope of 

this study. Although there are a number of recent studies in the literature using 

individual-based approaches to investigate the effect of disease in populations using the 

SIR model (for example [14],[17],[3]), this is the first such study to focus on the effect of 

predators in prey infection dynamics. 
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An important virtue of an individual-based simulation approach is that the larger number 

of parameters along with the modeling of complex individual behaviors give rise to a 

larger number of scenarios that can be investigated. Additionally, because the global 

complexity of the simulations is linear, the experiments can be done in an acceptable 

time. A key basis of any empirically adequate simulation is that it agrees with 

corroborated and replicated empirical findings. Thus, the simulations used in this chapter 

rest on the assumption that infected prey will be less capable of escaping predators than 

susceptible prey thereby making them more vulnerable to predation in agreement with the 

empirical studies cited above. This assumption is met by varying the mobility of infected 

prey at various levels depending on the virulence of the pathogen. 

The purpose of this chapter is to fill the current lacuna of individual-based studies 

regarding predator-prey-pathogen systems with the goal of testing some of the 

hypotheses corroborated by the numerical studies based on realistic, paramater-rich 

EcoDemics integrating an SIR disease model. These hypotheses include the claim that 

predator selection of infected prey may lead to eradication of the disease in the prey 

population or result in predator-switching to susceptible prey. An additional hypothesis to 

be tested using EcoDemics is that a predator-prey-pathogen system does not attain a 

stable equilibrium. The findings obtained regarding these hypotheses will be compared 

with results obtained in both numerical and empirical studies. 

6.2 Predator effect 

This section defines scenarios to study the effect of predators in pathogen dynamics. As 

explained in Chapter 4, depending on the infection and type of the test, different values 

can be used for EcoDemics’ parameters. The values used for the experiments in this 

section are shown in table 6.1. All of the values are close to those experimented in 

Chapter 4, except that the infected population does not become immune. This is due to 

the fact that immunity has a major effect on disease duration; and therefore zero 

immunity provides the EcoDemics with a very long infectious period which is suitable to 

observe the effect of different scenarios experimented in this chapter. 
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Table 6.1. Disease parameters used for the experiments. 

Parameter pInitInfection pimmune pheal pkill minInfectedTime 

Value 2% 0% 60% 2% 10 

 

Recalling from Chapter 3, several actions have been modeled for prey and predators in 

EcoDemics. Predator actions include searching for food, hunting, socializing, exploring, 

resting, eating, and breeding. For the purpose of observing the effect of predation on 

disease dynamics in prey, two different sets of scenarios have been studied. In scenario 1, 

infection dynamics before and after adding predators to the system have been tested. The 

second set of scenarios is related to the attack rate of predators, in which three main 

scenarios were studied. For each scenario different attack rates of the predators have been 

simulated by removing some of the actions that predators can perform; in other words, by 

removing some of the non-predation actions that a predator can take, the possibility of 

hunting action, and therefore the attack rate has been increased. Among the 7 possible 

actions of predators, we chose to remove socialization, and/or exploration actions that 

only marginally disturb the normal behavior of the predators. On an average normal run 

of the EcoDemics, at each time step 9% of the predators perform socialization, and 1% 

perform exploration. The scenarios are as follows: 

Scenario 2A: The socialization action is removed from the possible actions of predator 

(predator attack rate 1). 

Scenario 2B: The exploration action is removed from the possible actions of predator 

(predator attack rate 2). 

Scenario 2C: Both the socialization and exploration actions are removed from the 

possible actions of predator (predator attack rate 3). 

It is assumed that the infectious disease reduces the capability of movement in prey 

individuals which agrees with empirical findings [5], and [75]. Therefore for each 

scenario, different levels of mobility in prey have been studied as well. This is simulated 
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by decreasing the mobility of the infected prey to 75%, 50%, and 25% of its original 

movement ability. For each of these experiments the average of 10 independent runs has 

been taken into account. 

6.3 Implementation, results, and analysis 

The simulation is implemented in C++ and all experiments are performed on Sharcnet 

using the Linux XC cluster. Although complex behaviors have been modeled in the 

simulation, its global complexity is still linear and the experiments are done in an 

acceptable time.  

For all the scenarios, the simulation is given a 2500 initial time steps for stabilization of 

the ecosystem (not shown in the figures). After that the infection is introduced into the 

ecosystem in which 2% of the prey population was initially infected.  

Figure 6.1 shows the number of infected population for scenario 1. In this figure, the 

upper line (red) shows the infected prey population without having predators in the 

ecosystem. The lower line (blue) shows the infected prey population when the predators 

were present in the ecosystem. The overall ratio of infected prey individuals during 1500 

time steps for the first and second cases were 0.26 and 0.14 respectively. Therefore the 

overall infection percentage while having the predators in the system has been reduced to 

almost half. This is an interesting result considering the fact that we have done nothing to 

force the predators to select infected prey; therefore the lower rate of infection in the 

presence of the predators emerged directly from the behavioral model of prey and 

predators and the disease properties which accounts for lower physical capacity (0.25 of 

its normal mobility) of the infected prey. This result is in accordance with the numerical 

simulations ([7], [23], [48], [52], [89], [91], [100], [117], and [37]), and empirical 

findings ([5], [60], [75], and [64]). 
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Figure 6.1. Prey infection dynamics in the presence and absence of predators related to scenario 

1.The thinner curves show the standard deviations. 

Infected population for scenarios 2A, 2B, and 2C are shown in figures 6.2, 6.3, 6.4 

respectively. As shown in these figures, the infected population for all the mobility values 

decreased drastically. Interestingly, the infection was eradicated for the scenarios with the 

infected prey mobility reduced to 25%, 50%, and 75%. The eradication of the disease 

was observed for all the 2A, 2B, and 2C scenarios except for those scenarios that the 

disease does not affect the mobility of the prey (see the upper curve referred to as 

movement 1 in figures 6.2, 6.3, and 6.4). For these scenarios where the disease was not 

eradicated, the average infected populations during 2500 time steps were around 9-10% 

of the total population. This result suggests that the higher an infection affects the 

mobility of the prey, the higher the chance of the predation on infected prey, and 

eventually the fastest eradication of the disease. This dependency between the reduced 

mobility of the infected prey and the time step at which the infection was eliminated, is 

shown in table 6.5. The disease elimination time was assumed to be at the time step in 

which the infected population was less than 0.2% of the total population. As it can be 

seen in this table, the shortest eradication time for each of the scenarios 2A, 2B, and 2C 

was observed in the case where the mobility of the prey was as low as 25% of its original 

mobility; whereas the longest eradication time corresponds to the scenarios where the 

mobility of the prey was 75% of its original. In other words, the lower the mobility of the 
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infected prey, the lower the disease elimination time step. This result is in concordance 

with the findings presented in [37], [25], and [111], that shown that infective mobility has 

a significant impact on elimination of the infection. The time step at which eradication 

occurred was also different based on the attack rate of the predators. For scenario 2A 

(predator attack rate 1), the average time step at which the disease was eliminated was 

time step 1893, whereas for scenario 2B (predator attack rate 2) it was 2149. Therefore, 

removing the socialization action from the possible actions of the predators had more 

effect on predation rate than removing exploration. This is as we expected because 

predators normally take socialization action more than they take exploration. Removing 

both of the socialization and exploration actions for predators in scenario 2C (predator 

attack rate 3), resulted in the average elimination time step of 1796. In other words, the 

disease eradication occurred faster when predators are more hostile as a result of 

removing their socialization and exploration actions. For the infectious scenarios with 

severe movement inabilities, the predation on infected prey will lead to elimination of the 

pathogen. Predators are often responsible for infections going extinct assuming that it is 

easier for a predator to hunt an infected individual [106]. This result is also in accordance 

with the numerical studies presented in [52], and [100]; and field studies in [28], [92], 

and [73]. Moreover, this is an individual-based demonstration of the fact that predator, 

prey and prey-pathogens cannot co-exist in a stable state of equilibrium [7]. 

 

Figure 6.2. Infection dynamics for prey with different levels of mobility related to scenario 2A. 
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Table 6.2. Two tailed P-value for scenario 2A: the average value for each of the time series in 

scenario 2A was computed and the P-value is calculated for each pair of samples (ratios 0.25 and 0.5; 

ratios 0.25 and 0.75; ratios 0.25 and 1; ratios 0.5 and 0.75, ratios 0.5 and 1; ratios 0.75 and 1). 

Infected 

Movement 

Ratio 

0.25 0.5 0.75 1 

0.25 … 0.000004 

Less than 

0.000001 

Less than 

0.000001 

0.5 0.000004 … 0.000538 

Less than 

0.000001 

0.75 

Less than 

0.000001 0.000538 … 0.000021 

1 

Less than 

0.000001 

Less than 

0.000001 0.000021 … 

  

 

Figure 6.3. Infection dynamics for prey with different levels of mobility related to scenario 2B. 
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Table 6.3. Two tailed P-value for scenario 2B. 

Infected 

Movement 

Ratio 

0.25 0.5 0.75 1 

0.25 … 0.000004 

Less than 

0.000001 

Less than 

0.000001 

0.5 0.000004 … 0.000002 

Less than 

0.000001 

0.75 

Less than 

0.000001 0.000002 … 0.000219 

1 

Less than 

0.000001 

Less than 

0.000001 0.000219 … 

  

 

Figure 6.4. Infection dynamics for prey with different levels of mobility related to scenario 2C. 
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Table 6.4. Two tailed P-value for scenario 2C. 

Infected 

Movement 

Ratio 

0.25 0.5 0.75 1 

0.25 
… 

Less than 

0.000001 

Less than 

0.000001 

Less than 

0.000001 

0.5 

Less than 

0.000001 
… 0.002913 

Less than 

0.000001 

0.75 

Less than 

0.000001 
0.002913 … 0.000001 

1 

Less than 

0.000001 

Less than 

0.000001 
0.000001 … 

  

It can be seen that for all scenarios, predation on the infected prey will cause the infected 

population percentage to reduce. For each scenario, the differences between infected 

population percentages are statistically analyzed with Welch’s t-test. The t-test is applied 

on the averages and standard deviations of all the values of each time series, and the 

resulting two tailed P-values are shown in tables 6.2, 6.3, and 6.4. By conventional 

criteria all the values observed in the four situations are considered to be significantly 

different. 

Table 6.5. Disease eradication time step for scenarios 2A, 2B, and 2C with the infected prey mobility 

reduced to 0.25, 0.5, and 0.75 of its original movement. Standard deviations are given after slashes. 

Infected Movement Ratio Scenario 2A Scenario 2B Scenario 2C 

0.25 1600 / 126 1983 / 166 1432 / 96 

0.5 1996 / 184 2073 / 115 1831 / 187 

0.75 2083 / 129 2392 / 169 2125 / 160 
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6.4  Conclusions 

Studying dynamics of the infections in ecosystems and factors regulating the epidemics is 

of high importance. A variety of mathematical simulations have been studied to explore 

different aspects of predator-prey-pathogen systems. Although the use of individual-

based methods has become very popular in modelling the biological systems, there is a 

lack of study considering predator-prey-pathogen systems to test predator effects in 

pathogen dynamics. Understanding the role of predators generating variation in pathogen 

dynamic has important implications for the management of natural and agricultural 

ecosystems. To the best of our knowledge, this is the first individual-based study 

exploring the effect of predators on prey infection dynamics in a predator-prey ecosystem 

simulation. We tested some of the hypotheses corroborated by the numerical studies 

using the EcoDemics simulation. We monitored the prey infection dynamics in the 

presence and absence of the predators. The overall infection percentage in the presence of 

predators in the system has been reduced significantly. This result which emerged 

directly from the behavioral model of the ecosystem, agrees with numerical and empirical 

findings cited earlier. The values observed in the various studied situations are proved to 

be significantly different by using the Welch’s t-test. Our results revealed that predator 

selection of infected prey will lead to eradication of the disease in the prey population 

when the pathogen reduces the mobility of the prey. Moreover, we showed that the 

duration of the infection decrease with the reduced mobility of the prey. This is in 

concordance with the findings presented in [52], [7], [106], and [100].  

We also defined scenarios to test the effect of predator attack rates on prey infection 

dynamics. In these scenarios, the elimination of the infection occurred faster when 

predators have a higher attack rate as a result of removing their socialization and 

exploration actions. 

Our study offers a significant first step in individual-based methods to explore the role of 

predators in prey infection dynamics. The large number of parameters along with the 

realistic behavioral model incorporated into the EcoDemics, provides us with the 

opportunity to define numerous scenarios and experiments for future studies in predator-

prey-pathogen systems.  
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Chapter 7  

Conclusion and Future Work 

 

We presented EcoDemics which integrates a disease model with EcoSim [44], for 

studying epidemic spread in a predator-prey ecosystem simulation. We explained EcoSim 

using the updated 7-points Overview-Design concepts-Details (ODD) standard protocol 

[45], and [46] for describing the individual-based models. We then introduced 

EcoDemics the extension of this complex simulation to model the spread of epidemics. 

The epidemic spread among prey individuals was represented based on a probabilistic 

timely controlled model that follows the general behavior of classical SIR model. This 

study highlighted the significance of heterogeneous ecosystem in modelling disease 

progression compared to random mixing ecosystems. The unique values of our approach 

rely on the fact that we did not design a system dedicated to disease spread modeling and 

that the heterogeneity of the predator-prey population emerged from the ecosystem itself. 

This overcomes the extremely difficult task of gathering population properties of animals 

in an ecosystem.  

On the other hand, similar to any other modeling simulation, our approach has some 

limitations as well. Large number of parameters that do not necessarily contribute to 

disease dynamics, and massive data size that is produced through the epochs of the 

simulation are important drawbacks of our model. It is also hard to make precise 

estimates, and to verify a specific contributing factor for the epidemiological results. This 

is due to the fact that unlike classical mathematical models, individual-based models are 

intractable leading to more complex sensitivity analysis [10]. A comparison between 

different disease modeling approaches that were explained in Chapter 2, are provided in 

Table 7.1 below. The question of which model is the best, depends on the epidemic type, 

population properties, and the objective of modeling the epidemic spread. For many 

studies, there is a single population under consideration. If the population is close to 

homogeneous, the classical mathematical model is a reasonable choice. If the population 

is heterogeneous, but falls into a few specific classes of networks, the network models 
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can perform quite well [10]. If, however, the environment is dynamic or the population of 

individuals are evolving, individual-based models are the better choice. 

Table 7.1. Summary of disease modeling types and their specifications for epidemic spread

 

In order to model the mitigation of epidemics, we simulated vaccination strategies in 

EcoDemics. We explored the effect of vaccination with various timing and population 

percentage parameters. Our experiments revealed that there is a threshold value for the 

parameter setting the percentage of the population that is vaccinated. We observed that 

with a value greater this threshold, the pattern of the disease spread changes abruptly. 

This study emphasized the importance of effective vaccination policies in mitigating the 

infection and confirms the fundamental role of increasing individual’s immunity over a 

relatively wide area to inhibit stochastic jumps of infection.  

Our study also points to the significance of predation effects in the dynamics of the 

infectious diseases, which has important implications for the management of natural and 

agricultural ecosystems. To the best of our knowledge, this is the first individual-based 

study exploring the effect of predators on prey infection dynamics in a predator-prey 

ecosystem simulation. We observed that the overall infection percentage in the presence 

of predators in the system has been reduced significantly. Our results also revealed that 

predator selection of infected prey will lead to eradication of the disease in the prey 

population when the pathogen reduces the mobility of the prey. Moreover, the duration of 

the infection decrease with the reduced mobility of the prey. We also defined scenarios to 

test the effect of predator attack rates on prey infection dynamics. In these scenarios, the 

elimination of the infection occurred faster when predators have a higher attack rate. 
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Our study offers a significant first step in artificial life simulations to explore the role of 

different aspects of the ecosystem in infection dynamics. The large number of parameters 

along with the realistic behavioral model incorporated into EcoDemics, provides us with 

the opportunity to define numerous scenarios and experiments for future studies in 

predator-prey-pathogen systems.  

 As the individuals in our system search for mates and breed, sexually transmitted 

diseases can easily be integrated. This will allow for studying the specific properties of 

sexually transmitted disease in large multi-species populations. 

Similar to modelling epidemic spread in prey population, we will be able to study disease 

spread in predator population as well. Analysing the dynamics of the disease having a 

pathogen infecting both prey and predator species is an interesting topic to investigate. If 

a predator contracts the disease by hunting an infected prey, pathogen dynamics would be 

different from the one observed in the previous chapter. These kinds of studies are 

important for maintaining and management of natural ecosystems.The way a disease 

impacts the genome through the course of evolution is also an interesting question to 

investigate. Several biological and ecological studies have tried to argue these types of 

impacts in the evolution of individuals and the necessity of their recognition and 

interpretation for both public health [39], and the population of the ecosystem  [12]. As 

our system integrates the notions of genome, transmission of genome and evolution; we 

will have the ability to analyze how individuals try to adapt and overcome a disease 

spread through evolution. Several thousands of time steps are required to observe 

evolution in EcoDemics; therefore, we will need to define a disease model that stays in 

the population for very long period of time. This can be done by minimizing the 

immunity parameter of the disease, similar to the approach followed in the predator effect 

study.  

Co-evolution of diseases and hosts could also be represented. We will be able to track 

and analyze the way that one affects the other and influences its evolution over long 

periods of time.  
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The feasibility to study the effect of disease spread on different ecological and biological 

phenomena such as species formation, individuals behavior, predation, evolution and co-

evolution are what differentiate our model from the others. 
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