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Abstract

The meaning of parsimony is twofold in machine learning: either the structure or (and) the

parameter of a model can be sparse. Sparse models have many strengths. First, sparsity

is an important regularization principle to reduce model complexity and therefore avoid

overfitting. Second, in many fields, for example bioinformatics, many high-dimensional

data may be generated by a very few number of hidden factors, thus it is more reasonable

to use a proper sparse model than a dense model. Third, a sparse model is often easy to

interpret. In this dissertation, we investigate the sparse machine learning models and their

applications in high-dimensional biological data analysis. We focus our research on five

types of sparse models as follows.

First, sparse representation is a parsimonious principle that a sample can be approxi-

mated by a sparse linear combination of basis vectors. We explore existing sparse repre-

sentation models and propose our own sparse representation methods for high dimensional

biological data analysis. We derive different sparse representation models from a Bayesian

perspective. Two generic dictionary learning frameworks are proposed. Also, kernel and

supervised dictionary learning approaches are devised. Furthermore, we propose fast active-

set and decomposition methods for the optimization of sparse coding models.

Second, gene-sample-time data are promising in clinical study, but challenging in compu-

tation. We propose sparse tensor decomposition methods and kernel methods for the dimen-

sionality reduction and classification of such data. As the extensions of matrix factorization,

tensor decomposition techniques can reduce the dimensionality of the gene-sample-time data

dramatically, and the kernel methods can run very efficiently on such data.

Third, we explore two sparse regularized linear models for multi-class problems in bioin-

formatics. Our first method is called the nearest-border classification technique for data

with many classes. Our second method is a hierarchical model. It can simultaneously select

features and classify samples. Our experiment, on breast tumor subtyping, shows that this

model outperforms the one-versus-all strategy in some cases.

Fourth, we propose to use spectral clustering approaches for clustering microarray time-
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series data. The approaches are based on two transformations that have been recently

introduced, especially for gene expression time-series data, namely, alignment-based and

variation-based transformations. Both transformations have been devised in order to take

into account temporal relationships in the data, and have been shown to increase the ability

of a clustering method in detecting co-expressed genes. We investigate the performances of

these transformations methods, when combined with spectral clustering on two microarray

time-series datasets, and discuss their strengths and weaknesses. Our experiments on two

well known real-life datasets show the superiority of the alignment-based over the variation-

based transformation for finding meaningful groups of co-expressed genes.

Fifth, we propose the max-min high-order dynamic Bayesian network (MMHO-DBN)

learning algorithm, in order to reconstruct time-delayed gene regulatory networks. Due

to the small sample size of the training data and the power-low nature of gene regulatory

networks, the structure of the network is restricted by sparsity. We also apply the qualitative

probabilistic networks (QPNs) to interpret the interactions learned. Our experiments on

both synthetic and real gene expression time-series data show that, MMHO-DBN can obtain

better precision than some existing methods, and perform very fast. The QPN analysis can

accurately predict types of influences and synergies.

Additionally, since many high dimensional biological data are subject to missing values,

we survey various strategies for learning models from incomplete data. We extend the

existing imputation methods, originally for two-way data, to methods for gene-sample-time

data. We also propose a pair-wise weighting method for computing kernel matrices from

incomplete data. Computational evaluations show that both approaches work very robustly.
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Chapter 1

Introduction

1 Bioinformatics Challenges

In the area of biological and clinical study, a huge amount of various data, such as genome-

wide microarray gene expression data, proteomic mass spectrometry data, array compara-

tive genomic hybridization data, and single nucleotide polymorphisms data, have been being

produced. These data provide us systemic information which allows us to conduct genome-

wide study, and therefore to reach more precise decisions and conclusions than ever before.

Statistical learning and computational intelligence are among the main tools to analyze

these data. However, there are many difficulties that preventing an efficient and accurate

analysis. For example, there are usually tens of thousands of dimensions in microarray gene

expression data, while its sample size is usually very small. With this problem, it may be

impossible to estimate the parameters of a model, as the number of sufficient samples needed

increases exponentially as the number of dimensions. Second, the high-dimensional data

often have many redundant features when only few (maybe hidden) features correspond to

the desired study. This might drown useful information. In addition to the small sample

size, the noise present in biological data and uncertainty in the target variable often lead to

overfitting of some models sensitive to noise and uncertainty. Furthermore, the structural

information in the data (for example the temporal information in time-series data) should

be carefully taken into account in order to obtain better performance.

With the recent advances in microarray technology, the expression levels of genes with

respect to samples can be monitored synchronically over a series of time points. Such

microarray data have three types of variables, genes, samples, and time points. Thus, they

can be represented by a three-way array data and are termed gene-sample-time (GST)

microarray data or GST data for short. The dimensionality of such data is much larger

1
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than the two-way array data introduced above. Analyzing GST data can help discover the

pathway of many diseases due to genetic disorder, for example multiple sclerosis. Machine

learning and data mining approaches are among the main tools to analyzing GST data.

First of all, since many existing machine learning methods are derived for two-way data

where each sample is represented by a vector, it is very challenging to cluster or classify

the three-way GST data where each sample is represented by a matrix. Second, the GST

data may suffer from a much more severe issue of missing values, as the values of an entire

time point can be missing in a matrix sample. Many missing value imputation methods for

two-way data can not be directly applied on GST data.

Reconstructing gene regulatory networks (GRNs) is the key to understanding the re-

lations and pathways among thousands of genes and regulatory elements. One effort to

reach it is using high-throughput microarray gene time-series data. The rationality is based

on the fact that the expression level of the genes at the current time can casually affect

the expression level of the genes in the subsequent time. There are many challenges in

reconstructing GRNs by learning a machine learning model on microarray gene time-series

data. First, the expression levels of thousands of genes can only be sampled at a few time

points. If the number of the parameters of a model goes exponentially as the number of

genes increases, we confront the curses of dimensionality. Second, the data are usually very

noisy, thus we should find a stochastic model to cope with it. Third, feedback regulation,

time-delayed interaction, and asynchronous regulation are the characteristics of the gene

regulation events. A proper learning method should model all these features.

2 Sparse Machine Learning Models

The meaning of parsimony is twofold in machine learning: either the structure or (and) the

parameter of a model can be sparse. Sparse models have many strengthes. First, sparsity

is an important regularization principle to reduce model complexity and therefore avoid

overfitting. Second, in many fields, for example bioinformatics, many high-dimensional

data may be generated by a very few number of hidden factors, thus it is more reasonable

to use a proper sparse model than a dense model. Third, a sparse model is often easy to

interpret. Therefore, in this dissertation, we investigate the sparse machine learning models

and their applications in high-dimensional biological data analysis. We focus our research

on five types of sparse models including sparse representation, sparse tensor factorization,

sparse linear models, sparse spectral method, and sparse probabilistic graphical models.

Sparse representation is a parsimonious principle that a sample can be approximated
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by a sparse linear combination of basis vectors. From this point, we can also view the well-

known non-negative matrix factorization as a specific sparse representation model. Given a

new sample and basis vectors, learning the sparse coefficient is named sparse coding. Given

the training data, learning the basis vectors is termed dictionary learning. Dictionary

learning is in essence the sparse matrix factorization. In the next chapter, we shall see

that, based on sparse representation, clustering, classification, and dimensionality reduction

techniques can be devised for high-dimensional data.

Tensor factorization is the extension of matrix factorization in multi-way data which

is also called tensor. Basically matrix is a two-way tensor, and the GST data mentioned

above can be represented as a three-way tensor. Therefore, sparse tensor factorization is

a suitable tool for analyzing GST data. In my thesis study, I investigate the high-order

non-negative factorization and other tensor decomposition models for the dimensionality

reduction of GST data.

The parameter of the primal or dual form of the linear models (formulated as f(x) =

wTx + b) can be regularized to sparse. If the variable of a dual form is sparse, it implies

that the model parameter w is a sparse linear combination of the training samples. The

training samples corresponding to non-zero coefficients are named support vectors. This can

be applied as a sample selection technique for classification or regression. If the variable of

a primal form is sparse, that is the model parameter w is sparse, the target is approximated

as a sparse linear combination of features. The features corresponding to zero coefficients

have no contribution, hence can be removed. This can serve as a feature selection technique

for high-dimensional data. In this thesis, I discuss many linear models using different

regularization terms and loss functions. Especially, I investigate novel techniques that

extend linear models to multi-class data.

The spectral clustering method is a model that takes the similarity matrix as input,

and then solves the eigen-decomposition of the graph Laplacian matrix. If the weighted

adjacency matrix (calculated based on the similarity matrix) is sparse, then the graph

Laplacian matrix is sparse as well. It has been shown that spectral clustering is very

efficient, because it is much more efficient to eigen-decompose a sparse matrix than a dense

matrix. In my thesis study, I apply the spectral method to cluster microarray time-series

data. The alignment-based and variation-based transformations are used to compute the

similarity matrix.

In a graphical model with discrete variables, the number of parameters of a local condi-

tional distribution, corresponding to a node with its parents, increases exponentially as the

number of the parents increases. Also the gene expression time-series data have only a few
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number of time points. Therefore, we have to limit the number of parents for each node

in order to learn the model parameters, which results in sparse structures. In my thesis

study, I investigate the high-order dynamic Bayesian networks to learn the gene regulatory

networks from gene expression time-series data.

3 My Contributions

1. In Chapter 2, we explore sparse representation models for the classification and di-

mensionality reduction of various high-dimensional biological data. Our contributions

in this chapter include:

(a) We discuss the sparse representation from a Bayesian viewpoint.

(b) We propose the non-negative least squares based sparse coding model and inves-

tigate their classification performance.

(c) We propose the weighted K-nearest neighbor rule for predicting class labels based

on the sparse coefficient obtained by a sparse coding model.

(d) We propose kernel sparse coding models.

(e) We propose efficient active-set and decomposition methods for learning the pa-

rameter of the sparse coding model.

(f) We propose two unified frameworks for dictionary learning. Under these frame-

works, we can easily extend the linear dictionary learning models to kernel ones.

(g) We investigate kernel-dictionary-learning based dimensionality reduction method

for high-dimensional biological data.

(h) We propose a supervised dictionary learning model for multi-class data based on

sub-dictionary learning.

(i) We propose a cluster-and-classification approach, which is a local learning method,

for classifying complexly distributed data.

2. In Chapter 3, we describe our implementations of the sparse representation models

derived in Chapter 2 – non-negative matrix factorization toolbox (NMF toolbox) and

sparse representation toolbox (SR toolbox). The following are our contributions:

(a) The NMF algorithms, in our NMF toolbox, are relatively complete and imple-

mented in MATLAB.
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(b) Our NMF toolbox includes many functionalities for mining biological data, such

as clustering, biclustering, feature extraction, feature selection, and classification.

(c) The NMF toolbox also provides additional functions for biological data visual-

ization, such as heat-maps and other visualization tools. They are pretty helpful

for interpreting some results. Statistical methods are also included for comparing

the performances of multiple methods.

(d) The SR toolbox include all the sparse coding and dictionary learning algorithms

mentioned Chapter 2.

(e) Based on the basic level of the SR algorithms, machine learning methods, in-

cluding classification and dimensionality reduction, are implemented in our SR

toolbox.

3. In Chapter 4, we propose sparse tensor decomposition methods and kernel methods

for the dimensionality reduction and classification of gene-sample-time data. Our

contributions are the following:

(a) We propose to apply the sparse tensor decomposition method, higher-order non-

negative matrix factorization, to reduce the dimensionality of the gene-sample-

time data efficiently.

(b) We apply kernel sparse coding and kernel dictionary learning methods for clas-

sifying matrix samples and extract vectorial features, respectively.

4. In Chapter 5, we propose two novel strategies to extend linear models to multi-class

data. The first one is an independent modeling, called nearest border method. The

second one is a hierarchical model. Our contributions include:

(a) We propose the novel nearest border paradigm for multi-class classification prob-

lems, and implemented it by using a one-class SVM. This philosophy has not been

presented before in the literature.

(b) We propose the hierarchical model for multi-class classification problems. This

model is so flexible that any feature selection and classification methods can be

embedded in the model. We apply this model for gene selection and prediction

of breast tumor subtypes, simultaneously.

(c) We realize most of the regularized linear models based methods mentioned in

this chapter and Appendix B in MATLAB, and assemble them to an open-source

toolbox named regularized linear models and kernels (RLMK) toolbox.
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Additionally, we conduct a thorough review on regularized linear models in Appendix

B where our contributions include:

(a) We review the main regularized (sparse) linear models using matrix notations,

unlike element-wise notations in most of the existing reviews. The formulations

using matrices and vectors are succinct and easy to understand.

(b) Two main feature selection techniques based on SVM are also reviewed in details.

These techniques have been applied to gene selection in bioinformatics.

(c) We review the decomposition methods for two-class SVMs, and derive decompo-

sition methods for one-class SVMs.

5. In Chapter 6, we propose to use spectral method to cluster microarray time-series

data. We compare the alignment-based and validation-based transformations which

are used to measure the similarities between pairs of time-series. The contributions

of this chapter are three-fold:

(a) We apply spectral clustering algorithms to expression time-series analysis.

(b) We propose new measurements for the quality of the spectral clustering approach.

(c) we empirically show that when applied to two well-known data sets, the alignment-

based transformation yields better clustering results than the variation-based

transformation.

6. In Chapter 7, we apply probabilistic graphical models on microarray gene expression

time-series data to reconstruct the gene regulatory networks. We have the following

contributions:

(a) We propose the max-min high-order dynamic Bayesian network (MMHO-DBN)

learning algorithm, in order to reconstruct time-delayed gene regulatory net-

works.

(b) We apply the qualitative probabilistic networks (QPNs), after obtaining a DBN,

to interpret the interactions learned using the concepts of influence and synergy.

(c) We have implemented the MMHO-DBN and QPNs in MATLAB, and published

it online.

7. In Chapter 8, we explore various strategies for learning models from incomplete bio-

logical data. Our main contributions include:
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(a) We extend the existing imputation methods, originally for two-way data, to

methods for gene-sample-time data.

(b) We also propose a pair-wise weighting method for computing kernel matrices

from incomplete data.



Chapter 2

Sparse Representation for

High-Dimensional Data Analysis

1 Introduction 1

The studies in biology and medicine have been revolutionarily changed since the inventions

of many high-throughput sensory techniques. Using these techniques, the molecular phe-

nomena can be probed with a high resolution. In the virtue of such techniques, we are able to

conduct systematic genome-wide analysis. In the last decade, many important results have

been achieved by analyzing the high-throughput data, such as microarray gene expression

profiles, gene copy numbers profiles, proteomic mass spectrometry data, next-generation

sequences, and so on.

On one hand, biologists are enjoying the richness of their data; one another hand,

bioinformaticians are being challenged by the issues of high-dimensional data as well as by

the complexity of bio-molecular data. Many of the analysis can be formulated as machine

learning tasks. First of all, we have to face the cures of high dimensionality, which means

that many machine learning models are unable to correctly predict the classes of unknown

samples due to the large number of features and the small number of samples in such

data. In other words, the machine learning models can be overfitted and therefore have

poor capability of generalization. Second, if the learning of a model is sensitive to the

dimensionality, the learning procedure could be extremely slow. Third, many of the data

are very noisy, therefore the robustness of a model is necessary. Fourth, the high-throughput

data exhibit a large variability and redundancy, which make the mining of useful knowledge

1This section is based on our publication [3].
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difficult. Moreover, the observed data usually do not tell us the key points of the story. We

need to discover and interpret the latent factors which drive the observed data.

Many of such analyses are classification problems from the machine learning view-

point. Therefore in this study, we focus our study on the classification techniques for

high-dimensional biological data. The machine learning techniques addressing the chal-

lenges above can be categorized into two classes. The first one aims to directly classify

the high-dimensional data while keeping a good generalization ability and efficiency in op-

timization. The most popular method in this class is the regularized basis-expanded linear

model. The regularization aims to avoid overfitting a model by reducing the model com-

plexity while fitting it. One example is the state-of-the-art support vector machine (SVM)

[4]. SVM is sparse linear model that uses hinge loss and l2-norm regularization. It can be

kernelized and its result is theoretically sound. Combining different regularization terms

and various loss functions, we can have many variants of such linear models [5]. In addition

to classification, some of the models can be applied to regression and feature (bio-marker)

identification. However, most of the learned linear models are not interpretable, while inter-

pretability is usually the requirement of biological data analysis. Moreover, linear models

can not be extended naturally to multi-class data, while in bioinformatics a class may be

composed of many subtypes. See Appendix B for a through discussion on linear models.

Another technique of tackling with the challenges above is dimensionality reduction

which includes feature extraction and feature selection. Principal component analysis

(PCA) [6] is one of the traditional feature extraction methods and is widely used in process-

ing high-dimensional biological data. The basis vectors produced by PCA are orthogonal,

however many patterns in bioinformatics are not orthogonal at all. The classic factor anal-

ysis (FA) [7] also has orthogonal constraints on the basis vectors, however its Bayesian

treatment does not necessarily produce orthogonal basis vectors. Bayesian factor analysis

will be introduced in the next section.

Sparse representation (SR) [8] is a parsimonious principle that a sample can be approx-

imated by a sparse linear combination of basis vectors. Non-orthogonal basis vectors can

be learned by SR, and the basis vectors may be allowed to be redundant. SR highlights

the parsimony in representation learning [9]. This simple principle has many strengthes

that encourage us to explore its usefulness in bioinformatics. First, it is very robust to

redundancy, because it only selects few among all of the basis vectors. Second, it is very

robust to noise [10]. Furthermore, its basis vectors are non-orthogonal, and sometimes are

interpretable due to its sparseness [11]. There are two techniques in SR. First, given a basis

matrix, learning the sparse coefficients of a new sample is called sparse coding. Second, given
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training data, learning the basis vector is called dictionary learning. As dictionary learning

is, in essence, a sparse matrix factorization technique. Non-negative matrix factorization

(NMF) [12] can be viewed a specific case of SR. For understanding sparse representation

better, we will give the formal mathematical formulation from a Bayesian perspective in

the next section.

Contributions: In this chapter, we investigate sparse representation for high-dimensional

data analysis comprehensively. We explore various sparse representation models for the

classification and dimensionality reduction of high-dimensional biological data. We propose

kernel and supervised sparse representation models. Efficient optimization algorithms are

devised for them. Our contributions in this chapter include:

1. We discuss the sparse representation from a Bayesian viewpoint.

2. We propose the non-negative least squares based sparse coding model and investigate

their classification performance.

3. We propose the weighted K-nearest neighbor rule for predicting class labels based on

the sparse coefficient obtained by a sparse coding model.

4. We propose kernel sparse coding models.

5. We propose efficient active-set and decomposition methods for learning the parameter

of the sparse coding model.

6. We propose two unified frameworks for dictionary learning. Under these frameworks,

we can easily extend the linear dictionary learning models to kernel ones.

7. We investigate kernel-dictionary-learning based dimensionality reduction method for

high-dimensional biological data.

8. We propose a supervised dictionary learning model for multi-class data based on sub-

dictionary learning.

9. We propose a cluster-and-classification approach, which is a local learning method,

for classifying complexly distributed data.

The rest of this chapter is organized as follows. First, we formulate sparse representation

from a Bayesian viewpoint in Section 2. Then, we discuss sparse-coding based classifica-

tion and the corresponding optimization algorithms in Sections 3 and 4. After that, we
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investigate dictionary learning based dimension reduction techniques in Section 6. In this

section, we present a generic dictionary learning framework which can be easily kernelized.

In Section 7, a more general model called versatile sparse matrix factorization is proposed.

We then propose a supervised dictionary learning method for multi-class data in Section 8.

Finally in Section 9, we propose a novel local classification approach, called clustering-and-

classifying, that combines both dictionary learning and sparse coding.

2 Bayesian Sparse Representation 2

Both (sparse) factor analysis and sparse representation models can be used as dimension

reduction techniques. Due to their intuitive similarity, it is necessary to give their definitions

for comparison. In this section, we briefly survey the sparse factor analysis and sparse

representation in a Bayesian viewpoint. The introduction of sparse representation is helpful

to understand the content of the subsequent sections. Hereafter, we use the following

notations unless otherwise stated. Suppose the training data is D ∈ Rm×n (m is the

number of features and n is the number of training instances (samples or observations)),

the class information is in the n-dimensional vector c. Suppose p new instances are in

B ∈ Rm×p.

2.1 Sparse Bayesian (Latent) Factor Analysis

The advantages of Bayesian (latent) factor analysis model [13] over likelihood (latent) factor

analysis model are that

1. The knowledge regarding the model parameters from experts and previous investiga-

tions can be incorporated through the prior.

2. The values of parameters are refined using the current training observations.

The Bayesian factor analysis model [13] can be formulated as

(b|µ,A,x, k) = µ+Ax+ ε, (2.1)

where b ∈ Rm×1 is an observed multivariate variable, µ ∈ Rm×1 is the population mean,

A ∈ Rm×k is latent factor loading matrix, and x ∈ Rk×1 is latent factor score (k � m), and

ε ∈ Rm×1 is an idiosyncratic error term. In Equation (2.1), we list the model parameters,

2This section is based on our publication [3].
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{µ,A,x, k}, explicitly on the righthand side of “—”. This model is restricted by the

following constraints or assumptions:

1. The error term is normally distributed with mean 0 and covariance Φ: ε ∼ N(0,Φ).

Φ is usually diagonal.

2. The factor score vector is also normally distributed with mean 0 and identity covari-

ance R = I: x ∼ N(0,R); and the factor loading vector is normally distributed:

ai ∼ N(0,∆) where ∆ is diagonal. Alternatively, the factor loading vectors can be

normally distributed with mean 0 and identity covariance ∆ = I; and the factor score

vector is normally distributed with mean 0 and diagonal covariance R. The benefit

of identity covariance either on x or A is that arbitrary scale interchange between A

and x due to scale invariance can be avoided.

3. x is independent of ε.

For n training instances D, we have the likelihood:

p(D|µ,A,Y ,Φ, k) =
1

(2π)
mn
2 |Φ|

n
2

e−
1
2

∑n
i=1(di−µ−Ayi)TΦ−1(di−µ−Ayi)

=
1

(2π)
mn
2 |Φ|

n
2

e−
1
2

trace[(D−µ1T−AY )TΦ−1(D−µ1T−AY )], (2.2)

where trace(M) is the trace of square matrix M .

The variants of Bayesian factor analysis models differ in the decomposition of the joint

priors. The simplest one may be p(µ,A,Y ) = p(µ)p(A)p(Y ). Suppose k is fixed a priori.

The posterior therefore becomes

p(µ,A,Y |D, k) ∝ p(D|µ,A,Y ,Φ, k)p(µ)p(A)p(Y ). (2.3)

The model parameters are usually estimated via Markov chain Monte Carlo (MCMC)

techniques.

Sparse Bayesian factor analysis model imposes a sparsity-inducing distribution over

the factor loading matrix instead of Gaussian distribution. In [14], the following mixture of

prior is proposed:

p(aij) = (1− πij)δ0(aij) + πijN(aij |0, 1), (2.4)

where πij is the probability of a nonzero aij and δ0(·) is the Dirac delta function at 0.

Meanwhile, A is constrained using the lower triangular method. Bayesian factor regression
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model (BFRM) is the combination of Bayesian factor analysis and Bayesian regression [14].

It has been applied in oncogenic pathway studies [7] as a variable selection method.

2.2 Bayesian Sparse Representation

Sparse representation (SR) is a principle that a signal can be approximated by a sparse

linear combination of dictionary atoms [15]. The SR model can be formulated as

(b|A,x, k) = x1a1 + · · ·+ xkak + ε

= Ax+ ε, (2.5)

where A = [a1, · · · ,ak] is called dictionary, ai is a dictionary atom, x is a sparse coefficient

vector, and ε is an error term. A, x, and k are the model parameters. SR model has the

following constraints:

1. The error term is Gaussian distributed with mean zero and isotropic covariance, that

is ε ∼ N(0,Φ) where Φ = φI where φ is a positive scalar.

2. The dictionary atoms is usually Gaussian distributed, that is ai ∼ N(0,∆) where

∆ = I. The coefficient vector should follows a sparsity-inducing distribution.

3. x is independent of ε.

Through comparing the concepts of Bayesian factor analysis and Bayesian sparse repre-

sentation, we can find that the main difference between them is that the former applies a

sparsity-inducing distribution over the factor loading matrix, while the latter uses a sparsity-

inducing distribution on the factor score vector.

Sparse representation involves sparse coding and dictionary learning. Given a new signal

b and a dictionary A, learning the sparse coefficient x is termed sparse coding. It can be

statistically formulated as

(b|A) = Ax+ ε. (2.6)

Suppose the coefficient vector has Laplacian prior with zero mean and isotropic vari-

ance, that is p(x|Γ) = L(0,Γ) = 1
(2γ)k

e
− ‖x‖1

γ . The likelihood is Gaussian distributed as
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p(b|A,x,Φ) = N(Ax,Φ) = 1

(2π)
m
2 φ

m
2
e
− 1

2φ
‖b−Ax‖22 . The posterior is thus

p(x|A, b,Φ,Γ) =
p(b|A,x,Φ,Γ)p(x|A,Φ,Γ)

p(b)

∝ p(b|A,x,Φ)p(x|Γ). (2.7)

Taking the logarithm and substituting the Laplacian prior and Gaussian likelihood, the

above is thus

L(x) = log p(b|A,x,Φ) + log p(x|Γ)

= − 1

2φ
‖b−Ax‖22 −

‖x‖1
γ

+ c, (2.8)

where c is a constant term. We can see that maximizing the posterior is equivalent to

minimizing the following task:

min
x
f(x) =

1

2
‖b−Ax‖22 + λ‖x‖1, (2.9)

where λ = φ
γ . Hereafter we call Equation (2.9) l1-least squares (l1LS) sparse coding model.

It is known as the l1-regularized regression model in regularization theory. It coincides with

the well-known LASSO (least absolute shrinkage and selection operator) model [16], which

in fact is a maximum a posteriori (MAP) estimation.

Given training data D, learning (or estimating) the dictionary A, the coefficient vectors

Y , and the number of dictionary atoms k is called dictionary learning. Suppose k is given a

priori, and consider the Laplacian prior over Y and the Gaussian prior over A, and suppose

p(A,Y ) = p(A)p(Y ) =
∏k
i=1(p(ai))

∏n
i=1(p(yi)). We thus have the prior:

p(A,Y |∆,Γ) =
1

(2π)
k
2

e
∑k
i=1−

1
2
‖ai‖22 1

(2γ)kn
e
∑n
i=1−

‖yi‖1
γ (2.10)

The likelihood is

p(D|A,Y ,Φ) =
1

(2π)
mn
2 φ

mn
2

e
− 1

2φ
trace(‖D−AY ‖2F )

. (2.11)
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The posterior is

p(A,Y |D,∆,Γ,Φ) =
p(D|A,Y ,∆,Γ,Φ)p(A,Y |∆,Γ,Φ)

p(D)
(2.12)

∝ p(D|A,Y ,Φ)p(A|∆)p(Y |Γ). (2.13)

Ignoring the normalization term, the log-posterior is thus

L(A,Y ) = −
n∑
i=1

1

2φ
‖di −Ayi‖22 −

k∑
i=1

1

2
‖ai‖22 −

n∑
i=1

‖yi‖1
γ

+ c. (2.14)

Therefore the MAP estimation of dictionary learning task is

min
A,Y

f(A,Y ) =
n∑
i=1

1

2
‖di −Ayi‖22 +

k∑
i=1

α

2
‖ai‖22 +

n∑
i=1

λ‖yi‖1, (2.15)

where α = φ and λ = φ
γ . Equation (2.15) is known as a dictionary learning model based on

l1-regularized least squares.

3 Bayesian Sparse Coding 3

Since, the l1LS sparse coding (Equation (2.9)) is a two-sided symmetric model, thus a

coefficient can be zero, positive, or negative [19]. In Bioinformatics, l1LS sparse coding has

been applied for the classification of microarray gene expression data in [20]. The main

idea is in the following. First, training instances are collected in a dictionary. Then, a new

instance is regressed by l1LS sparse coding. Thus its corresponding sparse coefficient vector

is obtained. Next, the regression residual of this instance to each class is computed, and

finally this instance is assigned to the class with the minimum residual.

We generalize this methodology in the way that the sparse codes can be obtained by

many other regularization methods and constraints. For example, we can pool all training

instances in a dictionary (hence k = n and A = D), and then learn the non-negative

coefficient vectors of a new instance, which is formulated as a one-sided model:

min
x

1

2
‖b−Ax‖22 s.t. x ≥ 0. (2.16)

We called this model the non-negative least squares (NNLS) sparse coding. NNLS has

3This section is based on our publications [3], [17], and [18].
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two advantages over l1LS. First, the non-negative coefficient vector is more easily inter-

pretable than coefficient vector of mixed signs, under some circumstances. Second, NNLS

is a non-parametric model which is more convenient in practice. From a Bayesian view-

point, Equation (2.16) is equivalent to the MAP estimation with the same Gaussian error

as in Equation (2.5), but with the following discrete prior:

p(x) =

0.5k if x ≥ 0,

0 otherwise.
(2.17)

This non-negative prior implies that, the elements in x are independent, and the probability

that xi = 0 is 0.5 and the probability that xi > 0 is 0.5 as well. (That is the probabilities of

xi being either 0 or positive are equal, and the probability of being negative is zero.) Inspired

by many sparse NMFs, l1-regularization can be additionally used to produce more sparse

coefficients than NNLS above. The combination of l1-regularization and non-negativity

constraint results in the l1NNLS sparse coding model as formulated below:

min
x

1

2
‖b−Ax‖22 + λTx, s.t. x ≥ 0. (2.18)

We name Equation (2.18) the l1NNLS model. It is more flexible than NNLS, because it can

produce more sparse coefficients as controlled by λ. This model in fact uses the following

prior:

p(x) =

 1
γk
e
− ‖x‖1

γ if x ≥ 0,

0 otherwise.
(2.19)

Now, we give the generalized sparse-coding-based classification approach in details. The

method is depicted in Algorithm 2.1. We shall later discuss the optimization algorithms,

required in the first step. The NN rule mentioned in Algorithm 2.1 is inspired by the usual

way of using NMF as a clustering method. Suppose there are C classes with labels 1, · · · , C.

For a given new instance b, its class is l = arg maxi=1,··· ,k xi (where k = n is the number

of training samples). It selects the maximum coefficient in the coefficient vector, say xl,

and then assigns the class label of the corresponding training instance, say cl, to this new

instance. Essentially, this rule is equivalent to applying nearest neighbor (NN) classifier in

the column space of the training instances. In this space, the representations of the training

instances are identity matrix. The NN rule can be further generalized to the weighted

K-NN rule. Suppose a K-length vector x̄ accommodates the K-largest coefficients from
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x, and c̄ has the corresponding K class labels. The class label of b can be designated as

l = arg maxi=1,··· ,C si where si = sum(δi(x̄)). δi(x̄) is a K-length vector and is defined as

(δi(x̄))j =

x̄j if c̄j = i,

0 otherwise .
(2.20)

The maximum value of K can be k, the number of dictionary atoms. In this case, K is

in fact the number of all non-zeros in x. Alternatively, the nearest subspace (NS) rule,

proposed in [21], can be used to interpret the sparse coding. NS rule has the advantage of

the discrimination property in the sparse coefficients. It assigns the class with the minimum

regression residual to b. Mathematically, it is expressed as j = min1≤i≤C ri(b) where

ri(b) is the regression residual corresponding to the i-th class and is computed as ri(b) =

‖b−Aδi(x)‖22, where δi(x) is defined analogously as in Equation (2.20).

Algorithm 2.1 Sparse-Coding Based Classification

Input: Am×n: n training instances, c: class labels, Bm×p: p new instances
Output: p: predicted class labels of the p new instances

1. Normalize each instance to have unit l2-norm;

2. Learn the sparse coefficient matrix X, of the new instances by solving Equation
(2.9), (2.16), or (2.18);

3. Use a sparse interpreter to predict the class labels of new instances, e.g. the NN,
K-NN, or NS rule;

4 Optimization for Sparse Coding 4

In this section, we focus on the optimizations for the models of sparse coding. We first show

that the optimizations are essentially quadratic programmes and dimension-free. We then

review the existing methods including interior-point method and proximal method. After

that, we propose our active-set methods and decomposition methods. Finally, we state that

the all these methods can be extended to their kernel versions.

4This section is based on our publications [3] and [22].
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4.1 The Optimizations are Quadratic Programmes and Dimension-Free

The problem in Equation (2.9) is equivalent to the following unconstrained non-smooth

(that is undifferentiable at some points) quadratic programming (QP):

min
x

1

2
xTHx+ gTx+ λ‖x‖1, (2.21)

where Hk×k = ATA, and g = −ATb. We thus know that the l1LS problem is a l1QP

problem. This can be converted to the following smooth (that is differentiable everywhere)

constrained QP problem:

min
x,u

1

2
xTHx+ gTx+ λTu s.t. − u ≤ x ≤ u, (2.22)

where u is an auxiliary vector variable to squeeze x towards zero. It can be further written

into the standard form:

min
x,u

1

2
[xT,uT]

[
H 0k×k

0k×k 0k×k

][
x

u

]
+ gTx+ λTu (2.23)

s.t.

[
Ik×k −Ik×k
−Ik×k −Ik×k

][
x

u

]
≤ 0,

where 0k×k is a null square matrix, Ik×k is an identity matrix. Obviously, the Hessian

in this problem is positive semidefinite as we always suppose H is positive semidefinite in

order to guarantee that the optimization is convex in this chapter. A symmetric squares

matrix Hk×k is said to be positive semidefinite, if and only if xTHk×kx ≥ 0, ∀x ∈ Rk.
Both the NNLS problem in Equation (2.16) and the l1NNLS problem in Equation (2.18)

can be easily reformulated to the following non-negative QP (NNQP) problem:

min
1

2
xTHx+ gTx s.t. x ≥ 0, (2.24)

where H = ATA, g = −ATb for NNLS, and g = −ATb+ λ for l1NNLS.

4.2 Interior-Point Method

The log-barrier interior-point method for the l1LS problem (Equation (2.9)) is proposed in

[23]. The basic idea is to convert non-smooth problem into unconstrained problem. For the

convenience of discussion, we extend this method to solve the l1QP and NNQP problems.

The interior-point method for l1QP is introduced in the following. Due to similarity of
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derivation, we omit the interior-point method for NNQP problem. The problem in Equation

(2.22) can be transformed into minimizing the unconstrained log-barrier function:

ft(x,u) = t(
1

2
xTHx+ gTx+ λTu)−

k∑
i=1

log(u2
i − x2

i ), (2.25)

where −
∑k

i=1 log(u2
i − x2

i ) is the barrier penalty function, and t is positive parameter to

control the penalty.

We can obtain its gradient as below

d =

[
(∂ft(x,u)

∂x )T

(∂ft(x,u)
∂u )T

]
=

t(Hx+ g) + 2[ x1

u2
1−x2

1
· · · xk

u2
k−x

2
k
]T

tλ− 2[ u1

u2
1−x2

1
· · · uk

u2
k−x

2
k
]T

 . (2.26)

And its Hessian matrix is

H =

[
∂f2
t (x,u)
∂x2

∂f2
t (x,u)
∂u∂x

∂f2
t (x,u)
∂x∂u

∂f2
t (x,u)
∂u2

]
, (2.27)

Where
∂f2

t (x,u)

∂x2
= tH + 2diag(

u2
1 + x2

1

(u2
1 − x2

1)2
· · ·

u2
k + x2

k

(u2
k − x2

k)
2
), (2.28)

∂f2
t (x,u)

∂u2
= 2diag(

u2
1 + x2

1

(u2
1 − x2

1)2
· · ·

u2
k + x2

k

(u2
k − x2

k)
2
), (2.29)

and
∂f2

t (x,u)

∂x∂u
= −4diag(

x1u1

(u2
1 − x2

1)2
· · · xkuk

(u2
k − x2

k)
2
). (2.30)

The optimization of the log-barrier method is to solve a sequence of ft(x,u) (Equation

(2.25)), as t increases. Newton’s method can be used to minimize the unconstrained problem

in Equation (2.25), given a positive t [24]. As t increases to positive infinite, the solution

converges to the optimal solution. Given a value of t, the convergence rate of Newton’s

method is super-linear or quadratic with heavy steps.

4.3 Proximal Method

As one of fast first-order methods, the proximal method was proposed in [25] to solve the

l1LS problem. Compared with the interior-point method, it has two advantages. First, the

Hessian is not recomputed in each step. Second, an analytical solution can be obtained in

each step. As in the interior-point method, we extend the proximal method for the l1QP

problem for the convenience of discussion. The main idea is in the following. The proximal
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method works in an iterative procedure. Given the current estimate x̂, the new estimate is

the solution of the following first-order Taylor series of Equation (2.21):

min
x
f(x̂) + Oq(x̂)(x− x̂) + λ‖x‖1 +

L

2
‖x− x̂‖22, (2.31)

where q(x̂) = 1
2 x̂

THx̂ + gTx̂ and L > 0 is a parameter. This is done iteratively un-

til termination criteria are met. Equation (2.31) is equivalent to the following proximal

operator:

min
x

1

2
‖x− x̄‖22 + η‖x‖1, (2.32)

where x̄ = x̂ − 1
LOq(x̂), and η = λ

L . Unlike the interior-point method with heavy Newton

step in each iteration where the Hessian is involved in the update, it has element-wise

analytical solution:

xi =

sign(x̄i)(|x̄i| − η) if |x̄i| > η

0 otherwise
. (2.33)

The proximal method for l1QP has linear convergence rate with swift steps where gradient

is only involved.

4.4 Active-Set Algorithm for l1LS

A general active-set algorithm for convex QP is provided in [26]. However, the general

algorithm may be inefficient for solving the l1QP problem because its constraints are sparse.

Below we introduce the original active-set algorithm [26], and then revise it to solve the

l1QP problem specifically.

Original Active-Set Algorithm for Convex QP

The original active-set method for convex QP is described in Algorithm 2.2 in our own

language. A convex QP is expressed as

min
x

1

2
xTHx+ gTx (2.34)

s.t. AEx = bE ,

AIx ≤ bI ,
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whereH is semidefinite, E and I are the sets of indices of equality and inequality constraints,

respectively. The corresponding Lagrange function can be written as

L(x,µE ,µI) =
1

2
xTHx+ gTx+ µT

E (AEx− bE) + µT
I (AIx− bI), (2.35)

where µE and µI are Lagrange multipliers. The Karush-Kuhn-Tucker (KKT) conditions

of this problem are 

Hx+ g +AT
EµE +AT

IµI = 0

µI ∗ (AIx− bI) = 0

µI ≥ 0

AEx = bE

AIx ≤ bI

. (2.36)

The main idea of the original active-set method is that, a working set is updated itera-

tively until it meets the true active set. In the following, we explain how the algorithm is

designed. Suppose the current feasible solution is x′ and the working set is R. In order to

test the optimality of x′ for the objective of Equation (2.34) constrained by the constraints

ARx = bR, we need to test if x′ can be updated further by adding p. If the update p is

zero, and the KKT conditions in Equation (2.36) is satisfied, then x′ is an optimal solution,

and the algorithm terminates successfully. Now, we show how to compute p and how to

check the KKT conditions. Suppose the next solution is x = x′ + p. Substituting it into

the objective of Equation (2.34), we have

min
p

1

2
pTHp+ (Hx+ g)Tp (2.37)

s.t. ARp = bR.

If p is zero, then we check if the KKT conditions in Equation (2.36) are satisfied. We can set

the Lagrange multipliers corresponding to P to zero, then the second line of Equation (2.36)

corresponding to P are satisfied. The fourth and fifth lines of Equation (2.36) are certainly

satisfied, as x′ is feasible. Further, we need to check the Lagrange multipliers corresponding

to R − E . If all of them are non-negative, then we can say that x′ is an optimal solution

to Equation (2.34). If some of the multipliers corresponding to R − E are negative, then

x′ is not an optimal solution, thus the index corresponding to the worst multiplier should

be moved to P. These multipliers corresponding to R− E can be obtained by solving the
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optimality condition of minx
1
2x

THx+ gTx, s.t. ARx = bR. This optimality condition is

AT
Rµ̂ = −Hx− g, (2.38)

where µ̂ = µR is the current multipliers corresponding to the feasible solution R. Note

constraint ARx = bR is certainly satisfied, as p = 0.

If p is not zero, x′+αp, for all positive step size α, is definitely feasible for the constrains

indexed by R, but may violate the inequality constrains indexed by P. We need to find a α

such that all inequality constraints hold. From the desired inequality constraints aT
i (x′ +

αp) ≤ bi (i ∈ P and aT
i is a row of AP), we can see that, if aT

i p ≤ 0, then any α ∈ [0, 1] can

be used to satisfy the inequality constraints (we limit the maximum step size to 1 in the

algorithm). If aT
i p > 0, then some inequality may be violated. In this case, the maximum

step size satisfying all inequality constraints is

α = min
(
1, β
)
, (2.39)

where β = mini∈P,aT
i p≥0

bi−aT
i x

aT
i p

. If β ≤ 1, the inequality constraints corresponding to β

become active, and are called blocking constraints. The index of a blocking constraint

should be added to the working set R.

Revised Active-Set Algorithm for l1LS

In order to solve our specific problem efficiently in Equation (2.23), we have to modify the

general method, because i) our constraint is sparse, and for the i-th constraint, we have

xi − ui ≤ 0 (if i ≤ k) or −xi − ui ≤ 0 (if i ≥ k + 1); and ii) when ui is not constrained in

the current working set, the QP constrained by the working set is unbounded, therefore it

is not necessary to solve this problem to obtain pt. In the latter situation, pt is unbounded.

This could cause some issues in numerical computation. Solving the unbounded problem is

time-consuming if the algorithm is unaware of the unbounded issue. If pt contains values

equal to ±∞, then the algorithm may crash.

In Algorithm 2.3, we revise the active-set algorithm for l1LS sparse coding. To address

the potential issues above, we have the following four modifications. First, we require that

the working set is complete. That is, all the variables in u must be constrained when

computing the current update step. And therefore all variables in x are also constrained

due to the specific structure of the constraints in our problem. For example, if k = 3, a

working set {1, 2, 6} is complete as all variables, x1, x2, x3, u1, u2, u3, are constrained, while

{1, 2, 4} is not complete, as u3 (and x3) is not constrained. Second, the update step of the
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Algorithm 2.2 Original Active-Set Algorithm for Convex QP [26]

Input: semidefinite Hessian Hk×k, vector gk×1, scalar λ
Output: vector x which is an optimal solution to minx

1
2x

THx + gTx, s.t. AEx =
bE , AIx ≤ bI

{initialize the algorithm by a feasible point and a working set}
Initialize with a feasible point x0;
R = {i|∀i ∈ E ∪ I : aT

i x = 0}; {initialize working set}
P = E ∪ I −R; {place the remaining to the inactive(passive) set}

while true do
{compute update step}
Solve minp

1
2p

THp+ (Hx+ g)Tp s.t. ARp = bR;

if p = 0 then
Compute Lagrange multiplier that satisfy AT

Rµ̂ = −Hx− g;
if µ̂i ≥ 0 ∀i ∈ R ∩ I then

Return x as an optimal solution;
else
R = R− j; P = P + j, where j = arg minl∈R∩I µ̂l;

end if
end if

if p 6= 0 then

α = min
(
1, β
)

where β = mini∈P,aT
i p≥0

bi−aT
i x

aT
i p

; {aT
i is a row of AP}

x = x+ αp;
{if there are blocking constraints}
if β ≤ 1 then

R = R+ j; P = P − j, where j = arg mini∈P,aT
i p≥0

bi−aT
i x

aT
i p

;

end if
end if

end while
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variables that are constrained once in the working set are computed by solving the equality

constrained QP. The variables constrained twice are directly set to zeros. In the example

above, suppose the current working set is {1, 2, 4, 6}, then x2, x3, u2, u3 are computed by

the constrained QP, while x1 and u1 are zeros. This is because the only value satisfying

the constraint −u1 = x1 = u1 is x1 = u1 = 0. Third, in this example, we do not need to

solve the equality constrained QP with four variables. In fact we only need two variables

by setting u2 = −x2 and u3 = x3. Fourth, once a constraint is dropped from the working

set and it becomes incomplete, other inequalities must be immediately added to it until it

is complete. In the initialization of Algorithm 2.3, we can alternatively initialize x by 0’s.

This is more efficient than initializing by x = (H)−1(−g) for large-scale and very sparse

problems.

4.5 Active-Set Algorithm for NNLS and l1NNLS

Now, we present the active-set algorithm for NNQP. This problem is easier to solve than

l1QP as the scale of the Hessian of NNQP is half that of l1QP and the constraint is much

simpler. Our algorithm is obtained through generalizing the famous active-set algorithm

for NNLS originally by [27]. The generalized algorithm is given in Algorithm 2.4. The

warm-start point is initialized by the solution to the unconstrained QP. As in Algorithm

2.3, x can be alternatively initialized by 0’s. The algorithm keeps adding and dropping

constraints in the working set until the true active set is found.

4.6 Parallel Active-Set Algorithms

The formulations of l1QP and NNQP sparse coding for p new instances are, respectively,

min
X,U

p∑
i=1

1

2
xT
i Hxi + gT

i xi + λTui, (2.42)

s.t. −U ≤X ≤ U ,

and

min
X

p∑
i=1

1

2
xT
i Hxi + gT

i xi s.t. X ≥ 0. (2.43)

If we want to classify multiple new instances using the classification method described in

Algorithm 2.1, the initial idea in [21] and [20] is to optimize the sparse coding one at a

time. The interior-point algorithm, proposed in [23], is a fast large-scale sparse coding
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Algorithm 2.3 Active-Set Algorithm for l1QP

Input: Hessian Hk×k, vector gk×1, scalar λ
Output: vector x which is a solution to minx,u

1
2x

THx+ gTx+ λTu, s.t. − u ≤ x ≤ u

{initialize the algorithm by a feasible solution and a complete working set}
x = (H)−1(−g); u = |x|;
R = {i, j|∀i : if xi > 0 let j = k + i otherwise j = i}; {initialize working set}
P = {1 : 2k} −R; {initialize inactive(passive) set}

while true do
{compute update step}
Let Ronce be the indices of variables constrained once by R;
p2k×1 = 0;

px,Ronce = arg min
q
qTHRonceq + [HRoncexRonce + gRonce + λe]Tq, (2.40)

where ei = 1 if uRonce,i = xRonce,i, or -1 if uRonce,i = −xRonce,i;

if p = 0 then
Obtain Lagrange multiplier µ̂ by solving

AT
Rµ̂ = −

[
Hx+ g
λ

]
, (2.41)

where A is the constraint matrix in Equation (2.23);
if µ̂i ≥ 0 ∀i ∈ R then

Terminate successfully;
else
R = R− j; P = P + j where j = arg minl∈R µl;
Add other passive constraints to R until it is complete;

end if
end if

if p 6= 0 then

α = min
(
1, β
)
, where β = mini∈P,aT

i p≥0
−aT

i [x;u]

aT
i p

; {aT
i is a row of AP}

[x;u] = [x;u] + αp;
{if there are blocking constraints}
if β ≤ 1 then

R = R+ j; P = P − j, where j = arg mini∈P,aT
i p≥0

−aT
i [x;u]

aT
i p

;

end if
end if

end while
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Algorithm 2.4 Active-Set NNQP Algorithm

Input: Hessian Hk×k, vector gk×1

Output: vector x which is a solution to min 1
2x

THx+ gTx, s.t. x ≥ 0

x = [(H)−1(−g)]+; { x = [y]+ is defined as xi = yi if yi > 0, otherwise xi = 0}
R = {i|xi = 0}; {initialize active set}
P = {i|xi > 0}; {initialize inactive(passive) set}
µ = Hx+ g; {the lagrange multiplier}

while R 6= ∅ and mini∈R(µi) < −ε do
{ε is a small positive numerical tolerance}
j = arg mini∈R(µi); {get the minimal negative multiplier}
P = P + {j}; R = R− {j};
tP = (HP)−1(−gP);
tR = 0;

while min tP ≤ 0 do
α = mini∈P,ti≤0

xi
xi−ti ;

K = arg mini∈P,ti≤0
xi

xi−ti ; {there is one or several indices correspond to α}
x = x+ α(t− x);
P = P −K; R = R+K;
tP = (HP)−1(−gP);
tR = 0;

end while

x = t;
µ = Hx+ g;

end while
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algorithm, and the proximal algorithm in [25] is a fast first-order method whose advantages

have been recently highlighted for non-smooth problems. If we adapt both algorithms

to solve our multiple l1QP in Equation (2.42) and NNQP in Equation (2.43), it will be

difficult to solve the single problems in parallel and share the computations. Therefore, the

time-complexity of the multiple problems will be the summation of that of the individual

problems. However, the multiple problems can be much more efficiently solved by active-set

algorithms. We adapt both Algorithms 2.3 and 2.4 to solve multiple l1QP and NNQP in a

parallel fashion. The individual active-set algorithms can be solved in parallel by sharing the

computation of matrix inverses (systems of linear equations in essence). At each iteration,

single problems having the same active set have the same systems of linear equations to

solve. These systems of linear equations can be solved once only. For a large value p, that

is large-scale multiple problems, the active-set algorithms have dramatic computational

advantage over interior-point [23] and proximal [25] methods unless these methods have a

scheme for sharing computations. Additionally, active-set methods are more precise than

interior-point methods. Interior-point methods do not allow u2
i = x2

i and u2
i must be always

greater than x2
i due to feasibility. But u2

i = x2
i is naturally possible when the i-th constraint

is active. ui = xi = 0 is reasonable and possible. The active-set algorithms do allow this

situation.

4.7 Decomposition Method 5

A decomposition method [28] has first been devised in the optimization of large-scale SVM

which is a QP problem constrained by equality and bound constraints. The basic idea of

the decomposition method is, in fact, an implementation of the block-coordinate-descent

scheme [29]. The decomposition method works in an iterative procedure. In each iteration,

a few number of variables violating the optimality conditions (e.g. KKT conditions) are

included in a working set, while the rest are fixed. Only the variables in the working set

are updated by a solver. This procedure iterates until no coefficient violates the KKT

conditions. Because the objective is decreased in each iteration, the convergence to the

optimal solution is guaranteed in regular case. Sequential minimal optimization (SMO) [30]

is the extreme case of the decomposition method for SVM, where only a minimal number

of variables (two variables) are updated. One of the features of the SMO method for SVM

is that the subproblem with only two variables can be solved analytically. See Section 4 of

Appendix B for more details of decomposition methods for SVMs.

5This section is our collaborative research [22] with Dr. Richard J. Caron, Department of Mathematics
and Statistics, University of Windsor.
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In this section, we propose decomposition methods for the l1LS and NNLS sparse coding

models. Our contributions are as follows

1. To the best of our knowledge, it is the first time that the idea of decomposition

is investigated in sparse coding. The decomposition method has been successfully

applied in the optimization of support vector machine (SVM).

2. We design sequential minimal optimization (SMO) methods for l1LS, NNLS, and

l1NNLS sparse coding models, but our methods may be applicable to many other

models.

4.8 Decomposition Method for l1QP

Let A be the set of a few working variables and P be the set of fixed variables. The

decomposition of f(x) in Equation (2.21) can be

f(xA) =
1

2
[xT
A,x

T
P ]

[
HAA HAP

HPA HPP

][
xA

xP

]
+ [gT

A, g
T
P ]

[
xA

xP

]
+ λ‖

[
xA

xP

]
‖1

=
1

2
xT
AHAAxA + (HAPxP + gA)TxA + λ‖xA‖1 + constant. (2.44)

We can see that the subproblem corresponding to the working set is a l1QP problem as well.

From this point, a solver of l1QP is still required. In this study, we focus on the extreme

case of Equation (2.44): the SMO method. It can be easily seen that the minimal size of A
is one and P contains the remaining k − 1 variables. Without loss of generality, we denote

such variable by x1. This results in the following subproblem:

min
x1

f(x1) =
1

2
h11x

2
1 + b1x1 + λ|x1|, (2.45)

where b1 = H1PxP + g1.

Analytical Solution

The SMO problem in Equation (2.45) can be solved analytically. Now let us separate the

interval into x1 ≥ 0 and x1 ≤ 0. For x1 ≥ 0, the objective f(x1) becomes

f(x1) =
1

2
h11x

2
1 + (b1 + λ)x1. (2.46)
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Taking first-order derivative and setting it to zero, we have

∂f(x1)

∂x1
= h11x1 + (b1 + λ) = 0. (2.47)

We thus have x
(+)
1 = −b1−λ

h11
. Therefore, for interval x1 ≥ 0, we have the optimal solution:

x
(+∗)
1 =

x
(+)
1 if x

(+)
1 ≥ 0

0 otherwise
. (2.48)

Similarly, for x1 ≤ 0, the objective f(x1) becomes

f(x1) =
1

2
h11x

2
1 + (b1 − λ)x1. (2.49)

We thus have x
(−)
1 = −b1+λ

h11
. And for interval x1 ≤ 0, we have the optimal solution:

x
(−∗)
1 =

x
(−)
1 if x

(−)
1 ≤ 0

0 otherwise
. (2.50)

By considering both positive and negative interval together, the optimal solution to Equa-

tion (2.45) is the one, among x
(+∗)
1 and x

(−∗)
1 , which obtains the minimum objective value,

that is x∗1 = arg min{x(+∗)
1 ,x

(−∗)
1 } f(x1).

We note that x
(+)
1 ≥ 0 is equivalent to b1 ≤ −λ, and x

(−)
1 ≤ 0 is equivalent to b1 ≥ λ.

We can state that if b1 ≤ −λ or b1 ≥ λ the solution to Equation (2.45) is x∗1 = −b1−λ
h11

or

x∗1 = −b1+λ
h11

, respectively. Otherwise, x∗1 = 0. Therefore, the solution to Equation (2.45)

can be equivalently written as

x∗1 =


−sign(b1)(|b1|−λ)

h11
if |b1| ≥ λ

0 otherwise
. (2.51)

From this, we can obtain a general proposition below which is very useful:

Proposition 1. The solution to the following problem

min
x
f(x) = x2 + bx+ λ|x| (2.52)
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is analytically

x∗ =

−sign(b)(|b| − λ) if |b| ≥ λ

0 otherwise
. (2.53)

Now that we have known how to update a working variable. In the following, we show

how to select a working variable.

Select x1 Which Violates the Optimality Condition

The optimality condition of Equation (2.21) is

xTH + gT +∇λ‖x‖1 = 0. (2.54)

However, because λ‖x‖1 is not differentiable, we need to resort to the concept of subgradient.

We hence have

si = Hi:x+ gi =


λ xi < 0

−λ xi > 0

∈ [−λ, λ] xi = 0

, (2.55)

where Hi: is the i-th row of H, similarly H:i is the i-th column of H. The algorithm pro-

ceeds as follows. We iteratively select a variable x1 which violates the optimality condition

in Equation (2.55). In an iteration, x1 is updated analytically as in Equation (2.51). If all

variables satisfy the optimality condition, the algorithm terminates. In order to maximize

the effort of violating variable selection, the one which violates the optimality condition the

most should be preferred. The extent of violation is measured by the difference, as given

below, between si and its desired values:

di =


|si − λ| xi < 0

|si + λ| xi > 0

|si| − λ xi = 0

. (2.56)

Update s and Compute b1

In each iteration after updating x1, the vector s needs to be updated in order to obtain

the optimality condition and select the new violating variable x1. Intuitively, s can be
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updated by its definition in Equation (2.55). However, it would take linear time to update

each element si. In fact, if we keep a record of its previous value (denoted by s′i), si

can be updated in constant time. We denote by x′ the coefficients before updating x1,

and by x the coefficients after updating x1. We know that s′i = hi1x
′
1 + HiPx

′
P + gi,

si = hi1x1 +HiPxP + gi, and HiPx
′
P = HiPxP . We thus can update si by the following

equation which takes constant time:

si = hi1(x1 − x′1) + s′i. (2.57)

Similar idea also applies to the computation of b1 before updating x1. According to the

definition in Equation (2.45), b1 can be updated in linear time. However, it can actually be

updated in constant time as well. We know that s′1 = h11x
′
1 +H1Px

′
P + g1 = h11x

′ + b1.

We thus can update b1 in constant time:

b1 = s′1 − h11x
′. (2.58)

Initialize x and s

Before the iterative update of the method, x and s need to be initialized. We can initialize

x and s by zeros and g, respectively. This initialization makes the following iterative update

very efficient. This is because x is eventually sparse, which means that x = 0 is a very

good approximate. This initialization strategy may also apply to many other sparse coding

methods, for example active-set methods.

4.9 Decomposition Method for NNQP

Now we concisely derive the decomposition method for NNQP (Equation (3.9)). The de-

composed objective of NNQP can be formulated into

f(xA) =
1

2
xT
AHAAxA + (HAPxP + gA)TxA + constant. (2.59)

Since this objective is constrained only by nonnegativity, its SMO case also has only one

variable in A. Without loss of generality, we denote such variable as x1 as above. This

results in the following problem:

min
x1

f(x1) =
1

2
h11x

2
1 + b1x1 s.t. x1 ≥ 0, (2.60)
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where b1 = H1PxP + g1. It is easy to obtain the analytical solution to Equation (2.60):

x∗1 =

−b1h11
if b1 ≤ 0

0 otherwise
. (2.61)

The Lagrange function of Equation (3.9) is

L(x, s) =
1

2
xTHx+ gTx− sTx, (2.62)

where s is the vector of dual variables. Therefore, the corresponding KKT conditions of

Equation (3.9) are 

s = Hx+ g

s ∗ x = 0

x ≥ 0

s ≥ 0.

(2.63)

From the KKT conditions, we can find that si = Hi:x+gi is the Lagrange multiplier of the

i-th primal variable, xi. For the optimal xi, the corresponding si must fulfil the following

conditions: si ∗ xi = 0

si ≥ 0
. (2.64)

The SMO-based NNQP works in an iterative procedure. Before the iterative loop, x can

be initialized by zeros, and s is therefore initialized with g. After that, variables violating

the KKT conditions in Equation (2.64) are updated in an iterative loop until all variables

fulfil the KKT conditions. In each iteration, we need to find one variable which violates

the KKT condition in order to update by Equation (2.61); before updating x1, b1 can be

computed using Equation (2.58); after updating x1, s can be updated as in Equation (2.57).

In our implementation, we select the variable which violates the KKT conditions the most.
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The magnitude of violation is measured by the following equation:

di =


0 if xi = 0 and si ≥ 0

|si| if xi = 0 and si < 0

|si| if xi > 0

. (2.65)

4.10 Kernel Extensions

Two main advantages of a kernel method are given as follows. First, it linearize complex

patterns in a higher-dimensional feature space. Second, it is dimension-free in optimization

and decision making. Dimension-free means that the computation is not explicitly affected

by the number of features. The methods require only the inner products between multi-

variate samples (that is dT
i dj where di,dj ∈ Rm). The number of features, m, does not

affect the time complexity and spacial complexity at all. In the following, we show that the

sparse coding techniques can be extended to kernel versions.

As the optimizations of l1QP and NNQP only require inner products between the in-

stances instead of the original data, our active-set algorithms can be naturally extended to

solve the kernel sparse coding problem by replacing inner products with kernel matrices.

The NS decision rule used in Algorithm 2.1 also requires only inner products. And the

weighted K-NN rule only needs the sparse coefficient vector and class information. There-

fore, the classification approach in Algorithm 2.1 can be extended to kernel version. For

narrative convenience, we also denote the classification approaches using l1LS, NNLS, and

l1NNLS sparse coding as l1LS, NNLS, and l1NNLS, respectively. Prefix “K” is used for

kernel versions.

5 The Performance of Sparse Coding

5.1 The Performance of Active-Set Sparse Coding for Classification 6

Two high-throughput biological data, including a microarray gene expression data set and

a protein mass spectrometry data set, are used to test the performance of our sparse coding

based classification approach. The microarray data set is a collection of gene expression

profiles of breast cancer subtypes [31]. This data set includes 158 tumor samples from five

subtypes measured on 13582 genes. The mass spectrometry data set is composed of 332

6This section is based on our publications [3] and [17].
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samples from normal class and prostate cancer class [32]. Each sample has 15154 features,

that is the mass-to-charge ratios.

When dictionary learning was not involved, the dictionary was “lazily” composed by all

the training available instances. In our experiment, the active-set optimization methods for

l1LS, NNLS, and l1NNLS were tested. The weighted K-NN rule and NS rule, mentioned in

Algorithm 2.1, were compared. We set K in the K-NN rule to the number of all training

instances, which is an extreme case as opposite to the NN rule. Linear and radial basis

function (RBF) kernels were employed. We compared our active-set algorithms with the

interior-point [23] method and proximal [25] method for l1LS sparse coding (abbreviated

by l1LS-IP and l1LS-PX). Benchmark classifiers, including k-NN and SVM using RBF

kernel, were compared. We employed four-fold cross-validation 7 to partition a data set

into training sets and test sets. All the classifiers ran on the same training and test splits

for fair comparison. We performed 20 runs of cross-validation and recorded the averages and

standard deviations. Line or grid search was used to select the parameters of a classifiers.

We use accuracy to measure the classification performance. The accuracy is defined as

the ratio of the number of correctly predicted test samples to the number of all test samples.

The average accuracies of all classifiers with the corresponding standard deviations on both

data sets are compared in Figure 2.1, from which we have four observations. First, the

weighted K-NN rule obtained comparable accuracies with the NS rule. The advantage of

the K-NN rule over the NS rule is that the former predicts the class labels based on the

sparse coefficient vector solely, while the latter has to use the training data to compute

regression residuals. Therefore, the K-NN rule is more efficient and should be preferred.

Second, on the Prostate data, the sparse coding method l1LS and Kl1LS achieved the

best accuracy. This convinces us that sparse coding based classifiers can be very effective

for classifying high-throughput biological data. Third, the non-negative models including

NNLS, l1NNLS and their kernel extensions achieved competitive accuracies with the state-

of-the-art SVM on both data set. Fourth, the l1LS sparse coding using our active-set

algorithm had the same accuracy as that using the interior-point algorithm and proximal

algorithm on Breast data. But on Prostate data, the proximal method yielded a worse

accuracy. This implies that our active-set method converges to the global minima as the

interior-point method, while performance may be deteriorated by the approximate solution

7The sample size of a data set and time complexity of a method determine the choice of k in k-fold
cross-validation. For classification, the proportion of class sizes also affects the value of k. In this thesis, we
used k = 3 or 4 for relatively large data size and methods of high time-complexity. We used k = 9 or 10 for
relatively small sample size. The proportion of classes sizes in the training set should approximate to that
in the original data set. And a training set should contains samples of all classes.
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obtained by the proximal method in practice.
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Figure 2.1: Accuracies of sparse coding and benchmark approaches. This is a color figure,
thus the readability may be affected if printed in grayscale. The order of the bars, from left
to right, in the figure, is the same as these from top to bottom in the legend. In the legend,
the K-NN rule and NS rule is indicated in the corresponding parentheses for sparse coding
classifiers. IP and PX are the abbreviations of the interior-point and proximal methods,
respectively. The rest sparse coding models use active-set method without explicit notation.

The mean running time (in seconds) of cross-validation are shown in Figure 2.2. For

better comparison, logarithm of base two was taken on the results. First of all, we can clearly

see that the interior-point method is very slow for the l1LS sparse coding. Second, our active-

set method is more efficient than the proximal method on Breast data. This is because i)

active-set methods are usually the fastest ones for quadratic and linear programmes of small

and medium sizes; and ii) expensive computations, like solving systems of linear equations,

can be shared in the active-set method. Third, NNLS and l1NNLS have the same time-

complexity. This is reasonable, because both can be formulated as NNQP problems. These

non-negative models are much simpler and faster than the non-smooth l1LS model. Hence, if

similar performance can be obtained by l1LS and the non-negative models in an application,

we should give preference to NNLS and l1NNLS.

5.2 The Performance of Decomposition Method 8

We tested our SMO methods on the large-scale microarray data given in [33]. This data

set has 5456 samples including healthy tissue samples and cancer samples from 13 different

8This section is based on our publication [22].
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Figure 2.2: Computing time of sparse coding and benchmark methods. This is a color
figure, thus the readability may be affected if printed in grayscale. The order of the bars,
from left to right, in the figure, is the same as these from top to bottom in the legend. In
the legend, the K-NN rule and NS rule is indicated in the corresponding parentheses for
sparse coding classifiers. IP and PX are the abbreviations of the interior-point and proximal
methods, respectively. The rest sparse coding models use active-set method without explicit
notation.

tissue types. The number of dimensions (genes) of each sample is 9471. We randomly

selected 100 samples as the test set, and used the remaining 5356 samples as the training

set. In few cases where the computation was very costly, we only used 10 test samples.

We put all the training samples in the dictionary A9471×5356. Therefore, the Hessian is

of size 5356 by 5356. We used linear kernel in our experiments. We compared our SMO

methods with proximal method and active-set methods. Due to the large numbers of

samples and features, the interior-point method proposed in [23] crashed our computer (the

implementation in [23] is not dimension-free). We recorded the wall-clock computing time,

in seconds, and the number of iterations of the tests, as the value of λ increased. The

average results of each method are given in Tables 2.1 and 2.2. The corresponding sparsity

is also given in the first table. The sparsity is the percentage of zeros in a coefficient vector.

It is defined as sum(x<εmax(x))
k , where x is the sparse coefficient vector, k is the length of x,

and we set ε = 0.001 in our experiment.

From Table 2.1, we have the following observations. First, for all methods the computing

time and numbers of iterations decrease gradually as the value of λ increases. Second, for the

non-smooth l1QP model, our SMO method is much faster than the proximal and active-set
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methods. Third, for the smooth NNQP model, SMO is also efficient, though the active-set

method keeps its efficiency. Fourth, the sparsity increases as the value of λ rises. When

λ = 0, only the non-negativity induces the sparsity in the NNQP model. We can see that

very high sparsity can be obtained by using the non-negativity solely.

Table 2.1: Mean computing time (in seconds) of each sample when using 5356 samples as
training set.

λ
l1QP NNQP

SMO proximal active-set sparsity SMO active-set sparsity

0 - - - - 17.99 0.49 0.9954
0.0001 273.78 554.37 - 0.9478 17.94 0.48 0.9954
0.001 22.30 557.20 - 0.9950 18.02 0.49 0.9954
0.01 20.75 558.47 - 0.9956 17.66 0.49 0.9956
0.1 16.20 550.69 - 0.9968 13.67 0.34 0.9968
0.2 12.93 635.15 - 0.9975 10.99 0.29 0.9975
0.3 10.02 615.11 1669.63 0.9980 8.48 0.22 0.9980
0.4 7.83 572.55 1426.41 0.9984 6.58 0.17 0.9984
0.5 6.39 513.75 1157.20 0.9987 5.42 0.14 0.9987
0.6 5.17 441.12 923.95 0.9989 4.40 0.12 0.9989
0.7 3.91 357.81 684.89 0.9992 3.31 0.10 0.9992
0.8 2.86 254.41 553.94 0.9994 2.42 0.07 0.9994
0.9 1.70 97.00 395.52 0.9996 1.44 0.05 0.9996

From Table 2.2, the active-set algorithms converge to the optimal solution in a few

iterations, but the computational cost of each iteration is expensive, since the Hessian

matrix is involved in the computation. Our method and the proximal method have a

larger number of iterations, and the computational cost of each iteration is very low. Both

methods have closed-form update solution. The operation on the Hessian is avoided in our

SMO methods. Finally, we should mention that our SMO methods can obtain identical

solutions to the active-set methods, which corroborates that the decomposition methods

converge well. However, the proximal method can only obtain approximate results in many

cases, because it is a first-order method that needs a large number of iterations to converge.

Additionally, we tested the prediction accuracies of our l1QP and NNQP models for

classifying the microarray gene profiles. We used our SMO methods in the optimizations.

The mean accuracies of 10-fold cross-validation are given in Table 2.3. We can see that

both models obtained very high accuracies. The NNQP model with λ = 0 obtained the
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Table 2.2: Mean number of iterations of each sample when using 5356 samples as training
set.

λ
l1QP NNQP

SMO proximal active-set SMO active-set

0 - - - 53033 29.37
0.0001 682153 29250 - 52994 29.36
0.001 55612 29427 - 52981 29.30
0.01 51438 29451 - 51439 28.23
0.1 40068 29302 - 40068 20.07
0.2 31962 34334 - 31962 15.43
0.3 24899 33212 13.30 24899 12.20
0.4 19348 30902 11.40 19348 9.80
0.5 15927 27752 9.40 15927 8.22
0.6 12853 23834 7.80 12853 6.88
0.7 9680 19236 6.00 9680 5.51
0.8 7092 13144 5.00 7092 4.30
0.9 4210 5152 3.80 4210 3.09

best result on this data. This observation suggests that we need to try the easier NNQP

model first before resorting to l1QP model, when applying sparse coding techniques in other

problems, particularly in classification.

Table 2.3: Mean prediction accuracies of the l1QP and NNQP models using 10-fold cross-
validation.

λ l1QP NNQP

0 - 0.9762
0.5 0.9727 0.9727
0.9 0.9654 0.9654

6 Bayesian Dictionary Learning 9

We pursue our dictionary-learning-based approach for biological data, based on the following

two motivations. First, the sparse-coding-only approach, which places all training samples

9This section is based on our publications [3], [17], and [34].
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in the dictionary, is a lazy learning, thus the optimization can be slow for large training set.

Therefore, learning a concise dictionary is more efficient for future real-time applications.

Second, dictionary learning can capture hidden key factors which correspond to biological

pathways, and the classification performance may hence be improved. In the following, we

first give the dictionary learning models using Gaussian prior and uniform prior, respectively.

Next, we give the classification method based on dictionary learning. We then address the

generic optimization framework of dictionary learning. Finally, we show that the kernel

versions of our dictionary learning models and classification approach can be easily obtained.

6.1 Dictionary Learning Models

Now we give our dictionary learning models using Gaussian prior and uniform prior over the

dictionary atoms, respectively. Both priors aims to get rid off the arbitrary scale interchange

between dictionary and coefficient. Suppose Dm×n is the data of n training instances, and

the dictionary A to be learned has k atoms. If the Gaussian prior in Equation (2.5) is used

on the dictionary atom, our dictionary learning models of l1LS, NNLS, and l1NNLS are

expressed as follow, respectively:

l1LS : min
A,Y

1

2
‖D −AY ‖2F +

α

2
trace(ATA) + λ

n∑
i=1

‖yi‖1, (2.66)

NNLS : min
A,Y

1

2
‖D −AY ‖2F +

α

2
trace(ATA) (2.67)

s.t. Y ≥ 0,

and

l1NNLS : min
A,Y

1

2
‖D −AY ‖2F +

α

2
trace(ATA) +

n∑
i=1

λTyi (2.68)

s.t. Y ≥ 0.

The strength of the Gaussian prior based dictionary learning is that, it is flexible to control

the scales of dictionary atoms by tuning α. However, l1LS and l1NNLS have two model

parameters (that is α and λ), which increase the model selection burden in practice.

Alternatively, in order to eliminate the parameter α, we design an uniform prior over
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the dictionary which is expressed as

p(ai) =

θ if ‖ai‖2 = 1,

0 otherwise,
(2.69)

where θ ∈ (0, 1) is a constant. That is, the feasible region of the dictionary atoms is

a hypersphere centered at the origin with unit radius, and all the feasible atoms have

equal probability. The corresponding dictionary learning models are given in the following

equations, respectively:

l1LS : min
A,Y

1

2
‖D −AY ‖2F + λ

n∑
i=1

‖yi‖1 (2.70)

s.t. aT
i ai = 1, i = 1, · · · , k,

NNLS : min
A,Y

1

2
‖D −AY ‖2F (2.71)

s.t. aT
i ai = 1, i = 1, · · · , k; Y ≥ 0,

and

l1NNLS : min
A,Y

1

2
‖D −AY ‖2F +

n∑
i=1

λTyi (2.72)

s.t. aT
i ai = 1, i = 1, · · · , k; Y ≥ 0.

6.2 A Generic Optimization Framework for Dictionary Learning

We devise a block-coordinate-descent based algorithms for the optimization of the above

six models. The main idea is that ATA and Y are updated alternatingly. In a step, Y is

fixed, and the inner product ATA, rather than A itself, is updated; in the next step, Y is

updated while fixing ATA (a sparse coding procedure). The above procedure is repeated

until the termination conditions are satisfied.

Now, we show that A can be analytically obtained. For normal prior over dictionary

atoms, the optimization of finding A in Equations (2.66), (2.67), and (2.68) is to solve

min
A

f(A) =
1

2
‖D −AY ‖2F +

α

2
trace(ATA). (2.73)
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Taking the derivative with respect to A and setting it to zero, we have

∂f(A)

∂A
= AY Y T −DY T + αA = 0. (2.74)

We hence have

A = DY ‡, (2.75)

where Y ‡ = Y T(Y Y T + αI)−1. The inner product ATA can thus be updated by

R = ATA = (Y ‡)TDTDY ‡. (2.76)

We also can compute ATD by

ATD = (Y ‡)TDTD. (2.77)

For the uniform prior as in Equation (2.69), updating unnormalized A while fixing Y in

Equations (2.70), (2.71), and (2.72) is to solve the generalized least squares:

min
A

f(A) =
1

2
‖D −AY ‖2F . (2.78)

Taking the derivative with respect to A and setting it to zero, we have

A = DY †, (2.79)

where Y † = Y T(Y Y T)−1. The inner products of R = ATA and ATD are computed

similarly as for the Gaussian prior. The normalization ofR is straightforward. We haveR =

R./
√

diag(R)diag(R)T, where ./ and
√
• are element-wise operators. Learning the inner

productATA instead ofA has the benefits of dimension-free computation and kernelization.

Fixing A, Y can be obtained via our active-set method described in Section 4.6. Recall

that the sparse coding only requires the inner products ATA and ATD. As shown above,

we find that updating Y only needs its previous value and the inner product between

training instances.

Due to the above derivation, we have the framework of solving our dictionary learning

models as illustrated in Algorithm 2.5.



CHAPTER 2. SPARSE REPRESENTATION 42

Algorithm 2.5 Generic Dictionary Learning Framework

Input: K = DTD, dictionary size k, λ
Output: R = ATA, Y

initialize Y and R = ATA randomly;
rprev = Inf ; {previous residual}

for i = 1 : maxIter do
Update Y by solving the active-set based l1LS, NNLS, or l1NNLS sparse coding algo-
rithms;

if Gaussian prior over A then
Update R = Y ‡TDTDY ‡;

end if

if uniform prior over A then
Update R = Y †TDTDY †;
Normalize R by R = R./

√
diag(R)diag(R)T;

end if

if i == maxIter or i mod l == 0 then
{check every l iterations}
rcur = f(A,Y ); {current residual of a dictionary learning model}
if rprev − rcur ≤ ε or rcur ≤ ε then

Break;
end if
rprev = rcur;

end if
end for
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6.3 Classification Approach Based on Dictionary Learning

Now, we present the dictionary-learning based classification approach in Algorithm 2.6. The

dictionary learning in the training step should be consistent with the sparse coding in the

prediction step. As discussed in the previous section, the sparse coding in the prediction

step needs the inner products ATA, BTB and ATB. Actually, ATB is either Y ‡TDTB

or Y †TDTB.

Algorithm 2.6 Dictionary-Learning Based Classification

Input: Dm×n: n training instances, c the class labels,Bm×p: p new instances, k: dictionary
size

Output: p: the predicted class labels of the p new instances

{Training Step:}
1. Normalize each training instance to have unit l2 norm.

2. Learn dictionary inner product ATA and sparse coefficient matrix Y of training
instances by Algorithm 2.5.

3. Train a classifier f(θ) with parameter θ using Y (in the feature space spanned by
columns of A).

{Prediction Step:}
1. Normalize each new instance to have unit l2 norm.

2. Obtain the sparse coefficient matrix X of the new instances by solving Equation
(2.42), or (2.43).

3. Predict the class labels of X using the classifier f(θ) learned in the training phase.

6.4 Kernel Extensions

For Gaussian dictionary prior, the l1LS based kernel dictionary learning and sparse coding

are expressed in the following, respectively:

min
Aφ,Y

1

2
‖φ(D)−AφY ‖2F +

α

2
trace(AT

φAφ) + λ‖Y ‖1, (2.80)

min
X

1

2
‖φ(B)−AφX‖2F + λ‖X‖1, (2.81)

where φ(•) is a mapping function. Equations (2.67), (2.68), (2.70), (2.71), (2.72) and their

sparse coding models can be kernelized analogously. As we have mentioned already, the
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optimizations of the six dictionary learning models only involve inner products of instances.

Thus, we can easily obtain their kernel extensions by replacing the inner products with

kernel matrices. Hereafter, if dictionary learning is employed in sparse representation, then

prefix “DL” is used before “l1LS”, “NNLS”, and “l1NNLS”. If kernel function other than

the linear kernel is used in dictionary learning, then prefix “KDL” is added before them.

6.5 Computational Experiments

Two high-throughput biological data, including a microarray gene expression data set and

a protein mass spectrometry data set, are used to test the performance of our dictionary

learning methods for dimensionality reduction. The microarray data set is a collection of

gene expression profiles of breast cancer subtypes [31]. This data set includes 158 tumor

samples from five subtypes measured on 13582 genes. The mass spectrometry data set is

composed of 332 samples from normal class and prostate cancer class [32]. Each sample has

15154 features, that is the mass-to-charge ratios. The performance is measured by accuracy

and running time in seconds.

The performance of various dictionary learning models with linear and RBF kernels

were investigated on both Breast and Prostate data sets. The Gaussian-prior based and

uniform-prior based dictionary learning models were also compared. Again, our active-set

dictionary learning method was compared with the interior-point [23] and proximal [25]

methods. The semi-NMF based on multiplicative update rules [35] is also included in the

comparison. As in the experiment of sparse coding in Section 5, four-fold cross-validation

was used. All methods ran on the same splits of training and test sets. We performed 20

runs of cross-validation for reliable comparison. After feature extraction by using dictionary

learning on the training set, the linear SVM classifier was trained on the reduced training

set and was used to predict the class labels of test instances.

In Figure 2.3, we show the mean accuracy and standard deviation of 20 results for each

method. First, we can see that the models with Gaussian prior on dictionary atoms obtained

similar accuracies as the uniform prior. Second, with the comparison to sparse coding

methods on Breast data as given Figure 2.1, we can see that dictionary learning increases

the prediction accuracy. Third, from the comparison of Figures 2.3 and 2.1, we find that the

dictionary learning based methods – DL-NNLS and DL-l1NNLS, obtained similar accuracies

as the sparse coding methods – NNLS and l1NNLS. This convinces us that dictionary

learning is a promising feature extraction technique for high-dimensional biological data.

On Prostate data, we can also find that the accuracy obtained by DL-l1LS is slightly lower

than l1LS. This is may be because the dictionary learning is unsupervised. Fourth, using



CHAPTER 2. SPARSE REPRESENTATION 45

the model parameters, DL-l1LS using active-set algorithm obtained higher accuracy than

DL-l1LS-IP and DL-l1LS-PX on Prostate data. The accuracy of DL-l1LS is also slightly

higher than that of DL-l1LS-IP on Breast data. Furthermore, the non-negative DL-NNLS

yielded the same performance as the well-known semi-NMF, while further corroborating the

satisfactory performance of our dictionary learning framework. Finally, the kernel dictionary

learning models achieved similar performance as their linear counterparts. We believe that

the accuracy could be further improved by a suitably selected kernel.
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Figure 2.3: Accuracies of dictionary learning approaches. This is a color figure, thus the
readability may be affected if printed in grayscale. The order of the bars, from left to right,
in the figure, is the same as these from top to bottom in the legend. In the legend, the
Gaussian and uniform priors are indicated in the corresponding parentheses. IP and PX
are the abbreviations of the interior-point and proximal methods, respectively. The rest
dictionary learning models use active-set method without explicit notation.

We compare the mean computing time of all the feature extraction methods in Figure

2.4. First, we can see that DL-l1LS using active-set algorithm is much more efficient than

DL-l1LS-IP, DL-l1LS-PX, and semi-NMF using multiplicative update rules. Second, the

non-negative dictionary learning models are more efficient than the l1-regularized models.

Therefore as in the sparse coding method, priority should be given to the non-negative

models when attempting to use dictionary learning in an application.
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Figure 2.4: Computing time of dictionary learning approaches. This is a color figure, thus
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the Gaussian and uniform priors are indicated in the corresponding parentheses. IP and
PX are the abbreviations of the interior-point and proximal methods, respectively. The rest
dictionary learning models use active-set method without explicit notation.

7 Versatile Sparse Matrix Factorization 10

We have proposed a generic dictionary learning framework in Section 6.1. Now, we present

a more general dictionary learning framework, named versatile sparse matrix factorization

(VSMF).

7.1 Versatile Sparse Matrix Factorization Model

Our VSMF model can be expressed in the following equation:

min
A,Y

f(A,Y ) =
1

2
‖D −AY ‖2F +

k∑
i=1

(
α2

2
‖ai‖22 + α1‖ai‖1)

+
n∑
i=1

(
λ2

2
‖yi‖22 + λ1‖yi‖1) (2.82)

s.t.

 if t1 = 1 A ≥ 0

if t2 = 1 Y ≥ 0
,

10This section is based our publication [36].
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where, parameter α1 ≥ 0 controls the sparsity of the basis vectors; parameter α2 ≥ 0 controls

the smoothness and scale of the basis vectors; parameter λ1 ≥ 0 controls the sparsity of the

coefficient vectors; parameter λ2 ≥ 0 controls the smoothness of the coefficient vectors; and

parameters t1 and t2 are boolean variables (0: false, 1: true) that indicate if non-negativity

should be enforced on A and Y , respectively.

One advantage of VSMF is that both l1 and l2-norms can be used on both basis matrix

and coefficient matrix. In VSMF, l1-norms are used to induce sparse basis vectors and

coefficient vectors. However, the drawback of l1-norm is that correlated variables may not

be simultaneously non-zero in the induced sparse result. This is because l1-norm is able to

produce sparse but non-smooth result. It is known that l2-norm is able to obtain smooth

but not sparse result. It has been demonstrated that correlated variables can be selected

or removed simultaneously via combining both norms [37]. In addition to the smoothness

of l2-norm, another benefit of l2-norm is that the scale of each vector can be restricted.

This can avoid the scale interchange between the basis matrix and the coefficient matrix.

Another advantage of VSMF is that the non-negativity constraint can be switched off/on

for either basis matrix or coefficient matrix. If the training data are non-negative, it is

usually necessary that the basis matrix should be non-negative as well. In some situations,

non-negativity is also needed on the coefficient matrix for better performance and better

interpretability of results.

For the convenience of discussion, we summarize the existing sparse matrix factorization

models in Table 2.4. It is impossible to enumerate all existing works in this direction.

Therefore, all models mentioned in this table are the most representative ones. The training

data D must be non-negative for the standard NMF and sparse NMF. For sparse NMF, α

and λ are two non-negative parameters. For kernel NMF and DL-l1LS, φ(·) is a function

that maps the training samples into a high-dimensional feature space. φ(D) is the training

samples in this feature space. Aφ is the basis matrix in this feature space. It can be easily

seen that the standard NMF, semi-NMF, and sparse-NMF are special cases of VSMF. If

α1 = α2 = λ1 = λ2 = 0 and t1 = t2 = 1, VSMF is reduced to the standard NMF proposed

in [12]. If α1 = α2 = λ1 = λ2 = 0 and t1 = 0 and t2 = 1, then VSMF becomes semi-NMF

proposed in [35]. If α1 = λ2 = 0, α2, λ1 6= 0, and t1 = t2 = 1, then VSMF is equivalent

to the sparse-NMF proposed in [38]. When α1 is set to zero, VSMF can be kernelized (see

Section 6.1 and [3]).

Sparse matrix factorization is a low-rank approximation problem. The number of ranks,

that is k, is crucial for a good performance of an analysis. Selecting k is still an open

problem in both statistical inference and machine learning. We propose an adaptive rank
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Table 2.4: The existing NMF and SR models.

NMF/SR Equation
Standard NMF [12] minA,Y

1
2‖D −AY ‖

2
F s.t. A,Y ≥ 0

Semi-NMF [35] minA,Y
1
2‖D −AY ‖

2
F s.t. Y ≥ 0

Sparse NMF [38] minA,Y
1
2‖D −AY ‖

2
F + α

2

∑k
i=1‖ai‖22 + λ

2

∑n
i=1‖yi‖21 s.t. A,Y ≥ 0

Kernel NMF [39, 3] minAφ,Y
1
2‖φ(D)−AφY ‖2F + α

2

∑k
i=1‖φ(ai)‖22 + λ

2

∑n
i=1‖yi‖1 s.t. Y ≥ 0

l1-SR [3] minAφ,Y
1
2‖φ(D)−AφY ‖2F + α

2

∑k
i=1‖φ(ai)‖22 + λ

2

∑n
i=1‖yi‖1

selection method for VSMF. We base our idea on the sparsity of columns of A and Y . We

first set k to a relatively large integer. During the optimization of VSMF, if a column of A

or a row of Y is null due to the sparsity controlled by the corresponding parameters, then

both of the column of A and the row of Y corresponding to this null factor are removed.

Therefore, k is reduced. When the optimization terminates, we can obtain the correct k

corresponding to the current sparsity controlling parameters.

7.2 Optimization

Like most of NMF and SR models, the VSMF model is non-convex (a model is said to be

convex if and only if both of the objective and constraints are convex). The most popular

scheme to optimize these models are the block-coordinate descent method [29]. The basic

idea of this scheme is in the following. A and Y are updated iteratively and alternatingly.

In each iteration, A is updated while keeping Y fixed; then A is fixed and Y is updated.

Based on this scheme, we devise the multiplicative update rules and active-set algorithms

for VSMF. These two algorithms are given below.

Multiplicative Update Rules

If both A and Y are non-negative, we can equivalently rewrite f(A,Y ) in Equation (3.11)

as

1

2
‖D −AY ‖2F +

α2

2
trace(ATA) + α1trace(ET

1 A) +
λ2

2
trace(Y TY ) + λ1trace(ET

2 Y ),

(2.83)
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where E1 ∈ {1}m×k, and E2 ∈ {1}k×n. Fixing A, and updating Y can hence be expressed

as

min
Y
f(Y ) =

1

2
‖D −AY ‖2F +

λ2

2
trace(Y TY ) + λ1trace(ET

2 Y ) (2.84)

s.t. Y ≥ 0.

Similarly, fixing Y , and updating A can be expressed as

min
A
f(A) =

1

2
‖D −AY ‖2F +

α2

2
trace(ATA) + α1trace(ET

1 A) (2.85)

s.t. A ≥ 0.

We design the following multiplicative update rules for VSMF model in the case of

t1 = t2 = 1: A = A ∗ DY T

AY Y T+α2A+α1

Y = Y ∗ ATD
ATAY +λ2Y +λ1

, (2.86)

where A ∗B and A
B are element-wise multiplication and division between matrix A and B,

respectively. This algorithm is a gradient-descent based method in essence. Both rules are

derived in the following.

For Equation (2.84), the first-order update rule of Y should be generally

Y = Y − η2 ∗
∂f(Y )

∂Y
. (2.87)

where matrix η2 is the step size of the update rule. We take the derivative of f(Y ), in

Equation (2.84), with respect to Y :

∂f(Y )

∂Y
= ATAY −ATD + λ2Y + λ1E2. (2.88)

And we let the step size η2 to be

η2 =
Y

ATAY + λ2Y + λ1E2
. (2.89)
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Substituting Equations (2.88) and (2.89) into Equation (2.87), we have

Y = Y ∗ ATD

ATAY + λ2Y + λ1E2
. (2.90)

Similarly, for Equation (2.85), the first-order update rule of A should be generally

A = A− η1 ∗
∂f(A)

∂A
. (2.91)

We take the derivative of f(A), in Equation (2.85), with respect to A:

∂f(A)

∂A
= AY Y T −DTY + α2A+ α1E1. (2.92)

And we let the step size to be

η1 =
A

AY Y T + α2A+ α1E1
. (2.93)

Substituting Equations (2.92) and (2.93) into Equation (2.91), we have

A = A ∗ DY T

AY Y T + α2A+ α1
. (2.94)

If we let α1 = α2 = λ1 = λ2 = 0, then the update rules in Equations (2.86) becomes the

update rules of the standard NMF [40]. We can find that enforcing sparsity and smoothness

on both basis matrix and coefficient matrix does not increase the time-complexity. Finally,

we have to reminder the readers that, the multiplicative update rule is the trade-off between

the complexity of designing an algorithm and the precision. Its advantage is that it is easy

to implement. However, it has two weaknesses as follows. First, it can be proven that the

objective is non-increasing, but it is not guaranteed to converge to a stationary point [41].

Second, A and Y are usually initialized by random numbers. If a value of them becomes

zero, it won’t escape from it. The readers are advised to see [42] for a detailed discussion

and a revised multiplicative update rule.

Active-Set Quadratic Programming

The multiplicative update rules above only work under the condition that both A and Y

are non-negative. We devise active-set algorithms which allow us to relax the non-negativity

constraints. We now show that when t1( or t2) = 1, A (or Y ) can be updated by our active-

set NNQP algorithm described in Algorithm 2.4 and Section 4.6; when t1( or t2) = 0, A
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(or Y ) can be updated by our active-set 11QP algorithm described in Algorithm 2.3 and

Section 4.6.

If t2 = 1, the objective in Equation (2.84) can be rewritten as:

f(Y ) = trace(
1

2
Y TATAY +

1

2
DTD −DTAY +

λ2

2
Y TY + λ1E

T
2 Y )

= trace(
1

2
Y T(ATA+ λ2I)Y + (λ1E

T
2 −DTA)Y +

1

2
DTD)

=
n∑
i=1

1

2
yT
i H2yi + gT

(2)iyi +
1

2
dT
i di, (2.95)

where H2 = ATA + λ2I, and g(2)i = λ1 − ATdi and G(2) = λ1 − ATD. Therefore, we

can see that updating non-negative Y is a multiple NNPQ problem. The parallel active-set

algorithm for NNQP, proposed in Section 4.6, can be used to solve the problem in Equation

(2.95).

If t2 = 0, the objective of updating Y can be reformulated as:

f(Y ) = trace(
1

2
Y TATAY +

1

2
DTD −DTAY +

λ2

2
Y TY ) + λ1‖Y ‖1

= trace(
1

2
Y T(ATA+ λ2I)Y + (−DTA)Y +

1

2
DTD) + λ1‖Y ‖1

=
n∑
i=1

1

2
yT
i H2yi + gT

(2)iyi + λ1‖yi‖1+
1

2
dT
i di, (2.96)

where H2 = ATA+ λ2I, and g(2)i = −ATdi and G(2) = −ATD. This is a l1QP problem

which can be solved by our active-set l1QP algorithm proposed in Section 4.6 and [3].

Similarly, if t1 = 1, f(A) in Equation (2.84) can be expressed as

f(A) = trace(
1

2
AY Y TAT +

1

2
DTD −DY TAT +

α2

2
AAT + α1E

T
1 A)

= trace(
1

2
A(Y Y T + α2I)AT + (α1E

T
1 −DY T)AT +

1

2
DDT)

=
m∑
i=1

1

2
wT
i H1wi + gT

(1)iwi +
1

2
Di,:(D

T):,i, (2.97)

where W = AT, H1 = Y Y T +α2I, g(1)i = α1−Y (DT):,i and G(1) = α1−Y DT. Again, it

can be seen that this problem is also a NNQP problem which can be solved by the active-set

algorithm in Section 4.6 and [3].
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If t1 = 0, the objective of updating A can be written as

f(A) = trace(
1

2
AY Y TAT +

1

2
DTD −DY TAT +

α2

2
AAT) + α1‖A‖1

= trace(
1

2
A(Y Y T + α2I)AT + (−DY T)AT +

1

2
DDT) + α1‖AT‖1

=
m∑
i=1

1

2
wT
i H1wi + gT

(1)iwi + α1‖wi‖1+
1

2
Di,:(D

T):,i, (2.98)

where W = AT, H1 = Y Y T + α2I, g(1)i = −Y (DT):,i and G(1) = −Y DT. This is also a

l1QP problem that can be solved by our active-set l1QP algorithm proposed in Section 4.6

and [3].

Analytical Solutions and Kernelization

If t2 = 0 and λ1 = 0, from ∂f(Y )
∂Y = 0, Y can be updated analytically, that is,

Y = (ATA+ λ2I)−1ATD = A‡D. (2.99)

From the previous section, we can see that only Y Y T and Y DT are required to update A.

According to Equation (2.99), Y Y T and Y DT can be expressed as

Y Y T = A‡DDT(A‡)T. (2.100)

Y DT = A‡DDT. (2.101)

We can see that in this situation, updating A only requires the previous value of A and the

inner products of the rows of D.

Similarly, if t1 = 0 and α1 = 0, A can be updated analytically, that is,

A = DY ‡, (2.102)

where Y ‡ = Y T(Y Y T + α2I)−1. From the previous section, we know that updating Y

only requires the inner products ATA and ATD. They can be updated by the following

equations:

ATA = (Y ‡)TDTDY ‡. (2.103)
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ATD = (Y ‡)TDTD. (2.104)

Due to the analytical solution of A, updating Y only requires the previous value of Y and

the inner products of columns of D.

These analytical solutions have two advantages. First, the corresponding matrix can be

easily updated without resorting to any numerical solver. Second, we can see that only the

inner products are needed to update Y (or A), when A (or Y ) can be analytically obtained.

Using this property, we can obtain the kernel version of VSMF, which are described in

the following. In sparse representation, at least one matrix among A and Y must be

sparse. That is, the analytical solutions in Equations (2.99) and (2.102) can not be used

simultaneously. In practice, if each column of the training dataD is the object to be mapped

in high-dimensional feature space, we can analytically update ATA (or the corresponding

kernel version k(A,A) = (φ(A))Tφ(A) where k(·, ·) is a kernel function corresponding to

φ(·)) and ATD (or k(A,D) = (φ(A))Tφ(D)), and then update Y via a numerical solver

described in the previous section. This leads to the kernel sparse representation proposed in

[3]. Alternatively, if each row of D is the object to be mapped in high-dimensional feature

space, Y Y T and Y DT should be updated analytically, then A is updated by a solver given

in the previous section. This leads to an alternative kernel sparse representation model.

7.3 Computational Experiment

Sparse matrix factorization has a wide ranges of applications in biological data analysis.

Technically speaking, these applications are based on clustering, biclustering, feature ex-

traction, classification, and feature selection. In this study, we give three examples to show

that promising performance can be obtained by VSMF for feature extraction, feature se-

lection, and biological process identification. For other applications of NMF, please refer to

[11].

Feature Extraction and Classification

NMF is a successful feature extraction method in bioinformatics [43]. Dimensionality reduc-

tion including feature extraction and feature selection is an important step in classification.

We compared the performance of our VSMF (for feature extraction) with NMF on a pop-

ular microarray gene expression data – Colon [44]. This data set has 2000 genes (features)

and 62 samples. There are two classes in this data set. Each sample is normalized to have

unit l2-norm. We employed four-fold cross-validation to split the whole data into training

and test sets. For each split, features were extracted by NMF or VSMF from the training
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set. The nearest neighbor (NN) classifier was used to predict the class labels of the test

set. Four-fold cross-validation was repeated for 20 times. We initialized k = 8, thus the

actual value of k, after calling VSMF, should be less than or equal to 8. Radial basis func-

tion (RBF) is used in the kernel VSMF. We set the kernel parameter σ = 20. The mean

accuracy, standard deviation (STD), computing time, and parameter setting are given in

Table 2.5. The standard NMF obtained a mean accuracy of 0.7645, while the linear VSMF

yielded 0.7919. The highest accuracy, 0.7944, is obtained by the kernel VSMF. The kernel

VSMF only took 1.3346 seconds, which is faster than the linear VSMF and NMF, because

the analytical solution of A can be computed for kernel VSMF. We treated this compari-

son as a demonstration that tuning the parameters of VSMF may obtain better accuracy

than NMF. VSMF can be used for many other types of high-throughput data such as copy

number profiles and mass spectrometry data.

Table 2.5: Classification performance of VSMF compared to the standard NMF. The time
is measure by stopwatch timer (the tic and toc functions in MATLAB) in seconds.

Method Accuracy (STD) Time Parameters

NN 0.7742(0.0260) 0.0137 -

NMF+NN 0.7645(0.0344) 4.3310 -

Linear VSMF+NN 0.7919(0.0353) 3.1868 α2 = 2−3, λ1 = 2−6, t1 = t2 = 1

Kernel VSMF+NN 0.7944(0.0438) 1.3346 α2 = 2−3, λ1 = 2−6, t1 = t2 = 1, σ = 20

Feature Selection

VSMF can be applied to select relevant features. The basic idea is to make the basis

vectors sparse, and then select features that vary dramatically among the basis vectors. In

our current study of gene selection (genes are features), we use the following strategy on the

sparse basis matrix A. For the i-th row (that is the i-th gene), We denote gi = Ai,:. If the

maximum value in gi is θ = 104 times greater than the remaining values in gi, then we select

this gene, otherwise we discard it. We tested this VSMF-based feature selection method on

a microarray breast tumor data set which have 13582 genes and 158 samples from five classes

[31]. The data were normalized so that each gene has mean zero and standard deviation

(STD) one. We used the following parameters of VSMF: α1 = 24, α2 = 20, λ1 = 0, λ2 = 20,

t1 = 0, and t2 = 1. The value of k was initialized to 5. The selected genes were validated by

classification performance. We employed 20 runs of four-fold cross-validation. For each split

of training and test sets, genes were selected using the training set. On the reduced training
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set, a linear SVM was trained in order to predict the class labels of the corresponding test

set. When using all genes to training SVM, we obtained a mean accuracy of 0.8250 with

STD 0.0201. When applying the VSMF-based gene selection, we achieved a mean accuracy

of 0.8271 with STD 0.0174. We can see that SVM using our gene selection strategy can

obtain similar performance with that of using all genes.

7.4 Biological Process Identification

NMF has been applied on either gene-sample microarray data or time-series microar-

ray data in order to identify potential biological processes [45, 38, 46, 1]. A biologi-

cal process is defined as a series (or collection) of molecular functions (or events) (see

http://www.geneontology.org). In our experiment, we run our VSMF on the Gas-

trointestinal stromal tumor (GIST) time-series data [1] to show that VSMF can smooth

biological processes compared with the result obtained by the standard NMF. This data set

was obtained after the treatment of imatinib mesylate. It has 1336 genes and 9 time points.

Each gene time-series is normalized to have unit l2-norm. The smoothness is controlled

by parameter α2. We set the parameters of VSMF to α2 = 2−2, λ1 = 2−8, α1 = λ2 = 0,

and t1 = t2 = 1. The number of factors k was set to 3. The basis vectors of NMF and

VSMF are shown in Figures 2.5a and 2.5b, respectively. The results obtained by the NMF

and coordinated gene activity in pattern sets (CoGAPS, a variant of NMF optimized by

Markov chain Monte Carlo sampling) of Ochs et al. are shown in Figures 2.5c and 2.5d.

When comparing the plots in Figure 2.5, please note that the horizontal axis on the top

are different from that at the bottom. We can see that all methods are able to reconstruct

the falling, rising, and transient patterns identified in [1]. The patterns obtained by VSMF

and CoGAPS are smoother than that of the standard NMF.

8 Supervised Dictionary Learning 11

When applying sparse representation to classifying a data set with a large number of classes

and samples, we have the following challenges:

1. As instance-based learning, the sparse coding methods without dictionary learning

are able to classify complex data, but become very slow as the number of samples

increases dramatically.

11This section is based on our publication [47].

http://www.geneontology.org
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Figure 2.5: The biological processes identified by our implementations of the standard
NMF (a) and VSMF (b), and by Ochs et al.’s implementations of the standard NMF (c)
and CoGAPS (d) [1].

2. The unsupervised dictionary learning learns a generative model and maintains a small

dictionary, however it does not learn well the representations of complex multi-class

data.

Taking the advantages of both sparse coding and dictionary learning, we propose the

concept of sub-dictionary learning. The work of meta-sample based sparse representation

classification (MSRC) [48] is in fact a specific case of sub-dictionary learning. MSRC

employs SVD to learn the sub-dictionaries. The sparse coding of a new sample is obtained
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through solving Equation (2.9). After that, the NS rule is used to predict the class label.

Sound performance of MSRC was reported over microarray data. NMF was also tried to

learn sub-dictionaries, but it was claimed, in [48], that its performance is worse than that

of using SVD.

We find the sub-dictionary learning principle has the following advantages: i) this is

eager learning, hence is applicable in real-time prediction; ii) dictionary learning over data

of large sample size and many classes can be solved through a divide-and-conquer scheme;

iii) the learning on each class is independent from others, therefore the classifier is easy to

upgrade when there are some new training samples from some of the classes; and iv) this is

actually supervised learning because sub-dictionaries are learned for all classes separately.

NMF has been used as a sub-dictionary learning method by MSRC. However, it is

unclear if semi-NMF has been used by MSRC in the case of mixed-sign data. Also, if any

NMF is used as dictionary learning approach, it is not suitable to pursue the l1LS sparse

coding. This is because a new sample is supposed to be a non-negative linear combination

of the dictionary atoms obtained by a NMF, but the coefficient vector obtained by l1

regularization may contain negative numbers. Thus it makes more sense if NNLS sparse

coding is used after the NMF based sub-dictionary learning.

Generally speaking, the sparse coding model must match the dictionary learning model

in an implementation of the sub-dictionary learning principle. In this section, we give

such an implementation based on non-negative dictionary learning and non-negative sparse

coding. This method is called meta-sample based NNLS (MNNLS) classification approach,

and is described in Algorithm 2.7. A meta-sample is defined as a column of the basis matrices

obtained via (sub-)dictionary learning. In the algorithm, the meta-samples obtained by

NMF from the i-th class are labeled to belong to this class. NMF can be solved by the generic

alternating framework described in Section 6.1 or the versatile sparse matrix factorization

framework which is discussed in Section 7.

8.1 Computational Experiments

We examined the performance of MNNLS on Dawany’s data set [33] which has 5456 mi-

croarray gene expression samples distributed in 26 classes (see Section 5.2). We compared

MNNLS with NNLS (sparse coding method), NMF (unsupervised dictionary learning),

MSRC-SVD, and MSRC-NMF (proposed in [48]). We conducted 10-fold cross-validation to

split the data into training and test sets. All the methods are trained on the same training

sets. The best mean prediction accuracies, computing time, and corresponding parameters

are given in Table 2.6.
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Algorithm 2.7 MNNLS Classification Approach

Input: Dm×n: training data, c: class labels of n training samples, Bm×p: new data, k:
size of sub-dictionaries

Output: p: the predicted class labels of the p new samples
Training Step:

1. Normalize each training sample to have unit l2 norm;

2. For any class, learn the sub-dictionary through NMF (Di+ ≈ Ai+Yi+ where Di is
the training samples of the i-th class in input space and Yi+ is their representation
in feature space) if the data are non-negative, or semi-NMF (Di ≈ AiYi+) if the
data are of mixed signs;

3. Concatenate the sub-dictionaries into a holistic dictionary via A = [A1, · · · ,AC ];

Prediction Step:
1. Normalize each new sample to have unit l2 norm;

2. Solve the NNLS minX
1
2‖B −AX‖

2
F s.t. X ≥ 0;

3. For each column of X, apply nearest-subspace rule to predict the corresponding
class label;

Table 2.6: The performance of MNNLS.

Method Accuracy Time (seconds) Parameter

NNLS 0.9762 998 linear kernel
MNNLS 0.9622 618 ki = 8
MSRC-SVD 0.9617 8944 ki = 8, λ = 2−10

MSRC-NMF 0.7654 341 ki = 8, λ = 2−3

NMF 0.1391 2.2730e+005 k = 26

From the result, first of all, we can see that MNNLS has similar accuracy with the

sparse coding method NNLS. Meanwhile, MNNLS took less time than NNLS. Second, the

accuracy of MSRC-NMF is very poor, compared to that of MNNLS. This corroborates

that the sparse coding method, in a sub-dictionary learning, needs to match with the sub-

dictionary learning method carefully. Third, the unsupervised method NMF obtained much

worse accuracy, and spent much more time than MNNLS. This confirms that unsupervised

dictionary learning may not capture the key patterns of complicated data.
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9 Local NNLS Method 12

In this section, we propose two variants of the NNLS method to classify high dimensional

microarray data. Our methods combine the advantages of NMF, local learning, transductive

learning, and ensemble learning.

9.1 Related Work and Insights

In this section, we review the concepts of sample selection, local learning, transductive

learning, as well as ensemble learning. We also give further insights about them which

contribute to our idea presented in Section 9.2.

Sample Selection and Local Learning

Learning on the whole training data might be too complicated due to the unknown distri-

bution of data and the presence of noise or outliers. Therefore sample selection has been

studied to select a meaningful portion from the whole sample set. Given labeled training

data, inductive learning aims to learn a “ubiquitous” model from these training data and

make prediction on future unknown samples. Readers are refereed to [50] for a detailed

discussion as well as its interaction with feature selection. In an inductive learning, the

idea of sample selection is that some samples are more important for (or, relevant to) the

classification problem at hand than other samples. For example, Support vector machine

(SVM) has been utilized to keep only the support vectors (that is, the hard samples) and

then select the features given only these hard samples [51]. Alternatively, sample weighting

scheme is used in ensemble learning [52] for selecting important samples. Unsupervised

learning can also be performed to explore portions of the sample space. For example, kd-

tree has been used to cluster the training data, such that feature selection is subsequently

applied on subset of samples from the resulting clusters [53].

Similar to sample selection, local learning [54, 55] provides a much clearer confidence of

learning on parts of data. In addition to the reason for sample selection, local learning is a

divide-and-conquer scheme when the size of the data is too large to compute a model from.

Discrete or smooth kernels are often used to select local samples. Discrete kernels select k

samples within the kernel width. Smooth kernels, for instance radial basis function (RBF),

give more weights to the neighbors in the vicinity of a sample. In fact, k-nearest neighbors

(k-NN) and decision tree are the first-generation of local learning methods [56], and SVM

using a RBF kernel is of the second generation of local learning approaches. In [54], a linear

12This section is based on our publication [49].
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classifier is trained using only k nearest neighbors. Local SVM (LSVM) combines both local

and transductive learning ideas [57] in which the similarity between an unknown sample

and the training samples are computed by using RBF, so that the training phase pays more

attention to samples closer to the unknown sample.

Many local learning methods have been devised following its introduction in [54]; see for

example [58], [59], and [60]. The partitioning scheme is a crucial step in local learning, in

which a recursive tree or kernel is used to cluster the samples. Generally (but not strictly)

speaking, if two data points are mutually closest to each other then they are expected to

fall into the same cluster. Profile SVM (PSVM) [57] uses a supervised grouping method

to split the data such that each subgroup equally includes data from both classes before

training a linear SVM. Any clustering method can be used in the sample partitioning phase.

Transductive Learning

Local learners such as the k-NN based algorithm [54], LSVM [57], and PSVM [57], are

transductive methods since unlabeled samples are involved in the partitioning phase before

learning a model in each local region. Taking the k-NN based algorithm for example,

since each unlabeled but unknown sample is used to select a subset of the training set, the

subsequent linear classifiers will makes use of the information contained in the unlabeled

samples in order to learn a model. Given a set of labeled data X and a set of unlabeled data

S, transductive learning learns over the union of X and S in order to predict the correct

class labels of the unlabeled samples S [61]. In inductive learning, supervised algorithm is

performed only on the labeled data X in order to predicts the class labels of S and any

unknown future sample. Transductive learning uses both labeled data X and unlabeled

data S, and it is also called semi-supervised learning [62, 63] since it makes use of both

supervised and unsupervised methods.

The advantage of transductive learning is that unlabeled samples contribute to the clas-

sification, therefore more information is utilized. This is beneficial for increasing the pre-

diction accuracy, particularly when there are few labeled training data and many unlabeled

data available. The objective of transductive learning is different from that of inductive

learning. Transductive learning aims to only classify the unlabeled data S and does not

predict unlabeled samples not included in S. Inductive learning learns a general model

from X which is then used to predict the classes of S and any future unknown sample. One

shortcoming of transductive learning is that it is time-consuming since it is performed again

for every subset of never before seen unlabeled sample; unless an online update method can

be devised to update the learned model quickly. Since inductive learning obtains a general
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model on the labeled training data, it is thus convenient for predicting any unknown sample.

On the other hand, if the task is only to predict the available unlabeled samples once, and

if the mixture of labeled and unlabeled data can be clustered well, transductive learning

should be better than inductive learning. However, another drawback of transductive learn-

ing is that the incorrect prediction of the unlabeled data or ill clustering may propagate

and then amplify mistakes in the subsequent prediction phase.

We can relax the single-class constraint in transductive learning, by applying state-of-

the-art clustering algorithms, and then allow each resulting cluster to contain samples from

more than one classes. This is because it is possible that the distributions of some classes

may overlap while still being separable. However, clusters with single class label are still

the most welcome. This relaxation can be viewed as a median between the partitioning and

the agglomerative approaches. Since a cluster may have more than one unique class label,

a classifier must be used in each such cluster.

Ensemble Learning

Local learning is also often combined with ensemble learning [64] which is composed of

a committee of classifiers and a voting scheme for deciding the final prediction. In [65],

each classifier is trained in a random subspace, and the class label of an unknown sample

is decided by the weighted vote of many classifiers. As mentioned above, local learning is

a divide-and-conquer scheme, and essentially ensemble learning often provides a necessary

summary after local learning. Mixtures of local experts (MLE) proposed in [66] applies some

neural networks, as local experts, each learning on different subregion of the learning space,

and then a gating network decides which expert to switch to given a unknown sample. This

gating network actually implicitly plays the role of a crisp kernel. Since competitive learning

is used in MLE, each expert is actually expected to learn on a subgroup of the complete

training data.

9.2 Local NNLS Classifier

Interesting but complicated patterns may be hidden within microarray data. Local learn-

ers may approximate this complexity by learning in local regions. In order to emphasize

the advantages of local learning, we propose a generalized local version of NNLS which is

described in Algorithm 2.8. Please note that, the NNLS classifier given in Section 3 can be

viewed a special case of this local approach, if we assume the cluster number is one. Given

X containing labeled training samples in columns, the classification task is to categorize

the unknown unlabeled samples S. Our idea of solving this task is the following. First,
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the union of X and S is clustered by NMF (if it is non-negative) or semi-NMF (if it is of

mixed signs). Then, for each cluster, if there is no unlabeled sample in this cluster, simply

skip this iteration; if this cluster does not contain any training sample, a NNLS classifier is

applied over the whole training set X to classify the unlabeled samples in this cluster; if

there are both training samples and unlabeled samples in this cluster, then a NNLS clas-

sifier learns on these training samples and predict the classes of these unlabeled samples.

This approach is also transductive as unlabeled samples are involved in the partitioning

phase. This method is named local NNLS (LNNLS) classification approach. We denote it

as LNNLS-MAX, LNNLS-KNN, and LNNLS-NS for MAX (or NN), K-NN, and NS rules,

respectively.

Profile SVM (PSVM) [57] is a local SVM algorithm. The main differences between this

approach and PSVM are that i) PSVM has to conduct a supervised partitioning as the

learning of a linear SVM in a subgroup require (balanced) samples from both classes, while

LNNLS uses unsupervised clustering which neither deteriorate the natural structure of the

data, nor require classifiers for some homogeneous clusters (if all the training samples in

a cluster are from the same class, then the cluster is homogeneous); and ii) PSVM is a

binary approach, and hence, computationally costly in the case of multiple classes, whereas

LNNLS is appropriate for multi-class data.

Due to the relatively small sample size of microarray data, some readers might be

concerned that learning in local regions may worsen the learning performance since the

size of a cluster is smaller. We address this concern with the following three points. First,

the optimization of NMF and NNLS needs only the inner products of the samples rather

than the original high dimensional vectors, and thus, the classification is in fact dimension-

free. Replacing the inner products with kernel matrices, we can obtain kernel NMF and

kernel NNLS, though we have only investigated linear kernel so far. Second, our LNNLS

method does not simply cluster and classify. Applying a classifier in a non-homogeneous

cluster (i.e., a cluster containing labeled samples from different classes) is the final step of

prediction. For homogeneous clusters, that is when all labeled samples are from the same

class c, we can directly assign the class c as the label of the unlabeled samples contained in

such clusters. For clusters in which all samples are unlabeled, all training samples will be

required for classifying the unlabeled samples. Third, whether the sample size is sufficient

or not is a statistical issue, it also depends on the biological and experimental complexity

(please see [67] and [68] and references therein). Despite their small sample size, microarray

data may still contain enough information needed for discovering the hidden patterns with

a statistical learning model. In Section 9.3 we will empirically show that the minimum
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number of training samples required by NNLS to obtain a significant accuracy is generally

very small on microarray data.

Algorithm 2.8 LNNLS Classifier

Input: Xm×n: training set with m features and n samples
c: class labels of the training samples
Sm×p: p unknown samples without labels
Clust Method : clustering method; NMF, semi-NMF

Output: p: predicted class labels of the p unknown samples

[Xi,Si]
i=k
i=1 ← Clustering([X,S],Clust Method);

{Xi : set of labeled samples in i-th cluster}
{Si : set of unlabeled samples in i-th cluster}

for i← 1 to k do
if Si = ∅ then

Continue;
end if

if Xi = ∅ then
pi ← NNLS (X, c,Si);
{pi : predicted labels of samples in Si}

Continue;
end if

if Homogeneous(Xi) then
pi ← ci; {ci is the unique class label appearing in Xi}
Continue;

end if
pi ← NNLS (Xi, ci,Si);

end for

return p.

9.3 Repetitive LNNLS Classifier

The performance of the LNNLS classifier depends on the clustering algorithm (NMF or

semi-NMF). Due to the non-convexity of NMF and to the random initializations, different

executions of NMF may result in different factors, and therefore we may obtain different

clustering results. We thus propose the repetitive LNNLS (RLNNLS) classification ap-

proach, in Algorithm 2.9, in which we perform LNNLS learning on the data maxR times.
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The final class labels of the unlabeled samples are then decided through a voting process

on the decisions returned by the maxR LNNLS classifiers. The majority rule is used as our

voting method. Thus, this technique falls in the domain of ensemble learning [64]. From

now on, RLNNLS coupled with MAX, K-NN, and NS rules are denoted as RLNNLS-MAX,

RLNNLS-KNN, and RLNNLS-NS, respectively.

Algorithm 2.9 RLNNLS Classifier

Input: Xm×n: training set with m features and n samples
c: class labels of the training samples
Sm×p: p unknown samples without labels

Output: p: predicted class labels of the p unknown samples

for r ← 1 to maxR do
pr ← LNNLS (X, c,S); {pr : predicted labels at the r-th iteration}

end for

return p← Majority Vote(p1, . . . ,pmaxR).

Experiment

In order to investigate the classification performance of our family of NNLS classifiers for

high dimensional biological data, we ran it on 14 microarray gene expression data sets

(including 8 two-class and 6 multi-class data sets) and 3 two-class array-based comparative

genomic hybridization (aCGH) data sets. The aCGH technique is used to identify DNA

copy numbers. These data are summarized in Table 2.7. The aCGH data sets are in the

last block of the table. The numbers of features vary from 2000 to 24481 among these 17

data sets. The numbers of samples vary from 34 to 248. The gene expression intensities are

naturally non-negative. However, due to preprocessing when producing the data, some data

have negative components. 5 out of these 14 data sets, are non-negative. The aCGH data

are presented as log2-ratio, therefore have both positive and negative values. In this study,

for non-negative data, NMF is used to cluster the data; otherwise, semi-NMF is employed

to do the same task. The optimal number of clusters was obtained by linear search, though

a model selection method proposed in [75] is widely used. This is because we observed

that the optimal number of clusters suggested by that model selection method does not

always result in the highest classification accuracy. We used linear kernel in our NNLS

family. We compared our NNLS family with three classical local learners, namely, k-NN,

SVM with RBF kernel, and LSVM. We implemented all these methods in MATLAB. The
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Table 2.7: High dimensional microarray data sets.

Data +/- #Classes #Features #Samples

Adenoma[69] ± 2 7457 18+18=36

Breast[70] + 2 24481 44+34=74

Colon[44] + 2 2000 40+22=62

DLBCL-NIH[71] ± 2 7399 102+138=240

Leukemia[72] ± 2 7129 47+25=72

Lung[73] ± 2 7129 10+86=96

Medulloblastoma[74, 75] + 2 5893 25+9=34

Prostate[76] ± 2 12600 59+77=136

ALL[77] ± 6 12625 15+27+64+20+43+79=248

ALLAML[72, 75] + 3 5000 19+8+11=38

Breast5[31] ± 5 13582 39+22+53+31+13=158

CNS[78] ± 5 7129 10+10+10+4+8=42

MLL[79] ± 3 12582 24+20+28=72

SRBCT[80] + 4 2308 23+8+12+20=63

Bladder[81] ± 2 2143 32+16=48

BreastBerkeley[82] ± 2 2149 72+69=141

Melanoma[83] ± 2 3649 35+43=78

recently proposed sparse partial least squares discriminant analysis (SPLSDA) and sparse

generalized PLS (SGPLS) [84] were also compared with our methods. We used the SPLS

package (version 2.1-1) in R which is available from [84]. Parameters of all methods were

selected by linear or grid search. Four-fold cross-validation was used to split a whole data

set into labeled training set and unlabeled test set. We defined the accuracy of a given

classifier as the ratio of the number of correctly predicted test samples to the total number

of test samples. For each data set, four-fold cross-validation was rerun 20 times, and the

averages and standard deviations over the 20 runs were computed.

Figure 2.6 shows the results on six data sets: Breast, Colon, Prostate, ALL, Breast5, and

BreastBerkeley. SGPLS fails on the ALL data set which has a very large number of features.

LSVM gives better performance compared with SVM on Breast, ALL, and BreastBerkeley,

and gives very poor performance on Colon and Prostate. From all six groups of results, it

can be seen that the medium performance was obtained by k-NN. It can also be seen that

our NNLS classifiers generally perform very well. We can also see that NNLS-NS has better

accuracies than NNLS-MAX on Prostate and Breast5. We can observe that LNNLS-NS
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obtained better results than NNLS-NS. Furthermore, the RLNNLS-NS classifier has better

accuracies than LNNLS-NS on Breast, Prostate, and ALL; meanwhile comparable results

were obtained by both of them over the remaining three data sets.
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Figure 2.6: Classification performance on six data sets. This is a color figure, thus the
readability may be affected if printed in grayscale. The order of the bars, from left to right,
in the figure, is the same as these from top to bottom in the legend.

Statistical Comparison

We used the Friedman test with the post-hoc Nemenyi test to further statistically compare

all the classifiers over their mean accuracies on the 17 data sets. The Friedman test is a

non-parametric approach which compares multiple classifiers on multiple data sets [85]. It

has been recommended by [85], since it is simple, safe, and robust. In the Friedman test,

the classifiers are ranked for each data set. The classifier obtained the best performance has

rank 1, and the second best classifier gets rank 2, and so on. The rank of ties is their rank

average. For example the 3-rd and 4-th classifiers have the same performance on a data set,

then both of them get rank 3.5. The average rank of each classifier are then obtained over

all data sets. The statistic of the test is a function of the average ranks of all classifiers:

FF =
(N − 1)χ2

F

N(k − 1)− χ2
F

, (2.105)
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where N is the number data sets, k is the number of classifiers, and χ2
F is the Friedman

statistic, and is defined as

χ2
F =

12N

k(k + 1)

( k∑
j=1

R2
j −

k(k + 1)2

4

)
, (2.106)

where Rj is the average rank of the j-th classifier. Statistic FF follows F -distribution with

degrees of freedom (k − 1, (k − 1)(N − 1)). The null hypothesis of the Friedman test is

that all classifiers are equivalent in term of error rate. Once it is rejected, the Nemenyi test

is then used to find the difference among the classifiers. In the Nemenyi test, the crucial

difference (CD) is computed as

CD = qα

√
k(k + 1)

6N
, (2.107)

where α is the significance level, and qα is the upper crucial value (upper quantile) of the

Studentized range distribution (with infinite degree of freedom) divided by
√

2. During the

Nemenyi test, if the distance between the average ranks of a pair of classifiers is larger than

the CD, then we say that they are significantly different. The significance level was set to

α = 0.05 in our experiment. The null hypothesis was rejected in our test, and thus the

post-hoc Nemenyi test was conducted. The graphical presentation of the Nemenyi test can

be found in Figure 2.7 . According to the test results, we have the following interpretations

which are consistent with our above observations from Figure 2.6.
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Figure 2.7: Crucial difference diagram of the Nemenyi test (α = 0.05).
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NNLS using NS rule is significantly better than the one using MAX rule. NNLS-NS

is significantly better than k-NN. There is a large difference between the average ranks of

NNLS-NS and SVM, though the difference is not significant at the current significance level.

If we increase α slightly, NNLS-NS and SVM will be significantly different. The average

rank of LNNLS is not worse than NNLS. RLNNLS-NS obtained the best average rank.

It is significantly different from LNNLS-MAX, SVM, k-NN, and NNLS-MAX. Finally, the

average ranks of SPLSDA and SGPLS are between those of RLNNLS-NS and LNNLS, and

current test does not find significant difference among them.

Computing Time

The averaged elapsed execution time in seconds of each method was also recorded as a

measure of performance. All experiments were performed on an Intel machine (Core TM

i7, 2.93 GHz, CPU with 8 GB RAM, with 64-bit Windows 7 Professional operation system).

All methods, except the SPLS methods, were implemented in the language MATLAB, 64-

bit version 7.11. The SPLS methods was implemented in the language R, 64-bit version

2.12. The computing time of LNNLS and RLNNLS does not include the time of clustering,

because clustering can be done only once and then the results can be saved in memory

or hard drive. During the iterations of cross-validation, the same clustering results can be

reused through simply changing the roles (training or test) of the samples. In real-world

applications, to predict the class labels of new but unlabeled samples, the computing time

may increase since clustering must be redone. Online updating methods can be investigated

to reduce the computing time of NMF clustering; see [86] for an example of an online NMF.

Figure 2.8 shows the computing time of the methods on the six data sets; log2 times are

given for a better visual comparison.

First, it can be clearly seen that our NNLS approaches are much more efficient than

the PLS methods over large or multi-class data. For instance on ALL, the computing time

of SGPLS is as 10 and 7 times as NNLS-NS and RLNNLS-NS, respectively. Second, our

inductive and local NNLS methods are also consistently faster than local SVM. Local SVM

becomes computationally costly when the number of classes is large. For example, over

Breast5 and ALL, it performs slower than our RLNNLS methods. One of the reason for the

efficiency of our methods, compared to PLS and LSVM methods, is because our techniques

are naturally multi-class methods, while the supervised PLS and LSVM are binary models

which have to use one-against-all, one-against-one, or other strategies for multi-class task.

Therefore their computing time is significantly increased in the multi-class case.
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Figure 2.8: Computing time on six data sets. This is a color figure, thus the readability
may be affected if printed in grayscale. The order of the bars, from left to right, in the
figure, is the same as these from top to bottom in the legend.

Estimation of Data-Size Requirement

We estimated the minimum data size (that is, the number of training samples) required to

obtain significant accuracy, in order to explore the practical reason for the high performance

of our approaches. We implemented the permutation-test-based method proposed in [67].

We set the significance level to α = 0.05 in these experiments. The minimum data size of

NNLS-NS and SVM for each data set is listed in Table 2.8. In the experiments above, all

classifiers obtained poor performance on DLBCL-NIH. Through investigating the data-size

requirements, we found that the sample size provided in this data set was not sufficient to

obtain a significant accuracy. In Table 2.8, we can see that NNLS-NS generally needs fewer

training samples in order to achieve significant accuracy. This also is a possible reason of

why LNNLS methods obtained good accuracies, in practice, as they perform prediction via

clustering.

10 Conclusions

In this chapter, we proposed the Bayesian sparse coding and dictionary learning models.

We intensively investigated three sparse coding models: the l1-regularized model, the non-

negative model, and l1-regularized non-negative model. We revealed that these models can
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Table 2.8: Minimum data size required to obtain significant accuracy (α = 0.05). NNLS-NS
method only requires a very small number of training samples in order to obtain significant
accuracy.

Data NNLS-NS SVM

Adenoma 6 2
Breast 10 12
Colon 8 12
DLBCL-NIH - -
Leukemia 6 12
Lung 15 11
Medulloblastoma 12 2
Prostate 9 11

ALL 6 10
ALLAML 5 10
Breast5 5 11
CNS 5 14
MLL 4 18
SRBCT 4 10

Bladder 10 8
BreastBerkeley 20 11
Melanoma 6 4

be kernelized. We reviewed main sparse coding optimization methods, and proposed our

own active-set method and decomposition method. We proposed a generic network of kernel

dictionary learning. We then proposed a more general framework, named versatile sparse

matrix factorization. The classification, feature extraction, feature selection techniques

based on sparse representation for high-dimensional biological data were investigated. We

proposed two novel classification techniques – the sub-dictionary learning and local sparse

coding for complicated biological data.

There are some interesting future researches. We just mentioned a few in the follow-

ing. First, a novel supervised dictionary learning can be devised by combining Bayesian

dictionary learning and Bayesian regression. Second, it would be interesting to investigate

supervised kernel dictionary learning. Third, optimization methods based on Markov chain

Monte Carlo sampling can be implemented for the sparse representation models.
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Chapter 3

The Non-Negative Matrix

Factorization and Sparse

Representation Toolboxes

1 Introduction

Open-source packages are very important for both researchers in the machine learning and

bioinformatics communities. From receiving feedbacks and suggestions from users, the

developers can improve their implementations, and add new functionalities. By using these

packages, researchers in the communities enjoy the convenience of using implementations

of most important methods for a computational theory.

We have already implemented two toolboxes including non-negative matrix factoriza-

tion (NMF) toolbox and sparse representation (SR) toolbox. NMF and SR have evolved

relatively independently in the machine learning field, though NMF is essentially a non-

negative sparse representation model. NMF has been intensively studied in both machine

learning and bioinformatics, while the general SR is still not popular in bioinformatics. For

this reason, we separate the implementations of NMF and SR. Since NMF is a special case

of sparse representation, it is almost unavoidable that there are some overlaps in the both

implementations. However, we made efforts to minimize overlapping.

Contributions: In this chapter, we describe our implementations of the sparse represen-

tation models which have already been derived in Chapter 2. Our implementations include

two toolboxes: NMF toolbox and SR toolbox. The following are our contributions:

73
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1. The NMF algorithms, in our NMF toolbox, are relatively complete and implemented

in MATLAB.

2. Our NMF toolbox includes many functionalities for mining biological data, such as

clustering, biclustering, feature extraction, feature selection, and classification.

3. The NMF toolbox also provides additional functions for biological data visualization,

such as heat-maps and other visualization tools. They are pretty helpful for interpret-

ing some results. Statistical methods are also included for comparing the performances

of multiple methods.

4. The SR toolbox consists of all the sparse coding and dictionary learning algorithms

discussed Chapter 2.

5. Based on the basic level of the SR algorithms, machine learning methods, including

classification and dimensionality reduction, are implemented in our SR toolbox.

In the following, we first introduce our NMF toolbox in Section 2, and then the SR

toolbox in Section 3. Due to the importance of NMF, we will briefly describe important

variants of NMF in the section 2.2.

2 The Non-Negative Matrix Factorization Toolbox 1

2.1 Background

Non-negative matrix factorization (NMF) is a matrix decomposition approach which de-

composes a non-negative matrix into two low-rank non-negative matrices [12]. It has been

successfully applied in the mining of biological data.

For example, the authors of [75] and [38] used NMF as a clustering method in order to

discover the metagenes (i.e., groups of similarly behaving genes) and interesting molecular

patterns. The authors of [87] applied non-smooth NMF (NS-NMF) for the biclustering of

gene expression data. Least-squares NMF (LS-NMF) was proposed to take into account the

uncertainty of the information present in gene expression data [88]. We have [89] proposed

the kernel NMF for reducing the dimensions of gene expression data.

Many authors indeed provide their respective NMF implementations along with their

publications so that the interested community can use them to perform the same data

mining tasks respectively discussed in those publications. However, there exist at least

1This section is based on our publication [11].
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three issues that prevent NMF methods from being used by the much larger community of

researchers and practitioners in the data mining, biological, health, medical, and bioinfor-

matics areas. First, these NMF software packages are implemented in diverse programming

languages, such as R, MATLAB, C++, and Java, and usually only one optimization algo-

rithm is provided in their packages. It is inconvenient for many researchers who want to

choose a suitable NMF method or mining task for their data, among the many different im-

plementations, which are realized in different languages with different mining tasks, control

parameters, or criteria. Second, some papers only provide NMF optimization algorithms at

a basic level rather than a data mining implementation at a higher level. For instance, it

becomes hard for a biologist to fully investigate and understand his/her data when perform-

ing clustering or biclustering of his data and then visualize the results; because it should not

be necessary for him/her to implement these three data mining methods based on a basic

NMF. Third, the existing NMF implementations are application-specific, and thus, there

exists no systematic NMF package for performing data mining tasks on biological data.

There currently exist NMF toolboxes, however, none of them addresses the above three

issues altogether. NMFLAB [90] is a MATLAB toolbox for signal and image processing

which provides a user-friendly interface to load and process input data, and then save the

results. It includes a variety of optimization algorithms such as multiplicative rules, ex-

ponentiated gradient, projected gradient, conjugate gradient, and quasi-Newton methods.

It also provide methods for visualizing the data signals and their components, but does

not provide any data mining functionality. Other NMF approaches such as semi-NMF and

kernel NMF are not implemented within this package. NMF:DTU Toolbox [91] is a MAT-

LAB toolbox with no data mining functionalities. It includes only five NMF optimization

algorithms, such as multiplicative rules, projected gradient, probabilistic NMF, alternat-

ing least squares, and alternating least squares with optimal brain surgery (OBS) method.

NMFN: Non-negative Matrix Factorization [92] is a R package similar to NMF:DTU but

with few more algorithms. NMF: Algorithms and framework for Nonnegative Matrix Fac-

torization [93] is another R package which implements several algorithms and allows parallel

computations but no data mining functionalities. Text to Matrix Generator (TMG) is a

MATLAB toolbox for text mining only. The authors of [94] provides a NMF plug-in for

BRB-ArrayTools. This plug-in only implements the standard NMF and semi-NMF and for

clustering gene expression profiles only. Coordinated Gene Activity in Pattern Sets (Co-

GAPS) [95] is a new package implemented in C++ with R interface. In this package, the

Bayesian decomposition (BD) algorithm is implemented and used in place of the NMF

method for factorizing a matrix. Statistical methods are also provided for the inference of
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biological processes. CoGAPS can give more precise results than NMF methods [1]. How-

ever, CoGAPS uses a Markov chain Monte Carlo (MCMC) scheme for estimating the BD

model parameters; which is slower than the NMFs optimization algorithms implemented

with the block-coordinate gradient descent scheme.

In order to address the lack of data mining functionalities and the generalities of current

NMF toolboxes, we propose a general NMF toolbox in MATLAB which is implemented in

two levels. The basic level is composed of the different variants of NMF, and the top

level consists of the diverse data mining methods for biological data. The source code of

this toolbox can be downloaded at https://sites.google.com/site/nmftool and

http://cs.uwindsor.ca/˜li11112c/nmf.

2.2 Implementation

As mentioned above, this toolbox is implemented at two levels. The fundamental level

is composed of several NMF variants and the advanced level includes many data mining

approaches based on the fundamental level. The critical issues in implementing these NMF

variants are addressed in this section. Table 3.1 summarizes all the NMF algorithms im-

plemented in our toolbox. Users (researchers, students, and practitioners) should use the

command help nmfrule, for example, in the command line, for help on how to select a

given function and set its parameters.

Standard-NMF

The standard-NMF decomposes a non-negative matrix X ∈ Rm×n into two non-negative

factors A ∈ Rm×k and Y ∈ Rk×n (where k < min{m,n}), that is

X+ = A+Y+ +E, (3.1)

where, E is the error (or residual) and M+ indicates the matrix M is non-negative. Its

optimization in the Euclidean space is formulated as

min
A,Y

1

2
‖X −AY ‖2F , s.t. ,A,Y ≥ 0. (3.2)

Statistically speaking, this formulation is obtained from the log-likelihood function under

the assumption of a Gaussian error. If multivariate data points are arranged in the columns

ofX, thenA is called the basis matrix and Y is called the coefficient matrix ; each column of

A is thus a basis vector. The interpretation is that each data point is a (sparse) non-negative

https://sites.google.com/site/nmftool
http://cs.uwindsor.ca/~li11112c/nmf
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Table 3.1: Algorithms of NMF variants.

Function Description
nmfrule The standard NMF optimized by gradient-descent-based multiplicative

rules.
nmfnnls The standard NMF optimized by NNLS active-set algorithm.
seminmfrule Semi-NMF optimized by multiplicative rules.
seminmfnnls Semi-NMF optimized by NNLS.
sparsenmfnnls Sparse-NMF optimized by NNLS.
sparsenmfNNQP Sparse-NMF optimized by NNQP.
sparseseminmfnnls Sparse semi-NMF optimized by NNLS.
kernelnmfdecom Kernel NMF through decomposing the kernel matrix of input data.
kernelseminmfrule Kernel semi-NMF optimized by multiplicative rule.
kernelseminmfnnls Kernel semi-NMF optimized by NNLS.
kernelsparseseminmfnnls Kernel sparse semi-NMF optimized by NNLS.
kernelSparseNMFNNQP Kernel sparse semi-NMF optimized by NNQP.
convexnmfrule Convex-NMF optimized by multiplicative rules.
kernelconvexnmf Kernel convex-NMF optimized by multiplicative rules.
orthnmfrule Orth-NMF optimized by multiplicative rules.
wnmfrule Weighted-NMF optimized by multiplicative rules.
sparsenmf2rule Sparse-NMF on both factors optimized by multiplicative rules.
sparsenmf2nnqp Sparse-NMF on both factors optimized by NNQP.
vsmf Versatile sparse matrix factorization optimized by NNQP and l1QP.
nmf The omnibus of the above algorithms.
computeKernelMatrix Compute the kernel matrix k(A,B) given a kernel function.

linear combination of the basis vectors. It is well-known that the objective is non-convex,

and thus, block-coordinate descent is the main prescribed optimization technique for such

a problem. Multiplicative update rules were introduced in [40] for solving the optimization

problem (3.2). Though simple to implement, this algorithm is not guaranteed to converge

to a stationary point [41]. Essentially the optimizations above, with respect to A and Y ,

are non-negative least squares (NNLS). Therefore we implemented the alternating NNLS

algorithm proposed in [41]. It can be proven that this algorithm converges to a stationary

point [41]. In our toolbox, functions nmfrule and nmfnnls are the implementations of

the two algorithms above.

Semi-NMF

The standard NMF only works for non-negative data; which limits its applications. The

authors of [35] have extended it to semi-NMF which removes the non-negative constraints
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on the data X and basis matrix A. It can be expressed in the following equation:

min
A,Y

1

2
‖X −AY ‖2F , s.t. Y ≥ 0. (3.3)

Semi-NMF can be applied to the matrix of mixed signs, therefore it expands NMF to many

fields. However, the gradient-descent-based update rule proposed in [35] is slow to converge

(implemented in function seminmfrule in our toolbox). Keeping Y fixed, updating A is

a least squares problem which has an analytical solution

A = XY T(Y Y T)−1 = XY †, (3.4)

where Y † = Y T(Y Y T)−1 is the Moore-Penrose pseudoinverse. Updating Y while fixing A

is a NNLS problem essentially as above. Therefore we implemented the fast NNLS based

algorithm to optimize semi-NMF in function seminmfnnls.

Sparse-NMF

The standard NMF and semi-NMF have the issues of scale-variance and non-unique solu-

tions, which imply that the non-negativity constrained on the least squares is insufficient in

some cases. Sparsity is a popular regularization principle in statistical modeling [16], and

has already been used in order to reduce the non-uniqueness of solutions and also enhance

the interpretability of the NMF results. The sparse-NMF proposed in [38] is expressed in

the following equation

min
A,Y

1

2
‖X −AY ‖2F +

η

2
‖A‖2F +

λ

2

n∑
i=1

‖yi‖21 (3.5)

s.t. A,Y ≥ 0,

where, yi is the i-th column of Y , η and λ are pre-specified control parameters. From

the Bayesian perspective, this formulation is obtained from the log-posterior probability

under the assumptions of Gaussian error, Gaussian-distributed basis vectors, and Laplace-

distributed coefficient vectors. Keeping one matrix fixed and updating the other matrix

can be formulated as a NNLS problem. In order to improve the interpretability of the basis
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vectors and speed up the algorithm, we implemented the following model instead:

min
A,Y

1

2
‖X −AY ‖2F + λ

n∑
i=1

‖yi‖1 (3.6)

s.t. A,Y ≥ 0,

‖ai‖22 = 1, i = 1, · · · , k.

We optimize this using three alternating steps in each iteration. First, we optimize the

following task:

min
Y

1

2
‖X −AY ‖2F + λ

n∑
i=1

‖yi‖1 (3.7)

s.t. Y ≥ 0.

then, A is updated as follows:

min
A

1

2
‖X −AY ‖2F (3.8)

s.t. A ≥ 0.

and then, the columns of A are normalized to have unit l2 norm. The first and second

steps can be solved using non-negative quadratic programming (NNQP), whose general

formulation is

min
Z

n∑
i=1

1

2
zT
i Hzi + gT

i zi + ci (3.9)

s.t. Z ≥ 0,

where, zi is the i-th column of the variable matrix Z. It is easy to prove that NNLS is a

special case of NNQP. For example, Equation (3.7) can be rewritten as

min
Y

n∑
i=1

1

2
yT
i (ATA)yi + (λ−ATxi)

Tyi + xT
i xi (3.10)

s.t. Y ≥ 0.

The implementations of the method in [38] and our method are given in functions

sparsenmfnnls and sparseNMFNNQP, respectively. We have also implemented the
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sparse semi-NMF in function sparseseminmfnnls.

Versatile Sparse Matrix Factorization

When the training dataX is of mixed signs, the basis matrixA is not necessarily constrained

to be non-negative; this depends on the application or the intentions of the users. However,

without non-negativity, A is not sparse any more. In order to obtain a sparse basis matrix

A for some analysis, we may use l1-norm on A to induce sparsity. The drawback of l1-norm

is that correlated variables may not be simultaneously non-zero in the l1-induced sparse

result. This is because l1-norm is able to produce sparse but non-smooth results. It is

known that l2-norm is able to obtain smooth but non-sparse results. When both norms

are used together, then correlated variables can be selected or removed simultaneously [37].

When smoothness is required on Y , we may also use l2-norm on it in some scenarios. We

thus generalize the aforementioned NMF models into a versatile form as expressed below

min
A,Y

f(A,Y ) =
1

2
‖X −AY ‖2F +

k∑
i=1

(
α2

2
‖ai‖22 + α1‖ai‖1) +

n∑
i=1

(
λ2

2
‖yi‖22 + λ1‖yi‖1)

(3.11)

s.t.

A ≥ 0 i.e., if t1 = 1

Y ≥ 0 i.e., if t2 = 1
,

where, parameters: α1 ≥ 0 controls the sparsity of the basis vectors; α2 ≥ 0 controls the

smoothness and the scale of the basis vectors; λ1 ≥ 0 controls the sparsity of the coefficient

vectors; λ2 ≥ 0 controls the smoothness of the coefficient vectors; and, parameters t1 and t2

are boolean variables (0: false, 1: true) which indicate if non-negativity needs to be enforced

on A or Y , respectively. We can call this model versatile sparse matrix factorization

(VSMF). It can be easily seen that the standard NMF, semi-NMF, and the sparse-NMFs

are special cases of VSMF.

We devise the following multiplicative update rules for the VSMF model in the case of

t1 = t2 = 1 (implemented in function sparsenmf2rule):A = A ∗ XY T

AY Y T+α2A+α1

Y = Y ∗ ATX
ATAY +λ2Y +λ1

, (3.12)

where, operations U ∗V and U
V are the element-wise multiplication and division operators

of matrices U and V , respectively. Alternatively, we also devise an active-set algorithm for
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VSMF (implemented in function vsmf). When t1(or t2) = 1, A (or Y ) can be updated by

NNQP (this case is also implemented in sparsenmf2nnqp). When t1(or t2) = 0, A (or

Y ) can be updated using 11QP.

Kernel-NMF

Two features of a kernel approach are that i) it can represent complex patterns, and ii) the

optimization of the model is dimension-free. We now show that NMF can also be kernelized.

The basis matrix is dependent on the dimension of the data, and it is difficult to represent

it in a very high (even infinite) dimensional space. We notice that in the NNLS optimiza-

tion, updating Y in Equation (3.10) needs only the inner products ATA, ATX, and XTX.

From Equation (3.4), we obtain ATA = (Y †)TXTXY †, ATX = (Y †)TXTX. Therefore,

we can see that only the inner product XTX is needed in the optimization of NMF. Hence,

we can obtain the kernel version, kernel-NMF, by replacing the inner product XTX with

a kernel matrix K(X,X). Interested readers can refer to our recent paper [89] for further

details. Based on the above derivations, we implemented the kernel semi-NMF using mul-

tiplicative update rule (in kernelseminmfrule) and NNLS (in kernelseminmfnnls).

The sparse kernel semi-NMFs are implemented in functions kernelsparseseminmfnnls

and kernelSparseNMFNNQP which are equivalent to each other. The kernel method of

decomposing a kernel matrix proposed in [96] is implemented in kernelnmfdecom.

Other Variants

The authors of [35] proposed the Convex-NMF, in which one column of A is constrained to

be a convex combination of data points in X. It is formulated as X± = X±W+Y+ + E,

where M± indicates that matrix M is of mixed signs. XW = A and each column of W

contains the convex coefficients of all the data points to get the corresponding column of A.

It has been demonstrated that the columns of A obtained with the convex-NMF are close to

the real centroids of clusters. Convex-NMF can be kernelized as well [35]. We implemented

the convex-NMF and its kernel version in convexnmfrule and kernelconvexnmf, re-

spectively.

The basis vectors obtained with the above NMFs are non-orthogonal. Alternatively,

orthogonal NMF (ortho-NMF) imposes the orthogonality constraint in order to enhance
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sparsity [97]. Its formulation is

X = ASY +E (3.13)

s.t. ATA = I, Y Y T = I, A,S,Y ≥ 0,

where, the input X is non-negative, S absorbs the magnitude due to the normalization

of A and Y . Function orthnmfrule is its implementation in our toolbox. Ortho-NMF

is very similar with the non-negative sparse PCA (NSPCA) proposed in [98]. The disjoint

property on ortho-NMF may be too restrictive for many applications, therefore this property

is relaxed in NSPCA. Ortho-NMF does not guarantee the maximum-variance property

which is also relaxed in NSPCA. However NSPCA only enforces non-negativity on the basis

vectors, even when the training data have negative values. We plan to devise a model

in which the disjoint property, the maximum-variance property, the non-negativity and

sparsity constraints can be controlled on both basis vectors and coefficient vectors.

There are two efficient ways of applying NMF on data containing missing values. First,

the missing values can be estimated prior to running NMF. Alternatively, weighted-NMF

[99] can be directly applied to decompose the data. Weighted-NMF puts a zero weight on

the missing elements and hence only the non-missing data contributes to the final result.

An expectation-maximization (EM) based missing value estimation during the execution

of NMF may not be efficient. The weighted-NMF is given in our toolbox in function

wnmfrule.

2.3 Results and Discussions

Based on the various implemented NMFs, a number of data mining tasks can be performed

via our toolbox. Table 3.2 lists the data mining functionalities we provide in this level.

These mining tasks are also described along with appropriate examples.

Clustering and Biclustering

NMF has been applied for clustering. Given data X with multivariate data points in the

columns, the idea is that, after applying NMF on X, a multivariate data point, say xi

is a non-negative linear combination of the columns of A; that is xi ≈ Ayi = y1ia1 +

· · · + ykiak. The largest coefficient in the i-th column of Y indicates the cluster this data

point belongs to. The reason is that if the data points are mainly composed with the

same basis vectors, they should therefore be in the same group. A basis vector is usually

viewed as a cluster centroid or prototype. This approach has been used in [75] for clustering
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Table 3.2: NMF-based data mining approaches.

Function Description
NMFCluster Take the coefficient matrix produced by a NMF algorithm, and output

the clustering result.
chooseBestk Search the best number of clusters based on dispersion coefficients.
biCluster Biclustering method using one of the NMF algorithms.
featureExtractionTrain General interface. Using training data, generate the bases of the NMF

feature space.
featureExtractionTest General interface. Map the test/unknown data into the feature space.
featureFilterNMF On training data, select features by various NMFs.
featSel Feature selection methods.
nnlsClassifier The NNLS classifier.
perform Evaluate the classifier performance.
changeClassLabels01 Change the class labels to be in {0, 1, 2, · · · , C − 1} for C-class problem.
gridSearchUniverse a framework to do line or grid search.
classificationTrain Train a classifier. Many classifiers are included.
classificationPredict Predict the class labels of unknown samples via the model learned by

classificationTrain.
multiClassifiers Run multiple classifiers on the same training data.
cvExperiment Conduct experiment of k-fold cross-validation on a data set.
significantAcc Check if the given data size can obtain significant accuracy.
learnCurve Fit the learning curve.
FriedmanTest Friedman test with post-hoc Nemenyi test to compare multiple classifiers

on multiple data sets.
plotNemenyiTest Plot the crucial-difference diagram of Nemenyi test.
NMFHeatMap Draw and save the heat maps of NMF clustering.
NMFBicHeatMap Draw and save the heat maps of NMF biclustering.
plotBarError Plot bars with STD.
writeGeneList Write the gene list into a .txt file.
normmean0std1 Normalization to have mean 0 and standard deviation 1.
sparsity Calculate the sparsity of a matrix.
MAT2DAT Write a data set from MATLAB into .dat format in order to be readable

by other languages.

microarray data and in order to discover tumor subtypes. We have implemented function

NMFCluster through which various NMF algorithms can be selected. An example is

provided in exampleCluster file in the folder of our toolbox.

The task of interpreting both the basis matrix and the coefficient is equivalent to si-

multaneously clustering the rows and columns of matrix X. This is biclustering and the

interested readers can refer to [100] for an excellent survey on biclustering algorithms and

to [87] for a biclustering method based on NMF. We implemented a biclustering approach

based on NMF in the biCluster function. The biclusters can be visualized via function

NMFBicHeatMap. We applied NMF to simultaneously grouping the genes and samples of
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a leukemia data set [75] which includes tumor samples of three subtypes. The goal is to

find strongly correlated genes over a subset of samples. A subset of such genes and a subset

of such samples form a bicluster. The heat-map is shown in Figure 3.1. Readers can find

the script in exampleBiCluster file of our toolbox.
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Figure 3.1: Heat map of NMF biclustering result. Left: the gene expression data where
each column corresponds to a sample. Center: the basis matrix. Right: the coefficient
matrix. This is a color figure, thus the readability may be affected if printed in grayscale.

Basis Vector Analysis for Biological Process Discovery

We can obtain interesting and detailed interpretations via an appropriate analysis of the

basis vectors. When applying NMF on a microarray data, the basis vectors are interpreted

as potential biological processes [45, 38, 1]. In the following, we give one example for finding

biological factors on gene-sample data, and two examples on time-series data. Please note

they only serve as simple examples. Fine tuning of the parameters of NMF is necessary for

accurate results.

First example: We ran our VSMF on the ALLAML gene-sample data of [75] with the

settings k = 3, α1 = 0.01, α2 = 0.01, λ1 = 0, λ2 = 0.01, t1 = 1, and t2 = 1. Next, we obtain

81, 37, and 448 genes for the three factors, respectively. As in [38], we then performed

gene set enrichment analysis (GSEA) by applying Onto-Express [101] on each of these sets

of genes. Part of the result is shown in Table 3.3. We can see that the factor-specific

genes selected by NMF correspond to some biological processes significantly. Please see file
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exampleBioProcessGS in the toolbox for details. GSEA can also be done using other

tools, such as MIPS [102], GOTermFinder [103], and DAVID [104, 105].

Table 3.3: Gene set enrichment analysis using Onto-Express for the factor specific genes
identified by NMF.

Factor 1 Factor 2 Factor 3
biological process p-val.biological process p-val.biological process p-val.

reproduction (5) 0 response to stimulus (15)0.035regulation of bio. proc. (226)0.009
metabolic process (41) 0 biological regulation(14) 0.048multi-organism proc. (39) 0.005
cellular process (58) 0 biological regulation (237) 0.026
death (5) 0
developmental process (19) 0
regulation of biological process (19) 0

Second example: We used NMF to cluster a time-series data of yeast metabolic cycle

in [106]. Figure 3.2 shows the heat-map of NMF clustering, and Figure 3.3 shows the three

basis vectors. We used nmfnnls function to decompose the data and NMFHeatMap to plot

the heat-map. The detailed script is given in the exampleBioProcessTSYeast file in

the toolbox. We can clearly see that the three periodical biological processes correspond

exactly to the Ox (oxidative), R/B (reductive, building), and R/C (reductive, charging)

processes discovered in [106].
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Figure 3.2: Heat map of NMF clustering result on yeast metabolic cycle time-series data.
Left: the gene expression data where each column corresponds to a sample. Center: the
basis matrix. Right: the coefficient matrix. This is a color figure, thus the readability may
be affected if printed in grayscale.
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Figure 3.3: Biological processes discovered by NMF on yeast metabolic cycle time-series
data. This is a color figure, thus the readability may be affected if printed in grayscale.

Third example: We used NMF to factorize a breast cancer time-series data set, which

includes wild type MYCN cell lines and mutant MYCN cell lines [107]. The purpose of

this example is to show that NMF is a potential tool to find cancer drivers. One basic

methodology is in the following. First, basis vectors are produced applying NMF on a

time-series data. Then factor-specific genes are identified by computational or statistical

methods. Finally, the regulators of these factor-specific genes are identified from any prior

biological knowledge. This data set has 8 time points (0, 2, 4, 8, 12, 24, 36, 48 hr.). Samples

at time point zero are untreated. Samples were collected at the subsequent time points after

treatment with 4-hydroxytamoxifen (4-OHT). In our computational experiment, we use our

VSMF implementation (function vsmf). we set k = 2. Because this data set has negative

values we set t1 = 0 and t2 = 1. We set α1 = 0.01, α2 = 0, λ1 = 0, and λ2 = 0.01. The basis

vectors of both wild-type and mutant data are compared in Figure 3.4. From the wild-type

time-series data, we can successfully identify two patterns. The rising pattern corresponds

to the induced signature while the falling pattern corresponds to the repressed signature in

[107]. It is reported in [107] that the MYC target genes contribute to both patterns. From

the mutant time-series, we can obtain two flat processes, which are reasonable. The source

code of this example can be found in exampleBioProcessMYC. We also recommend the

readers to see the methods based on matrix decompositions which are proposed in [1] and

[46] and devised for identifying signaling pathways.
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Figure 3.4: Biological processes discovered by NMF on breast cancer time-series data. This
is a color figure, thus the readability may be affected if printed in grayscale.

Basis Vector Analysis for Gene Selection

The columns of A for a gene expression data set are called metasamples in [75]. They

can be interpreted as biological processes, because their values imply the activation or

inhibition of some genes. Gene selection aims to find marker genes for disease prediction

and to understand the pathways they contribute to. Rather than selecting genes on the

original data, the novel idea is to conduct gene selection on the metasamples. The reason

is that the discovered biological processes via NMF are biologically meaningful for class

discrimination in disease prediction, and the genes expressed differentially across these

processes contribute to better classification performance in terms of accuracy. In Figure 3.1

for example, three biological processes are discovered and only the selected genes are shown.

We have implemented the information-entropy-based gene selection approach proposed in

[38] in function featureFilterNMF. We give an example on how to call this function in

file exampleFeatureSelection. It has been reported that NMF can select meaningful

genes, which have been verified with gene ontology analysis. In the future, we are also

interested in implementing feature selection methods based on supervised NMF.

Feature Extraction

Microarray data and mass spectrometry data have tens of thousands of features but only

tens or hundreds of samples. This leads to the issues of curse of dimensionality. For
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example, it is impossible to estimate the parameters of some statistical models since the

number of their parameters grow exponentially as the dimension increases. Another issue is

that biological data are usually noisy; which crucially affects the performances of classifiers

applied on the data. In cancer study, a common hypothesis is that only a few biological

factors (such as the oncogenes) play a crucial role in the development of a given cancer.

When we generate data from control and sick patients, the high-dimensional data will

contain a large number of irrelevant or redundant information. Orthogonal factors obtained

with principal component analysis (PCA) may not appropriate in most cases. Since NMF

generates non-orthogonal (and non-negative) factors, therefore it is much reasonable to

extract important and interesting features from such data using NMF. As mentioned above,

training dataXm×n, with m features and n samples, can be decomposed into k metasamples

Am×k and Yk×n, that is

X ≈ AYtrace, s.t. A,Ytrace ≥ 0, (3.14)

where, Ytrace means that Y is obtained from the training data. The k columns of A

span the k-dimensional feature space and each column of Ytrace is the representation of

the corresponding original training sample in the feature space. In order to project the p

unknown samples Sm×p into this feature space, we have to solve the following non-negative

least squares problem:

S ≈ AYuk, s.t. Yuk ≥ 0, (3.15)

where, Yuk means the Y is obtained from the unknown samples. After obtaining Ytrace

and Yuk, the learning and prediction steps can be done quickly in the k-dimensional feature

space instead of the m-dimensional original space. A classifier can learn over Ytrace, and

then predicts the class labels of the representations of unknown samples, that is Yuk.

From the aspect of interpretation, the advantage of NMF over PCA and ICA is that the

metasamples are very useful in the understanding of the underlying biological processes, as

mentioned above.

We have implemented a pair of functions featureExtractionTrain and

featureExtractionTest including many linear and kernel NMF algorithms. The basis

matrix (or, the inner product of basis matrices in the kernel case) is learned from the

training data via the function featureExtractionTrain, and the unknown samples

can be projected onto the feature space via the function featureExtractionTest. We

give examples of how to use these functions in files exampleFeatureExtraction and

exampleFeatureExtractionKernel.

Figure 3.5 shows the classification performance of SVM without dimension reduction
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and SVM with dimension reduction using linear NMF, kernel NMF with radial basis func-

tion (RBF) kernel, and PCA on two data sets, SRBCT [80] and Breast [31]. Since ICA

is computationally costly, we did not include it in the comparisons. The bars represent

the averaged four-fold cross-validation accuracies using support vector machine (SVM) as

classifier over 20 runs. We can see that NMF is comparable to PCA on SRBCT, and is

slightly better than PCA on Breast data. Also, with only few factors, the performance after

dimension reduction using NMF is at least comparable to that without using any dimension

reduction. As future work, supervised NMF will be investigated and implemented in order

to extract discriminative features.

Breast SRBCT
0.4

0.5

0.6

0.7

0.8

0.9

1

Data

A
cc

ur
ac

y

 

 
NONE
NMF
KNMF
PCA

Figure 3.5: Mean accuracy and standard deviation results of NMF-based feature extraction
on SRBCT data. This is a color figure, thus the readability may be affected if printed in
grayscale. The order of the bars, from left to right, in the figure, is the same as these from
top to bottom in the legend.

Classification

If we make the assumption that every unknown sample is a sparse non-negative linear

combination of the training samples, then we can directly derive a classifier from NMF.

Indeed, this is a specific case of NMF in which the training samples are the basis vectors.

Since the optimization process within NMF is a NNLS problem, we call this classification



CHAPTER 3. THE NMF AND SR TOOLBOXES 90

approach the NNLS classifier [18]. A NNLS problem is essentially a quadratic programming

problem as formulated in Equation (3.9), therefore, only the inner products are needed for

the optimization. We thus can naturally extend the NNLS classifier to kernel version. Two

features of this approach are that: i) the sparsity regularization help avoid overfitting the

model; and ii) the kernelization allows a dimension-free optimization and also linearizes the

non-linear complex patterns within the data. The implementation of the NNLS classifier is

in file nnlsClassifier. Our toolbox also provides many other classification approaches

including SVM classifier. Please see file exampleClassification for demonstration. In

our experiment of four-fold cross-validation, accuracies of 0.7865 and 0.7804 are respectively

obtained with linear and kernel (RBF) NNLS classifier on Breast data set. They achieved

accuracies of 0.9762 and 0.9785, respectively, over SRBCT data.

Biological data are usually noisy and sometimes contain missing values. A strength

of the NNLS classifier is that it is robust to noise and to missing values, making NNLS

classifiers quite suitable for classifying biological data [18].

In order to show its robustness to noise, we added a Gaussian noise on SRBCT. The

Gaussian distribution has mean 0 and variance from 0 to 4 with increment 0.5. Figure 3.6

illustrates the results of NNLS, SVM, and 1-nearest neighbor (1-NN) classifiers using this

noisy data. It can be seen that as the noise increases, NNLS outperforms SVM and 1-NN

significantly.

To deal with the missing value problem, three strategies are usually used: incomplete

sample or feature removal, missing value imputation (i.e., estimation), and ignoring missing

values. Removal methods may delete important or useful information for classification and

particularly when there is a large percentage of missing values in the data. Imputation

methods may create false data depending on the magnitude of the true estimation errors.

The third method ignores missing values using the weighting strategy during classification.

Our approach in dealing with the missing value problem is also to ignore them. The NNLS

optimization needs only the inner products of pairs of samples. Thus, when computing the

inner product of two samples, say xi and xj , we normalize them to have unit l2-norm using

only the features present in both samples, and then we take their inner product. As an

example, we randomly removed between 10% to 70% of data values in STBCT data. Using

such incomplete data, we compared our method with the zero-imputation method (that is,

estimating all missing values as 0). In Figure 3.7, we can see that the NNLS classifier using

our missing value approach outperforms the zero-imputation method in the case of large

missing rate. Also, the more sophisticated k-nearest neighbor imputation (KNNimpute)

method [108] will fail on data with in high percentage of missing values.
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Figure 3.6: The mean accuracy results of NNLS classifier for different amount of noise on
SRBCT data. This is a color figure, thus the readability may be affected if printed in
grayscale.

Statistical Comparison

The toolbox provides two methods for statistical comparisons and evaluations of different

methods. The first is a two-stage method proposed in [67]. The importance of this method

is that it can estimate the data-size requirement for attaining a significant accuracy and

extrapolate the performance based on the current available data. Generating biological data

is usually very expensive and thus this method can help researchers to evaluate the necessity

of producing more data. At the first stage, the minimum data size required for obtaining

a significant accuracy is estimated. This is implemented in function significantAcc.

The second stage is to fit the learning curve using the error rates of large data sizes. It is

implemented in function learnCurve. In our experiments, we have found that the NNLS

classifier usually requires fewer number of samples for obtaining a significant accuracy. For

example on SRBCT data, NNLS requires only 4 training samples while SVM needs 19 train-

ing samples. The fitted learning curves of NNLS and SVM classifiers are shown in Figure

3.8. We provide an example of how to plot this figure in file exampleFitLearnCurve.

The second method is the nonparametric Friedman test coupled with the post-hoc Ne-

menyi test to compare multiple classifiers over multiple data sets [85]. It is difficult to draw



CHAPTER 3. THE NMF AND SR TOOLBOXES 92

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.6

0.7

0.8

0.9

1

Missing Rate

A
cc

ur
ac

y

 

 

NNLS−NS
NNLS−NS+Imputation
linearSVM+Imputation

Figure 3.7: The mean accuracy results of NNLS classifier for different missing value rates
on SRBCT data. This is a color figure, thus the readability may be affected if printed in
grayscale.
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Figure 3.8: The fitted learning curves of NNLS and SVM classifiers on SRBCT data. This
is a color figure, thus the readability may be affected if printed in grayscale.

an overall conclusion if we compare multiple approaches in a pairwise fashion. The Fried-

man test has been recommended in [85] because it is simple, safe and robust, compared
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with parametric tests. It is implemented in function FriedmanTest. The result can be

presented graphically using the crucial difference (CD) diagram as implemented in function

plotNemenyiTest. CD is determined by significance level α. Figure 3.9 is an example of

the result of the Nemenyi test for comparing 8 classifiers over 13 high dimensional biological

data sets. This example can be found in file exampleFriedmanTest. If the distance of

two methods is greater than the CD then we conclude that they differ significantly.
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Figure 3.9: Nemenyi test comparing 8 classifiers over 13 high dimensional biological data
(α = 0.05).

3 The Sparse Representation Toolbox

3.1 Introduction

We have implemented all the sparse representation methods mentioned in the previous sec-

tion. We pack these implementations all together in our sparse representation toolbox (SR

toolbox). We separate our code into basic level and advanced level. The basic level is

mainly composed of sparse coding models, dictionary learning models, and the correspond-

ing optimization. The advanced level includes kernel classification and feature extraction

methods based on sparse representation. We introduce both levels in the subsequent sec-

tions. Examples of using these functions can be found in the folder of the source code. The

source code of this toolbox can be downloaded at https://sites.google.com/site/

sparseReptool and http://cs.uwindsor.ca/˜li11112c/sr.

https://sites.google.com/site/sparseReptool
https://sites.google.com/site/sparseReptool
http://cs.uwindsor.ca/~li11112c/sr
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3.2 Implementations

The Basis Implementation

We summarize our implementations of the basic sparse representation techniques in Ta-

ble 3.4. Functions KSRSC and KSRDL are the generic interfaces of kernel sparse coding

and dictionary learning. In files exampleKSRSC, and exampleKSRDL, we provide exam-

ples of how to uses these functions, respectively. Function vsmf is more general, as has

been introduced in the NMF toolbox. In Table 3.4, we also list our implementations of

active-set, interior-point, proximal, and decomposition methods for sparse coding. In file

exampleOptSC, examples are given to show usages of these optimization functions.

Table 3.4: Methods of sparse representation.

Function Description
KSRSC Kernel sparse coding methods including l1LS, NNLS, and l1NNLS.
KSRDL The generic kernel dictionary learning framework.
vsmf Versatile sparse matrix factorization optimized by NNQP and l1QP.
l1QPActiveSet The active-set method for single or multiple l1QP problem.
NNQPActiveSet The active-set method for single or multiple NNQP problem.
l1QPIP The interior-point method for single l1QP problem.
l1QPIPMulti The interior-point method for multiple l1QP problem.
NNQPIP The interior-point method for single NNQP problem.
NNQPIPMulti The interior-point method for multiple NNQP problem.
l1QPProximal The proximal method for single l1QP problem.
l1QPProximalMulti The proximal method for multiple l1QP problem.
l1QPSMO The SMO method for single l1QP problem.
l1QPSMOMulti The SMO method for multiple l1QP problem.
NNQPSMO The SMO method for single NNQP problem.
NNQPSMOMulti The SMO method for multiple NNQP problem.
computeKernelMatrix Compute the kernel matrix k(A,B) given a kernel function.
sparsity Computer the sparsity of a matrix.
normalizeKernelMatrix Normalize kernel matrices to let each sample have unit l2-norm.

The Advanced Implementation

The advanced level of our implementation consists of machine learning applications based

on sparse representation. The breakdown of these applications is given in Table 3.5. First of

all, using function KSRSCClassifier, one can conduct kernel-sparse-coding based classi-

fication. The l1LS, NNLS, l1LS models with different optimization algorithms and kernels

can be specified by the input of KSRSCClassifier. Function computeMetaSample

implements the training of MNNLS, that is learning the sub-dictionaries. The prediction
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of MNNLS can be conducted by KSRSCClassifier. Function lrc is the implementation

of kernel linear regression classification (LRC) approach which extends the original LRC

method [109]. Functions nearestCentroidTrain and nearestCentroidPredict

implement the training and prediction phases of the kernel nearest centroid (NC) method.

Functions classificationTrain and classificationPredict are the unified in-

terfaces of these classifiers. Users can easily add their own classifiers in these interfaces.

Function multiClassifiers allows users to choose multiple classifiers. Cross-validation

can be conducted by function cvExperiment. The examples of all these methods are

given in file exampleClassification.

Second, function featureExtractionTrain is the unified interface of the training

of feature extraction based on dictionary learning. Function featureExtractionTest

is used after featureExtractionTrain to project the unknown samples to the feature

space learned by featureExtractionTrain. We provide an example of feature extrac-

tion in file exampleFeatExtr.

Table 3.5: Sparse-representation based machine learning methods.

Function Description
KSRSCClassifier The classification approach based on kernel sparse coding.
computeMetaSample The training of sub-dictionary learning.
lrc Kernel linear regression classification.
nearestCentroidTrain Train the kernel nearest centroid classifier.
nearestCentroidPredict Predict the class labels of unknown samples by the model trained by

nearestCentroidTrain.
classificationTrain Train a classifier. Many classifiers are included.
classificationPredict Predict the class labels of unknown samples via the model learned by

classificationTrain.
multiClassifiers Run multiple classifiers on the same training data.
cvExperiment Conduct experiment of k-fold cross-validation on a data set.
featureExtractionTrain General interface. Using training data, generate the bases of the SR

feature space.
featureExtractionTest General interface. Map the test/unknown data into the feature space.
subspace The nearest subspace rule used in KSRSCClassifier.
knnrule The weighted k-nearest neighbor rule used in KSRSCClassifier.
leaveMOut Leave m out.
changeClassLabels01 Change the class labels to be in {0, 1, 2, · · · , C − 1} for C-class problem.
perform Compute the performance of classification.
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3.3 Conclusions

We have developed the NMF toolbox and SR toolbox to accommodate our implementations

of sparse representation techniques. The basic level allows the machine learning researchers

to devise new methods based on the basic techniques. Researchers from the other areas, such

as signal processing and computer vision, can also conveniently apply them. The advanced

level facilitates the bioinformaticians to conduct analysis including clustering, feature ex-

traction, feature selection, and classification. Examples are provided to demonstrate the

usages of these functionalities.

We mention some of our future works below. First, we will include more NMF algo-

rithms such as nsNMF, LS-NMF, and supervised NMF. Second, we are very interested

in implementing and speeding up the Bayesian decomposition method which is actually

a probabilistic NMF introduced independently in the same period as the standard NMF.

Third, we would like to implement Markov chain Monte Carlo method for the optimiza-

tion of NMF and sparse representation. Finally, we plan to realize a supervised dictionary

learning based on Bayesian regression.

Publications

1. The NMF toolbox was published in [ Y. Li and A. Ngom, “The non-negative matrix

factorization toolbox for biological data mining,” BMC Source Code for Biology and

Medicine, vol. 8, pp. 10, 2013.].

2. The SR toolbox has not been formally published yet. It is available online [https:

//sites.google.com/site/sparsereptool].

https://sites.google.com/site/sparsereptool
https://sites.google.com/site/sparsereptool


Chapter 4

Tensor Decompositions and Kernel

Methods for The Classification of

Gene-Sample-Time Data 1

1 Introduction

With the recent advances in microarray technology, the expression levels of genes with

respect to samples can be monitored synchronically over a series of time points. Such

microarray data have three types of variables, genes, samples, and time points. Thus, they

are tensor data of order three and are termed gene-sample-time (GST) microarray data

or GST data for short. In the literature, GST data are known as three-dimensional (3D)

data. In order to avoid any confusion with the dimensionality of a vector in linear algebra

and multivariate statistics, we follow the definition in tensor (or multilinear) algebra and

refer to GST data as order three tensor data, or three-way data. We should clarify that

dimensionality refers to the number of features of a sample rather than the number of orders

of a single value in a data set, therefore the dimensionality of a sample in a GST data set

is the number of genes times the number of time points. Figure 4.1 gives an example of a

GST data set in tensor and heatmap representations.

Machine learning and data mining approaches are among the main tools to analyzing

GST data. For example, by applying classification and gene selection methods, candidate

marker genes are selected in [112] from the IFNβ GST data. They can help to discover the

pathway of multiple sclerosis. By applying biclustering and triclustering methods, one can

1This chapter is based on our publications [110], [18], and [111].
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Figure 4.1: A three-way tensor representation (left) and a heatmap representation (right)
of a GST data set. The black columns in the heatmap representation correspond to missing
time points.

identify subpatterns of genes and samples. It has been well-known that subtypes of breast

cancer can be identified by biclustering [113]. Classification techniques can be applied on

GST data for the diagnosis of diseases, and the prognosis of an on-going treatment. If

a computational method suggests that the patient wouldn’t respond well to the current

treatment based on the time-series data, then the therapy must be revised or stopped, as

many treatments have severe side effects.

Current approaches of analyzing two-way microarray data, such as time-series microar-

rays (gene-time data) or tissue microarrays (gene-sample data) include supervised or unsu-

pervised learning and data mining methods. However, two-way approaches, such as cluster-

ing models for instance, may not be suitable to describe the relationships between the three

variables in GST data. They cannot be directly generalized or extended for the three-way

GST data. Current GST data contain many missing values in all the three directions. They

also contain a large number of genes with a very few number of samples and time-points,

and thus they require efficient and effective methods for tackling the potential curse of

dimensionality rising during learning a computational model. In general, if the number of

parameters is much larger than the number of training samples, and grows rapidly even

exponentially as the number of dimensions increases, the curse of dimensionality occurs.

Contributions: In this chapter, we propose sparse tensor decomposition methods and

kernel methods for the dimensionality reduction and classification of gene-sample-time data.

Our contributions are the following:

1. We propose to apply the sparse tensor decomposition method, higher-order non-
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negative matrix factorization, to reduce the dimensionality of the gene-sample-time

data efficiently.

2. We apply kernel sparse coding and kernel dictionary learning methods for classifying

matrix samples and extract vectorial features, respectively.

The rest of this chapter is organized as follows. We first propose our tensor decomposi-

tion based dimension reduction method for classifying GST data in Section 2. After that,

we propose to use kernel sparse coding, and kernel dictionary learning for the classification

of GST data in Section 3. In Appendix A, we shortly introduce the tensor algebra.

2 Tensor Decomposition Methods for Classification

Classification techniques for GST data can be used for diagnosis and prognosis. In this

section, we shall introduce non-kernel classification and non-kernel feature extraction ap-

proaches for GST data including hidden Markov models and tensor factorizations. In the

next section, we introduce kernel approaches. Unlike clustering, in the context of classi-

fication, a GST data set is usually represented by a Gene × Time × Sample tensor. In

the literature, the IFNβ data [112] is one of the most popular data sets to test the per-

formance of methods for GST data analysis. Interferon beta (IFNβ) is a protein used for

treating patients afflicted with multiple sclerosis (MS), among other diseases. Some MS pa-

tients who received IFNβ therapy do not respond well to the drug and the reasons are still

not clear [114]. Medical researchers are seeking for genomic reasons via high-throughput

data analysis. Baranzini et al. [112], among others researchers, applied Bayesian learning

methods on a clinical microarray data set to determine pairs or triplets of genes that can

discriminate between bad and good IFNβ responders. This data set is available online as

the supplementary material of [112]. The initial data set is a GST data sampled from 53 MS

patients who were initially treated with equal dose of IFNβ over a time period. This initial

data set contains the expression measurements for 76 genes at 7 time points (0, 3, 6, 9, 12,

18 and 24 months) for each patient, with 31 patients responding well and the remaining 22

responding badly to the treatment. This data set contains genes with missing expression

measurements at some time points. Those genes and corresponding samples were removed

from our analysis, and hence, the resulting “complete” data contains 53 genes and 27 sam-

ples (18 good responders and 9 bad responders). In this chapter, we denote this data set as

IFNβ, and use it as the working data set for all the classification methods discussed below.
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2.1 Related Works

The authors of [112] proposed an integrated Bayesian inference system (IBIS) to select

triplets of genes for classifying IFNβ samples but using only the first time point, and thus

did not benefit from (nor consider) the full GST data. In [115], generative hidden Markov

models (GenHMMs) and discriminative HMMs (DiscHMMs) approaches were devised for

classifying IFNβ samples. Samples from the same class are used to train a GenHMM,

whereas samples from all classes are used to train a DiscHMM; then a test sample is assigned

to a class based on the maximum conditional likelihood. The Baum-Welch algorithm is used

to estimate the parameters of the models. For DiscHMMs, backward gene selection is first

performed to find a small number of discriminative genes before training the models.

The authors of [116] proposed a robust constrained mixture estimation approach to

classify the IFNβ data. This approach combines the constrained clustering method with a

mixture estimation classification framework. Subdivision of classes and mislabeled samples

can be investigated by this approach. During training, negative constraints were restricted

on pairs of samples. The constrained mixture model, with linear HMMs, as components,

is optimized by an EM algorithm. The supervised version of this approach (HMMConst)

only uses the training set in the estimation of parameters, while the semi-supervised version

(HMMConstAll) uses all the data. The emission probability for each state is modeled by a

mixture of multivariate Gaussians for patient expression values, noise, and missing values,

respectively. In order to select genes contributing to classification, a HMM-based gene

ranking method is used. Each component of the mixture model is assigned to a class.

When testing, a test sample is assigned to a class according to the maximum entry in their

posterior distribution.

The classification performance of the GenHMMs and DiscHMMs are compared on IFNβ

data, while the implementations of HMMConst and HMMConstAll [116] are not available,

we thus can not investigate their performance. Nine-fold cross-validation was employed

to split the whole data into training sets and test sets. It was rerun for 20 times, and

the means and standard deviations of specificity, sensitivity, and accuracy are given in

Table 4.1. The accuracy is defined as the ratio of the number of correctly predicted test

samples to the total number of test samples. Good responders are treated as “negative”,

while bad responders are “positive”. Therefore, specificity is the prediction accuracy of the

good responders, that is, the ratio of the number of correctly predicted good responders to

the total number of good responders, while sensitivity is that of the bad responders. The

parameter for GenHMMs and DiscHMMs is the number of selected genes; absence of such

parameter means gene selection was not used. First of all, we can see that both methods
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Table 4.1: Classification performance of hidden Markov models on complete IFNβ data.

Method Parameter Specificity Sensitivity Accuracy
GenHMMs - 0.8611±0.036 0.5556±0.000 0.7593±0.044
DiscHMMs - 0.8611±0.036 0.5556±0.000 0.7593±0.044
GenHMMs 7 0.8611±0.063 0.5611±0.008 0.7611±0.047
DiscHMMs 7 0.8611±0.063 0.5611±0.008 0.7611±0.047

have low sensitivity and high specificity. This is consistent with the clinical result that the

response to IFNβ is difficult to predict. Second, the average prediction accuracy of both

methods are promising. Third, by selecting genes, the accuracy can be slightly improved.

2.2 Tensor Decomposition for Feature Extraction

We propose to use tensor decomposition to reduce the dimensionality of GST data before

classification. A few new features can be extracted by Linear dimension reduction (LDR)

[117] methods, in order to capture useful information for classification or clustering. Each

of the new features is a linear combination of the original features. A transformation matrix

projects the original samples into a new space, termed feature space. A sample in the feature

space is a representation of the corresponding original sample. Taking NMF for example, a

non-negative training set Xtrain with m genes and n samples of a gene-sample data can be

decomposed into a non-negative basis matrix Atrain and a non-negative coefficient matrix

Y train, that is

Xtrain
m×n ≈ Atrain

m×rY
train
r×n , Xtrain,Atrain,Y train ≥ 0, (4.1)

where r < min{m,n} is the number of dimensions of the feature space. Each column of

Y train is a representation of the corresponding original sample in the feature space spanned

by the columns of Atrain. In the feature space, a new feature is a linear combination

of the original n genes. A sample in the original space can be mapped into the feature

space by the transformation matrix (Atrain)T . The dimension of the feature space is much

lower than that of the original space. LDR methods extend into multilinear dimension

reduction (MLDR) methods in tensor algebra. Before reading the following content, the

reader is referred to Appendix A for an introduction to tensor notations, tensor operations,

and tensor factorizations including PARAFAC decomposition and Tucker decomposition.

Tensor decomposition has been applied in the analysis of high-order microarray data in

[118] and [119]. We focus on the MLDR method for GST data below. Let X be a training

set, from a GST data set, with I1 genes, I2 time points, and I3 samples. Factorizing the
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Figure 4.2: From Tucker3 decomposition (top) to Tucker1 decomposition (bottom).

GST data X by Tucker3 decomposition as in Equation (A.6), we can obtain

X ≈ B×3 S = JB; IG, IT ,SK, (4.2)

where B = C ×1 G ×2 T , IG and IT are identity matrices of sizes I1 × I1 and I2 × I2,

respectively, S is of size I3 × J3. The Tucker3 decomposition and Tucker1 decomposition

are illustrated in Figure 4.2.

Making use of multilinear operations, we have

X(1) ≈ IGB(1)(S ⊗ IT )T

= IG[B1,B2, · · · ,BJ3 ][s1 ⊗ IT , s2 ⊗ IT , · · · , sJ3 ⊗ IT ]T

=

J3∑
r=1

IGBr(sr ⊗ IT )T , (4.3)

where Br = B(:, :, r) is the r-th frontal slice of B(:, :, r), and sr is the r-th column vector

of S. Via tensorization, we have

X ≈
J3∑
r=1

Br ×3 sr , (4.4)
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which approximates the GST data, X, by the summation of J3 tensors. We can see it more

clearly by the matrix formulation as follows:

X(1) ≈ IGB(1)(S ⊗ IT )T

= [B1,B2, · · · ,BJ3 ]


s11IT · · · sI31IT

...
...

...

s1J3IT · · · sI3J3IT

 . (4.5)

Thus, the k-th frontal slice of X, that is, the k-th sample, can be fitted by the summation

of the frontal slices of B:

X(1)k ≈
J3∑
r=1

Brskr, (4.6)

where the coefficients are in the k-th row (denoted by sk) of S.

We can see that B is the basis tensor for the samples and S is the encoding matrix. We

can define the matrix space spanned by B as feature space, and sk as the representation of

the k-th sample in the feature space. In the sense of feature extraction, these matrix slices of

B are the features. This reduces the original sample slice to a vector sk in the feature space.

Figure 4.3 illustrates the idea of tensor-factorization-based feature extraction. Additionally,

it is noted that C ×2 T ×3 S and C ×1 G ×3 S are the basis tensors for genes and time

points, respectively. If the training set is decomposed by high-order non-negative matrix

factorization (HONMF), the extracted non-negative features would be interpretable, and a

sample will be an additive summation of the features.

In the test phase, each test sample Yl is projected onto the feature space. Yl is a linear

combination of the basis matrices in B:

Yl =

J3∑
r=1

Brαr, (4.7)

where α = [α1, α2, · · · , αJ3 ]T is the representation of Yl in the feature space. Finding α is

equivalent to solving the following generalized least squares problem:

min
α
‖Yl −

J3∑
r=1

Brαr‖2F . (4.8)

The general solution to this problem is αr = <Yl,Br>
<Br,Br>

[120], where < •, • > is the inner prod-

uct of two matrices. For different test samples, we put the α’s in the corresponding rows of a
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coefficient matrix A. We employed three Tucker models including high-order singular value

decomposition (HOSVD), high-order orthogonal iterations (HOOI), and HONMF (see Ap-

pendix A for their introductions). The unsupervised MLDR methods above based on these

three Tucker models are denoted by uHOSVDls, uHOOIls, and uHONMFls, respectively.

Alternatively, given the test samples Y, we can fix C,G, and T to calculate the coefficient

matrix A of Y. We need to find A that satisfies

Y ≈ B×3 A = C×1 G×2 T ×3 A. (4.9)

For HOSVD and HOOI, the mode matrices, G, T , and A are column-wise orthonormal.

As seen from Appendix A, we can obtain A by using SVD on Z(3). Z(3) is matricized from

Z in mode 3, which is calculated by the following equation:

Z = Y×1 G
T ×2 T

T . (4.10)

For HONMF, the constraint on the mode matrices is non-negativity rather than orthogonal-

ity. Instead of solving the non-negativity constrained equation similar to Equation (4.10),

A can be rapidly obtained using the update rules of the HONMF algorithm. We can it-

eratively update A only, while keeping C, G, and T constant. If this method is used for

HONMF and Equation (4.10) is used for HOSVD and HOOI, then the resulting algorithms
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are denoted by uHONMFtf, uHOSVDtf, and uHOOItf, respectively.

Once A is obtained, we do not need to learn on the training samples and classify the

test samples represented by the matrices. Instead, any classifier can be trained on the rows

of S and classify the rows of A. That is, the classification is conducted in the feature space.

Although the decomposition methods described above are unsupervised dimensionality

reduction techniques, they can be modified to perform in a supervised manner, i.e. such

that class information is taken into account during decomposition. Let m be the number of

distinct class labels in the data. The idea is to first partition the training set into m subsets

X1, X2, · · · , Xm, where each subset Xi contains only samples of class i. Next, m core

tensors B1, B2, · · · , Bm are obtained through decomposition using Equation (4.2). The

resulting basis matrices are then normalized using the Frobenius norm. For a normalized

test sample, we fit it using these basis tensors, respectively, through Equation (4.8). This

sample is assigned to the class which obtains the minimal fitting residual. For simplicity, we

denote the supervised version of HOSVD, HOOI, and HONMF based classification methods

by sHOSVD, sHOOI, sHONMF. This supervised decomposition approach is described in

[121] for handwritten recognition using HOSVD.

We implemented the above tensor-based approaches using MATLAB. Our implementa-

tion is based on The N-way Toolbox for MATLAB [122] and Algorithms for SN-TUCKER

[123]. SN-TUCKER is in fact HONMF. We used the well-known k-nearest neighbor classifier
2 with the Euclidean distance in the classification after our unsupervised feature extraction

methods. The parameter of the tensor decomposition based approaches are rank-(J1, J2, J3),

and grid search is performed to find the values of J1, J2, J3 which give best classification

performance. The parameters of all models were selected by grid search. We used nine-fold

cross-validation, because there are only 27 samples and in each fold there are right 3 sam-

ples in the test set. The classification performance of 20 runs of nine-fold cross-validation

is given in Table 4.2.

As shown in Table 4.2, uHONMFtf obtains the highest mean prediction accuracy (0.8148).

uHOSVDls, uHOOIls, and uHOOItf obtain similar accuracies. This means that the tensor-

decomposition-based unsupervised methods can capture discriminative information. uHON-

MFtf outperforms the HOSVD and HOOI based methods perhaps due to non-negativity.

The reasons why uHONMFls and uHOOItf do not performed well needs further investiga-

tion. Good performance is also achieved by the supervised sHOSVD.

From Table 4.2, we can conclude that the multi-dimensional reduction techniques are

able to dramatically reduce the dimension of the original tensor data and can transform the

2We also tried SVM which gave similar results.
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Table 4.2: Classification performance of tensor factorization on complete IFNβ data.

Method Parameter Specificity Sensitivity Accuracy
uHOSVDls 7,3,3 0.8389±0.039 0.5944±0.020 0.7574±0.050
uHOOIls 4,3,10 0.9000±0.031 0.5000±0.012 0.7667±0.035

uHONMFls 3,5,3 0.8972±0.079 0.3056±0.034 0.7000±0.052
uHOSVDtf 4,2,3 0.7639±0.053 0.5500±0.041 0.6926±0.046
uHOOItf 3,7,3 0.8111±0.048 0.6611±0.055 0.7611±0.050

uHONMFtf 3,5,3 0.7889±0.029 0.8667±0.154 0.8148±0.040
sHOSVD 4,3,8 0.8306±0.054 0.6333±0.012 0.7648±0.044
sHOOI 3,4,4 0.7611±0.045 0.6667±0.000 0.7296±0.039

sHONMF 3,4,6 0.9583±0.110 0.0056±0.069 0.6407±0.075

Table 4.3: Comparison of running times on complete IFNβ data.

Method DiscHMMs uHOSVDls uHOOIls uHONMFtf
Time (seconds) 2.117× 103 1.321 1.057 1.662× 103

sample matrices into new “equivalent” short vectors which are used for classification. In

uHONMFtf for example, a 53 by 7 test sample can be represented by a vector of length 3

in the new feature space; thus reducing the data by 99.19% while preserving discriminative

information.

The computing times (in seconds) of the tensor-factorization method and a hidden-

Markov-model based method are compared in Table 4.3. The number of selected genes is

set to 7 for DiscHMMs. The tensor-decomposition-based approaches use the same parameter

(3, 5, 3) which are the numbers of factors in the three axes. In Table 4.1, it can be seen that

the tensor-factorization-based methods, HOSVD and HOOI, are much faster than the HMM

based method while giving at least comparable classification results. uHONMFtf also took

less time than DiscHMMs. If other optimization algorithms, such as active-set non-negative

least squares algorithm, are used, we believe that the time-complexity of HONMF can be

dramatically improved.

Finally, we should remind the reader, who is willing to use NMF (or HONMF) to analyze

their microarray data, that the non-negativity of the data must be examined before using

it. If the data have negative values, the non-negativity constraint should be enforced only

on the coefficient matrix (or mode matrices of HONMF).
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3 Kernel Methods for Classification

In the last section, hidden Markov models and tensor factorization techniques are discussed

for the classification of GST data. The hidden Markov models make direct use of the

temporal information in the GST data, while tensor factorization methods separate the

dimension reduction from the classification phases. In this section, we shall show that the

similarity between a pair of samples can be measured by a dynamical systems kernel, and

many kernel classification and kernel dimensionality reduction methods can be used by

taking the kernel matrices (rather than the two-way original samples) as inputs. That is,

the corresponding classification and dimensionality reduction is dimension-free. Therefore,

one may not need to propose new classifiers and dimensionality reduction techniques for

GST data. In the following, we first review the existing method using a dynamical systems

kernel and the SVM classifier. We then propose to use kernel sparse coding and kernel

dictionary learning methods.

3.1 Related Works

The authors of [124] used SVM classifier based on dynamical systems kernel to classify

GST samples. Since each GST sample is represented by a time-series matrix. It is not

appropriate to use the kernels, for example radial basis functions (RBF), which take vectorial

inputs, because the temporal structure would be deteriorated by vectorization. Dynamical

systems kernel accepts matrix inputs and takes the temporal information into account. We

define the dynamical systems kernel as follows. Two time-series matrix samples, say X

and X ′, can be modeled by two separate linear time invariant (LTI) dynamical systems

X = (P ,Q,R,S,x0) (where x0 is a vector, and P , Q, R, and S are matrices estimated

by a SVD based approach) and X ′ = (P ′,Q′,R′,S′,x′0). The dynamical systems kernel

between X and X ′ is defined as

k(X,X ′) = xT
0M1x

′
0 +

1

eλ − 1
[trace(SM2) + trace(R)], (4.11)

where M1 and M2 satisfy the Sylvester equation [124], and λ is a positive parameter of the

kernel.

We shall investigate SVM in details in Appendix B. In this chapter, for completeness, we

briefly introduce SVM on two-way data, and then show that only inner products of samples

are needed. The SVM is a basis-expanded linear model which can be formulated as:

f(x) = wTx+ b, (4.12)
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where w is the normal vector to the hyperplane, and b is the bias. The decision function is

the indicator:

d(x) = sign[f(x|w∗, b∗)], (4.13)

with {w∗, b∗} being the optimal parameter with respect to some criteria. The geometric

interpretation of the standard SVM is that the margin between two classes is maximized

while keeping the samples of the same class at one side of the margin.

Suppose a two-way training set is represented by a matrix X ∈ Rm×n, where each

column corresponds to a training sample, and the class labels are in the column vector

y ∈ {−1,+1}n. We define Z to be the sign-changed training samples with its i-th column

defined as the element-wise multiplication of the class label and the input vector of the i-th

training sample, that is, zi = yi ∗ xi. The optimization of the soft-margin C-SVM can be

formulated as:

min
w,b,ξ

1

2
‖w‖22 +CTξ (4.14)

s.t. ZTw + by ≥ 1− ξ

ξ ≥ 0,

where C = {C}m controls the tradeoff between the regularization term and the loss term,

and ξ is a column vector of slack variables.

By considering corresponding Lagrange function and Karush-Kuhn-Tucker (KKT) con-

ditions, we can obtain the dual form of the optimization:

min
µ

1

2
µTZTZµ− µT1 (4.15)

s.t. µTy = 0

0 ≤ µ ≤ C,

where µ is the vector of Lagrange multipliers (µ is a sparse vector). The nonzero multipliers

correspond to the support vectors, which are crucial for classification. The training samples

corresponding to zero multipliers can be ignored in further computations. The relation

between the dual variable µ and the primal variable w is w = X(µ ∗ y) = XS(µS ∗ yS),

where S is the set of indices of the non-zero multipliers. The bias b can be computed by

b =
yB−XT

Bw

|B| =
yB−XT

BXS(µS∗yS)

|B| , where B is the index of the nonzero and unbounded mul-

tipliers corresponding to the support vectors on the margin border. From the formulation
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Table 4.4: Comparison of classification performance of SVM on complete IFNβ data.

Method Parameter Specificity Sensitivity Accuracy Time
rbfSVM 1 1.000±0.000 0.000±0.000 0.667±0.000 -
dsSVM 1,5 0.972±0.082 0.422±0.013 0.789±0.023 93.474

of the optimal w∗ and b∗, the linear function in the decision function can be computed as:

f(x) = w∗Tx+ b∗ = xTXS(µ∗S ∗ yS) +
yB −XT

BXS(µ∗S ∗ yS)

|B|
. (4.16)

From Equations (4.15) and (4.16), we can see that the optimization and decision making

of SVM only need the inner products of the training samples. By replacing the inner

products by appropriate kernel functions, we can classify any data. Therefore, SVM with

kernels is dimension-free. By using dynamical systems kernel, we can use SVM to classify

time-series matrix samples. We compared the performance of SVM using dynamical systems

kernel with that using RBF kernel on IFNβ data. Both methods are denoted by dsSVM

and rbfSVM, respectively. The same experimental setting as in the previous section is used

here. The comparison of both methods is given in Table 4.4. The parameter of rbfSVM is

the parameter of the RBF function. The first parameter of dsSVM is the number of hidden

states, and the second one is the parameter of the dynamical systems kernel function. We

can see that rbfSVM fails to identify any positive sample, while dsSVM obtains a sensitivity

of 0.422. The overall accuracy of dsSVM is 0.789, which is much higher than rbfSVM.

Thus, we can conclude that the classification performance can be improved by considering

structural information in GST data. Furthermore, the SVM method is more efficient than

the hidden Markov models (as shown in Table 4.3).

3.2 Kernel Sparse Coding Method for Classification

We have already introduced sparse-coding based classification techniques in Chapter 2.

Now, we extend the NNLS sparse coding method for tensor data. Without loss of generality,

we suppose there are I3 training samples represented by a three-way tensor AI1×I2×I3 . The

third axis is for the samples. Each sample is a matrix of size I1 × I2. Therefore, A(:, :, i) is

the i-th training sample. Suppose we have P new samples in BI1×I2×P . Assume that each

of such new samples can be regressed by a non-negative linear combination of the training
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Table 4.5: Comparison of classification performance of sparse coding on complete IFNβ
data.

Method Parameter Specificity Sensitivity Accuracy Time
l1LS 2−4 0.9000±0.0329 0.3750±0 0.7444±0.0231 0.1152

NNLS - 0.9000±0.0329 0.3750±0 0.7444±0.0231 0.0573
Kl1LS 2−14,[1,5] 0.7316±0.0468 0.7937±0.0596 0.7500±0.0386 4.2666

KNNLS [1,5] 0.7895±0.0408 0.7375±0.0375 0.7741±0.0308 4.5199

samples. We then need to solve the following NNLS problem:

min
X

1

2
‖B−A×3 X

T‖2F , s.t. X ≥ 0, (4.17)

where×3 is the mode-3 product [125] as defined in Appendix A. Through matricizing tensors

to matrices, we can convert the above optimization task into the equivalent formula:

min
X

1

2
‖B(3) −XTA(3)‖2F , s.t. X ≥ 0, (4.18)

where A(3) is a matrix of size I3 × (I1 × I2), unfolded from tensor A in mode 3. Using

transposition, we have

min
X

1

2
‖BT

(3) −A
T
(3)X‖

2
F , s.t. X ≥ 0. (4.19)

Now, Equation (4.19) can be solved by a two-way non-negative least squares algorithm, for

example, the FC-NNLS in [3]. Our NNLS classifier can now be generalized for tensor data.

However, the drawback of this generalization is that the structural information within

a sample is not considered. The objective (Equation (4.17)) uses the Euclidean distance,

hence the samples are actually vectorized in Equations (4.18) and (4.19). If we use other

dissimilarity or similarity metrics which take the temporal information into account when

classifying gene-sample-time data, the performance is expected to be increased. Since dy-

namical systems kernel, defined in Equation (4.11), accepts matrix inputs and takes the

temporal information into account, we can thus apply it to our kernel NNLS method for

GST data.

Using the same experimental setting as in previous sections, the classification perfor-

mances of linear l1LS and NNLS and their kernel versions on GST data are compared in

Table 4.5. We have the following observations. First of all, from the comparison between
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Table 4.6: Comparison of classification performance of kernel dictionary learning on com-
plete IFNβ data.

Method Prior Specificity Sensitivity Accuracy Time
KDL-l1LS Gaussian 0.9711±0.0352 0.1250±0.1118 0.7204±0.0320 39.9439

KDL-NNLS Gaussian 0.9711±0.0310 0.1081±0 0.7370±0.0329 13.3402
KDL-l1NNLS Gaussian 0.9579±0.0394 0.1437±0.0501 0.7167±0.0724 14.9027

KDL-l1LS uniform 0.9684±0.0349 0.1375±0.1111 0.7222±0.0321 29.7428
KDL-NNLS uniform 0.9711±0.0310 0.1437±0.1066 0.7259±0.0429 7.4780

KDL-l1NNLS uniform 0.9763±0.0310 0.1563±0.1178 0.7333±0.0505 13.7721

NNLS using linear kernel and its counterpart using dynamical-systems kernel, we can see

that the latter obtained better results, because it considers temporal information within

the samples. Thus, the structural information within the samples does contribute to the

discrimination. Second, through comparing the computing time (in seconds), we can see

that the sparse coding methods are very fast, compared with the hidden Markov models,

some tensor decomposition methods and SVM (as shown in Tables 4.3 and 4.4).

3.3 Kernel NMF and Dictionary Learning

NMF has been applied to dimensionality reduction for gene-sample data in [43]. Also, we

have shown, in Section 2, that the high-order NMF can be applied on GST data. In this

section, we shall show that feature extraction can be conducted directly by kernel NMF and

kernel dictionary learning in sparse representation.

In Chapter 2, we have derived the dimensionality reduction method based on kernel

dictionary learning. Using a suitable kernel to measure the similarity between a pair of time-

series samples, kernel dictionary learning can be applied on GST data for dimensionality

reduction. A computational experiment is given in the following. We used the IFNβ data

again. We used dynamical systems kernel with the same parameters as in previous sections.

SVM was employed after dimensionality reduction. The experimental results are shown

in Table 4.6. We can see that the kernel sparse representation methods obtained lower

sensitivity compared with the results of sparse coding methods in Table 4.5. This may

be because the number of positive samples in the training set is very small, around eight,

which may be insufficient for some dimensionality reduction techniques. However, it would

be very interesting to investigate the performance of kernel sparse representation on a larger

data set due to its computational flexibility. Finally, we can see that the kernel dictionary

learning methods are very efficient for GST data as well.
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4 Conclusions

In this chapter, we discussed different machine learning approaches for the classification and

dimensionality reduction of GST data. We proposed the feature extraction method based

on dense and sparse tensor decompositions. We also used kernel sparse coding and kernel

dictionary learning techniques for classifying GST data given an appropriate kernel, which

can measure similarity between a pair of time-series samples.

There are still many challenges in each category. The current HONMF is implemented

by multiplicative update rules. Using other optimization techniques, for example active-set

algorithms as in NMF, may dramatically improve the efficiency. The current dynamical

systems kernel is not symmetric and is unbounded, and hence a better kernel is needed to

overcome these shortcomings. The most popular data set in this area is IFNβ which has a

small numbers of genes, samples, and time points. More GST data sets (if exist) need to be

obtained from the Gene Expression Omnibus [126] in order to investigate the performance

of the methods mentioned in this chapter.
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and A. Ngom, “Mining gene-sample-time microarray data,” in L. Rueda ed. Microar-

ray Image and Data Analysis: Theory and Practice, CRC Press/Taylor & Francis,

Dec. 2013, in press.].



Chapter 5

Sparse Regularized Linear Models

for Multi-class Classification

1 Introduction

Regularized linear models are linear models which minimize the empirical error and model

complexity simultaneously. The regularized linear models are usually sparse. We say a

regularized model is sparse, if either the model parameter is a sparse linear combination

of training samples, or the model parameter is sparse. Support vector machines (SVMs)

are state-of-the-art models in this class. The l2-norm SVMs fall in the the former case,

and the l1-norm SVM falls into the latter case. In addition to classification, the sparse

regularized linear models can be applied to sample selection and feature selection in virtue

of the sparsity. We refer the readers to Appendix B for a detailed review of regularized linear

models including model formulations, optimizations, and machine learning applications.

They have been widely used in the analysis of high-dimensional biological data. For

example, SVMs have been applied in classifying tissue samples using microarray expression

data [4]. In [127], the SVM-based recursive feature elimination (SVM-RFE) was proposed to

select discriminative genes for cancer classification. In [128], SVM was applied as a sample

selection method for gene selection. The l1-norm SVM can simultaneously select variables

and classify instances. It has been used for gene selection [129] as well.

One weakness of a linear model is that, it separates the feature space into only two

open regions, thus it can not be naturally extended to the multi-class case. There are

some strategies that extend linear models to classify multi-class data. Among them, the

one-against-all and one-against-one are two well-known ones.

113
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Contributions: In this chapter, we propose two novel strategies to extend linear models

to multi-class data. The first one is an independent modeling, called nearest border method.

The second one is a hierarchical model. The contributions of this chapter include:

1. We propose the novel nearest border paradigm for multi-class classification problems,

and implemented it by using a one-class SVM. This philosophy has not been presented

before in the literature.

2. We propose the hierarchical model for multi-class classification problems. This model

is so flexible that any feature selection and classification methods can be embedded

in the model. We apply this model for gene selection and prediction of breast tumor

subtypes, simultaneously.

3. We realize most of the regularized linear model based methods mentioned in this

chapter and Appendix B in MATLAB, and assemble them to an open-source toolbox

named regularized linear models and kernels (RLMK) toolbox.

In the following, we shall first present the nearest border method in Section 2. Then,

we propose the hierarchical model in Section 3. Finally, we introduce our implementations

of these models and many regularized linear models in Section 4.

2 Nearest Border Technique 1

2.1 Introduction

Overview and Related Fields

One goal of this section is to present a new paradigm in pattern recognition (PR) , which

we shall refer to as the nearest border (NB) paradigm. This archetype possesses similarities

to many of the well-established methodologies in PR, and can also be seen to include

many of their salient facets/traits. In order for the reader to capture the intricacies of our

contribution, and be able to perceive it in the context of the existing state of the art, in

this introductory section, we briefly describe some of these methodologies from a conceptual

perspective.

The problem of classification in machine learning can be quite simply described as

follows: If we are given a limited number of training samples, and if the class-conditional

distributions are unknown, the task at hand is to predict the class label of a new sample with

1This section is based on our collaborative work accepted as [130], with Dr. B. John Oommen of
University of Carleton, Ottawa.
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minimum risk. Within the generative model of computation, one resorts to modeling the

distribution of the prior, and then computing the a posteriori distribution after the testing

sample arrives. The strength of this strategy is that one obtains an optimal performance if

the assumed distribution is the same as the actual one. The limitation, of course, is that it

is often difficult, if not impossible, to compute the posterior distribution. The alternative

is to work with methods that directly model the latter posterior distribution itself. These

methods differ in the approximation of the posterior, such as the nearest neighbor (NN)

or the k-nearest neighbors (k-NN), the support vector machine (SVM) etc. This section

advocates such a philosophy.

The most common challenges that all these techniques encounter are (i) the curse of

dimensionality, which is encountered when the dimensionality of the feature space is large,

(ii) the small sample size scenario encountered when one attempts to obtain a significant

performance even though the size of the training set is small, (iii) the large sample size

scenario, in which the computational resources used are large because of the high cardinality

of the training set.

For decades, the NN or k-NN classifiers have been widely-used classification rules. Each

class is described using a set of sample prototypes, and the class-identity of an unknown

vector is decided based on the identity of the closest neighbor(s), which are found among

all the prototypes [131]. This rule is simple, and yet it is one of the most efficient classi-

fication rules in practice. The application of the classifier, however, often suffers from the

higher order of the computational complexity caused by the large number of distance com-

putations, especially as the size of the training set increases in high dimensional problems

[132], [131]. Strategies that have been proposed to solve this dilemma can be summarized

into the following categories: (i) reducing the size of the design set without sacrificing the

performance, (ii) accelerating the computation by eliminating the necessity of calculating

superfluous distances, and (iii) increasing the accuracy of the classifiers designed with the

set of limited samples.

A simple strategy for affecting this is, for example, that of: (i) using the mean of

the training samples of a class in nearest centroid-like method, (ii) resorting to vector

quantization (VQ), and (iii) invoking the non-negative matrix factorization (NMF) scheme,

among others. The strengths of these are that the accuracy may not deteriorate by using

only a fewer number of samples or meta-samples, and this can be useful when the data

is noisy and/or redundant. One must observe that the testing algorithm is, by definition,

faster. The weakness of using a simple parametric strategy, (e.g., the nearest centroid

scheme) is that the sample mean is merely the first order moment, and does not consider
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higher order statistics.

The four families of algorithms, which are most closely related to the NB paradigm that

we propose, are briefly surveyed below.

Prototype Reduction Schemes: The first of the solutions mentioned above, i.e., of

reducing the size of the design set without sacrificing the performance, is the basis for the

family of prototype reduction schemes (PRSs), which is central to this section. The goal

here is to reduce the number of training vectors while simultaneously insisting that the

classifiers built on the reduced design set perform as well, or nearly as well, as the classifiers

built on the original design set. Thus, instead of considering all the training patterns for the

classification, a subset of the whole set is selected based on certain criteria. The learning

(or training) is then performed on this reduced training set, also called the reference set.

This idea has been explored for various purposes, and has resulted in the development of

many algorithms surveyed in [133, 134, 135]. It is interesting to note that Bezdek et al.

[133], who have composed an excellent survey of the field, report that there are “zillions!”

of methods2 for finding prototypes (see page 1,459 of [133]). There are also many families

of PRSs. In certain families, Not only does this reference set contains the patterns which

are closer to the true discriminant’s boundary, but also the patterns from the other regions

of the space that can adequately represent the entire training set.

Border Identification Algorithms: border identification (BI) algorithms, which are a

subset of PRSs, work with a reference set that contains only “border” points. To enable the

reader to perceive the difference between general PRSs and BI algorithms, we present some

typical data points in Figure 5.1. Consider Figure 5.1a in which the circles belong to class ω1

and rectangles belong to class ω2. A PRS would attempt to determine the relevant samples

in both the classes which are capable of achieving near-optimal classification. Observe that

some samples which fall strictly within the collection of points in each class, such as A

and B in Figure 5.1b, could be prototypes, because the testing samples that fall close to

them will be correctly classified. As opposed to this, in a BI algorithm, one uses only those

samples that lie close to the boundaries of the two classes, as shown in Figure 5.1c. In all

brevity, we mention that recent research [146] has shown that for overseeing the task of

2One of the first of its kind is the condensed nearest neighbor (CNN) rule [136]. The CNN, however,
includes “interior” samples which can be eliminated completely without changes in the performance. Accord-
ingly, other methods have been proposed successively, such as the reduced nearest neighbor (RNN) rule [137],
the prototypes for nearest neighbor (PNN) classifiers [138], the selective nearest neighbor (SNN) rule [139],
two modifications of the CNN [140], the edited nearest neighbor (ENN) rule [141], and the non-parametric
data reduction method [142]. Additionally, in [143], the vector quantization (VQ) technique [144] was also
reported as an extremely effective approach to data reduction. It has also been shown that the SVM can
be used as a mean of selecting initial prototype vectors, which are subsequently operated on by LVQ3-type
methods [145].
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achieving the classification, the samples extracted by a BI scheme, and which lie close to

the discriminant function’s boundaries, have significant information when it concerns the

power of the classifier. Duch [147] and Foody [148] proposed algorithms to achieve this.

But as the patterns of the reference set described in [147] and [148] are only the “near”

borders, they do not have the potential to represent the entire training set, and hence do

not perform well. In order to compete with other classification strategies, it has been shown

that we need to also include the set of “far” borders to the reference set [146]. A detailed

description of traditional BI algorithms namely Duch’s approach, Foody’s algorithm and

the border identification in two stages can be found in [149].

(a) Training set.

A B

(b) Prototypes. (c) Border patterns.

Figure 5.1: A schematic view which shows the difference between border patterns and
prototypes.

SVM-type Algorithms: A representative of a completely distinct family of algorithms

is the acclaimed SVM which is known as being quite suitable from a theoretical point of view

as well as in practical applications. From the basic theory of the SVM (explained later) we

know that it has the capability of extracting vectors which support the boundary between

the two classes, and they can satisfactorily represent the global distribution structure. Also

the learning algorithm can be easily expanded to nonlinear problems by employing a tech-

nique akin to that of kernel functions. As we shall demonstrate in a subsequent section,

our NB paradigm is actually very closely linked to the family of SVM schemes. Readers are

referred to Appendix B for a review of SVM and many other regularized linear models.

“Anti-Bayesian” OS-Based Algorithms: A relatively new and distinct paradigm,

which works in a counter-intuitive manner, is the recently introduced “anti-Bayesian” phi-

losophy. As a back-drop to this, we mention that when expressions for the a posteriori dis-

tribution are simplified, the classification criterion that attains the Bayesian optimal lower

bound often reduces to testing the sample point using the corresponding distances/norms
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to the means or the “central points” of the distributions. In [150, 151, 149], the authors

demonstrated that they can obtain optimal results by operating in a diametrically oppo-

site way, i.e., a so-called “anti-Bayesian” manner. They showed that by working with a

few points distant from the mean, one can obtain remarkable classification accuracies. The

number of points referred to can be as small as two in the uni-dimensional case. Further, if

these points are determined by the order statistics (OS) of the distributions, the accuracy

attains the optimal Bayes’ bound. They demonstrated that one could work with the OS of

the features rather than the distributions of the features themselves, and proposed the strat-

egy referred to as classification by moments of order statistics (CMOS) [150, 151, 149]. It

turns out, though, that this process is computationally not any more complex than working

with the latter distributions.

The state of the art of OS-based classification is summarized below. Initially, in [149],

the authors worked with the OS for the data points, and showed how it could achieve

near-optimal classification for various uni-dimensional distributions. For uni-dimensional

OS-based PR, their methodology is based on considering the n-order OSs, and comparing

the testing sample with the n−kth OS of the first distribution and the kth OS of the second.

Equivalently, these points are determined by the location of the (n−k+1
n+1 )th percentile of the

first distribution and the ( k
n+1)th percentile of the second distribution. These results were

shown to be applicable for the distributions that are members of the symmetric exponential

family. By considering the entire spectrum of the possible values of k, the results in [150]

and [149] showed that the specific value of k is usually not so crucial. Subsequently, in [151],

they proved that these results can also be extended for multi-dimensional distributions.

The challenge involved in using OS criteria is that one needs many training samples to

estimate the OS. Thus, the question of resolving this for the small sample set is still open.

This brings us to the question of why one needs a new paradigm and what this paradigm

entails.

2.2 Problem Formulation

In this section, we would like to explicitly formulate a paradigm for PR that only uses the

“border” points. First of all, the goal is that this process should be independent of the

number of dimensions, thus overcoming a handicap inherent in the OS-based schemes. This

would, thus, permit us to apply the BI principle to high-dimensional data. The method

that we propose should encapsulate a methodology that is universal for any distribution and

should, hopefully, simultaneously crystallize the concept of the border in the multivariate

case.
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What then does this new paradigm entail? Essentially, we would like it to possess all

the salient characteristics of all the four families of methods described above. First and

foremost, it should be able to learn the border for each class. To achieve this, unlike the

traditional BI methods, we shall not resort to using inter-class criteria. Rather, we shall

compute the border for a specific class in the d-dimensional hyper-space by invoking only

the properties of the samples within that class. Once these borders have been obtained,

we advocate that testing is accomplished by assigning the test sample to the class whose

border it lies closest to. We claim that this distance is an approximation to the value of

the a posteriori distribution, which justifies the rule of assigning the testing samples to the

nearest border. This claim, is actually counter-intuitive, because unlike the centroid or the

median, these border samples are often “outliers” and are, indeed, the points that represent

the class the least.

Proposed Solution: The heart of our solution is that we apply the support vector

domain description (SVDD) for the multi-class problems for which the authors of [152]

earlier proposed a Bayesian method. First of all, we learn a SVDD representation for

each class. Thereafter, we construct a pseudo-class-conditional-density function for each

class. Finally, the decision is made using the estimated pseudo-posterior probabilities.

In this regard, the authors of [153] proposed a multi-class classifier by an ensemble of

one-class classifiers. First of all, a SVDD or kernel principal component analysis-based

kernel whitening (KW-KPCA) is applied to each class, where we can see that the SVDD

approximates the class boundary by hyper-spheres in the feature space, while the KW-

KPCA uses hyper-ellipses. Thereafter, the normalized distance from the prototype of each

class is computed, whence the testing sample is assigned to the class which minimizes this

distance.

The novel contributions of this section are the following:

• We propose a new PR paradigm, the nearest border paradigm, in which we create

borders for each individual class, and where testing is accomplished by assigning the

test sample to the class whose border it lies closest to.

• Our paradigm falls within the family of PRSs, because it yields a reference set which

is a small subset of original training patterns. The testing is achieved by only utilizing

the latter.

• Our paradigm falls within the family of BI methods, except that unlike traditional

BI methods, the borders we obtain do not use inter-class criteria; rather, they only

utilize the properties of the samples within that class.
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• The nearest border paradigm is essentially “anti-Bayesian” in its salient characteris-

tics. This is because the testing is not done based on central concepts such as the

centroid or the median, but by comparisons using these border samples, which are

often “outliers” and which, in one sense, represent the class the least.

• The nearest border paradigm is closely related to the family of SVMs, because the

computations and optimization used are similar to those involved in deriving SVMs.

• To justify all these claims, we submit a formal analysis and the results of various

experiments which have been performed for many distributions and for many real-life

data sets, and the results are clearly conclusive.

We conclude by mentioning that, as far as we know, such a paradigm has not been

reported in the PR literature.

The rest of the section is organized as follows. First of all, in Section 2.3, we present

an overall overview of the NB philosophy. In Section 2.4, we implement this philosophy by

using SVDD. Section 2.5 details the experimental results obtained by testing our schemes

and comparing it with a set of benchmark algorithms.

In the next subsection, we shall formalize the general theory of the NB classification

paradigm.

2.3 Theory of The Nearest Border (NB) Paradigm

We assume that we are dealing with a pattern recognition problem involving g classes:

{ω1, · · · , ωg}. For any specific class ωi, we define a region Ri that is described by the

function fi(x) = 0 (which we shall refer to as its “border”), where Ri = {x|fi(x) > 0}. We

describe Ri in this manner so that it is able to capture the main mass of the probability

distribution pi(x) = p(x|ωi). All points that lie outside of Ri, are said to fall in its “outer”

region, R̄i, where R̄i = {x|fi(x) < 0}. These points are treated as outliers as far as class

ωi is concerned.

The function fi(x) is crucial to our technique, because it explicitly defines the region

Ri. Formally, the function fi(x) must be defined in such a way that:

1. fi(x) is the signed distance from the point x to the border such that fi(x) > 0 if

x ∈ Ri, and fi(x) < 0 if x ∈ R̄i;

2. If fi(x1) > fi(x2), then pi(x1) > pi(x2);

3. If fi(x) > fj(x), then p(wi|x) > p(wj |x).
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In order to predict the class label of a new testing sample x, we calculate its signed

distance from each class, and thereafter assign it to the class with the minimum distance.

In other words, we invoke the softmax rule: j = arg maxgi=1 fi(x).

The main challenge that we face in formulating, designing and implementing such a NB

theory lies in the complexity of conveniently and accurately procuring such borders. The

reader will easily see that this is equivalent to the problem of identifying functions {fi(x)}
that satisfy the above constraints. Although a host of methods to do this are possible, in

the following, we propose one that identifies the boundaries using the one-class SVM.

2.4 NB Classifiers: The Implementations of The NB Paradigm

Before reading the following content, we refer the readers to the Appendix B for an in-

troduction to one-class SVMs and ν-SVM. We are now discuss how the one-class SVMs

can be used to formulate the family of NB classifiers. To do this, we shall first affirm that

the two-class SVM actually consists of two hyperplane-based one-class SVMs. Thereafter,

we shall present the implementation of the NB paradigm based on the hypersphere-based

SVDD.

One-Class SVM-Based Schemes

We shall first state the relationship between the family of hyperplane-based one-class SVMs

and the corresponding two-class SVM. This result is given by the following proposition.

Proposition 2. For two-class data, the task of learning a single two-class SVM is equivalent

to that of learning two one-class SVMs under the condition that the hyperplanes of both the

one-class SVMs are parallel.

Proof. Without loss of generality, in our proof, we shall assume that we are considering the

case of obtaining the two-class ν-SVM. Let us suppose that the parallel hyperplanes for the

positive and negative classes are: f+(x) = wTx− b+ = 0, and f−(x) = (−w)Tx+ b− = 0,

where the biases b+, b− > 0. With regard to the signs of the respective functions, we

mention that:

1. f+(x) > 0 if x is on the positive side (the side w pointing to) of f+(x) = 0.

2. f−(x) > 0 if x is on the positive side (the side −w pointing to) of f−(x) = 0.

Now consider the optimization associated with learning of two one-class SVMs with
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parallel hyperplanes. One can see that this can be formulated as below:

min
w,b+,b−,ξ+,ξ−

1

2
‖w‖22 +CT(ξ+ + ξ−)− ν b+ + b−

2
(5.1)

s.t. φ(X+)Tw − b+1 + ξ+ ≥ 0

− φ(X−)Tw − b−1 + ξ− ≥ 0

ξ+, ξ− ≥ 0; b+, b− > 0

After obtaining the parameters of the model, the hyperplane between the two parallel

hyperplanes is f(x) = wTx+ −b1+b2
2 = 0. If we now re-visit the formulation of the two-class

ν-SVM formulation (as given in the Section 2.4 of Appendix B), we see that this is:

min
w,b,ρ,ξ

1

2
‖w‖22 − νρ+CTξ (5.2)

s.t. φ(X+)Tw + b1− ρ1 + ξ+ ≥ 0

− φ(X−)Tw − b1− ρ1 + ξ− ≥ 0

ξ+, ξ− ≥ 0; ρ ≥ 0.

By a careful examination of the two formulations, one can confirm that we can obtain the

exact same formulation as in Equation (5.1) by setting b = −b++b−
2 and ρ = b++b−

2 , where

b+ > 0 and b− > 0. This concludes the proof.

Remark: From the above proposition, we can further infer that the two-class SVM

is, in fact, an implementation of what we have referred to as the nearest border paradigm!

This is because, whenever we want to assign a new sample, x, to a specific class, the SVM

decision function: d(x) = sign[f(x)], is equivalent to:

j = arg max
i=+/−

fi(x) = arg max
i=+/−

fi(x)

‖w‖
. (5.3)

Further, from the Bayesian learning theory, this formulation is precisely a discriminative

model that directly models the a posteriori probability distribution.

The Hypersphere-Based Nearest Border Method

The nearest centroid approach only uses the means of the class-conditional distribution, and

this is the reason why it is not effective for the scenario when the variances of the various

classes are very different. As shown above, the two-class SVM can find the boundary of
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each class, but the solution to this problem cannot be easily and naturally extended to

the multi-class problem. The difficulty of extending any linear model from its two-class

formulation to its corresponding multi-class formulation, lies in the fact that a hyperplane

always partitions the feature space into two “open” subspaces, implying that this can lead

to ambiguous regions that may be generated by some extensions of the two-class regions

for the multi-class case. The most popular schemes to resolve this are the one-against-rest

(using a softmax function) and the one-against-one solutions.

Viewed as a one-class model, the work based on Tax and Duin’s SVDD [154] aims to find

a closed hypersphere in the feature space that captures the main part of the distribution. By

examining the corresponding SVM, we see that the hypersphere obtained by the SVDD is

the estimate of the features’ highest density region (HDR). In particular, for the univariate

distribution, the estimation of the highest density interval (HDI) involves searching for the

threshold p∗ that satisfies: ∫
x:p(x|D)>p∗

p(x|D)dx = 1− α. (5.4)

The (1 − α)% HDI is defined as Cα(p∗) = {x : p(x|D) ≥ p∗}. If we now define the central

interval (CI) by the interval:

Cα(l, u) = {x ∈ (l, u)|p(l ≤ x ≤ u|D) = 1− α, p(x ≤ l) =
α

2
, p(x ≥ u) =

α

2
},

one will see that, for symmetric unimodal univariate distribution, HDI coincides with the

CI. However, for nonsymmetric univariate distributions, the HDI is smaller than the CI.

For known distributions, the CI can be estimated by the corresponding quantile. How-

ever, for unknown distributions, the CI can be estimated by a Monte Carlo approximation

(or by the histogram, or the order statistics [149]). However, in the context of this study,

we remark that by virtue of Vapnik’s principle, it is not necessary to estimate the density

by invoking a non-parametric method.

For multivariate distributions, we can estimate the (1 − α)% HDR Cα(f) by using the

equation:

min
f

∫
f(x)≥0

1dx, s.t.

∫
x:f(bmx)≥0

p(x|D)dx = 1− α. (5.5)

We shall refer to this optimal contour f∗(x) = 0 as the (1− α)-border/contour.

Our idea for classification is the following: We can learn a hypersphere for each class

in the feature space in order to describe the border of this class. We then calculate the
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distance from a unknown sample to the border of each class and assign it to the class with the

minimum distance. The training phase of our approach is to learn the hypersphere fi(x) = 0

parameterized by (ci, Ri) for each class as specified by Equation (B.85) in Appendix B. The

prediction phase then involves assigning the unknown sample x using the following rule:

j = arg
g

max
i=1

fi(x), (5.6)

where fi(x) is defined as in Equation (B.91) in Appendix B. In particular, we note that:

1. fi(x) ∈ R is the signed distance of x from the corresponding boundary;

2. For points inside the i-th hypersphere, fi(x) > 0;

3. For points outside the hypersphere, fi(x) < 0. Further, the larger fi(x) is, the closer

it is to class ωi, and the higher the value of p(wi|x) is. From the parameters of fi(x),

we can see that fi(x) considers both mean and variance of the distribution. It can be

further enhanced by the normalized distance through the operation of dividing it by

Ri.

This, quite simply, leads us to the following decision rule:

j = arg
g

max
i=1

fi(x)

Ri
. (5.7)

We refer to this approach as the nearest border approach based on hypersphere (NB-HS).

In an analogous manner, the two-class SVM can also be called the nearest border ap-

proach based on hyperplane (NB-HP). The advantage of using the (normalized) distance

from the border instead of the mean as in nearest centroid approach is that the former

takes into account both the means and the variances, while the latter considers only the

mean. The advantage of the NB-HS over the SVM is that, due to the closure property of

the hypersphere, the borders obtained in the NB-HS can be estimated one by one, which

is more computationally efficient than by invoking a one-against-all SVM. Hereafter, the

hypersphere based NB using the decision rule specified by Equation (5.6) will be denoted

by ν-NB, and the one that utilizes the normalized distance, as in Equation (5.7) will be

denoted by ν-NBN .

As mentioned in Section 2.4 of Appendix B, ν is the upper bound of the fraction of

outliers and the lower bound of the fraction of the support vectors. As the number of

training samples increases to infinity, these two bounds converge to ν. However, in practice,

we usually have a very limited number of training samples. In order to obtain ν which
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corresponds to the α fraction of outliers, firstly, we need to let ν = α, and then reduce ν

gradually until the α fraction of outliers are obtained. This variant of NB will be named

the α-NB in the subsequent sections.

2.5 Experiments

The NB schemes that we introduce in this paper have been rigorously tested. In this

section, we present a summary of the experiments done and the corresponding results. Our

computational experiments can be divided into two segments. First of all, we investigated

the performance of our method on three artificial data sets. Subsequently, we statistically

compared our approach with benchmark classifiers on 17 well-known real-life data sets. The

methods that we have used and the benchmark methods are listed in Table 5.1.

Before we explain the experimental results we would like to emphasize the fact that we

are not attempting to demonstrate that our new technique is the “best available” scheme.

Rather, our intention is to show that such a NB strategy is not only feasible – it is also

extremely competitive, yielding an accuracy which is close to the best reported PR method-

ologies. Indeed, in some cases, its accuracy even exceeds the accuracy of the SVM.

Accuracy on Synthetic Data

We tested our approaches on three synthetic data sets described as follows and shown in

Figure 5.2. Each data set has four classes and 100 two-dimensional points in each class. In

the SameVar data, all classes have the same variance, while in DiffVar, the classes have

different variances. NonLinear is a nonlinear data set.
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Figure 5.2: Plots of the synthetic data sets. This is a color figure, thus the readability may
be affected if printed in grayscale.
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Table 5.1: Summary of our NB methods and the benchmark methods used.

Category Method Description

Our Methods
ν-NB ν is the lower bound of fraction of support vectors and upper bound

of the fraction of error. Here, we invoke the decision rule specified
by Equation (5.6).

ν-NBN Here, ν-NB uses the normalized distance as defined by Equation
(5.7).

α-NB Here α is the fraction of support vectors, and we invoke the decision
rule specified by Equation (5.6).

Generative naive Bayes This rule has only been used on artificial data. It may fail on real
data.

Discriminative
NN This is the nearest neighbor rule [155]. Here, we replace the inner

product in the Euclidean distance with the RBF kernel, since the
latter does not change the NN. Thus, we have invoked the kernel-
ized NN rule.

NC This is the nearest centroid (or prototype) [156] rule. Again, we
extended it to the kernelized version.

NS This is a Nearest Subspace method proposed in [109] (originally
called the linear regression classifier). Since this method only
works safely under the condition that the number of features must
be greater than the class-sample-size, we again extended it into the
kernelized version in order to let it operate under all conditions.

SVM In this case, we used the ν-SVM [157] (see Appendix B), where
the one-versus-rest scheme and softmax function are used for the
multi-class task.

For the artificial data, we compared our approaches with the naive Bayes [155], NN [155],

NC [156], and SVM [157] classifiers. The linear kernel was used for the NBs, NC, and SVM

on the first two data sets, and the radial basis function (RBF) kernel was used on the last

data set. We ran a three-fold cross-validation on each data set 20 times. All the classifiers

used the same training and testing splits in order to maintain a fair comparison. From the

20 results, we computed the mean and standard deviation (STD) of the accuracies. The

results are illustrated in Figure 5.3. The full result can be found in Table 5.2.

Table 5.2: Results of the accuracies achieved by a three-fold cross-validation using the new
and benchmark algorithms on the artificial data sets.

Data ν-NB ν-NBN α-NB Naive Bayes NN NC SVM
SameVar 0.8716(0.0078)0.8751(0.0048)0.8753(0.0065)0.8764(0.0038)0.8121(0.0147)0.8738(0.0033)0.7765(0.0238)
DiffVar 0.9170(0.0056)0.9107(0.0057)0.9175(0.0060)0.9314(0.0039)0.8929(0.0086)0.8959(0.0027)0.8430(0.0270)
Nonlinear0.9788(0.0049)0.9749(0.0054)0.9791(0.0048)0.9264(0.0165)0.9818(0.0037)0.9408(0.0118)0.9881(0.0031)
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Figure 5.3: Performance on synthetic data. This is a color figure, thus the readability may
be affected if printed in grayscale. The order of the bars, from left to right, in the figure, is
the same as these from top to bottom in the legend.

On the SameVar data, firstly, we can see that there is no significant difference between

the ν-NB and ν-NBN, and α-NB. All of them yielded an almost-equivalent accuracy as the

naive Bayes. Secondly, it can be seen from Figure 5.2a that the NB was able to identify the

centers of each class accurately. The borders have the same volume, which demonstrates

that the NB can identify the borders consistent with the variances. The NB approaches

yielded an accuracy similar to the NC, which is reasonable because the identical variance

of all classes is of no consequence to the NB. Thirdly, the NN and SVM do not obtain

comparable results. This is because the distance measure of the NN is affected by noise,

and the SVM is not able to “disentangle” each class well using a one-versus-all scheme.

On the DiffVar data, first, we see that the results again confirm that the NB can identify

the borders consistent with the variances (see Figure 5.2b). The mean accuracies of all the

NB approaches were very close to the naive Bayes classifier. However, the NC yielded worse

results than the NB. This is because the variance information helped the NB, while the NC

scheme did not consider it.

Finally, for the NonLinear data, firstly, we affirm that all our NB methods and the

SVM yielded comparably good results. Secondly, the naive Bayes did not work well this

time, because the data is not Gaussian. Further, the kernel NC was not competent either,

because the data in the high-dimensional feature space have different variances for all the

classes.
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Performance on Real-Life Data

In order to demonstrate the performance of our NB approaches, we also compared them

with benchmark approaches on 17 various data sets from bioinformatics, image processing,

and so on. These data sets are summarized in Table 5.3.

Table 5.3: The real-life data sets used in our experiments.

Data #Class #Feature #Sample
DNA [158] 3 180 2000
ExYaleB[159] 38 32256 2432
Ionosphere [160] 2 34 351
Iris [160] 3 4 150
Letter [158] 26 16 15000
MFEAT [160] 10 649 2000
Minsteries [161] 2 400 326
Pendigit [160] 10 16 10992
Pima [160] 2 8 768
Satimage [158] 6 36 4435
Segment [158] 7 19 2310
Svmguide2 [162] 3 20 391
Svmguide4 [162] 3 20 391
USPS [163] 10 256 9299
Vehicle [158] 4 18 846
Vowel [160] 11 10 990
Wave2 [160] 3 40 5000

Methods and Parameters: In this set of experiments, we included the ν-NB and the

ν-NBN in the competition. However, we did not involve the α-NB on the real-life data sets,

because it would have yielded the same performance as the ν-NB when the parameter (ν

in ν-NB or α in the α-NB) is selected by inner three-fold cross-validation on the training

set. The benchmark methods included the NN, NC, NS, and the SVM. In this set of tests

involving real-life data, we did not include the naive Bayes classifier because it failed on

some of them. Again, we used the RBF kernel in our schemes and in all the benchmark

classifiers. All the parameters in each method were selected by a grid or a line-search based

on the inner three-fold cross-validation accuracy of the training set. For ν-NB and ν-NBN,

the range of ν was tested from the range max(0.025, 1
2
3
s
) to 0.95 by using a step-size of 0.025,

where s was the mean class-sample-size of the training set. For the ν-SVM, the range of

ν was from max(0.025, 1
2
3
s
) to min(f, 0.95), where f was the maximum feasible value of ν

defined in [164]. For all the other methods except the NN, the parameter σ was searched

for from 2d−2 to 2d+2 by involving a step-size 0.5 in the power, where d = log2(
√
m) (where



CHAPTER 5. SPARSE REGULARIZED LINEAR MODELS 129

m is the number of features). This was inspired by LIBSVM [165] which sets the default

value of σ to be 2d.

The results of the accuracies of achieving a three-fold cross-validation using the new

and benchmark algorithms on the real-life data sets are given in Table 5.4 and plotted in

Figure 5.4. The results that we achieve in this case, seem to categorically demonstrate the

power of the scheme. All the two NB algorithms are almost always better than all the other

benchmark algorithms, except the SVM. This is not too difficult to understand because the

SVM utilizes the information gleaned by invoking the borders from both the classes. As

opposed to this, the NB border merely concentrates on the border that the testing sample

is nearest to. The crucial issue that these results communicate is the fact that the NB

strategy that we have proposed is a viable and competitive solution, and lends credibility

to the fact that the new concept that one can use “borders” (or outliers) to achieve very

accurate and almost-optimal PR.

Table 5.4: Results of the accuracies achieved by a three-fold cross-validation using the new
and benchmark algorithms on the real-life data sets.

Data ν-NB ν-NBN NN NC NS SVM
DNA 0.7955 0.7635 0.6990 0.8915 0.4525 0.9385
EYaleB 0.7430 0.7364 0.7455 0.0259 0.0263 0.9239
Ionosphere 0.8632 0.8746 0.8604 0.7920 0.8063 0.9402
Iris 0.9267 0.9067 0.9333 0.8733 0.7000 0.9467
Letter 0.9248 0.9245 0.9352 0.7209 0.0517 0.9157
MFEAT 0.9640 0.9640 0.9800 0.9455 0.5200 0.9745
Minsteries 0.6258 0.6595 0.6043 0.4509 0.6472 0.7454
Pendigits 0.9829 0.9823 0.9929 0.8686 0.9925 0.9944
Pima 0.7227 0.7240 0.6810 0.7344 0.7005 0.7578
Satimage 0.8638 0.8634 0.8970 0.7932 0.9042 0.8992
Segment 0.9065 0.9065 0.9558 0.8476 0.2069 0.9468
Svmguide2 0.7877 0.7852 0.7161 0.7903 0.7212 0.8031
Svmguide4 0.6601 0.6405 0.6618 0.5376 0.3644 0.7598
USPS 0.8635 0.8621 0.9525 0.1167 0.6698 0.9505
Vehicle 0.7139 0.7128 0.6950 0.5816 0.2388 0.8002
Vowel 0.9434 0.9434 0.9646 0.8182 0.9697 0.9455
Wave2 0.8492 0.8484 0.7222 0.8086 0.6712 0.8538

Interpretation of the Results: With regard to the interpretation of the results, we

state:

• First of all, as can be seen from the results, the difference between the ν-NB and

the ν-NBN is negligible. However, ν-NB has a marginally higher rank than the ν-
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NBN. Therefore, we can state that using an enhanced distance measure, as defined in

Equation (5.7), is beneficial.

• Second, the SVM obtained the highest rank. However, by using Friedman test [85],

there is no significant difference among the SVM, the NN, and the ν-NB under the

current significant level. This is quite a remarkable conclusion.

• Third, the performances of NC and NS are very close to each other.

• Last, if we examine the accuracies of the classifiers, we can clearly identify two dis-

tinct groups: {SVM, NN, ν-NB, ν-NBN}, and {NC, NS}, demonstrating that our

newly-introduced NB schemes are competitive to the best reported algorithms in the

literature.
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Figure 5.4: The accuracies achieved on three-fold cross-Validation for the 17 real-life data
sets. This is a color figure, thus the readability may be affected if printed in grayscale. The
order of the bars, from left to right, in the figure, is the same as these from top to bottom
in the legend.

We also tested the performance of our NB method on the microarray data proposed

in [33]. However, its performance was not good enough. We think it is because of the

following reasons. First, the NB method learns the border of each class separately, that is

the distributions of other classes are unseen. Thus, it needs a large number samples to learn

the domain of a class. However, usually there is a small number of samples in each class

of a microarray data set. Second, the distribution of a class of a microarray data set may

be complex. For example, the class of breast tumor is in fact composed of many subtypes

which have their own genotypical features. There are two possible solutions to overcome
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these issues. First, supervised SVDD can be devised so that the data of the centers of others

classes can serve as references. Second, proper clustering can be conducted for some classes

that may be complexly distributed. This idea is similar to our local method described in

Chapter 2.

We have introduced a new paradigm for pattern recognition which has not been re-

ported in the literature earlier, which we shall refer to as the nearest border paradigm.

This paradigm can be contrasted with the reported and existing PR paradigms such as the

optimal Bayesian, kernel-based methods, nearest neighbor methods, nearest centroid meth-

ods, among others. The philosophy for developing such a NB strategy is also quite distinct

from what has been used in the existing literature, because we shall attempt to create bor-

ders for each individual class only from the training data sets of that class. Indeed, unlike

the traditional border identification methods, we have not achieved this by using inter-class

criteria, but by searching for the border for a specific class in the d-dimensional hyper-space

by invoking only the properties of the samples within that class. This has been, in turn,

achieved, using the corresponding one-class SVM-based classifers. Once these borders have

been obtained, we advocate that testing is accomplished by assigning the test sample to

the class whose border it lies closest to. We emphasize that our methodology is actually

counter-intuitive, because unlike the centroid or the median, these border samples are often

“outliers” and are, indeed, the points that represent the class the least.

3 A hierarchical Model 3

We have proposed our nearest border method above for multi-class classification. We also

mentioned that a sufficient number of samples are required by each class for a satisfactory

performance of the nearest border method. In this section, we propose another strategy –

the hierarchical model, which extends linear models for multi-class classification problems.

Our experiments on microarray data of breast tumor subtypes, show that our hierarchical

model generalizes very well for a small number of samples.

3.1 Training Phase

We give an example of such a model to illustrate our method in Figure 5.5. Suppose there

are five classes, namely {C1, · · · , C5}. The training set is represented by a m × n matrix

D = {D1, · · · ,D5} corresponding to the five classes. Di, of size m × ni, is the training

data for class Ci. m is the number of features and ni is the number of samples in class

3This section is based on our collaborative work published as [166].
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Ci. n =
∑5

i=1 ni is the total number of training samples from all five classes. First of all,

feature selection and classification are conducted, in a cross-validation fashion, for each class

against the other classes. For example, suppose class C3 obtains the highest rank based

on its one-versus-rest accuracy. We thus record the list of the particular features selected

and create a leaf for that class. We then remove the samples of the class, which results in

D = {D1,D2,D4,D5} and continue the process in the same fashion. Thus, at the second

level, class C5 yields the highest rank, and hence its feature list is retained and a leaf is

created. Afterward the training data set becomes D = {D1,D2,D4} for the third level.

We repeat the training procedure in the same fashion until there is no class to classify. At

the last level, two leaves are created, for C4 and C2, respectively.

G3

C3G5

G1

C1G2

C2

C5

C4

Ci : the i-th class.
Gi : the subset of features    
selected for the class Ci.

yes

yes

yes

yesno
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no

no

Figure 5.5: An example of the hierarchical model.

3.2 Prediction Phase

Once the training is complete, we can apply the scheme to predict the classes of new samples.

Given the data of a sample, a sequence of classification steps are performed by tracing a

path from the root of the tree toward a leaf. At each node in the path, only the features

selected in the training phase are tested. The process starts at the first level (root of the

tree), in which case only the features selected for C3, namely G3 are tested. If the new

sample is classified as a positive sample, then the prediction outcome is class C3, and the

prediction phase terminates. Otherwise, the sequence of classification tests is performed in

the same fashion, until a leaf is reached, in which case the prediction outcome is the class

associated with the leaf that has been reached.



CHAPTER 5. SPARSE REGULARIZED LINEAR MODELS 133

3.3 Characteristics of The Method

Our structured model has the following characteristics. First, it involves a greedy scheme

that tries the subtype which obtains the most reliable prediction and the smallest number

of genes first. Second, it can conduct feature selection and classification simultaneously.

Essentially, it is a specific type of decision tree for classification. The differences between

the proposed model and the traditional decision tree include: i) each leaf is unique, while

one class usually has multiple leaves in the latter; ii) classifiers are learned at each node,

while the traditional scheme learns decision rules; and iii) multiple features can be selected,

while in the traditional scheme each node corresponds to only one feature. Third, the

proposed model is flexible as any feature selection method and classifier can be embedded.

Obviously, a classifier that can select features simultaneously also applies, (e.g. the l1-norm

SVM in Section 3.1 of Appendix B).

3.4 An Application to Predict Breast Cancer Subtypes

We have implemented the hierarchical model in MATLAB. Many classifiers and feature

selection methods can be embedded in the hierarchical model, resulting in many instances

of this model. We are interested in two instances of the hierarchical model: by using

C-SVM and l1-norm SVM, respectively (see Sections 2.3 and 3.1 of Appendix B for an

introduction to C-SVM and l1-norm SVM, respectively). For narrative convenience, we call

them hierarchical C-SVM and hierarchical l1-norm SVM, respectively. The former uses all

features, while the latter conducts feature selection and classification simultaneously. We

compared the former with one-versus-all C-SVM, and the latter with one-versus-all l1-norm

SVM. The parameters of the respective methods were selected by coarse grid or line search

due to time constraint. Four-fold cross-validation was run 20 times for each method, and

the average results were compared.

We tested them on the microarray gene expression data of five breast tumor subtypes,

generated by Hu et al. [31]. Hu’s data (GSE1992) were generated by three platforms in-

cluding Agilent-011521 Human 1A Microarray G4110A (feature number version) (GPL885),

Agilent-012097 Human 1A Microarray (V2) G4110B (feature number version) (GPL887),

and Agilent Human 1A Oligo UNC custom Microarrays (GPL1390). Each platform has

22,575 probe sets, and there are 14,460 common probe sets among these three platforms.

We used SOURCE [167] to obtain 13,582 genes with unique unigene IDs in order to merge

data from different platforms together. It contains 158 samples from five subtypes (13 Nor-

mal, 39 Basal, 22 Her2, 53 LumA and, 31 LumB). The sixth subtype Claudin is excluded
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from our current analysis as the number of samples of this class is too few (only five).

However, we will investigate this subtype in our future work.

Table 5.5 shows the mean accuracies and standard deviations of our experiment. In this

table, “OVA” and “HK” stand for “one-versus-all” and “hierarchical”, respectively. The

accuracy of a subtype is defined as the ratio of the number of correctly predicted test samples

from this class to the total number of test samples from this class. The overall accuracy is

defined as the ratio of the number of correctly predicted test samples to the total number

of test samples. First of all, when using C-SVM, the hierarchical strategy obtained a better

accuracy than the one-versus-all strategy. The difference between both accuracies is greater

than their standard deviations. We can also observe an improvement in the accuracies of

LumA and LumB by using the hierarchical model. Second, when using the l1-norm SVM

to select genes and classify samples simultaneously, the accuracy of the hierarchical scheme

is also slightly higher than the one-versus-all scheme. Furthermore, the accuracies of LumA

and LumB are also increased by using the hierarchical scheme, compared with the one-

versus-all based l1-norm SVM. However, the accuracy of Her2 obtained the hierarchical

scheme is lower than that by one-versus-all scheme, which requires further investigation.

Table 5.5: The accuracy of the hierarchical model.

Method Basal Her2 LumA LumB Normal Accuracy

OVA C-SVM 1.0000(0) 0.7773(0.0404) 0.7792(0.0392) 0.5435(0.0424) 0.7769(0.1112) 0.7870(0.0145)
HK C-SVM 0.9923(0.0118) 0.7750(0.0393) 0.8198(0.0436) 0.5952(0.0554) 0.7769(0.1138) 0.8085(0.0206)
OVA l1-SVM 0.9987(0.0056) 0.8205(0.0528) 0.7868(0.0311) 0.5161(0.0603) 0.5962(0.1189) 0.7750(0.0154)
HK l1-SVM 0.9962(0.0092) 0.7455(0.0526) 0.8132(0.0473) 0.5710(0.0662) 0.5846(0.1250) 0.7826(0.0300)

4 The Regularized Linear Models and Kernels Toolbox

We have implemented most of the methods mentioned in this chapter and Appendix B.

Table 5.6 summarizes our current implementations, which constitute our regularized linear

models and kernels (RLMK) toolbox. It can be downloaded at https://sites.google.

com/site/rlmktool. We will continue realizing the rest and latest linear models, so that

our RLMK toolbox can grow to a powerful and popular package.

https://sites.google.com/site/rlmktool
https://sites.google.com/site/rlmktool
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Table 5.6: Current implementations of our RLMK toolbox.

Method OptimizationTraining Func. Prediction Func. Example

C-SVM QP CSVMQPTrain SVMBinaryPredict exampleSVMTwo
C-SVM SMO CSVMSMOTrain SVMBinaryPredict exampleSVMTwo
ν-SVM QP nuSVMQPTrain SVMBinaryPredict exampleSVMTwo
Two-class SVM - SVMBinaryTrain SVMBinaryPredict exampleSVMTwo
Multi-class SVM - SVMMultiTrain SVMMultiPredict exampleSVMMulti
Hard Margin l2-Reg.Closed-Form khdlmTrain khdlmPredict exampleHDLM

l1-norm SVM LP l1CSVMTrain l1CSVMPredict examplel1SVM
SVM-RFE - svmrfemrmr - exampleSVMRFE

Hypersphere SVDD QP SVDD - exampleSVDD
Hypersphere SVDD SMO SVDD - exampleSVDD

hierarchical Model - hierarchialModelTrainhierarchialModelPredictexampleHierarchialModel
Multi-class SVDD - SVDDTrain SVDDPredict exampleNBSVDD

5 Conclusions

In this chapter, we propose two strategies to extend sparse regularized linear models for

multi-class classification problems. The first model is named nearest border model which

learns the border of each class. The second model is a hierarchical model, which learns a

specific tree structure. Our experiments show that the nearest border method performs well

when there are a sufficient number of samples for each class in order to learn the border

precisely, and the hierarchical model works very well with a small number of samples.

Furthermore, we have implemented both methods and many regularized linear models in

MATLAB. Our implementations can be download online. As a future work, we plan to

improve the nearest border method by using supervised support vector domain description

and local learning methods.

Publications

1. The hierarchical model for multi-class data was preliminary presented in [I. Rezaeian,

Y. Li, M. Crozier, E. Andrechek, A. Ngom, L. Rueda, and L. Porter, “Identifying

informative genes for prediction of breast cancer subtypes,” IAPR International Con-

ference on Pattern Recognition in Bioinformatics (PRIB), Nice, June, 2013, LNBI

7986, pp. 138-148.].

2. The nearest border method for multi-class classification was proposed in [Y. Li, B.J.

Oommen, A. Ngom, and L. Rueda, “A new paradigm for pattern classification: nearest

border techniques,” 26th Australasian Joint Conference on Artificial Intelligence, New

Zealand, Dec. 2013.].
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3. The RLMK toolbox is publicly available [https://sites.google.com/site/

rlmktool], but has not been formally published yet.

https://sites.google.com/site/rlmktool
https://sites.google.com/site/rlmktool


Chapter 6

Spectral Method for Clustering

Microarray Time-Series Data 1

1 Introduction

A common problem in molecular biology and other research areas involves partitioning

a set of experimental data into clusters in such a way that the data points within the

same cluster are highly similar, while data points in different clusters are as dissimilar as

possible. In particular, an important process in functional genomic studies is to cluster

microarray time-series data, where genes with similar expression profiles are expected to

be functionally related [2]. This problem has its own features that makes it different from

general clustering problems, namely exchanging two time points can make the resulting

clusters completely meaningless. In this direction, many approaches have been proposed for

clustering microarray time series data. Brief descriptions of all these methods are discussed

below.

A Bayesian approach in [169], a partitional clustering based on k-means in [170], and a

Euclidean distance approach in [171] have been proposed for clustering gene expression time-

series profiles. They have applied self-organizing maps (SOMs) to visualize and interpret

the gene temporal expression profile patterns. A hidden phase model was used for clustering

time-series data to define the parameters of a mixture of normal distributions in a Bayesian-

like manner that are estimated by using expectation maximization (EM) [172]. Also, the

methods proposed in [173, 174] are based on correlation measures. A method that uses

jack-knife correlation with or without using seeded candidate profiles was proposed for

1This chapter is based on our publication [168].

137
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clustering time-series microarray data as well [174], where the resulting clusters depend

upon the initially chosen template genes, because there is a possibility of missing important

genes. Another method proposed for these types of data is a regression-based method [175],

which was proposed to address the challenges in clustering short time-series expression data.

Analyzing temporal gene expression profiles that are non-uniformly sampled and which

may contain missing values has been studied in [176], while clustering temporal gene ex-

pression profiles was studied by identifying homogeneous clusters of genes in [177]. In that

work, the shapes of the curves were considered instead of the absolute expression ratios.

Fuzzy clustering of gene expression profiles has been studied in [178], where the similarities

between co-expressed genes are computed based on the rate of change of the expression

ratios across time. In [179], the idea of order-restricted inference levels across time was

applied to select and cluster genes, where the estimation makes use of known inequalities

among parameters. In that approach, two gene expression profiles fall into the same clus-

ter, if they show similar profiles in terms of directions of the changes of expression ratios,

regardless of how big or small the changes are. In [180], pairs of profiles represented by

piecewise linear functions are aligned in such a way to minimize the integrated squared area

between the profiles. An agglomerative clustering method combined with an area-based

distance measure between two aligned profiles was used to cluster microarray time-series

data. The pairwise gene expression profile alignment approach of [180] was re-formulated

in [181] in terms of integrals of arbitrary functions, in particular, by using natural cubic

spline interpolations. The pairwise alignment formulae of [180] from the case of piecewise

linear profiles is generalized to profiles that are any continuous integrable functions on a

finite interval. Afterwards, the concept of pairwise alignment was extended to multiple

expression profile alignment, where profiles from a given set are aligned in such a way that

the sum of integrated squared errors over a time-interval and defined on the set is mini-

mized. Finally, combining k-means clustering with multiple alignment to cluster microarray

time-series data, produced a high-quality clustering for 221 pre-clustered Saccharomyces

cerevisiae gene expression time-series profiles, leading to an accuracy of 79.64%, when the

data are classified by a k-nearest neighbor in a 10-fold cross-validation setup.

Along with the developments on alignment-based gene time-series analysis, other tech-

niques have also been moving forward. In this direction, a new fuzzy cover based clus-

tering approach was proposed in [182]. That approach, combined with a variation-based

co-expression detection process, was later applied to clustering gene expression time-series

data [183], which is known as the variation-based coexpression detection (VCD) algorithm.

Both the alignment-based and the variation-based clustering algorithms have been reported
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to obtain good performance on various data sets. The principle behind these two approaches

is to first transform the data in such a way that the shapes of any two expression profiles

can be compared in the subsequent clustering step. However, the performance of these

two methods has been quantified in different ways and both performed different clustering

algorithms on their respective transformed data. In [184], we compared the VCD and two

alignment-based clustering methods, k-MCMA and EMMA, on two yeast data sets, and

reported a superior performance of the alignment-based approaches.

Contributions: In this chapter, unlike in the comparison studies presented in [184], we

study the abilities of the alignment-based and the variation-based transformations to yield

high-quality clustering results. Both transformation methods are compared using the same

sparse clustering technique, the spectral clustering algorithm, and on the same data sets.

In [184], we were interested in comparing different clustering methods whereas here, we

are interested in comparing the aforementioned two transformation methods. In order to

assess the quality of the resulting clusters for a given transformation method, a new cluster

validity index is also proposed in this chapter. Thus, the contributions of this chapter are

three-fold:

1. We apply spectral clustering algorithms to expression time-series analysis.

2. We propose new measurements for the quality of the spectral clustering approach.

3. we empirically show that when applied to two well-known data sets, the alignment-

based transformation yields better clustering results than the variation-based trans-

formation.

To the best of our knowledge, the proposed approaches mentioned in 1 and 2 have not been

used in the past for this specific problem.

2 Alignment-Based Data Transformation

Alignment-based transformation methods have been proposed in order to consider vertical

shifting of profiles in such a way that shape similarities between two or more profiles can

be detected. A more general case of this alignment takes into account the lengths of the

intervals, which is accomplished by means of analyzing the area between two expression

profiles, joined by the corresponding measurements at subsequent time points. This is

equivalent to consider the sum or average of squared errors between the infinite points in



CHAPTER 6. SPECTRAL METHOD FOR CLUSTERING 140

the two lines. This analysis can be easily achieved by computing the underlying integral,

which is analytically resolved in advance, subsequently avoiding expensive computations

during the clustering process.

Given two profiles, x(t) and y(t) (either piece-wise linear or continuously integrable

functions), where y(t) is to be aligned with x(t), the basic idea of alignment is to vertically

shift y(t) towards x(t) in such a way that the integrated squared errors between the two

profiles is minimal. Let ŷ(t) be the result of shifting y(t). Here, the error is defined in

terms of the area between x(t) and ŷ(t) in interval [0, T ]. Functions x(t) and ŷ(t) may cross

each other many times, but the sum of all the areas in which x(t) is above ŷ(t) minus the

sum of those areas in which ŷ(t) is above x(t), should be minimal (see Figure 6.1). Let a

denote the amount of vertical shifting of y(t). Then, the value amin of a, which minimizes

the integrated squared error between x(t) and ŷ(t), should be found. Once amin is obtained,

the alignment process consists of performing the shift on y(t) as ŷ(t) = y(t)− amin.

The authors of [181] generalized the pairwise alignment model of [180] from piece-wise

linear profiles to profiles which are any integrable functions on a finite interval. Suppose that

one has two such profiles, x(t) and y(t), defined on the time-interval [0, T ]. The alignment

process consists of finding the value of a that minimizes:

fa(x, y) =

∫ T

0
[x(t)− [y(t)− a]]2 dt. (6.1)

Setting the derivative d
dafa(x(t), y(t)) = 0, and solving for a, yields the solution:

amin = − 1

T

∫ T

0
[x(t)− y(t)]dt, (6.2)

and since d2

da2 fa(x, y) = 2T > 0 then amin is a minimum. The integrated error between x(t)

and the shifted ŷ(t) = y(t)− amin is then∫ T

0
[x(t)− ŷ(t)]dt =

∫ T

0
[x(t)− y(t)]dt+ aminT = 0. (6.3)

In terms of profiles as shown in Figure 6.1, this means that the sum of all the areas

where x(t) is above y(t) minus the sum of those areas where y(t) is above x(t) is zero.

Given an original profile x(t) = [e1, e2, . . . , en] (with n expression values taken at n

time-points t1, t2, . . . , tn), the natural cubic spline interpolation is used, with n knots,
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(t1, e1), . . . , (tn, en), to represent x(t) as a continuously integrable function as follows:

x(t) =


x1(t) if t1 ≤ t ≤ t2

...

xn−1(t) if tn−1 ≤ t ≤ tn

(6.4)

where xj(t) = xj3(t − tj)3 + xj2(t − tj)2 + xj1(t − tj)1 + xj0(t − tj)0 interpolates x(t) in

interval [tj , tj+1], with spline coefficients xjk ∈ <, for 1 ≤ j ≤ n− 1 and 0 ≤ k ≤ 3.

For practical purposes, given the coefficients xjk ∈ <, associated with x(t) = [e1, e2, . . . , en] ∈
<n, one needs to transform x(t) into a new space as x(t) = [x13, x12, x11, x10, . . . , xj3, xj2, xj1, xj0,

. . . , x(n−1)3, x(n−1)2, x(n−1)1, x(n−1)0] ∈ <4(n−1). One can add or subtract polynomials given

their coefficients, and the polynomials are continuously differentiable. This yields the fol-

lowing analytical solution for amin:

amin = − 1

T

n−1∑
j=1

∫ tj+1

tj

[xj(t)− yj(t)]dt

= − 1

T

n−1∑
j=1

3∑
k=0

(xjk − yjk) (tj+1 − tj)k+1

k + 1
. (6.5)
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Figure 6.1: (a) Unaligned profiles x(t) and y(t). (b) Aligned profiles x(t) and y(t), after
applying y(t)← y(t)− amin.

Figure 6.1(b) shows a pairwise alignment of the two profiles of Figure 6.1(a), after

applying the vertical shifting y(t) ← y(t) − amin. It can be noticed that the two aligned

profiles cross each other many times. As a consequence of this, the integrated error as per
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Equation (6.3) is zero. In particular, from Equation (6.3), the horizontal t-axis will bisect a

profile x(t) into two halves with equal areas when x(t) is aligned to the t-axis. This property

is quite important to define the multiple alignment of a set of profiles, as shown below.

Given a data set X = {x1(t), . . . , xs(t)}, the profiles should be aligned in such way that

the integrated squared error between any two vertically shifted profiles is minimal. Thus,

for any xi(t) and xj(t), the values of ai and aj can be found via minimizing:

fai,aj (xi, xj) =

∫ T

0
[x̂i(t)− x̂j(t)]2dt

=

∫ T

0
[[xi(t)− ai]− [xj(t)− aj ]]2dt ,

(6.6)

where both xi(t) and xj(t) are shifted vertically by ai and aj , respectively, in possibly

different directions, whereas in the pairwise alignment of Equation (6.1), profile y(t) is

shifted towards the fixed profile x(t). The multiple alignment process consists then of

finding the values of a1, . . . , as that minimize:

Fa1,...,as (x1, . . . , xs) =
∑

1≤i<j≤s
fai,aj (xi, xj) . (6.7)

The solution for each ai of the above minimization problem is given by the following

theorem derived in [181]:

Theorem 1 (Universal Alignment Theorem). Given a fixed profile, z(t), and a set of pro-

files, X = {x1(t), . . . , xs(t)}, there always exists a multiple alignment, X̂ = {x̂1(t), . . . , x̂s(t)},
such that:

x̂i(t) = xi(t)− amini , amini = − 1

T

∫ T

0
[z(t)− xi(t)]dt, (6.8)

and, in particular, for profile z(t) = 0, defined by the horizontal t-axis, one has:

x̂i(t) = xi(t)− amini , where, amini =
1

T

∫ T

0
xi(t)dt. (6.9)

This theorem is quite important since it allows us to apply multiple alignment as a pre-

processing step, and then an iterative clustering algorithm, such as k-means, as a second

step. This implies a substantial improvement on efficiency in computations and provides

independence of the clustering algorithm. The proof of this theorem and other related

results can be found in [181].
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We use the multiple alignment of Equation (6.9) in all subsequent discussions. Using

spline interpolations, each profile xi(t), 1 ≤ i ≤ s, is a continuous integrable profile:

xi(t) =


xi,1(t) if t1 ≤ t ≤ t2

...

xi,n−1(t) if tn−1 ≤ t ≤ tn

(6.10)

where, xi,j(t) = xij3(t− tj)3 + xij2(t− tj)2 + xij1(t− tj)1 + xij0(t− tj)0 represents xi(t) in

interval [tj , tj+1], with spline coefficients xijk for 1 ≤ i ≤ s, 1 ≤ j ≤ n − 1 and 0 ≤ k ≤ 3.

Thus, the analytical solution for amini in Equation (6.9) is:

amini =
1

T

n−1∑
j=1

3∑
k=0

xijk (tj+1 − tj)k+1

k + 1
(6.11)

Given a set of profiles X = {x1(t), . . . , xs(t)}, a representative centroid profile µ(t),

which well represents X, should be found. An obvious choice is the function that minimizes:

∆[µ] =
s∑
i=1

d (xi, µ) . (6.12)

where, ∆ plays the role of the within-cluster-scatter defined in [180], and the (L2) distance

between two profiles, x(t), y(t), was defined in [181] as:

d(x, y) =
1

T

∫ T

0
[x̂(t)− ŷ(t)]2 dt. (6.13)

The distance d(·, ·) as defined in Equation (6.13) is unchanged by an additive shift x(t)→
x(t)−a in either of its arguments, and hence, it is order-preserving; that is, d(u, v) ≤ d(x, y)

if and only if d (û, v̂) ≤ d (x̂, ŷ) [181]. Therefore, one has:

∆[µ] =
s∑
i=1

d (x̂i, µ) =
1

T

∫ T

0

s∑
i=1

[x̂i(t)− µ(t)]2 dt, (6.14)

where, X̂ = {x̂1(t), . . . , x̂s(t)} is the multiple alignment of Equation (6.9). ∆[µ] is a func-

tional of µ; that is, a mapping from the set of real valued functions defined on [0, T ] to the

set of real numbers. The solution for µ in Equation (6.14) was obtained in [181] by setting
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the functional derivative2 δ∆[µ]
δµ(t) = 0 and then solve for µ as follows:

µ(t) =
1

s

s∑
i=1

x̂i(t). (6.15)

With the spline coefficients, xijk, of each xi(t) interpolated as in Equation (6.10), the

analytical solution for µ(t) in Equation (6.15) is:

µj(t) =
1

s

s∑
i=1

[
3∑

k=0

xijk (t− tj)k
]
− amini , (6.16)

in each interval [tj , tj+1]. Thus, the centroid is the average point in the multidimensional

space; that is, its coordinates are the arithmetic mean for each dimension separately over all

the points in the cluster. In a sense, it is the center of gravity for the respective cluster. The

distance between two clusters is determined as the difference between the two centroids.

Equation (6.15) applies to aligned profiles, while Equation (6.16) can apply to unaligned

profiles.

In [181, 186], an initial data set X = {x1(t), . . . , xs(t)} is first transformed into a set

of multiple-aligned profiles X̂ = {x̂1(t), . . . , x̂s(t)}, and then a given clustering method is

applied. The k-means clustering was applied in [181] and expectation-maximization (EM)

clustering was applied in [186]. These two clustering approaches are called k-MCMA and

EMMA, respectively. It was also shown in [181] that: (i) any distance-based clustering

method can be used; (ii) clustering the original data set X is equivalent to clustering the

transformed data set X̂ , provided that the centroids are initialized in a similar way; (iii)

clustering multiple-aligned profiles is much faster than clustering the original data set.

3 Variation-Based Data Transformation

The authors of [183] proposed a novel clustering scheme called the variation-based coexpres-

sion detection (VCD) algorithm in order to analyze trends of expression profiles based on

their variations between adjacent time points. The VCD, which does not require that the

number of clusters be known in advance, also includes a criterion for calculating the degree

of change of the expression between adjacent time points and evaluating the trend similar-

ities between two profiles. As in the alignment-based clustering approaches, the VCD also

2For a functional F [φ], the functional derivative is defined as δF [φ]
δφ(t)

= limε→0
(F [φ+εδt]−F [φ])

ε
, where

δt(τ) = δ(τ − t) is the Dirac delta function centered at t. [185]
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performs a transformation on the initial data set X = {x1(t), . . . , xs(t)}, and then proceeds

to cluster the transformed data ~X = {~x1(t), . . . , ~xs(t)}. Each profile xi(t) = (xi1, . . . , xiT )

is transformed into a variation vector ~xi(t) = (~xi1, . . . , ~xi(T−1)) of length T − 1, where

~xij = xi(j+1) − xij (6.17)

for j = 1, . . . , T − 1. The amplitude of the expression change at a time point can be

emphasized by making the following change to Equation (6.17)

~xij =
ti2 − ti1

ti(j+1) − tij
×
|xi(j+1) − xi1|

xi1
× (xi(j+1) − xij), (6.18)

where tij is the time point corresponding to the gene expression ratio xij , and the first

term at the right of the equation is to tackle the problem of unequal time intervals. Clearly,

expression profiles that have similar trends or shapes will also have similar variation vectors

(the opposite is not necessarily true), and hence subsets of co-expressed profiles can be

obtained by clustering their variation vectors. In this regard, in [183] the cosine similarity

function was used as follows:

cos〈~xi(t), ~xj(t)〉 =
~xi(t) · ~xj(t)

||~xi(t)|| × ||~xj(t)||
(6.19)

to measure the similarity between two variation vectors in their clustering process, where

|| · || is the Euclidean norm.

The subsequent clustering step of the VCD of [183] is based on the fuzzy cover clustering

approach of [182], which aims to find a minimal set of covers that are fuzzy hyper-spheres

centered each at a variation vector called cover prototype. The covers have the same radii,

and a variation vector belongs to a cover if its cosine similarity with the cover prototype is

greater than a predefined threshold λ. The prototypes are selected in such a way that the

overlapping areas between their covers are minimized and the number of covers required

to enclose the data set ~X is also minimized; this is equivalent to the classical vertex cover

problem, an NP-hard problem, for which in [183], the authors proposed a greedy algorithm

to search for a minimal set of covers that encloses ~X . A variant of the agglomerative

hierarchical clustering algorithm is then applied to the collection of covers: two covers are

merged into a cluster, if they satisfy a merging criterion that takes into account the distance

between these cover prototypes and the within-cover variance for each of these covers.
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4 Time-Series Spectral Clustering

We applied a normalized spectral clustering algorithm to the transformed data sets, X̂
and ~X , obtained by performing the transformations of Equation (6.9) and Equation (6.17

or 6.18), respectively. An excellent tutorial about the family of spectral algorithms can

be found in [187] for interested readers. Here, we briefly discuss the components of our

approach, shown in Algorithm 6.1, for clustering gene time-series and refer readers to [187]

for more details. Spectral clustering is an emerging clustering method which has many

fundamental advantages over traditional methods. In many cases, it outperforms traditional

clustering algorithms, it is simple to implement, it can be solved efficiently, and it does not

make any assumptions on the shapes or forms of the clusters. Roughly speaking, spectral

clustering finds a partition of a similarity graph defined on the input data set in such a way

that the edges between different groups have very low weights (and hence, points in different

clusters are different from each other), while the edges within a group have relatively high

weights (and hence, points within the same clusters are similar to each other). The weighted

adjacency matrix W is usually sparse. If it is sparse, then the graph Laplacian matrix L is

sparse. It has been reported that if L is sparse, then its eigen-decomposition is very efficient

[187]. Therefore, spectral clustering is a very fast sparse method for clustering large-scale

data. This is our first rationale that we apply it to cluster microarray time-series data

where there are usually thousands, even tens of thousands, of genes. Our second rationale

is that the spectral clustering method is a kernel method as the input is a similarity matrix,

rather than the original data. Thus, it is very flexible to cluster gene expression time series

by using different (dis)similarity measures, for example the alignment-based and variation-

based measures mentioned above.

The algorithm for spectral clustering microarray time-series data is depicted in Algo-

rithm 6.1. The input X̄ = {x̄1, . . . , x̄n} is either the transformation X̂ of Equation (6.9) or

the transformation ~X of Equation (6.17 or 6.18); S is the n×n similarity matrix containing

the similarities between all pairs of points x̄ ∈ X̄ ; G is a weighted undirected graph with

vertices {x̄1, . . . , x̄n}, where x̄i connected to x̄j if x̄i is among the c-nearest neighbors of x̄j ,

or if x̄j is among the c-nearest neighbors of x̄i, and the edge carries a non-negative weight

wij = s(x̄i, x̄j) ≥ 0 which is the similarity between x̄i and x̄j ; W = [wij ] is the adjacency

matrix; D is the diagonal degree matrix with the degrees di =
∑n

j=1wij of x̄ij , 1 ≤ i ≤ n,

in the main diagonal. It can be seen that each node connects to at least c nodes. Although

any clustering method can be used in Step 7 of Algorithm 6.1 once the rows of V are com-

puted, we used k-means due to its simplicity and fairly good efficiency. We fixed σ = 1 in

our application. There is no systematic theoretical study on the choice of the parameter



CHAPTER 6. SPECTRAL METHOD FOR CLUSTERING 147

Algorithm 6.1 Time-Series Spectral Clustering

Input: Transformed profiles, X̄ = {x̄1, . . . , x̄n}; Desired number of clusters, k > 0; Number
of nearest neighbors, c ≥ 1

Output: Clusters C̄1, . . . , C̄k
1. S ∈ <n×n ← similarity matrix of X̄ ;

2. G← c-nearest neighbor similarity graph of S;

3. W ← weighted adjacency matrix of G;

4. L← D −W ; the un-normalized graph Laplacian;

5. V = (v1, . . . , vk) ∈ <n×k ← the first k generalized eigenvectors of L; see reference
[187] ;

6. For 1 ≤ i ≤ n, do: ri ∈ <k ← i-th row of V ;

7. Cluster {r1, . . . , rn} into k clusters R1, . . . ,Rk;
return Clusters C̄1, . . . , C̄k with C̄i = {j | rj ∈ Ri};

c. When choosing c in c-nearest neighbor, one should make sure that the similarity graph

is connected, or only consists of “few” connected components and very few or no isolated

vertices. A rule of thumb is choosing c on the order of log(n), where n is the number of

samples. However, the choice of c depends upon data at hand. We found that c = 10 is a

good choice. It is an open problem to choose K in clustering. There are many indices for

general purpose [188]. One particular tool for spectral clustering is eigengap heuristic [187].

We invented the Sc index to test the quality of spectral clustering (see next section).

In terms of notation, our time-series spectral clustering algorithm is called SCMA if the

alignment-based transformation is used, or SCVV if the variation-based transformation is

used. The similarity measure used for matrix S is defined as:

sMA(x̄i, x̄j) = e−
d(x̄i,x̄j)

2σ2 , (6.20)

between two aligned profiles x̄i, x̄j in the SCMA method, and d(x̄i, x̄j) is the distance

function defined in Equation (6.13). For the SCVV method, the similarity between the

variation vectors is given by:

sVV(x̄i, x̄j) =
1

2
(1 + cos〈x̄i, x̄j〉). (6.21)
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5 Cluster Validity

Two important issues when applying a clustering approach are (i) if the number of clus-

ters is adequate for a specific data set, and (ii) how good is the clustering for a specific

number of clusters in terms of well-separated and compact clusters. To determine the ap-

propriate number of clusters and also the goodness or validity of the resulting clusters, our

transformation-based spectral clustering approach is used in conjunction with a new cluster

validity index, which we call the Sc index. Since the clusters resulting from spectral clus-

tering may have arbitrary shapes (not necessarily hyper-spherical or hyper-ellipsoidal), we

devised this index specially for assessing the results of that algorithm. Once the appropriate

number of clusters is determined for a given transformation method, our transformation-

based spectral clustering is used for proper partitioning of the data into the said number

of clusters. Let K be the number of clusters. The cluster validity indices of [189] use

within-cluster variances, between-cluster variances, or cluster diameter to assess the quality

of a clustering result. As mentioned above, they work well for conventional clustering algo-

rithms, such as k-means and EM, which in general produce clusters with hyper-spherical or

hyper-ellipsoidal shapes in the Euclidean space. However, spectral clustering can also find

clusters with irregular shapes. Therefore, the current indices are not suitable for evaluating

the clustering produced by spectral methods. We thus propose here a new validity index,

Sc, which is used for assessing the results of a spectral clustering method. For each spectral

cluster, we create a complete weighted undirected graph where the nodes are the members of

the cluster. Any two members are connected by an edge labeled with the distance between

them. In our index, the compactness of a cluster is measured by computing the average

weight of the minimum spanning tree of the cluster’s graph. The separation between the

clusters is measured by computing the average distance for all pairs of clusters. That is,

given two clusters Ci and Cj with m members {c̄i1, . . . , c̄im} and n members {c̄j1, . . . , c̄jn},
respectively, the distance between Ci and Cj is defined as follows:

dC(Ci, Cj) =

∑m
k=1 d(c̄ik, c̄js) +

∑n
k=1 d(c̄it, c̄jk)

m+ n
, (6.22)

where c̄js is the member of Cj closest to the member c̄ik of Ci, c̄it is the member of Ci closest

to the member c̄jk of Cj .
Our Sc index is defined as the ratio of compactness and separation as follows:

Sc(K) =

∑K
k=1wk/K∑K−1

i=1

∑K
j=i+1 dC(Ci, Cj)/[K(K − 1)]

, (6.23)



CHAPTER 6. SPECTRAL METHOD FOR CLUSTERING 149

where K is the number of clusters, and wk is the average weight of the minimum spanning

tree of the k-th cluster. The best number of clusters corresponds to the value of K for

which the Sc is minimal.

6 Experimental Results and Analysis

In this section, the results of alignment-based and variation-based transformation methods

are compared visually and quantitatively using spectral clustering, on two well-known data

sets. The first data set, Saccharomyces cerevisiae [2], contains mRNA transcript ratios

during the yeast cell cycle, and was used for analysis in [181] and [186]. The second data set

includes progressions of the cell cycle fission yeast Schizosaccharomyces pombe [190], which

was used for analysis in [184, 190].

The data set of pre-clustered budding yeast [2]3 contains gene expression time-series

profiles of the complete characterization of mRNA transcript levels during the yeast cell

cycle. These experiments measured the expression ratios of the 6,220 yeast genes during

the cell cycle at seventeen different points, from 0 to 160 minutes, at every 10-minute time-

interval. In [2], 221 of these profiles were analyzed separately, and are the ones that are

analyzed in this chapter too. Each expression profile is normalized as in [2]; that is, each

transcript ratio is divided by the mean value of each profile with respect to each other.

The data set contains five known clusters called phases: Early G1 phase (32 genes), Late

G1 phase (84 genes), S phase (46 genes), G2 phase (28 genes) and M phase (31 genes); the

phases are visualized in Figure 6.2(b). Setting k = 5, we applied our transformation-based

spectral clustering to the data set to see if they are able to find these phases as accurately

as possible. Next, we compare the resulting clusters with the five phases analyzed in [2].

The five yeast clusters found by the alignment-based (SCMA) and the variation-based

(SCVV) spectral clustering methods are shown in Figure 6.2, respectively, as well as the

five yeast phases. To measure the performance of each method, we assigned each of the

five clusters of that method to a yeast phase using the Hungarian algorithm [191]. The

Hungarian method is a combinatorial optimization algorithm that solves the assignment

problem in polynomial time. Our phase assignment problem and the complete discussion

of the solution can be found in [181]. In Figure 6.2, for each method: the cluster and the

phase of each of the five selected pairs, found by the Hungarian algorithm, are shown at the

same level; e.g., cluster C1 of SCMA corresponds to the Early G1 phase of [2] by our phase

assignment approach, and hence they are at the same level in the figure. The horizontal

3http://genomics.stanford.edu/yeast_cell_cycle/cellcycle.html

http://genomics.stanford.edu/yeast_cell_cycle/cellcycle.html
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axis represents the time-points in minutes and the vertical axis represents the expression

values. Each cluster is vertically shifted up by three units to visually distinguish it from

the others. The dashed black lines are the learned cluster centroids from a given method

or the known phase centroids of the yeast data. In the figure, each cluster and phase were

multiple-aligned to enhance visualization.

Figure 6.2 clearly shows a high degree of similarity between the clusters found by the

two algorithms and the yeast phases. Visually, each cluster for each method is very similar

to one of the yeast phases (i.e., the one shown at the same level). Also visual observation

reveals that SCMA can also correct manual phase assignment errors, if any.
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Figure 6.2: (a) Yeast phases [2], (b) SCMA clusters , and (c) SCVV clusters for Saccha-
romyces cerevisiae.

On the other hand, there are noticeable differences between the assignment of genes to

clusters by the SCMA and SCVV spectral clustering algorithms. For example, at the peaks

of SCVV cluster C3, some genes go down, while genes in the corresponding SCMA cluster

C3 evolve very coherently. In order to assess and compare the clustering quantitatively, an
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objective measure for comparing the transformation-based spectral clusters with the yeast

phases was computed by taking the average classification accuracy, as the number of genes

that clustering algorithm correctly assigned to one of the phases. Considering each SCMA

cluster as a class, Ĉµ̂i (1 ≤ i ≤ k = 5), we trained a c-nearest neighbor (c-NN) classifier with

the resulting clusters to classify the data, and evaluated the classification results by following

10-fold cross-validation. By trying different values of c, we found that c = 7 is the best for

this data set. We used the function given in Equation (6.13) to measure the distance between

centroids and the nearest profile(s). This criterion is reasonable, since SCMA and SCVV

are unsupervised learning approaches, and hence we do not know the phases beforehand.

Thus, the aim is to “discover” these phases. In [2], the five phases were determined using

biological information, including genomic and phenotypic features observed in the yeast

cell cycle experiments. After applying c-NN to the resulting clusters, SCMA and SCVV

obtained average classification accuracies of 93.78% and 77.03% respectively (see Table 6.1).

Both accuracies are highly considering the fact that SCMA and SCVV are unsupervised

learning methods. Also, SCMA outperforms SCVV by at least 16% in terms of classification

accuracy. In terms of visual observations, it can be inferred that genes from the same cluster

generated by SCMA are more compact and separated than in SCVV. Another weakness of

SCVV is that for some cases the pattern discovered do not seem to follow the “shapes” of

the phases proposed by [2]. As pointed out above, this can also be observed, for example,

for the S phase, for which SCVV includes many profiles in SCVV cluster C1, while these

gene profiles show a high peak at an early stage, and would be better placed in the Late

G1 phase.

On the other hand, we applied the Sc index on this data set, in order to determine the

best number of clusters. For each 1 ≤ K ≤ d
√

221e, SCMA was run for 20 times and the

average value of Sc was obtained. For SCMA, we obtained K = 10 as the best number of

clusters; K = 10 was the best number of clusters for SCVV too. Figure 6.3 shows pairs

of similar clusters found after applying the Hungarian algorithm. As in the clustering for

the five phases (Figure 6.2), SCVV shows some weaknesses with respect to SCMA. It can

be noticed that different clusters are well separated by a number of peaks and the time in

which the peaks appear, and hence the “peaks” detected by SCVV do not seem to follow

the same trend as those of SCMA. In terms of classification power, in these experiments,

SCMA yielded an accuracy of 87.13% and SCVV yielded an accuracy of 57.35% (see Table

6.1), again, showing the superiority of SCMA over SCVV.

The clustering methods were also compared for the data set containing the cell cycle

progressions of the fission yeast Schizosaccharomyces pombe of [190]. This data set contains
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Figure 6.3: (a) SCMA clusters and (b) SCVV clusters for Saccharomyces cerevisiae with
K = 10.

747 genes, containing the expression ratios measured at 14 different time points, for two

types of cells, namely, wild-type and cdc25 mutant cells. We compared the performances

of SCMA and SCVV methods on the cdc25 type data only. Since this data set does not

have class labels, the idea is to discover new clusters on it. For this purpose the SCMA

and SCVVA algorithms were applied and the Sc index was used to find the best number of

clusters. For both, SCMA and SCVV, we obtained K = 12 as the best value of K.

Figure 6.4 shows the clusters obtained by both SCMA and SCVV methods, visualized

in same way as those of Figure 6.2 using Hungarian method and multiple alignment, except

that in this figure, the assignment of clusters (by means of the Hungarian algorithm) was

done by matching clusters from SCMA with those of SCVV. Here too, a visual inspection
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shows similarities between the results of the two methods, in general. It can also be observed

that the clusters produced by SCMA are more compact and more separated than those

obtained by the SCVV. The same objective measure used for the clusters of Saccharomyces

cerevisiae was also applied to Schizosaccharomyces pombe. The alignment-based SCMA

obtained a very good average classification accuracy of 88.88%, while SCVV just attained a

modest average classification accuracy of 66.91% (see Table 6.1). This demonstrates, again,

the superiority of SCMA with respect to SCVV on clustering microarray time-series data.
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Figure 6.4: (a) SCMA clusters and (b) SCVV clusters with centroids shown, for Schizosac-
charomyces pombe.

Table 6.1: Accuracies of SCMA and SCVV on two data sets.

Methods
Saccharomyces cerevisiae Saccharomyces cerevisiae Schizosaccharomyces pombe
Accuracy k Accuracy k Accuracy k

SCMA 93.78% 5 87.13% 10 88.88% 12
SCVV 77.03% 5 57.35% 10 66.91% 12
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7 Conclusions

In this chapter, we have proposed to cluster microarray time-series data by using spectral

clustering combined with two different transformation methods, namely alignment based

and variation-based transformations. The spectral clustering algorithm was applied on

the data sets obtained by using these two types of transformations. Additionally, a new

cluster validity index is proposed for assessing the clustering results of spectral clustering

algorithms, due to the nature of these types of algorithms and the unsuitability of the

traditional cluster validity indices for this purpose.

We have compared the two transformation methods as another main goal of this chapter,

alignment-based transformation versus variation-based transformation, for two well known

microarray time-series data sets, namely Saccharomyces cerevisiae and Schizosaccharomyces

pombe. The resulting clustering and an evaluation using the well-known c-nearest neighbor

classifier on the clustered data sets demonstrate that the alignment-based transformation

substantially outperforms the variation-based transformation. An interesting property to

note about the two types of transformations analyzed in this chapter is that one could apply

a double-transformation; that is, perform a multiple-alignment on the initial data set, trans-

form the aligned data into variation vectors, and then proceed to cluster the resulting data.

However, this, indeed, is not needed in practice, since applying the variation-based transfor-

mation to the original data and the resulting data from the alignment-based transformation

would produce the same clustering results. This is as a result of the alignment-based trans-

formation being invariant to the variations between time points.

We clarify that the transform mainly contributes to the improvement. This has been

empirically proven in [192], where the clustering method was fixed, and different transform

methods are compared. However, we believe spectral clustering also contributes to the

performance, because it often outperforms many traditional clustering methods. This can be

tested by fixing a transform method, and compared spectral clustering with other clustering

methods.

Finally, a few words about the potentials of the results presented here for future work is

not out of place. One of the issues that is worth investigating is the use of other measures

for the cluster validity of spectral clustering. Other graph measurements, including cluster

diameter, distance between graphs, among others, can be investigated. The other issue to

be investigated is to observe the power of the two transformation schemes combined with

spectral clustering on other data sets available in the literature.
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Chapter 7

High-Order Dynamic Bayesian

Network Approaches for

Identifying Gene Regulatory

Networks

1 Introduction

Accurate and fast reconstruction of gene regulatory networks (GRNs) is an important task

that has recently become possible due to large-scale high-throughput experiments such

as microarray experiments [193]. Gene expression levels obtained over sufficiently large

number of time-points can be used to identify GRNs. It is well known that the expressions

of a given gene can affect how certain genes are expressed, either down-regulated or up-

regulated. GRN represents such causal relationships among genes, encoding all the temporal

dependencies between genes in an organism [194]. Regulatory events within an organism

are asynchronous, that is, different genes can regulate other genes at different time-scales

and with different delays.

Accurate and efficient reconstruction of GRNs from expression time-series data is a

computationally hard task, in particular due to the fact that expression levels are measured

for a large number of genes numbering in the thousands, and over few number of time-

points numbering in the tens. GRN identification methods based on ordinary differential

equations (ODEs) techniques [194] will be prohibitively slow on such amount of data. GRN

inference techniques such as Boolean network [194] methods are not causal and are not

156
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very robust to noise and uncertainty in the data. GRN reconstruction approaches based

on probabilistic graphical models(PGMs), such as Bayesian networks and Markov random

fields [194], have become more popular due to their inherent ability to process uncertain

data and their robustness to noise; missing data can also be taken care. PGMs are also

more efficient for processing a large number of genes [195].

Bayesian network (BN) is a PGM which compactly represents a joint probability dis-

tribution among a set of variables [196]. BNs are directed acyclic graphs (DAGs) which

can appropriately model GRNs, that is they model genes as nodes and causal dependencies

between genes as edges [197]. Due to their acyclicity constraint, BNs are unable to model

self-regulations, feedback loops, and time-delayed interactions, which are the characteristic

of GRNs. Dynamic BNs (DBNs) are proposed to tackle these limitations by unrolling a BN

over time [198]. In DBNs, a transition network between any two consecutive time-points

characterizes the GRN; that is only genes at time-point t-1 are supposed to regulate genes

at time-points t. This is a first-order assumption allowing to model temporal causal depen-

dencies among genes. First-order DBNs (FO-DBNs) , however, cannot model time-delayed

interactions longer than one time step. To this effect, high-order DBNs (HO-DBNs) were

introduced by [199] to model longer time-delayed interactions.

Contributions: In this chapter, we apply PGMs on microarray gene expression time-

series data to reconstruct the GRNs. We have the following contributions:

1. We propose the max-min high-order dynamic Bayesian network (MMHO-DBN) learn-

ing algorithm, in order to reconstruct time-delayed gene regulatory networks.

2. We apply the qualitative probabilistic networks (QPNs), after obtaining a DBN, to

interpret the interactions learned using the concepts of influence and synergy.

3. We have implemented the MMHO-DBN and QPNs in MATLAB, and published it

online.

In the rest of this chapter, we first survey the techniques of Bayesian networks in Section

2, we believe that this will help the readers to understand its extensions to HO-DBN and

QPN very well. Then in Section 3, we formulate HO-DBN based on its r-order Markov

dependency and stationary assumptions. In Section 3.4, we contribute a new HO-DBN

structure learning algorithm, called MMHO-DBN, based on an appropriate extension of the

original max-min hill climbing (MMHC) algorithm of [196] which was devised to alleviate

the limitations of the current BN approaches for learning the structure of BNs from static
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data. After that, we review the theories of qualitative probabilistic networks (QPN) and

apply the concepts of influences and synergies to predict different types of interactions in

Section 4. The implementation of the above methods are summarized in Section 5. Finally,

we investigate the performance of our MMHO-DBN with post-analysis using QPN in Section

6.

2 Bayesian Network

2.1 Concepts

Bayesian network is a probabilistic graphical model representing a joint probability distri-

bution [200]. The cascade decomposition of joint probability distribution can be formulated

as

p(X1, X2, · · · , Xm) = p(X1)p(X2|X1)p(X3|X1, X2) · · · p(Xm|X1, · · · , Xm−1)

=
m∏
i=1

p(Xi|Π(Xi)), (7.1)

where Π(Xi), or Πi, is the set of variables Xi depends on. These variables are called

parents of Xi. A Bayesian network can be formulated by two elements: B = {G,θ}, where

G is the model structure representing the dependency relationship, and θ is the model

parameter, that is the conditional probability distributions (CPDs). For discrete variables,

the CPDs are conditional probability tables (CPTs). We give an example in Figure 7.1,

where G represents the decomposition of the joint probability distribution p(A,B,C,D) =

p(A)p(B)p(C|A,B)p(D|C), and θ consists of the (conditional) probability tables.

A B

C

D

P(A,B,C,D)=P(A)P(B)P(C|A,B)P(D|C)

A,B P(C=1|A,B) P(C=2|A,B)

1 1 0.9 0.1

1 2 0.5 0.5

2 1 0.3 0.7

2 2 0.1 0.9

C P(D=1) P(D=2)

1 0.05 0.95

2 1 0

P(A=1) P(A=2)

0.25 0.75

P(B=1) P(B=2)

0.6 0.4

Figure 7.1: An example of a Bayesian network representing a joint probability distribution.
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2.2 Learning the Model Structure

The structure G can be reconstructed by learning from data, prior knowledge, or the com-

bination of both [201]. The learning phase can be separated in two steps, that is 1) one

obtains the structure, and 2) then learns the parameters. Alternatively, these two steps

can be intermingled in an algorithm. Learning the structure G is a model selection prob-

lem. According to the existence of hidden variables, we can divide the learning into two

cases. First, if there are hidden variables, and only part of the variables are observable, the

learning is very difficult. The learning methods are usually based on the expectation max-

imization (EM) [202]. Second, if all the variables are observable, the learning is easier. In

our current research, we only focus on learning the model structure from complete data. In

our application of learning structure from gene expression time-series data, if there are some

missing values, we can estimate the missing values prior to learning a model structure. It is

more efficient than learning a model using an EM strategy from data with missing values.

For a full treatment of missing values, please see Chapter 8.

2.3 Learning from Complete Data

Now, we derive the learning of the model structure from a Bayesian perspective. The

Bayesian model selection can be stated in the following. Given a training set Dm×n con-

taining instances (in columns) of multivariate random variable X, the task is to select a

structure that maximizes the posterior probability. That is G = arg max p(G|D).

The posterior can be formulated by the Bayesian theorem:

p(G|D) =
p(D|G)p(G)

p(D)
, (7.2)

where p(D) =
∑

Gi
p(D|Gi)P (Gi) is a constant and is independent of the structure G,

p(G) is the prior probability on the structure, and p(D|G) is the marginal likelihood. If all

structure are treated equally, the model prior can be uniform. If sparse structure is preferred

for computational or application reasons, we can use the Gibbs prior as introduced in Section

2.4. Given a model structure, the marginal likelihood is the integration or summation over

all possible model parameters:

p(D|G) =

∫
θ
p(D|G,θ)p(θ|G)dθ, (7.3)

where θ is a possible parameter setting.

The difficulty of Bayesian learning lies in the computation of the marginal likelihood, as
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the integration is intractable. There are two methods to deal with it. The first method is

to have an exact closed-form solution, given a proper (conjugate) prior on the parameter.

The second is to approximate the marginal likelihood. The Bayesian Dirichlet equivalence

(BDe) metric belongs to the first method, and the Bayesian information criterion (BIC) is

an approximate method. We introduce both methods below.

BDe: Exact Closed-Form Solution

Given the model structure and parameter, we assume that the likelihood p(D|G,θ) follows

a multinominal distribution, and assume the prior on the parameter follows a Dirichlet

distribution, then we can obtain a closed-form solution to the marginal likelihood [201, 203].

The likelihood p(D|G,θ) is decomposable, because if we follow the same procedure as

proving the decomposability of p(X1, X2, · · · , Xm) =
∏m
i=1 p(Xi|Πi) using chain rule of

probability, then we have

p(D|G,θ) = p(DX1 ,DX2 , · · · ,DXm |G,θ)

=

m∏
i=1

p(DXi |DΠi ,θi)

=

m∏
i=1

p(DXi,1|DΠi,1,θi) · · · p(DXi,n|DΠi,n,θi)

=

m∏
i=1

qi∏
j=1

p(Xi = val(Xi)1|Πi = val(Πi)j , θij1)Nij1

· · · p(Xi = val(Xi)ri |Πi = val(Πi)j , θijri)
Nijri

=

m∏
i=1

qi∏
j=1

ri∏
k=1

p(Xi = val(Xi)k|Πi = val(Πi)j , θijk)
Nijk

=
m∏
i=1

qi∏
j=1

ri∏
k=1

θ
Nijk
ijk , (7.4)

where val(Xi) denotes the set of discrete states of variable Xi,

Nijk =
∑n

l=1 I
(

[val(Xi)k; val(Πi)j ], D[Xi;Πi],l

)
, where I(x, y) is an indicator function de-

fined as I(x, y) = 1 if x is identical to y, 0 otherwise. In another word, Nijk is the total

number of observations where Xi = val(Xi)k and Πi = val(Πi)j .

We assume the parameter priors of different nodes (that is the (conditional) probability

table of each node) are independent, and in a CPT, the parameters under different conditions
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are independent as well, then we can decompose the parameter prior as

p(θ) =
m∑
i=1

qi∑
j=1

θij . (7.5)

Having known the formulations of the likelihood (in Equation (7.4)) and prior on pa-

rameter (in Equation (7.5)), we can compute the marginal likelihood as below:

p(D|G) =

∫
θ
p(D,θ|G)dθ

=

∫
θ
p(D|G,θ)p(θ|G)dθ

=

∫
θ

m∏
i=1

qi∏
j=1

ri∏
k=1

θ
Nijk
ijk

m∏
i=1

qi∏
j=1

p(θij)dθ

=

m∏
i=1

qi∏
j=1

∫
θ

ri∏
k=1

θ
Nijk
ijk p(θij)dθij

=
m∏
i=1

qi∏
j=1

∫
θ
(

ri∏
k=1

θ
Nijk
ijk )p(θij)dθij

=
m∏
i=1

qi∏
j=1

Ep(θij |αij)(

ri∏
k=1

θ
Nijk
ijk )

=
m∏
i=1

qi∏
j=1

Γ(αij)

Γ(αij +Nij)

ri∏
k=1

Γ(αijk +Nijk)

Γ(αijk)
, (7.6)

where Nij =
∑ri

k=1Nijk and αij =
∑ri

k=1 αijk. Please note that the boldface αij =

[αij1; · · · ;αijri ] is a vector. In the sixth line of Equation (7.6), Ep(θij |αij)(
∏ri
k=1 θ

Nijk
ijk ) means

the expectation of
∏ri
k=1 θ

Nijk
ijk with respect to the distribution p(θij ||αij). We use the fol-

lowing property to obtain the last line of Equation (7.6). Suppose the multivariate variable

Y of length k follows Dirichlet distribution

p(y) = Dir(y|α) = Dir(y1, · · · , yk|α1, · · · , αk)

=


∏k
i=1 y

ai−1
i

B(α) if ∀i : yi ∈ (0, 1) and
∑k

i=1 yi = 1

0 otherwise
, (7.7)

where

B(α) =

∏k
i=1 Γ(αi)

Γ(
∑k

i=1 αi)
. (7.8)
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Then, the expectation of
∏k
i=1 y

ri
i (where ri ≥ 0) with respect to p(y) can be computed as

Ep(y)(
k∏
i=1

yrii ) =

∫ k∏
i=1

yrii p(y)dy

=
B(α+ r)

B(α)

=

∏k
i=1 Γ(αi + ri)

Γ(
∑k

i=1 αi + ri)

Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

=
Γ(
∑k

i=1 αi)

Γ(
∑k

i=1 αi + ri)

∏k
i=1 Γ(αi + ri)∏k
i=1 Γ(αi)

. (7.9)

In Equation (7.6), if the super-parameter αijk is given by αijk = αp0(Xi = val(Xi)k,Πi =

val(Πi)j) (where α is called equivalent sample size (ESS), and p0(Xi,Πi) is a joint prob-

ability distribution of Xi and its parents), then the marginal likelihood is called Bayesian

Dirichlet likelihood equivalent (BDe) score. If p0(Xi,Πi) is an uniform distribution, that is

p0(Xi,Πi) = 1
|val(Xi)|·|val(Πi)| = c0 (where |val(Xi)| is the size of set val(Xi)), we can obtain

that αijk = α · c0. In this case, the marginal likelihood is called BDeu score, where “u”

stands for uniform joint probability.

By taking logarithm on the marginal likelihood, as below:

BDe(D, G) = log p(D|G)

=

m∑
i=1

qi∑
j=1

(
log

Γ(αij)

Γ(αij +Nij)
+

k∑
k=1

log
Γ(αijk +Nijk)

Γ(αijk)

)
=

m∑
i=1

( qi∑
j=1

(
log

Γ(αij)

Γ(αij +Nij)
+

k∑
k=1

log
Γ(αijk +Nijk)

Γ(αijk)

))
, (7.10)

we can see that the BDe score is decomposable. The decomposability allows to easily score

a structure. When a slight change is made based on the previous structure, we update only

the local scores associated with the change.

If a variable, say Xi, has no parent, its likelihood is reduced to

p(Di|Gi,θi) =

ri∏
k=1

θikik . (7.11)
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Suppose its prior follows the Dirichlet distribution:

p(θi|Gi,αi) = Dir(θi|αi), (7.12)

then, its marginal likelihood is reduced to

p(Di|Gi) =

∫
θi

p(Di,θi|Gi)dθi

=

∫
θi

p(Di|Gi,θi)p(θi|Gi)dθi

=

∫
θi

ri∏
k=1

θNikik p(θi)dθi

=

∫
θi

ri∏
k=1

θNikik p(θi)dθi

=

∫
θi

(

ri∏
k=1

θNikik )p(θi)dθi

= Ep(θi|αi)(

ri∏
k=1

θNikik )

=
Γ(αi)

Γ(αi +Ni)

ri∏
k=1

Γ(αik +Nik)

Γ(αik)
. (7.13)

BIC: Approximate Solution

By assuming the parameter prior is uniform, we can approximate the parameter θ by its

maximum likelihood (ML) estimation θ̂. The marginal likelihood can be approximated by

the following equation:

log p(D|G) ≈ log p(D|G, θ̂)− log n

2
d(G)

= log p(D|G, θ̂) + log
1

n
d(G)

2

, (7.14)

where p(D|G, θ̂) can be computed by Equation (7.4), θ̂ is the ML estimation of the model

parameter given G and D, n is the number of training samples, and log 1

n
d(G)

2

is a penal-

ization term. The more complex the model is, the higher penalty this term enforces. d(G)

is the degree of freedom of model G. For complete data, d(G) is the number of free param-

eters of G (need to consider the sum to one property for discrete case). If there are zero
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parameters, d(G) should be further deducted by the number of zero parameters. Therefore,

the degree of freedom of a node (say Xi) conditioned by its parents (say Πi) is defined as

below:

d(Gi) = q(Πi)(|val(Xi)| − 1)− z(θi), (7.15)

where |val(Xi)| denotes the number of discrete states of variable Xi, q(Πi) = qi returns the

total number of states of the parents, that is

q(Πi) =

1 if Πi = ∅∏|Πi|
j=1 |val(Πij)| otherwise

, (7.16)

where |Πi| denotes the number of parents in set Πi, and z(θi) returns the number of zero

parameters in θi. We call the right hand side of Equation (7.14) as Bayesian information

criterion (BIC) score [204]. BIC makes use of the asymptotic behavior which means that,

given a large data D, the posterior p(G|D) is insensitive to the choice of prior under the

assumption that the prior of any event is not zero. For a small number of observations,

there may be some zeros in the estimated parameter, which will affect the precision of the

estimation and degree of freedom, therefore BIC may not work well.

We can easily see that the BIC score is decomposable. This is because

BIC (G,D) =
m∑
i=1

qi∑
j=1

ri∑
k=1

Nijk log θ̂ijk −
log n

2
d(Gi). (7.17)

If the variable Xi has no parent, its BIC score is reduced to

BIC (Gi,Di) =

ri∑
k=1

Nik log θ̂ik −
log n

2

m∑
i=1

d(Gi). (7.18)

Example of Computing BDeu Score

Now we give an example of how to compute the BDeu score. A working static data set is

given in Table 7.1. There are five variables and 12 observations. We wish to compute the

BDeu score of the structure as shown in in Figure 7.2. Suppose the equivalent sample size

α = 8.

According to the structure and observations, we can obtain the frequency table of each

variable, as given in Table 7.2. In each cell of a table, the count is given in the parenthesis.

The ratio in a cell is the ML estimation of the corresponding parameters.
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A E

F

B C

Figure 7.2: A Bayesian network, of which the BDeu and BIC scores are computed.

Table 7.1: Example data.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

A 2 2 2 1 1 1 2 2 1 2 2 2
B 2 2 2 2 1 1 1 2 2 2 1 2
C 1 2 1 2 2 2 2 2 2 1 1 2
E 2 1 1 1 1 2 2 1 1 2 1 2
F 2 2 2 2 1 2 1 2 2 2 2 1

Table 7.2: Frequency tables and (conditional) probability tables.

(a) Frequency table and CPT of
p(A|B,C).

B,C A = 1 A = 2

1,1(1) 0(0) 1(1)
1,2(3) 2

3(2) 1
3(1)

2,1(3) 0(0) 1(3)
2,2(5) 2

5(2) 3
5(3)

(b) Frequency table and CPT of
p(F |A,B).

A,B F = 1 F = 2

1,1(2) 1
2(1) 1

2(1)
1,2(2) 0(0) 1(2)
2,1(2) 1

2(1) 1
2(1)

2,2(6) 1
6(1) 5

6(5)

(c) Frequency table
and PT of p(B).

B = 1 B = 2
1
3(4) 2

3(8)

(d) Frequency table
and PT of p(C).

C = 1 C = 2
1
3(4) 2

3(8)

(e) Frequency table and CPT
of p(E|C).

C E = 1 E = 2

1(4) 1
2(2) 1

2(2)
2(8) 5

8(5) 3
8(3)

The BDeu score of variable A is

BDeu(GA,DA) = log
Γ(2)

Γ(2 + 1)
+ log

Γ(1 + 0)

Γ(1)
+ log

Γ(1 + 1)

Γ(1)

+ log
Γ(2)

Γ(2 + 3)
+ log

Γ(1 + 2)

Γ(1)
+ log

Γ(1 + 1)

Γ(1)

+ log
Γ(2)

Γ(2 + 3)
+ log

Γ(1 + 0)

Γ(1)
+ log

Γ(1 + 3)

Γ(1)

+ log
Γ(2)

Γ(2 + 5)
+ log

Γ(1 + 2)

Γ(1)
+ log

Γ(1 + 3)

Γ(1)

= −4.0943. (7.19)
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Similarly, we can compute the BDeu score of the remaining variables: BDeu(GB,DB) =

0.6064, BDeu(GC ,DC) = 0.6064, BDeu(GE ,DE) = −2.3697, BDeu(GF ,DF ) = −3.6323.

Therefore, the overall BDeu score of the structure G is -8.8836.

Example of Computing BIC Score

Now we show how to compute the BIC score of a structure. First of all, we can use ML to

estimate the CPT of each node as shown in Table 7.2. The degree of freedom is the number

of free parameters in each table. If there are zeros in a table, the degree of freedom should

be reduced by the number of zeros. For example in Table 7.2(a), the degree of freedom is

4-2=2.

Assuming the training instances are independent, the likelihood can be computed as

log p(DABC |θ̂A)

= 0 log p(A = 1|BC = 11, θ̂A) + 1 log p(A = 2|BC = 11, θ̂A)

+ 2 log p(A = 1|BC = 12, θ̂A) + 1 log p(A = 2|BC = 12, θ̂A)

+ 0 log p(A = 1|BC = 21, θ̂A) + 3 log p(A = 2|BC = 21, θ̂A)

+ 2 log p(A = 1|BC = 22, θ̂A) + 3 log p(A = 2|BC = 22, θ̂A)

= log 1 + 2 log
2

3
+ log

1

3
+ 3 log 1 + 2 log

2

5
+ 3 log

3

5

= −5.2746. (7.20)

The second term of the BIC score is computed as 2(log(12)/2) = −2.4849. Therefore,

BIC (GA,DA) = −5.2746−2.4849 = −7.7595. Similarly, we have BIC (GB,DB) = −8.8806,

BIC (GC ,DC) = −8.8806, BIC (GE ,DE) = −10.5500, and BIC (GF ,DF ) = −9.2033.

Thus, the BIC score of the whole structure is BIC (G,D) = −45.2741.

2.4 The Structure Prior

The BDeu and BIC score introduced above do not consider the structure prior, which

implies that uniform prior is assumed. In a specific application, informative prior can be

used to improve the performance. For example, in the reverse-engineering of GRN, we think

a network should be sparse, that is a target gene has only a few number of parents. In this

case, we would like to use Gibbs distribution as defined below:

p(G|β) =
1

Z
e−βE(G), (7.21)
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where E(G) is the total number of edges in G, β ≥ 0 is a parameter, and Z is a normalization

term. This term can be added to Equations (7.10) and (7.17).

Furthermore, the structure prior is the key to integrate multiple types of prior knowledge.

For example, in the reconstruction of GRN, epigenetic knowledge of histone modifications is

combined in the learning of dynamic Bayesian network [205]. In [206], microarray data are

combined with biological knowledge, including protein-protein interactions, protein-DNA

interactions, binding site information, and existing literature.

2.5 Search Methods

There are an exponential number of feasible DAGs with respect to the number of variables

[207]. It has been proven that finding the optimal DAG with respect to the best posterior

probability is NP-hard [208]. Therefore, heuristic search methods are applied. For exam-

ple, computational intelligences, such as genetic algorithm, simulated annealing, and hill

climbing algorithms, are widely used. Markov chain Monte Carlo (MCMC) method is a

sampling algorithm which is favored by statisticians.

While exploring the whole structural space is intractable, we can restrict the search space

before conducting the iterations of search and scoring. This is call constrained-and-search

strategy [196]. Now, we briefly introduce one of such algorithm which is called max-min

hill climbing (MMHC) [196], which was originally devised for learning the structure of BNs

from static data. We have extended this algorithm for learning high-order dynamic Bayesian

network, which will be discussed in latter section.

MMHC was introduced in [196] as a fast, scalable, and reliable BN learning method

which overcomes the perceived limitations of the current state-of-the-art BN algorithms

and which also exist in current HO-DBN algorithms. MMHC is a hybrid BN method;

it first uses constraint-based Bayesian network learning [209] to learn the skeleton (i.e. an

undirected graph) of a BN, and then performs a search-and-score Bayesian network learning

on the skeleton in order to orient its edges. It is the skeleton learning phase which gives

MMHC its reliability and accuracy, its efficiency, and more importantly, its ability to scale

to distributions with thousands of variables. MMHC is also a local learning method which

does not require a user to estimate the number of parents for each variable, as it discovers

the maximum number of possible parents and children (PC), of each variable during the

skeleton learning phase. This discovery was proven accurate and more efficient than that of

the hybrid sparse candidate (SC) algorithm [197] and that of the constraint-based methods

such as PC algorithm [209].

In addition to the challenge of exponential structure space, another weakness of discrete
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BN is that the number of parameters in a CPT of a node conditioned by its parents increases

exponentially as the number of parents increases. For this reason, the number of parents

of each node is usually limited. This leads to a sparse BN. Sparse candidate [197] is one of

such algorithm.

2.6 Reconstructing Gene Regulatory Networks by BN

Friedman et al. [197] did a seminal work of reconstructing GRN via learning Bayesian

network from gene expression time-series data, though temporal relations were not taken

into account at that time. Instead of learning a single model from the data, the confidence

of many features are built on models learned from many data sets generated by bootstrap.

This method has two phases. First, instead of using MCMC sampling to generate many

networks, the bootstrap method is used to perturb the gene expression data to generate

many data sets. For each data set, a BN is learned by the sparse candidate method. Second,

the confidence of each features is computed over all networks. A feature is a boolean function

that describes a relationship between a pair of nodes. In [197], the Markov and order features

are considered. It is stated that very low false positive of the features can be obtained, even

though there are only a small number of samples.

Ignoring the temporal relationships would make the structure learning algorithm more

efficient. However, without considering the temporal information, BNs are unable to model

self-regulations, feedback loops, and time-delayed interactions, which are the characteristic

of GRNs. This motivates us to turn to dynamic Bayesian netowrks as discussed in the

following sections.

3 High-Order DBNs for Gene Regulatory Network Identifi-

cation 1

3.1 Introduction

In the section, we propose a new high-order dynamic Bayesian network (HO-DBN) learning

approach, called Max-Min high-order DBN (MMHO-DBN), for discrete time-series data.

MMHO-DBN explicitly models the time lags between parents and target in an efficient

manner. It extends the Max-Min hill-climbing Bayesian network (MMHC-BN) technique

which was originally devised for learning a BN’s structure from static data. Both Max-Min

1This section is published in [210]
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approaches are hybrid local learning methods which fuse concepts from both constraint-

based Bayesian techniques and search-and-score Bayesian methods. The MMHO-DBN first

uses constraint-based ideas to limit the space of potential structure and then applies search-

and-score ideas to search for an optimal HO-DBN structure. We evaluated the ability of our

MMHO-DBN approach to identify gene regulatory networks (GRN’s) from gene expression

time-series data. Preliminary results on artificial and real gene expression time-series are

encouraging and show that it is able to learn (long) time-delayed relationships between

genes, and faster than current HO-DBN learning methods.

The rest of this section is organized as follows. Section 3.2 presents GRN modeling with

HO-DBNs. In Section 3.3, we discuss current methods to learning HO-DBN structures for

reconstructing GRNs from microarray time-series data. Then we introduce our MMHO-

DBN structure learning method in Section 3.4. Preliminary results and discussions are

presented in Section 3.5. Finally, we conclude and suggest possible directions of research in

HO-DBN learning.

3.2 Modeling Time-Delayed Regulations with HO-DBNs

Let us consider a gene expression time-series data set gT×N = (g1, . . . ,gT )T summarizing

the observations (i.e., expression levels) of N genes at T time-points. Row vector gt =

(gt,1, . . . , gt,N )T, contains the expression levels of the N genes measured at time-point t and

where gt,j is an observation from the random variable Gt,j , for 1 ≤ t ≤ T and 1 ≤ j ≤ N .

The DBN [211] usually refers to the first-order DBN (FO-DBN). FO-DBN assumes a

Markov dependency of order 1 over time; that is, the expression level of a gene at time t

depends only on the expression levels of the genes at time t− 1 and t. FO-DBN is defined

by a pair of structures (St−1, St) corresponding to networks at time slices t− 1 and t, and a

transition network S[t−1,t] of interactions between St−1 and St; thus, S[t−1,t] has 2N nodes.

The FO-DBN structure is obtained by unrolling the transition network over time, and the

parents of a variable Gt,j are from time-slices t − 1 and t only. FO-DBN cannot model

time-delayed interactions more than 1 time unit which occur in GRNs but can be extended

to allow higher-order interactions among variables.

High-order DBNs (HO-DBNs) have been proposed to model time-delayed interactions

between genes, where the structure and parameters of the HO-DBN are learned by assuming

a fixed order r > 1 [199, 195, 212, 213] representing the maximum allowed time-delay among

genes. The r-order DBN (r-DBN) assumes an r-order Markov dependency over time. It

is defined by an (r + 1)-tuple of structures (St−r, St−(r−1), . . . , St−1, St) corresponding to

networks at time-slices t− r, . . . , t, and a transition network S[t−r,t−(r−1),...,t−1,t] (or S[t−r,t],
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for short) representing the causal connectivity structure between each network St−l and St,

1 ≤ l ≤ r. The structure of the r-DBN is obtained by unrolling S[t−r,t] over time. The

transition network S[t−r,t] consists of (r + 1)N nodes, and the parents of a variable Gt,j

are chosen from the set of variable
⋃r
l=0 Gt−l, where Gi = {Gi,1, Gi,2, . . . , Gi,N} is the set

of N random variables at time-slice i. We assume an r-order stationary 2 Markov chain

and that the networks St−l, 0 ≤ l ≤ r, have no edges. The GRN can be represented as a

matrix C = {ci,j}N×N , where 1 ≤ ci,j ≤ r denotes the time delay of regulation between

gene i and its parent gene j. In Figure 7.3, we give a comparison of stationary HO-DBN

and non-stationary HO-DBN. In Figure 7.4, we give an example of the transition network

of a DBN under the second-order stationary Markov assumption. In this figure, A, B, C,

and D are called “attributes”. They correspond to nodes in the folded transition network.

In our application, they are genes in a GRN.

A

B

C

D

t1 t2 t3 t4 t5 t6 t7

A

B

C

D

t1 t2 t3 t4 t5 t6 t7

Figure 7.3: An example of a second-order HO-DBN (top) and a non-stationary HO-DBN
(bottom).

Let G = (G1, . . . ,GT )T where each Gt = (Gt,1, . . . , Gt,N )T is a N -dimensional random

2The stationarity is usually assumed to simplify modeling. It is also determined by specific domain
knowledge. Whether a process is stationary or non-stationary can be checked by statistical hypothesis test.
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Figure 7.4: An example of a DBN under the second-order stationary Markov assumption.
Left: stationary transition network. Right: the GRN obtained by folding the transition
network.

variable vector. Under the Bayesian framework, a gene is a random variable and we consider

directed acyclic graph S and an r-order stationary Markov assumption between nodes. The

r-order DBN (r-DBN) assumes an r-order Markov dependency over time:

P (Gt|Gt−1, . . . ,G1) = P (Gt|Gt−1, . . . ,Gt−r). (7.22)

The r-DBN thus decomposes the joint probability distribution of G given the structure

S into a product of conditional probabilities by assuming independence of non-descendant

variables as:

P (G) =
T∏
t=1

P (Gt|Gt−1, . . . ,Gt−r). (7.23)

Let Pt−l,j = (Pt−l,j,1, . . . , Pt−l,j,qt−l,j )
T be the qt−l,j-dimensional random vector of the

parents of the j-th gene at time t − l, 1 ≤ l ≤ r; Pt−l,j = ∅ if t − l ≤ 0. We define

the set of all parents of the j-th gene as the qj-dimensional vector P[1,r],j =
⋃r
l=1 Pt−l,j ,

where qj =
∑r

l=1 qt−l,j . Then the conditional probabilities P (Gt|Gt−1, . . . ,Gt−r) can be

decomposed into a product of conditional probabilities of each gene given its parents P[1,r],j

as:
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P (Gt|Gt−1, . . . ,Gt−r) =

N∏
j=1

P (Gt,j |Pt−1,j ∪ · · · ∪Pt−r,j)

=
N∏
j=1

P (Gt,j |P[1,r],j). (7.24)

The important issue pertaining to modeling GRNs by r-DBNs is how to find the condi-

tional probabilities P (Gt,j |P[1,r],j) which best explain the data. To determine the optimal

P (Gt,j |P[1,r],j), we parameterize P (G) by a parameter vector θ = (θ1, . . . ,θN ) and transfer

the determination of the optimal P (G) into the estimation of the best θ. Parameterizing

and substituting Equation (7.24) into Equation (7.23) we obtain the discrete r-DBN model:

P (G|θ) =
T∏
t=1

N∏
j=1

P (Gt,j |P[1,r],j ;θj). (7.25)

By using r-DBN models, we can model higher-order GRN interactions from time-series

data, when we know the true relationships among the genes. Such relationships are still

unknown, and hence, it is necessary to devise criteria for evaluating the goodness of a

structure, and then, devise search algorithms for searching the large space of candidate

structures. In this space, the optimal structure Ŝ is the one which maximizes the posterior

probability P (S|G). From Bayes theorem we have:

P (S|G) =
P (S)P (G|S)

P (G)
∝ P (S)P (G|S), (7.26)

where P (S) is the prior probability of the network structure S and P (G) =
∑

S P (S)∫
θ P (G|S,θ)P (θ|S)dθ is constant, independent of S, and can be removed since it does not

relate to structure evaluation. Given the set of conditional distributions with parameter θ,

we can express the marginal likelihood of the time-series data as:

P (G|S) =

∫
θ
P (G|S,θ)P (θ|S)dθ, (7.27)

where P (θ|S) is the prior probability of the parameter θ and P (G|S,θ) = P (G|θS); note

that we write θS = (θ1, . . . ,θN ) since the form of θ in Equation (7.25) is equivalent to the

network structure S. The maximum a-posteriori (MAP) estimate of the optimal structure

Ŝ is then given as:
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ŜMAP = arg max
S

P (S)

∫
θS

P (G|θS)P (θS |S)dθS . (7.28)

The problem which remains now is to 1) determine the conditional probabilities

P (Gt,j |P[1,r],j ;θj), 2) determine the prior probabilities P (S) and P (θS |S), 3) compute the

high-dimensional integral, and 4) search for the optimal ŜMAP. Points 1) through 3)

combine into a single criterion for learning GRNs based on r-DBN, and which is used within

a search algorithm in point 4) to evaluate the goodness of candidate GRN structures.

For the discrete model we assume that gene expression values are discretized into d levels

such that gt,j ∈ {1, . . . , d} and d denotes the maximum level of expression of any gene. The

number of distinct states that P[1,r],j (the parents set of the j-th gene) can take is Qj = dqj .

Each state of P[1,r],j is also associated with a lag vector L[1,r],j ∈ {1, . . . , r}qj containing the

delay of each parent of gene j; hence, the number of distinct lag vectors for gene j is Lj = rqj .

Let θj,q,l,k = P (Gt,j = k|P[1,r],j = q,L[1,r],j = l) and Nj,q,l,k =
∑T

t=1 δ(Gt,j = k,P[1,r],j =

q,L[1,r],j = l) be the number of observations satisfying Gt,j = k, P[1,r],j = q, and L[1,r],j = l,

and N
[t−r,t]
j,q,l,k be the number of such observations in the transition network S[t−r,t] for 1 ≤ t ≤

T . Using the property of decomposability [198], we can model P (G;θS) as a multinomial

distribution with parameter θS = (θj,q,l,k)N×Qj×Lj×d = (θ1,1,1,1, . . . , θN,Qj ,Lj ,d)
T:

P (G|θS) =
T∏
t=1

N∏
j=1

Qj∏
q=1

Lj∏
l=1

d∏
k=1

θ
N

[t−r,t]
j,q,l,k

j,q,l,k

=
N∏
j=1

Qj∏
q=1

Lj∏
l=1

d∏
k=1

θ
Nj,q,l,k
j,q,l,k (7.29)

Define θS =
⋃N
j=1{θj}, θj =

⋃Qj ,Lj
q=1,l=1{θj,q,l}, and θj,q,l =

⋃d
k=1{θj,q,l,k}. Assuming

that the global and local parameter vectors are independent of each other, then we can

decompose the prior distribution on θS as:
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P (θS |S) =

N∏
j=1

P (θj |S)

=

N∏
j=1

Qj∏
q=1

Lj∏
l=1

P (θj,q,l|S)

=
N∏
j=1

Qj∏
q=1

Lj∏
l=1

d∏
k=1

P (θj,q,l,k). (7.30)

Substituting Equations (7.29) and (7.30) into Equation (7.28), we obtain

P (G|S) =

N∏
j=1

Qj∏
q=1

Lj∏
l=1

∫ d∏
k=1

θ
Nj,q,l,k
j,q,l,k P (θj,q,l,k)dθj,q,l,k. (7.31)

Assuming Dirichlet distribution [214] with hyper-parameters αS =
⋃N
j=1{αj} and αj =⋃Qj ,Lj ,d

q=1,l=1,k=1{αj,q,l,k} as the prior distribution on the global and local parameters, then:

P (θj |S) = Dir(θj |αj)

=
Γ(
∑Qj

q=1

∑Lj
l=1

∑d
k=1 αj,q,l,k)∏Qj

q=1

∏Lj
l=1

∏d
k=1 Γ(αj,q,l,k)

Qj∏
q=1

Lj∏
l=1

d∏
k=1

θ
αj,q,l,k−1
j,q,l,k , (7.32)

where Γ(·) is the Gamma function [214], which satisfies Γ(x + 1) = xΓ(x) and Γ(1) = 1.

Using the Dirichlet priors of Equation (7.32), the high-dimensional integral in Equation

(7.31) is solved to obtain a closed-form formula:

P (G|S) =
N∏
j=1

Qj∏
q=1

Lj∏
l=1

Γ(αj,q,l)

Γ(αj,q,l +Nj,q,l)

d∏
k=1

Γ(αj,q,l,k +Nj,q,l,k)

Γ(αj,q,l,k)
, (7.33)

where Nj,q,l =
∑d

k=1Nj,q,l,k and αj,q,l =
∑d

k=1 αj,q,l,k. Equation (7.33) corresponds to the

1. Bayesian Dirichlet equivalence (BDe) metric of [201] when αj,q,l,k = αP (Gt,j =

k,P[1,r],j = q,L[1,r],j = l|S), and α ≥ 0 is the equivalent sample size parameter.

2. BDe uniform (BDeu) metric of [215] when αj,q,l,k = α
dLjQj

.

3. K2 metric of [216] when αj,q,l,k = 1.
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To complete the information required to derive the MAP estimate, ŜMAP, we must

consider the prior probability P (S) of a given structure. Let Sj be the local structure at

the j-th gene, we can set the prior probability of S, that is:

P (S) = e−(# of edges) =
N∏
j=1

P (Sj) =
N∏
j=1

e−qj . (7.34)

Taking the product of Equations (7.33) and (7.34) yields the r-DBN learning criterion.

We note that this criterion is decomposable since it can be written as a product of local

scores, each of which is a function of the j-th gene only. That is, we have

P (S|G) ∝ P (S)P (G|S) =
N∏
j=1

Qj∏
q=1

Lj∏
l=1

e−qj
Γ(αj,q,l)

Γ(αj,q,l +Nj,q,l)

d∏
k=1

Γ(αj,q,l,k +Nj,q,l,k)

Γ(αj,q,l,k)
. (7.35)

If we assume that every structure in the structure space is equally probable a priori,

then we can simplify Equation (7.28) to use the maximum likelihood (ML) estimate of the

optimal structure Ŝ given as

ŜML = arg max
S

∫
θS

P (G|θS)P (θS |S)dθS . (7.36)

In this case we estimate the parameters θj,q,l,k as

θj,q,l,k =
Nj,q,l,k∑d
k=1Nj,q,l,k

, (7.37)

and then use the Bayesian information criterion (BIC) of [204] to approximates the integral

as:

BIC =
N∑
j=1

Qj∑
q=1

Lj∑
l=1

d∑
k=1

Nj,q,l,k log
Nj,q,l,k∑

k=1
dNj,q,l,k

. (7.38)

The BIC score does not require priors over parameters and is computationally faster to

compute but less accurate than the BDe, BDeu, and K2 scores. The BIC score is good when

given a large data set. Finding the optimal structure of a BNs is known to be NP-hard

[207] as the number of structures increases super-exponentially with the number of nodes.

The learning problem, hence, becomes much harder as the order r increases.



CHAPTER 7. HO-DBN FOR IDENTIFYING GRNS 176

3.3 Related Works

Few methods have been proposed in literature to address the difficulty of modeling time-

delayed regulations. The authors of [217] devised a three-steps approach which essentially

transforms the HO-DBN problem into FO-DBN problem thus avoiding to learn from an

extremely large space of parameters. Their approach, DBN-ZC, is a local search-and-score

learning method which proceeds as follows. First, DBN-ZC limits the potential regulators

of each target gene T to only those genes with either earlier or simultaneous expression

changes in relation to target T ; thus significantly reducing the computational effort in the

subsequent structure learning phase. Second, the time difference between the initial gene

expression change of a potential regulator and its target T is taken as a fair estimation

of the time-delay between the two genes. Third, the time-series profiles of the potential

regulators are appropriately aligned to that of T according to their time-lags with T , and

then a search-and-score based FO-DBN learning is performed to select the regulators with

the highest log-marginal likelihood as the final set of regulators of T . In [199], a two-steps

heuristic framework is devised to learn r-DBNs from time-series expression data. First,

pairs of variables Gt−l,j , Gt,k with time lag l, for 1 ≤ l ≤ r, 1 ≤ t ≤ T and 1 ≤ j, k ≤ N ,

having mutual information above a given threshold are determined; this step essentially ini-

tializes the transition network S[t−r,t]. Then in the second step, genetic algorithm (GA) is

applied, given the initial transition network S[t−r,t], to find the structure having the highest

maximum likelihood or the maximum description length (MDL) score. Being a population-

based optimization method using implicit parallelism, GA is able to search very large spaces

given an good representation of the GRN and appropriate genetic operators. Chaturvedi

and Rajapakse [213] used prior biological knowledge contained in current protein interac-

tion networks (PINs) as a mean of limiting the search space. The authors modeled time-

delayed regulations using a skip-chain model which predicts edges between non-consecutive

time-points (called skip-edges) based on the prior knowledge in the given PINs. Viterbi

approximation of DBNs is used to select the best skip-edges and combined appropriately

with the BIC score which selects edges between two consecutive time-points (non skip-edges

called linear-edges in the paper). In [212], the variable-order DBN (VO-DBN) approach

is introduced to automatically find the delays of regulations between genes. In HO-DBNs,

the order r (or the maximum delay of regulation) is fixed a priori before learning the struc-

ture. In the VO-DBN, however, the optimal order r and the optimal structure of which are

learned using a Markov chain Monte Carlo (MCMC), which uses an appropriate acceptance

mechanism allowing to optimize both order and structure.
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3.4 Max-Min High-Order DBNs

In this section, we present an extension of the Max-Min hill-climbing (MMHC) heuristic

which was originally devised for learning the structure of BNs from static data. MMHC-BN

was introduced in [196] as a fast, scalable, and reliable BN learning method which overcomes

the perceived limitations of the current state-of-the-art BN algorithms and which also exist

in current HO-DBN algorithms. MMHC-BN is a hybrid BN method; it first uses constraint-

based Bayesian learning [209] to learn the skeleton (i.e. an undirected graph) of a BN, and

then performs a search-and-score Bayesian learning on the skeleton in order to orient its

edges. It is the skeleton learning phase that gives MMHC-BN its reliability and accuracy,

its efficiency, and more importantly, its ability to scale to distributions with thousands of

variables. MMHC-BN is also a local learning method which does not require the user to

estimate the number of parents for each variable as it discovers the maximum number of

possible parents and children (PC), of each variable during the skeleton learning phase. This

discovery was proven accurate and more efficient than that of the hybrid sparse candidate

(SC) algorithm [197] and that of the constraint-based methods such as PC algorithm [209].

Our Max-Min High-Order DBN (MMHO-DBN) structure learning method is shown in

Algorithm 7.1. The MMHO-DBN approach proceeds with the two MMHC-BN phases,

except both phases are appropriately modified to consider a discrete-time stochastic pro-

cess G = (G1, . . . ,GT )T having a joint probability distribution P and where each Gt =

(Gt,1, . . . , Gt,N )T is a N -dimensional random variable vector taking discrete values.

In Phase 1 of Algorithm 7.1 we modified the local discovery method of [196], the Max-

Min parent and children (MMPC) algorithm in order to compute the maximum possible

parent set, Π[t−r,t],j , of each target variable Gt,j . Given a target variable T and statistical

non-stochastic data D, the original MMPC algorithm returns its maximum possible set of

parent and children, PC(T ), provided that the faithfulness assumption [209] holds and that

the statistical tests performed return reliable result. The faithfulness assumption ensures

that the PC(T ) set is unique among all BNs faithful to the same distribution; a node may

be T ’s parent in one BN and T ’s child in another BN, however PC(T ) remains the same

in both BNs. MMPC is a constraint-based search algorithm which essentially learns the

skeleton of a BN; that is, it identifies the existence of edges to and from targets T without

identifying the orientation of the edges. The uniqueness of the PC(T ) is also true for r-

DBNs faithful to the distribution P. Here, however, the edges will be oriented due to the

temporal dependencies, and thus we need only find the maximum possible set of parents of

T ; the children of T will be determined following the temporal dependencies. In Algorithm

7.1 above, the dynamic Max-Min parent (DMMP) algorithm shown in Algorithm 7.2 is
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Algorithm 7.1 The MMHO-DBN Algorithm

Input: gT×N = (g1, . . . ,gT )T: time-series data
r: maximum time delay
α: significance level
ϕ: cardinality limit for P[t−r,t],j
γ: cardinality limit for exhaustive search

Output: Ŝ: best DAG on the variables in gT×N

{Phase 1: Restrict candidate parents}
for every variable Gt,j ∈ G do

Π[t−r,t],j ← DMMP(Gt,j ,gT×N , r, α);
end for

{Phase 2: Search for the best DAG Ŝ}
for every variable Gt,j ∈ G do

P[t−r,t],j ← Best Subset(Gt,j ,gT×N , r,Π[t−r,t],j , ϕ, γ);
end for
return the highest scoring DAG Ŝ found;

our temporal variant of the MMPC algorithm for computing the maximum possible set of

parents, Π[t−r,t],j , of a target variable Gt,j .

Algorithm 7.2 is the same as the MMPC algorithm of [196] except here the PC set is the

set of maximum possible parents, Π[t−r,t],j ⊆ G[t−r,t], of the target variable Gt,j . G[t−r,t] is

the set of all variables within the last r previous time-points t − l for 1 ≤ l ≤ t. Starting

from an empty Π[t−r,t],j , Phase 1 of DMMP algorithm (7.2) sequentially adds variables

Πλ,µ ∈ G[t−r,t] which maximize the minimum association with the given target Gt,j relative

to the current Π[t−r,t],j . [196] proved that the Π[t−r,t],j found in Phase 1 DMMP does not

contain false negatives but may contain false positives which are then removed subsequently.

As in [196], we define the minimum association between a variable Gl,i ∈ G[t−r,t] and the

target Gt,j relative to a subset Z ⊆ G[t−r,t] as:

MinAssoc(Gl,i;Gt,j |Z) = min
C⊆Z

Assoc(Gl,i;Gt,j |C). (7.39)

Algorithm 7.2 performs tests of independence Ind(Gl,i;Gt,j |Z) which returns true if Gl,i

and Gt,j are conditionally independent given Z. The function Assoc(Gl,i;Gt,j |Z) estimates

the strength of dependency between Gl,i and Gt,j given Z such that Assoc(Gl,i;Gt,j |Z) ≥ 0

with equality holding if and only if Ind(Gl,i;Gt,j |Z). For the independence tests Ind(Gl,i;Gt,j |Z)

we calculated the G2 statistic as in [196] under the null hypothesis of the conditional inde-
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Algorithm 7.2 The DMMP Algorithm

Input: Gt,j : target node
gT×N = (g1, . . . ,gT )T: time-series data
r: maximum time delay
α: significance level

Output: Π[t−r,t],j : maximum possible parent set of Gt,j

{Phase 1: Compute a candidate Π[1,r],j}
Π[t−r,t],j ← ∅;
repeat
ϕ← maxGl,i∈G[t−r,t] MinAssoc(Gl,i;Gt,j |Π[t−r,t],j);
Πλ,µ ← arg maxGl,i∈G[t−r,t] MinAssoc(Gl,i;Gt,j |Π[1,r],j);
if ϕ 6= 0 then

Π[t−r,t],j ← Π[t−r,t],j ∪ {Πλ,µ};
end if

until Π[t−r,t],j has not changed

{Phase 2: Remove false positives}
for all Πλ,µ ∈ Π[t−r,t],j do

if ∃Γ ⊆ Π[t−r,t],j s.t. Ind(Πλ,µ;Gt,j |Γ) then
Π[t−r,t],j ← Π[t−r,t],j r {Πλ,µ};

end if
end for
return Π[t−r,t],j ;

pendence holding and using the same number of degrees of freedom as [196]. The G2 returns

a p-value and we reject the null hypothesis when p-value < α. We set the significance level

α = 0.05 and define the measure of association as:

Assoc(Gl,i;Gt,j |Z) =

0 if p-value ≥ α

α− p-value otherwise
. (7.40)

Since the gene expression time-series data are sparse and the number of counters goes

exponentially as the number of parents increases, there probably are some zero cells in

the contingency table when conducting conditional independence test. This may also lead

the degree of freedom to be negative, which is a computational disaster when applying

MMHC and its high-order extension to sparse gene time-series data. For example, we test

Ind(A,B|C) where nodes A, B and C have two states, respectively. The contingency table

have 8 cells, and the degree of freedom is 1× 1× 2 = 2. If there are more than 2 cells are
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zeros, then the degree of freedom becomes negative. We propose a smooth method that

is inspired by the computation of BDeu score [201]. We add a constant number, which is

called equivalent sample size (ESS) or pseudocount, to each cell of the contingency table. In

the current study, we uniformly set the ESS to 10, though ESS following other distributions

is also possible.

After determining the set Π̄j,[t−r,t] of target variable Xj,t (1 ≤ j ≤ m), Phase 2 of

MMHO-DBN will then perform a search-and-score strategy in order to find the best subset

of parents Πj,[t−r,r] ⊆ Π̄j,[t−r,t] maximizing a score function (e.g., BDe, BDeu, BIC, etc).

The search starts with an empty DAG and is constrained to consider only adding an edge

”Πλ,µ → Xj,t” if Πλ,µ ∈ Π̄[j,t−r,t]; that is, the search for best subset Πj,[t−r,t] is constrained

to the set of possible parents Π̄j,[t−r,t] only. Our search algorithm is shown in Algorithm

7.3. In Algorithm 7.3, we used the BDeu or BIC metrics as the score function Score. The

parameter γ is the maximum allowed cardinality of Π̄j,[t−r,t] below which we can perform an

exhaustive search, otherwise we perform a heuristic search for best subset. In the algorithm,

if the size of candidate parents are very large, we are only searching for subsets Π(ϕ) with

|Π(ϕ)| ≤ ϕ which maximize the score; essentially, parameter ϕ limits the size of the search

space for the sake of computational efficiency. In our current implementation, we performed

greedy search in this situation.

Algorithm 7.3 The Best Subset Algorithm

Input: Gt,j : target node
gT×N = (g1, . . . ,gT )T: time-series data
r: maximum time delay
Π[t−r,t],j : maximum possible parent set of Gt,j
ϕ: cardinality limit for P[t−r,t],j
γ: cardinality limit for exhaustive search

Output: P[t−r,t],j : best subset of parents of Gt,j

if |Π[t−r,t],j | ≤ γ then
{Exhaustive search}
P[t−r,t],j ← arg maxP(ϕ)⊆Π[t−r,t],j

Score(P(ϕ), Gt,j);

else
{Heuristic search}
P[t−r,t],j ← Heuristic(Gt,j ,Π[t−r,t],j ,Score, ϕ);

end if
return P[t−r,t],j ;
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3.5 Preliminary Experiment

In this section, we investigate the performance of our MMHO-DBN approach in terms of

accuracy and running time. We compared our MMHO-DBN, with DBmcmc (a first-order

DBN) [218] and DBN-ZC [217] methods. We set the maximum-fan-in of each gene to 3 in

all methods for fair comparison. We did two parts of experiments.

Our first experiment is to test whether ours can identify regulators of different time-

delays. We designed a small network of 8 nodes as shown in Figure 7.5a. The time-delays

are given along the directed connections. The expression values are discrete, and include

1 (down) and 2 (up). This network is composed of a pair of coherent nodes, regulators

of different time-delays, and regulators of the same time-delay. Using this network, we

generated a data set with 80 time points with equal sampling rate. In our MMHO-DBN,

we set the maximum time-delay to 3. The significance level was α = 0.05. The predicted

networks by our MMHO-DBN, DBmcmc, and DBN-ZC are demonstrated in Figures 7.5b,

7.5c, and 7.5d, respectively. Their performances are compared in Table 7.3. The presence

of a directed connection is defined as positive, and an absent edge is negative. From Figure

7.5, we can see that our MMHO-DBN can identify all the existing connections with correct

time-delays, whereas DBmcmc can only predict the connections of 1 time-delay. DBN-ZC

method fails to identify all existing connections, which convinces us that grouping regulators

according to time-delays may not be a wise choice. DBN-ZC only searches among the subsets

of the potential regulators with the same time-delays. As a high-order DBN, our approach

runs very fast. In this experiment, it took only 11 seconds, while DBmcmc took 584 seconds.

Table 7.3: The comparison on simulated data.

Method Sensitivity Specificity Time (seconds)

MMHO-DBN 1 0.9138 11

DBmcmc 0.5 1 584

DBN-ZC 0 0.8621 0.4

In the second experiment, we ran our MMHO-DBN and the other methods on a yeast

metabolic-cycle dataset [106]. We selected 44 genes that correspond to three periodical

biological processes: Ox (oxidative), R/B (reductive, building), and R/C (reductive, charg-

ing). The data was sampled at 36 equally distributed time points. We set the maximum

time-delays in MMHO-DBN to 1, 3, 5, and 7, respectively. The predicted GRNs are shown

in Figure 7.6. We define the gene that regulates four or more genes as hub gene. For

time-delays 1 and 3, genes POX1, FOX2, and MRPL10 are identified as hub genes by our
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Figure 7.5: The true network and the predicted networks.

MMHO-DBN. For time-delay 5, SSB2 and RML2 are find as hub genes in addition to the

three hub genes above using smaller time-delays. Using time-delay 7, we can predict CIT3,

MRPL10, and RML2 to be hub genes. The GRN reconstructed by DBmcmc is shown in

Figure 7.7. We can observe that CIT3, CAT2, ICL2, and RPSOB are predicted as hub

genes using first-order method. The GRN identified by DBN-ZC is so sparse that only

hubs POX1, MRPL10, FOX2, and few single regulators are found as can be seen in Fig-

ure 7.8. Comparing the results obtained by these methods, we can see that POX1, FOX2,

MRPL10, and CIT3 are commonly recognized as hub genes. Since the actual GRN is usually

unknown, there is no gold standard to validate the quality of predicted GRNs. Our current

result is preliminary. We will find a reasonable validation method to further compare their

performance. However, the advantage of our method can be felt in our first experiment on

simulated data.

The running time of these methods are listed in Table 7.4. DBN-ZC is the fastest

method, however as can be seen above the result of this method does not look better.

Using time-lag 1, our MMHO-DBN is much faster than DBmcmc. As the maximum time-

lag increase, the running time of our MMHO-DBN does not increase dramatically.

In this section, we propose a fast high-order dynamic Bayesian network learning method

for reconstructing gene regulatory networks. This is a constraint-and-scoring method. In the

algorithm, we also propose to use equivalent sample size to overcome the potential computa-
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Table 7.4: The comparison of DBNs.

Method Max Time-Lag Time (seconds)

MMHO-DBN

1 147

3 323

5 478

7 432

DBmcmc 1 379

DBN-ZC - 71
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Figure 7.6: The gene regulatory network learned by MMHO-DBN.

tional problem when testing the conditional independence. The preliminary experiment on

simulated data shows that our method can identify regulators of different time-delays. The
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Figure 7.8: The gene regulatory network learned by DBN-ZC.

experimental result on real data proves that our approach is very efficient. We are currently

working on a validation approach for comparing different network learning approaches on

real gene expression time-series data.

4 Qualitative Probabilistic Networks

We start this section with quoting the definition of qualitative probabilistic networks (QPNs)

given by Ibrahim, Ngom, and Tawfik [219]: Qualitative probabilistic networks (QPNs) are

DAGs that represent a qualitative abstraction of Bayesian networks. Formally, a QPN is
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given by a pair G = (V (G), Q(G)), where V (G) is the set of nodes capturing random vari-

ables and Q(G) is the set of arcs capturing the conditional dependence among the variables as

in Bayesian Networks. Instead of a known conditional probability distribution however, the

arcs of a QPN capture qualitative relations by finding monotonic characteristics in the local

conditional probability distribution of each node based on the idea of first-order stochastic

dominance. The resulting relations are used to establish properties over the probabilities of

events and are of two types, binary qualitative influences and tertiary qualitative synergies.

Given the structure and parameter of a BN or DBN, we can identify the conditional

dependency among variables. Sometimes, for example in GRN, pruning the network (that

is removing the week and questionable connections) and qualitative interpretation may be

necessary. We would like to construct the QPNs [220] from the learned BNs or DBNs to

pursue this possibility. In this section, we first survey the basic concepts of qualitative

influence and synergy. We then give the generalized concepts of synergy proposed in [219].

After that we survey the related works in the literature.

4.1 Qualitative Influence and Synergy

Qualitative influences describe the effects of the change of a variable to that of another

variable [221, 220]. It includes positive, negative, neutral, and unknown influences. Positive

influence of A on B means increasing the value of A makes a higher value of B more likely.

It is given in the following definition:

Definition 1. Given A ∈ Π(B) where Π(B) is the parent set of B, there is a positive

influence from A on B, if and only if for ∀a1, a2 ∈ val(A), a2 > a1, for ∀bi ∈ val(B), and

for ∀x ∈ val(X) where X = Π(B)− {A}, the following inequality

p(B ≥ bi|a2,x) ≥ p(B ≥ bi|a1,x) (7.41)

is satisfied.

Negative influence means that increasing the value of A makes a lower value of B

more likely. Neutral influence indicates that changing the value of A is does not affect

the value of B. Negative and neutral influence are defined by changing “≥” to “≤” and

“=”, respectively. We can use I+(A,B) to denote that variable A has a positive influence

on B. Similarly, negative influence and neutral are denoted by I−(A,B) and I0(A,B),

respectively. Additionally, we can use I?(A,B) to denote that the influence of A on B is

unknown.
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Qualitative synergies define the joint influences of two variables on another variable.

They include additive and product synergies. Additive synergies describe the joint influence

of two parents on a common child. Additive synergies includes positive, negative, and

neutral synergies. The positive additive synergy of two parents A and B on C implies that

the joint influence of A and B is greater than the sum of the individual influences of A and

B on C. It is defined as below:

Definition 2. Given A,B ∈ Π(C), there is a positive additive synergy between A and B

on C if and only if ∀a1, a2 ∈ val(A), a2 > a1, ∀b1, b2 ∈ val(B), b2 > b1, ∀ci ∈ val(C), and

∀x ∈ val(X) where X = Π(C)− {A,B}, the following inequality

p(C ≥ ci|a2, b2,x) + p(C ≥ ci|a1, b1,x) ≥ p(C ≥ ci|a2, b1,x) + p(C ≥ ci|a1, b2,x) (7.42)

is satisfied.

The negative additive synergy of two parents A and B on child C implies that the joint

influences of A and B is less than the sum of the individual influences of A and B on child

C. Neutral additive synergy says that the joint influence is equal to the sum of individual

influences. Negative and neutral additive synergy are defined by changing “≥” to “≤” and

“=”, respectively. We can use S+({A,B}, C), S−({A,B}, C), S0({A,B}, C) to denote the

positive, negative, and neutral additive synergies, respectively.

The additive synergies defined above works only for two parents. The authors of [219]

have extended the positive additive synergy to the case of more than two parents. The

generalized positive additive synergy is described by the following definition:

Definition 3. Given A = [A1, · · · , Aq] and A ⊆ Π(C), there is a positive additive synergy

among A1, · · · , Aq on C if and only if ∀a,a′ ∈ val(A) where a = [a1, · · · , aq] and a′ =

[a′1, · · · , a′q], a > a′, ∀ci ∈ val(C), and ∀x ∈ val(X) where X = Π(C) −A, the following

inequality

p(C ≥ ci|a,x) + p(C ≥ ci|a′,x) ≥
∑
λ∈Λ

p(C ≥ ci|λ,x) (7.43)

is satisfied, where Λ is the set of all mixtures between a and a′ excluding a and a′. For

example, if q = 4, λ = [a1, a
′
2, a
′
3, a4] is feasible.

Negative and neutral additive synergies can be generalized similarly. We use

S+({A1, · · · , Aq}, C), S−({A1, · · · , Aq}, C), and S0({A1, · · · , Aq}, C) to denote the gener-

alized positive, negative, and neutral additive synergies, respectively.
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4.2 Related Works

There are some efforts in literature to predict the signs of interactions. In [222], the signs

of interactions and the corresponding influence magnitudes are computed based on the

estimated CPTs. In [222], the idea of positive influence can be abstracted in the following

definition:

Definition 4. Given A ∈ Π(B), there is a positive influence from A on B if and only if for

∀a1, a2 ∈ val(A), a2 > a1, for ∀bi ∈ val(B), and for ∀x ∈ val(X) where X = Π(B) − A,

the following inequality

p(B ≤ bi|a2,x) ≤ p(B ≤ bi|a1,x) (7.44)

is satisfied.

In fact, this definition is equivalent to the standard definition of influence. This is

because:

p(B ≤ bi|a2,x) ≤ p(B ≤ bi|a1,x)

⇔ 1− p(B > bi|a2,x) ≤ 1− p(B > bi|a1,x)

⇔ p(B > bi|a2,x) ≥ p(B > bi|a1,x)

⇔ p(B > bi|a2,x) + p(B = bi|a2,x) ≥ p(B > bi|a1,x) + p(B = bi|a2,x)

⇔ p(B ≥ bi|a2,x) ≥ p(B ≥ bi|a1,x). (7.45)

In [219], QPN is used to select candidate regulators before learning a high-order DBN.

First, as in [217], candidate regulators of each variable is preliminarily obtained. Then, the

set of regulators of each gene is refined by finding the maximum number of potential regula-

tors which exhibit monotonic effects on the target genes. Each gene may have multiple sets

of potential regulators corresponding to different generalized joint influences, respectively,

and potential regulators within a subset may have different time-lags, and the time-lag

information is associated to each subset.

4.3 Post-Analysis Using QPN

QPN can be applied to post-process the GRN reconstructed through DBN. We summarize

the applications below:

1. The influences help us to predict the signs/types (repression and activation) of inter-

actions.
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2. The magnitude of the interactions can also be calculated.

3. Edges with zero or unknown influences can be pruned.

4. The additive synergy can help us to identify if a group of regulators work collabora-

tively or separately.

5. If we know the signs of interactions of a part of interactions, we can apply sign-

propagation algorithms [221] to predict the signs of the remaining interactions.

Now, we give a method to compute the magnitude of influence. This method is similar

to that in [222], but different in the definition of the cumulative distribution table and in

computing the final magnitude. For a fixed value of the other parents X = xl, suppose

the CPT of A on B is denoted by matrix θ of size q × r, where q is the number of states

of parent A, r is the number of states of child B, and θji = p(B = val(B)i|A = val(A)j).

Here we also suppose the states of each variable are ordered incrementally. The cumulative

distribution table is denoted by Σ, where σji =
∑r

k=i θjk. The magnitude corresponding to

this CPT is computed by

ml =
1

r

r∑
k=1

σqk − σ1k, (7.46)

which is the average difference between the last row and the first row of the cumulative

distribution table. Then, the magnitude of influence of A on B is defined as

m =
1

L

L∑
l=1

ml, (7.47)

where L is the number of states of other parents X.

5 Implementation

We implemented our MMHO-DBN method in MATLAB, and have assembled them into our

probabilistic graphical models (PGM) Toolbox: https://sites.google.com/site/

pgmtool. The current implementations mainly include BDeu and BIC scores, the two

phases of MMHO-DBN, influence, and synergy. The list of these functions is given in Table

7.5.

https://sites.google.com/site/pgmtool
https://sites.google.com/site/pgmtool
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Table 7.5: Current implementations of our probabilistic graphical models toolbox.

Function Description Example
computeBDeu Compute the BDeu score of a node conditioned by its

parents.
see the code

computeBIC Compute the BIC score of a node conditioned by its
parents.

see the code

computeScore Compute the BDeu or BIC score of a network. exampleComputeScore
searchCPAll Phase I of MMHO-DBN: Search candidate parents of

each node.
mainMMHODBN

searchParent Phase II of MMHO-DBN: Search the parents of each
node by a heuristic.

mainMMHODBN

computePerformance Compute the accuracy etc. of the learned network. mainMMHODBN
computeInfluence Compute influences of connections given a learned

network.
mainMMHODBN

computeSynergy Compute synergies of parents given a learned net-
work.

mainMMHODBN

influenceLocal Compute the influences of the parents on a child. -
synergyLocal Compute the additive ynergies of the parents on a

child.
-

6 New Computational Experiments 3

In Section 3.5, we did preliminary experiments on synthetic and real-life data. On the

real-life data, we did not validate the performance of MMHO-DBN, because we did not

know the actual GRN. In this section, we validate the performance of our MMHO-DBN

approach with QPN post-analysis on new synthetic and real-life data, whose actual networks

are known. We compared our MMHO-DBN, with DBmcmc (a first-order DBN) [218] and

DBN-ZC [217] methods. We set the maximum fan-in of each gene to 3 in all methods

for fair comparison. We did two parts of experiments on simulated data and real-life gene

expression time-series data, respectively.

We use sensitivity, precision, and F -measure to evaluate the performance of the methods.

The presence of a directed connection is defined as positive, and an absent edge is negative.

We denote the numbers of true positives, true negatives, false positives, and false negatives

as TP , TN , FP , and FN , respectively. The sensitivity (also called recall) is defined as
TP

TP+FN . The precision (also called positive predictive value) is defined as TP
TP+FP . The

F -measure is defined as 2 ∗ presion∗sensitivity
precision+sensitivity . When evaluating the performance of the

influence in the post-analysis after obtaining a DBN, we define the accuracy of influence as

3The experiment is our joint research with Dr. Jie Zheng and Haifen Chen of National Technological
University, Singapore. This work will be submitted to the Journal of Computational Biology.
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∑TP
i=1 si
TP , where si is defined as

si =


1 if Ip(ei) = Ia(ei)

0.5 if (Ip(ei) 6= Ia(ei)) and (Ia(ei) =? or Ip(ei) =?)

0 otherwise

, (7.48)

Here, Ia(ei) returns +, −, 0, or ? for positive, negative, neutral, and unknown influences

of the true positive edge ei on the actual network. Ip(ei) is defined analogously on the

predicted network.

6.1 On Simulated Data

Our first experiment has two purposes. First, we want to know whether MMHO-DBN

can identify regulators of different time-delays. Second, we test if different influences and

synergies can be identified correctly. We designed a network of 8 nodes as shown in Figure

7.9. This network is composed of regulators of different time-delays and regulators of the

same time-delay. The time delays, types of influences, and magnitudes of influences are

given along the directed connections in the format of “time lag, type and magnitude of

influence”. The parameters, that is, the (conditional) probability tables are also given in

this figure. The values of the network are discrete, and include 1 (down) and 2 (up). From

the parameters, we can see that there are two additive synergies: S+({X1, X2}, X3) and

S+({X3, X6}, X7).

Using this network, we generated a data set of 200 time points with equal sampling

rate. In our MMHO-DBN, we set the maximum time-delay to 2. The significance level was

α = 0.05 in the conditional independence test. We used BDeu metric to score a structure.

The equivalent sample size is set to 1 for both conditional independence test and BDeu

score. The predicted networks by MMHO-DBN, DBmcmc, and DBN-ZC are demonstrated

in Figures 7.10a, 7.10b, and 7.10c, respectively. Their performances including precisions,

sensitivities, and F -measures, are compared in Table 7.6.

From Figure 7.10, first of all, we can see that our MMHO-DBN can identify all the

existing connections with correct time-delays, whereas DBmcmc can only predict the con-

nections of 1 time-delay correctly. DBN-ZC method fails to identify all existing connections,

which convinces us that grouping regulators according to time-delays may not be a wise

choice in some cases. DBN-ZC only searches among the subsets of the potential regulators

with the same time-delays. Moreover, the time-lag estimation through measuring the initial

changes may not make more sense on noisy and truncated data. Second, the post-processing
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of MMHO-DBN can predict all types of influences correctly. The magnitudes of influences

are also very close to the true strengthes which are computed by using the true CPTs.

Furthermore, the two true additive synergies are predicted correctly by the post-analysis of

MMHO-DBN. As a high-order DBN, our approach runs very fast. It can be seen in Table

7.6 that, MMHO-DBN took only 34 seconds, while DBmcmc took 1878 seconds.
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Figure 7.9: The true network from which simulated data are sampled.

Table 7.6: Comparison on simulated data.

Method Precision Sensitivity F -measure Time (seconds)

MMHO-DBN 1 1 1 34
DBmcmc 1 0.6250 0.7692 1878
DBN-ZC 0 0 - 0.355

Sensitivity Analysis

In the MMHO-DBN model, there are a few parameters. The first parameter is the equiv-

alent sample size, which is used in the calculations of conditional independence test and

BDeu score, respectively. A larger equivalent sample size would make the corresponding

distribution smoother. The second parameter is the maximum time-delay (that is r in

Algorithm 7.1), which specifies the largest time delay of the regulations considered when

inferring the regulatory relations among genes. On one hand, the larger the maximum

time-delay is, the higher the order of MMHO-DBN would be, and gene regulations with

longer range could be detected. On another hand, a larger maximum time-delay will result

in a smaller sample size. The third parameter is the maximum number of parents for each
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Figure 7.10: The predicted networks using simulated data.

gene (that is ϕ in Algorithm 7.3), i.e. the maximum fan-in of each node. A larger maximum

number of parents would allow more multiple regulations being discovered, although it may

require more running time, and the number of the corresponding parameters would increase

exponentially. Generally, we set the equivalent sample sizes to 1, maximum time-delay to

2, and maximum parents to 3. Here, we investigate how the parameters affect the perfor-

mance of MMHO-DBN with respect to the F -measure. This can help us set the parameters

properly for future applications.

We first investigated how the parameter equivalent sample size affects the performance

of MMHO-DBN. The equivalent sample size is used, respectively, in the phases of obtaining

candidate parents and searching the parents for each node. For the convenience of narration,

we denote equivSize1 and equivSize2 as the equivalent sample sizes in these processes,

respectively. We kept the maximum time-delay and the maximum number of parents fixed

to 2 and 3, respectively. MMHO-DBN was run with equivSize1 and equivSize2 ranging from
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1 to 15, respectively. The variation of the performance of MMHO-DBN is shown in the

top-left sub-plot of Figure 7.11. We can see that, as equivSize1 increases, the performance

of MMHO-DBN does not change. This implies that the performance of the algorithm is

insensitive to the value of equivSize1 on the simulated data. However, a larger equivSize2

is likely to decrease the performance of MMHO-DBN.

Second, in order to examine how the maximum time-delay affects the performance of

MMHO-DBN, we ran MMHO-DBN with the maximum time-delay from 1 to 100. Mean-

while, we fixed both equivSize1 and equivSize2 to 1, and the maximum number of parents

to 3. The result is shown at the bottom of Figure 7.11. We can see that, when the maximum

time-delay is 1, the algorithm did not reach its best performance. The best performance was

obtained when the maximum time-delay was greater than 1. As the maximum time-delay

increases, the performance gets worse. Simply put, the maximum time-delay corresponding

to the best performance is consistent with the actual maximum time-delays, as compared

in Figure 7.9.

Similarly, in order to study the effect of the maximum number of parents on the per-

formance of MMHO-DBN, We ran MMHO-DBN with the maximum number of parents

changing from 1 to 5. Meanwhile, we fixed both equivSize1 and equivSize2 to 1, and the

maximum time-delay to 2. The result is shown in the top-right sub-figure of Figure 7.11.

We can find that the algorithm is insensitive to this parameter on the simulated data.

 

Figure 1.  Effect of parameters on the performance of MMHODBN for simulated data 

 

6.2 On Real Data 

We have validated our method on two real benchmark networks of yeast S. cerevisiae.  The 
first benchmark network is a five- gene network of yeast, which is a synthetic but real-life 
network for in vivo reverse-engineering and modeling assessment (IRMA) [1]. This is one of 
the first attempts to build a real-life gene regulatory network with accurately known gene 
interactions and reference data of gene expression. In their significant work, the authors 
constructed a network of five genes regulating each other in the yeast Saccharomyces 
cerevisiae. The regulatory interactions among these five genes were carefully designed and 
this network was negligibly affected by endogenous genes. This network would be 
“switched” on or off when the cells are cultured in galactose or glucose. Two sets of time-
series gene expression data were measured: one named switch-on dataset with 16 time 
points, and the other named switch-off with 21 time points. The second benchmark network 
is a nine- gene network of yeast related with yeast cell cycle, identified by [2]. Each of the 
nine genes is a cell-cycle transcription activator, and this network shows how the 
transcription activators that function at one stage of the yeast cell cycle regulate the 
transcription activators that are active at the next stage. The gene expression data of yeast 
cell cycle are from [3], which is a time-series dataset with 24 time points. 

We have investigated the performance of our MMHO-DBN method on both datasets of the 
five- gene network (denoted as “Yeast5on” and “Yeast5off” respectively) and the dataset of 
nine- gene network (denoted as “Yeast9”). To show the ability of MMHO-DBN in learning 

Figure 7.11: Effect of parameters on the performance of MMHO-DBN on the simulated
data.
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6.2 On Real-Life Data

We have validated our method on two real-life benchmark networks of yeast. The first

benchmark network has five genes, which is a synthetic but real-life network for in vivo

reverse-engineering and modeling assessment (IRMA) [223]. This is one of the first attempts

to build a real-life gene regulatory network with accurately known gene interactions and

reference data of gene expression. In their significant work, the authors constructed a

network of five genes of yeast Saccharomyces cerevisiae. The regulatory interactions among

these five genes were carefully designed. The network can be triggered by galactose. This

network would be “switched” on when the cell culture is shifted from glucose to galactose,

and “switched” off if the culture is shifted from galactose to glucose. Two sets of time-

series gene expression data were measured after the cell culture is perturbed: one named

switch-on data set with 16 equally distributed time points (or Yeast5on for short), sampled

after shifting the culture from glucose to galactose; and another named switch-off data set

with 21 equally distributed time points (or Yeast5off for short), sampled after shifting the

culture from galactose to glucose. The second benchmark network is a nine-gene network of

yeast related to yeast cell cycle, identified by Simon et al. [224]. Each of the nine genes is a

cell-cycle transcription activator, and this network shows how the transcription activators

which function at one stage of the yeast cell cycle, regulate the transcription activators,

which are active at the next stage. The gene expression data of yeast cell cycle are obtained

from [225], which is a time-series data set sampled at 24 equally distributed time points.

This data set is abbreviated as Yeast9 in our study. All these data were discretized to three

states. We also tried two states, where the performance is very similar to that of using

three states. Thus, we only report the performance of using three states below.

We have investigated the performance of our MMHO-DBN method on these data sets.

To show the ability of MMHO-DBN in learning regulations with delayed interactions, we

here compare the performance of MMHO-DBN, DBmcmc (a first-order DBN), and DBN-

ZC (a high-order DBN). Table 7.7 shows their comparisons on the three real-life data

sets, respectively. First, as seen, MMHO-DBN has a better performance than DBmcmc

on all real-life data sets, which is probably because MMHO-DBN considers simultaneously

gene regulations with longer time-delays, while DBmcmc only takes into account genetic

interactions with one time delay. Second, MMHO-DBN also performed better than DBN-

ZC. We also tested the first-order MMHO-DBN (by setting the parameter maximum time-

delay to 1) on the three real data sets and compared with DBmcmc. The results are shown

in Table 7.8. We can see that even the first-order MMHO-DBN has competitive performance

compared to DBmcmc.
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Figure 2. Benchmark of the five-yeast-gene network (where a red ‘T’-shape edge denotes inhibition) 

                   

Figure 3. The predicted networks by MMHO-DBN on “Yeast5on” (left) and “Yeast5off” (right) 
respectively 

      

Figure 4. The predicted networks by DBmcmc on “Yeast5on” (left) and “Yeast5off” (right) 
respectively  

(a) Actual Yeast5 network.
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(b) DBmcmc on Yeast5on.
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Figure 7.12: The actual Yeast5 networks and the predicted networks using Yeast5 data.
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Figure 5. Benchmark of the nine-yeast-gene network 

 

Figure 6. The predicted network by MMHO-DBN on “Yeast9” 

 

(a) Actual Yeast9 network.
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(b) DBmcmc on Yeast9.
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Figure 7.13: The actual Yeast9 network and the predicted networks using Yeast9 data.
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Table 7.7: Comparison on real-life data.

Data Method Precision Sensitivity F -measure Time (seconds)

Yeast5on
MMHO-DBN 1.0000 0.5000 0.6667 1

DBmcmc 0.5000 0.2500 0.3333 108
DBN-ZC 0.6000 0.3750 0.4615 0.03

Yeast5off
MMHO-DBN 0.6667 0.2500 0.3636 2

DBmcmc 0.1700 0.1200 0.1407 109
DBN-ZC 0 0 NA 0.1

Yeast9
MMHO-DBN 0.5000 0.1765 0.2609 28

DBmcmc 0.2100 0.1400 0.1680 140
DBN-ZC 0.1111 0.0588 0.0769 0.2

Table 7.8: Comparison of MMHO-DBN (first-order) and DBNmcmc on real-life data.

Data Method Precision Sensitivity F -measure

Yeast5on
MMHO-DBN 1.0000 0.2500 0.4000

DBmcmc 0.5000 0.2500 0.3333

Yeast5off
MMHO-DBN 0.4000 0.2500 0.3077

DBmcmc 0.1700 0.1200 0.1407

Yeast9
MMHO-DBN 0.2857 0.1176 0.1667

DBmcmc 0.2100 0.1400 0.1680

The actual networks and the predicted networks by different methods are illustrated in

Figures 7.12 and 7.13. Comparing the networks predicted by MMHO-DBN and the actual

network of Yeast5, we find that the influence accuracy (defined in Equation (7.48)) of the

QPN is 0.5. Unfortunately, the types of interactions on Yeast9 is unavailable, so we can

not validate the influence on this data. Moreover, we have no information to validate the

synergies so far.

According to [224], genes SWI4 and MBP1 are both active in the phase “late G1” of

the cell cycle; NDD1 is active in the phase “G2”, and MCM1 is active in the phase “G2”

or “M”; and SWI5 is active in the phase “M”; CLN3 is active in the phase “G1”. Such

information can serve as evidence for the delayed regulations between those genes. We have

compared the time delays predicted by MMHO-DBN with those in real cases. The results

are shown in Table 7.9. Note that the predicted time delays are measured in number of

time lags. As seen, the predicted time delays are consistent with real cases.
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Table 7.9: Validating the time-delays on Yeast9.

True Positive Regulation Phases Predicted Time Lags Remark

SWI4→MBP1 Late G1→late G1 0
SWI4→NDD1 Late G1→G2 6
MCM1→CLN3 G2/M→G1 8
CLN3→SWI5 G1→M 6 opposite direction

Sensitivity Analysis

We have also studied how the parameters affect the performance of MMHO-DBN on real-life

data sets. We observed how MMHO-DBN behaved with equivalent sample size changing

from 1 to 15 on data set Yeast5on. Meanwhile, we fixed the maximum time-delay and the

maximum number of parents to 2 and 3, respectively. Also, the performance of MMHO-DBN

was investigated with the maximum time-delay changing from 1 to 15, while the equivalent

sample sizes and the maximum number of parents are fixed to 1 and 3, respectively.

 

Figure 7. Effect of parameters on the performance of MMHODBN when applied on “Yeast5on” 

 

 

Figure 8. Effect of parameters on the performance of MMHODBN when applied on “Yeast5off” 

Figure 7.14: Effect of parameters on the performance of MMHO-DBN when applied on
Yeast5on data.

Figures 7.14, 7.15, and 7.16 show the performance variations of MMHO-DBN with

different parameters on Yeast5on, Yeast5off, and Yeast9, respectively. The missing data

point in some of the sub-figures is because the corresponding F -measure is invalid (because
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Figure 7. Effect of parameters on the performance of MMHODBN when applied on “Yeast5on” 

 

 

Figure 8. Effect of parameters on the performance of MMHODBN when applied on “Yeast5off” Figure 7.15: Effect of parameters on the performance of MMHO-DBN when applied on
Yeast5off data.

 

Figure 9. Effect of parameters on the performance of MMHODBN when applied on “Yeast9” 

 

  

Figure 7.16: Effect of parameters on the performance of MMHO-DBN when applied on
Yeast9 data.
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TP = 0). The effect of the maximum number of parents is not shown here, because

we observed that it does not affect the performance of MMHO-DBN on the real-life data

sets. For the equivalent sample size, we can see that good performance is obtained at

the very beginning of the plot. This is because the sample size of gene time-series data

is relatively small, and a large equivalent sample size would make the contingency table

(in the conditional independence test) and the frequency table (in the BDeu score) very

smooth. Thus the performance of MMHO-DBN gets worse. From the plots of the maximum

time-delay, we observe that the best performance is not obtained with a few, rather than 1,

time lags. The performance becomes unstable when the maximum time-delay is very large.

The reason is that a very small maximum time-delay would prevent the algorithm from

finding high-order interactions, while a very large value would further reduce the number

of available samples to learning a reliable model.

From Figures 7.14, 7.15, and 7.15, we could draw the following conclusions about the

parameter setting: (1) For equivalent sample size, a small value (≤ 3) may be appropriate;

(2) The setting of maximum time-delay depends on the data, which means we would better

use some prior knowledge about the data for an appropriate value of maximum time-delay;

(3) Although here the the maximum number of parents does not affect MMHO-DBN on real

data sets, a small value (≤ 3) may be a proper choice for the setting of maximum parents,

considering the the number of time points and the complexity of the network. However,

we are also interested in the challenge, as future work, that a true network has some nodes

which have many (� 3) parents, while the number of time points is limited.

7 Conclusions

Learning a graphical model from microarray time-series data is one of the methods to

infer gene regulatory networks. In this chapter, we proposed the MMHO-DBN method to

reconstruct time-delayed regulations. We also applied the concepts of influence and synergy

in QPN to infer the types of interactions and the joint effort of regulators on a target. Our

experimental results on both synthetic data and real-life time-series data revealed that our

MMHO-DBN method is able to identify more interactions precisely than other methods.

We also conducted sensitivity analysis on the parameters of the MMHO-DBN. Based on

this, suggestions have been given to choose the parameters properly.

There are many future works in this research. For example, we need to find a way

to validate the synergies among regulators biologically. More actual regulatory networks

are required to evaluate the performance of our method. Low accuracy is a still common
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drawback of most of the models on time-series data, therefore we are considering combine

knowledge from other data, for example the next generation sequence data.

Publications
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Chapter 8

Dealing With Missing Values

1 Introduction

Microarray data often suffer from missing values due to many factors such as insufficient

resolution, image corruption, artifacts, systematic errors, or incomplete experiments. Mi-

croarray data analysis methods based on machine learning (such as clustering, dimension

reduction, and classification) often require complete gene expression data sets, in order to

perform robustly and effectively. Therefore, incomplete data sets need to be pre-processed

for these methods before analysis, or handled carefully during their process. Gene-sample-

time (GST) microarray data sets suffer from even more severe missing value problems. For

example, if a patient is not available to obtain a sample at a certain time point, a whole

vector for this patient is thus missing in the data set.

Contributions: In this chapter, we explore various strategies for learning models from

incomplete biological data. Our main contributions include:

1. We extend the existing imputation methods, originally for two-way data, to methods

for GST data.

2. We also propose a pair-wise weighting method for computing kernel matrices from

incomplete data.

In the rest of this chapter, we first survey strategies of dealing with the missing value

problems for two-way data and GST data in Sections 2 and secMissThree, respectively. After

that, we propose a pair-wise weighting strategy to compute kernel matrix from vectorial

samples with missing values in Section 4. We then extend the KNNimpute and SVDimpute,

202
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originally devised for two-way data, for estimating missing values of GST data in Section

5.

2 Dealing With Missing Values in Two-Way Data 1

There are three strategies for handling the issue of missing values in two-way data. First,

we can remove the features or samples (time points) with missing values. However, the

main drawback is that the already small sample (time point) size becomes smaller and we

may face the risk of having not enough data for learning a model. The second strategy is to

impute (that is, to estimate then fill-in) the missing values in the data [108]. Missing values

can be either imputed by a constant value (e.g., 0) or by feature averages, or alternatively

they can be estimated by some statistical or machine learning methods. This strategy

essentially completes an incomplete data set, and hence, avoids deleting features or samples

(or time points). The missing values can be estimated either before any analysis or during

the learning of a model. The time complexity for making the data complete before learning

is usually much lower than that of combining missing value estimation with learning a model,

for example using expectation maximization (EM). The third strategy is that the observed

values are only used during the learning and prediction processes. Thus, it is usually called

weighting strategy. For incomplete training data D, the objective of a weighted regression

method for fitting a model can be expressed as

min
M

1

2
‖W ∗ (D −M)‖2F , (8.1)

where M contains the values estimated by the model, W is a weighting matrix with wij = 1

indicating that value dij is present in the data and wij = 0 indicating that dij is missing.

Notation “∗” is the Hadamard (element-wise) product operator. ‖A‖F is defined as the

Frobenius norm of matrix A.

Some imputation methods have been proposed specifically for two-way microarray data

sets since the work of [108] in 2001. An imputation method that estimates a missing value

by feature average value was investigated in [108], and was shown to give the worst perfor-

mance (with respect to the normalized root mean squared error) among many imputation

methods. In [108], a k -nearest-neighbor based imputation method, or KNNimpute for short,

has been proposed using the Euclidean, Pearson correlation, and variance minimization sim-

ilarity metrics, and the Euclidean metric gave the best results. For each incomplete gene gi

1This section is based on our publication [111].
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with missing value gij in the j-th sample or time point, imputation is done by first finding

its k nearest complete genes, and then taking the weighted average value at column j of

those k genes as estimation of gij . The authors of [108] also describes a singular-value-

decomposition-based imputation method, SVDimpute. A set of eigen-genes is found by

applying SVD on the complete genes only. Each incomplete gene is then represented as

a linear combination of those eigen-genes. Linear regression using the expectation maxi-

mization (EM) algorithm is performed on those eigen-genes to estimate the missing values

of given incomplete genes. LLSimpute, a local least squares method [226], represents an

incomplete gene as a linear combination of its k nearest complete neighbors. Least squares

optimization is used to find the coefficients of the linear combination, which are then used

for estimating the missing values of the incomplete gene. Other methods based on least

squares regression are also introduced in [227, 228, 229]. The Bayesian principal component

analysis method, BPCAimpute [230], applies PCA similarly to the SVD method. How-

ever, an EM-like Bayesian estimation algorithm is used to estimate the coefficients of the

linear combinations for each incomplete gene to impute. In [231], genes are represented

as cubic spline functions first, and then missing values for incomplete genes are estimated

by resampling the continuous curves. An autoregressive-model-based missing value estima-

tion method (ARLSimpute) [232] first, applies auto-regression on a set of k similar genes

(missing values are set to zeros initially) to estimate their AR coefficients by means of a

least squares method. Then, using the AR coefficients, missing values for all incomplete

genes are imputed by means of another least squares error regression method. ARLSim-

pute is the only method devised specifically for time-series profiles; however it works only

on long stationary time-series data. It is also the only method that is able to impute a time

point (entirely missing column of a gene-time microarray data). Except the approach in

[231], imputation methods for two-way microarray data are all based on similar principles:

they either find nearest complete genes to impute incomplete genes, or find eigen-genes to

impute incomplete genes, or combine these two principles. Current methods, except the

ARLSimpute method, are initially devised for static data, though they have been applied to

time-series data. They neither work when an entire column of a two-way microarray data

is missing.

Weighted non-negative matrix factorization (WNMF) is an implementation of the weight-

ing strategy [96, 99]. Suppose the non-negative incomplete data D is to be decomposed

into two non-negative matrices as D ≈ AY . The weighted multiplicative update rules of
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WNMF are A = A ∗ (W ∗D)Y T

(W ∗AY )Y T

Y = Y ∗ AT(W ∗D)
AT(W ∗AY )

, (8.2)

where W is a weighting matrix, as defined in Equation 8.1.

3 Dealing With Missing Values in GST Data 2

We recommend the readers refer to the appendix of Chapter 4 for a short introduction to

tensor algebra with useful illustrations. It is even more important to handle missing values

for GST data by imputation or weighting, because if the removal strategy is used and a

value is missing in the three-way data set, the corresponding gene-slice, sample-slice, or

time-slice should be deleted for completeness. If there are many missing values distributed

randomly in a GST data set, by removing a slice for each missing value, there may not

be sufficient complete data left for analysis. Furthermore, many data mining approaches

require complete data.

Similar to the EM-based SVD imputation method for two-way data, tensor factorization

can be used to impute missing values for GST data. An iterative imputation method using

PARAFAC decomposition is given in [233, 234]. The basic idea is the following. The

missing values in the tensor data D are first initialized by random numbers. Next, D is

factorized into D = JA,B,CK by PARAFAC. After that, the missing values are replaced

with dijk =
∑R

f=1 aifbjfckf , where R is the tensor rank. The above steps are repeated until

there is no change in the estimated values. The PARAFAC-alternating least squares with

single imputation (PARAFAC-ALS-SI) [235] is an implementation of the above idea using

the ALS algorithm. If D is non-negative, it is necessary that the factors A, B, and C must

be restricted by non-negativity. In this situation, non-negative PARAFAC should be used

[236, 237, 234].

The general weighted regression model for a three-way data set is as follows:

min
M

1

2
‖W ∗ (D−M)‖2F . (8.3)

The model to be learned may be constrained by non-negativity, orthogonality, or others.

The incomplete data PARAFAC algorithm (INDAFAC) [235] is an implementation to fit

the PARAFAC model using a weighting strategy. Sparse non-negative Tucker algorithm

2This section is based on our publication [111].
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(SN-TUCKER or HONMF) [123] is the extension of weighted sparse non-negative matrix

factorization (NMF) into non-negative Tucker decomposition that can ignore missing values.

4 Pair-Wise Weighting Method 3

4.1 Pair-Wise Weighting is A Local Method

The kernel sparse coding, kernel dictionary learning, and kernel linear models, described in

Chapter 2 and Appendix B, only require inner products or kernel matrices rather than the

original samples. For example, the sparse coding models use only inner product matrices:

K = ATA, C = ATB, and perhapsR = BTB, whereA andB represent the training data

and unknown data with samples in columns, respectively. If the samples are normalized

to have unit l2-norm, the inner product of two samples is actually the cosine similarity

between them. Suppose we have two unnormalized samples a, b ∈ Rm. Their normalized

inner product can be formulated as

a′Tb′ =
aT

‖a‖2
b

‖b‖2
.

This feature of these optimization algorithms is quite useful to handle missing values. If a

and b have missing values, we can use the features without missing values in both of them

to calculate the cosine similarity:

a′Tb′ =
aT
I

‖aI‖2
bI
‖bI‖2

, (8.4)

where I is the set of indices of the features whose values are observed in both a and b, that

is I = Ia ∩ Ib where Ia is the set of indices of features whose values are present in a. The

difference between this weighting strategy with 0-imputation is that the inner product of a

pair of 0-imputed samples is not the cosine similarity. If a and b are original samples with

missing values imputed by 0, the normalized inner product of them is a′Tb′ =
aT
I

‖aIa‖2
bI
‖bIb‖2

.

Through this way, we can calculate the inner product matrices K, C, and R in a pair-

wise fashion, ifA andB have missing values. The difference between this weighting strategy

with the global strategy of removing features with missing values as a preprocessing is that

our strategy utilizes more features than the latter. This is because our strategy computes

the inner product of two samples based on their available features, while the feature pre-

removal strategy does so based on the global available features. In some cases, the missing

3This section is based on our publication [18].
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rate can be so large that the majority of features are removed by the latter strategy. But

our pair-wise weighting strategy might still work normally. Therefore, the advantage of

our strategy is that it can work in the cases of large missing rate, as can be seen in our

experiment presented in Section 4.2.

In the sparse coding models, if the nearest-subspace rule is used after getting the sparse

coefficient of each sample, the regression residual of each class can also be computed in this

weighting strategy. From the following equation,

1

2
‖b−Aixi‖22 =

1

2
(b−Aixi)

T(b−Aixi) =
1

2
bTb− xT

i A
T
i b+

1

2
xT
i A

T
i Aixi, (8.5)

we can find that the residual of b regressed by the i-th class is a function of bTb, AT
i b and

AT
i Ai which can be computed by the weighting strategy in the case of missing values. Ai

is the training samples of the i-th class.

4.2 Experiment

For the purpose of exploring the capability of our weighting strategy of handling missing

values, we did experiment on eight microarray data sets, as enumerated in Table 8.1, with

randomly and artificially generated missing values. The missing rate (defined as the per-

centage of missing values out of a whole data set) ranges from 0.1 to 0.7. We used four-fold

cross-validation for 50 runs at each missing rate for each data set. We compared our strat-

egy with 0-imputation. The 0-imputation is a strategy to fill the missing values by constant

0’s. We did not conduct KNNimpute, because for large missing rate, there is no complete

feature and sample, and KNNimpute will thus fail for this case. This is one of the advan-

tages of our pair-wise weighting strategy over the KNNimpute. We also involved the l1LS

(also known as SRC, see Chapter 2), meta-sample based sparse representation classification

(MSRC) [48], linear regression classification (LRC) [109], 1-NN, SVM, and extreme learning

machine (ELM) [238] using 0-imputation in the competition. We compared these methods

on the microarray data sets as listed in Table 8.1. As an example, the average accuracies

over SRBCT are plotted in Figure 8.1.

Furthermore, in order to investigate the robustness of our weighting strategy in the case

of high missing rate, we employed the Friedman test (see Chapter 2) on all microarray data

with missing rates 60% and 70% (therefore resulting in 16 data sets). We set the significance

level to α = 0.05. In our experiment, the null hypothesis was rejected, and the result of the

Nemenyi test is shown in Figure 8.2.

First of all, we can see that NNLS-MAX using weighting strategy is significantly bet-
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Table 8.1: Microarray data sets. The sample size of each class and the total data size are
in the last column.

Data #Class #Feature #Sample
Adenoma [69]2 7457 18+18=36
Breast [70] 2 24481 44+34=74
Colon [44] 2 2000 40+22=62
Leukemia [72]2 7129 47+25=72
ALL [77] 6 12625 15+27+64+20+43+79=248
Breast5 [31] 5 14460 13+22+53+31+13=158
MLL [79] 3 12582 24+20+28=72
SRBCT [80] 4 2308 23+8+12+20=63
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Figure 8.1: Classification performance on SRBCT as missing rate increases. This is a color
figure, thus the readability may be affected if printed in grayscale.

ter than its counterpart using 0-imputation. If we increase the threshold of Type-I error

slightly, then NNLS-NS using weighting strategy also performs significantly better than its

counterpart using 0-imputation. Therefore it can be concluded that the weighting strat-

egy is significantly better than 0-imputation when using the same classification technique.

Secondly, from Figure 8.1 we can see that NNLS-NS using weighting strategy and SVM

using 0-imputation still maintain high accuracy at severe missing rate. And from Figure

8.2, we can find both of them obtained top ranks. It hence can prove the robustness of our

weighting strategy.
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Figure 8.2: Graphical representation of Nemenyi test over microarray data with missing
rates 60% and 70%.

5 The Extensions of KNNimpute and SVDimpute 4

In this section, we modify the Average, KNNimpute and SVDimpute methods to pre-process

incomplete GST data. In particular for the time-series in the GST data, we also investigate

a pre-processing method that takes into account the temporal relationships within and

between gene time-series.

In order to describe our methods clearly, we shall work on the data representations as

illustrated in Figure 8.3. In the following subsections, m, n and p are respectively, the

number of genes, samples, and time points in the GST data set which suffers from missing

values; gi, sj and tk are the gene, sample, and time point at row i, column j and time

point k, respectively; gij is the time-series of gene gi at sample sj , or equivalently, sij is the

time-series of sample sj at gene gi; gijk is a value at gene gi, sample sj and time point tk;

γijk is the estimate of a missing value. A time-series is incomplete if it has a missing value.

In the following, we assume that the gene time-series gij (i.e., sample time-series sij) has a

missing value gijk at some time point tk. In the data set we use, each gene gi or sample sj

contains at least one complete time-series.

5.1 Average Methods

We implemented three average imputation methods, GAimpute (gene-average), SAimpute

(sample-average) and GSAimpute (gene-sample-average). In GAimpute, the estimate γijk

of gijk is the average value at time point tk of the m gene time-series of sample sj . In

4This section is based on our publication [239].
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Figure 8.3: Tensor representation (a) and matrix representation (b) of a gene-sample-time
microarray data.

SAimpute, γijk is the average of the n sample time-series of gene gi at time point tk. In

GSAimpute, estimate γijk of gijk is the average of the estimates obtained by GAimpute and

SAimpute. These three methods are generically termed 3Aimpute, in subsequent sections.

5.2 k-Nearest Neighbor Methods

Similarly to the averaging methods above, we devised three KNNimpute methods on in-

complete gene or sample time-series. For each incomplete time-series gij or sij , k nearest

neighbors are computed only from complete time-series. The estimate γijk of gijk is then

taken as the weighted average at time point tk of these nearest neighbors.

In GKNNimpute, the k neighbors of gij are obtained from all the complete gene time-

series of sample sj . In SKNNimpute, the neighbors are found from all the complete sample

time-series of gene gi. When the samples have class labels, then the k complete sample

time-series must be of the same class as the incomplete time-series sij . In GSKNNimpute,

γijk is the average of the estimates from GKNNimpute and SKNNimpute. We denote these
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methods by the generic term 3KNNimpute.

For missing value estimation, the Euclidean distance performed better than other metrics

in [108] and [230]; hence we have used this metric to find the nearest neighbors. We have

also used the novel integral-distance metric, proposed in [192, 168, 184, 180], which was

shown to be more robust than the Pearson correlation distance on time-series data. In term

of notation, when using the Euclidean distance, we will add letter “E” after KNN, otherwise

we add letter “A”.

5.3 k-Nearest Neighbor with Multiple Time-Series Alignment

The 3KNNAimpute methods based on the integral-distance function are quite slow due to

computing the pair-wise alignment between two time-series, when computing their distance.

Pair-wise alignment was introduced in [180] and [192] in order to take into account the tem-

poral relationships between time-series and within time-series, and thus to perform a more

robust analysis of time-series data. Multiple time-series alignment (MA) was introduced in

[192] as a pre-processing stage for clustering gene time-series, and was shown to yield much

faster clustering time. MA is a series of transformations performed on all time-series pro-

files, at once, such that the area between any two transformed profiles is minimal, and thus

the subsequent clustering method needs not to apply pair-wise alignment for computing the

integral-distance between time-series profiles.

For imputation with MA (see Figure 8.4), we first apply GKNNimpute, with the Eu-

clidean distance, on the original data M in order to obtain a complete data set C; this is

because MA requires a complete data set. We then perform the MA transformations of [192]

on C to yield a new data set A. For each incomplete time-series gij in M with missing value

gijk at tk, we find the k nearest neighbors of its counterpart in A using integral-distance (no

alignment is necessary here). We then estimate gijk in A as the weighted average of these

neighbors at time point tk. This is essentially GKNNimpute applied on A, except that the

nearest neighbors in A must be complete in M . After imputing gijk in A, we apply the

inverse transformation MA−1 [192] to obtain the estimation of gijk in M . SKNNimpute and

GSKNNimpute can also be applied in a similar way. We use the generic term 3MAimpute

for methods based on MA.

5.4 Singular Value Decomposition

We modified the SVDimpute method of [240] for GST data. First, SVD is performed

on all complete time-series of gene gi or sample sj to find a set of k eigen-samples or

eigen-genes. Each incomplete gene or sample time-series is then a linear combination of
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Figure 8.4: k-NN imputation with multiple-alignment.

these eigenvectors. We apply linear least square regression to obtain the coefficients of

these eigenvectors for each incomplete time-series. Missing values are then imputed by

linear combination of the corresponding values of the eigenvectors. These methods are

known as 3SVDimpute, including: GSVDimpute for imputing on sample sj at time point

tk, SSVDimpute for imputing on gene gi at time point tk, and the combined GSSVDimpute.

5.5 Time-Point Estimation for GST Data

In some GST data sets, a sample sj may have a missing value at time point tk for all

its gene time-series gij . Thus the entire time point tk is missing for that sample. Most

existing imputation algorithms on two-way microarray data, such as Average, KNNimpute

and SVDimpute, are not able to deal with this situation. An exception is ARLSimpute

[232]. Assume sample sj , has missing values g1jk, g2jk, · · · , gmjk at time point tk (in all its

gene time-series gij). Our G*impute methods cannot estimate these values. However, our

S*impute methods have no such limitation: since an incomplete gene time-series gij of sj

will be imputed from the other complete sample time-series sij of gi (since gi contains at

least one complete sample time-series).
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5.6 Evaluation of Imputation Methods

Let G = [gijk] be a complete GST data set and H = [hijk] be an incomplete data set

obtained from G by removing some values at random. Let Γ = [γijk] be an imputation

of H: that is, obtained after applying an imputation algorithm on H. We can assess the

performance of an imputation method by measuring the error E(G; Γ) between G and Γ.

We use the normalized root mean squared (NRMS) error defined as:

E(G; Γ) =

√∑m
i=1

∑n
j=1

∑p
k=1(gijk − γijk)2∑m

i=1

∑n
j=1

∑p
k=1(gijk)2

, (8.6)

where {m,n, p} is the size of G. When G is known, then the missing value imputation prob-

lem is a supervised learning problem. Most microarray data sets are initially incomplete;

thus G = H, and therefore, the missing value imputation problem becomes an unsuper-

vised learning problem to find a true completion of G. In the next section, we test our

algorithms only on complete data sets G. That is, given an initial but incomplete GST

data set M , we first remove from M every gene, sample and time point containing missing

values, and hence, producing a complete sub-structure G of M . We then generate a new

data set H from G by randomly deleting some values from G (G and H have the same

dimensions). Next, we perform an imputation on H to obtain a complete Γ and compute

the error E(G,Γ). We repeat this process 100 times randomly altering G then computing

Γ. In the experiments below, we report the average error over 100 iterations. See Figure

8.5 for a sketch of the experimental procedure.

5.7 Experiment

In this study, we used the interferon-β (IFNβ) data set of [112]. As we mentioned in the

previous chapters, this GST data contains 76 genes, 53 samples (from 31 good responders

and 22 bad responders), and 7 time points (at 0, 3, 6, 9, 12, 18, 24 months). 10.55%

of expression intensities and 36 time points (one complete sample has 7 time points) are

missing. There are 26 samples containing at least one missing time point. The samples

are taken from patients suffering with relapsing-remitting multiple sclerosis and treated

with IFNβ as initial therapy. Their blood samples are obtained by veni-puncture at each

time point to produce the microarray data. After two years, the patients are classified as

either good or bad responders according to strict experimental criteria. We performed our

experiments on this data set using the experimental procedure described in Figure 8.5, to

evaluate our imputations algorithms. Here, M is the original incomplete IFNβ data set,
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Figure 8.5: Experimental procedure of imputation.

and removing incomplete genes, samples and time points resulted in a complete data set G

containing 53 genes, 27 samples (18 good and 9 bad responders) and 7 time points. All of

the approaches are implemented in MATLAB.

The incomplete data set H is obtained from G as follows: we randomly select g% of all

genes time-series in G to be altered, then for each such time-series gij , we randomly remove

at most t values; we randomly select a sample sj , then remove all values at time point tk,

that is we delete the time point tk for some arbitrary k. After performing an imputation

method on H we obtain the estimated Γ, then compute the error E(G,Γ).

Table 8.2 shows for each method, the number of times when it has produced the lowest

estimation error for g% = 0.1%, 0.2%, · · · , 0.9%, 1%, 2%, · · · , and 20% (that is for 29

values of g%) when at most t = 1, 2, 3, 4, 5 values are missing in the selected gene time-

series (columns of the table). Both small and large values of g% are used because we want to

investigate the performances of the extended methods at small and large numbers of missing

values. In Table 8.2, we did not remove any time point. As shown in the table, GMAimpute

is the best method among the G*impute methods (which use the gene time-series from the

same samples to estimate the missing values), while SKNNAimpute is the best method

among the S*impute methods (that use the sample time-series to estimate missing values).

For instance, for t = 4, GMAimpute outperforms the other G*impute methods for 25 times

out of 29 value of g%. SKNNAimpute outperforms the other S*impute methods for all

values of t.
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Table 8.2: Statistics for the five methods for 29 different percentages (from 0.1% to 20%)
of genes which contain at most 1, 2, 3, 4, or 5 missing values, respectively. There is no time
point missing in this case.

Method
At Most

1 2 3 4 5

GAimpute 0 0 0 0 0
GKNNEimpute 5 8 8 3 6
GKNNAimpute 3 5 0 1 1
GSVDimpute 0 0 0 0 0
GMAimpute 21 16 21 25 22

SAimpute 0 0 1 0 0
SKNNEimpute 2 5 7 4 3
SKNNAimpute 17 15 12 10 15
SSVDimpute 0 0 0 0 0
SMAimpute 10 9 9 15 11

GSAimpute 0 0 0 0 0
GSKNNEimpute 4 5 4 7 3
GSKNNAimpute 16 13 12 5 12
GSSVDimpute 0 0 0 0 0
GSMAimpute 9 11 13 17 14

Figure 8.6a shows the performance of G*impute methods for t = 1. The horizontal axis

presents various values of g%, and the vertical axis stands for the NRMS error at respective

g%. Clearly, GMAimpute gives the lowest error on average as g% increases. In general for

all values of t, we found that KNN-based methods yield the best results while SVD-based

methods give the worst results. Additionally, as g% increases, the NRMSs of all algorithms

climb up gradually. KNN methods use local information around an incomplete time-series

for estimation: i.e., a subset of time-series similar to the given incomplete time-series. The

averaged methods estimate an incomplete time-series by the centroid of either a gene or a

sample, but unlike in KNN, the centroid may be very far from the incomplete time-series

to estimate. In our data set however, SVD performed worst simply because there are not

enough complete time-series, and thus is outperformed by average method. In general in all

our experiments with G*impute, S*impute and GS*impute, SVD underperformed all other

methods. See Figures 8.6b and 8.6c for instance, for increasing g% with t = 1, where the

NRMS error of SVD based methods severely fluctuate and dramatically deteriorate.

We also performed experiments for the case where data set H contains a sample with

one time point that is entirely missing. Tables 8.3, 8.4, and 8.5 show the NRMS error of

G*impute, S*impute, and GS*impute methods, respectively, when one time point missing
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(a) G*impute methods.

(b) S*impute methods.

(c) GS*impute methods.

Figure 8.6: Errors of G*impute (a), S*impute (b), and GS*impute (c) methods, for g% =
0.1% to 20% and t = 1.
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and at most t = 1 value missing for each of the g% (the first column) selected time-series.

In all the three tables, the best result of each row is in bold. In Table 8.3, GKNNAimpute

outperforms all the other G*impute methods in 17 out of 29 values of g%. Likewise in Tables

8.4 and 8.5, SKNNAimpute and GSKNNAimpute outperform their respective competitors.

Thus, the KNN-based methods are the best in all experiments.

Table 8.3: Mean NRMS error for G*impute with at most one missing value for each selected
time-series and one missing time point.

Percent GAimpute GKNNEimpute GKNNAimpute GMAimpute

0.1% 0.0394 0.0338 0.0330 0.0360
0.2% 0.0346 0.0270 0.0271 0.0249
0.3% 0.0386 0.0329 0.0330 0.0329
0.4% 0.0276 0.0237 0.0235 0.0279
0.5% 0.0333 0.0251 0.0249 0.0314
0.6% 0.0365 0.0308 0.0308 0.0315
0.7% 0.0433 0.0377 0.0380 0.0358
0.8% 0.0293 0.0248 0.0247 0.0303
0.9% 0.0370 0.0285 0.0287 0.0277
1% 0.0344 0.0265 0.0259 0.0262
2% 0.0541 0.0470 0.0466 0.0425
3% 0.0358 0.0292 0.0288 0.0425
4% 0.0517 0.0435 0.0429 0.0479
5% 0.0439 0.0341 0.0339 0.0394
6% 0.0435 0.0350 0.0351 0.0346
7% 0.0465 0.0379 0.0374 0.0430
8% 0.0591 0.0484 0.0486 0.0531
9% 0.0641 0.0522 0.0521 0.0533
10% 0.0660 0.0546 0.0540 0.0591
11% 0.0792 0.0666 0.0661 0.0706
12% 0.0799 0.0662 0.0660 0.0735
13% 0.0780 0.0664 0.0659 0.0664
14% 0.0707 0.0565 0.0569 0.0553
15% 0.0860 0.0717 0.0719 0.0735
16% 0.0774 0.0632 0.0627 0.0636
17% 0.0893 0.0766 0.0764 0.0706
18% 0.0821 0.0687 0.0690 0.0821
19% 0.0961 0.0811 0.0809 0.0823
20% 0.1037 0.0903 0.0894 0.0881

In all experiments, GMAimpute performed the best with small g% and no missing time

points. MA requires a complete data set for transformation, and hence, the initialization
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Table 8.4: Mean NRMS error for S*impute with at most one missing value for each selected
time-series and one missing time point.

Percent SAimpute SKNNEimpute SKNNAimpute SMAimpute

0.1% 0.0393 0.0338 0.0330 0.0360
0.2% 0.0343 0.0272 0.0273 0.0250
0.3% 0.0382 0.0326 0.0327 0.0331
0.4% 0.0266 0.0231 0.0230 0.0277
0.5% 0.0335 0.0250 0.0247 0.0315
0.6% 0.0363 0.0307 0.0308 0.0315
0.7% 0.0428 0.0375 0.0380 0.0356
0.8% 0.0282 0.0247 0.0245 0.0302
0.9% 0.0368 0.0280 0.0283 0.0276
1% 0.0340 0.0263 0.0257 0.0261
2% 0.0517 0.0457 0.0455 0.0427
3% 0.0331 0.0277 0.0273 0.0412
4% 0.0494 0.0442 0.0433 0.0486
5% 0.0410 0.0320 0.0315 0.0387
6% 0.0380 0.0324 0.0329 0.0337
7% 0.0424 0.0355 0.0348 0.0424
8% 0.0532 0.0472 0.0470 0.0534
9% 0.0584 0.0514 0.0507 0.0553
10% 0.0624 0.0526 0.0520 0.0592
11% 0.0719 0.0634 0.0623 0.0686
12% 0.0738 0.0649 0.0646 0.0728
13% 0.0713 0.0615 0.0616 0.0656
14% 0.0610 0.0497 0.0499 0.0537
15% 0.0739 0.0648 0.0642 0.0726
16% 0.0665 0.0571 0.0563 0.0621
17% 0.0790 0.0695 0.0694 0.0690
18% 0.0727 0.0645 0.0645 0.0822
19% 0.0850 0.0759 0.0757 0.0811
20% 0.0927 0.0804 0.0786 0.0844

process of Figure 8.4 will essentially affect the performance of MA-based imputation meth-

ods. For large value of g%, such initialization would lead to more imprecise alignment

which will eventually deteriorate the estimation of missing values. The 3KNNAimpute

methods, which use the integral-distance of [180] and [192], outperform the KNN methods

based on the Euclidean distance; in most experiments (see the tables 8.3, 8.4, and 8.5). In

the context of time-series analysis, it has been shown in [180] that the integral-distance is

more robust than the Pearson correlation distance. It remains to be investigated why the
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Table 8.5: Mean NRMS error for GS*impute with at most one missing value for each
selected time-series and one missing time point.

Percent GSAimpute GSKNNEimpute GSKNNAimpute GSMAimpute

0.1% 0.0393 0.0338 0.0329 0.0360
0.2% 0.0344 0.0271 0.0272 0.0249
0.3% 0.0382 0.0327 0.0328 0.0330
0.4% 0.0268 0.0234 0.0232 0.0277
0.5% 0.0331 0.0249 0.0247 0.0314
0.6% 0.0360 0.0307 0.0307 0.0314
0.7% 0.0425 0.0375 0.0379 0.0356
0.8% 0.0282 0.0245 0.0244 0.0301
0.9% 0.0363 0.0281 0.0283 0.0276
1% 0.0338 0.0263 0.0256 0.0261
2% 0.0516 0.0460 0.0456 0.0425
3% 0.0328 0.0278 0.0272 0.0416
4% 0.0483 0.0429 0.0422 0.0479
5% 0.0394 0.0319 0.0317 0.0387
6% 0.0378 0.0325 0.0327 0.0336
7% 0.0412 0.0355 0.0348 0.0421
8% 0.0525 0.0466 0.0465 0.0528
9% 0.0573 0.0503 0.0499 0.0538
10% 0.0585 0.0517 0.0510 0.0584
11% 0.0714 0.0636 0.0628 0.0691
12% 0.0724 0.0638 0.0634 0.0725
13% 0.0697 0.0623 0.0621 0.0653
14% 0.0607 0.0507 0.0509 0.0535
15% 0.0747 0.0661 0.0659 0.0722
16% 0.0661 0.0582 0.0574 0.0620
17% 0.0786 0.0711 0.0710 0.0692
18% 0.0709 0.0638 0.0640 0.0810
19% 0.0844 0.0758 0.0754 0.0805
20% 0.0915 0.0831 0.0813 0.0854

integral-distance performed better than the Euclidean distance. 3KNNAimpute has the ad-

vantage of estimating both missing values and missing time points. The Euclidean distance

does not consider the order of the time points, i.e. exchanging the order of the time points

will result in the same distance. The integral-distance takes into account the order of time

points. Exchanging the time points would likely produce different distances. Moreover, the

area based distance measure can find similar genes which might be dissimilar in the con-

text of the Euclidean distance. The 3MAimpute methods outperform the 3KNNEimpute
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algorithms for small values of g%.

6 Conclusions

In this chapter, we have focused on discussing the missing value issues in two-way and

three-way data. We have surveyed the three strategies of handling missing values. We then

proposed our pair-wise weighting strategy to compute inner products or kernel matrices

for kernel models. After that, we extended the successful imputation methods, originally

invented for two-way data, to the versions for three-way data. One thing we need to mention,

at this moment, the principle that no method is generally better than another method. We

have to select a proper method for our specific application and specific data. If there are

sufficient samples and only few samples have missing values, then we may simply remove

these samples. If the number of available samples is very limited, and the missing rate is

small, then we may choose estimation methods. If there is a large missing rate, we may use

a weighting method. If an application requires a fast response, then we have to choose a

fast method to deal with missing values.

Publications

1. We extended the existing imputation methods, originally for two-way data, to methods

for gene-sample-time data in [Y. Li, A. Ngom, and L. Rueda, “Missing value impu-

tation methods for gene-sample-time microarray data analysis,” IEEE Symposium on

Computational Intelligence in Bioinformatics and Computational Biology (CIBCB),

Montreal, Canada, May 2010, pp.183-189.].

2. We proposed a pair-wise weighting method for computing kernel matrices from in-

complete data in [Y. Li and A. Ngom, “Classification approach based on non-negative

least squares,” Neurocomputing, vol. 118, pp. 41-57, 2013.].



Appendix A

An Introduction to Tensor Algebra

In this appendix, we briefly introduce the main concepts in tensor algebra, which is very

necessary to help readers to understand the methodologies presented Chapter 4.

1 Notations and Tensor Manipulations

Hereafter, we use the following notations unless otherwise noted:

• A matrix is denoted by a bold capital letter, e.g. A.

• A (column) vector is denoted by a bold lowercase letter, e.g. a.

• A bold lowercase letter with a subscript ai denotes the i-th column vector in matrix

A.

• The italic lowercase letter with two subscripts aij is the (i, j)-th scalar element of

matrix A.

• A boldface Euler script, e.g. X, denotes a three (or higher)-order tensor, for example,

X ∈ RI1×I2×I3 .

• X(1)p denotes the p-th frontal slice of X, of size I1 × I2.

• X(n) denotes the matrix obtained through the mode-n matricization of the tensor X.

Columns of X(n) are the mode-n fibers of tensor X. A mode-n fiber is a vector defined

through fixing every index but the n-th index. This is the extension of matrix row

and column in tensor algebra. X(1) therefore denotes the matrix of size I1× (I2× I3),

unfolded in mode-1 of X, that is X(1) = [X(1)1,X(1)2, · · · ,X(1)I3 ], where X(1)i3 is a
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slice of the third axis. Similarly, X(2) = [X(2)1,X(2)2, · · · ,X(2)I1 ] of size I2× (I3× I1)

is the mode-2 matricization of the tensor X. X(3) = [X(3)1,X(3)2, · · · ,X(3)I2 ] of size

I3×(I1×I2) is the mode-3 matricization of the tensor X. In Figure A.1a, each column

is a mode-1 fiber obtained via fixing the sample and time axes. Each such fiber is the

gene profiles of a specific sample at a specific time point. The matrix in Figure A.1a,

is obtained by placing all mode-1 fibers together in the columns, that is concatenating

the sample slices along the column direction. Similarly, the matrix in Figure A.1b

is the mode-2 matricization, and is obtained by placing all mode-2 fibers together in

the columns, that is concatenating the gene slices along the column direction. The

matrix in Figure A.1c is the mode-3 matricization, and is obtained by placing all

mode-3 fibers together in the columns, that is concatenating the time slices along the

column direction.

• The (i1, i2, i3)-th scalar element of X is denoted by xi1i2i3 .

Gene 1
Gene 2

Gene 3
Gene 4

Sample 1

T1 T2 T3 T4 T5 T6 T7 T8

Sample 2

T1 T2 T3 T4 T5 T6 T7 T8

Sample 3

T1 T2 T3 T4 T5 T6 T7 T8

Sample 4

T1 T2 T3 T4 T5 T6 T7 T8

(a) Mode-1 matricization.

T1
T2

T3
T4
T5
T6

T7
T8

Gene 1

S1 S2 S3 S4

Gene 2

S1 S2 S3 S4

Gene 3

S1 S2 S3 S4

Gene 4

S1 S2 S3 S4

(b) Mode-2 matricization.

Sample 1
Sample 2

Sample 3
Sample 4

T1

G1 G2 G3 G4

T2

G1 G2 G3 G4

T3

G1 G2 G3 G4

T4

G1 G2 G3 G4

T5

G1 G2 G3 G4

T6

G1 G2 G3 G4

T7

G1 G2 G3 G4

T8

G1 G2 G3 G4

(c) Mode-3 matricization.

Figure A.1: The mode-1 (a), mode-2 (b), and mode-3 (c) matricizations of the three-way
tensor shown in Figure 4.1.

Suppose that a ∈ Rm, b ∈ Rn, and c ∈ Rr. The operator “◦” in a ◦ b = M ∈ Rm×n is

vector outer product. M is a rank-one matrix. Its elements can be computed as mij = aibj .
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Similarly, the operation a ◦ b ◦ c = M ∈ Rm×n×r, where M is a rank-one tensor and

mijk = aibjck.

Suppose that A ∈ Rm1×n1 and B ∈ Rm2×n2 , their Kronecker product is defined as

A⊗B =


a11B a12B · · · a1n1B

a21B a22B · · · a2n1B
...

...
. . .

...

am11B am12B · · · am1n1B


= [a1 ⊗ b1,a1 ⊗ b2, · · · ,an1 ⊗ bn2−1,an1 ⊗ bn2 ]. (A.1)

We have that A⊗B ∈ R(m1m2)×(n1n2).

Suppose A ∈ Rm1×n and B ∈ Rm2×n, their Khatri-Rao product is defined as

A�B = [a1 ⊗ b1,a2 ⊗ b2, · · · ,an−1 ⊗ bn−1,an ⊗ bn]. (A.2)

Therefore A�B is of size (m1m2)× n.

The Hadamard product is also called element-wise product which is denoted as A ∗B.

The n-mode product of a tensor X and a matrix A, written as X×n A, is:

[X×n A]i1×···in−1×j×in+1×···×iN =

In∑
in=1

xi1i2···iNajin , (A.3)

where X ∈ RI1×I2×···×IN andA ∈ RJ×In . This results in a tensor Y ∈ RI1×···In−1×J×In+1×···×IN .

X can be matricized into matrices in different modes. For example,

X(1) = [X(1)1,X(1)2, · · · ,X(1)I3 ] is matricized in the first mode (see Figure A.1).

2 Tensor Decomposition

Tensor decomposition methods mainly include PARAFAC and Tucker decompositions [125].

PARAFAC is the abbreviation of parallel factors. It is also called canonical decomposition

(CANDECOMP). It factorizes a tensor into a summation of rank-one tensors. Suppose that

X ∈ RI1×I2×I3 , PARAFAC decomposes X into

X ≈
R∑
r=1

gr ◦ tr ◦ sr, (A.4)
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X ≈
I1

I2
I3

I1 + … +

I2
I3

I1

I2
I3

Figure A.2: PARAFAC decomposition.

where R is the rank of the reconstructed tensor, gr ∈ RI1 , tr ∈ RI2 , and sr ∈ RI3 are

columns of G, T , and S, respectively. This factorization can be concisely written as X ≈
JG,T ,SK, where G,T ,S are called factor matrices. The approximation X ≈ JG,T ,SK can

be matricized into different modes:
X(1) ≈ G(S � T )T

X(2) ≈ T (S �G)T

X(3) ≈ S(T �G)T

. (A.5)

Figure A.2 is an illustration of PARAFAC decomposition.

PARAFAC can be optimized by alternating least squares (ALS) algorithm [234]. If

non-negativity is constrained on all factor matrices, alternating non-negative least squares

(ANLS) algorithm can be used [234].

The Tucker3 model of Tucker decomposition factorizes a tensor X into a core tensor C

and three mode matrices G, T , and S as follows:

X ≈ C×1 G×2 T ×3 S =

J1∑
j1=1

J2∑
j2=1

J3∑
j3=1

cj1j2j3gj1 ◦ tj2 ◦ sj3 = JC;G,T ,SK , (A.6)

where C is a core tensor and G,T ,S are called mode matrices. The decomposition is

illustrated in Figure A.3. In light of Equation (A.6), it is clear that an element of core

tensor C indicates the degree of interaction among the corresponding mode vectors from

different mode matrices. For instance, cj1j2j3 reflects the interaction between gj1 , tj2 , and

sj3 . Applying matricization on both sides of X ≈ JC;G,T ,SK, we can have the following



APPENDIX A. AN INTRODUCTION TO TENSOR ALGEBRA 225

G

S

CX ≈ TI1

I2
I3

I2

I1

I3

J1

J2J3J1

J2

J3

Figure A.3: Tucker3 decomposition.

relations: 
X(1) ≈ GC(1)(S ⊗ T )T

X(2) ≈ TC(2)(S ⊗G)T

X(3) ≈ SC(3)(T ⊗G)T

, (A.7)

where X(1) and GC(1)(S ⊗ T )T are obtained through matricizing X and JC;G,T ,SK in

mode 1, respectively.

Generally speaking, there are no constraints on the core tensor and mode matrices in

Tucker decomposition. However, constraints such as orthogonality, non-negativity, and non-

Gaussianity can be enforced in a decomposition algorithm. For instance, HOSVD enforces

the orthogonality constraints on the mode matrices and is among the most popular Tucker

algorithms. The mode matrices can be obtained by applying SVD on the matricized matrices

of the corresponding mode. In Equation (A.7), we can apply SVD on X(1): X(1) = UΣV T,

and G can then be obtained by taking the J1 leading singular vectors of U . Similarly, T

and S can be obtained by applying SVD on X(2) and X(3), respectively. The core tensor

is obtained through C = X×1G
T ×2 T

T ×3 S
T . Interested readers are referred to [241] for

more details. High-order orthogonal iterations (HOOI) is an alternating least squares (ALS)

algorithm initialized by HOSVD, which gives better decomposition than HOSVD itself (see

[242] and [125] for details). HOOI also generates orthogonal mode matrices. HONMF

imposes non-negativity constraints on the core tensor and mode matrices. Multiplicative

updates rules [12] corresponding to core and mode matrices have been extended in [123]. The

core tensor and mode matrices are alternatingly updated until the convergence criteria are

met. The authors of [12] have observed that good interpretation and learning performance

can be benefited by adding non-negativity and sparsity constraints on matrix factorization.
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Even though the sparsity can be imposed and controlled. Sparsity is sometimes a by-

product of non-negativity constrained matrix (maybe tensor also) factorization without

explicit sparsity constraint.



Appendix B

An Introduction to Regularized

Linear Models

1 Background

Many problems in bioinformatics can be formulated into classification and regression prob-

lems in machine learning. Given dataX = [x1,x2, · · · ,xn], and the response y = [y1; y2; · · · ; yn],

the process of learning a model, say f , is to minimize the following expected risk [243] with

is the expectation of the loss with respect to the joint probability distribution p(x, y):

R[f ] = E[f ] =

∫
l(f,x, y)dp(x, y), (B.1)

where l(f,x, y) is a loss function, and p(x, y) is the joint density function. The most popular

loss functions are given as below:

l(f,x, y) =



max{0, |y − f(x)| − ε} = |y − f(x)|ε ε-sensitive loss

max(0, 1− yf(x)) = |1− yf(x)|+ hinge loss

(y − f(x))2 squared loss

|y − f(x)| l1-loss

log(1 + e−yf(x)) logistic loss

. (B.2)

Unfortunately, in most cases, we can not directly apply this formulation, because we

do not know the actual joint distribution p(x, y). Minimizing the following empirical error

227
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only can overfit the data, and therefore does not imply a good capability of generalization:

Remp[f |X,y] =
1

n

n∑
i=1

l(f,xi, yi). (B.3)

A typical example of minimizing empirical error is the least-squares method for learning a

linear model for classification and regression. A linear model can be expressed as

f(x) = wTx+ b, (B.4)

where w and b are model parameters: w is the normal vector of the hyperplane, and b is

the bias term. For classification, the decision function is an indicator function:

d(x) = sign[f(x|w∗, b∗)], (B.5)

where {w∗, b∗} is the optimal parameter learned. The least-squares method learns the

parameters by the following optimization task:

1

2
‖y − (XTw + b)‖22, (B.6)

where b = {b}n, that is a constant column vector with values b. It is well-known that the

least-squares method has poor capability of generalization [244].

In order to avoid overfitting, we need to control the model complexity. That is, we need

a trade-off between minimizing the empirical error and controlling the model complexity.

Controlling the model complexity is called regularization. In machine learning, we usually

need to minimize the following regularized empirical risk [243]:

r(θ) + C ∗Remp[f ], (B.7)

where r(θ) is the regularization term, θ is the model parameter, Remp[f ] is the empirical

error term, and C is a pre-specified parameter to balance the empirical error and model

complexity.

Now, we give a typical example of learning a linear model by minimizing the regularized

empirical risk. Suppose the loss function is squared loss l(f,x, y) = (y − f(x))2 and the

regularization is l2-norm 1
2‖w‖

2
2, then learning the linear model is the well-known ridge
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regression [245]:

1

2
‖w‖22 + C ∗ 1

2
‖y − (XTw + b)‖22. (B.8)

The support vector machines (SVMs) are well-known regularized sparse linear models.

The hard-margin SVM was first proposed in 1979 [246], which was followed by the soft-

margin SVM in 1995 [247]. The fundamental principle motivating it is that it implements

the structural risk minimization (SRM) inductive principle [61] which states that the actual

risk is upper bounded by the tradeoff between the empirical risk and model complexity. In

the SRM theory, the structure S1 ⊂ S2 ⊂ · · · ⊂ S is constructed on the set of loss functions

S = {Q(x, α), α ∈ Λ}. If the loss function is totally bounded, in order for the scheme to

possess an ability of generalization, one needs to choose the function Q(x, αkn) from Sk that

minimizes the bound R(αkn) ≤ Remp(αkn)+Φ( nhk ), where R(αkn) is the actual risk, Remp(α
k
n) is

the empirical risk, Φ( nhk ) is the confidence interval, n is the number of training samples, and

hk is the Vapnik-Chervonenkis-dimension (VC-dimension). For a fixed number of training

samples, n, a small VC-dimension implies a small confidence interval.

We now consider how the SVM implements the SRM for linear models. SVM guarantees

its generalization ability, because the SVM minimizes the empirical error, while maximizing

the separating margin, which corresponds to the smallest VC-dimension. By mapping the

original samples from the input space into a high-dimensional feature space using a basis

function or kernel, one expects to have a smaller empirical error and a larger margin. Thus,

SVM models can be expressed by the following general formula:

min
w,b

n∑
i

l(wTx+ b,xi, yi) +
λ

2
‖x‖22, (B.9)

where l(wTx+ b,xi, yi) is a loss function, and λ controls the tradeoff between the approxi-

mation error and model complexity. For instance, the standard SVM applies the hinge loss

(see Equation (B.2)).

In this appendix, we first review the main regularized (sparse) linear models using matrix

notations, unlike element-wise notations in most of the existing reviews. The formulations

using matrices and vectors are succinct and easy to understand. Second, two main feature

selection techniques based on SVM are also reviewed in details. These techniques have been

applied to gene selection problem in bioinformatics. Finally, we review the decomposition

methods for two-class SVMs, and derive decomposition methods for one-class SVMs.

We shall use the following notations in the remaining of this appendix.
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1. A matrix is represented by a boldface uppercase letter, for exampleX. Its i-th column

is represented by a boldface lowercase letter with a subscript, for example xi.

2. A (column) vector is denoted by a boldface lowercase letter, for example y. We use

MATLAB notations, and write [y1, y2, · · · , ym] as a row vector, and [y1; y2; · · · , ym] as

a column vector.

3. A scalar is denoted by either a lower or uppercase letter, for example C and λ.

4. A constant column vector is represented by either a boldface symbol, for example C

can be defined as C ∈ {C}n. Furthermore, in the bound constraints, the bounds are

simply written as regular symbol without making them bold. For example, µ ≥ 0

means all elements in vector µ are greater than zero.

5. A constant matrix is represented by a boldface uppercase letter, for example E many

contains constant 1.

6. Xm×n is a training set with m features and n samples.

7. For classification, these samples are from two groups: class -1 and class +1. The class

labels of these n training samples are in the column vector y.

8. For regression, the targets are real values accommodated in vector y.

9. Matrix Sm×p represents p unknown or test samples.

Furthermore, since the linear models have respective geometric interpretations, it is

necessary to introduce some geometric concepts before discussing each model. In Figure

B.1, we give schematic explanations for the related concepts in classification and regression.

In classification, the hyperplane wTx+ b = 0 is called the separating hyperplane. The area

between wTx+ b = +1 and wTx+ b = −1 is termed margin. Hyperplanes wTx+ b = +1

and wTx + b = −1 are named positive and negative borders of the margin. In regression,

The margin between y = wTx + b + ε and y = wTx + b − ε is called the tube or slab;

and y = wTx + b + ε and y = wTx + b − ε are the upper and lower borders of the slab,

respectively.
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x
1

x
2

f  x=wT xb=0

positive border

negative border

separating hyperplane

1
∥w∥2

f  x =wT xb=1

f  x=wT xb=−1

1
∥w∥2

margin=
2

∥w∥2

w

−b
w2

(a) In classification.

x

y

y= f x =wT xb

upper border

lower border

y= f x=wT xb

y= f x−=wT xb−

b



tube or slab



(b) In regression.

Figure B.1: The schematic explanation of some geometric conceptions. In (b), ε is specifi-
cally for the ε-insensitive loss.

2 A Review on Linear Models with Various Regularization

and Loss Terms

In this section, we review the linear models with various regularization and loss functions.

The regularized term uses either l2 or l1-norm. All loss functions mentioned in Equation

(B.2) are discussed in details. We use vector and matrix notations instead of element-wise

formulation. The benefit is that our formulations are very clear and easy to understand

and implement in a programming language like MATLAB.

2.1 Hard-Margin l2-Regularized Linear Model

With Bias b

The primal form of the hard-margin l2-regularized linear model for classification and re-

gression can be formulated as

min
w,b

1

2
‖w‖22 (B.10)

s.t. XTw + b ∗ 1 = y,
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where X is the training set, y is a column vector with targets, and ∗ is the operator of

element-wise multiplication. Its corresponding Lagrange function is

L(w, b,µ) =
1

2
‖w‖22 + µT(y −XTw − b ∗ 1), (B.11)

where µ is a vector of Lagrange multipliers. From Equations (B.10) and (B.11), we can

obtain the corresponding Karush-Kuhn-Tucker (KKT) conditions:
∂L
∂w = wT − µTXT = 0⇔ w = Xµ

∂L
∂b = −µT1 = 0

XTw + b ∗ 1 = y

. (B.12)

By substituting the primal variables with functions of Lagrange multipliers, the primal

objective becomes the dual function:

g(µ) = −1

2
µTXTXµ+ yTµ. (B.13)

Thus, we can obtain the dual form:

min
µ

1

2
µTXTXµ− yTµ (B.14)

s.t. 1Tµ = 0.

Obviously, this is an equality constrained quadratic programming (QP) problem that has a

closed-form solution [26].

Once the optimal dual variable µ is obtained, we can obtain the optimal primal variable

using the KKT condition:

w = Xµ. (B.15)

The bias, b, can be obtained by the constraint:

b = mean(y −XTw)

= mean(y −XTXµ). (B.16)
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Thus, the linear model learned can be represented as:

f(x) = xTw + b

= xTXµ+ mean(y −XTXµ). (B.17)

We have the following remarks:

1. One of the strengthes of this model is that, the closed-form solution (Equations (B.15)

and (B.16)) can be obtained. It makes the optimization very easy.

2. Also, only inner products of samples are involved in the optimization and prediction,

therefore this model has a kernel version corresponding to the basis-expanded linear

model.

3. However, all training samples are used in the optimization and decision making. The

prediction phase becomes inefficient as the number of samples increases. The efficiency

of online learning may also be affected by this weakness.

4. The hard margin assumption implies that the data are linearly separable in either

input space or feature space. This is too strict for many applications.

5. We do not derive the optimization in sign-changed form like ZTw + b ∗ y = y ∗ y
(where zi = yi ∗ xi) in the constraint, because this strategy only works when the

target is non-zero. The sign-changing trick is used only to simplify the formulation in

some cases where all targets are non-zeros.

Without Bias b

We will see that, for example in Sections 2.8 and 2.9, the bias b sometimes create difficulties

during optimization. There are two tricks to circumvent it. The first one is to augment the

feature vector by one, hence each sample becomes [x; 1], and the weight of the linear model

becomes [w; b]. The second one is to ignore the bias. It has been reported that the bias

is not crucial in practice for high-dimensional data [248, 249]. In the following we present

only the second trick, because the first trick can be derived by the same formula.

The primal form without considering the bias is

min
w

1

2
‖w‖22 (B.18)

s.t. XTw = y.
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Thus, the Lagrange function is

L(w,µ) =
1

2
‖w‖22 + µT(y −XTw). (B.19)

The corresponding KKT conditions are ∂L
∂w = wT − µTXT = 0⇔ w = Xµ

XTw = y
. (B.20)

By removing the primal variables from the Lagrange function, one can obtain the dual

function:

g(µ) = −1

2
µTXTXµ+ yTµ. (B.21)

Therefore, the dual form is an unconstrained QP problem:

min
µ

1

2
µTXTXµ− yTµ. (B.22)

From the first-order optimality condition, we have XTXµ = y. Suppose the Hessian

is positive definite, then it has the closed-form solution: µ = (XTX)−1y. Therefore

w = X(XTX)−1y. The resulting linear function is therefore

f(x) = wTx = yT(XTX)−1XTx. (B.23)

We provide the following remarks to conclude this subsection:

1. The closed-form solution is very simple.

2. We can find that only inner products are involved. By replacing the inner products

with kernel matrix, one have the kernel version.

2.2 Hard-Margin C-SVM: l2-Regularized Linear Model

As mentioned above, the linear model in Equation (B.10) is too strict in some cases, thus

the equality constraint is replaced with inequality in the hard-margin SVM [246]. In classifi-

cation problem, the hard-margin SVM requires that the samples reside either on or outside
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the border of the margin. It can be expressed asxT
i w + b ≤ −1 if yi = −1;

xT
i w + b ≥ +1 if yi = +1.

(B.24)

For simplicity, this constraint can be equivalently written as

yi(x
T
i w + b) ≤ 1. (B.25)

For convenience of derivation, we use the equivalent matrix notation: ZTw+by ≤ 1, where

Z is sign-changed training set with its i-th column defined as the element-wise multiplication

of the class label and the input vector of the i-th training sample, that is zi = yi ∗xi. This

trick does not apply for regression problem, because, for yi = 0, zi becomes 0.

The primal form can be written as

min
w,b

1

2
‖w‖22 (B.26)

s.t. ZTw + by ≥ 1.

Thus, the Lagrange function is

L(w, b,µ) =
1

2
‖w‖22 + µT(1−ZTw − by). (B.27)

And the KKT conditions are

∂L
∂w = wT − µTZT = 0⇔ w = Zµ

∂L
∂b = −µTy = 0

µ ∗ (1−ZTw − by) = 0

µ ≥ 0

ZTw + by ≥ 1

. (B.28)

We thus have the dual function expressed as

g(µ) = inf
w,b

L(w, b,µ)

= −1

2
µTZTZµ+ 1Tµ. (B.29)
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Therefore, the dual form of the optimization is

min
µ

1

2
µTZTZµ− 1Tµ (B.30)

s.t. µTy = 0

µ ≥ 0.

where [ZTZ]ij = lilj(x
T
i xj). Note that though [ZTZ]ij = lilj(x

T
i xj), however, usually

K(Z,Z)ij 6= liljK(xi,xj). Therefore, we need to compute kernel matrix using X, but not

Z directly.

After obtaining µ, we can compute the primal variables according to the KKT condi-

tions. We have w = Zµ = X(µ∗y). Let’s define the set of indices S = {i|µi > 0, i = 1 : n}.
Because if µi > 0, then 1 = yi(x

T
i w + b), that is yi = xT

i w + b. Therefore, xi sits on the

border (that is the hyperplane defined by either xT
i w + b = −1 or xT

i w + b = 1), and is

called a support vector. By using the support vectors only, we have the solution:

w = Zµ = XS(µS ∗ yS). (B.31)

The bias can be computed using the points on the border: b = yi − xT
i w where i ∈ S. For

stable result, we use all support vectors, and therefore

b =
yS −XT

Sw

|S|
=
yS −XT

SXS(µS ∗ yS)

|S|
. (B.32)

The resulting linear function can hence be represented by a function related to the

support vectors:

f(x) = wTx+ b

= xTXS(µS ∗ yS) +
yS −XT

SXS(µS ∗ yS)

|S|
. (B.33)

Remarks:

1. Only the support vectors are needed in the prediction, therefore the hard-margin SVM

can be applied for sample selection.

2. Inner products are involved in the optimization and prediction, therefore one can

kernelize it.

3. The margin is still hard, as no samples are allowed within the margin.
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2.3 Soft-Margin C-SVM: l2-Regularized Hinge-Loss Linear Model

The hard-margin SVM works only for linearly separable case. The soft-margin SVM [247]

allows the relaxation on the constraints, therefore it is applicable on non-linearly separable

data. Comparing with the hard-margin SVM, soft-margin SVM uses the following constraintxT
i w + b ≤ −1 + ξi if yi = −1;

xT
i w + b ≥ +1− ξi if yi = +1,

(B.34)

where the relaxation variable ξi ≥ 0. For simplicity, this can be rewritten into the equivalent

form: ZTw + by ≥ 1 − ξ. The soft-margin SVM wants to maximize the margin while

minimizing the relaxation. Therefore, the optimization task of soft-margin SVM can be

expressed in the following equation:

min
w,b,ξ

1

2
‖w‖22 +CTξ (B.35)

s.t. ZTw + by ≥ 1− ξ

ξ ≥ 0.

The corresponding Lagrange function is

L(w, b, ξ,µ,η) =
1

2
‖w‖22 +CTξ + µT(1− ξ −ZTw − by)− ηTξ. (B.36)

And the KKT conditions are

∂L
∂w = wT − µTZT = 0T ⇔ w = Zµ

∂L
∂b = −µTy = 0⇔ µTy = 0

∂L
∂ξ = CT − µT − ηT = 0T ⇔ C − µ− η = 0

µ ∗ (1− ξ −ZTw − by) = 0

η ∗ ξ = 0

1− ξ −ZTw − by ≤ 0

ξ ≥ 0

µ ≥ 0

η ≥ 0

. (B.37)
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One can obtain the dual function:

g(µ,η) = inf
w,b,ξ

L(w, b, ξ,µ,η) = −1

2
µTZTZµ+ µT1. (B.38)

Therefore, the dual form is formulated as

min
µ
g(µ) =

1

2
µTZTZµ− µT1 (B.39)

s.t. µTy = 0

c = µ+ η

µ ≥ 0

η ≥ 0.

This is equivalent to

min
µ
g(µ) =

1

2
µTZTZµ− 1Tµ (B.40)

s.t. µTy = 0

0 ≤ µ ≤ C

Similar to the hard-margin SVM, the normal vector is a non-negative linear combination

of the training samples, that is w = Zµ = X(µ ∗ y) = XS(µS ∗ yS), where S is the

set of indices of non-zero multipliers: S = {i|µi > 0, i = 1, · · · , n}. The training samples

corresponding to S are called support vectors (SVs), as they are either on the correct margin

border or at the wrong side. In order to compute the bias b, we need to find some points

on their corresponding boundary, denoted by XB, where B = {i|0 < µi < C, i = 1, · · · , n}.
We have b =

yB−XT
Bw

|B| =
yB−XT

BXS(µS∗yS)

|B| .

After obtaining the optimal w and b, the linear function used by the decision function

can be computed as below:

f(x) = wTx+ b = xTXS(µS ∗ yS) +
yB −XT

BXS(µS ∗ yS)

|B|
. (B.41)

According to the KKT conditions, we can obtain the following important geometric

interpretations associated with the optimal multipliers.

1. If µi > 0, then training point xi resides either on or at the side, where−yiw is pointing,

of its margin border (If yif(xi) < 1, we say xi is outside the border corresponding
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to yi; otherwise, inside.). However, the reverse is not true (we shall next point out

that, if xi is on its correct margin border, then it is possible that µi = 0). We call

points with nonzero multipliers support vectors. This judgement is proven as follows.

If µi > 0, from complementarity condition we then have 1− ξi−zT
i w− byi = 0. From

ηi = C − µi, we have 0 ≤ ηi < C. If 0 < µi < C, then ηi > 0, then ξi=0, therefore

1− zT
i w− byi = 0, that is xi is on the correct margin border. If µi = C, then ηi = 0,

then ξi ≥ 0, then 1−zT
i w− byi ≥ 0, that is xi is either on or at the side, where −yiw

is pointing, of its correct margin border.

2. If 0 < µi < C, then xi is on the margin border. It can be seen from the proof of the

first point. However, the reverse of this proposition is not always true. We can state

that, if xi is on the correct margin border, then 0 ≤ µi ≤ C. We can briefly prove it

in the following. The condition, that xi is on the correct margin border, is equivalent

to 1− zT
i w − byi = 0. This implies that ξi = 0. From its complementarity condition,

we have ηi ≥ 0. From condition µi = C − ηi, we thus have 0 ≤ µi ≤ C. Please note

that, we do not treat the point with zero multiplier as a support vector.

3. If xi is at the side, where −yiw is pointing, of the corresponding margin border, then

µi = C. However, the reverse is not always true. If µi = C, then xi is either on or at

the side, where −yiw is pointing, of its correct margin border.

2.4 ν-SVM: Another l2-Regularized Hinge-Loss Linear Model

Suppose that x is a point located on its correct border of the margin. Its corresponding

value of f(x) can be written as yρ (where ρ ≥ 0 and y ∈ {−1,+1} is the class label of x),

then the margin between positive and negative margin borders becomes 2ρ
‖w‖2 . In C-SVM,

ρ is fixed by 1, and the margin in C-SVM is controlled by parameter C. Alternatively, it

can be controlled by adjusting the coefficient of ρ as in ν-SVM [157]. The primal form of

ν-SVM can be formulated as below:

min
w,b,ρ,ξ

1

2
‖w‖22 − C0νρ+CTξ (B.42)

s.t. ZTw + by ≥ ρ1− ξ

ξ ≥ 0

ρ ≥ 0,
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where C0 and ν are pre-specified parameters, and C is a column vector that takes instant

value C = C0
n (we shall show that C0 can be simply set to 1 later). Z is the sign-changed

training set as in C-SVM. From the above equation, the corresponding Lagrange function

is

L(w, b, ρ, ξ,µ,η, δ) =
1

2
‖w‖22 − C0νρ+CTξ + µT(ρ1− ξ −ZTw − by)− ηTξ − δρ.

(B.43)

The corresponding KKT conditions are

∂L
∂w = wT − µTZT = 0T ⇔ w = Zµ

∂L
∂b = −µTy = 0⇔ µTy = 0

∂L
∂ξ = CT − µT − ηT = 0T ⇔ C − µ− η = 0

∂L
∂ρ = 1Tµ− C0ν − δ = 0

µ ∗ (ρ1− ξ −ZTw − by) = 0

η ∗ ξ = 0

δ ∗ ρ = 0

µ ≥ 0

η ≥ 0

ρ1− ξ −ZTw − by ≤ 0

ξ ≥ 0

ρ ≥ 0

. (B.44)

Thus, the dual function is

g(µ,η, δ) = inf
w,b,ξ

L(w, b, ξ,µ,η) = −1

2
µTZTZµ. (B.45)

And the dual form is

min
µ
g(µ) =

1

2
µTZTZµ (B.46)

s.t. yTµ = 0

1Tµ ≥ C0ν

0 ≤ µ ≤ C.
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Once we obtain the solution to the dual form, we can obtain the optimal solution to w

of the primal form according to the KKT condition: w = ZSµS where S is the set of indices

of nonzero multipliers. However, we can not use the same way as C-SVM to compute the

bias b, because the points on the margin satisfy yi(x
T
i w + b) = ρ where ρ is also unknown.

We can use the following trick, proposed in [157], to solve it. First, we find s positive points,

denoted by X+ (which are on the positive border) and s negative points, denoted by X−

(which are on the negative border). Then we have

XT
+w + b1 = ρ = −XT

−w − b1. (B.47)

Therefore we can obtain the optimal bias:

b = −1

2
mean((X+ +X−)Tw) = −1

2
mean((X+ +X−)TXS(yS ∗ µS)). (B.48)

The linear function in the decision function is

f(x) = wTx+ b = xTXS(yS ∗ µS)− 1

2
mean((X+ +X−)TXS(yS ∗ µS)). (B.49)

From the KKT conditions, the ν-SVM has the following properties:

1. From the dual form, one can see that the objective is homogeneous, scaling the variable

µ would not change the decision function. Therefore, one can simply set C0 = 1. The

last two constraints are 1Tµ ≥ ν and 0 ≤ µ ≤ 1
n

then.

2. An error is defined as the training sample that resides on the wrong side of its margin

border. If ρ > 0, then ν is an upper bound on the fraction of errors. That is ν ≥ ne
n ,

where ne is the number of errors. It is briefly proven in the following. Because ρ > 0

and δρ = 0, therefore δ = 0. Because 1Tµ−ν−δ = 0, therefore ν = 1Tµ. Because the

upper-bound is 1
n , therefore ν = 1Tµ ≥ nC

n , where nC is the number of upper-bounded

multipliers. Because nC ≥ ne, we therefore have ν = 1Tµ ≥ nC
n ≥

ne
n .

3. The support vectors are defined as the training samples corresponding to the non-zero

multipliers which correspond to the active constraints ρ1−ξS−ZT
Sw−byS = 0. That

is ZT
Sw + byS ≤ ρ1. Therefore, the support vectors are subset of training samples

either on the correct margin border or at its wrong side. If ρ > 0, then ν is a lower

bound on the fraction of support vectors. That is ν ≤ nS
n .

4. The range of ν is (0, 1), while the range of C in C-SVM is (0,+∞). Therefore, it is

more convenient in practice to use ν-SVM than C-SVM for model selection.
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5. The conclusions of C-SVM regarding the relations between multiplier and point po-

sition apply to ν-SVM as well.

2.5 l2-Regularized l1-Loss Linear Model

The l2-regularized l1-loss linear model can be applied to both classification and regression.

We only derive it for classification problem below. Its formulation for regression is similar

to the ε-SVR that will be derived in Section 2.6. Its primal form can be expressed as

min
w,b

1

2
‖w‖22 +CTξ (B.50)

s.t. ZTw + b ∗ y ≥ 1− ξ

ZTw + b ∗ y ≤ 1 + ξ

ξ ≥ 0,

where the constraint is equivalent to −ξ ≤ ZTw+ b∗y−1 ≤ ξ, that is |zT
i w+ byi−1| ≤ ξi

for ∀i = 1, · · · , n. Its Lagrange function is

L(w, b,µ1,µ2,η) =
1

2
‖w‖22 +CTξ + µT

1 (1− ξ −ZTw − b ∗ y) (B.51)

+ µT
2 (−1− ξ +ZTw + b ∗ y)− ηξ.
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Thus, the corresponding KKT conditions are

∂L
∂w = wT − (µ1 − µ2)TZT = 0⇔ w = Z(µ1 − µ2)

∂L
∂b = yT(µ1 − µ2) = 0

∂L
∂ξ = CT − µT

1 − µT
2 − ηT = 0⇔ µ1 + µ2 = C − η

µ1 ∗ (1− ξ −ZTw − b ∗ y) = 0

µ2 ∗ (−1− ξ +ZTw + b ∗ y) = 0

η ∗ ξ = 0

µ1 ≥ 0

µ2 ≥ 0

η ≥ 0

ZTw + b ∗ y ≥ 1− ξ

ZTw + b ∗ y ≤ 1 + ξ

ξ ≥ 0.

. (B.52)

Eliminating the primal variables in the Lagrange function using the KKT conditions, we

can obtain the dual function as below:

g(µ1,µ2) = −1

2
(µ1 − µ2)TZTZ(µ1 − µ2) + 1T(µ1 − µ2). (B.53)

Thus, the dual form is

min
µ1,µ2

1

2
(µ1 − µ2)TZTZ(µ1 − µ2)− 1T(µ1 − µ2) (B.54)

s.t. yT(µ1 − µ2) = 0

µ1 + µ2 ≤ C

µ1,µ2 ≥ 0.

We can see that, this is also a constrained QP problem. According to our discussion at end

of this subsection, we can define S = {∀i = 1, · · · , n, µ1i − µ2i 6= 0} to be the set of indices

of the support vectors, and B = {∀i = 1, · · · , n, µ1i + µ2i < C} to be the set of indices of

the points residing on the corresponding margin borders. Then, the normal vector can be
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expressed as

w = X(y ∗ (µ2 − µ1))

= XS(yS ∗ (µ2 − µ1)S). (B.55)

And the bias b can be computed as

b = mean(yB −XT
Bw)

= mean(yB −XT
BXS(yS ∗ (µ2 − µ1)S). (B.56)

Thus, this linear model can be written as

f(x) = xTw + b

= xTXS(yS ∗ (µ2 − µ1)S) + mean(yB −XT
BXS(yS ∗ (µ2 − µ1)S). (B.57)

We can see that this model requires only inner products of samples, rather than the original

samples. Therefore, it can be extended to kernel version by replacing these inner products

by kernel matrices.

The followings are the geometric interpretation of the Lagrange multipliers of this prob-

lem.

1. If µ1i, µ2i > 0 and µ1i + µ2i < C, then xi is on its corresponding margin border

wTx+ b = yi. We can prove it in the following. From µ1i, µ2i > 0, we havezT
i w + byi = 1− ξi
zT
i w + byi = 1 + ξi

. (B.58)

From µ1i + µ2i < C and µ1i + µ2i = C − ηi, we have ηi > 0. From ηiξi = 0, we then

have ξi = 0. Thus zT
i w+ byi = 1, that is xT

i w+ b = yi. So xi is on its corresponding

margin border.

2. If µ1i = µ2i = 0, thus from the KKT condition µ1i + µ2i = C − ηi, thus ηi = C. From

ηiξi = 0, we have ξi = 0. Thus, xi resides on its corresponding margin border.

3. If µ1i = 0 and µ2i > 0, then xi is either on or at the side, where yiw is pointing, of
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its corresponding margin border. From µ1i = 0 and µ2i > 0, we havezT
i w + byi ≥ 1− ξi
zT
i w + byi = 1 + ξi

. (B.59)

Then zT
i w + byi = 1 + ξi, that is xT

i w + b = yi + yiξi. If yi = 1, then xi is either on

or at the side, where w is pointing, of xT
i w + b = 1. Similarly, if yi = −1, then xi is

either on or at the side, where −w is pointing, of xT
i w + b = −1.

4. If µ1i = 0 and 0 < µ2i < C, then ηi > 0, thus ξi = 0. Therefore, we are sure that xi

is located on its corresponding margin border.

5. Similarly, if µ1i > 0 and µ2i = 0, then xi resides either on or at the side, where −yiw
is pointing, of its corresponding margin border. If 0 < µ1i < C and µ2i = 0, then xi

is located on its corresponding margin border.

6. From the above discussion, we can also know that if µ1i + µ2i < C, then xi is located

on its corresponding margin border. If xi is not on its corresponding margin border,

then µ1i + µ2i = C.

7. From the KKT condition w = Z(µ1 − µ2), it can be seen that the optimal normal

vector is a linear combination of the training samples. We call the points satisfying

µ1i − µ2i 6= 0 as support vectors. From the above discussion, we find that the support

vectors can locate anywhere of the space.

8. Unlike the linear model using hinge-loss, only the points that reside exactly on their

corresponding hyperplane (xT
i w + b = yi) are not penalized when using l1-loss.

9. We will show, below, that the l1-loss is a special case of the ε-insensitive loss for

regression problems.

2.6 ε-SVR: l2-Regularized ε-Insensitive-Loss Linear Model

From Equation (B.2), we can find that the l1-loss is a specific form of ε-insensitive loss

by setting ε = 0. Using ε-insensitive loss, one can obtain the sparse linear models for

regression, coined ε-support vector regression (ε-SVR) [250]. Suppose the loss function is

the ε-insensitive loss function

l(f,x, y) = |y − f(x)|ε = max{0, |y − f(x)| − ε}, (B.60)
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then the l2-regularized linear model is formulated as

min
w,b

1

2
‖w‖22 +

C0

n

n∑
i=1

max{0, |yi −wTxi − b| − ε}. (B.61)

We treat the constant C0
n by one symbol C0

n = C, then we have

min
w,b

1

2
‖w‖22 + C

n∑
i=1

max{0, |yi −wTxi − b| − ε}. (B.62)

The loss term is non-smooth (indifferentiable). We can transform the above equation

to the equivalent form which is smooth:

min
w,b,ξ1,ξ2

1

2
‖w‖22 +CT(ξ1 + ξ2) (B.63)

s. t. XTw + b− y ≤ ε+ ξ1

y −XTw − b ≤ ε+ ξ2

ξ1 ≥ 0

ξ2 ≥ 0.

Its Lagrange function is

L(w, b, ξ1, ξ2,µ1,µ2,η1,η2) =
1

2
‖w‖22 +CT(ξ1 + ξ2)

+ µT
1 (XTw + b1− y − ε1− ξ1)

+ µT
2 (y −XTw − b1− ε1− ξ2)

− ηT
1 ξ1 − ηT

2 ξ2. (B.64)
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The corresponding KKT conditions are

w = X(µ2 − µ1)

1T(µ1 − µ2) = 0

C − µ1 − η1 = 0

C − µ2 − η2 = 0

µ1 ∗ (XTw + b1− y − ε1− ξ1) = 0

µ2 ∗ (y −XTw − b1− ε1− ξ2) = 0

η1 ∗ ξ1 = 0

η2 ∗ ξ2 = 0

µ1 ≥ 0

µ2 ≥ 0

η1 ≥ 0

η2 ≥ 0

XTw + b1− y − ε1− ξ1 ≤ 0

y −XTw − b1− ε1− ξ2 ≤ 0

ξ1 ≥ 0

ξ2 ≥ 0

. (B.65)

Therefore, the dual form is

min
µ1,µ2

1

2
(µ1 − µ2)TXTX(µ1 − µ2)− yT(µ1 − µ2)− εT(µ1 + µ2) (B.66)

s.t. 1T(µ1 − µ2) = 0

0 ≤ µ1 ≤ C

0 ≤ µ2 ≤ C.

After obtaining the dual solution µ1,µ2, the normal vector w can be computed using the

KKT condition: w = X(µ2 − µ1). From the remarks at the end of this subsection, we

know that, if 0 < µ1i < C or 0 < µ2i < C, then xi resides on the lower or upper border.

If µ1i > 0 or µ2i > 0, then xi reside either on the border or outside the slab, and is a

support vector. Define B as the set of indices that satisfy 0 < µ1i < C or 0 < µ2i < C:

B = {i|∀i = 1, · · · , n, 0 < µ1i < C∨0 < µ2i < C}. Define S as the set of indices that satisfy
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µ1i > 0 or µ2i > 0: S = {i|∀i = 1, · · · , n, µ1i > 0 ∨ µ2i > 0}. Then, the normal vector can

be expressed as

w = X(µ2 − µ1)

= XS(µ2 − µ1)S . (B.67)

And the bias b can be computed as

b = mean(yB −XT
Bw)

= mean(yB −XT
BXS(µ2 − µ1)S). (B.68)

Thus, this linear model can be written as

f(x) = xTw + b

= xTXS(µ2 − µ1)S + mean(yB −XT
BXS(µ2 − µ1)S). (B.69)

We can see that the ε-SVR model requires inner products of samples. Therefore, it can be

extended to kernel version by replacing these inner products by kernel matrices.

We have the following remarks on ε-SVR:

1. The second term of the primal objective can be rewritten as C‖ξ1 + ξ2‖1. Therefore

we can see that the slack variables should be sparse.

2. If µ1i > 0, then xi is either on or underneath the lower border. This is because, from

µ1i > 0, we know xT
i w + b − yi = ε + ξ1i, that is yi = f(xi) − ε − ξ1i ≤ f(xi) − ε.

Recall that, in the context of regression, the margin is called tube or slab, and the

borders of the slab are called upper and lower borders.

3. Similarly, if µ2i > 0, then xi is either on or above the upper border.

4. If µ1i = 0, then xi is either on or above the lower border. From µ1i = 0, we have

xT
i w+b−yi ≤ ε+ξ1i. From C−µ1i−η1i = 0, we have η1i = C, we then have ξ1i = 0.

Therefore yi ≥ f(xi)− ε. Thus, xi is on or above the lower border.

5. Similarly, if µ2i = 0, then xi is either on or under the upper border.

6. If µ1i = µ2i = 0, then xi is either on the borders or inside the slab.

7. If µ1i > 0 and µ2i = 0, then xi is either on or below the lower border.
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8. If µ1i = 0 and µ2i > 0, then xi is either on or above the upper border.

9. For all i, µ1iµ2i = 0 must be satisfied. That is, either µ1i or µ2i must be zero. We can

conduct proof by contradiction. Suppose µ1i > 0 and µ2i > 0, then xi is on-or-under

the lower border and on-or-above the upper border. This is impossible. It can also be

proven as follows. If xi is outside the upper border, then ξ2i = yi − xT
i w− b− ε > 0,

then η2i = 0, then µ2i = C. Meanwhile, xT
i w + b − yi − ε − ξ1i < 0 (ξ1i = 0 due to

the objective), then µ1i = 0 (because of the complementary condition). If xi is on

the upper border, then ξ2i = 0, then η2i ≥ 0, then 0 < µ2i ≤ C, and µ1i = 0. If xi

is inside the slab, then µ1i = µ2i = 0. If xi is on the lower border, then µ2i = 0 and

0 < µ1i ≤ C. If xi is below the lower border, then µ2i = 0 and µ1i = C.

10. Because of w = X(µ2 − µ1), the training samples corresponding to nonzero µ1 or

µ2 are called support vectors. If a sample xi is a support vector, then from the

complementary condition, it satisfies either yi = xT
i w+ b− ε− ξ1i or yi = xT

i w+ b+

ε+ ξ2i. Therefore, support vectors consist of points that are either on or outside the

tube.

11. If a point is outside a slab, then the corresponding multiplier equals C. If it is on a

border, then the corresponding multiplier is in the range (0, C]. If it is inside the slab,

then the corresponding multiplier is zero. The KKT conditions C −µ1 − η1 = 0 and

C−µ2−η2 = 0 are important to tell us the relation between the Lagrange multipliers

and the slack variables. We can obtain the following relations. µ1(2)i = C ⇔ η1(2)i = 0

⇔ ξ1(2)i ≥ 0. From ξ1(2)i > 0 ⇒ η1(2)i = 0 ⇒ µ1(2)i = C. Therefore we can state that

a nonzero slack variable implies that the corresponding multiplier µ takes the upper

bound. However, the number of upper-bounded multipliers is greater than or equal

to the number of errors, where an error is defined as a training sample that resides

outside the tube.

2.7 ν-SVR: Another l2-Regularized ε-Insensitive-Loss Linear Model

The radius of the tube is ε which is pre-specified a priori in ε-SVR. However, its proper value

is unknown. ν-SVR [251] can minimize ε and therefore has the advantage of controlling

error. It turns out ν-SVR with objective: 1
2‖w‖

2
2 + C0(νε+ ( 1

n)T(ξ1 + ξ2)).
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We let C = {C0
n }

n. The ν-SVR is formulated as below:

min
w,b,ε,ξ1,ξ2

1

2
‖w‖22 + C0νε+CT(ξ1 + ξ2) (B.70)

s. t. XTw + b− y ≤ ε+ ξ1

y −XTw − b ≤ ε+ ξ2

ξ1 ≥ 0

ξ2 ≥ 0

ε ≥ 0.

By introducing Lagrange multipliers, we can obtain the corresponding Lagrange function:

L(w, b, ε, ξ1, ξ2,µ1,µ2,η1,η2, β) =
1

2
‖w‖22 + C0νε+CT(ξ1 + ξ2)

+ µT
1 (XTw + b1− y − ε1− ξ1)

+ µT
2 (y −XTw − b1− ε1− ξ2)

− ηT
1 ξ1 − ηT

2 ξ2

− βε. (B.71)
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Then, the KKT conditions can be obtained:

w = X(µ2 − µ1)

1T(µ1 − µ2) = 0

C0ν − 1T(µ1 + µ2)− β = 0

C − µ1 − η1 = 0

C − µ2 − η2 = 0

µ1 ∗ (XTw + b1− y − ε1− ξ1) = 0

µ2 ∗ (y −XTw − b1− ε1− ξ2) = 0

η1 ∗ ξ1 = 0

η2 ∗ ξ2 = 0

βε = 0

µ1 ≥ 0

µ2 ≥ 0

η1 ≥ 0

η2 ≥ 0

β ≥ 0

XTw + b1− y − ε1− ξ1 ≤ 0

y −XTw − b1− ε1− ξ2 ≤ 0

ξ1 ≥ 0

ξ2 ≥ 0

ε ≥ 0

. (B.72)

Thus, we can obtain the dual form as below:

min
µ1,µ2

1

2
(µ1 − µ2)TXTX(µ1 − µ2)− yT(µ1 − µ2) (B.73)

s.t. 1T(µ1 − µ2) = 0

0 ≤ µ1 ≤ C

0 ≤ µ2 ≤ C

1T(µ1 + µ2) ≤ C0ν.
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The way of computing the optimal primal variables w and b is the same as in ε-SVR.

In addition to the properties of ε-SVR, ν-SVR has the following extra properties.

1. If ν > 1, then ε = 0. This can be proven as follows. Because µ1 ≤ C01
n , we have

1Tµ1 ≤ C0, that is C0 − 1Tµ1 ≥ 0. If ν > 1, then C0ν − 1Tµ1 > 0. Because the

KKT condition C0ν−1T(µ1 +µ2)−β = 0, therefore β > 0. From the complementary

condition, we thus have ε = 0.

2. If ν > 0, ν is an upper bound of the fraction of errors. Suppose the number of

error is ne, the number of upper-bounded multipliers is nC . Because of the condition

1T(µ1 + µ2) ≤ C0ν, nC ≤ νn. Because ne ≤ nC ≤ νn, therefore ne
n ≤ ν.

3. If ν > 0, ν is a lower bound of the fraction of support vectors. Suppose the number of

support vectors is nS . Because ν > 0, therefore β = 0. Then we have 1T(µ1 + µ2) =

C0ν. If the multipliers of all support vectors are upper-bounded, then nS
C0
n = C0ν,

that is nS = νn. Here, we use the property that either µ1i or µ2i must be zero. The

multipliers of all support vectors are not necessarily upper-bounded, thus therefore

nS ≥ νn, that is nS
n ≥ ν.

2.8 l2-Regularized Squared-Loss Linear Model

The squared loss can be applied in both classification and regression. The advantage of this

loss function over those investigated above is its differentiability. However, we shall see that

its disadvantage is that its formulation cannot be kernelized.

The primal form of considering the bias is

min
w,b

q(w, b) =
1

2C
‖w‖22+

1

2
‖y −XTw − b‖22. (B.74)

The above function can be rewritten as

q(w, b) =
1

2C
wTw +

1

2
wTXXTw + b1TXTw − yTXTw +

n

2
b2 − b1Ty + constant.

(B.75)

From the first-order optimality condition, we can have(XXT + 1
C I)w = X(y − b)

b = 1T(y−XTw)
n

. (B.76)
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In the above Equation, by substituting the second condition in the the righthand side the

first condition, we have

X(y − b) = X(y − 1T(y −XTw)

n
)

= X(y − 1T

n
y +

1T

n
XTw)

=
1

n
X(ny −Ey) +

1

n
XEXTw, (B.77)

where E = {1}n×n. Therefore, we have (XXT + 1
C I)w = 1

nX(ny − Ey) + 1
nXEX

Tw,

that is

w = (XXT +
1

C
I − 1

n
XEXT)-1X(y − 1

n
Ey). (B.78)

After obtainingw, we can compute the bias b using the second condition in Equation (B.76).

We have the following remarks regarding this model.

1. If we ignore the bias b, the problem expressed in Equation (B.74) is reduced to ridge

regression. Then the solution becomes w = (XXT + 1
C I)-1Xy.

2. From Equation (B.78), it can be seen that w can be solved by a closed-form equation.

3. However, w can not be represented by a function of inner products of the samples.

Thus, this model can not be kernelized. Nevertheless, an explicit mapping function

φ(x) can be used to project the samples from the input space to a high-dimensional

feature space, where Equation (B.78) is solved explicitly.

4. The problem in Equation (B.74) is equivalent to

min
w,b,ξ

=
1

2C
‖w‖22 +

1

2
‖ξ‖22 (B.79)

s.t. y −XTw − b1− ξ = 0.

From the KKT conditions of this formulation, we can easily obtain that w = CXµ

(where µ is the vector of Lagrange multipliers), that is w is a linear combination

of the training samples. From Equation (B.78), we can see that the computation of

w involves all training samples. Thus, w is not a sparse linear combination of the

training samples. Thus, this model is not a sparse model. Unlike the hinge loss,

l1-loss, and ε-insensitive loss, the squared loss (l2-loss) does not induce sparse error ξ.
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2.9 l2-Regularized Logistic-Loss Linear Model

In addition to the squared loss, the logistic-loss is also differentiable. It can be applied to

classification. The optimization of the model can be formulated as

min
w,b

f(w, b) =
1

2C
‖w‖22 + C

n∑
i=1

log(1 + e−z
T
i w−yib). (B.80)

The partial derivative with respect to w is

∂f

∂w
= wT + C

n∑
i=1

[
e−z

T
i w−yib

1 + e−z
T
i w−yib

(−zT
i )]

= wT − CpTZT, (B.81)

where p is defined as pi = 1

1+ez
T
i
w+yib

. The partial derivative with respect to b is defined as

∂f

∂b
= C

n∑
i=1

[
e−z

T
i w−yib

1 + e−z
T
i w−yib

(−yi)]

= −CpTy. (B.82)

Therefore, the partial derivative with respect to [w, b]T is

∂f

∂[w; b]
=
[
∂f
∂w ,

∂f
∂b

]
=
[
wT − CpTZT,−CpTy

]
(B.83)

The second derivative with respect to [w, b]T can be written as

∂2f

∂[w; b]2
=

[
∂2f
∂w2 ,

∂2f
∂b∂w

∂2f
∂w∂b ,

∂2f
∂b2

]
=

[
I +ZQZT (y ∗ q)TZT

Z(y ∗ q) CmTq

]
, (B.84)

where Q = diag(q), and q is defined as qi = ez
T
i w+yib

(1+ez
T
i
w+yib)2

, and m = y ∗ y. The chain rules

of derivative, ∂p
∂w = −QZT, and ∂p

∂b = −q ∗ y are used to derive the above equation. Once

knowing the gradient and Hessian, we can resort to many numerical optimization methods

to obtain the optimal solution of w and b.
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2.10 Hypersphere One-Class SVM

The one-class classification problem is to identify outliers or novelties given limited number

of training points. One-class SVM is an implementation of Vapnik’s principle stating that

we need to avoid solving more general problem than what is actually needed [243]. Instead

of estimating the distribution of the data, one-class SVM simply estimates the boundary of

the distribution which captures the main mass of the data. For this reason, one-class SVM

is also called support vector domain description (SVDD) [154]. The border of the domain

is defined by a non-negative linear combination of the outliers. SVDD finds the support

of a multivariate distribution, where the support means the set of support vectors lying on

and outside a desired boundary. Models differ in the shapes of the border. Tax and Duin

treated it as a hypersphere [154]. And Schölkopf et al. treated it as a hyperplane [252].

Though looking quite different in primal form, they are equivalent under a weak condition,

which can be seen in dual form. Both methods are introduced in this and the next sections.

The main idea of the hypersphere based SVDD, proposed by Tax and Duin [154], is

in the following. Data points are implicitly mapped to a higher-dimensional feature space,

where a hypersphere is learned such that its volume is as small as possible while keeps the

core mass of the data. A hypersphere is defined by its center and (squared) radius. The

hyperspheres in 1, 2, and 3-dimensional spaces are closed line, circle, and ball, respectively.

An indicator function is learned such that the data points inside are positive (core data

points), and these outside are negative (outliers).

This idea can be formulated, in primal form, as follows.

min
R,ξ,ν

CTξ + νR (B.85)

s.t. ‖φ(xi)− c‖22 ≤ R+ ξi, i = 1, · · · , n

ξ ≥ 0

R > 0.

where c is the center of the hypersphere, R is its squared radius, ξi is a slack variable
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representing error, and vector C is constant with Ci = 1
n . The Lagrange function is

L(R, ξ, c,µ,η, δ)

= CTξ + νR+
n∑
i=1

µi(‖φ(xi)− c‖22 −R− ξi)− ηTξ − δR

= CTξ + νR+
n∑
i=1

µi
(
φT(xi)φ(xi)− 2φT(xi)c+ cTc−R− ξi

)
− ηTξ − δR

= CTξ + νR+ kTµ− 2(φ(X)µ)Tc+ scTc− µTR− µTξ − ηTξ − δR, (B.86)

where k = diag(φ(X)Tφ(X)), and s = 1Tµ. Then, the KKT conditions are

ν − 1Tµ− δ = 0

C − µ− η = 0

−φ(X)µ+ sc = 0

µi(‖φ(xi)− c‖22 −R− ξi) = 0

η ∗ ξ = 0

δR = 0

µ ≥ 0

η ≥ 0

δ ≥ 0

‖φ(xi)− c‖22 −R− ξi ≤ 0

ξi ≥ 0

R > 0

. (B.87)

The dual form becomes

min
µ

1

2
µTKµ− ν

2
kTµ (B.88)

s.t. 1Tµ = ν

0 ≤ µ ≤ C.

where K = φ(X)Tφ(X), and k = diag(K).

We denote S = {i|µi > 0, i = 1, · · · , n} as the set of indices of nonzero multipliers which

correspond to points on or outside the border. From the KKT conditions, we know that the
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centroid of the hypersphere is a sparse non-negative linear combination of the training data

points, that is c = 1
sφ(X)µ = 1

νφ(X)SµS . We define B = {i|0 < µi < C, i = 1, · · · , n} as

the subset of indices of points on the hypersphere. Then we can obtain R by the following

formula:

R =
1

|B|
∑
b∈B
‖φ(x)b − c‖22 =

1

|B|

(
trace(KB)− 2

ν
sum(φ(X)T

Bφ(X)SµS)
)

+
1

ν2
µT
SKSµS

(B.89)

The decision function is the following indicator function:

d(x) = sign[f(x)], (B.90)

where f(x) is defined as below:

f(x) = R− ‖φ(x)− c‖22
= R−

(
φT(x)φ(x)− 2φT(x)c+ cTc

)
= R−

(
φT(x)φ(x)− 2

ν
φT(x)φ(X)µ+

1

ν2
µTKµ

)
= R−

(
φT(x)φ(x)− 2

ν
φT(x)φ(X)SµS +

1

ν2
µT
SKSµS

)
. (B.91)

From the KKT conditions, we can obtain the following important properties.

1. If µi > 0, the data point xi resides either on or outside of the hypersphere. Such

xi corresponding to µi > 0 is called a support vector. (We only call the points

corresponding nonzero multipliers support vectors. From next point, we know that if

xi is on the hypersphere, then it is possible that µi = 0.) Let’s prove it in the following.

Suppose µi > 0. From complementarity condition µi(‖φ(xi)− c‖22 − R − ξi) = 0, we

have ‖φ(xi)−c‖22−R−ξi = 0. From KKT condition C−µi−ηi = 0, we know ηi ≥ 0.

If 0 < µi < C, then ηi > 0, then from complementarity condition ηiξi = 0, we have

ξi = 0. Therefore ‖φ(xi)− c‖22 = R, that is xi is on the hypersphere. If µi = C, then

ξi ≥ 0, thus ‖φ(xi)− c‖22 ≥ R. Thus, xi is on or outside the hypersphere if µi = C.

2. If 0 < µi < C, then data point xi is on the hypersphere. However, the reverse is not

true. We can only state that, if data point xi is on the hypersphere, then 0 ≤ µi ≤ C.

We can see this in the following. If xi is on the hypersphere, then ‖φ(xi)−c‖22−R = 0.

From ‖φ(xi)− c‖22−R− ξi = 0, we have ξi = 0. From ηiξi = 0, we have ηi ≥ 0. From

ηi = C − µi, we have 0 ≤ µi ≤ C. From µi(‖φ(xi)− c‖22 −R− ξi) = 0, we know that
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it is possible that µi = 0.

3. If xi resides outside of the hypersphere, then µi = C. xi is called an outlier. However,

from the above, we can see that the reverse is not true.

4. As in the two-class ν-SVM, ν is a lower bound of the fraction of support vectors, and

an upper bound of the fraction of outliers. That is ne
n ≤ ν ≤

nS
n .

2.11 Hyperplane One-Class SVM

Schölkopf et al. propose to find a hyperplane rather than a hypersphere in the higher-

dimensional feature space [252]. The hyperplane is defined as f(x) = wTφ(x)− b (b ≥ 0).

The indicator function g(x) = sign[f(x)] takes +1 for a small region that captures most of

the data, and −1 elsewhere. Because the distance from the origin to the hyperplane is −bw ,

therefore minimizing the negative distance is equivalent to maximizing the absolute distance

(That is maximizing the margin). The objective task is therefore to minimize 1
2‖w‖

2
2− b as

well as the loss.

It can be formulated as below:

min
w,b,ξ

1

2
‖w‖22 +CTξ − νb (B.92)

s.t.φ(X)Tw − b1 + ξ ≥ 0

ξ ≥ 0

b > 0,

where C is a constant vector with elements equal to 1
n . The Lagrange function is

L(w, b, ξ,µ,η, δ) =
1

2
‖w‖22 +CTξ − νb− µT(φ(X)Tw − b1 + ξ)− ηTξ − δb. (B.93)
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The KKT conditions are 

w = φ(X)µ

1Tµ = ν + δ

C − µ− η = 0

µ ∗ (φ(X)Tw − b1 + ξ) = 0

η ∗ ξ = 0

δb = 0

µ ≥ 0

η ≥ 0

δ ≥ 0

φ(X)Tw − b1 + ξ ≥ 0

ξ ≥ 0

b > 0.

(B.94)

We can express the dual form as

min
µ

1

2
µTKµ (B.95)

s.t. 1Tµ = ν

0 ≤ µ ≤ C.

The decision function is thus

g(φ(x)) = sign[wTφ(x)− b] = sign[µT
Sφ(XS)Tφ(x)− b], (B.96)

where S is the set of indices of nonzero multipliers. In order to compute b, we need to find

data points on the boundary. If 0 < µi < C, then data point xi is on the bound and has

f(xi) = 0. Therefore, we can find a set B that includes indices satisfying 0 < µi < C.

Then, we compute b as

b = mean(XT
BXSµS). (B.97)

The hyperplane based one-class SVM has the following important characteristics:

1. The relations between multiplier and position in hypersphere-based SVDD also apply
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to this hyperplane-based SVDD.

2. As in the two-class SVM, it can be proven that ν is an upper bound of the fraction

of outliers, and a lower bound of the fraction of support vectors, that is ne
n ≤ ν ≤

nS
n .

3. ν equals ne
n and nS

n asymptotically with probability 1.

4. From the dual forms of both hypersphere and hyperplane formulations, we can see

that the hypersphere formulation is equivalent to the hyperplane formulation in the

case of constant K(x,x) because the linear term in the objective becomes constant.

3 A Review on Linear-Model Based Feature Selection

The sparse linear models can also be applied to select discriminative features. In this

section, we review two main techniques. Both are based on the values of the weight vector

w.

3.1 l1-norm SVM: l1-Regularized Hinge-Loss Linear Model

l1-norm SVM [129] is the maximum-margin classifier that uses l1-norm regularization and

hinge loss. It can be applied to simultaneous classification and variable selection. By virtue

of the l1-norm, the weight vector w becomes sparse. The basic idea is to select the features

corresponding to non-negative weights. Essentially, this idea stems from LASSO [16].

The formulation of l1-norm SVM is

min
w,b,ξ
‖w‖1 + C‖ξ‖1 (B.98)

s.t. ZTw + by ≥ 1− ξ

ξ ≥ 0.

The first term in the objective is not differentiable. The second term is differentiable

due to its non-negative constraint. w can be decomposed by w = w+ −w− where w+ is

defined as w+i = wi if wi ≥ 0, w+i = 0 otherwise. And w− is defined as w−i = −wi if wi ≤
0, w−i = 0 otherwise. Similarly b can be decomposed by b = b+ − b−, where b+, b− ≥ 0.
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The optimization is then equivalent to

min
w+,w−,b+,b−,ξ

1Tw+ + 1Tw− +CTξ (B.99)

s.t. ZT(w+ −w−) + (b+ − b−)y ≥ 1− ξ

w+ ≥ 0

w− ≥ 0

b+, b− ≥ 0

ξ ≥ 0.

We can rewrite it into standard form:

min
w+,w−,b+,b−,ξ

[1; 1; δ, δ,C]T


w+

w−

b+

b−

ξ

 (B.100)

s.t. [−ZT,ZT,−y,y,−I]


w+

w−

b+

b−

ξ

 ≤ −1

w+ ≥ 0,w− ≥ 0

b+, b− ≥ 0

ξ ≥ 0,

where δ is a very small positive constant, e.g. 10−10, to avoid numeric error. We can find

that the optimization is a large-scale linear programming (LP) problem.

After obtaining the sparse w, we can take only the features corresponding to non-zeros.

Let’s define V = {i|wi 6= 0} being indices of non-zeros weights, the linear function can be

written as

f(x) = xT
VwV + b. (B.101)
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3.2 SVM-Recursive Feature Elimination 1

In bioinformatics, support vector machine recursive feature elimination (SVM-RFE) is a

successful method for gene selection [127, 51]. SVM-RFE only uses support vectors to rank

features, which is an idea of combining sample selection in feature selection because SVM-

RFE selects the boundary samples simultaneously. (There are also some other ideas that

prototypic samples are selected. Interested reader are referred to [51] for a concise review

of sample selection and [130] from another viewpoint.)

SVM-RFE can be viewed as both feature ranking method and feature subset selection

method. Taking Algorithm B.1 in gene selection for example, if the first step (backward

search) is only used to sort genes, it is a ranking method; whereas if it involves forward

search after backward search to include the sorted genes one by one until the classification

performance degenerates, then it is a gene subset selection method. SVM-RFE does not fix

the size of gene subset. Mundra and Rajapakse combined the minimum Redundancy Max-

imum Relevance Feature Selection (mRMR) measure with SVM-RFE (SVM-RFE-mRMR)

[253], and reported better accuracy than the original mRMR and SVM-RFE methods.

SVM-RFE may have two issues in practice. First, if the current best validation ac-

curacy in the validation step meets 1, SVM-RFE may continue adding features in the

subset until the current validation accuracy is less than 1. For instance, the sequence of

the best validation accuracy is [0.6, 0.8, 1, 1, 1, 0.9] and the sorted features in ascent order is

[· · · , g8, g3, g10, g2, g9, g6], SVM-RFE may return [g6, g9, g2, g10, g3], but the algorithm should

terminate at the third iterations and return [g6, g9, g2]. Second, if the current best validation

accuracy is less than 1, and this is unchanged until the current validation accuracy is less

than it. SVM-RFE may keep adding features before this. Let us use the above example.

If we change 1 to 0.95, similarly SVM-RFE may return [g6, g9, g2, g10, g3]. Moreover, since

SVM-RFE uses a variant of backward search, if the number of features is very large, it is

too computationally expensive to apply in practice. We revised the SVM-RFE method to

solve these weaknesses. [127] and [253] only described the feature ranking step, which is

actually incomplete, we therefore append the validation step to find the optimal feature

subset. This turns out the complete SVM-RFE method as described in Algorithm B.1.

4 A Review on The Decomposition Methods for SVMs

As can be seen above that, the dual forms of many regularized linear models are constrained

QP problems. For a large number of training samples, solving the large-scale QP problems

1The content of this section is based on our publication [128].
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Algorithm B.1 Revised SVM-RFE Feature Subset Selection

Input: X, of size m(features)× n(samples), and the class labels y
Output: selected feature subset g, the best validation accuracy av,and list of survived

features f

Split X into training set Xtrace and validation set Xval;
May filter out the features over Xtrace, and get feature list f left;
Xtrace = Xtrace(f , :);
Xval = Xval(f , :);
——————gene ranking step——————
Given set of features s initially including all features;
Ranked set of features, r = {};
repeat

Train a linear SVM over Xtrace with feature set s;
Calculate the weight of each feature wi;
for each gene i ∈ s do

Compute ri = |wi|;
end for
Select the feature with smallest ranking score, i∗ = arg min {ri};
Update r = r ∪ {i∗}; s = s \ {i∗};

until all features are ranked
——————validation step——————
g = {};
Set the best validation accuracy av = 0;
for i=length(r) to 1 do
s = s ∪ {ri};
Train a linear SVM classifier over Xtrace;
Obtain the validation accuracy a through validating the classifier over Xval;
if av ≤ a then

if av < a then
g = s

end if
if av == 1 then

Break;
end if

else
Break;

end if
end for

is challenging. One idea of solving this issue is dividing one QP problem into smaller ones.

Well-known methods based on this idea include chunking method [254], decomposition
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method [255, 28] and sequential minimal optimization (SMO) method [256, 30]. The idea of

decomposition method is that only a few variables are selected to update, while keeping the

rest unchanged. The decomposition method usually makes use of the fact that the dual form

of a SVM is constrained by one equality and the inequalities are only boundary constraints.

SMO is a specific case of the decomposition method. In each iteration, it only selects the

minimal number of variables as free variables and fixes all other variables. In C-SVM and ν-

SVM, the minimal numbers of variables are two and three, respectively. Its advantages are

in the following. First, analytical solution can be obtained rather than invoking a numerical

QP solver. Second, it may not require matrix storage. In the following, we shall describe

the formulations of decomposition method for C-SVM, ν-SVM, and hypersphere-SVDD.

Their corresponding SMO methods are given in details.

4.1 Decomposition Method for C-SVM

First of all, we formulate the decomposition method for solving the dual form of the C-SVM

(Equation (B.39)). We define the kernel matrix as K = [kij = k(xi, φ(xj) = φ(xi)
Tφ(xj)],

and K̄ = [k̄ij = yiyjφ(xi)
Tφ(xj)], where k(·, ·) is an explicit kernel function, and φ(·) is

the corresponding implicit basis mapping function. We also assume the kernel function

is symmetric, that is k(xi, φ(xj) = k(xj , φ(xi). Let A be a working set containing the

variables to be updated, and P be a fixed set including the reminding variables. Then, the

decomposition of the objective of the dual form becomes

g(µA) = [µT
A,µ

T
P ]

[
K̄AA K̄AP

K̄PA K̄PP

][
µA

µP

]
− [1T

A,1
T
P ]

[
µA

µP

]
=

1

2
(µT

AK̄AAµA + 2µT
P K̄PAµA + µT

P K̄PPµP )− 1T
AµA − 1T

PµP

=
1

2
µT
AK̄AAµA + µT

P K̄PAµA − 1T
AµA + constant, (B.102)

where K̄AP is a submatrix of K̄ obtained via taking the rows corresponding to A and

columns corresponding to P . The equality constraint of Equation (B.39) can be decomposed

into

yT
AµA = −yT

PµP . (B.103)
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Thus, the reduced problem with respect to µA is

min
µA

g(µA) =
1

2
µT
AK̄AAµA + µT

P K̄PAµA − 1T
AµA (B.104)

s.t. yT
AµA = −yT

PµP

0 ≤ µA ≤ C.

The optimization of this decomposition method proceeds iteratively. In each iteration,

some variables are firstly selected to form A; and then a QP solver is invoked to solve

Equation (B.104) and update the variables µA. The implementations of the decomposition

method differ from the way of selecting working variables [257].

4.2 SMO Method for C-SVM

Our following derivation of the SMO method for C-SVM is based on Platt’s work [256, 30].

From the decomposed equality in Equation (B.103), one can find that the minimal number

of working variables should be two. This is because if there is only one working variable, the

value of this working variable can be obtained from the constraint without looking at the

objective. With loss of generality, we use the convention of [256] that representing the two

working variables by x1 and x2. We define kij = k(xi,xj) = (φ(xi))
Tφ(xj). The reduced

problem with two working variables can be expressed as

min
µ1,µ2

g(µ1, µ2) =
1

2
(k11µ

2
1 + 2y1y2k12µ1µ2 + k22µ

2
2) + v1µ1 + v2µ2 (B.105)

s.t. µ1 + µ2 = t

0 ≤ µ1, µ2 ≤ C,

where we denote vi = yi(yP ∗µP )TKPi−1 (where P contains the remaining n−2 variables

fixed), and t = −yT
PµP .

We do not want to compute vi directly, because it takes linear time. Instead, we can

compute it by using the previous value of the linear function u′i = f(xi), which takes

constant time. The previous value u′i can be decomposed as

u′i = w′
T
xi + b′ = (µ′ ∗ y)TK:,i + b = µ′1y1k1i + µ′2y2k2i + (µ′P ∗ yP )TKP,i + b, (B.106)

where w′ is the previous value of w, and similarly for the other variables, we use the prime
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symbol to denote the previous value of a variable. Therefore we have

(µ′P ∗ yP )TKP,i = u′i − µ′1y1k1i − µ′2y2k2i − b. (B.107)

Therefore

vi = yiu
′
i − y1yik1iµ

′
1 − y2yik2iµ

′
2 − yib− 1. (B.108)

Thus, we can represent v1 and v2 in constant time as follows

v1 = y1u
′
1 − y1y1k11µ

′
1 − y1y2k12µ

′
2 − y1b− 1, (B.109)

v2 = y2u
′
2 − y1y2k12µ

′
1 − y2y2k22µ

′
2 − y2b− 1. (B.110)

Similarly, we do not want to compute t directly, as it takes linear time, we can instead

compute it in constant time by using the previous values µ′1 and µ′2:

µ1 + y1y2µ2 = µ′1 + y1y2µ
′
2 = t. (B.111)

If the second derivative of the objective in Equation (B.105) along the line defined by

the equality is non-negative, then the problem has a minimum solution. In the general

decomposition method, the derivative of f(µA) with respect to µA is

∂f(µA)

µA
= µT

AK̄AA + µT
P K̄PA − 1T. (B.112)

Therefore, the first derivative of f(µA) along the direction d is

∂f(µA)

d
=
∂f(µA)

µA
d

= (µT
AK̄AA + µT

P K̄PA − 1T)d. (B.113)

The second derivative of f(µA) along the direction d is

∂f2(µA)

d2
=
∂ ∂f(µA)

∂d

∂µA
d

= dTK̄AAd. (B.114)
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For the two-variables case, d = [y2;−y1], therefore the second derivative of f([µ1, µ2]) along

the linear line defined by y1µ1 + y2µ2 = constant is k11 + k22 − 2k12.

Solve the Two-Variables Problem

In order to solve the problem (Equation (B.105)), we solve µ2 first, then µ1. We substitute

µ1 = t− y1y2µ2 in the objective:

g(µ2) =
1

2
(k11(t− y1y2µ2) + 2y1y2k12(t− y1y2µ2)µ2 + k22µ

2
2) + v1(t− y1y2µ2) + v2µ2.

(B.115)

µ1 = t− y1y2µ2 needs also to be substituted in the inequality constraints in order to let µ1

disappear in the constraints: 0 ≤ t− y1y2µ2 ≤ C

0 ≤ µ2 ≤ C
. (B.116)

If y1y2 = 1, we have 0 ≤ t− µ2 ≤ C

0 ≤ µ2 ≤ C
. (B.117)

That is t− C ≤ µ2 ≤ t

0 ≤ µ2 ≤ C
. (B.118)

That is

L = max(0, t− C), U = min(C, t), (B.119)

where t = µ′1 + µ′2. If y1y2 = −1, we have0 ≤ t+ µ2 ≤ C

0 ≤ µ2 ≤ C
. (B.120)

That is −t ≤ µ2 ≤ C − t

0 ≤ µ2 ≤ C
. (B.121)
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That is

L = max(0,−t), U = min(C,C − t), (B.122)

where t = µ′1 − µ′2. Therefore, the optimization with respect to µ2 is

min
µ2

g(µ2) =
1

2
(k11(t− y1y2µ2) + 2y1y2k12(t− y1y2µ2)µ2 + k22µ

2
2) + v1(t− y1y2µ2) + v2µ2

(B.123)

s.t. L ≤ µ2 ≤ U.

Taking derivative with respect to µ2, and letting it to be zero, we have

∂g(µ2)

µ2
= (k11 + k22 − 2k12)µ2 − y1y2k11t+ y1y2k12t− y1y2v1 + v2 = 0. (B.124)

Thus, we have the optimal µ2:

µ2 =
y1y2k11t− y1y2k12t+ y1y2v1 − v2

(k11 + k22 − 2k12)
. (B.125)

For further convenience, we substitute v1, v2, and t in it and obtain

µ2 = µ′2 +
y2((u′1 − y1)− (u′2 − y2))

(k11 + k22 − 2k12)
. (B.126)

Considering the constraint with respect to µ2, the clipped optimal solution is

µ2 =


U if µ2 ≥ U

µ2 if L < µ2 < U

L if µ2 ≤ L.

(B.127)

Using the equality constraint, we can obtain the solution to µ1:

µ1 = t− y1y2µ2 = µ′1 + y1y2(µ′2 − µ2), (B.128)

where µ1 satisfies 0 ≤ µ1 ≤ C.
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Update the Bias

After updating µ1 and µ2, the bias b should be updated accordingly. We know that there are

two common methods to compute the bias. The first method is to use b = yi −wTφ(xi) =

yi−Ki,:(µ ∗y) where the corresponding 0 < µi < C. The second method is more robust, it

compute the average bias of all support vectors corresponding to non-bounded multipliers.

Both methods takes linear time complexity. Alternatively, we can update b in constant time

by using the previous output. If 0 < µ1 < C, then the output of f(x) is expected to y1.

Therefore y1 = K1,:(µ ∗y) + b1. We know that u′1 = K1,:(µ
′ ∗y) + b′. Taking the difference

of both equations, we have y1 − u′1 = y1k11(µ1 − µ′1) + y2k12(µ2 − µ′2) + b1 − b′. Therefore

we have

b1 = y1 − u′1 + y1k11(µ′1 − µ1) + y2k12(µ′2 − µ2) + b′. (B.129)

Similarly, if 0 < µ2 < C, we have

b2 = y2 − u′2 + y1k21(µ′1 − µ1) + y2k22(µ′2 − µ2) + b′. (B.130)

If both µ1 and µ2 are at bound, that is either 0 or C, we need to discuss them in different

conditions. The rationale behind this is that the bias does not need to updated if they

are identical with their previous values. If the values of µ1 and µ2 result in L = U , then

we could also determine that µ1 = µ′1 and µ2 = µ′2, therefore there is no need to update

the bias. Furthermore, this situation should be avoided earlier when selecting two working

variables which violate the KKT condition. If both µ1 and µ2 are at bound and L 6= U ,

then any bias between b1 and b2 satisfies the KKT condition. This is because we need to

shift the fixed margin to let both points not sit outside it. Platt’s method is simply choose

the half way. We summarize the updates of b under different situations in Table B.1.

Update Output

After updating µ1 and µ2, all the output ui = f(xi) should be updated because it is a

function of µ. We can update each in constant time:

ui = u′i + y1(µ1 − µ′1)k1i + y2(µ2 − µ′2)k2i + b− b′. (B.131)
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Table B.1: Updates b in different situations.

µ1 µ2 y1y2 b

0 < µ1 < C -
- b1
- b1

- 0 < µ2 < C
- b2
- b2

0 < µ1 < C 0 < µ2 < C
- b1+b2

2

- b1+b2
2

0 0
y1y2 = 1, t = 0, L = 0, U = 0 b′

y1y2 = −1, t = 0, L = 0, U = C b1+b2
2

C C
y1y2 = 1, t = 2C,L = C,U = C b′

y1y2 = −1, t = 0, L = 0, U = C b1+b2
2

0 C
y1y2 = 1, t = C,L = 0, U = C b1+b2

2
y1y2 = −1, t = −C,L = C,U = C b′

C 0
y1y2 = 1, t = C,L = 0, U = C b1+b2

2
y1y2 = −1, t = C,L = 0, U = 0 b′

Select Two Working Variables

We need heuristic to select two working variables. The basis method is to choose µ1 which

violates the KKT condition, and then choose µ2 which obtains the largest |(u′1−y1)− (u′2−
y2)|. Let’s define N the set indices of non-bound multipliers, B the set of indices of upper

bound multipliers, and S the set of indices of nonzero multipliers (hence S = N ∪B). The

heuristic first select µ1 from µB, and then select µ2 from µ to update both multipliers.

After this update, the algorithm iterates on µN to find µ1 until all samples corresponding

to N satisfy the KKT conditions. Then the algorithm repeats the above two step until all

samples in X satisfy the KKT conditions.

From table B.1, we know that, if (yiyj = 1 ∩ (µ′i = µ′j = 0 ∪ µ′i = µ′j = C) ∪ (yiyj =

−1 ∩ ((µ′i = 0 ∩ µ′j = C) ∪ (µ′i = C ∩ µ′j = 0))) (this condition is equivalent to L = U),

µi and µj should never be selected, because the new values of this two variables would not

change after optimization.

Initialization

The large QP problem needs to be initialized quickly by a feasible solution which fulfils

the equality and bound constraints. One simple method is to let the values of s Lagrange

multipliers, corresponding to positive and negative training samples, be a constant a where

0 < a < C, respectively, and set the values of the remaining multipliers to 0.
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4.3 Decomposition Method for ν-SVM

Now, we derive the decomposition method for the dual form of ν-SVM (Equation (B.46)).

We define K = [kij = k(xi,xj) = φ(xi)
Tφ(xj)], and K̄ = [k̄ij = yiyjφ(xi)

Tφ(xj)]. In the

literature, the inequality constraint 1Tµ ≥ ν is usually replaced with the equality constraint

1Tµ = ν for the convenience of optimization [258, 164]. Consequently, the optimization

becomes:

min
µ
g(µ) =

1

2
µTK̄µ (B.132)

s.t. yTµ = 0

1Tµ = ν

0 ≤ µ ≤ C,

where C = 1
n .

Let A be the working set, and P be fixed set. Then the decomposition of the objective

of the dual form becomes

g(µA) = [µT
A,µ

T
P ]

[
K̄AA K̄AP

K̄PA K̄PP

][
µA

µP

]
=

1

2
(µT

AK̄AAµA + 2µT
P K̄PAµA + µT

P K̄PPµP )

=
1

2
µT
AK̄AAµA + µT

P K̄PAµA + constant. (B.133)

The equality constraints can be decomposed into yT
AµA = −yT

PµP , and 1T
AµA = ν−1T

PµP .

4.4 SMO Method for ν-SVM

The authors of [164] state that the minimal number of working variables is two for solving

ν-SVM by decomposition method. However, we argue that at least three variables must

be required, because when using only two variables, we have problem to optimize the re-

duced optimization or update b. In the following, we prove that two working variables are

impossible for SMO to solve ν-SVM.
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Proof. The objective of the two-variables problem is

min
µ1,µ2

g(µ1, µ2) =
1

2
(k11µ

2
1 + 2y1y2k12µ1µ2 + k22µ

2
2) + y1v1µ1 + y2v2µ2 (B.134)

s.t. µ1 + y1y2µ2 = t1

µ1 + µ2 = t2

0 ≤ µ1, µ2 ≤ C,

where vi = (µP ∗yP )TKPi, t1 = µ′1+y1y2µ
′
2, and t2 = µ′1+µ′2. The prime notation indicates

the previous value of a variable. We have two variables and two equality constraints. If

y1y2 = −1, then there is only one unique solution to the equality constraints. The unique

solution is in fact the previous values µ′1 and µ′2. Therefore, the optimization would not

change the values of the multipliers. We hence have to avoid choosing two variables having

different class labels. If y1y2 = 1, then the two equality constraints coincide into one

µ1 + µ2 = t, where t = t1 = t2 = µ′1 + µ′2. There are infinite number feasible solutions in

this situation. When y1 = y2, the optimization is simplified into

min
µ1,µ2

g(µ1, µ2) =
1

2
(k11µ

2
1 + 2y1y2k12µ1µ2 + k22µ

2
2) + y1v1µ1 + y2v2µ2 (B.135)

s.t. µ1 + µ2 = t

0 ≤ µ1, µ2 ≤ C.

vi can be computed by u′i = f(xi|w′, b′) = ki,:(y ∗ µ′) + b′:

vi = ui − y1µ
′
1k1i − y2µ

′
2k2i − b′. (B.136)

As has been discussed in Section 2.4, we know that updating b needs two training

samples from different classes, that is y1y2 = −1. From the above derivation, we also know

that y1y2 = −1 is impossible for optimization. Therefore, we can state that more than two

working variables are needed for SMO.

If we select three working variables such that y1 = y2, and y3 6= y1, then we can avoid

the problems of optimization and updating b. Therefore, three variables are required for

SMO to solve ν-SVM. The idea of solving ν-SVM by SMO is similar with, but more complex

than, that of solving C-SVM. Thus, we decide to omit the detail.
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4.5 Decomposition Method for Hypersphere One-Class SVM

The dual form of hypersphere SVDD has been given in Equation (B.88). Now, we define

K = [kij = k(xi,xj) = φ(xi)
Tφ(xj)], and k = diag(K). Let q = ν

2k. Let A be the working

set, and P be fixed set. Then the decomposition of the objective of the dual form becomes

g(µA) = [µT
A,µ

T
P ]

[
KAA KAP

KPA KPP

][
µA

µP

]
− [qT

A, q
T
P ]

[
µA

µP

]
=

1

2
(µT

AKAAµA + 2µT
PKPAµA + µT

PKPPµP )− qT
AµA − qT

PµP

=
1

2
µT
AKAAµA + µT

PKPAµA − qT
AµA + constant. (B.137)

The equality constraint can be decomposed into 1T
AµA = ν − 1T

PµP .

4.6 SMO Method for Hypersphere One-Class SVM

Let A only includes two working variables. We let qi = ν
2kii. The decomposition of the

objective becomes

g(µ1, µ2) =
1

2
(k11µ

2
1 + 2k12µ1µ2 + k22µ

2
2) + (µT

PKP1 − q1)µ1 + (µT
PKP2 − q2)µ2. (B.138)

Let vi = µT
PKPi − qi, then the objective becomes

g(µ1, µ2) =
1

2
(k11µ

2
1 + 2k12µ1µ2 + k22µ

2
2) + v1µ1 + v2µ2. (B.139)

We do not want to compute vi directly using vi = µT
PKPi− qi because it takes linear time,

and we have to store K. Alternatively, we can compute it through the function u′i = f(xi)

where the prime indicates the previous value. We know that

u′i = R′ − (kii −
2

ν
Ki,:µ

′ +
1

ν2
µ′

T
Kµ′) (B.140)

Let w′ = µ′TKµ′. Then

u′i = R′ − (kii −
2

ν
(Ki,Aµ

′
A +Ki,Pµ

′
P ) +

1

ν2
w′). (B.141)
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Therefore

KT
i,Pµ

′
P = −ν

2
(R′ − u′i − kii −

1

ν2
w′)−Ki,Aµ

′
A

= −ν
2
R′ +

ν

2
u′i +

ν

2
kii +

1

2ν
w′ −Ki,Aµ

′
A. (B.142)

Therefore

vi = Ki,Pµ
′
P − qi

= −ν
2
R′ +

ν

2
u′i +

ν

2
kii +

1

2ν
w′ −Ki,Aµ

′
A −

ν

2
kii

= −ν
2
R′ +

ν

2
u′i +

1

2ν
w′ −Ki,Aµ

′
A. (B.143)

Therefore

v1 = −ν
2
R′ +

ν

2
u′1 +

1

2ν
w′ − k11µ

′
1 − k12µ

′
2, (B.144)

v2 = −ν
2
R′ +

ν

2
u′2 +

1

2ν
w′ − k21µ

′
2 − k22µ

′
2. (B.145)

Note that, if we alternatively define si = Ki,:µ
′ (i = 1, · · · , n) and keep updating it

every iteration, vi (i = 1, 2) can be computed by

vi = s′i − ki1µ′1 − ki2µ′2 − qi. (B.146)

Also, we do not compute the constraint as µ1 + µ2 = ν − 1Tµ′P , because it takes linear

time to compute 1Tµ′P . Alternatively, we use µ1 + µ2 = µ′1 + µ′2 = t.

Similar with the SMO for C-SVM, the second derivative along the linear line defined by

µ1 + µ2 = constant is k11 + k22 − 2k12. If this value is non-negative then the two-variables

problem has a minimum solution.

Solve Two-Variables Problem

Substituting µ1 = t− µ2 into the objective, we have

g(µ2) =
1

2
k11(t− µ2)2 + k12(t− µ2)µ2 +

1

2
k22µ

2
2 + v1(t− µ2) + v2µ2. (B.147)
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Substituting µ1 = t− µ2 into the inequality constraints, we have0 ≤ t− µ2 ≤ C

0 ≤ µ2 ≤ C
. (B.148)

That is L = max(0, t−C) and U = min(C, t) where C = 1
n . Taking the first derivative with

respect to µ2, and letting it to be zero, we have

∂f(µ2)

∂µ2
= (k11 + k22 − 2k12)µ2 − k11t+ k12t− v1 + v2 = 0. (B.149)

Therefore

µ2 =
k11t− k12t+ v1 − v2

k11 + k22 − 2k12

=
k11(µ′1 + µ′2)− k12(µ′1 + µ′2) + ν

2 (u′1 − u′2)− k11µ
′
1 − k12µ

′
2 + k21µ

′
1 + k22µ

′
2

k11 + k22 − 2k12

= µ′2 +
ν
2 (u′1 − u′2)

k11 + k22 − 2k12
. (B.150)

Alternatively, using s′1 and s′2, we can obtain the equivalent solution

µ2 =
k11t− k12t+ v1 − v2

(k11 + k22 − 2k12)

=
k11(µ′1 + µ′2)− k12(µ′1 + µ′2) + s′1 − k11µ

′
1 − k12µ

′
2 − q1 − s′2 + k21µ

′
1 + k22µ

′
2 + q2

k11 + k22 − 2k12

= µ′2 +
s′1 − s′2 − q1 + q2

k11 + k22 − 2k12
. (B.151)

We then clip µ2 into the bound [L,U ]:

µ2 =


U if µ2 ≥ U

µ2 if L ≤ µ2 ≤ U

L if µ2 ≤ L

. (B.152)

This formula is the update rule of µ2. We can then update µ1 through the constraint:

µ1 = t− µ2 = µ′1 + µ′2 − µ2. (B.153)
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Update si

si = ki,:µ (i = 1, · · · , n) can be updated in constant time:

si = s′i + k1i(µ1 − µ′1) + k2i(µ2 − µ′2). (B.154)

Update w

w = µTKµ can be decomposed into

w = µT
AKAAµA + 2µT

PKPAµA + µT
PKPPµP

= k11µ
2
1 + k22µ

2
2 + 2k12µ1µ2 + 2µT

PKP,1µ1 + 2µT
PKP,2µ2 + µT

PKPPµP

= k11µ
2
1 + k22µ

2
2 + 2k12µ1µ2 + 2(s′1 − k11µ

′
1 − k21µ

′
2)µ1 + 2(s′2 − k12µ

′
1 − k22µ

′
2)µ2

+ µT
PKPPµP . (B.155)

We let

q = w − w′

= k11(µ2
1 − µ′

2
1) + k22(µ2

2 − µ′
2
2) + 2k12(µ1µ2 − µ′1µ′2)

+ 2(s′1 − k11µ
′
1 − k21µ

′
2)(µ1 − µ′1) + 2(s′2 − k12µ

′
1 − k22µ

′
2)(µ2 − µ′2), (B.156)

where s′i = ki,:µ
′ is cached. Alternatively, w can be updated by the following equation:

w = µT
AKAAµA + 2µT

PKPAµA + µT
PKPPµP

= −µT
AKAA + 2µT

AKAAµA + 2µT
PKPAµA + µT

PKPPµP

= −µT
AKAA + 2s1µ1 + 2s2µ2 + µT

PKPPµP

= −k11µ
2
1 − k22µ

2
2 − 2k12µ1µ2 + 2s1µ1 + 2s2µ2 + µT

PKPPµP . (B.157)

We let

q = w − w′

= k11(µ′
2
1 − µ2

1) + k22(µ′
2
2 − µ2

2) + 2k12(µ′1µ
′
2 − µ1µ2) + 2(s1µ1 − s′1µ′1) + 2(s2µ2 − s′2µ′2).

(B.158)

Therefore

w = w′ + q. (B.159)
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Update Center R

For 0 < µi < C (i = 1, 2), we have

R = kii −
2

ν
ki,:µ+

1

ν2
µTKµ. (B.160)

Now, we can update R:

R = kii −
2

ν
si +

1

ν2
w. (B.161)

Equivalently, we can update R by

R = R′ +
2

ν
(s′i − si) +

1

ν2
(w − w′)

= R′ +
2

ν
(ki1(µ′1 − µ1) + ki2(µ′2 − µ2)) +

1

ν2
q. (B.162)

If both µ1 and µ2 are at bound, then the situation is slightly complicated. We denote

R1, R2 the radiuses computed according to x1 and x2 respectively. We then can summarize

all conditions in Table B.2.

Table B.2: Update R in various situations.

µ1 µ2 t L U R

0 < µ1 < C - 0 < t < 2C - - R1

- 0 < µ2 < C 0 < t < 2C - - R2

0 < µ2 < C 0 < µ2 < C 0 < t < 2C - - R1+R2
2

0 0 0 0 0 max(R1, R2)

0 C C 0 C R1+R2
2

C 0 C 0 C R1+R2
2

C C 2C C C min(R1, R2)

When µ1 = µ2 = 0 or µ1 = µ2 = C, it leads to L = U , therefore µ1 and µ2 equal to

their previous values. Thus we can not update µ1 and µ2. These two situations need to be

avoided earlier when selecting two variables.

Update ui

ui (i = 1, · · · , n) can be updated as below:

ui = R− kii +
2

ν
si −

1

ν2
w. (B.163)
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It can also been equivalently updated by

ui = u′i +R−R′ + 2

ν
(si − s′i) +

1

ν2
(w′ − w)

= u′i +R−R′ + 2

ν
(ki1(µ1 − µ′1) + ki2(µ2 − µ′2))− 1

ν2
q. (B.164)

Select Two Working Variables

The strategy of selecting two working variables is similar to that in the SMO for C-SVM,

as described in Section 4.2.

Initialization

We can use the following method to initialize the algorithm by a feasible solution. We can

first randomly select s = bnνc Lagrange multipliers, and set them to 1
n . Then, we set one

multiplier to ν− s
n . Finally, set the remaining multipliers to zero. Suppose ν = 0.55, n = 10.

We have s = 5, and ν − s
n = 0.05. Therefore, we set five variables to 0.1, one variable to

0.05, and the remaining four variables to 0.
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