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Abstract

Artificial life evolutionary systems facilitate addressing lots of fundamental

questions in evolutionary genetics. Behavioral adaptation requires long term evo-

lution with continuous emergence of new traits, governed by natural selection.

We model organism’s genomes coding for their behavioral model and represented

by fuzzy cognitive maps (FCM), in an individual-based evolutionary ecosystem

simulation (EcoSim). The emergent of new traits (genes) in EcoSim is examined

by studying their effect on individual’s fitness and well being. We examine how

the new traits are used to predict the value of fitness using machine learning tech-

niques. A comparison between the genomic evolution of EcoSim and a neutral

model (a randomized version of EcoSim) is examined focusing on their respective

genomic diversity. In order to further emphasize the importance of genetic diver-

sity to adaptation and thus the well being of individuals, we were encouraged to

study the effect that genetic diversity has on fitness. EcoSim gives us the chance

to study the relation between species genetic diversity and average species fitness

without the limits in environmental conditions and time scales found in biological

studies, but in highly variable environments and across evolutionary time.

The ecological effects of predator removal and its consequence on prey behav-

ior have been investigated widely. We investigated the effects of predation risk

on prey energy allocation and fitness. Here the role of predator removal on the

contemporary evolution of prey traits such as movement, reproduction and for-

aging was evaluated. Our study clearly shows that predation risk alone induces

behavioural changes in prey which drastically affect population and community

dynamics, A classification algorithm was used to demonstrate the difference be-

tween genomes belonging to prey co-evolving with predators and prey evolving

in the absence of predation pressure. We argue that predator introductions to

naive prey might be destabilizing if prey have evolved and adapted to the absence

of predators. Our results suggest that both predator introduction and predator

removal from an ecosystem have widespread effects on the survival and evolution

of prey by altering their genomes and behaviour, even after relatively short time

intervals.
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Chapter 1

Introduction

1.1 Motivation

Darwin (1859) conceived the mechanism that could account for the adaptation

and the diversity observed in nature. Darwin’s principle of natural selection rests

on a number of propositions [1]:

• The individuals of a population are not identical but vary in certain traits.

• This variation, at least partly, is heritable. Therefore, an individual shares

some of these traits with its ancestors.

• Every population could potentially populate the whole world if each indi-

vidual of that population realized its full reproductive potential. In reality,

few (if any) individuals do, and many individuals die without reproducing

at all.

• Individuals vary in their number of descendants (not only the number of

children they produce, but the number of children that survive, and the

offspring they leave and so forth).

• The number of an individual’s descendants depends critically (but not com-

pletely) on the interactions of the traits of the individual and its environment.
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Populations with these characteristics, over generations, become more adapted

to their environment. With time and changing circumstances, different adapta-

tions may become advantageous. Gradually, this mechanism gives rise to different

life forms. Artificial Life (Alife) is concerned with the study of the processes and

mechanisms underlying life by recreating life-like phenomena in software, hard-

ware, and biochemicals [2]. The term ’artificial life’ was coined by Langton who

described Alife as ”a field of study devoted to understanding life by attempting to

abstract the fundamental dynamical principles underlying biological phenomena,

and recreating these dynamics in other physical media-such as computers-making

them accessible to new kinds of experimental manipulation and testing” [3].

An ecosystem is the complex system described by the organisms, the environ-

ment, and their physical, chemical and biological interrelationships in a given area.

Ecosystem health is determined through measurable characteristics. Ecosystem

health is determined through measurable characteristics. A healthy ecosystem is

defined as being ‘stable and sustainable’; maintaining its organization and auton-

omy over time and its resilience to stress [4]. So a healthy ecosystem is sustainable;

that is, it has the ability to maintain its structure (organization) and function

(vigor) over time in the face of external stress (resilience). A method to quantify

these attributes (vigor, organization, and resilience) should be taken into consid-

eration when modeling an ecosystem. Stability, population density, biodiversity

and how energy flows through trophic levels are some measurable characteristics

in evolutionary ecological models.

The metaphor of an evolving ecosystem was chosen for this study of artifi-

cial agent evolution because the evolutionary dynamics result from the modeling

of individual agents and their relations to the conditions and resources, in com-

bination with their diverse interactions with other agents in their environment.

Together, these factors make up the artificial ecosystem. This view of an evolving

system, where natural selection is an emergent system property, stands in contrast

to traditional evolutionary algorithms where evolution is the direct result of an

algorithmically explicit selection process.
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1.2 Objective

Like in many disciplines; simulation modeling played a great role in studying evo-

lutionary processes. Many ecological studies that require data of hundreds of years

can be obtained by simulation modeling that produces results in a matter of a few

hours or days depending on the computational cost of each system. Darwinian

evolution governed by natural selection is modeled in EcoSim (an individual based

ecosystem simulation). Our main challenge concerns the ability to understand the

evolutionary machinery and evolved behaviour in the system. This problem is

of particular importance in systems based on natural selection. The lack of an

explicit objective (predefined fitness) function makes spotting and understanding

the evolved behaviour of individuals a challenging task. Therefore, there must be

some other way to identify and understand qualitatively novel behaviour when

it emerges. The objective of the work was to capture the correlation between

different emerging behaviours arising in EcoSim in order to gain deeper under-

standing of the model and thus natural ecosystems. Here came the integration of

machine learning techniques as an analytical step for analyzing the vast amount

of information produced by the simulation. The main aim of this work is to study

the genomic evolution and emerging behaviours arising in EcoSim. Validating the

evolutionary machinery in EcoSim by studying the evolution of possible new genes

and behaviours was the first main focus. The validation step was achieved through

examining how the new possible genes are capable of predicting the fitness of prey

individuals and through a comparison between the genomic evolution of EcoSim

and its neutral model. EcoSim is a platform that allowed the study of different

ecological theories such as the relationship between species genetic diversity and

fitness. The success to map this study in EcoSim acted as a validation step of the

model and also a contribution to gain more insight about the correlation between

genetic diversity and fitness.

The complexity of behavioural interactions in predator-prey systems has re-

cently begun to capture trait-effects, or non-lethal effects, of predators on prey

via induced behavioural changes. Non-lethal predation effects play crucial roles in

shaping population and community dynamics, particularly by inducing changes to
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foraging, movement, and reproductive behaviours of prey. Prey exhibit tradeoffs

in behaviours while minimizing predation risk (see Chapter 7 for details). EcoSim

allows complex intra- and inter-specific interactions between individual evolving

behavioural models called prey, as well as complex predator-prey dynamics and

coevolution in a tri-trophic and spatially heterogeneous world. Another part of

the study involved investigating the effects of predation risk on prey energy allo-

cation and fitness. The semantics of the system allows comprehensive analysis of

new genes and behaviours as they arise through a Darwinian evolutionary process.

We asked the following questions about prey in EcoSim: are there trait-mediated

effects on prey in the form of predation risk-foraging tradeoffs? How does the

tradeoff affect the energy of prey and allocation of energy to reproduction? How

do their reproductive strategies change in response to predation? What are the

effects of predation risk on the prey population? Does the predation pressure af-

fect prey’s genomic evolution? How does prey evolve in the absence of predation

pressure? What is the effect of introducing predators to nave prey?

1.3 Contributions of the thesis

• First, the evolutionary machinery in EcoSim was studied by examining the

emergence of new genes and their effect on fitness. Random Forest was used

to build a classifier that was able to predict the values of fitness based on

the values of new developed genes. This is considered to be a validation

step to ensure the validity of the behavior model and its ability to cope with

changes in the environment. A feature selection step is then presented along

with rule learning. These rules allow us to discover the most important

features that increase fitness, and help us to understand the semantics of

the behavior model.

• It has been shown how genetic evolution and diversity governs the adapta-

tion process. We study how EcoSim’s individuals adapt to their changing

environment by comparing their behavior with a neutral model - a partially

randomized version of EcoSim.
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• Shannon entropy, which is a measure of unpredictability and disorder com-

ing from Information theory, is used as a measure of genetic diversity. We

present the difference in entropy between EcoSim and the neutral model

to emphasize the adaptive characteristics of EcoSim. Furthermore, we in-

vestigate the relationship between genetic diversity and species fitness and

present the correlations found between these two measures in EcoSim. Very

high correlation both negative and positive between entropy and fitness was

detected. In order to validate the correlation results and further under-

stand the reasons behind these results machine learning classifiers were used

to predict the correlation class variable based on training and testing sets.

High accuracy for classification was seen which proves the interest of the

used genetic diversity measure and its correlation with fitness. In addition,

feature selection step was used to find the best features affecting the corre-

lation values. These extracted features such as population size and spatial

dispersal are similar to the factors affecting the relation between genetic di-

versity and fitness in community ecology. Rules were extracted and further

investigated which adds more semantics to the reasons behind correlation

between genetic diversity and fitness.

• EcoSim models predators and prey with a great deal of detail to their char-

acteristics and interactions. In this study the effect of predator removal

on prey’s behaviour (foraging, movement and reproduction), genetic change

and their capability to coevolve when predators are reintroduced in EcoSim

is investigated. In addition, prey are allowed to evolve along two distinct

evolutionary paths in the simulation, by either coevolving with predators

or evolving in their absence. Results revealed that prey energy budgets,

life history traits, allocation of energy to movements and fitness-related ac-

tions differed greatly between prey subjected to low-predation risk versus

high-predation risk. High-predation risk suppressed prey foraging activity,

increased movement, and decreased reproduction relative to low-risk. We

used a classification algorithm to show that distinct genomes, corresponding

to distinct behavioural adaptations in these prey populations, had evolved

after long periods of time. As observed in many empirical studies, we found
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that prey alter their behaviour according to the level of predation risk. In

particular, prey reduce their foraging effort when predation risk is high and

instead invest more resources in antipredator behaviours. In addition, these

risk-aversive behaviours negatively influence prey fitness as they reduce en-

ergy that can be allocated to reproduction. The introduction of predators to

naive prey was also studied and monitored predator-prey dynamics, along

with the stability of the system after this change. We show that the prey

that are left to evolve for a long time without predators developed survival

strategies and adaptive behaviors that were coded in their genomes, and this

caused instability in the system when predators were later introduced.

1.4 Outline of thesis

• Chapter 2 reviews existing literature on evolutionary systems and the use of

IBM in ecology, with a particular focus on ALife evolutionary simulations.

• Chapter 3 gives an overview of, the model used in this study, EcoSim which is

a predator-prey ecosystem simulation that is capable of exhibiting long-term

adaptive evolution of agent behaviour.

• Chapter 4 presents the background of the data analysis approaches used in

the rest of the thesis including machine learning techniques, the deployment

of entropy as a measure of genetic diversity and fitness calculation.

• Chapter 5 presents the details of studying the emergent of new genes in

EcoSim and its effect on average species fitness. The comparison between

genetic diversity in EcoSim and its neutral model, which is affected by con-

tinuous adaptation of the individuals to their dynamic environment, is also

reviewed.

• The study of genetic diversity and its correlation with fitness is presented in

Chapter 6 along with the classification and rule extraction step used to add

more semantics to the correlation results.
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• Chapter 7 presents the study of predators’ effect on the evolution of prey’s

behavior and genomic structure.
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Chapter 2

Background and Literature

Review

2.1 Artificial life

Artificial Life, or ALife, is the research field that tries to describe and study nat-

ural life by creating artificial systems that possess some of the properties of life.

The notion Artificial Life was first presented by Langton who described it by

”understanding life by attempting to abstract the fundamental dynamical prin-

ciples underlying biological phenomena, and recreating these dynamics in other

physical media, such as computers, making them accessible to new kinds of ex-

perimental manipulation and testing.” [3]. Latter on Bedaue noted Artificial Life

is concerned with the study of the processes and mechanisms underlying life by

recreating life-like phenomena in software, hardware, and biochemicals [2]. There

are three methods to model ALife; ’soft’ that uses software simulations, ’hard’

which involves hardware implementation mainly in robotics and ’wet’ which in-

volves biochemistry. The first known formal model was designed by John von

Neumann creating a self-reproducing, computational universal cellular automata

[5]. He formalized the idea of cellular automata in order to create a theoretical

model for a self-reproducing machine. He was mainly concerned with studying

the evolution of complex adaptive structures motivated by the understanding of

biological evolution and self-reproduction. The early use of cybernetics in informa-
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tion theory aiming to understand living systems was done by Wiener [6]. Due to

the increase use of computer simulations, Alife has overlapped and associated with

other areas in artificial intelligence such as computational intelligence, which is a

nature-inspired computational methodology that addresses real world optimiza-

tion problems. Although computational intelligence and Alife overlap in many

aspects and share similar methodology, there is a difference in their modeling

strategies. Alife is mainly concerned with gaining knowledge about living systems

using computational bottom-up complex systems. On the other hand, computa-

tional intelligence is motivated by the inverse, mainly using the knowledge about

living system to construct a top down centralized complex system. Whereas,

computational intelligence research is essentially analytic, breaking down complex

systems into basic components, ALife synthetic approach attempts to construct

complex systems from elemental units. The synthetic approach is based on two

concepts, emergence and adaptation.

Complex adaptive systems exhibit emergence where the behavior of the whole

is more complex than the behavior of the parts [7]. Emergence is one of the char-

acteristics of a complex system where new and coherent structures, patterns in a

complex system are derived due to interactions between the elements of the system

over time [8]. The characteristics of emergence were provided by Holland[7]. (a)

Emergence happens in systems which compose of different interactive units that

follow simple rules. (b) The interactions between the parts are nonlinear so the

overall behavior cannot be predicted by summing the behaviors of the isolated

parts. (c) The system functions change with the change of context which makes it

difficult to predict emergent behavior. (d)The general trend of system complexity

increases with increasing number of interactions. [9] defines emergence as ”the

origin of qualitatively new structures and functions which were not reducible to

those already in exist”. He classified the emergent phenomena into three different

classes; computational emergence which is derived from the cellular automaton

example and the mathematical theory of chaos, thermodynamic emergence which

is the physicists way to emergent phenomena, and emergence relative to a model

which deals with situations where observers need to change their model in order

to keep up with a system’s behaviour. Evolutionary emergence falls into the emer-

9



gence relative to a model category. Evolutionary emergence is an essential feature

in Alife as [10] noted ”The essential features of computer-based Artificial Life

models are: . . . There are no rules in the system that dictates global behavior.

Any behavior at levels higher than the individual programs is therefore emergent.

There are two types of selection that might bring such emergence. [11] referred

to these as ”extrinsic adaptation where evolution is governed by a specified fit-

ness function, and intrinsic adaptation, where evolution occurs automatically as a

result of dynamics of a system cause by the evolution of many interacting subsys-

tems”. When aiming to model a more open-ended evolution Alife system, intrinsic

adaptation should be diploid.

Artificial evolving systems with pre-defined fitness functions, or fitness land-

scapes, have been well studied. GAs are biologically inspired search procedures

initially developed by Holland [12] [13] [14] in the early 1960s. GAs evolve an

initial random population of genomes (codings for solutions to the problem in

hand) by selecting which individuals reproduced and which will be replaced. This

is done by evaluating each solution’s fitness function relevant to the problem and

favouring the fitter solutions. A basic shortcoming of genetic algorithms and evo-

lutionary algorithms in general is their tendency to converge. They treat evolution

as an optimizer, as they reach local or global optima and eventually converge to-

wards them. When the goal becomes building a system where autonomous agents

are able to evolve and adapt in a more open-ended evolutionary dynamics, spec-

ifying in advance all the possible behaviours by optimizing an objective function

is not desirable. When targeting unbounded evolution and emergence of new

adaptive behavior, evolutionary algorithms (using extrinsic adaptation) should be

rejected and rather a model based on natural selection (intrinsic adaptation) is

more suitable. Furthermore, most existing theoretical modeling approaches rely

on the genetic algorithms (GAs) model concept. These systems are optimiza-

tion processes, meaning that the fate of the system is directly determined by its

pre-defined fitness function with the convergence behavior
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2.2 IBM

Soft Alife uses individual-based modeling (IBM) which is a bottom-up approach

to simulating the interactions among individuals or groups of individuals in an

attempt to create complex phenomena. IBM differs from classical equation based

models (EBMs) which are typically built up from set of interrelated differential

equations. Unlike EBMs, IBM consists of interacting adaptive entities which are

able to capture emergent behavior and provide a greater level of useful details.

The ease of modeling renders IBM as being more flexible than EBM. IBM has

been used on non-computing related scientific domains such as ecological sciences

(surveyed by [15]) and social sciences (surveyed by [16]).

The benefits of IBM over other modeling techniques can be captured in several

points [8]: (i) agent-based models are a natural way to describe systems comprised

of interacting entities; (ii) agent-based models are flexible; (iii) agent-based mod-

els capture emergent phenomena; and (iv) agent-based models provide access to a

greater level of useful detail. In particular, modeling interactions between entities

can be much easier in agent-based systems than in EBMs, even when one is com-

fortable with the concepts of partial differential equations. It is usually easy to

increase the size of a simulation, adding new agents to see if interesting effects are

swamped by agent numbers, or taking agents away if interesting detail is obscured.

It is also possible to look at the results of simulations at different levels of detail

at the level of a single agent, at the level of some specific group of agents, or at

the level of all agents together. All these things are harder to manage in EBMs.

In addition to their inherent naturalness and flexibility, agent-based simulations

allow one to identify emergent phenomena. Emergent phenomena result from the

actions and interactions of individual agents, but are not directly controlled by

the individuals.

For the past decade there has been an enormous growth of use of IBM ad-

dressing different questions in ecology and evolutionary biology. Whereas classical

approaches to modeling ecology often ignore individual behaviour and instead uses

state- variable model that controls birth and death rates, IBM aim to ”treat in-

dividuals as unique and discrete entities” (Grimm, 1999)[17] which provides for a
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more realistic simulation. The use of IBM in ecology and evolution has been re-

viewed by Grimm in 1999 and Lomnicki 1999 [18]. DeAngelis and Mooij presented

another review study which focused on how the IBM field developed [15]. DeAn-

gelis categorized the different directions along which to study individual variation

in IBM into five different directions ”(a) spatial variability, local interactions and

movement; (b) life cycle and ontogenetic development; (c) phenotypic variability,

plasticity and behavior; (d) differences in experience and learning; and (e) genetic

variability and evolution.” He also grouped the IBM systems into seven major

study groups; movement through space, formation of patterns among individu-

als, foraging and population dynamics, species interactions, local competition and

community dynamics, evolutionary processes, management related processes. A

book by Grimm and Railsback (2005) [19] provides a set of guidelines for building,

testing, and analyzing individual-based models, updated in [20]. IBM has been

used in many areas in ecology including forest ecology (e.g. [21]), fisheries and

marine life (e.g. [22]), conservation biology and spatial heterogeneity (e.g. [23]).

Many ecological IBM systems were not designed to be general platforms that could

capture different aspects in ecology and evolution but rather these models answer

specific question in their narrow domain. More group of evolutionary IBMs that

were designed as platforms studying evolutionary behavior, emergence, adaptation

and complexity are mention below.

2.2.1 Tierra

While evolutionary computation has been studied since the 1960’s, the subfield of

digital evolution is much younger. The first experiments with populations of self

replicating computer programs were performed in 1990 in a system called Core-

world [24], and later improved upon in Tierra [25]. Tom Ray’s Tierra model is

the first widely known digital evolutionary ecosystem consisting of self-replicating

computer programs based on natural selection. Competition in Tierra results from

finite CPU-time and memory space. Tierra is based on a virtual operating sys-

tem, complete with its own, relatively robust and simple (but universal) machine

language and a fixed size address space. An evolutionary run starts by seeding the
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empty memory space with a hand-written self-replicator program. This replicator

then produces a copy of itself which is instantiated as an independent process. A

small amount of stochastic behaviour is implemented for program execution, the

copy process, and programs are also subject to point mutations. These mecha-

nisms are responsible for introducing variety into the populations. If the modified

programs retain their ability to replicate, and the modifications alter their prob-

ability of reproduction, Darwinian evolution can occur. A number of interesting

results have been obtained from such evolutionary runs. For example, ’parasites’

have appeared-short pieces of code which run another program’s copying proce-

dure in order to copy themselves. Hyper-parasites (parasites of parasites) have

also been observed, along with a number of other interesting ecological phenom-

ena. Ray demonstrated that it is possible to build an operating system in which

self-replicating computer code can evolve. On the other hand, after a certain

amount of time, Tierra fails to produce any new programs but only change in the

number of existing ones.

Rey sparked a number of follow-up systems based on Tierra. Cosmos a Tierra-

like system configured in a 2 dimensional toroidal like grid environment was used

to study the role of contingency in evolution [26]. Furthermore, in Amoeba [27]

the language of the digital organism along with its self replicating code is also

subject to evolution. The Amoeba system, developed by Pargellis, showed the

possibility of spontaneous emergence of a self-replicating program.

2.2.2 Avida

Development of AVIDA (a Tierra like system) [28] [29], in which self-replicating

digital organisms consists of a circular list of instructions (its genome) and a vir-

tual CPU evolve. In Avida, each organism lives in its own address space, unlike

Tierra’s shared address space. This enhancement increased the power of digital

evolution as an experimental tool. AVIDA environment comprises a number of

cells, each cell can contain at most one organism, and the size of an AVIDA pop-

ulation is bounded by the number of cells in the environment. Organisms are

self-replicating, that is, the genome itself must contain the instruction to create
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an offspring. When an organism replicates, a cell to contain the offspring is se-

lected from the environment and its inhabitant organism is replaced (killed and

overwritten). Since digital organisms are self-replicating and compete for space, a

higher merit (all else being equal) results in an organism that replicates more fre-

quently, spreading throughout and eventually dominating the population. Hence,

AVIDA satisfies the three conditions necessary for evolution to occur: replication,

variation (mutation), and differential fitness (competition). Individuals in Avida

do not move and in order to measure the complexity they use a fixed environment

which is rarely seen in nature. This means that the system is only adapting to

a preexisting environmental complexity. The processes derived from Avida and

Tierra are optimization processes, similar to evolutionary algorithms, for which

it has been proved that it converge toward a maximum, either local or global.

Finally, as with Tierra, the complexity growth in Avida always reaches an upper

bound and stops. These results with Avida do not capture the kind of continual

growth in qualitative complexity or long term incremental evolution that we can

observe in the biosphere. Hence, Avida and Tierra do not represent an open-ended

evolution which has been defined in various ways. Nehaniv, for example, defines

open-ended evolution as an unbounded increase in complexity [30]. In [31] Taylor

noted about Tierra and Tierra like systems ”most of these systems are only capable

of producing innovations of the ’more-of-the-same’ variety (e.g. more optimized

code), rather than anything fundamentally new.”

Avida was used to study numerous aspects of evolution [32]; issues of complex-

ity in evolution [33] [34]. Furthermore, they investigated the emergence of complex

behavior [35]. They showed that complex features do not appear suddenly but

only evolve when simpler traits exist which served as a foundation upon which

these complex features were built. In a recent study they showed how runaway

sexual selection leads to good genes and how they should be viewed as interacting

mechanisms that reinforce one another [36]. Evolving digital ecological networks

was presented in [32] which models competition, parasitism and mutualism.
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2.2.3 Echo

A significant advance in evolutionary IBM was presented by J. Holland in Echo

[37], a generic ecosystem in which agents evolve in a resource limited environment.

The world is made up of a square toroid lattice of sites which has different kinds

of evolving resources encoded by a letter. Agents interact with their environment

and are able to move from one site to another. They gain energy by eating and

spend it on their actions such as fighting, trading and mating. Reproduction

in Echo happens when an agent has replicated itself with a possible mutation

when it has gained enough resources to copy its genome asexually or by sexual

mating. Selection is based on the interacting agents rather than by a predefined

fitness function. Emerging phenomena arise such as formation of communities and

trading networks. Echo was used to study the modeling of food web complexity

[38]. Echo was intended to be a general model of intrinsic adaptive system rather

than modeling and answering specific questions in evolutionary biology. Due to

the high abstraction level of the Echo model, the degree of fidelity to real systems

is uncertain.

2.2.4 Polyworld

In PolyWorld [39], more advanced haploid agents, each controlled by an artificial

neural network, with a set of primitive behaviors and learning strategies, popu-

late a continuous environment containing number of energy sources (’food’) upon

which they rely on for survivor. Possible actions for agents include eat, mate, fight,

move, focus and light (for vision). Agents evolve under the influence of natural

selection and die when their energy is fully depleted or loose fight with another

agent. An agent’s genome specifies characteristics of its physiology and neural ar-

chitecture which is adapted during its life through Hebbian learning. Yaeger was

able to report the emergence of new population behavior such as fleeing, grazing,

following and flocking. Polyworld was used to study how evolution guides com-

plexity [40] and the passive and driven trends in the evolution of complexity [41].

Genetic clustering for the identification of species was presented was also presented

in [42]. On the other hand, lack of semantics in the genomic structure (nodes) in
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Polyworld, makes it difficult to reason and link together different aspects of the

model. Another criticism of PolyWorld, in the context of perpetual evolutionary

emergence, is that learning appears to be overwhelmingly responsible for the re-

sults. This integrated learning process adds to the computational complexity of

the model. Furthermore, the high complexity of the neural networks agents limits

their number making it difficult to study large ecosystem phenomena’s. Geb [43]

[44] is another similar artificial neural network system considered to be simpler

than Polyworld as it is not trying to mimic the real world as Polyworld do. Agents

which are controlled by a neural network each populate a gridded arena and com-

pete for space with no notion of energy. There is no learning process as agents do

not change during their lifetime and thus results prove it to be suited to long-term

incremental artificial evolution. Geb was proven to be the first autonomous arti-

ficial system to pass the Bedau and Packard’s evolutionary test [45]. According

to Bedau statistics, evolutionary dynamics in Gep was proven to be unbounded

[46] and thus based on intrinsic evlution. Bedau et al [45] developed a statistical

measure for testing unbounded evolution.

2.2.5 Framsticks

Framsticks presented by Komosinski et al in 1999 [47] is a 3D life simulation plat-

form addressing both research and education. The platform consists of modules

that facilitates the design of various experiments in optimization, coevolution,

open-ended evolution and ecosystem modeling. Agents have both mechanical

structure (bodies) consisting of connected sticks and control system (brain) us-

ing artificial neural network. The neural network brain collects data from sensors

and sends signals to the joints which control motion activities. The world is en-

riched with complex topology and a water level along with energy balls consumed

by agents. Although some locomotion behaviours have evolved, the high com-

plexity of the model did not present any different results than those obtained

from much simpler evolutionary systems. This model is more concerned with the

study of emerging motor behavior rather than modeling a multiple level interacting

ecosystem.
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2.3 Other predator-prey simulations

Some of the above mentioned systems like Polyworld and Echo model predator

individuals. Other predator-prey models have also been presented focusing more

on the ecological predator prey dynamics and interactions. Smith (1991) [48] uses

Volterra [49]model which exhibits constant population dynamics, both in terms

of oscillations in global populations as well as dynamic patchiness. The model

integrated 2D spatial representation to study migration under different predation

strategies. He showed that detailed movement patters in predator and prey can

affect their interaction. Smith only models simple predator prey behaviour with

simple genomic representation as only migration parameters are able to mutate.

In [50] digital predator-prey organisms were used to study the evolution of trophic

structure represented by the food web. Bell showed how different energy flow

levels among organisms affect species richness and diversity. In another study [51]

Lotka-Volterra equations were integrated in an IBM to examine how evolution of

prey use by predators affects community stability and whether complexity of food

web increases stability of the predator prey system. The results demonstrated

that number of existing species decreases with the increasing complexity.

A predator-prey simulation based in a spatial collection of individual finite

state machine animat agents was first presented in [52]. This model can locate

hundreds of thousands of individuals evolving in a two-dimensional featureless

spatial plain. Every animat carries a small set of rules that direct its microscopic

behaviour and at each time-step of the simulation, each animat executes one of

these rules, causing it to: move; eat; or breed. In one study the effect of introducing

camouflage behaviour as an available option for predators was investigated([53]).

It was shown that individuals who adopt this behaviour are relatively successful

in obtaining prey and thus prolonging their lives against threat of dying of hunger.

This in turn led to higher numbers of successful older predators which caused a

crash in the population of prey.

In another study a time-delayed gestation period was introduced into the

predator-prey selection and adaptation mechanisms ([54]). The temporal be-

haviour of individual animats was affected by the gestation period parameter and
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hence the macroscopic behaviours of the species was also affected.
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Chapter 3

Individual based ecosystem

simulation EcoSim

3.1 Purpose

EcoSim is an individual-based ecosystem simulation, designed by [55] to simulate

agents’ behavior in a dynamic, evolving ecosystem. The following description of

EcoSim was previously published as a supplementary material in [56]. The agents

(or individuals) of EcoSim are prey and predators acting in a simulated envi-

ronment. The main purpose of EcoSim is to study ecological and evolutionary

theories by constructing a complex, adaptive, and generic virtual ecosystem with

behaviours and processes resembling real ecosystems. Due to the complexity of

natural ecosystems and the time and funding resources required to study such the-

ories, modeling has become crucial to the study of ecology and evolution. EcoSim

is the first ecological model to use a fuzzy cognitive map (FCM) [57] to model each

agent’s behavior. The FCM of each agent, being coded in its genome, allows the

evolution of the agent behavior through the epochs of the simulation. EcoSim as a

virtual ecosystem has shown coherent behaviors of the whole simulation with the

emergence of patterns observed in real ecosystems providing a general framework

for the study of several specific ecological problems.
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Characteristic Predator Prey

Max age 42 time steps (±6) 46 time steps (±18)

Min age of

reproduction 8 time steps 6 time steps

Max speed 11 cells / time step 6 cells / time step

Vision distance 25 cells max 20 cells max

Level of energy at init. 1000 units 650 units

Avg. speed 1.4 cells / time step 1.2 cells / time step

(±0.3) (±0.2)

Average level of energy 415 units(±82) 350 units(±57)

Avg. number of 1.14 (±0.11) 1.49(±0.17)

reproduction action

during life

Avg. length of life 16 time steps (±5) 12 time steps (±3)

Table 3.1: Several physical and life history characteristics of individuals from 10

independent runs.

3.2 Entities, state variables, and scales

Individuals: EcoSim has two types of individuals: predator and prey. Each in-

dividual possesses several characteristics (Table 3.1) such as: age, minimum age

for breeding, speed, vision distance, level of energy, and amount of energy trans-

mitted to the offspring. Energy is provided to the individuals by the resources

(food) they find in their environment. Prey consumes grass, which is dynamic in

quantity and location, whereas predator hunts for prey individuals. Each indi-

vidual performs one unique action during a time step, based on its perception of

the environment. Each agent possesses its own FCM that represents its genome

and also its behaviors are determined by the interaction between the FCM and

the environment. Thus, the FCM allows flexibility in behavioural responses to the

changing environment, but since the FCM has fixed values at birth it does not

model plasticity in the conventional sense (the FCM is discussed in detail below).

The energy is provided by the primary or secondary resources found in their
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environment. For example, prey individuals gain 250 units of energy by eating

one unit of grass and predators gain 500 units of energy by eating one prey. At

each time step, each agent spends energy depending on its action (e.g. breeding,

eating, running) and on the complexity of its behavioral model (number of existing

edges in its FCM). On average, a movement action such as escape and exploration

requires 50 units of energy, a reproduction action uses 110 units of energy and the

choice of no action results in a small expenditure of 18 units of energy.

Cells and virtual world: The virtual world is discrete and consists of a matrix

of 1000*1000 space units called cells. Each cell represents a large space which

may contain an unlimited number of individuals and/or some amount of food.

The world is large enough in order to observe migration patterns, an individual

moving in the same direction during its whole life cannot even cross half of the

world, making large-scale migrations possible. The virtual world wraps around to

remove any spatial bias. In addition, the dimensions of the world are adjustable

but increasing the dimensions can increase the computation complexity of the

simulation by allowing more individuals to co-exist.

Time step: Each time step involves the time needed for each agent to perceive

its environment, make a decision, perform its action, as well as the time required

to update the species membership, including speciation events and record relevant

parameters (e.g. the quantity of available food). In terms of computational time,

the speed of simulation per generation is related to the number of individuals.

Recent executions of the simulation produced approximately 15 000 time steps in

35 days.

Population and Species: In average in every time step of the simulation, there

are 250,000 individuals which consisting of one or more species. A species is a set

of individuals with similar genome.

3.3 Process overview and scheduling

The possible actions for the prey agents are: perceive the environment to obtain

information of the vicinity in terms of grass, predators, and sexual partner, evasion

(escape from predator), search for food (if there is not enough grass available in
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the its habitat cell, prey can move to another cell to find grass), socialization

(moving to the closest prey in the vicinity), exploration, resting (to save energy),

eating and breeding. Predator also perceive the environment to gather information

used to choose an action among: hunting (to catch a prey), search for food,

socialization, exploration, resting, eating and breeding. For every individual the

energy is adjusted after an action is performed at each time step. The age of every

individual is also updated at each time step (age is simply the number of time steps

until an individual dies). There are also two environmental processes that depend

on the actions of prey and predators, the amount of grass which is consumed by

prey and meat which is consumed by predators, which are also adjusted at each

time step. At each time step, the value of the state variables of individuals and

cells are updated. The overview and scheduling of every time step is shown in

Fig.3.1.

The complexity of the simulation algorithm is mostly linear in the number of

individuals. If we consider that there are N1 preys and N2 predators then the

complexity of part 1 and part 2of the above algorithm, including the clustering

algorithm used for speciation, will be O(N1) and O(N2) respectively ([58]). This

virtual world of the simulation has 1000*1000 cells, therefore the complexity of

part 3 will be O(k = 1000*1000). The complexity of part 4 will be O(N1+N2).

As a result the overall complexity of the algorithm will be calculated as O(2N1+

2N2+ k), which is O(N = 2N1 +2N2).

3.4 Design concepts

3.4.1 Basic principles

In EcoSim, a FCM is the base for describing and computing the agent behaviors.

Each agent possesses a unique FCM to compute its next action. Their FCM is

represented in their genome which is assigned to each individual at birth. A FCM

is a directed graph containing nodes representing concepts and edges representing

the influence of concepts on each other (Fig.3.2). When a new offspring is created,

it is given a genome which is a combination of the genomes of its parents with some
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Figure 3.1: The overview and scheduling of every time step.
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possible mutations. Formally, an FCM is a graph which contains a set of nodes C,

each node Ci being a concept, and a set of edges I, each edge Iij representing the

influence of the concept Ci on the concept Cj. A positive weight associated with

the edge Iij corresponds to an excitation of the concept Cj from the concept Ci,

whereas a negative weight is related to an inhibition (a zero value indicates that

there is no influence of Ci on Cj). The influence of the concepts in the FCM can

be represented in an nn matrix, L, in which Lij is the influence of the concept Ci

on the concept Cj. If Lij = 0, there is no edge between Ci and Cj.

3.4.2 Emergence

In each FCM, three kinds of concepts are defined: sensitive (such as distance to foe

or food, amount of energy, etc.), internal (fear, hunger, curiosity, satisfaction, etc.),

and motor (evasion, socialization, exploration, breeding, etc.). The activation level

of a sensitive concept is computed by performing a fuzzification of the information

the individual perceives in the environment. For an internal or motor concept C,

the activation level is computed by applying the defuzzification function on the

weighted sum of the current activation level of all the concepts having an edge

directed toward C.

Finally, the action of an individual is selected based on the maximum value

of motor concepts’ activation level. Activation levels of the motor concepts are

used to determine the next action of the individual. For example in Fig.3.3.

there are two sensitive concepts (foeClose (predator close) and foeFar (predator

far)), one internal (fear), and one motor (evasion). There are also three influence

edges: closeness to a foe excites fear, distance to a foe inhibits fear, and fear

causes evasion. Activations of the concepts foeClose and foeFar are computed by

fuzzification of the real value of the distance to the foe, and the defuzzification

of the activation of evasion tells us about the speed of the evasion. The values

of edges for each individual are fixed throughout his life, and are combined with

another individual with possible mutation when forming a new offspring.

At the initiation of the simulation prey and predators scattered randomly all

around the virtual world. Through the epochs of the simulation, distribution of
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Figure 3.2: Initial FCM prey map including concepts and edges. The width of

each edge represents the influence value of a concept on another. Color of an edge

shows inhibitory (red) or excitatory (blue) effects.

Figure 3.3: An FCM for detection of foe (predator) and decision to evade with

its corresponding matrix (0 for ’Foe close’, 1 for ’Foe far’, 2 for ’Fear’ and 3 for

’Evasion’) and the fuzzification and defuzzification functions.
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the individuals in the world is changed drastically based on many different factors:

prey escapes from predators, individuals socialize and form groups, individuals

migrate gradually to find sources of food, species emerge, etc. Fig.3.4 and Fig.3.5

show an example of a snapshot of the virtual world after thousands of time steps

with emerging grouping patterns of species and grass distribution respectively.

It has been shown that the data generated by EcoSim present the same kind of

multifractal properties as the ones observed in real ecosystems [59]. Individuals’

distribution forming spiral waves is one property of prey-predator models. The

prey near the wave break has the capacity to escape from the predators sideways.

A subpopulation of prey then finds itself in a region relatively free from predators.

In this predator-free zone, prey starts expanding intensively and form a circular

expanding region. The whole pressure process and spiral formation will be applied

to this subpopulation of prey and predators again leading to the formation of the

second level of spiral [60]. Because there are consecutive interactions between

prey and predators during time, the same pattern repeats over and over and then

self-similarity emerges in spatial distribution of individuals which is a common

property of self-similar processes [61]. As can be seen in the figure individuals

grouped together, and different species emerged. In addition migration phenomena

can be observed, as relocation of the individuals leads to the redistribution in the

population.

3.4.3 Adaptation

The genome maximal length is fixed (390 sites), where each site corresponds to an

edge between two concepts of the FCM. But, as many edges have an initial value

of zero, only 114 edges for prey and 107 edges for predators exist at initialization.

One more gene is used to code for the amount of energy which is transmitted

for the parent to their child at birth. The value of a site (gene), which is a real

number, corresponds to the intensity of the influence between the two concepts.

The genome of an individual is transmitted to its offspring after being combined

with the one of the other parent and after the possible addition of some mutations.

The behavior model of each individual is therefore unique. Step after step as more
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Figure 3.4: The snapshot of the virtual world in one specific time step, white color

represents predator species and the other colors show different prey species.
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Figure 3.5: The snapshot of the virtual world for a specific time step of the

simulation which demonstrates the pattern of grass in the world.
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individuals are created, changes in the FCM occur due to the formation of new

edges (with probability of 0.001), removal of existing edges (with probability of

0.0005) and changes in the weights associate to existing edges (with probability

of 0.005). New genes may emerge from among the 265 initial edges of zero value.

This emergence and disappearance of the genes in FCM is due to environmental

changes and genetic drift which lead to adaptability of individuals. This emergence

and disappearance of genes in the FCM, is accompanied by selective pressures due

to environmental changes as well as genetic drift and can lead to adaptations over

many generations.

3.4.4 Fitness

We calculate the fitness for every species as the average fitness of its individuals.

The fitness of an individual is defined as the age of death of the individual plus

the sum of the age of death of its direct offspring. Accordingly, the fitness value

mirrors the individual’s capability to survive longer and produce high number of

strong adaptive offspring. There is no pre-defined explicit fitness-seeking process

in the simulation but rather it is a consequence of natural selection. Individuals

that are more adapt to the environment live longer, have a higher level of energy,

and therefore are able to have more offspring, and can transfer them efficient

genomes.

3.4.5 Prediction

So far, there is no learning mechanism for individuals and they cannot predict the

consequences of their decision. The only available information for every individual

to make decision is the information coming from their perceptions at the current

time step and the value of the activation level of the internal and motor concepts

at the previous time steps. The activation levels of the concepts of an individual

are never reset during its life. As the previous time step activation level of a

concept is involved in the computation of its next activation level, this means that

all previous states of an individual during its life participate in the computation

of its current state. It means therefore that an individual has a basic memory
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of its own past that will influence its future states. As the action undertaken by

an individual at a given time step depends on the current activation level of its

motor concepts, the global behavior of an individual dynamically depends on a

complex combination of the information it currently receives from its environment,

its current internal states, and the past states it went through during its life.

3.4.6 Sensing

Every individual in EcoSim is able to sense its local environment inside of its

vision range. For instance, every prey can sense the five closest foes, cells with

food units and mates within the vision range, the number of grass units in its cell,

and the number of possible mates in its cell. Moreover, every individual is capable

of recognizing its current level of energy. It should be noticed that the FCM

process enables for example, to distinguish between perception and sensation: the

sensation is the real value coming from the environment, and the perception is

the sensation modified by the internal states. For example, it is possible to add

three edges to the previous map: one autoexcitatory edge from the concept fear

to itself, one excitatory edge from fear to foeClose, and one inhibitory edge from

fear to foeFar (Fig.3.6). A given real distance to the foe seems higher or lower to

the individual depending on the activation level of fear. Also, the fact that the

individual is frightened at time t influences the level of fear of the individual at

time t + 1. This kind of mechanism gives the possibility of modeling a degree of

paranoia and a degree of stress for the individual. It also allows the individual to

memorize information from previous time steps: fear maintains fear. It is therefore

possible to build very complex dynamic systems involving feedback and memory

using an FCM, which is needed to model complex behaviors and abilities to learn

from evolution.

3.4.7 Interaction

The only action that requires a coordinate decision of two individuals is repro-

duction. For reproduction to be successful, the two parents need to be in the

same cell, to have enough energy, to choose the reproduction action and to be
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Figure 3.6: FCM for detection of foe (predator) - difference between perception

and sensation.

genetically similar. The individuals cannot determine their genetic similarity with

their potential partner. They try to mate and if the partner is too dissimilar, that

is the dissimilarity between the two genomes is greater than a threshold (half of

the speciation threshold), the reproduction fails. Predator’s hunting introduces

another type of interaction in the simulation. For a predator to succeed in the

hunting action, its distance to the closest prey requires to be less than one. When

a predator’s hunting action succeeds, a new meat unit is added in the correspond-

ing cell and the energy level of the predator is also increased by one unit of meat

energy. Furthermore, there is a competition for prey and predators for food. For

example, if in a given cell there is only one food unit and two agents have chosen

the action of eating, the younger will act first, and so it will be the only one that

can eat (in this cell) at this time step. This is a way to simulate the fact that the

older help the younger to survive.

3.4.8 Stochasticity

To produce variability in the ecosystem simulation, several processes include stochas-

ticity. For instance, at initialization time the number of grass units is randomly

determined for each cell. Moreover, the maximum age of an individual is deter-

mined randomly at birth from a uniform distribution centered at a value associ-

ated with the type of agent. Stochasticity is also included in several actions of

the individuals; in evasion and socialization: if there is no predator or partner

respectively in the vision range of the individual, the direction of the movement

would be random. Furthermore, the direction of the exploration action is always
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random.

3.4.9 Collectives

In EcoSim, the notion of species is implemented in a way that species emerge from

the evolving population of agents. Species can become extinct if all of their mem-

bers die. EcoSim implements a species concept directly related to the genotypic

cluster definition [62] in which a species is a set of individuals sharing a high level

of genomic similarity. In addition, in EcoSim, each species is associated with the

average of the genetic characteristics of its members, called the ’species genome’ or

the ’species center’. The speciation mechanism implemented in EcoSim is based

on the gradual divergence of individual genomes. The speciation method begins

by finding the individual in a species S with the greatest distance from the species

center. If this distance is greater than a predefined threshold for speciation (which

is two time greater than the threshold for reproduction), a 2-means clustering is

performed [58]. Otherwise, species S remains unchanged. If clustering is to be

performed, two new species are created - one centered on a random individual,

denoted Ir, and another centered on the individual which is the most genetically

different from Ir. Subsequently, all remaining individuals in S are added to one of

the two new sister species - whichever species the individual is more genetically

similar. After recalculating the new centers for the two new species, the process

of clustering is repeated for convergence.

3.4.10 Observation

EcoSim produces a large amount of data in every time step, including number of

individuals, new and extinct species, geographical and internal characteristics of

every individual, and status of the cells of the virtual world. Information regarding

each individual includes position, level of energy, choice of action, specie, parents,

FCM, etc. Information about the individuals and species are stored in one file

with an average size of 30MB, and information for the virtual world is stored in

another file with an average size of 5MB. Also there is a possibility to store all

of the values of every variable in the current state of the simulation in a separate
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file, giving the possibility to restore the simulation from that state afterwards.

The overall size of this file, which is only stored once in a while during a run of a

simulation, is a few hundred MBs depending on the size of population and species.

All the data is stored in a compact special format, to facilitate the storage and

future analysis. There is a program which can be used to extract all the data.

This program reads one file at a time and extracts all the required variables with

a linear complexity for different analysis.

3.5 Initialization and input data

A parameter file is defined for EcoSim which is used to assign the values for each

state variable at initial time of the simulation. These parameters are as follows:

width and height of the world, initial numbers of individuals, threshold of genetic

distance for prey/predator speciation, maximum age, energy, speed, vision range,

and initial values of FCM for prey/predator. Any of these parameters can be

changes for specific experiments and scenarios. An example of a list of most

common user specified parameters for initially running the EcoSim are presented

in Table 3.2.

3.6 Submodels

As mentioned earlier, each individual performs one unique action during a time

step based on its perception of the environment. EcoSim iterates continuously, and

each time step consists of the computation of the activation level of the concepts,

the choice and application of an action for every individual. A time step also

includes the update of the world: emergence and extinction of species and growth

and diffusion of grass, or decay of meat. At initialization time there is no meat

(dead prey) in the world and the number of grass units is randomly determined for

each cell. For each cell, there is a probability, probaGrass, that the initial number

of units is strictly greater than 0. In this case, the initial number is generated

uniformly between 1 and maxGrass. Each unit provides a fixed amount of energy

to the agent that eats it. Grass also grows in the system over time, but can become
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User specified parameters Used value

Number of Prey 12000

Number of Predators 500

Grass quantity 5790000

Prey max. age 46

Predator max. age 42

Prey max. speed 6

Predator max. speed 11

Prey energy 650

Predator energy 1000

Distance for prey vision 20

Distance for predator vision 25

Reproduction age for prey 6

Reproduction age for predator 8

Table 3.2: Values for user specified parameters.

depleted. The growth of grass in any cell depends on whether neighbouring cells

have grass in them: if there is no grass in a particular cell or in any of its 8

neighbouring cells, then no grass will grow and there will be a locally empty food

patch. The preys can only eat the grass, and the predators have two modes of

predation: hunting and scavenging. When a predators hunting action succeeds,

the killed prey is counted as 2 meat units, one consumed by the predator and

one added in the corresponding cell which may be consumed by anther predator.

When a predators eating action succeeds (which can be viewed as a scavenging

action), one unit of meat is removed in the corresponding cell. The amount of

energy is energyGrass for one grass unit when eaten by a prey and is energyMeat

for one meat unit eaten by a predator. The number of grass units grows at each

time step, and when a prey dies in a cell, the number of meat units in this cell

increases by 2. The number of grass units in a cell decreases by 1 when a prey

eats, and the number of meat units decreases by 1 when a predator eats. The

number of meat units in a cell also decreases at each time step, even if no meat

has been eaten in this cell.
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1. Evasion (for prey only). The evasion direction is the direction opposite to

the direction of the barycenter of the 5 closets foes within the vision range

of the prey, with respect to the current position of the prey. If no predator is

within the vision range of the prey, the direction is chosen randomly. Then

the new position of the prey is computed using the speed of the prey and

the direction. The current activation level of fear is divided by 2.

2. Hunting (for Predator only). The predator selects the closest cell (including

its current cell) that contains at least one prey and moves towards that cell.

If it reaches the corresponding cell based on its speed, the predator kills the

prey, eating one unit of food and having another unit of food added to the

cell. When there are several preys in the destination cell, one of them is

chosen randomly. If the speed of the predator is not enough to reach the

prey, it moves at its speed toward this prey. If there is no prey in the current

cell and in the vicinity or it does not have enough energy to reach to a prey,

hunting action is failed.

3. Search for food. The direction toward the closest food (grass or meat) within

the vision range is computed. If the speed of the agent is high enough to reach

the food, the agent is placed on the cell containing this food. Otherwise, the

agent moves at its speed toward this food.

4. Socialization. The direction toward the closest possible mate within the

vision range is computed. If the speed of the agent is high enough to reach

the mate, the agent is placed on the cell containing this mate, and the current

activation level of sexualNeeds is divided by 3. Otherwise, the agent moves

at its speed toward this mate. If no possible mate is within the vision range

of the agent, the direction is chosen randomly.

5. Exploration. The direction is computed randomly. The agent moves at its

speed in this direction. The activation level of curiosity is divided by 1.5.

6. Resting. Nothing happens.

7. Eating. If the current number of grass (of meat) units is greater than 1,

then this number is decreased by 1 and the preys (predators) energy level
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is increased by energyGrass (energyMeat ). Its activation level for hunger is

divided by 4. Otherwise nothing happens.

8. Breeding. The algorithm in Fig.3.7 is applied to the agent A

Figure 3.7: Breeding algorithm.

The process of generating a new offspring (interbreeding function) consists of

following steps. First, the value of birthEnergyPrey is transmitted with possible

mutations from one randomly chosen parent to the offspring. Second, the edges’

values are transmitted with possible mutations, and the initial energy of the off-

spring is computed. To model the crossover mechanism, the edges are transmitted

by block from one parent to the offspring. For each concept, its incident edges’

values are transmitted together from the same randomly chosen parent. Third,

the maximum age of the offspring is computed. Finally, the energy level of the

two parents is updated.
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3.7 The Neutral Model

In order to study the genomic evolution in EcoSim, a neutral shadow of EcoSim is

built. M. Bedau [45] presented the use of building a natural shadow of any evolu-

tionary model to point out the difference in evolutionary behaviour between it and

the original model. All selection processes and behaviors in the neutral shadow

for the predator/prey are random, which eliminates natural selection from this

model. In terms of the behavioral model of this version, all the actions such as

eating, hunting (for predators), socializing, searching for food and escaping (for

prey) are removed. The only two actions any individual can take are reproduction

and movement. Unlike in the EcoSim, in the neutral model there is no necessity

for the individuals to have genetic similarity to reproduce. Instead, in the neutral

model the reproduction action is done by randomly choosing any two individuals

in the world. The statistics of genetic operations (mutation rates and crossover)

are the same as EcoSim. In EcoSim, individuals choose to reproduce according to

their internal state, suitable environmental conditions and behavior model but not

in the neutral model. To preserve population dynamics in neutral model similar to

that of EcoSim, the Lotka-Volterra computational model [49] is used. This model

controls the number of births and deaths at each time step. In addition, death

of individuals and pairs of parents for reproduction, are randomly selected. In

this way a similarity in population sizes between the neutral shadow and EcoSim

is preserved. Finally, the movements in the neutral model are random, but the

distribution of distances is kept the same as in EcoSim. The randomness in move-

ment can be seen in Fig.3.8 as the formation of spatial spiral patters can no longer

be observed.

The crucial property of EcoSim neutral shadow is that its evolutionary dynam-

ics are identical to EcoSim except that neither the presence not the frequency of

a genotype can be explained by its adaptive significance. This is because all selec-

tion in the neutral model is random, so no genotype has any dominance over any

other. In other words, although gene states are subject to the same variation as

in EcoSim, they have no evolutionary fitness consequences or effects. In addition,

changes in the environment have no effect on individuals in the neutral model.
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Figure 3.8: Snap shot of the Neutral shadow world with predator and prey spatial

distribution
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Consequently, the process of natural selection is considered to be eliminated in

this neutral model.
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Chapter 4

Data Analysis

4.1 Introduction

The EcoSim simulation allows capturing and storing all the characteristics of that

run for latter analysis. Vast amount of information stored in (three terra bytes

per simulation run), running for 30,000 time steps is produced. At each time

step the current state of all individuals and the world environment characteristics

are written to output files. Other information includes average characteristics

for all prey and all predators such as population size, speed and age. For one

simulation running for 30,000 time steps more than 30,000 files are produced.

Further analysis of this information is required which is challenging to interpret

manually. In addition, some calculations are done off line, that is using the output

files after the simulation has stopped, such as fitness calculations. The aim to

understand the different evolutionary behaviour of prey/predators encouraged us

to make use of information theory and machine learning techniques.

4.2 Entropy as a Measure of Genetic Diversity

In order to measure the genetic diversity among individuals we make use of Shan-

non entropy. Depending on the specific problem or representation being used,

ranging from biological domain to genetic programming, numerous diversity mea-

sures and methods exist. For example, Sherwin [63] has shown the efficiency of
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Shannon entropy in measuring diversity in ecological community and genetics.

He has also highlighted the advantages of using entropy based genetic diversity

measures, and surveyed these diversity measures. A close relationship between

biological concepts of Darwinian fitness and information-theoretic measures such

as Shannon entropy or mutual information, was found [64]. Shannon Information

theory [65] defines uncertainty (entropy) as the number of bits needed to fully

specify a situation, given a set of probabilities. These probabilities can be esti-

mated by simply counting the abundance of each genotype (site) in the population.

The per-site entropy of an ensemble of sequences X, in which genotype si occurs

with probability pi is calculated as

H(X) = −Σpi log2(pi) (4.1)

where the sum goes over all different genotypes i in X. Next, the entropy content

of the whole sequence (genome) is approximated by summing the per-site entropy

over all sites in the sequence. This is only an approximation because it ignores

interactions between sites (i.e. epistasis). There is no fixed set of genotypes but

they are discreet values that change over time in the simulation. The lower the

entropy, the less diverse are the genomes of a population and vice versa. There

exists a limit in the values of entropy in EcoSim. When it approaches its maximum

(corresponding to a uniform distribution of all genotypes) it indicates a completely

uniformly distributed population close to randomness. On the other hand very low

entropy (close to 0) means that there is too much similarity between individual

genomes, and means that individuals need to diverge more in order to adapt to

a dynamic environment. A good balance between learning from the environment

(low genetic diversity) and increasing the diversity (high genetic diversity) should

be met in order to ensure the well being of species. As the FCM of an individual is

only written to the output files at the time step the individual is born, a dynamic

data structure was used when writing a program to calculate the entropy. This

dynamic data structure keeps track of birth and death of individuals so that the

FCM of all individuals surviving in each time step are included in the calculation.
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4.3 Fitness calculation

Fitness describes the ability of individuals to both survive and reproduce, and

is equal to the proportion of the individual’s genes in all the genes of the next

generation. Darwinian fitness, or simply fitness, of a biological trait describes how

this trait participates to the success of an organism to pass on its genes. The more

likely that an individual is able to survive and live longer to reproduce, the higher

is the fitness of that individual. There are mainly 2 measures of fitness, absolute

fitness and relative fitness. An organism’s absolute fitness is the total number of

surviving offspring that an individual with a particular genotype produces during

its lifetime (its lifetime reproductive success). Relative fitness of a genotype is its

ability to survive and reproduce compared to other genotypes in the population.

Relative fitness is the absolute fitness of an organism divided by the average fitness

of the population within which that organism is found.

As EcoSim provides more flexibility and more ability in conducting more com-

plex measurements not feasible in natural ecosystems we tune the measure of

absolute fitness. We measure fitness of an individual as its age of death plus the

sum of age of death of its entire direct produced offspring. Accordingly, the fit-

ness value mirrors the individual’s capability to survive longer and to produce as

many strongly adaptive offspring as possible. The average species fitness is also

calculated as the average fitness of its individuals. The fitness computation is only

performed after termination of a run of the simulation for analysis purpose. It is

therefore never used during the simulation itself, meaning that no evaluation of

the fitness of the individuals is performed to select them, the natural selection

process being an emerging property of the interactions between the individuals

and their environment. A program has been written which traverses the output

files after the termination of the simulation in order to calculate the fitness.

4.4 Building a Classifier for Inference

Classification consists of learning from exemplary rules that can later be used to

classify samples into two or more predefined classes ([66]). A learning system that
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performs classification is known as a learner, or, more commonly, a classifier. The

classifier is first fed with training data in which each sample is labeled with the

correct label, or class. This data is used to train the learning algorithm, which

creates models that can then be used to classify similar unclassified data When

training the classifier using cross validation ([67]; [68]), a statistical method to

evaluate the performance of the classifier was used. One round of cross-validation

involves partitioning the data into complementary subsets, performing the analysis

on one subset (the training set), and evaluating the analysis on the other subset

(the testing set). For training all our models a 10-fold cross validation was used,

where the data set was divided into 10 subsets, and a holdout method was repeated

10 times. Each time, one of the 10 subsets was used as the test set and the other

9 subsets were combined to form a training set. The average error across all 10

trials was computed. The advantage of this method is that it matters less how the

data is divided; every data sample is included in a test set exactly once and in a

training set 9 times. In addition, the data used for learning with cross-validation

only represents a part of the total data as the other part has been kept to make

a validation set. Instances for every run are split into two sets: train and validate

which consists of unseen instances in order to evaluate the generalization capacity

of the model learned on the training set.

4.4.1 C4.5

C4.5 is an algorithm which produce classifiers expressed either as decision trees

or rulesets and developed by Ross Quinlan [69]. C4.5 is an extension of Quinlan’s

earlier ID3 algorithm. The C4.5 constructs a very big tree by considering all

attribute values and finalizes the decision rule by pruning. It uses a heuristic

approach for pruning based on the statistical significance of splits At each node of

the tree, C4.5 chooses the attribute of the data that most effectively splits its set

of samples into subsets enriched in one class or the other. The splitting criterion

is the normalized information gain (difference in entropy). The attribute with the

highest normalized information gain is chosen to make the decision and splits the

data set into subsets. The C4.5 algorithm then repeats the same process on these
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smaller subsets:

• For each attribute a

Find the normalized information gain from splitting on a

• Let a best be the attribute with the highest normalized information gain

which minimizes the total entropy of the sublist.

• Create a decision node that splits the sublist on a best

• Recurse on the sublists obtained by splitting on a best

The initial tree is then pruned to avoid overfitting. Pruning is carried out

from the leaves to the root. For a subtree, C4.5 adds the estimated errors of the

branches and compares this to the estimated error if the subtree is replaced by a

leaf; if the latter is no higher than the former, the subtree is pruned. The C4.5

provides decision rules that can help in the interpretation of the classifier to some

extent. Rules are generated by following the path from the root to a leaf node.

For m attributes and n training instances computational complexity = O( m n

log n) + O( n (log2 n)). Some limitations of C4.5 algorithm includes possibility

of over fitting and the possibility of constructing empty or insignificant branches

which adds to the complexity of the tree and therefore to the number of useless

rules.

4.4.2 Random Forest

Random Forest (RF) is a trademark term for an ensemble of decision trees as it

grows many classification trees [70]. Through RF, decision trees are ’grown’ using

a random selection (but not all) of the input variables. Single, tens, hundreds, or

even thousands of these trees, each with a random variable selection, may be grown

for each classification problem. The final classification decision is based on a voting

system of all the decision trees that have been created. Essentially, RF classifies

the predictor variables as many times as the user requires, introducing an element

of randomness each time, and voting for the most popular class. Unlike single

decision trees which are likely to suffer from high bias (depending on how they
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are tuned) RF use averaging to find a natural balance between the two extremes.

Since they have very few parameters to tune and can be used quite efficiently

with default parameter settings (i.e. they are effectively non-parametric), Random

Forests are good to use as a first cut when only little is known about the underlying

model. Random Forests have higher prediction accuracy as compared to individual

classification trees because the ensemble adjusts for the instability of individual

trees induced by small changes in the learning sample, which would otherwise

impair the prediction accuracy in test samples. RF algorithm runs fast and handles

noise and missing data. It can run on large data sets with high dimensional

features. On the other hand, RF are considered as black box supervised learning

techniques because of its sheer size and lack of interpretability. RF internal model

is barely interpretable, and thus is only defined by its inputs and outputs. It

is also not easy to determine how one feature affects the prediction. Depending

on the specific problem on hand, one must choose between accuracy and model

readability.

4.4.3 JRip Rule Learner

JRip ([71]) implements a propositional rule learner, Repeated Incremental Pruning

to Produce Error Reduction (RIPPER), which is an optimized version of IREP.

JRip learn rules that are easy to understand and provide informative feedback

about the problem. This approach performs efficiently on large datasets, due to

its low running time ((O(m log2m)), where m in the number of training data). It is

based in association rules with reduced error pruning (REP), a very common and

effective technique found in decision tree algorithms. In REP for rules algorithms,

the training data is split into a growing set and a pruning set. First, an initial

rule set is formed that over fits the growing set, using a heuristic method. This

overlarge rule set is then repeatedly simplified by applying one pruning operator

among a set of possible ones. A typical pruning operator would be to delete any

single condition or any single rule. At each stage of simplification, the pruning

operator chosen is the one that yields the greatest reduction of error on the prun-

ing set. Simplification ends when applying any pruning operator would increase
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error on the pruning set. The algorithm is divided into a building stage and an

optimization stage. In the building stage the growing a rule phase and the prun-

ing phase are repeated until reaching to stopping conditions. Growing the rules,

consist of, for each rule greedily adding antecedents (or conditions) to the rule

until the rule is perfect (i.e. 100% accurate) by trying every possible value of

each attribute and selects the condition with the highest information gain. Then

the process incrementally prunes each rule and allows the pruning of any final

sequences of the antecedents. The optimization stage comes after generating the

initial rule set. It generates and prunes two variants of each rule from randomized

data using growing and pruning.

In comparison to other machine learning techniques (i.e Random Forests, Sup-

port Vector Machine (SVM) or Neural Networks(NN)), JRip provide a model

easier to interpret and a lower number of rules. Random forests, SVM and NN

are in general more efficient than JRip in terms of accuracy but on the other hand

lack readability.

4.5 Feature Selection

In some of the presented experiments we use a feature selection step before apply-

ing the classification method. We used two different feature selections algorithms.

The first feature selection method used, CfsSubsetEval [72], evaluates the worth of

a subset of features by considering the individual predictive ability of each feature

along with the degree of redundancy between them. Subsets of features that are

highly correlated with the class while having low intercorrelation are preferred.

BestFirst ([73]) searches the space of feature subsets with a greedy hill-climber

augmented with a backtracking facility. This was implemented under weka en-

vironment. The other method, which was previously presented by Salehi E, is a

wrapper feature selection methods [74] [75] based on an estimation of distribution

algorithm (EDA) called CMSS-EDA [76]. Since CMSS-EDA does not consider a

small fix upper bound on the number of variables on which each variable depends,

the most relevant variables using this approach were found even when there were

many dependencies between them. Each subset of variables is encoded as a bit-
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string and the subset of variables which maximizes the AUC (Area Under ROC

Curve) obtained by a Bayesian network classifier was found.
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Chapter 5

The genomic evolution in EcoSim

and its effect on fitness

5.1 Introduction

The emergence of complex adaptive traits and behaviors in artificial life systems

requires long term evolution with continuous emergence governed by natural selec-

tion. Evolutionary adaptation can be viewed as two separate processes. The first

process is the origin of new beneficial mutations. The second process is the fixa-

tion of some of those beneficial mutations by natural selection. From the genetic

perspective, mutations and natural selection, through the course of evolution en-

force the emergence of new traits and disappearing of others. Darwinian evolution

governed by natural selection is modeled in EcoSim and the main objective of this

work is to study the evolutionary process in EcoSim. Validating the evolution-

ary process in EcoSim requires the examining of the emergence of new genes and

behaviours that contribute to the well being of individuals. First, a comparison

between the evolutionary process in EcoSim and a neutral shadow of EcoSim is

studied. Second, the evolutionary machinery in EcoSim was studied by examining

the emergence of new genes and their effect on fitness.
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5.2 Evolution in EcoSim versus Neutral Model

In order to study the genomic evolution in EcoSim, a neutral shadow of EcoSim

is built (see sec. 3.7). The crucial property of EcoSim neutral shadow is that its

evolutionary dynamics are identical to EcoSim except that neither the presence

not the frequency of a genotype can be explained by its adaptive significance. This

is because all selection in the neutral model is random, so no genotype has any

dominance over any other. In other words, although gene states are subject to

the same variation as in EcoSim, they have no evolutionary fitness consequences

or effects. In addition, changes in the environment have no effect on individuals

in the neutral model. Consequently, the process of natural selection is considered

to be eliminated in this neutral model.

For this study we focus on the part of the genome that code for the behavioral

model of the individual and which correspond to its FCM map and which has a

maximum size of 390 sites. Every site is a real discreet number which measures

the level of influence from one concept to another. Initially all prey and predator

individuals are given the same values for their genome respectively. Time step

after another, as more individuals are created, changes in the FCM occur due to

the formation of new edges, removal of existing ones and changes in the weight

associated to edges. The first couple of thousand of time steps are neglected in

the calculations to overcome any misleading results due to the initial similarity

between individual genomes. In each time step a value of entropy of all existing

prey species is calculated, along with the entropy of the entire population of prey.

The information contained within a genome determines how the organism behaves

in its current environment. Thus, this information determines the capability of the

organism to reproduce and transmit its genome. The environment changes from

one place to another and from one time step to the next. Individuals that evolve in

different parts of the world have different information about the environment they

evolve in stored in their genome. Furthermore, as EcoSim models a predator-prey

system, the co-evolution is also taken into consideration. The strategies (behavior)

of each kind of individual (predator/prey) are continuously changing as they try

to adapt to the other kind. The more the individuals try to learn the more the
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environment changes and the more there is still something different to learn. This

fact drives the individuals to keep learning and continuously try to come up with

survival strategies that helps them adapt to their changing environment. This is

the reason behind the fluctuations seen in the EcoSim entropy (see sec. 4.2) curves

(Fig.5.1). On the other hand the neutral model shows much more steadiness in

the entropy values. Under highly random conditions and when natural selection

is eliminated, the genomic structure shows neither learning nor adaptation to the

surrounding environment. These results show that entropy changes through the

course of evolution. The EcoSim simulation gives the chance to acquire data for

thousands of generations and to study the performance of entropy as a genetic

diversity measure.

Figure 5.1: Global Entropy for 10 different runs of the simulation. Top 5 curves

are for EcoSim and lower 5 for Neutral Model.

5.3 Emergence of New Genes

In a constantly changing environment individuals must continuously learn. This

fact drives the individuals to evolve survival strategies that helps them adapt to

their changing environment. Prey individuals die due to several reasons: reaching

maximum age, lack of energy or being eaten by predators. Natural selection is

not forced by limiting the number of existing species or fixing population size, but

rather selection acts through the behavioral model. Individual that are not able
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to gain energy from food, reproduce and escape from predators will be eliminated

by the evolutionary process. Thus, fitness levels are not fixed and do not always

increase; rather, they vary over time. The evolutionary process of EcoSim governs

the emergence of new genes and disappearing of others. By the process of natural

selection only the fittest will be able to survive, and therefore the emergence of new

genes is not random but adaptive, adding to the intelligence and complexity of the

individuals. As the FCM is coded in the genome and represents the behavioural

model, the change and evolution that happens on edges mirrors the behavioural

evolution of individuals. Monitoring change in these edges values adds more un-

derstanding of the behavioural changes along the course of evolution. In order to

validate EcoSim model we examine the effect, the emergence of new genes, has on

individual’s fitness by using classification techniques.

5.4 Building a Random Forest Classifier for In-

ference

Recent work in computational biology has shown an increased use of Random

Forest[70], owing to its unique advantages in dealing with small sample size, high-

dimensional feature space, and complex data structures [77][78]. Random forests

(see sec. 4.4.2)have higher prediction accuracy as compared to individual classi-

fication trees because the ensemble adjusts for the instability of individual trees

induced by small changes in the learning sample, which would otherwise impair

the prediction accuracy in test samples. A new gene is a gene that had the value

of zero in the initial FCM map of prey, and then mutates to and preserves a non-

zero value later on in the simulation. The genes that were initially zero and then

changed are monitored and extracted. The average FCM for every existing species

in every time step in the simulation is calculated. From 390 possible genes there

are 125 initial genes and 265 possible new genes, which can appear gradually. Each

of these 265 new genes represents a feature in the classifier, making the feature

space a high dimensional feature space. Each instance of the learning process con-

sists of the set of 265 average gene values in a given species at a given time step.
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Run Percentage Percentage Percentage

LOW HIGH VHIGH

Run 1 53% 36% 10%

Run 2 45% 39.5% 15.5%

Run 3 41% 42% 17%

Run 4 40% 46% 14%

Table 5.1: Percentage of low fitness (LOW), high fitness (HIGH), and very high

fitness (VHIGH) prey instances for 4 different runs.

There are four different runs of the simulation, each having around 20000 time

steps. The first couple of thousand of time steps are neglected in the calculations

to overcome any misleading results due to the initial similarity between individual

genomes. Consequently, most of the genes would have obtained non-zero values.

Around 150000 instances are randomly extracted from every run, to build four

classifiers, one for each run. The class variable to predict at a given time step

is the average fitness value of the species 50 time steps later. The effect of these

new genes on the individual fitness is not immediate so a 50 time steps shift was

used to give time for the values of new genes to affect the fitness. 50 time steps

counts as 3 to 4 generations which is enough time to observe correlation between

the emerging genes and fitness values. The fitness value is discretized into three

classes for the average fitness; LOW which represent values less than 85. HIGH,

which is between 85 and 110, and very high VHIGH, for values higher than 110.

Table 6.1 presents the percentage of instances for every class in four different runs

of the simulation.

When running the RF algorithm (implemented in the weka environment [79]),

10 fold cross validation was used. Instances for every run are split into two sets:

train (66% of the total data) and validate (34%) which consists of unseen instances

in order to evaluate the generalization capacity of the model learned on the training

set. Using cross validation and 10 classification trees, 94.7% average train accuracy

of four runs with a standard deviation (std) of 0.33 and 95% validation accuracy

with std of 0.3 was found (see Table 6.2). Although there are many factors affecting

the fitness, it was still predicted with high accuracy knowing only the average
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Run Train Validate Acc. Avg Test Acc. on

Acc. on same run other 3 runs

Run 1 95% 95.2% 41.5%

Run 2 94.7% 95.3% 44.2%

Run 3 94.3% 94.4% 43.4%

Run 4 94.5% 95% 44.3%

Table 5.2: Accuracy for training and validating with the Random Forest classifier

on four runs of the simulation.

values of the newly developed genes. This high accuracy supports the initial

assumption that the values of the new evolved genes could affect the well being

of the individuals. We also tested the generality of the finding by training the

classifier on one data set from one run and testing it on a data set from another

run of the simulation. Although the classifier was able to learn some general rules

for prediction in different runs, the average accuracy of 43.5% with std of 1.2 was

not very high. One reason is that the simulation varies, from one run to another

and each run has unique conditions in which survival strategies of the individuals

vary. This leads to different behaviors, and thus different values of the genes that

affect the fitness. These values did not evolve randomly, but were preserved by the

evolutionary process thereby adding a higher level of complexity and intelligence

to the individuals. It is worth noting that this increase in complexity adds an

extra cost for the individual as any new gene added to this individual increase the

amount of energy the individual needs to consume at any time step. Therefore,

in order for new genes to be beneficial in terms of fitness, the benefit in term of

advantageous behavior should be higher than the cost in energy. This supports the

validity of the behavior model and demonstrates how evolutionary processes lead

to adaptation and intelligence. This finding also emphasizes the role of natural

selection in the simulation. Genomes that participate in the well being of its

carrier host persist and survive.
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CMSS-EDA CfsSubsetEval

Train Validate Selected No. Train Validate Selected No.

Acc. Acc. Features Rules Acc. Acc. Features Rules

Run 1 69.5% 70.9% 41 78 69.3% 70.5% 28 53

Run 2 72.2% 74.4% 35 119 73% 74.7% 41 101

Run 3 71.3% 71.5% 63 109 70.3% 71.6% 41 113

Run 4 73.7% 76.8% 47 62 73.8% 74.3% 38 55

Table 5.3: Accuracy percentages for training and validating with JRip after CMSS-

EDA and CfsSubsetEval feature selection, for four runs of the simulation.

5.5 Rule Learning Using JRip

A better understanding of the semantics behind the evolution of the new genes

is interesting. Which genes have a stronger influence on fitness and with which

values? In order to study this phenomenon rules from the learned model predict-

ing the fitness were extracted. The interpretability of a random forest is not as

straightforward as that of an individual classification tree, where the influence of

a predictor variable directly corresponds to its position in the tree. The model

generated by the Random Forest can be challenging to interpret. To by-pass this

limitation the JRip rule learner (see 4.4.3) was used [80] to extract more semantics

from the prediction model. Moreover, in this study the accuracy obtained by JRip

was reasonable and was not traded for low number of produced rules.

In order to improve the model performance and gain a deeper insight into the

underlying processes affecting the results, we used a feature selection step. This

pre-processing step highlights the most important genes affecting the fitness and

eases the process of rule interpretation in addition to minimizing the number of

rules. Two different feature selection methods are used (see sec. 4.5), CfsSub-

setEval [72] using Best First searcher, and CMSS-EDA [76] and present both their

results.

First, samples from the data set were used to extract features using both tech-

niques. Then only these features were used with JRip rule extractor using separate
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training and validating sets with 10 fold cross validation for training the model.

Different features have been selected from different runs of the simulation. This

is due to the complexity of the behavior model. Survival techniques vary based

on the different circumstances of each run and environment dynamics. Although

the two feature selection techniques selected different features, their prediction

accuracy using JRip was very similar. This shows the strong dependencies among

the genes and how they collaborate with each other to adapt to their dynamic

environment. Also some genes might have redundant information which could be

replaced with some other set of genes. Table 6.3 shows results of JRip rule learner

along with the number of rules it produces for each different run of the simula-

tion for both CMSS-EDA and CfsSubsetEval respectively. Different IF THEN

rules are learned from JRip to predict the three fitness classes. We were mainly

interested in the rules that predict the very high fitness class( VHIGH) because

understanding the conditions that increase the individual’s species fitness is highly

informative about the simulation properties. The number of rules, that predict

VHIGH ranges from 2 to 25, in all runs using both feature selection methods. It

should be noted that each gene can have a real positive value (for a new edge

from one concept that positively influence another) or a real negative value (for

a new edge from one concept that negatively influence another). Some rules with

highest accuracy and hit ratio are presented. Rules are in the form of ”IF edges

emerge between the following concepts THEN the average fitness of the species

will be very high after 50 time steps”. The hit ratio of the rule is the percentage

of instances following the rule.

• IF Satisfaction decreases sedentary, AND escape decreases socialize, AND

search for partner decreases nuisance, AND food local low increases fear,

AND satisfaction increases satisfaction, THEN fitness is VHIGH. (hit ra-

tio=0.8, accuracy=71%)

Explanation for the previous rule is as follows. Satisfaction is an internal

concept which is initially decreased by a low local (same cell as the individual) food

level, or by a low energy level of the individual, or by a predator being detected in

a close range (see Figure 3.2 for the initial prey map). A new edge corresponding
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to ’satisfaction decreasing sedentary’ has evolved. The desire to escape lowers the

desire to socialize because preference should be given to escaping from a close

by predator. Searching for a partner decreases the nuisance, and having a low

local food levels increases the internal concept of fear. ’Satisfaction increases

satisfaction’ is an internal feedback loop which gives persistence to the sensation

of satisfaction. The combination of these new emerging genes within population

tends to increase the population’s fitness.

• IF curiosity decreases sedentary, AND friend close decreases exploration,

AND energy high decreases exploration, AND food far increases repro-

duction, AND energy high increases wait, AND explore decreases explore,

THEN fitness is VHIGH. (hit ratio=2.44, accuracy=85%)

Curiosity and sedentary are both internal concepts. Initially curiosity increases

exploration which encourages the individual to move. Sedentary, in the initial

prey map, decreases exploration. A new edge was developed between these two

internal concepts, meaning that curiosity decreases sedentary, which enforce the

initial semantic. Having friends close-by decreases the desire to explore and to

move because having close-by friends encourages the individual to search for a local

partner. Having a high level of energy decreases exploration because it might be

better to reproduce and search for a partner. Having no close-by food, increases the

will to reproduce instead of wasting energy by searching for distant food. Having

high levels of energy increases the wait action is less obvious to interpret, but can

mean that the individual has no need to move. Finally, exploration decreases the

internal desire for further exploration, is also an internal feedback loop that reduce

the persistence of exploration, which is mostly a random movement. These factors

also increase the fitness.

• IF no local partner decreases fear, AND food local high increases wait, AND

food far increases exploration, AND friend close increases eat, AND partner

local yes decreases search partner, AND reproduce decreases socialize, THEN

fitness is VHIGH.(hit ratio=1.53, accuracy=77%)

Fear is an internal concept that initially decreases all motion actions except escape

and explore. A negative edge has been established between the perception of
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having no local partner and fear. If high levels of local food have been found,

waiting is increased. If the food is far the need to explore increases as well.

Having close-by friends increases the desire to eat and gain more energy. Local

close by partners detected decreases the need of searching for partners. The desire

of reproduction lowers also the socialization concept. The combination of the

emergence of these factors also increases the fitness.

• IF no local partner decreases fear, AND predator close increases escape,

AND socialize decreases reproduce, AND predator far increases eat, THEN

fitness is VHIGH. (hit ratio=1.65, accuracy=69.4%)

Initially detecting close-by predators increases the internal concept of fear and an

increased level of fear also increases the desire of escaping. A new edge emerged

which directly encourages escape action if predators are detected without using

internal concept. The need to socialize decreases the need to reproduce, which

means that when there are no local partners (need to socialize), there is no in-

terest to try to breed. Also a meaningful edge between increasing the eat action

if predators are far was developed all leading to increasing fitness. The logical

soundness of most of the produced rules shows both high semantics in the initial

behavioral model of prey individuals, and the self organizing capability of our

system. Some rules seems less obvious to interpret, but as the global model is

a highly complex non-linear system with feedback loops, some modifications can

have effects on other parts of the system and are therefore difficult to understand.

The behavior model (genome) was able to evolve without any external interfer-

ence besides the natural selection forces. These rules emphasize the importance

of certain new genes and the strong dependencies found among them. The logical

correctness of some of these rules is also a major interesting discovery.

5.6 Conclusion

The evolutionary process implemented in EcoSim has proven its effect on the be-

havioral model of the individuals as they adapt to a changing environment. To

emphasize the capability of EcoSim to model evolutionary behavioral adaptation
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it was compared to a partially random version focusing on genetic diversity. It

was demonstrated how entropy used to measure genetic diversity, behaves differ-

ently in both systems. The fluctuation in entropy curves for EcoSim illustrated

how individuals try to learn and adapt to their environment. On the other hand

the neutral model showed more steadiness in the curves due to more randomness

and elimination of natural selection process. The correlation between the fitness

of a population and the emergence of new behaviors was studied. The emer-

gence of new genes was analyzed which affects the behavioral model of the agents,

through the evolutionary process in EcoSim. The value of these new genes served

as features for fitness prediction using Random Forest classifier implemented in

weka. The high accuracy obtained from the Random Forest classifier shows the

capacity of the behavior model to capture relevant information from its environ-

ment giving to the successful individual’s ability to survive and to adapt to its

dynamic environment. In a second step, rule learning technique was applied to

extract semantics information from the prediction model. This enabled better

understanding of the logical rules in the new evolved behavioral models that led

to an increase in fitness. The JRip rule learner was used after a pre-processing

feature selection step. The soundness of the rules obtained is very encouraging as

they help to understand what kind of new behaviors can be useful in such dynamic

and competitive ecosystem. As this simulation allows very long runs, it will be

possible to study the dynamics of co-evolution by analyzing successive changes

in the behavioral models during periods of prey adaptation to predators and vise

versa.
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Chapter 6

Correlation between genetic

diversity and fitness in EcoSim

6.1 Introduction

Genetic change is the basis of evolution and genetic diversity serves an important

role in evolution by allowing a species to adapt to a new environment and to fight

off any disturbances. Genetic diversity is the variation of heritable characteris-

tics present in a population of the same species. For a species to adapt to an

ever-changing ecosystem, a significant level of variation must be present. With

more variation, it is more likely that some individuals in a population will pos-

sess variations of alleles that are suited for the environment. Those individuals are

more likely to survive to produce offspring bearing that allele. The population will

survive for more generations because of the success of these individuals. Genetic

diversity strengthens a population by increasing the likelihood that at least some

of the individuals will be able to survive major disturbances, and by making the

group less susceptible to inherited disorders. Many biological studies show that

decreased population genetic diversity can be associated with declines in popula-

tion fitness [81] [82] [83]. However, populations also adapt to their environment

with the selection of the individuals with highest fitness. This driving force is

opposite to the previous one as it has tendency to preferentially select high fitness

alleles and consequently reduce the genetic variance in the population. This oppo-
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sition of forces leads to an unstable equilibrium of genetic diversity when there is a

change to the environment requiring adaptation. Because overall genetic diversity

is associated with both individual fitness and population adaptive capacity, there

is a need to develop an empirical quantitative understanding of the relationship

between them.

6.2 Measuring Correlation between Entropy and

Fitness

The virtual ecosystem EcoSim allows the study of the complex relationship be-

tween species genetic diversity and species fitness through an evolutionary process

and is not limited to investigating these relationships under particular environ-

mental conditions or at specific time periods as in most biological studies [82]

[83] [84]. In EcoSim the environment is dynamic and is seen in the adaptation

and genomic evolution of individuals. Thus, there are many factors affecting the

genetic diversity of individuals and fitness of populations that can change over

time and differs from one species to another. As we model long term evolution of

many species in a dynamic environment the correlation between genetic diversity

and species fitness may change over time. Shannon entropy is used as a measure

of genetic diversity as presented in sections 4.2. At every time step entropy and

fitness are calculated for all existing species. In order to investigate their possible

correlations, first the Spearman’s cross correlation [85] between genetic diversity

and fitness is calculated for all prey species. The Spearman measure ranks two

sets of variables and tests for a linear relationship between the variables’ ranks.

A perfect Spearman correlation of +1 or -1 occurs when each of the variables is

a perfect monotone function of the other. The Spearman correlation coefficient is

computed as follows:

1− 6
∑N

i=1 d
2
i

N3 −N
(6.1)

where N is the number of items, and di is the distance between each popu-

lation’s rank of fitness and rank of diversity. A value of -1 represents negative

correlation, 0.0 denotes no correlation, and 1.0 demonstrates positive correlation.
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Figure 6.1: Different prey species correlation values between entropy and fitness.

x-axis represents the different time shifts. Y-axis represents the correlation values.

A positive correlation indicates that either low fitness accompanies low diversity or

high fitness accompanies high diversity. Alternatively, if high fitness is associated

with low diversity a negative correlation is detected. In the studied evolutionary

ecosystem simulation the effect of the diversity measure on fitness is not imme-

diate. There must be a time shift between the variation in genetic diversity and

its effect on fitness. Also, since the causal nature between attributes is not known

in advance, the correlation in both shift directions are calculated. The Spearman

correlation coefficient is computed between these two time series for every possible

shift between -s and +s time steps. In essence, the entropy at time t is correlated

with fitness at time t + s where s ranges from -s to +s.

Although there are many factors that might affect fitness beside genetic diver-

sity, strong correlation between entropy and fitness for all prey species was found.

The cross-correlation charts for some prey species is presented in Fig.6.1. The

x-axis in these charts represents the different shifts for the time series. The y-axis

represents the cross-correlation value at the corresponding shift. The figure shows

not only that different species have different cross-correlation values, but also that

same species correlate differently based on the time shift. Note that multiple

factors affect the behaviour of species, including the dynamic environment, co-

evolution and changing parameters with time. The correlation values for the same
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species may thus vary through the course of evolution, allowing us to investigate

biologically meaningful relationships that may not be feasible by experimentation.

This observation encouraged additional analyses by dividing the two time series

into time frame windows and measuring correlations only within the specific time

frame rather than the entire time series. In another words, these time series were

split into sliding windows of 200 time steps centered at every time step within

which all possible correlations are calculated with different shifts ±s. The highest

correlation value (whether positive or negative) is then chosen and assigns to the

species at that time step.

The results of five different runs of the simulation are presented each one con-

taining 16,000 time steps and generating around 110,000 instances on average.

Three different classes are assigned to the correlation values. Correlation with

values between -0.5 and 0.5 are class WEAK CORR representing either no or

weak correlation. Correlation values above 0.5 are high positive (HIGHP) and

correlation values below -0.5 are high negative (HIGHN) respectively. These cor-

relation classes are calculated for all instances (which corresponds to the set of all

species at every time step) in every run and present the percentage of each class

with a window of 200 and maximum shift of 25 in both directions. The averages

for five runs were 26.8%, 38.4%, 34.6% for classes HIGHP, HIGHN and WEAK

CORR respectively.

To better validate the calculations, variations in window and shift values were

investigated. Having a window of 200 and a maximum shift of 20 in both direc-

tions gave 17%, 29.6% and 53.4% on average for five runs for HIGHP, HIGHN and

WEAK CORR correlation classes respectively. Increasing the window and max-

imum shift to 400 and 50 was also tested. The average percentages were 23.7%,

27.5% and 48.8% for HIGHP, HIGHN and WEAK CORR classes respectively.

Increasing the shift values increases the percentage of high correlation instances,

as more time is needed to detect an increase in fitness after an increase in genetic

diversity. Also note that increasing the window does not necessarily increase the

high correlation values as some fluctuations in the entropy or fitness time series

could exist. The values of shift that leads to the highest correlation values were

also examined. It was found that 37.7% of instances in 5 runs obtained highest
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correlations from a positive shift between 10 and 25. In addition, an average of

38.7% for five runs found highest correlation in negative shift between -10 and

-25. This shows that for more than 76% of the cases a window of 10 to 25 time

steps was sufficient to see the effect of genetic diversity on the fitness or vice-versa.

These values correspond roughly to one to three ’biological generations’ (average

life span of an individual) which seems a reasonable time to observe the effect of

genetic variations in a population.

In order to validate the correlation results, an additional test was performed.

First, both fitness and genetic diversity time series were randomized and performed

the same correlation calculation. Windows of 400 with a shift of 50 were set and

Spearman’s cross correlation for all instances from five different simulation runs

were calculated in order to compare with the original time series results. The

resulting correlation values were discretized in the same way leading to 100%

WEAK CORR, 0% HIGHP and 0% HIGHN. These results further validate the

high correlation results obtained between genetic diversity and fitness.

The findings discussed previously of very high values for both negative and

positive correlations support the claim that genetic diversity has a great influence

on the well being of species. High positive correlation values mean that an in-

crease in the genetic diversity, results in an increase in species fitness. There are

many ways to interpret these results. For instance, a newly forming species in

EcoSim with a small but sufficient population size would gradually increase its ge-

netic diversity and subsequently positively correlates with its fitness. Also, these

results may reflect that individuals in EcoSim adapt to their constantly changing

environment. Adaptation could be mirrored by an increase in similarity of the

species’ FCMs (and thus a decrease in entropy) as new behaviors arise for the new

environment and then diffuses throughout the population. On the other hand,

negative correlations imply that a species decreases diversity, which may happen

once individuals have adapted to their environment in order to reach stability. In

order to further validate these results and investigate the reasons behind these

correlation values, a step forward was to build a classifier that could predict the

correlation values.
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6.3 Building Classifier for Inference

To validate the preceding results and further investigate the reason behind these

correlation values a machine learning approach to build a classifier was used. The

interest of this classifier is first to see if some specific properties of a species can

predict the current evolutionary behavior of the species, that is whether it can

infer the correlation values based on these characteristics at a specific time. The

classifier can also help to understand what factors and conditions affect the evolu-

tionary behavior. This approach works by correctly classifying unknown instances

based on a trained classifier, which demonstrates that the observed correlation is

a common phenomenon that can be predicted from environmental features.

Three different classification algorithms were tested; C4.5 decision tree algo-

rithm, Random Forests and JRip rule learner (see Chapter 4). The first step to

build a classifier is to select the features that are believed to best describe the

species and have direct effect on the species fitness. These features are: the num-

ber of individuals in species, the average age of individuals in species, the average

speed of the individuals and their average energy level. The average number of

reproduction events, average number of reproduction failing events, average ac-

tivation level of reproduction and the spatial dispersal were also included. In

addition, the average activation level of fear, hunger, satisfaction, nuisance, cu-

riosity (which encourage individuals to move) were included. Finally, the entropy

and fitness for each species were also among the selected features. In total there

were 16 features, including the class variable correlation with the three possible

values HIGHN, HIGHP and WEAK CORR. The next step was to try to select

the best of these 16 features in order to both simplify the model and discover the

most important features. This was accomplished using feature selection.

6.3.1 Feature Selection

To increase the quality of the classifier a wrapper feature selection method [74] [75]

was used, based on an estimation of distribution algorithm (EDA) called CMSS-

EDA [76]. This feature selection method is particularly efficient for problems

with high level of interdependency between features. It searches for the subset of
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variables that maximizes AUC (Area Under ROC Curve) obtained by a Bayesian

network classifier.

The best chosen features were population size, entropy, fitness, spatial disper-

sal, age and reproduction fail. The feature selection algorithm was used on all

the five independent simulation runs and the same best features were consistently

selected. These results also demonstrate the stability of the simulation that is

important to be able to discover meaningful generic rules. Selection of entropy

and fitness among the best features is intuitive as they are the two features being

correlated and subsequently have a direct effect on the correlation class variable.

Fitness and entropy values also determine the sign of the correlation results (being

positive or negative). However, this particular result is not a bias in our analy-

sis because what is being measured here is how a specific value of either entropy

(or fitness), at a given time step, affects the future (or is affected by the past)

correlation between fitness and entropy.

The selected features were then compared to important features used in eco-

logical domains to study correlations between genetic diversity and fitness. For

instance, one highly studied area centers on the effects of population size (which

was among the selected features) on fitness. Some studies showed that population

size and genetic variation are strongly positively correlated with fitness [84]. Also,

loss in fitness and genetic diversity can be accompanied by a drop in population

size [81]. Furthermore, positive correlation between genetic diversity, fitness, and

population size was shown in [83]. Another selected feature, spatial dispersal has

been shown to be an important factor for maintaining genetic diversity and fitness

[83]. The last two selected features are the average age and the average repro-

duction fail. Considering the concept of fitness as defined in this analysis (see

sec 4.3) used, it is clear that these two features have a direct effect on the fitness

value because they are implicitly correlated: the higher the average age of species

population the higher its fitness, and hence a lower average reproduction fail. The

similarity between the best features discovered by the presented system and the

most significant biological features affecting the genetic diversity and fitness is

noticeable. It is important to keep in mind that these are not pre-defined or in-

nate features of EcoSim but arise through evolution in the simulation. Finally,
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Table 6.1: Percentage of high positive (HIGHP), high negative (HIGHN), weak

correlation (WEAK CORR) between fitness and genetic diversity for window of

400 and shift of ±25 for five different runs.

Run Percentage Percentage Percentage Percentage

HIGHP HIGHN WEAK CORR HIGH CORR

Run 1 13% 15.5% 71.5% 28.5%

Run 2 13.3% 17.6% 69.1% 30.9%

Run 3 11.3% 15.9% 72.8% 27.2%

Run 4 9.8% 11.4% 78.8% 21.2%

Run 5 11.8% 14.9% 73.3% 26.7%

Average 11.8% 14.9% 73.3% 26.7%

the biological significance of the best features selected highlights the validity of

the measurements used and the finding of a strong correlation between genetic

diversity and fitness in EcoSim.

6.4 Classification

6.4.1 Decision trees classification results

First, the C4.5 algorithm [69] with pruning, implemented in the WEKA [79] was

used. A window of 400 is used and the shift of ±25 time steps is fixed for calculating

the correlations. The reason behind that is to have all instances on the same scale

making them comparable. Increasing the window to more than 400 also results in

fluctuation in the fitness and entropy series. Conversely, decreasing the window

tends to influence the correlations resulting in higher values. A shift value of ±25

was used based on the analysis of which shift leads to the highest correlations.

Table 6.1 presents the percentages for HIGHP, HIGHN, WEAK CORR and the

sum of HIGHP and HIGHN called HIGH CORR, for the five runs. The six features

used to build the model are the ones selected from the feature selection process.

The instances for each five runs were split into 80% for training the classifier using

10-fold cross validation and 20% for validating with C4.5 pruning model.
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Table 6.2: Accuracy percentages for training and validating with the C4.5 classifier

for 5 runs of the simulation.

Run Train Validate Acc. Avg. Validate STD Validate Number

Acc. on Acc. on

Acc. on same run other 4 runs other 4 runs of rules

Run 1 79.3% 80.3% 60.1% 4.9 294

Run 2 74.7% 75.3% 66.8% 0.8 307

Run 3 77.2% 78.1% 63.2% 3.2 280

Run 4 80.2% 80.2% 69.1% 2.6 181

Run 5 78% 78% 66.9% 3.8 263

Average 77.9% 78.4% 65.2% 3.1 265

Table 6.2 presents training and validating accuracy on the data set from the

same run. Training the classifier on the data set from one run and validating it with

a data set from the other runs was also tested to infer generality of the model. The

confusion matrix showed high true positive results for training and validating on

the same run. The results from validation on another run showed only reasonably

high true positive values when accuracies are above 65%. This is due to the fact

that each run has variations in terms of attributes values and ranges and also

due to possible overfitting. However, the model was able to discover some rules

that can make good predictions on unclassified instances. The good classification

accuracy on the test set of the same run points to the validity of the calculations

of entropy as a measure of genetic diversity and its high correlation with fitness.

It also shows that there exist specific conditions for the species that lead to a

positive or negative correlation between fitness and genetic diversity.

6.4.2 Random Forest Classifier for Inference

The Random Forest [70] technique includes an ensemble of decision trees and

incorporates feature selection and interactions within the learning process. It is

nonparametric, efficient, and has high prediction accuracy for many types of data

including high dimensional ones. The same 15 features were used in a feature

selection step. The best six selected features were used as attributes in the RF
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Table 6.3: Accuracy percentages for training and validating with the RF classifier

for 5 runs of the simulation.

Run Train Validate Acc. Avg. Validation STD Validation Number

Acc. on Acc. on

Acc. on same run other 4 runs other 4 runs of rules

Run 1 97.6% 97.9% 63% 4.94 1104

Run 2 96% 96.5% 68.3% 1.7 975

Run 3 96% 96.9% 66% 3.8 983

Run 4 95.7% 96.1% 67.7% 2.7 1021

Run 5 96% 96.3% 68.1% 3.3 995

Average 96.4% 96.7% 66.6% 3.2 1015

classifier. The Random Forest classifier implemented in the weka environment [79]

was used. Instances for every run were split into two sets: train and validation.

For training the model a 10 fold cross validation method was used. The average

accuracy of five classifiers on test set, one for each simulation, was 96.7% (see Table

6.3). The high classification accuracy validates our use of entropy as a measure of

genetic diversity and its high correlation with fitness, in addition to emphasizing

the most important features affecting correlation results.

6.4.3 JRip Rule Learner

The model generated by the Random Forest is difficult to interpret and the high

number of rules produced by C4.5 is challenging. To by-pass this limitation the

JRip rule learner [80] was used to extract more semantics from the prediction

model and gain more insight about the conditions affecting correlation between

genetic diversity and fitness. Different IF THEN rules are learned using JRip to

predict the three correlation classes using the same selected features as before.

In five different runs 19 rules were discovered with an average accuracy of 76%

using 10 fold cross validation see Table 6.4. Here the main interests were the rules

that predict the HIGHP and HIGHN classes; and some of the produced rules are

presented. The hit ratio of the rule is the percentage of instances covered by the
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rule.

Table 6.4: JRip rule learner accuracies and number of produced rules for five

different runs of the simulation

Run Train Validate No. of

accuracy accuracy rules

Run 1 76% 75.6% 24

Run 2 71.7% 72% 23

Run 3 75% 75.8% 24

Run 4 79% 78.8% 7

Run 5 75.5% 76.1% 18

Average 75.4% 76% 19

• IF number of individuals is low, AND fitness is low, AND entropy is low,

AND failed reproduction is high THEN correlation is HIGHP. (accuracy=55%,

hit ratio=1.7)

• IF number of individuals is low, AND age is high, AND fitness is low,

AND entropy is low THEN correlation is HIGHP. (accuracy=64.3%, hit

ratio=0.88)

• IF fitness is low, AND age is medium, AND spatial dispersal is low THEN

correlation is HIGHP. (accuracy=62%, hit ratio=0.76)

• IF number of individuals is high, AND age is high, AND entropy is high,

AND spatial dispersal is high THEN correlation is HIGHN. (accuracy=82%,

hit ratio=0.37)

• IF spatial dispersal is high, AND number of individuals is high, AND age is

medium, AND entropy is medium, AND fitness is high THEN correlation is
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HIGHN. (accuracy=75%, hit ratio=0.6)

• IF failed reproduction is low, AND entropy is high, AND number of individ-

uals is high THEN correlation is HIGHN. (accuracy=100%, hit ratio=0.2)

The other rules discovered were similar. In general, a low number of individ-

uals associated with a low entropy, low fitness and low spatial dispersal led to

a high positive correlation between entropy and fitness. Small species tended to

increase their genetic diversity which allowed them to increase their fitness and

hence their survival ability. On the other hand, a high number of individuals

associated with a high entropy, high fitness and high average age led to high neg-

ative correlations between entropy and fitness. Species with large population size

moved towards lower genetic diversity as individuals adapted by learning common

survival strategies that tended to increase their fitness. RF produced the highest

accuracy but lacked readability and model understanding. The JRip rule learner

gave the least accuracy but produced the least number of meaningful rules with

acceptable accuracy values.

6.5 Conclusion

It has been shown how the evolutionary process implemented in EcoSim affects the

behavioral model of the individuals as they adapt to a changing environment. The

use of Shannon entropy as a measure of genetic diversity of an individual based

evolutionary ecosystem simulation has been introduced. Very high correlation,

both negative and positive, between entropy and fitness have been found, which

strongly indicates how genetic diversity affects the well being of the species. In

order to validate our correlation results and further understand the reasons behind

these results we built different classifiers to predict the correlation class variable

based on training and validating sets. We found high accuracy for classification

which showed the significance of our genetic diversity measure and its correlation

with fitness. In addition, we used feature selection to find the best features affect-

ing the correlation values. We showed how these extracted features are similar to
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the factors affecting genetic diversity and fitness in community ecology. The simi-

larity between results of five different runs of the simulation points to the stability

of the simulation and the generality of our findings. This study demonstrated the

relation between genetic diversity and fitness changes based on time and other

features such as reproduction rate, population size and spatial dispersal. Three

different classifying algorithms have been tested; RF, C4.5 and JRip. The RF

produced the highest accuracy but lacked readability and was difficult to inter-

pret. The rules discovered from the JRip, which seem to be biologically pertinent,

gave us more understanding about the conditions affecting the correlation between

genetic diversity and fitness.
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Chapter 7

Behavioural and Genetic Change

of Prey as a Response to

Predator Removal

7.1 Introduction

Much attention has been given to the role of predation in structuring ecosystems

and influencing prey behaviours ([86]; [87]; [88]); through processes occurring on

ecological or microevolutionary time scales. Contemporary evolution, also known

as microevolution, concerns adaptation and trait heritability observed in contem-

porary time (i.e. less than a few hundred generations). Although most research

considers evolution to be a long-term (macroevolutionary) concern, the evidence

for contemporary predator-prey evolution suggests that it should also be a short-

term concern, helping to bridge the gap between ecological and evolutionary pro-

cesses. Recent studies in eco-evolutionary dynamics suggests that contemporary

evolution can shape ecological processes ([89]; [90]). As it is becoming increasingly

clear that predators are a strong force in nature, we asked how they may shape

ecosystems and influence their prey over the course of evolution.

The sudden absence of predation pressure has been considered as one of the

major factors causing contemporary evolution of prey populations ( [91]; [92];

[93]). In the past decade, there has been an explosion of interest in how evolution
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of predator-prey interactions can affect their population dynamics, such as popu-

lation stability or instability ([94]), along with predator and prey behaviour ([88]).

Ecologists typically treat predator and prey populations as homogeneous sets of

individuals, rather than genetically diverse populations that are capable of evolu-

tion. However, predators and prey do frequently coevolve because they respond to

reciprocal biotic selection which can give rise to diverse adaptations. Evolutionary

change and population fluctuations can occur concurrently and interdependently,

affecting predator-prey population dynamics and driving out-of-phase predator-

prey cycles ([94]; [95]; [96]).

Predators do far more in shaping prey population dynamics than through

lethal effects (also known as direct prey consumption) ([97]). The non-lethal

consequences of predation risk, whether through predator-induced morphological

changes or through behavioural compensation, are very important in determin-

ing population and community dynamics in a variety of taxa ([86]; [88]). One

particularly important avenue for such non-lethal consequences to effect popula-

tion level changes is through a trade-off between predation risk reduction and the

benefits of foraging ([98]). Foraging-predation risk trade-offs have been used as an

effective framework for understanding how non-lethal effects influence populations

and communities in terrestrial and avian animals in several reviews ([88]; [99]).

Studies have noted that predation risk alone may be responsible for much of the

observed interactions between predators and prey ([100]), but the complexity of

these interactions is just beginning to unfold as it is becoming increasingly impor-

tant to synthesize our understanding of multiple interacting behaviours ([101]).

By interacting with other trophic levels predators act powerfully in shaping the

adaptations of organisms to their environments. Many antipredator behaviours

and morphological traits are the evolutionary products of an endless antagonism

between the killing instinct of their predators and the driving needs to survive

and reproduce of prey ([102]; [103]). This antagonism necessarily gives rise to

tradeoffs between the costs and benefits of antipredator behaviours because they

evolve under energy constraints, and it is clear that organisms have evolved to

choose between alternative behaviours to deal with the threat of predation un-

der different circumstances ([104]). The evolution of antipredator, reproductive
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and foraging behaviours under the constraints of time, energy, and predation risk

can impact not only individual fitness but also population dynamics ([96]). The

abundance of organisms at different trophic levels and the behavioural complexity

of their interactions within communities are two frontiers that change through

evolution in predator-prey systems. Ecological modeling offers a solution for such

integrated analysis. However, most models do not account for the non-lethal ef-

fects that predators can have on prey which can critically affect prey population

growth and prey resource densities through cascading effects ([98]). In real ecosys-

tems individuals engage in complex behavioural interactions between and within

trophic levels which can affect energy flow. Mathematical models have been pro-

posed to study predation risk-foraging tradeoffs, for example the Risk Allocation

Hypothesis (RAH) ([105]; see [106] for a review of empirical tests of the Risk Allo-

cation Hypothesis). Empirical work has shown that decreased foraging efficiency

while under predation risk can directly limit energy transfer up the food chain by

reducing both the energy acquired by prey and the energetic conversion of food

to growth in intermediate consumers, thereby reducing the biomass available for

predation by higher trophic levels ([107]). Thus, energy flow through an ecosystem

is greatly influenced by the behavioural interactions between predators and prey.

There are numerous examples of predator-prey systems in which the prey will al-

ter their foraging behaviour, activity or reproductive behaviours due to perceived

predation risk. For example,[108] was able to show that male sticklebacks adjust

reproductive effort in response to predation pressure by breeding less frequently,

and males were also responsive to the current probability of mating despite a back-

ground of predation risk. The authors observed that males with a higher chance

of mating took more risk in finding mates than those with a lower chance of mat-

ing. Birds have been a prime study group in investigating the effects of predation

on reproductive strategies. For example, [109] found that birds assess the risk of

nest predation and alter their reproductive strategies accordingly. Another recent

avian study demonstrated that nonlethal predation effects can reduce offspring

production by 40% over the span of a breeding season, concluding that predation

risk alone can affect reproductive strategies and parental effort in raising offspring,

and consequently population demographics ([110]). However, it remains to be seen
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how these variations in predation risk and reproductive output over the lifetime

of individuals will affect the evolution of this population.

The current understanding of the role of predation in nature would suggest that

introducing predators into an ecosystem is likely to have a range of consequences

for the prey and the ecosystem itself. These effects may vary depending on the time

they are measured following reintroduction (i.e. after previously being removed, or

nearing extinction) or introduction (i.e. a non-native, perhaps invasive, predator

that has never existed among the prey) of a predator. Many studies have focused

on relatively short-term effects of predator introductions; among these, island

species and ungulates have primarily been given attention. Some studies have

shown that introducing new predators to islands dramatically affects naive prey.

For example, endemic island bird species that have evolved in the absence of

predators are much more likely to go extinct than are exotic bird species when

predators are introduced ([111]). Other studies have shown that introducing non-

native predators into islands can lead to catastrophic consequences ([112]; [113];

[111] ; [114]). In this study we investigated the effect of predator removal on the

general behaviour of prey, genetic change and their capability to coevolve when

predators are reintroduced in EcoSim. In addition, we allowed prey to evolve

along two distinct evolutionary paths in our simulation, by either coevolving with

predators or evolving in their absence, and used a machine learning classification

algorithm to show that distinct genomes, corresponding to distinct behavioural

adaptations in these prey populations, had evolved after long periods of time.

7.2 Summary of EcoSim Runs

In order to study the effect of predation on prey evolution we set up four different

scenarios. In case A, the predators and prey coexist throughout the whole simu-

lation run so they are considered prey evolving under high predation risk. In case

B, prey evolve in the complete absence of predators and thus are considered to

be low predation risk prey. In case C, predators and prey start by coexisting for

15,000 time steps, and then predators are removed from the simulation leaving

prey to evolve alone in the absence of all predation pressure. In case D, the sim-
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ulation starts with only prey evolving alone and then we introduced predators to

the naive prey. For each of these four cases 10 independent runs of the simulation

were performed with the same initial conditions for 30,000 time steps (see Figures

7.1 7.2 7.3). For analysis and results, we calculated the average of these 10 runs

for any parameter under examination. In case D, we investigated if the time at

which predators are introduced to naive prey is a factor in their ability to sur-

vive and begin coexistence with predators. Therefore, for case D we introduced

predator populations as a cohort at several different time steps using 10 different

simulation runs in each test. In each simulation only prey individuals were initially

present and then predator populations were introduced with the same initial ratio

of predators to prey as in case A of the EcoSim (1 to 2.5), but at different time

steps. Thus, prey populations had evolved and adapted their survival behavior to

the absence of predators to different extents in each of these simulations. When

introducing predators, we randomly chose clusters (25 cells) which were highly

populated with prey.

Figure 7.1: Snapshot of the world in one of the case A runs at time step 5000.

The numbers of prey and predator individuals are 198554 and 27903 respectively.

The colored spirals show different prey species and the white represents predators.
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Figure 7.2: Snapshot of the world in one of the case B runs at time step 5000

showing 34254 prey individuals.

Figure 7.3: Snapshot of the world in one of case C runs. Figure on right represents

the world at time step 15000 showing 233784 prey and the figure on left at time

step 15060 where prey increased to 1040856.
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7.3 Predation effect on prey’s behaviour

7.3.1 Population dynamics

Evolution within a predator-prey system can affect their behavioural interactions

and in turn population dynamics. Figure 7.4 shows the average of the prey pop-

ulation for 10 independent runs for each of the three different cases A, B and C.

From the beginning of the simulation and for about 1,000 time steps, the prey

population in case B is more than twice the prey population in case A runs. This

initial spike in prey population in case B is due to the absence of predators which

allows prey to feed and reproduce freely, and consequently leads to declines in grass

levels (Figure 7.5) and subsequent declines in the prey population after the first

1,000 time steps. Since grass does not evolve in EcoSim, this allowed overgrazing

by prey and the dramatic decline in grass until food became too scarce to sustain

the high prey population. The decreased grass levels do not completely recover

or reach its initial percentage as the speed of growth does not change which in

return affects the prey population recovery. Particularly noteworthy is that the

same phenomena is seen in case C where the sudden removal of predators caused

a chaotic increase in prey population, which then led to a decrease in grass due

to high consumption by prey, and a final reduction in the prey population after

1,000 times steps. The global trend in the prey population after the first 1,000

time steps is more stable and steady in case A, but is followed by a general increase

during the last 28,000 time steps in case B.

The difference in prey populations between case A and case B is statistically

significant (paired t-test between case A and B, p-value <0.001) (paired t-test

between first and second half of case C, p-value <0.001). Prey fitness measures

also mirrored the population differences by showing the same trend (Figure 7.6),

where the difference is also statistically significant (paired t-test between case A

and B, p-value <0.001) (paired t-test between first and second half of case C,

p-value <0.001).

Both reproduction and birth rates increased in the absence of predators, as

it can be seen in both case B runs and the second half of the case C runs after
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Figure 7.4: Total prey population. Blue line represents case A (high-risk prey),

red line represents case B (low-risk prey), and green line represents case C where

predators and prey co-evolve till 15,000 time steps, and then prey evolve alone.

Figure 7.5: The average amount of grass in the world. Blue line represents case A

(high-risk prey), red line represents case B (low-risk prey), and green line repre-

sents case C where predators and prey co-evolve till 15,000 time steps, and then

prey evolve alone.
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Figure 7.6: The average prey fitness. Blue line represents case A (high-risk prey),

red line represents case B (low-risk prey), and green line represents case C where

predators and prey co-evolve till 15,000 time steps, and then prey evolve alone.

Figure 7.7: The average prey populations choosing reproduction action, including

all successful and failed attempts. Blue line represents case A (high-risk prey),

red line represents case B (low-risk prey), and green line represents case C where

predators and prey co-evolve till 15,000 time steps, and then prey evolve alone.
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Figure 7.8: The average prey birth ratio to population. Blue line represents

case A (high-risk prey), red line represents case B (low-risk prey), and green line

represents case C where predators and prey co-evolve till 15,000 time steps, and

then prey evolve alone.

the release of predators. The difference in the ratio of individuals to the total

prey population that chose the reproduction action (Figure 7.7) is statistically

significant (paired t-test between case A and B , p-value <0.001) (paired t-test

between first and second half of case C, p-value <0.001). The difference in the birth

rate, which is the ratio of newly born prey individuals to the total prey individuals

(Figure7.8) is also statistically significant (paired t-test between case A and B , p-

value <0.001) (paired t-test between first and second half of case C, p-value <0.001

). These results are consistent with literature reporting a reduction in reproduction

levels due to predation pressure ([108]; [110]). Birth rates and death rates were

significantly higher in case B runs than in case A runs (Table 7.2). While birth

and death rates were relatively stable for case A prey, they increased gradually for

case B prey. The consequences on population growth were very different for the

two prey groups (Fig. 7.4. Increasing birth rates resulted in population growth

for low-risk prey, while the high-risk prey population was relatively stable over

time. This indicates that predators exerted population control on high-risk prey.

Death rates are reported here as total causes of death, although EcoSim records

three different causes of death (predation, low energy, and old age) for the case

A condition, and two different causes for the case B condition (low energy and
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old age). Causes of death were similar in ranking for both prey groups: for both

prey groups the most frequent cause of death was energy and the least frequent

cause of death was old age. This indicates that the indirect effects of predators on

prey energy budgets may have played a role in the selection of individuals, which

consequently influenced population structure.

7.3.2 Predation risk-foraging trade off

Prey also showed clear differences in their foraging behaviours across cases A,

B and C (Figure 7.10). These differences illustrate that prey in EcoSim exhibit

a tradeoff between the foraging and predation risk, such that prey spend more

time and energy on foraging when there is no predation risk compared to when

there is high predation risk. Differences in foraging behaviour between case A, B

and C were statistically significant (paired t-test between case A and B, p-value

<0.001) (paired t-test between first and second half of case C, p-value <0.001).

In addition, in the first 15,000 time steps there was a close match between case

C and A in terms of foraging, but during the second half of the simulation (after

predators removal in case C) there was a close match between case C and B for the

next 15,000 time steps (Figure 7.10). Thus, high-risk prey foraged less frequently

than low-risk prey but were more successful at eating grass. The main factor

accounting for the difference in successful eating may have been the movement of

prey because this affected the frequency of encountering food in the world, and

therefore its consumption and availability in the world, which differed significantly

between case A and case B prey as seen in Fig. 7.5 and Fig. 7.9. Predation

risk-induced prey movement was in fact beneficial to the recruitment of grass

because it prevented overgrazing of local food sources, as can be seen by a steady

grass density for case A and steady level of grass in the world, and a dramatic

decline in grass density and grass level case B. The effect of predation-sensitive

foraging and overgrazing for case B prey had a snowballing effect, because if a

local patch of grass becomes depleted then grass cannot regrow in a cell (i.e.

when all 8 of its neighboring cells are grass-empty). As a result, grass became

progressively depleted and prey became less successful in eating actions. Overall,
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the trends in grass abundance between the two prey groups show evidence for

indirect (cascading) effects in EcoSim as predators kept grass levels stable for

case A prey, while their absence led to a dramatic decline in the long run for

case B prey. In EcoSim we observe both risk-averse and risk-prone prey foraging

behaviours owing to the grass diffusion mechanism. Different parts of the world

have different grass distribution, which allows the presence of both behaviours.

In case B runs the grass level (Figure 7.5) and movement (Figure 7.12) curves

show more fluctuations than case A curves. Prey adjust their behaviour from

risk-aversive when food was relatively abundant in the world, to risk-prone when

food became scarce.

Figure 7.9: Grass density is the total units of grass divided by the number of

prey population in the world. Blue line represents case A (high-risk prey), red line

represents case B (low-risk prey), and green line represents case C where predators

and prey co-evolve till 15,000 time steps, and then prey evolve alone .

The same phenomenon has been seen in nature after the removal of preda-

tors. For example, [93] showed that removing predators from a prey population of

guppies caused prey density to increase, enhance guppy trophic traits, and led to

an increase in food consumption. Case C shows that even after a relatively short

evolutionary time period the prey evolved adaptive behaviours to the absence of

predators by allocating resources (time and energy) away from risk-aversion and

to foraging. Similarly, ([93]) pointed to a specific trade-off between escape ability

and foraging ability.
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Figure 7.10: The average prey foraging ratio to population. Blue line represents

case A (high-risk prey), red line represents case B (low-risk prey), and green line

represents case C where predators and prey co-evolve till 15,000 time steps, and

then prey evolve alone.

Does the tradeoff affects the energy of prey and allocation of energy to

reproduction?

The consumption of prey’s energy budget is presented in (Table 7.1). On average,

high-risk prey (case A) had significantly greater energy budgets of 329.33 units (std

of 13.74 units) compared to 282.28 units (std of 9.33 units) for low-risk prey (case

B) (paired t- test between prey energy budget in high and low risk prey runs,

p-value <0.001). Furthermore, predators greatly influenced the way in which

prey allocated energy to their actions, both in terms of the proportion of their

energy budgets they spent on each type of action and also in the trends of energy

expenditures throughout evolution. Of all movement actions foraging was the most

energy costly action for low-risk prey, while explore and escape were the most

energy costly for high-risk prey. These differences indicate unique behavioural

adaptations to managing energy budgets.

Energy investment in reproduction also differed significantly (paired t- test

between prey reproduction in case A and B runs, p-value <0.001), with high-risk

prey consuming more energy for reproduction in proportion to their average energy

budgets. For both case A and B the energy spent on reproduction represents the

largest single portion of energy budgets. The result that high-risk prey spend more
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Table 7.1: Average energies (with std between brackets) consumed by prey while

engaging in each type of action, expressed as a percent of their average energy

budgets. (Note: since these are average values over the entire duration of the

runs they do not add up to 1). Eating represents net energy gained from eating,

including the energy spent on the eating action itself. Due to computational

limitations we present here the average energy consumed for each action for four

runs of case A and B prey only. *Includes all successful and failed actions.

Actions case A case B

runs runs

Average energy 329.3(13.74) 282.28(9.33)

(units)

Escape 12.89(0.66) 9.76(4.29)

Foraging* 10.78(0.9) 15.79(8.36)

Socialize* 10.44(0.68) 12.86(9.12)

Explore 12.9(0.69) 9.92(4.04)

Wait 9.84(0.68) 6.13(4.17)

Eating 52.29(1.33) 66.08(10.29)

Reproduction* 50.65(1.04) 46.15(9.6)

Percentage of 30.75(1.68) 28.14(1.75)

transmitted energy
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energy on reproduction compared to low-risk prey, while counterintuitive, arises

from the adaptation of low-risk prey to achieve higher reproduction rates. This

strains their energy budgets since reproduction is very energetically expensive, and

also results in a significant reduction of energy investment in offspring compared to

high-risk prey (paired t-test between percentage of energy transmitted to offspring

in case A and B runs, p-value <0.001).

As can be seen from the energy expenditures, evading predators through the

escape action is much less energetically expensive than reproducing. Thus, the

antipredator behaviour escape may be a good temporary strategy for survival

from an energy perspective, but it still makes substantial decreases in overall

energy so less will be available for future reproduction. This indicates that there

is a tradeoff between the energy required to stay alive (by avoiding predators and

foraging) and the energy required to reproduce.

7.3.3 Adjustment of reproduction strategies in response

to predation risk

Previous results showed that predation risk has indirect fitness consequences through

its effects on prey energy budgets and on energy allocation to offspring. Preda-

tion risk also directly influences prey fitness through its effect on reproductive

behaviour (Table 7.2). Case A prey attempted reproduction much less frequently

compared to case B prey, so predators effectively suppressed reproduction. Fur-

thermore, while the reproduction action was chosen at a relatively constant fre-

quency in case A it was chosen with increasing frequency in case B, indicating a

behavioural adaptation through evolution (Fig. 7.7). Reproduction actions were

also more often successful for case B, which may have occurred because repro-

duction success depends on genetic distance between the two prey parents; since

low-risk prey moved less they were more likely encounter more genetically similar

individuals and reproduce successfully.

Although low-risk prey gained more energy from more frequent successful eat-

ing actions than high-risk prey (Table 7.1), the energy budgets of prey were af-

fected more by expenditures than by energy intake. Not only is reproduction much
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Figure 7.11: Percentage of maximum allowed transmitted energy to offspring at

birth. Blue line represents case A (high-risk prey), red line represents case B (low-

risk prey), and green line represents case C where predators and prey co-evolve

till 15,000 time steps, and then prey evolve alone.

Table 7.2: Demographic characteristics as a percent (%) of population for case

A and B runs. Standard deviations in brackets. *Includes successful and failed

actions. **Death rate includes all causes of death (being eaten by predators (for

case A prey only), energy depletion, and old age).

Actions case A case B

runs runs

Reproduction 18.83(6.5) 31.88(21.4)

Birth rate 4.79(1.4) 5.99(3.9)

Death rate** 4.78(1.5) 5.99(3.9)

Average age 15.3(0.7) 12.2(1.2)

Prey population 180608.2(47942) 70265.73(39228)
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more energetically expensive than movement, but the birth rate was also greater

for case B than case A. Higher birth rates also took an energetic toll on parental

investment of energy as case B prey invested smaller and decreasing amounts of

energy in their offspring throughout evolution compare to case A prey (significant

paired t-test between percentage of energy transmitted to offspring in case A and

B runs, p-value <0.001) (Fig. 7.11). By contrast, case A prey invested more

amount of energy in their offspring throughout evolution. This shows that there

is a tradeoff between reproduction rates (Fig. 7.7) and parental investment (Fig.

7.11) due to limitations in energy budgets. Empirical studies have shown situa-

tions when prey can allocate energy differently depending on the level of predation

risk, whether by investing more resources in antipredator defenses or by reducing

other energetically expensive activities such as reproduction ([115]; [116]), or by

other means. For example, one study showed that Daphnia carinata (a small wa-

ter crustacean) grow defensive crests when predation risk is high which results

in less energy being invested into offspring production, as seen by their smaller

eggs relative to D. carinata grown in low-risk environments ([117]). In this study

Daphnia did not change food intake, so there was a clear indication that energy

was allocated differently as a function of predation risk.

7.3.4 Prey movement

Prey movement was strongly affected by the presence/absence of predation risk

(Table 7.3, Fig. 7.12 and Fig. 7.13). The total movement (sum of all escape, for-

age, socialize plus exploration actions) of prey was significantly higher throughout

evolution in the simulation when predators were present (paired t-test between

prey movement for case A and B runs, p-value <0.001). On the other hand, low-

risk prey evolved to be progressively more sedentary as they chose the waiting ac-

tion more frequently over the movement actions as seen in Fig. 7.13 and Table7.3 .

Predation pressure mainly affects the proportion of the prey population that chose

escape and foraging actions, and only slightly affects exploration and socialization

actions; whereas escape and exploration were chosen more frequently among high-

risk prey, foraging and socialization were chosen more frequently among low-risk
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Figure 7.12: The proportion of the total prey population runs that chose a move-

ment action (escape, foraging, socialize or explore) at each time step. Blue line

represents case A (high-risk prey), red line represents case B (low-risk prey), and

green line represents case C where predators and prey co-evolve till 15,000 time

steps, and then prey evolve alone. Total movement is the sum of all four of these

actions, and includes all successful and failed foraging and socialization actions.

Figure 7.13: The proportion of all movement actions that high (case A) and

low(case B) risk prey runs spent. The bars show a behavioural tradeoff between

time spent foraging and time spent responding to predation risk through escape

actions.
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Table 7.3: Average frequency of movement actions of all prey as a percent (%)

of the total population of prey, for case A and B prey except for Speed which is

expressed as number of cells. Standard deviations in brackets (std).*Includes all

successful and failed attempts for each action.

Actions case A case B

runs runs

Escape 44.92(10.7) 1.31(2.5)

Foraging* 1.25(0.9) 29.43(17.6)

Socialize* 1.71(1) 1.97(1.7)

Explore 9.73(6.2) 6.12(8)

Total movement* 57.62(14.9) 38.84(24)

Wait 0.2(0.14) 4.6(5)

Speed in no. cells 2.75(0.1) 0.76(0.28)

prey (Fig. 7.13). All four movement actions differed significantly between case

A and case B runs (p-value<0.001). This indicates that EcoSim models very

strong non-lethal predatory effects on prey populations, particularly through the

risk-induced escape behaviour of prey.

Thus, prey co-evolving with predators experienced higher total movement ac-

tivity than prey surviving with no predators, primarily due to the escape activity

induced by predators throughout the simulation. We were also interested in mea-

suring the speed with which the prey moved and whether predation played a role

in the change of speed of movement. Figure 7.14 shows that prey not only re-

duced their total movement activity in terms of average number of movement

actions chosen, but they also reduced their speed of movement, i.e. the average

number of cells moved in a time step, after predators were removed in case C. The

difference is statistically significant (paired t-test between case A and B, p-value

<0.001) (paired t-test between first and second half of case C, p-value <0.001).

An overview of the distribution of species reveals that individuals show a strong

clustering distribution with circular or spiral shapes in the presence of predators.

These spiral waves are a common property of predator-prey models ([118]; [119];
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Figure 7.14: The average prey speed. Blue line represents case A (high-risk prey),

red line represents case B (low-risk prey), and green line represents case C where

predators and prey co-evolve till 15,000 time steps, and then prey evolve alone.

[120]) and arise due to the fact that prey near the wave break have the tendency

to escape from the predators by moving sideways. A subpopulation of prey then

finds itself in a region relatively free from predators, and in this predator-free

zone prey individuals start dispersing rapidly forming a circular expanding region

([60]). Prey are also more compact and dense in case A than case B. The difference

in the average number of individuals per cell for case A (4.6 with std 0.25) and

B (3 with std 0.5) was statistically significant (paired t-test between case A and

B, p-value <0.001) (paired t-test between first and second half of case C, p-value

<0.001). Thus, prey density per cell was greater when coevolving with predators,

indicating greater clustering for case A prey than case B prey. Both small-scale

movements and large-scale movements have indeed been observed to occur under

high predation pressure in natural predator-prey systems ([105]). Furthermore,

the type of movement changes that occur in the presence of predators may be

context-specific and may vary temporally depending on the stage of the preda-

tion event. For example, increased prey movement may take the form of dispersal

when they are displaced by predators, such as when insects enter streams in the

presence of predators ([121]; [122]; [123]; [124]). In aquatic systems prey move-

ment has also been observed where zooplankton dive down in the water column

when predation risk is high near the surface ([125]; [126]). Overall, these exam-

ples present evidence that prey respond to predators in a risk- averse manner
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by increasing movement to nearby locations that may be perceived as safe. In

EcoSim, small-scale escape actions of prey coevolving with predators amounted

to global changes in the spatial distribution of prey. Such large-scale movements

in predator-prey systems have also been observed in nature. For example, [127]

and [128] showed that migrating elk experienced reduced risk of predation when

they traversed entire landscapes. These studies suggest that prey activity in wild

populations may increase on large scales as a result of predation, and that prey

can benefit from this with increased survival ([127]; [128]).

Figure 7.15: The average prey genetic distance from initial FCM map. Blue line

represents case A (high-risk prey), red line represents case B (low-risk prey), and

green line represents case C where predators and prey co-evolve till 15,000 time

steps, and then prey evolve alone.

7.4 Predator consequences on prey genomic evo-

lution

Prey activity proved to be the critical behaviour modeled in EcoSim, affecting not

only prey population dynamics but also their course of evolution. The main action

affected by the presence/absence of predation risk was escape, and this effect was

exaggerated since places of refuge or hiding are not meled in the EcoSim world.

The urge to escape from predators and to move throughout the world decreased
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Figure 7.16: The average prey genetic diversity (measured by entropy). Blue line

represents case A (high-risk prey), red line represents case B (low-risk prey), and

green line represents case C where predators and prey co-evolve till 15,000 time

steps, and then prey evolve alone.

Figure 7.17: The average number of prey species. Blue line represents case A (high-

risk prey), red line represents case B (low-risk prey), and green line represents case

C where predators and prey co-evolve till 15,000 time steps, and then prey evolve

alone.
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dramatically in the absence of predators, indicating this was the major pressure

on prey movement. Reduced movement by prey also had an indirect effect on gene

flow, which then affected genetic diversity and in return species richness, i.e the

total number of species in a given time step. Increased prey species diversity and

average genetic distance from initial prey genome has previously been reported in

EcoSim ([60]) and its origin proven as a consequence of introducing obstacle in the

world, which restricted prey movement and reduced gene flow. In the present study

we observed that the average genetic distance seen in Figure 7.15 was significantly

more divergent in prey evolving in the absence of predators than prey coevolving

with predators relative to the initial genomes (paired t-test between case A and

B, p-value <0.001) (paired t-test between first and second half of case C, p-value

<0.001).

There was a significantly higher genetic diversity (Figure 7.16) among prey in

case B and the second half of case C than in case A and the first half of case C

(paired t-test between case A and B, p-value <0.001) (paired t-test between first

and second half of case C, p-value <0.001). The results for genetic diversity are

also mirrored in a significantly greater prey species richness in case B (paired t-

test between case A and B, p-value <0.001) (paired t-test between first and second

half of case C, p-value <0.001), indicating that the number of prey species in the

absence of predators is much higher than the number of prey species in the presence

of predators, although the speciation threshold is the same and the population is

smaller. This suggests that the speciation rate is directly proportional to the

restriction of movement and therefore to gene flow between populations. As the

population is greater in case A than B (Figure 7.17) it follows that the number of

individuals per species decreases when predators were removed.

Our results show that predator removal decreased prey movement, which in re-

turn reduced the gene flow among prey individuals as occurs prior to allopatric spe-

ciation. The reduction in gene flow resulted in increased species richness, genetic

diversity and average genetic distance from the initial prey genome. The preda-

tion effect on species richness has been previously studied by computer simulations

using an individual-based modeling. [129] showed over a variety of parameter set-

tings that the duration of the coexistence of two prey phenotypes dramatically
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Table 7.4: Accuracy for training the classifier using 10 fold cross validation, accu-

racy of validating the classifier using the validation set, and the number of rules

produced from the model

Classification Train Validation No of

of Accuracy Accuracy rules

case A & B 93.7% 93.04% 7

case A & C 93.7% 94.69% 6

case B & C 87.9% 88.4% 7

decreased as the number of predator individuals increased, suggesting that prey

species diversity should decrease in the presence of predators. In addition, [60]

reported an increase of species richness after introducing obstacles in the world

which reduced individuals movement and restricted gene flow. Although, most

empirical studies have shown that predators are better indicators of high prey

species diversity, more research in this area is encouraged.

7.5 Genomic classification and statistical analy-

sis

Having shown that predation has a behavioural effect on prey, we are interested

to study if this effect extends to the genetic level. To analyze the genomes we

extracted the average FCM (genome) of every existing prey species at the last

5,000 time steps of each simulation run (from time step 25,000 till 30,000) so the

genetic characteristic of prey would be well developed and formed. A total of

2000 average FCM’s of prey species were collected from each of case A, B and

C runs. Also, since each run has unique environmental conditions which have an

impact on the genome values, combining data from 10 different runs is important

to prove that the results are not due to the difference between runs but rather due

to the main factor we are studying the presence or absence of predators. From

a total of 390 potential genes we neglected the 125 initial genes to eliminate any

bias in the results. Therefore, an instance of the learning process consists of the

95



265 genes, each gene being an attribute in the classifier, making the feature space

highly dimensional. We then combined the 20,000 FCM’s coming from each of the

separate 10 runs, and labeled them with a class label determining which group

they belong to. Table 7.4 specifies the JRip classification accuracies along with

the number of rules produced. We also calculated a one-way analysis of variance

(ANOVA) test to give global insight to how these three classes (A, B and C) differ.

The ANOVA test revealed a strong intraclass correlation (p-value <0.001) which

indicates that the genomes of the three classes were also significantly different.

The high classification accuracy regardless of the combination of 10 different

runs supports the claim that predators have an effect on prey population’s genomic

evolution, as it shows that the classification model is able to capture important

characteristic of the genomes in each configurations that lead to accurate predic-

tions on novel data. These results also indicate that the different conditions and

environments of each run did not influence the genomes as profoundly as the pres-

ence/absence of predators; thus, we found that predation plays a strong role in

genomic evolution of prey. There was also a noticeable difference in the accuracy

of classifying case B and case C (slightly less) relative to the other two tests, in-

dicating that these cases are more similar to each other than to case A, although

a good classifying accuracy (88.4%) was still attained. Different IF THEN rules

are learned by the JRip algorithm to predict the group any genome belongs to.

The rules JRip produced also shed light on the most important genes that would

differentiate between prey belonging to any of the three cases. Therefore, they add

more semantics to the results and help identify the genes that contribute more to

the differentiation between genomes belonging to different cases and how these

genes work together. These are the 20 rules produced from the three classifiers. A

negative number in a rule indicates a concept inhibiting another and corresponds

to a threshold for a gene (e.g. IF energy is low → wait >-0.0946 means IF the

concept ’energy’ is low decreases the concept ’wait’ by more than a -0.0946 * ’en-

ergy value’). A positive number in a rule indicates a concept exciting another and

corresponds to a threshold for a gene (e.g. IF predator is close → wait >0.0705

means IF the concept ’predator is close’ increases the concept ’wait’ by more than

0.0705 * ’predator is close value’). The hit ratio is the percentage of instances the
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rule applies to.

7.5.1 Classifying instances belonging to case A and C

IF (predator is close→ wait >0.0705) AND (energy is low→ wait >-0.0946) AND

(hunger→ search for partner <0.0187) AND (energy is high→ eat >-0.197) THEN

instance belongs to case C with hit ratio = 18.53%, accuracy = 99.95%

IF (no local partner → eat >0.059) AND (local food is high → fear <0.036)

AND (no local partner → eat >0.098) THEN instance belongs to case C with hit

ratio = 11.07%, accuracy = 99.77%

IF (predator is far → search for partner <-0.022) AND (local food is high →

socialize <0.0067) AND (local food is low → reproduce >-0.019) THEN instance

belongs to case C with hit ratio = 9.64%, accuracy = 96.68%

IF (escape → satisfaction >0.0897) AND (local food is low → reproduce >-

0.1093) AND (energy is high → escape >-0.0091) THEN instance belongs to case

C with hit ratio = 4.52%, accuracy = 99.89%

IF (reproduce → reproduce >0.1026) THEN instance belongs to case C with

hit ratio = 3.6%, accuracy= 73.06%

All other instances belong to case A with hit ratio = 52.64% and accuracy =

93.11%

7.5.2 Classifying instances belonging to case B and C

IF (predator is close → wait >0.0686) AND (energy is high → exploration <-

0.0521) AND (local partner exists → hunger >0.0601) THEN instance belongs to
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case C with hit ratio = 7.75%, accuracy = 99.16%

IF (predator is far → search for partner <-0.0003) AND (friend is close →

exploration <-0.2451) AND (local partner exists → socialize <-0.0651) AND (no

local partner → eat <0.2304) THEN instance belongs to case C with hit ratio =

7.52%, accuracy = 99.93%

IF (reproduce→ socialize >0.0227) AND (no local partner→ escape >-0.0029)

THEN instance belongs to case C with hit ratio = 16.5%, accuracy = 83.43%

IF (wait → eat <-0.0523) AND (friend is close → eat >0.0783) AND (local

food is high → search for partner <0.0041) AND ( friends are far → escape >-

0.1403) THEN instance belongs to case C with hit ratio = 3.87%, accuracy =

99.48%

IF (nuisance → search for partner <-0.2155) AND (predator is far → eat <-

0.0043) AND (socialize → wait <0.1013) THEN instance belongs to case C with

hit ratio = 4.21%, accuracy = 99.13%

IF (local food is low → escape >0.088) AND (no local partner → exploration

<-0.0936) AND (exploration → socialize >-0.0208) THEN instance belongs to

case C with hit ratio = 4.96%, accuracy = 94.69%

All other instances belong to case B with hit ratio = 55.19% and accuracy =

85.61%

7.5.3 Classifying instances belonging to case A and B

IF (no local partner → escape <-0.085) THEN instance belongs to case B with

hit ratio = 14.28%, accuracy = 99.46%
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IF (predator is close → search for food <-0.0349) AND (fear → search for

partner <0.5) THEN instance belongs to case B with hit ratio = 8.14%, accuracy

= 100%

IF (no local partner → eat >0.0649) AND (energy is high → fear <0.6258)

THEN instance belongs to case B with hit ratio = 7.43%, accuracy = 100%

IF (eat → reproduce <-0.0476) THEN instance belongs to case B with hit

ratio = 6.04%, accuracy = 97.02%

IF (satisfaction → satisfaction >0.2597) AND (search for food → search for

partner <0.108) THEN instance belongs to case B with hit ratio = 4.67%, accu-

racy = 100%

IF (reproduce→ exploration >0.1221) AND (nuisance→ fear <0.1044) THEN

instance belongs to case B with hit ratio = 3.7%, accuracy = 99.9%

All other instances belong to case A with hit ratio = 55.72% and accuracy =

89.26%

7.5.4 Extracted semantics from rules

Studying the genes that appeared in the 20 produced rules revealed that these

genes are associated with one of the three behaviours; movement, eating and

reproduction. All together there were 44 genes appearing in the rules (see Figure

7.18). 42% of genes are related to concepts affecting movement such as exploration,

escape, wait (not to move) and socialize; 21% of the genes in the rules are related

to the eating actions (eat and search for food) and the internal concept hunger;

25% of genes are concerned with reproduction actions such as search for partner

and reproduce; and the rest (12%) went to genes linked to fear and satisfaction
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Figure 7.18: Distribution of genes appearing in the JRip classifier.

and were only found in rules associated with case A. These results indicate that

movement behaviour, along with eating/foraging and reproduction, are sufficient

and capable of discrimination between genomes of prey evolving with no predation

pressure and prey coevolving with predators. The genes constructing the rules

enforce the previous hypothesis about the effect predation has on reproduction,

movement/speed and eating/foraging prey behaviours as all of these could be

differentiated between the cases (see Figure 7.7, 7.12, 7.14 and 7.10). Thus, prey

evolved not only distinct behaviours but also had accompanying genetic changes

associated with each case.

7.5.5 Predator introduction

Although it has become increasingly important to understand the role of top

predators in ecosystems due to the catastrophic effects of human activity on these

species ([130]), there has been little acknowledgement of the evolutionary conse-

quences of predator removal on prey populations, and thus minimal attention has

been given to the special problems for prey that might accompany their reintro-

duction ([111]; [131]; [132]). Simulations offer a cost-effective method of studying

long-term trends in predator-prey systems that are often too costly or impracti-

cal in field studies, and can offer important insights for biological systems. Here

we show that contemporary evolution of prey in the absence of predation risk
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may result in those prey species being highly susceptible if predators are later

introduced. The initially introduced predator population was of a consistent ratio

to the prey population in all the runs, thus eliminating any bias in these results.

When predators were added in case D at time step 15,000 none of the 10 replicates

were able to stabilize for long and the predator population quickly died out from

low energy as they consumed all the local prey (Table 7.5). Another reason for

predator extinction was the highly dispersed distribution of the prey population

before predators were added, which made it more difficult for predators to find

food. Introducing predators at time step 5,000 resulted in one stable run out of ten

which successfully maintained predators-prey coevolution as in case A. Predator

introductions at even earlier time steps were affected by the prey population sizes.

For example, at time step 2,500 the prey population was quite low, averaging only

4,500 individuals for 10 runs (see Figure 7.4). The low prey population adds to

the difficulty of reaching stability in the system after introducing predators be-

cause food is more scarce and dispersed. Introducing predators to naive prey as

early as time step 200 increased the percentage of stable runs. When we intro-

duced predators at time step 10 there was full survival and stability of all 10 runs;

however, in these runs the evolution of prey behaviour and genetic change were

negligible. The success of these final 10 runs verifies that the previous results of

predator introductions were not due to any instability in our simulation or choice

of parameters, but rather to the genetic and behavioural changes in prey and their

contemporary evolution in the absence of predators.

We found that introducing predators early in the evolutionary history of prey

populations resulted in a higher chance of survival for predators than when prey

have evolved for a longer period of time in the absence of predators. Our results

show that the reason for such extinctions is a combination of both the evolutionary

background of these well adapted prey, which accounts for their broad dispersal

and decreased escape tendencies, and the short-term effects of predators on prey,

which led to a high mortality that overwhelmed the capacity of the local population

to reproduce and adapt to such a sudden change. It has been previously shown that

the reintroduction of a predator into a site from which predators have been absent

for a long time could potentially cause the local extinction of prey guppies ([133]).
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Table 7.5: Results of predators introduction in different time steps

time step num of # runs # runs avg time

of pred. successful where where steps of

intro. runs all prey all pred. survival

died died

15000 0 0 10 190

5000 1 0 9 273

2500 0 2 8 134

200 4 2 4 76

10 10 0 0 n/a

These results also show that the amount of time required for these evolutionary

changes to occur is relatively brief, on the order of 4-20 generations. [132] studied

the consequences of wolves and brown bear recolonization in Scandanavia and

North America after an absence of 50-130 years and showed that this led to the

substantial increase in the mortality of both young and adult moose prey. The

impact of predator reintroduction on prey populations is highlighted in studies

like that of [131] who showed that as much as 20% of the elk population living

in the headwaters of the Madison River in Yellowstone National Park was killed

following reintroduction of wolves in just one winter season ([134]). However, our

results suggest that predators are also at risk and caution against focusing on

prey behaviour alone, a point previously made in [135]. Furthermore, it is well

established that predator-prey interactions can lead to dynamic population cycles

([95]; [96]; [94]), and our results consistently show that predator populations were

affected by the decline in local prey (in addition to their spatial distribution),

which ultimately led to predator extinction. Taken together, these results suggest

that stability in the predator-prey model could be achieved if predators are either

introduced gradually into prey populations, allowing prey to adaptively evolve

to face predation pressure by adopting greater antipredator responses (escape

actions), or by introducing predators early enough in the evolutionary history of

prey so that they do not first become maladapted to the absence of predators.
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Figure 7.19: Snapshot of the world in one of the case D runs (predators are

introduced to naive prey) at time step 5000. Preys show more spatial dispersal

and white patches represent predators. In the first figure the numbers of prey and

predator individuals are 31502 and 1008 respectively. In the second figure at time

step 5030 prey decreased to 9301 and predators were 1502. At time step 5112 prey

decreased to 5725 and predators were all dead.

7.6 Conclusion

The novelty of EcoSim is based on modeling in depth the complex tri tophic inter-

action between different components of an evolutionary dynamic ecosystem. The

used genomic model with integrated semantics helps us study the effect predation

has on the genomic evolution of prey, a study which has not been given atten-

tion before. We were able to show that predators play a large role in stabilizing

predator-prey systems and exert a great influence on prey evolution. By com-

paring prey activity across various types of predator-prey systems (cases A-D)

we found that predators significantly influenced prey reproduction, total move-

ment and foraging behaviours. Specifically, predators suppressed reproduction

and birth rates, increased total movement, and decreased foraging activity of prey

under predation risk. The population level consequences of these behavioural

changes were observed as significant demographic differences, with the population

being initially greater and more stable for the predator-prey coevolution system,

and initially smaller but steadily increasing for the prey alone system.

We found that the energy of prey in EcoSim is affected in several ways which

differ between high- and low-risk prey groups. First, we found that energy bud-

gets differed between prey groups: energy was greater for high-risk prey than for
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low-risk prey. Second, we found that prey allocated energy to survival and fit-

ness differently between prey groups: high-risk prey engaged in more movement

actions and had lower birth rates, yet they spent proportionally more energy on

reproduction compared to low-risk prey because they engaged in fewer of energet-

ically costly reproductions (Fig. 7.7. Conversely, low-risk prey engaged in fewer

movement actions but had greater birth rates, resulting in a smaller energy budget

and spending proportionally less energy on reproduction. Third, we found that

maternal investment in offspring (in terms of offspring energy at birth) differed

greatly: high-risk prey invested a constant amount of energy in their offspring,

while low-risk prey invested a decreasing amount of energy in their offspring,

which may reflect a tradeoff with the higher birth rate since reproduction is very

energetically expensive on parents. These results also indicate that prey evolved

life history characteristics that were not present at the start of the simulation.

Low-risk prey tended to act as ’energy maximizers’( [136]; [137]): their fitness

benefits from foraging increased with foraging effort, so they foraged as much as

possible to meet energetic needs for continued reproduction while spending less

time doing non-foraging activities. By contrast, high-risk prey tended to behave

as ’time minimizers’ ( [136]; [137]): they spent more time doing activities other

than foraging such as escaping and socializing, and their energy benefits to fitness

was fixed, as seen by a relatively constant reproduction rate and near constant

parental investment of energy.

Our results suggest that the importance of movement for prey evolution in

EcoSim cannot be underestimated. The different spatial distributions of prey seen

in the presence/absence of predators results from their behaviour model which does

not impose movement, but facilitates much more movement when prey experience

predation risk through their only antipredator behaviour, escaping. It is important

to note that while many prey species seek refuge when they perceive high risk in

nature, and hence reduce their movement, in the present study our model did not

allow for this type of antipredator response but will be considered in the future.

EcoSim provides an unparalleled study environment for such analysis. We

found energy budgets for prey in the high- and low-risk part of this study were

greatly affected by energy expenditures, specifically due to energetically expensive
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reproduction actions, and in part due to movement activity. Previous studies (e.g.

[138]) may not have considered the combined effects of predation on foraging suc-

cess and fitness, but our study suggests that when considering multiple behaviours

that are mediated by predation risk the net effect on energy budgets may not be

equivalent across different risk regimes, and instead they are context-specific and

can sway in the direction of the more energetically costly event. In EcoSim this

means that predators actually offset the costs of reproduction for high-risk prey by

causing them to engage in fewer energetically expensive reproductions compared

to low-risk prey. We find this in nature when some organisms postpone reproduc-

tion during periods of high predation risk ([139]; [140]), a strategy which may be

beneficial in the long run under variable risk conditions ([108]).

The time scale of our study differs from the time scale considered in behavioural

ecology. EcoSim extends beyond ecological time scales by allowing prey to adap-

tively evolve to different predation regimes, giving rise to distinct gene pools of

prey. To date there have been a few long-term studies spanning from a few years to

a few decades that have tracked prey population changes in response to predators,

particularly with snowshoe hare in the Yukon and elk in Yellowstone National

Park ([141]; [142]), but the majority of studies look at much shorter times that

range from minute-by-minute responses of prey to predators, to responses span-

ning days, weeks and months. Although ecological and evolutionary processes

can simultaneously affect the outcomes of predator-prey systems, few studies have

considered the evolutionary consequences of adaptations to predation risk ([96]).

In EcoSim, higher activity in the short run by choosing escape actions more fre-

quently resulted in higher fitness and steady population size in the long-run. Es-

cape activity is commonly seen in nature, particularly when there are no refuges

to hide. However, a short-term strategy of predator avoidance may not always be

optimal in the long-run. This was demonstrated clearly in [143] who showed that

when prey used a recurrent vigilance strategy coupled with low foraging activity in

high-risk situations this led to long-term decreases in fitness, most likely caused by

high risk of starvation and reduced energy intake. The strategy for risk reduction

that is most beneficial in the short run depends on multiple factors, and there is

no simple relationship to the long-term effects.
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Many authors stress the importance of more integrative work in the study of

predator-prey systems. Behavioural ecologists are particularly adamant about the

need to consider multiple compensatory behaviours when determining the fitness

consequences of antipredation behaviour ([101]). Such a research agenda would

work best if the full range of organisms’ compensatory behaviours were under-

stood in terms of their energetic costs and benefits, but this has not been done

([144]). Furthermore, since energy budgets directly impact fitness through the al-

location of energy to reproduction and to offspring, essentially all behaviours that

affect energy intake or expenditure can be thought of as beneficial or harmful to

fitness. Thus, behaviours should evolve to optimize energy budgets for allocation

of energy to fitness, even under conditions of variable predation. Yet, among all

the current models of prey behaviour, for example the Risk Allocation Hypoth-

esis ([105]) there are limitations in accounting for the trait-mediated effects of

predators on prey foraging, activity and reproduction in predicting community-

level outcomes. Other ecologists have stressed that empiricists and theoreticians

must work together to build models that make accurate predictions of evolutionary

phenomenon based on small-scale and short-term ecological data, particularly by

acknowledging trait-mediated effects ([144]). The complexity of ecosystems and

behaviours of organisms present real problems for ecologists looking to understand

how nature works, but by integrating information from multiple fields and multi-

dimensional studies this may be possible. EcoSim offers a flexible environment

with many levels of complexity where large-scale evolutionary phenomenon can

be examined. We have shown that it can be applied to study how prey behave

in response to predators and how this behaviour affects their energy budgets and

fitness, and we have seen that it generates ecologically accurate results comparable

to many empirical studies. As we have made theoretical predictions for the evo-

lutionary outcomes of predator-prey interactions in terms of energy and fitness,

the next step would be to compare these results to more long-term observational

studies in nature.

A key advantage of our study was the ability to investigate not only prey be-

havioural changes associated predation risk, but also to peer inside their genomes

to study genomic changes associated with predation risk. Ecologists have to deal
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with noisy, high-dimensional data that are often non-linear and do not meet the

assumptions of conventional statistical procedures. To overcome this problem,

we used JRip, a supervised rule learner classifier, to classify unknown average

prey species genomes as belonging to case A, B or C. JRip successfully classi-

fied average genomes with high accuracy and statistical significance, proving that

these prey genomes were indeed distinct. JRip also produced meaningful rules

that added more semantics to the classification process by emphasizing the sig-

nificance of three key traits in classifying genomes: movement, reproduction and

foraging, which were also significantly different in our results across the different

cases. Simulations offer a cost-effective method of studying long-term trends in

predator-prey systems that are often too costly or impractical in field studies,

and can offer important insights for biological systems. Our results suggest that

survival of predators following their introduction is sensitive to the evolutionary

state of their prey. We have shown that removal of predators causes contempo-

rary evolution of prey after time intervals as short as 200 time steps (about 15

generations). The length of time after initial predator removal and the strength of

predation pressure following predator reintroduction will impact not only preys’

ability to adapt but also the predator’s survival
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Chapter 8

Summary, Conclusions and

Future work

8.1 Summary

I first reviewed the existing literature on simulation modeling used in Alife in

Chapter 2. The use of individual base modeling in ecology and how it differs from

equation based modeling was also presented. The chapter also gave an overview

of several existing computational ecosystems. In the following chapter 3 a de-

tailed overview of the used evolutionary ecosystem simulation was presented. The

chapter describes the different entities, state variables and scale of the system. A

process overview along with the design concept is also given. A neutral model

of EcoSim, which acts as the randomized version is also presented. Chapter 4

gives a brief description about the data analysis tools used throughout the thesis

including different classification algorithms, feature selection and rule extraction.

The use of Shannon entropy as a measure of genetic diversity along with the used

fitness metric was presented.

In Chapter 5 the genomic evolution of EcoSim was examined by comparing

it to the genomic evolution of EcoSim’s neutral model. Classification was used

to successfully predict the average species fitness giving only the new genes with

high accuracy. A feature selection step was performed which shed a light on the

most important genes affecting fitness and well being of species. The JRip rule
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learner was used which produced meaningful rules that added more semantics to

the results. In chapter 6 the use to Shannon entropy as a measure of genetic

diversity was presented. The genetic diversity of all existed species along with

their fitness was calculated. The main aim was to test the biological hypothesis

that genetic diversity affects species fitness. The Spearman’s cross correlation

was used to measure the effect genetic diversity has on fitness. In a further step

these correlation results were used as a class variable that was predicted by a

built classifier. The JRip rule learner was used to extract rules that added more

understanding of the conditions leading a positive or negative correlation between

genetic diversity and fitness. These rule were studied which concluded that large

species tend to decrease their diversity in order to increase their fitness. On the

other hand, relatively smaller species correlate positively between genetic diversity

and fitness.

The ecological effects of predator removal and its consequence on prey be-

haviour have been widely investigated in Chapter 7. We investigated the effects

of predation risk on prey energy allocation and fitness. We investigated foraging-

predation risk tradeoffs and the energy-fitness consequences on prey at an unprece-

dented scale of population size, evolutionary time, and behavioural complexity.

Results revealed that prey energy budgets, life history traits, allocation of energy

to movements and fitness-related actions differed greatly between prey subjected

to low-predation risk versus high-predation risk. High-predation risk suppressed

prey foraging activity, increased movement, and decreased reproduction relative

to low-risk. A classification algorithm was used to demonstrate the difference be-

tween genomes belonging to prey coevolving with predators and prey evolving in

the absence of predation pressure which is a new direction is studying predator

prey interactions.

8.2 Conclusions

We chose to use a simulation modeling complex ecosystem that was designed to ad-

dress broad theoretical questions in ecology and evolutionary biology. The novelty

of this simulation comes from the fact that it models in great details the interaction
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between hundreds of thousands of behaviourally and genetically distinct individu-

als in a tri-trophic dynamic complex ecosystem over large evolutionary time scale

allowing for Darwinian natural selection to emerge. Our novel individual-based

behavioural model of evolution allows us to approach pertinent biological ques-

tions through a system with higher complexity than has previously been published

in literature. The integrated semantics of the genomic model helps in reasoning

and analyzing the causes and factors behind any evolved new behaviour. As we do

not have a predefined fitness function, all the emerged new behaviours and genes

are all due to the evolutionary machinery of EcoSim governed by individuals adap-

tation and natural selection. From the genetic perspective, mutations and natural

selection, through the course of evolution in EcoSim enforce the emergence of new

traits and disappearing of others. Thoughts out studies we were interested in vali-

dating the evolutionary machinery of EcoSim, gain more understanding about the

individuals evolving behaviour, and investigate some ecological theories.

Due to the enormous amount of produced data in each simulation run, de-

tecting and interpreting emerging behaviours in EcoSim was a challenging task.

Machine learning techniques were used throughout the thesis to assist in the anal-

ysis. To our knowledge this is the first time machine learning techniques have

been used to analyze results obtained from an evolutionary ecosystem simulation.

The thesis validated the evolutionary machinery of EcoSim through several stud-

ies. A comparison between the genetic behaviour of EcoSim and its neutral model

demonstrated the difference between emerging behaviours based on natural se-

lection and randomness. In another study the possible new genes which arise in

EcoSim were able to predict the average species fitness with high accuracy which

demonstrates the important linkage between the genes values, and therefore the

behavioral model, and the fitness of individuals. This is a strong validation that

the evolutionary model is governed by natural selection even though no fitness

functions exist to give preference on a behaviour over another. The predefined

genes were not included in this study to eliminate any bias in the results. A

further rule extraction step was taken to understand which of these new genes

correlates more with the fitness and well being of species. As hypothesized that

interacting entities of EcoSim were sufficient to model natural ecosystems we were

110



able to observe same emerging phenomena’s as those arising in natural ecosystems.

The high correlation between average species genetic diversity and average species

fitness found in EcoSim, is also another major concept in ecology which emerged

in our model. The rules extracted from the classification model emphasized the

most important features affecting the correlation values. These rules added more

semantics to our model and highlights important factors that can further assist

biologists in their studies.

In another study EcoSim was used to examine the dynamic relation between

predators and prey which is also an active study in biological literature. Here we

tested the role of predator removal on the contemporary evolution of prey traits

such as movement, reproduction and foraging. We showed that the contemporary

evolution of prey behaviour owing to predator removal is also accompanied by

prey genetic change. We employed machine learning methods, now recognized as

holding great promise for the advancement of our understanding and prediction of

ecological phenomena, showing that the genetic changes in prey are due to predator

removal. Moreover, we showed that predator introductions to naive prey might be

destabilizing if prey have evolved and adapted to the absence of predators which

is a significant result and concern for conservative biology. Our results suggest

that both predator introductions and predator removal from an ecosystem have

widespread effects on the survival and evolution of prey by altering their genomes

and behaviour, even after relatively short time intervals. The different results

found in the predator prey dynamics study was supported by similar results found

in biological literature which further proves the validity of our predator prey model

and add emphasis on the high capabilities of EcoSim in modeling and studying

many ecological phenomena.

8.3 Future direction

EcoSim offers a flexible environment with many levels of complexity where large-

scale evolutionary phenomenon can be examined. We have shown that it can be

applied to study how prey behave in response to predators and how this behaviour

affects their energy budgets and genomic evolution, and we have seen that it
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generates ecologically accurate results comparable to many empirical studies. In

continuation in this direction we would like to extend EcoSim in order to integrate

alternative antipredator behaviours into the system. Currently the prey’s only

antipredator reaction is fleeing in the opposite direction of the predator. Studying

hiding and camouflage is of great interest to us. Predator-induced escape actions

by prey are dependent on the prey’s ability to accurately detect the predators and

on the distance between the prey and the predator. More generally, prey usually

have several behavioural options for how to respond to prey when they know they

are at risk of predation. They have to make a decision whether to hide and reduce

activity, or run away and escape activity, and their choice depends on many factors

including availability of nearby refuges, their hunger state and the quality of the

food at their current location. A future step would be to give the prey in EcoSim

the option of hiding or escaping, but the hiding action should probably be used

more frequently than escape, and their activity should also decrease, in order for

our result to match most of the literature.
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