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ABSTRACT

Cultural Algorithm (CA) is one of the Evolutionary Algorithms (EAs) which de-

rives from the cultural evolution process in nature. As an extended version of the CA,

the Multi-population Cultural Algorithm (MPCA) has multiple population spaces.

Since the evolutionary information can be exchanged among the sub-populations, the

MPCA can obtain better results than the CA in optimization problems.

In this thesis, we introduce heuristics to improve the MPCA. The heuristic strate-

gies target the existing weaknesses in MPCAs. Four strategies are developed address-

ing these weaknesses, including the individual memory heuristic, the social interaction

heuristic, the dynamic knowledge migration interval heuristic and the population dis-

persion based knowledge migration interval heuristic.Five standard benchmark opti-

mization functions with different characteristics are taken to test the efficiency of the

heuristics. Simulation results show that each heuristic, to varying degrees, improves

the MPCA in convergence speed, stability and precision. We compared different

combinations of the strategies, and the results show that the MPCAs with social

interaction based knowledge selection, as well as dynamic knowledge migration inter-

val/population dispersion based knowledge migration interval, outperform the other

combinations in both low-dimension functions and high-dimension functions.
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1 INTRODUCTION

1.1 Overview

Optimization problems are crucial in Computer Science. Mathematical approaches

often meet failures in solving large-scale optimization problems. In addition to the

mathematical optimization, linear programming techniques and dynamic program-

ming techniques were developed to search for optimal solutions. However, these

techniques encounter difficulties again in solving the optimization problems with a

large number of variables as well as the optimization problems of non-linear objective

functions[7]. To overcome these problems, EAs were proposed by researchers. EAs

are a class of intelligent optimization algorithms that mimic the metaphor of gene

evolution and/or social behaviour of species[3], such as the behaviour of birds foraging

and behaviour of ants finding the route to the food source. However, EAs can only

get near optimal solutions. CAs are one of the most recent evolutionary algorithms

addressing these problems.

The term “culture” was first introduced by Edward B. Tylor in 1881. In his

book Primitive Culture, he described culture as “that complex whole which includes

knowledge, belief, art, morals, customs, and any other capabilities and habits acquired

by man as a member of society ”[8].
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Fig. 1.1: What is culture[2]

Inspired by the cultural evolution process in nature, an evolutionary computa-

tional system that can store, accumulate and utilize individuals’ experiences during

the evolution was proposed by Reynolds in 1994[4]. A CA system is divided into two

parts: population space and belief space. The two components evolve respectively and

communicate with each other by the communication protocol. The dual inheritance

structure makes the CA a self-adaptation system that enables global evolutionary

information be more fully utilized.

The MPCA is an extended version of the basic CA. In the standard CAs, the in-

fluence function guides the evolution only by the knowledge from a single belief space,

which may invalidate the structure of the CA and lead to poor global optimization

and instability. Therefore, the MPCA, a CA system with multiple populations was

proposed. The MPCA increases the validity of the knowledge by cooperating the im-

plicit knowledge from different populations and at the same time provides the optimal

model for the evolution by managing multiple sub-population hierarchically.
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1.2 Motivation

The CA has been proved a promising EA that can be widely used in many fields such

as complex global optimization problems, mechanical design[9], data mining[10][11]

and semantic networks[12], etc. As an extension of the CA, the MPCA has better per-

formance in avoiding premature convergence and convergence speed[13], so more and

more attention is directed toward the development of MPCAs. At present, MPCAs

still have some weaknesses that remain to be improved.

• The first weakness is that only the best solution coming from each sub-population

is able to be exchanged with the other sub-populations in terms of the given

communication rules. The best solution reflects not enough evolutionary infor-

mation, thereby decreasing the validity of cooperated knowledge. This probably

misleads the whole population converging to the local optima.

• The second one is the random knowledge selection strategy. When the MPCA

comes to the phase when the individuals select knowledge sources to evolve the

population, each individual selects the same knowledge source, and selects it in

a random way. The different categories of knowledge sources always have the

diverse influence on the individuals. For example, as the knowledge source used

to narrow the feasible search space, the normative knowledge source usually can

have more effect on the most individuals in the early stage of the evolution. The

topographic knowledge source can affect individuals more in the late time, as it

can direct the individuals to explore the search space more precisely. Therefore,

a more rational knowledge selection strategy for the individuals in the MPCA

need to be developed to improve the efficiency of the MPCA.

• The third weakness is that current MPCAs use the constant knowledge migra-

tion interval. Migration and blend of knowledge sources among sub-populations

can pace up the convergence of MPCAs. However, migrating knowledge sources

3



at a too small interval may cause the loss of diversity for the population in the

early phase of the evolution. Therefore, current MPCAs require a more rea-

sonable strategy of knowledge migration interval that can manage knowledge

sources to be migrated at dynamic interval for different time of the evolution.

This weakness is also mentioned in the literature[13].

1.3 Problem Statement

Guo et al[13] developed a novel MPCA framework named Multi-Population Cultural

Algorithm Adopting Knowledge Migration (MPCA-KM). MPCA-KM provides the

approaches to overcoming the first drawback mentioned in Section 1.2. In this thesis,

we supplement the coordination mechanism of the normative knowledge source for

MPCA-KM and add a historic knowledge source to the algorithm. Then we apply

the proposed heuristic strategies to MPCA-KM. Benchmark optimization functions

with various properties are used to evaluate how these heuristics can improve the

algorithm’s efficiency in precision of solutions, stability and convergence speed. The

heuristic strategies are described as follows:

• The individuals in the population select the knowledge sources based on social

interaction.

• The individuals in the population choose the knowledge sources to based on

individual memory.

• The implicit knowledge sources migrate between sub-populations at the dy-

namic interval.

• The implicit knowledge sources migrate between sub-populations at the interval

based on the population dispersion degree.

4



Our target is to develop an enhanced MPCA by solving the existing weaknesses

mentioned in section 1.2. We anticipate these heuristics to improve the MPCA in

term of convergence speed, stability and precision.

1.4 Organization of Thesis

Chapter 2 contains a review of some typical EAs including Ant Colony Optimization,

Genetic Algorithms, and Particle Swarm Optimization. A review of previous works on

CAs and MPCAs is presented in Chapter 2. Chapter 3 details the descriptions of the

four heuristic strategies developed in this thesis. Chapter 4 produces the test results

and analysis of the four strategies and their combinations. Finally the conclusions

and suggested future work are presented in Chapter 5.
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2 LITERATURE REVIEW

2.1 Evolutionary Algorithm

EAs are computational approaches that apply the natural biological evolution and/or

social behaviour of species to the problems of finding an optimal solution. In EAs,

the best solution is yielded from a population of candidate solutions. Part or all of

the population individuals (candidate solutions) would have to go through mutation,

crossover, selection and reproduction in each iteration of EAs. The operation of muta-

tion or crossover periodically makes changes in individuals of the current population,

producing the new individuals. The selection process makes the “most fit” individ-

uals survive, and eliminates the “least fit” members. Consequently, the surviving

individuals will participate in the next iteration. As a result of these steps, better

solutions will be produced along the iterations. However, EAs rarely reach the opti-

mal solutions because a solution can only be “better ” in comparison to the presently

known solutions. Some well-known EAs are Genetic Algorithm(GA), Particle Swarm

Optimization(PSO) and Ant Colony Optimization(ACO).

2.1.1 Genetic Algorithm

GAs originate from the idea of biological natural selection[14]. In GAs, solutions to

an optimization problem are represented as “chromosomes ”. A chromosome is made

up of a set of “genes” that express variables of the optimization problem. GAs start

with a random population of chromosomes. For each iteration of the GA, all the

chromosomes should be evaluated via the fitness functions. The chromosomes with

the best fitness value are selected to operate mutation and crossover so as to yield

the offspring chromosomes, and the offspring chromosomes will be taken to compare

with the parent chromosomes. Then, for steady versions of GAs, only the winning

offspring chromosomes are used to replace the worst parent chromosomes. In contrast,

6



for unsteady GAs, all the offspring solutions are used to form the population of next

generation without being compared with the parent solutions[3]. Usually, the process

of GAs is continued until a near-optimal solution is obtained, or a certain number of

generations is reached.

The main parameters used in GAs are population size, the maximum number of

generations, mutation rate, and crossover rate. Large population size and a large num-

ber of maximum generations usually gain the probability to obtain a better solution[3].

A small mutation rate is usually used, and the crossover is given a rate that ranges

from 0.6 to 1.0, traditionally[15].

A pseudocode for GAs is shown as follows[15].

Algorithm 1 Genetic Algorithm[3]

1: Generate random population of P solutions (chromosomes);
2: for each individual i ∈ P do
3: Calculate fitness(i);
4: for each i = 1 to number of generations; do
5: Randomly select an operation (crossover or mutation);
6: if (crossover) then
7: Select two parents at random ia and ib;
8: Generate an offspring ic = crossover (ia and ib);
9: else
10: if (mutation) then
11: Select one chromosome i at random;
12: Generate an offspring ic = mutate (i);
13: end if
14: end if
15: Calculate the fitness of the offspring ic;
16: if ic is better than the worst chromosome then then
17: replace the worst chromosome by ic;
18: end if
19: end for
20: end for
21: Check if termination = true;

7



2.1.2 Particle Swarm Optimization

PSO was first proposed by Kennedy and Eberhart[16]. It is inspired by the social

behavior of a flock of birds that try to reach an unknown destination. A bird in the

flock is referred to a “particle” that is analogous to a chromosome in GAs. Particles

are unable to reproduce offsprings. Instead of reproduction, the particles change their

positions to evolve the populations. The particles have both private knowledge and

global knowledge which will help the particles approach the desired position (optimal

solution). In PSO, the particles can learn from their own experiment (local knowledge)

and can communicate with the other particles around them (global knowledge)[3].

The pseudocode for PSO is given as follows[17]:

Algorithm 2 Particle Swarm Optimization[17]

1: Generate random population of N solutions(particles)
2: for each individual i ∈ N do
3: Calculate fitness(i);
4: Initialize the value of the weight factor, w;
5: for each particle do
6: Set pBest as the best position of particle i;
7: if fitness (i) is better than pBest; then
8: pBest(i)=fitness(i);
9: end if
10: end for
11: Set gBest as the best fitness of all particles;
12: for each each particle; do
13: Calculate particle velocity according to Equation 4;
14: Update particle position according to Equation 3;
15: end for
16: Update the value of the weight factor, w;
17: end for
18: Check if termination=true;

A PSO system is initialized with a swarm of random particles in a S-demension

space (S is the number of variables to the optimization problem). Each particle i is

assigned with three values: its current position (Xi), its velocity (Vi) and the best

position it has reached (Pi) in previous cycles. The position of the best particle in

8



current cycle (Pg) is also known to each particle in the population. Then for each

cycle, each particle updates its position according to the following formulas[18]:

New Vi = w × current Vi + c1 × rand()× (Pi −Xi) + c2 ×Rand()× (Pg −Xi) (1)

New position Xi = current position Xi + new Vi ;

Vmax ≤ Vi ≤ −Vmax
(2)

Here, w denotes the inertia weight that can balance the global search and local

search[18]. c1 and c2 are two positive constants called learning factors ,rand() and

Rand() generate a random number in the rang[0,1]. Vmax is the upper bound to change

of velocity[16]. Four main parameters for PSO are the population size (number of

particles), number of generation intervals, the maximum change of the flying velocity

Vmax and the inertia weight w.

2.1.3 Ant-colony Optimization

ACO was developed by Dorigo et al.[19]. It takes inspiration from the natural fact

that ants are able to find the shortest path between their nest and the food source.

It is because ants leave a chemical substance named pheromone wherever they travel,

and ants follow the paths with more pheromone deposits. As shown in Figure 2.1,

the initial ants just randomly rotate around the obstacle on their first trip between

the nest and the food source. So the right direction and the left direction have the

same pheromone deposits. The ants travel the shorter path will find the food and

return earlier (assume all the ants have the same speed). Then the returning ants will

be more likely to follow the shorter path, as the shorter path has accumulated more

9



pheromone. Moreover, the ants that later start out will choose the shorter trial and

deposit more and more pheromone on the path. As a result of this positive feedback,

all the ants will finally choose the shortest path over time[20].

The pseudo code (Algorithm 2.1) from [3] describes how the basic ACO works and

there are many variations to this basic version[21].

Algorithm 3 Ant Colony Optimization[3]

1: Initialize the pheromone trails and parameters;
2: Generate population of m solutions (ants);
3: for each individualantk i ∈ m do
4: Calculate fitness(k);
5: Determine its best position;
6: Determine the best global ant;
7: Update the pheromone trail;
8: end for
9: Check if termination = true;

Fig. 2.1: Ants find the shortest path to the food[3]

Similar to PSO, an ACO system starts with m random ants, and each ant carries a

solution string, with ni optional values for each variable i. The selected value for each

variable represents the path which the ants will travel. The pheromone associated

with each path (optional value) will change iteratively as the following equations

shown [19]:

10



τij(t) = ρτij(t− 1) + ∆τij; t = 1, 2..., T

∆τij =
m∑

R/fitnessk if option lij is chosen by ant k

0 otherwise

(3)

Here, τij(t) denotes the pheromone assigned with the ant i’s jth variable at the

tth iteration; ρ is the pheromone evaporation rate (0-1)[22]; ∆τij expresses the in-

creased pheromone deposits; R represents a constant number named pheromone re-

ward factor[3] that is used in minimization problems and lij denotes the jth option

for variable i. Then in the next iteration, the ant k will have probability Pij(k, t) to

choose the path lij according to the pheromone associated with the path.

Pij(k, t) =
[τij(t)]

α × [ηij]
β∑

lij
[τij(t)]α × [ηij]β]

(4)

As Formula 4 shown, ηij denotes the heuristic factor that can indicate how good

for ant k to choose option lij, α and β are two positive numbers that control the

importance of pheromone. The main parameters used in ACO are: the number of

ants, the number of iteration, pheromone evaporation rate ρ, pheromone reward factor

R, α and β.

2.1.4 Other EAs

Other EAs including Evolutionary Programming (EP), Memetic Algorithm (MA) and

Shuffled Frog Leaping Algorithm (SFL) are briefly introduced as follows:

• Evolutionary Programming: The EP is a global optimization algorithm that

is similar to the GA. However, it only uses the Gaussian-based mutation opera-

tor to generate new candidate solutions. EPs are usually applied in continuous

function optimization[23].
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• Memetic Algorithm: The MA was developed based on the notion of meme[24].

As the extension to the GA, the MA also has the chromosomes. However, the

elements that constitute the chromosomes are called memes. MAs use local

search technique, such as pair-wise interchange heuristics[25], to decrease the

likehood of premature convergence.

• Shuffled Frog Leaping Algorithm: The SFL algorithm is a multi-population

EA. In SFL algorithms, frogs(solutions) are divided into several sub-groups.

Within each sub-group, the frogs can exchange ideas with each other through

memetic evolution[26]. In addition to local search performing within each sub-

group, the evolutionary information is also passed among sub-groups in a shuf-

fling process.[27]

Many other EAs were developed besides the ones mentioned above. In general, we

do not have an EA that can optimize all the optimization problems, various EAs have

unequal performance for specific domains(see also the discussion on the no-free-lunch

theorem for optimization [28]).
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2.2 Cultural Algorithm

Inspired by the process of social and cultural changes, the CA was developed to

enhance evolutionary computation. Besides the population component that evolu-

tionary computation approaches have, there is an additional peer component be-

lief space and a supporting communication protocol between these two components,

which makes CAs perform better in some special optimal cases than other EAs. The

following figure presents the basic CA framework[4].

Fig. 2.2: CA framework[4]

As Figure 2.2 shown, the population space and the belief space can evolve re-

spectively. The population space consists of the autonomous solution agents and the

belief space is considered as a global knowledge repository. The evolutionary knowl-

edge that stored in belief space can affect the agents in population space through

influence function and the knowledge extracted from population space can be passed
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to belief space by the acceptance function. The population space in CAs can be

modeled by the population-based EAs, such as GAs[29], EPs[13] and PSO[30], etc.

In the process of the CA evolution, the population space is initialized with can-

didate solution agents at random, meanwhile, the initial knowledge sources in the

belief space are built. At first, the two spaces evolve independently. Then the se-

lected agents from the population space are used to update the belief space. After the

knowledge sources being updated, the belief space will reversely guide the evolution

of the population space. these procedures repeat till a termination condition has been

reached. The CA pseudo code presented by [10] is given as follows:

Algorithm 4 Cultural Algorithm[10]

1: t=0;
2: Initialize Population POP(t);
3: Initialize Belief Space BLF(t);
4: Repeat
5: Evaluate Population POP(t);
6: Adjust (BLF(t), Accept(POP(t)));
7: Adjust (BLF (t));
8: Variation(POP (t) from POP (t-1));
9: Until termination condition achieved

Different types of knowledge sources are used in the CA to solve different problems.

The researchers have concluded five categories of knowledge sources and all available

evolutionary information can be expressed by one of these five knowledge sources for

a given domain. They are:

• Situational Knowledge: Chung[31] proposed the situational knowledge in

1997. It is designed to solve real-valued function optimization problems in the

static environment. The situational knowledge can record the exemplars of

successful and unsuccessful solutions.

• Normative Knowledge: The normative knowledge describes ranges of ac-

ceptable behaviors for the solution individuals[31]. The normative knowledge
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can induce individuals to evolve within the domain that has the larger likehood

to obtain optimal solutions.

• Topographic Knowledge: The topographic knowledge sources can express

the spatial pattern of individual’s behavior. The topographic knowledge is

usually used to exploit the search space more precisely by dividing the space

into smaller cells[32].

• Domain Knowledge: To solve dynamic optimization problems, Reynolds and

Saleem introduced the domain knowledge to CAs[33]. It is used to monitor the

changes of the environment and predict the evolutionary trend.

• Historic Knowledge: The historic knowledge was also proposed by Reynolds

and Saleem[33]. The historic knowledge can be considered as the log in which

the important events during the evolution of the population are recorded.
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2.3 Multi-Population Cultural Algorithm

Researchers have developed many CAs with single population space. These CAs

are powerful and perform well on a wide variety of problems. However, it has been

proven that the CA system with multiple population spaces can reach better solutions

to the optimization problems[34]. The MPCA enables implicit knowledge sources

to be exchanged among sub-populations based on certain rules. With knowledge

sources from different sub-populations migrated and cooperated with each other, the

individuals can obtain more evolutionary information to evolve the population more

quickly and more precisely. Consequently, the MPCA can improve the speed of

convergence and have more probability to overcome premature convergence. The

following diagram describes an MPCA framework proposed by Guo et al[13].

Fig. 2.3: MPCA framework
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As the Figure 2.3 shown, an MPCA system contains n sub-populations. Each

sub-populations is a basic CA system that consists of belief spaces and population

spaces. Each sub-population evolves independently for a certain generations, and then

the knowledge sources in the sup-populations will be migrated to each other. The

migrated knowledge source from the other sub-population will blend with the private

knowledge sources, as so to form the new private knowledge sources. By the way

of knowledge migration, the evolutionary information extracted from different sub-

populations will be shared with all the individuals. It is noted that, the knowledge

migrations happen at a certain generation interval. The details of the migration

strategies of different knowledge sources are discussed in Chapter 3.

The brief review of some current MPCAs is presented as follows:

• Digalakis and Margaritis[34] proposed an MPCA called the parallel co-operating

cultural algorithm (PARCA). The PARCA consists of several sub-components

and each of the them runs a CA with different hehaviour. Local search is

adopted by each sub-component. They claimed that the exchange of informa-

tion among the sub-CA systems allows them to co-operate and explore promis-

ing areas of the search space found by the other populations, and also to rein-

troduce previously lost cultural material in the population. However, the sub-

populations in PARCA exchange the information extracted only from the best

solution individual. This may reduce the accuracy and stability of the algo-

rithm.

• Alami et al.[35] proposed an MPCA using fuzzy clustering. The proposed

MPCA uses the fuzzy clustering technique to divide the initial population into

sub-populations, and each sub-population can be managed by their own local

CA. Besides, it introduces the cultural exchange concept that can be useful

to mining new cultural. They declared that the experimental results indicated

that their proposed model display better search performance than the sharing
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fitness technique on four known multi-modal test functions. However, their

model cannot support multiple types of knowledge sources for being migrated

among sub-populations.

• MPCA-KM is a novel MPCA framework that was developed by Guo et al[13].

Guo et al. declared that MPCA-KM has faster convergence speed and better

solutions than CA and PARCA for the high-dimensional static optimization

problems. In MPCA-KM, the information is shared among sub-populations in

the forms of different knowledge types. They introduce the knowledge coopera-

tion strategy of topographic knowledge, but more cooperation strategies need to

be developed for the other categories of knowledge sources. Moreover, the model

does not consider the knowledge selection strategies when the MPCA-KM uses

more than one knowledge source. They illustrated that the MPCA-KM requires

a dynamic knowledge migration interval among sub-populations for the future

work.

We have reviewed many EAs in this section. In summary, a GA has a simple

structure that cannot store the individuals’ knowledge over long time; For PSO, the

individuals can communicate with each other, but only in one form where the individ-

uals gather toward to the best solution; ACO is mainly used for discrete optimization

problems that are not the domain that our work focuses on; CA can store and utilize

various forms of knowledge, but the social contact is restricted to a single commu-

nity. MPCA models have not only individual-to-individual social interaction, but

community-to-community social interaction as well, that is more fit to natural sys-

tem than single-population CA models. Therefore, our heuristics are built on the

basis of MPCA which we will introduce in the next chapter.
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3 PROPOSED ALGORITHM

In this chapter, we introduce the flowcharts of the proposed MPCA and the pro-

posed MPCA will be compared with MPCA-KM. We subsequently discuss the design

of knowledge sources that used in the proposed MPCA and how these knowledge

sources migrate among the sub-populations. Last, the four heuristics that apply to

the proposed MPCA are presented.

3.1 Algorihtm Flowchart

Figure 3.1 shows the flowcharts of both the MPCA-KM and the proposed MPCA. The

parts wraped by the dotted line are the components to which the heuristic strategies

apply.
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Fig. 3.1: Flowchart of the proposed MPCA
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To observe the influence of the proposed heuristic strategies, each solution (indi-

vidual) in the proposed MPCA is assigned with a unique ID that will not be changed

during the whole process of the evolution as well as a knowledge-log that can record

which and how the knowledge source impact the evolution of the individual in each

generation. Figure 3.2 shows the sample of an individual in the proposed MPCA.

Fig. 3.2: Solution individual

Algorithm 5 describes the detail process of our proposed MPCA.
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Algorithm 5 MPCA with the proposed heuristics

1: Parameters initialize;
2: Generate random population of n solutions (individuals);
3: Initial population is divided into M sub-population denoted by P i, i=1,2,...,M;
4: for each belief space ∈ P i do
5: Initialize knowledge sources;
6: end for
7: for each individual x ∈ P i, i=1,2,...,M do
8: calculate fitness(x);
9: end for
10: for each P i do
11: Sort the individuals according to fitness value;
12: Select p% top individuals;
13: for each private knowledge source do
14: Update according to Formula (6)(7)(8)(9)(12)(17) in Section 3.2;
15: end for
16: end for

[ Heuristics about knowledge migration interval ]
17: g← dynamic interval heuristics or population dispersion based interval heuristics

[ Heuristics about knowledge migration interval ends ]
18: if generation = g then
19: for each sub-population having adjacent sub-populations do
20: knowledge sources to be migrated to the adjacent sub-populations← private

knowledge sources;
21: new private knowledge sources← blend(private knowledge, migrated knowl-

edge from the adjacent sub-populations) according to Formula (11)(15);
22: end for
23: end if

[ Heuristics about knowledge selection ]
24: for each individual x ∈ P i, i=1,2,...,M do
25: Select one knowledge source from the belief space;

[ Heuristics about knowledge selection ends ]
26: x̄ ← evolve(x, the selected knowledge source) according to Formula

(10)(14)(18);
27: if fitness(x̄) is better than fitness(x) then
28: x̄ replaces x;
29: end if
30: end for
31: generation ← generation + 1;
32: Check if termination = true;
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3.2 Knowledge Sources

The CA enables the evolutionary information to be collected, stored and updated in

the belief space as knowledge source. Along with the development of CAs, it was

concluded that five knowledge sources are are able to express all available knowledge

for a given domain[36]. Each of these five knowledge sources is suitable to specific

optimization problems. In our thesis, normative knowledge, topographic knowledge,

and historic knowledge are used for the proposed MPCA, as the heuristic strategies

primarily focus on the static environment. The update of the knowledge sources is

discussed in this section, which refers to the 14th step in Algorithm 5. The evolution

of individuals that controlled by the three knowledge sources refers to the 26th step

in Algorithm 5 and the process of knowledge sources blend is related to the 21st step

of Algorithm 5.

3.2.1 Normative Knowledge

Normative knowledge is used to define the feasible search space to an optimization

problem. According to [31], the normative knowledge of the ith sub-population P i is

described as follows:

NKi =< I ij, L
i
j, U

i
j > (5)

Here, j = 1, 2, ...m, m denotes the number of variable of the optimization problem.

I ij = [lij, u
i
j] records the bound of feasible search space to the jth variable, and lij and

uij express lower bound and upper bound, respectively. For instance, I11 = [−10, 10]

means that lower limit and upper limit of the first variable in the first sub-population

are -10 and 10. Lij expresses the fitness score of the lower bound of the jth variable.

Similarly, U i
j denotes the fitness value of the upper bound of the jth variable.

The normative knowledge sources in the belief spaces are updated by the selected

23



elite individuals as follows[31]:

lij(t+ 1) =


xilj(t) if xilj(t) < lij(t) or f(xil(t)) < Lij(t)

lij(t) else

(6)

Lij(t+ 1) =


f(xilj(t)) if xilj(t) < lii(t) or f(xil(t)) < Lii(t)

lij(t) else

(7)

uij(t+ 1) =


xilj(t) if xilj(t) > uij(t) or f(xil(t)) < U i

j(t)

uij(t) else

(8)

U i
j(t+ 1) =


f(xilj(t)) if xilj(t) > uij(t) or f(xil(t)) < U i

j(t)

U i
j(t) else

(9)

Here, formula(6) and (7) represent the update for lower bound for the jth variable

and its lower fitness value at the (t+1)th generation. Then equation(8) and (9)

represent the update for upper bound of the jth variable and update of the upper

bound’s fitness value. Within these formulas, xilj(t) denotes value of the jth variable

of the lth individual in the ith sub-population, and f(xil(t)) indicates the fitness score

of individual, xil(t).

Suppose xilj(t) select normative knowledge at the tth iteration; it is induced to

evolve by the normative knowledge source in the following way[31]:

x̄ilj(t) =


xikj(t) +

δ

2
(uij(t)− lij(t)) if xilj(t) ∈ I ij

δ(uij(t)− lij(t)) + lij(t) if xilj(t) /∈ I ij
(10)

Here, x̄ilj(t) is the value of the jth variable to the individual xilj(t) after evolving,

and δ is a random number between 0 and 1. As the formulas shown, normative

knowledge utilizes the information that is carried by the elite individuals to reduce

the feasible search space and direct the individuals to move into the feasible search
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space, thereby avoiding inefficient search outside the dominant landscape.

In our proposed MPCA, each sub-population evolves independently. Therefore,

the belief spaces of different sub-populations have varying degree of development. To

increase the efficiency of the algorithm, sub-populations need to share their private

knowledge with each other. Thereby the knowledge sources of more developed sub-

populations need to cooperate with the knowledge sources of less developed sub-

populations.

Suppose the normative knowledge source NKm in the belief space of the mth

sub-population migrates to the belief space of the ith sub-population and cooperates

with the normative knowledge source NK i. This will cause the NKi to be updated

as follows:

NKi =


NKm if ∀j ∈ [1,m], I ij ∈ Imj and Lmj ≤ Lij and U

m
j ≤ U i

j

NK i else

(11)

Figure 3.3 shows an example of normative knowledge sources that come from two

sub-populations blend. The black boxes represent the feasible search space in sub-

population A and sub-population B. Obviously, the sub-population B has a more

developed normative knowledge source, which has narrowed the feasible space to

a smaller region. After blending with the normative knowledge source from sub-

population B, the normative source in sub-population A will evolve to the same range

as the normative knowledge source in sub-population B. The migration of normative

knowledge can speed up the evolution of the belief spaces in sub-populations so as to

accelerate the convergence speed of the whole population.
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Fig. 3.3: Cooperate mechanism of normative knowledge (m = 2)

At the early stage of evolution, normative knowledge can guide the population

explore the whole search space and quickly identify the dominant regions. However,

after the individuals gather at the regions with the most potential, normative knowl-

edge is unable to drive them into exploiting the regions more precisely.

3.2.2 Topographic Knowledge

Topographic knowledge describes the distribution of good solutions in the feasible

search space. Within the search space recorded by normative knowledge, the area

containing the best solution is uniformly divided into subspaces along each dimension

by a binary tree. Thereby, the m-dimension hypercubes with the same size are formed.

The hypercubes are called cells. Obviously, there are 2m cells. Assume the best

solution at the t− 1 iteration is located in a 2-dimension area [(-10,10),(-10,10)], and

four cells are obtained in this area, noted by Ci
1(t − 1), ..., Ci

4 (Figure 3.4). Then, if

the best solution at the t iteration is located in Ci
1(t − 1), this area is divided into
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four cells again, as shown in Figure 3.4.

Fig. 3.4: Topographic knowledge(2-dimension)

Topographic knowledge composed of cells is described as follows[32]:

TKi(t) =< Ci
1(t), C

i
2(t), ...C

i
k(t), ... > (12)

Each cell is assigned an attribute about the potential to get the optimal solution.

Cell attribute =


High(H) f(xi

∗

k ) > f̄(xi
∗

k )

Unknown(#) xi(t) /∈ Ci
k(t)

Low(L) f(xi
∗

k ) ≤ f̄(xi
∗

k )

(13)

In formula 13, f(xi
∗

k ) denotes the fitness value of the best individual in the kth

cell and then f̄(xi
∗

k ) expresses the average performance value of the best individuals

from all cells. The cell attribute shows the possibility of a cell containing the global

optimal solution. H means the cell is a possible subspace finding the better solutions.

# means a cell has not been explored. In order to determine whether good solutions

are located in the cells, cells with a # attribute shall be searched.
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Topographic knowledge is used to induce individuals to exploit certain cells,

namely local search. Topographic knowledge evolves the individuals in the follow-

ing way[32]:

x̄ilj(t) =


xikj(t) + δ

f(xil(t))∑n
l=1 f(xil(t))

(uij(t)− lij(t)) if (xilj(t) /∈ Ci
k(t)) ∩ (attributeik 6= L)

xilj(t) +
δ

m

√
f(xilj(t)) if (xilj(t) ∈ Ci

k(t)) ∩ (attributeik = H)

(14)

As above mentioned, cells with H or # attribute shall be mainly searched. If the

individuals are located in the cells with H, they will search for the optimal solutions

amongst these cells. If the individuals are located in cells with L attribute, they will

move towards the cells with better potential.

Topographic knowledge directly influences the exploitable ability of the individuals

to the dominant region. Different sub-populations may have topographic knowledge

sources of different development. A reasonable strategy of cooperating topographic

knowledge sources from different sub-populations is important. [13] provides a cooper-

ate mechanism to topographic knowledge. Suppose TKj =< Cj
1(t), Cj

2(tCj
3(t), Cj

4(t),

Cj
5(t), Cj

6(tCj
7(t), > is the topographic knowledge in the jth sub-population at the tth

generation as shown in Figure 3.5, and TKi =< Ci
1(t), C

i
2(tC

i
3(t), C

i
4(t), C

i
5(t), C

i
6(tC

i
7(t)

>is the topographic knowledge from the ith sub-population as shown in Figure 3.5.

Then, if the knowledge migration condition is satisfied at the the tth generation,TKj

and TKi will mix to form the new topographic knowledge TKij(t).

TKij(t) =< Cj
1(t), Cj

2(t), Cj
3(t), Cj

4(t)...C
i

4(t), C
i
5(t), C

i
6(t), C

i
7(t)) > (15)
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Fig. 3.5: Cooperate mechanism of topographic knowledge (m = 2)

3.2.3 Historic Knowledge

In this thesis, historic knowledge is designed to record the good solutions that have

been found, which can be represented as follows:

HKi(t) =< Ei
1, E

i
2, ...E

i
j, ....E

i
s > (16)

Here, s is maximum length of HKi, Ei(t) = [xit] , xit denotes the best individual of

the ith sub-population t iterations ago and t≤s. The historic knowledge database can

be described as a queue. Once the queue is full, the new coming record will replace

the most recent record which has been stored in the queue. The update of historic

knowledge is shown as follows:

HKi(t+ 1) =


< Ei(1), Ei(2), ...Ei(t), Ei(t+ 1) > if t < s

< Ei(1), Ei(2), ...Ei(s) > if t ≥ s

(17)

To avoid missing potential region, historic knowledge induce individuals to search

for the former regions which once produced good solutions. When historic knowledge
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sources work, Gaussian mutation[37] will be adopted in the vicinity of the best solu-

tions at the early stage of the evolution. The influence function relevant to historic

knowledge is given in Equation 18, Si denotes a random individual selected from

SKi, and w1, w2 represent the weight parameters, w1, w2 ≥ 0 and w1 + w2 = 1. δ is

a random number between 0 and 1.

xij(t+ 1) = Si(t)(w1 + w2δ) (18)
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3.3 Heuristic Strategies

In order to improve the weakness in current MPCAs, which are the random knowl-

edge sources selection mechanism and the constant knowledge migration interval, four

heuristic strategies applied to the different components of MPCAs are proposed. The

four heuristic strategies are knowledge selection based on individual memory, knowl-

edge section based on social interaction, dynamic knowledge migration interval and

population dispersion based knowledge migration interval.

3.3.1 Strategy One (S1): Knowledge Selection Based on Individual Mem-

ory

Utilizing more than one type of knowledge sources enable MPCAs to solve more

complex optimization problems. However, different categories of knowledge sources

have different effectiveness for the entire population from early time to latter time

of the evolution. Furthermore, for an individual, the effectiveness of every type of

knowledge source will change along with the evolution, since the individual’s position

will change over the evolution. For example, an individual that has been very close to

the optimal solution can get more benefit from topographic knowledge sources than

normative knowledge sources, since the topographic knowledge sources can guide the

individual search for the space more precisely.

The individuals in existing MPCAs cannot identify the importance of knowledge

sources, thereby they choose random knowledge sources to evolve the population,

which may reduce the efficiency of MPCAs. Therefore, a novel knowledge selection

heuristic strategy is introduced in this thesis. It is assumed that the individuals have

memory of the knowledge source’s performance, due to which they are more likely to

select the knowledge source that has better performance. Figure 3.6 shows an example

of how an individual that has memory selects the better knowledge source. The

individual described as a face has been through three generations in which it selected
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normative knowledge source, topographic knowledge source, and historic knowledge

source in order. The height of the bar represents the fitness value of the individual.

The topographic knowledge source gain the height fitness bar most. Therefore, the

individual is most likely to select the topographic knowledge at the fourth generation.

It is noted that:

• The individuals only have short-term memory. That is only the most recent

performance of each knowledge source can be kept for the individuals;

• The higher performance value one knowledge source has, in the larger possibility

the individual will select the type of knowledge source in the next round;

• The initial performance value of all knowledge sources are zero;

• If the performance value of all three types of knowledge sources for the individual

are zero, the individual will select each of the three types of knowledge sources

once in the next three generations.
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Fig. 3.6: The memory can affect the individual’s decisions

Assume mi
lj denotes the performance value of the jth knowledge source for the lth

individual in the ith sub-population. Then the update of mi
lj is shown as follows:

mi
lj = |fitness(xil(t+ 1))− fitness(xil(t))|

if xil selects the jth knowledge source at the tth generation

(19)

The probability for the lth individual to select the jth knowledge source in the
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next generation is defined as:

pilj =
mi
lj∑n

j=1m
i
lj

(20)

where n denotes the total number of available knowledge sources.

Algorithm 6 describes the MPCA with knowledge selection based on individual

memory. Algorithm 6 refers to [ Heuristics about knowledge selection ] in

Algorithm 5.

Algorithm 6 MPCA with knowledge selection based on individual memory

1: for each individual x ∈ P i, i=1,2,...,M do
2: update(mi

lj)
3: if ∀j ∈ [1, n], mi

lj = 0 then
4: xil will select normative knowledge source, topographic knowledge source,

and historic knowledge source in order in the next three generations;
5: else
6: xil selects the one knowledge source j according to probability pilj;
7: end if
8: end for

3.3.2 Strategy Two (S2): Knowledge Selection Based on Social Interac-

tion

Knowledge selection strategy based on social interaction is proposed for the same

purpose as knowledge selection strategy based on individual memory. It is assumed

that the individuals have social connections with each other in the population. The

individuals’ choices can be affected by their “neighbours” in the population[40]. For

example, as the Figure 3.7 shown, it is a simple social network for a 5-individual

population. The circle with different colours represents the individual that want to

suggest the knowledge source of that color to its neighbours. Then, the individuals

will transit their knowledge suggestions to their neighbours(adjacent individuals).

For instance, individual A will transit the suggestion of selecting yellow knowledge

source to individual C, individual B and individual D, so as the other individuals in
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the network. Then every individual counts up the knowledge source suggestion bids

collected (include the original knowledge suggestion hold by the individual itself ).

The knowledge source type that has most votes will be selected by the each individual

in next iteration. In the example of figure 3.7, individual A has collected two blue

knowledge suggestions, one yellow knowledge bid and one green knowledge suggestion,

so A will select blue knowledge source.

Fig. 3.7: Individuals select knowledge source based on social influence

For this heuristic strategy, it is noted that:

• Which knowledge source the individuals suggests to its neighbors is determined

by the individual memory developed in strategy one;

• If there are ties between knowledge sources bids, the individual will select the

knowledge source suggested by itself;
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• There are different types of social network topology. The efficiency of different

social network used in the algorithm will be discussed in the next chapter;

• Each sub-population has independent social network;

Algorithm 7 shows the MPCA with knowledge selection based on social inter-

action. Algorithm 7 refers to [ Heuristics about knowledge selection ]

in Algorithm 5.

Algorithm 7 MPCA with knowledge selection based on social interaction

1: for each individual x ∈ P i, i=1,2,...,M do
2: update(mi

lj)
3: if ∀j ∈ [1, n], mi

lj = 0 then
4: xil will suggest normative knowledge source, topographic knowledge source,

and historic knowledge source in order over next three generations;
5: else
6: xil suggests the knowledge source j according to pilj
7: end if
8: end for
9: for each P i do
10: for each Individual do
11: Transmits the suggested knowledge source to the adjacent individuals.
12: Counts the bids of collected knowledge sources
13: if There are ties between knowledge sources then
14: Selects the suggested knowledge source
15: else
16: Selects the knowledge source that has most votes
17: end if
18: end for
19: end for

3.3.3 Strategy Three (S3): Dynamic Knowledge Migration Interval

As discussed in section 1.2, constant knowledge migration rate that apply to the exist-

ing MPCAs may result in premature convergence and more convergence generations

for optimization problems. At the latter time of evolution, the diversity to individuals

is low, so more knowledge migrations among sub-populations are in demand to speed
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up the pace on convergence. On the other hand, the frequent migration of knowledge

at the early time decrease the diversity of individuals, this may lead the algorithm

trapping in the local optima.

Therefore, a dynamic knowledge migration rate is introduced as followed[38]:

η(t) = floor(ηmaxN
−t + 1) (21)

Here, η denotes the number of iteration between two knowledge migrations ,ηmax

denotes the maximum interval, η ∈ [1, ηmax] and N reflects the rate of interval change,

N > 1.

Figure 3.8 shows an example of knowledge migration interval. The maximum

interval is 50 generations at the beginning of evolution; then the interval gradually

decreases to 1 at around the 200th generation.
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Fig. 3.8: Dynamic knowledge migration interval (ηmax = 50, N = 1.02)

Algorithm 8 describes the MPCA with dynamic knowledge migration interval and

refers to [ Heuristics about knowledge migration interval ] in Algorithm
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5.

Algorithm 8 MPCA with dynamic knowledge migration interval

1: update(η);
2: g ← η+generation of previous knowledge migration

3.3.4 Strategy Four (S4): Population Dispersion Based Knowledge Mi-

gration Interval

This strategy is put forward for the same purpose as strategy three. MPCAs need an

indicator to determine when to migrate the knowledge sources among sub-populations.

Therefore, we use population dispersion rate to decide the timing of knowledge mi-

gration. Population dispersion was proposed by Lisis [39]. It is used to measure the

intensity of the population.

PD(t) =
n∑
j=1

[
1

popsize

popsize∑
i=1

(xij(t)−
1

popsize

popsize∑
i=1

xij(t))
2] (22)

In formula 22, PD(t) refers to the dispersion rate of the entire population at

the tth generation, xlj(t) represents the jth variable of the lth individual at the tth

generation.

It is assumed that:

• If PD(t) > τ , τ is a positive number. The distribution of individuals in the

population space is scattered, the knowledge sources of each sub-population do

not migrate at the tth iteration. This will maintain the high diversity of the

population.

• If PD(t) ≤ τ , the distribution of individuals in population space is concen-

trated, the private knowledge of each sub-population will migrate to other sub-

populations at this iteration.
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Algorithm 9 shows the MPCA with dynamic knowledge migration interval and

refers to [ Heuristics about knowledge migration interval ] in Algorithm

5.

Algorithm 9 MPCA with population dispersion based knowledge migration

1: update(PD(t));
2: if PD(t) > τ then
3: g ← 0;
4: else
5: g ← generation;
6: end if
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4 EXPERIMENT AND RESULT ANALYSIS

In this chapter, we first introduce the test functions for the experiment. Then we

explain the detail of the experimental setup. Last, the summary results of the tests

along with the analysis will be presented.

4.1 Benchmark Optimization Functions

Many commonly used benchmark optimization functions are used to evaluate and

compare the performance of optimization algorithms. In our experiments, five static

minimal optimization functions[5] with different characteristics are taken to test the

proposed heuristic strategies. All of these test functions are dimension-wise scalable.

1. F1(x) =
∑D

i=1 x
2
i

2. F2(x) = (
∑D

i=1(
∑i

j=1 xj)
2)

3. F3(x) = −20exp(−0.2
√

1
m

∑D
i=1 x

2
i )− exp[ 1

m

∑D
i=1 cos(2πxi)] + 20 + e

4. F4(x) =
∑D

i=1(x
2
i − 10cos(2πxi) + 10)

5. F5(x) =
∑D−1

i=1 (100(x2i − xi+1)
2 + (xi − 1)2)

Table 4.1: Dimensions, search ranges,and global optimum values of the test functions

Function Dimension Search range Optimal solution Global

minima

F1 : Sphere function 10/50 xi ∈ [−100, 100] [0, 0, ..., 0] 0

F2 : Schwefel problem 10/50 xi ∈ [−100, 100] [0, 0, ..., 0] 0

F3 : Ackley function 10/50 xi ∈ [−30, 30] [0, 0, ..., 0] 0

F4 : Rastrigin function 10/50 xi ∈ [−5.12, 5.12] [0, 0, ..., 0] 0

F5 : Rosenbrock function 10/50 xi ∈ [−30, 30] [1, 1, ..., 1] 0
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F1 (Sphere Function) : As the figure 4.1 shown, sphere function is simplest uni-

modal function in the test functions. It is featured with unimodal, separable

and dimension-wise scalable.

Fig. 4.1: 3-D image for 2-D Sphere Function[5].

F2 (Schwefel Problem 1.2 Function) : As shown in figure 4.2, the global minimal

solution is located in narrow and long area. Schwefel problem 1.2 function is

featured with unimodal, separable, and dimension-wise scalable.
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Fig. 4.2: 3-D image for 2-D Schwefel Problem 1.2 Function[5].

F3 (Ackley Function) : Ackley function is a multi-modal optimization function

which has a lot of local minima. A large number of modals(local minima) are

located in a very flat area(figure 4.3) due to modulation of added amplified

cosine wave. It is featured with multi-modal, non-separable, and dimension-

wise scalable.

42



Fig. 4.3: 3-D image for 2-D Ackleys Function[5].

F4 (Rastrigin Function) : Rastrigin function has lots of local minimas in the range

[-5.12,5.12], seen from figure 4.4. It is featured with multi-modal, separable,

dimension-wise scalable, and huge serried local optima.
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Fig. 4.4: 3-D image for 2-D Rastrigin Function[5].

F5 (Rosenbrock Function) : Rosenbrock function is a multi-modal optimization

function which the global minima is located in a very narrow and long bar-type

area. It is featured with multi-modal,non-separable,dimension-wise scalable,

Having a very narrow valley from local optimum to global optimum.
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Fig. 4.5: 3-D image for 2-D Rosenbrock Function[5].

These different types of benchmark optimization test functions with different char-

acteristics are appropriate for evaluating the performance of the proposed algorithm.

4.2 Experimental Setup

We perform the experiments to compare the performance between MPCA with the

proposed heuristics and MPCA without the heuristics (MPCA-KM) on the five test

functions. Furthermore, we compare the efficiency of different heuristic strategies.

The combinations of the strategies explained in Chapter 3 and their abbreviations

are listed as follows:

45



• M1: Basic MPCA without heuristics

• M2: MPCA with knowledge selection based on individual memory heuristics

• M3: MPCA with knowledge selection based on social interaction heuristics

• M4: MPCA with dynamic knowledge migration interval

• M5: MPCA with population dispersion based knowledge migration interval

• M6: MPCA with knowledge selection based on individual memory heuristics

and dynamic knowledge migration interval

• M7: MPCA with knowledge selection based on individual memory heuristics

and population dispersion based knowledge migration interval

• M8: MPCA with knowledge selection based on social interaction heuristics and

dynamic knowledge migration interval

• M9: MPCA with knowledge selection based on social interaction heuristics and

population dispersion based knowledge migration interval

The nine algorithms listed above fall into 3 sets: M1 vs M2 vs M3, M1 vs M4 vs

M5 and M1 vs M6 vs M7 vs M8 vs M9. For a fair comparison, the algorithms in the

same set use the same parameters given in Table 4.3, Table 4.5 and Table 4.7 . All

the experiments are carried out with JAVA language. For the purpose of reducing

statistic error, sixty trial runs are performed for each function. The performance of

the different algorithms was compared using the following criteria:

1. Mean fitness: mean value of the solutions got at the maximum generation in 60

runs.

2. Standard deviation: standard deviation of mean fitness.
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3. Interval number: The average value of iteration number to reach the target so-

lution value in 60 runs. The target solution value is usually within an acceptive

tolerance of the known global optima for an optimization function. The target

values to the five test functions are summarized in table 4.2.

Table 4.2: Target values of 5 test problems [1]

Function Target

F1(10-Dimension) 1 × 10−8

F1(50-Dimension) 1 × 100

F2(10-Dimension) 1 × 10−1

F2(50-Dimension) 1 × 103

F3(10-Dimension) 1 × 10−12

F3(50-Dimension) 5 × 100

F4(10-Dimension) 1 × 101

F4(50-Dimension) 3 × 102

F5(10-Dimension) 1 × 10−1

F5(50-Dimension) 1 × 102

It is noted that the different topologies used in the social network model for

connection between individuals have the different effect on the efficiency of strategy

two. There are three commonly used topologies supported in population-based EAs

[40]. The efficiency of using the three topologies in Strategy two is discussed in the

next chapter. The three topology types are:

• Ring topology: Each individual has two connections to other individuals in the

population. (figure 4.6 b)

• Square topology: Each individual has four connections to other individuals in

the population. (figure 4.6 c)
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• Square topology: Each individual has connections to all other individuals in the

population. (figure 4.6 a)

Fig. 4.6: Ring topology, mesh topology and square topology
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4.3 Experimental Results and Analysis

4.3.1 M1 vs. M2 vs. M3

Table 4.3: Main parameters for M1 vs. M2 vs. M3

Parameter Value

Population size 200

Sub-population amount 8

Sub-population amount size 25

Selection proportion 0.3

w1: weight parameter in Formula 18 0.7

w2: weight parameter in Formula 18 0.3

Constant knowledge migration interval 3

Run times 60

Maximum iterations 1000

Dimension 10

Table 4.4 show the test result of M1, M2, M3 using ring topology, M3 using square

topology and M3 using mesh topology on benchmark optimization functions F1-F5.

The best results got in 60 runs are typed in bold. It can be observed that the pro-

posed two heuristic strategies in term of knowledge selection improve the performance

of original MPCA in mean fitness value, standard deviation, and iteration number.

Furthermore, all three M3s outperform M2 on the five test functions. For the compar-

ison of the M3s adopting different topologies, M3(Square topology) can get the best

fitness value and the smallest standard deviation in 1000 generations, and M3(Mesh

topology) can use the minimal generations to reach the target fitness value on all the

five optimization problems. However, the difference of test results between the M3s

using different topologies is minor.

Figure 4.7 - Figure 4.11 show that over 1000 generations, how many times an

individual select the three knowledge sources, respectively. Such as Figure 4.7 shown,
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Table 4.4: Test result for M1 vs. M2 vs. M3

50



for F1 test function, by average, an individual select normative knowledge 563 times,

topographic knowledge 425 times and historic knowledge 12 times, in M3. Obviously,

without knowledge selection strategies, the individual select almost same amount of

three knowledge sources in original MPCA(M1). The two knowledge selection heuris-

tics can drive the individuals to select more normative knowledge and topographic

knowledge, and much less historic knowledge. This can improve performance of the

MPCA, as normative knowledge, and topographic knowledge can give the individual

much greater probability to find a better solution than historic knowledge. In the

other word, historic is the weak knowledge compared with normative knowledge and

topographic knowledge.

Fig. 4.7: Number of times three different knowledge sources being selected by indi-

viduals for F1
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Fig. 4.8: Number of times three different knowledge sources being selected by indi-

viduals for F2

Fig. 4.9: Number of times three different knowledge sources being selected by indi-

viduals for F3
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Fig. 4.10: Number of times three different knowledge sources being selected by indi-

viduals for F4

Fig. 4.11: Number of times three different knowledge sources being selected by indi-

viduals for F5
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4.3.2 M1 vs. M4 vs. M5

Table 4.5: Main parameters for M1 vs. M4 vs. M5

Parameter Value

Population size 200

Sub-population amount 8

Sub-population amount size 25

Selection proportion 0.3

w1: weight parameter in formula 18 0.7

w2: weight parameter in formula 18 0.3

ηmax (formula 21) 1000

τ in formula22 0.01[39]

Run times 60

Maximum iteration 1000

Dimension 10

Table 4.5 lists the main parameters used in the experiment of M1 vs. M4 vs. M5.

To tune the parameter N in formula 21, we tested N at a interval of 0.02 from 1.01

to 2.00 on the five benchmark functions. Table 4.10 shows the test result of M1

with one knowledge migration interval, M1 with three knowledge migration intervals,

M1 with six knowledge migration intervals, M2 and M3 on benchmark optimization

functions F1-F5. The best results got in 60 runs are typed in bold. It can be seen

that the proposed two heuristic strategies in term of knowledge migration interval

can give the MPCA with constant knowledge migration interval slight promotion

effects in mean fitness value, standard deviation, and iteration number. From the

standard deviation value and iteration number value shown in the table, we can see

that the stability and convergence speed of M5 is better than M4 in general. However,

M4 can reach better optimal solutions in 1000 generations on most test functions(4

out of 5). Knowledge migrating at every generation makes the MPCA outperform

the MPCAs with knowledge migrating at every three generations and at every six
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generations in convergence speed. However, M1(constant interval = 1)has the worst

global optimization ability among all the five algorithms listed in the table.

4.3.3 M1 vs. M6 vs. M7 vs. M8 vs. M9

In this section, in order to evaluate the efficiency of the proposed heuristic strategies to

MPCA, all the heuristic strategies constitute four combinational strategies and com-

pare with the original MPCA on both low-dimension test functions (10-dimension)

and high-dimension test functions (50-dimension). Table 4.7 lists the main parameters

used in the tests. The original MPCA in this set of tests have knowledge migrating at

every three generations, constant knowledge migration interval of three generations

shows the best performance in the experiments in Section 4.3.2.

Table 4.7: Main parameters for M1 vs. M6 vs. M7 vs. M8 vs. M9

Parameter Value

Population size (10-Dimension) 200

Sub-population amount (10-Dimension) 8

Sub-population amount size (10-Dimension) 25

Population size (50-Dimension) 300

Sub-population amount (50-Dimension) 10

Sub-population amount size (50-Dimension) 30

Selection proportion 0.3

w1: weight parameter in formula 18 0.7

w2: weight parameter in formula 18 0.3

τ in formula22 0.01

ηmax (formula 21) 1000

Run times 60

Maximum iteration 1000

As the test results shown from Table 4.8 and Table 4.9, all the combinational

strategies can improve MPCA a lot. The MPCAs with combinational heuristic strate-
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Table 4.6: Test result for M1 vs. M4 vs. M5
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Table 4.8: Test result for M1 vs. M6 vs. M7 vs. M8 vs. M9(10-dimension)
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Table 4.9: Test result for M1 vs. M6 vs. M7 vs. M8 vs. M9 (50-dimension)
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gies can have better optimal solutions, better stability and faster convergence speed

for most test functions, whether the function is unimodal or multi-modal, and whether

high or low dimensional. The MPCA with knowledge selection based on social inter-

action and dynamic knowledge migration (M8), and MPCA with knowledge selection

based on social interaction and population dispersion based knowledge migration in-

terval (M9) show the best performance in the algorithms from M1 to M9 on both

low-dimension test functions and high-dimension test functions. M8 and M9 have bet-

ter performance than M6 and M7 in aspects of mean fitness value, standard deviation

and iteration number to reach goal fitness value.

4.4 Discussion

Figure 4.12 illustrates the convergence performance in terms of mean fitness value

of M1, M3 and M9 for F1(dimension = 10). Sphere function (F1) is the simplest

unimodal test function. Therefore, it can be observed that M1, M3, and M9 quickly

converge toward the optima, but M9 can get the best fitness value in 1000 iterations.

It also can be observed that M9 converges faster than M3 over the second half of the

evolution, as M9 is incorporated with the heuristic of knowledge migration interval

that speeds up the convergence by migrating knowledge sources more frequently at

latter stage of the evolution.
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Fig. 4.12: Convergence performance of M1,M3 and M9 for F1(10-D)

Figure 4.13 demonstrates convergence performance of M1(constant knowledge mi-

gration interval = 1), M1(constant knowledge migration interval = 6) and M8 for

Schwfel problem 1.2 function(F2) with 50 dimensions. For Schwfel problem 1.2 func-

tion, it is difficult to get the global optima, as the global minimum solution located

in a long and narrow area. Therefore, the two M1s are trapped into the local optima.

It can be seen from the figure, the heuristic strategies give M8 a better global opti-
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mization ability than M1s even though a smaller knowledge migration interval makes

M1(constant interval =1) drop quickly at first.

Fig. 4.13: Convergence performance of M1(constant knowledge migration interval =

1), M1(constant knowledge migration interval = 6) and M8 for F2(50-D)

Figure 4.14 shows the convergence curves of M1, M7, and M9 for the F3 function

of 50-dimension. It is obviously from the figure, M7 and M9 have the faster drop
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speed of optimization as well as the more precise optimal solutions than M1. M7

and M9 have different knowledge selection strategies and same knowledge migration

interval strategies. It can be obtained that, the individuals can select more reasonable

knowledge sources based on social interaction than individual memory, as M9 can

reach better optimal solutions than M7.

Fig. 4.14: Convergence performance of M1,M7 and M9 for F3 (50-D)

Figure 4.15 displays convergence performance of M1, M2 and M3 using square

62



topology for 50-dimensional F4 optimization function. It can be seen from the figure,

three algorithms converge toward the same small range because rastrigin function has

a large number of local minimas in a small region. Even though the three algorithms

may converge to the local optima, M3 still uses the least generations to get target

fitness value. This may prove that the strategy of knowledge selection based on social

interaction is better than the strategy of knowledge selection based on individual

memory.
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Fig. 4.15: Convergence performance of M1,M2 and M3 for F4(10-D)

Figure 4.16 illustrates the fitness value curves of M1, M8 and M9 over 1000 gener-

ation for F5(10-dimension). As we can see from the figure, M8 and M9 get close best

fitness value in 1000 generations. M8 has the faster speed of convergence during the

first half of evolution and M9 converges more quickly during the second half of evo-
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lution. That is because M8 and M9 have different strategies for knowledge migration

interval.

Fig. 4.16: Convergence performance of M1, M8 and M9 for F5(10-D)
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4.5 A Real-World Application

In this subsection, the proposed MPCA is applied on a real-life problem. Spring

design is a mechanical design problem [41] to minimize the weight of a compression

spring (Fig.5.1). Design of the spring has constraints including shear stress, minimum

deflection, surge frequency,and limits on outside diameter and on design variables.

The design variables are mean coil diameter (x1), wire diameter (x2), and the number

of active coils (x3), along with four inequality constraints[6]. The mathematical

expression of this problem is as follows[6]:

Minimize: f(x) = (x3 + 2)x1x
2
2 (23)

Subject to:

1− x31x3
71785x42

≤ 0

4x21 − x1x2
12566(x1x32 − x31x3)

− 1

5108x22
− 1 ≤ 0

1− 140.45x2
x31x3

≤ 0

x1 + x2
1.5

− 1 ≤ 0

(24)

with the following limits on variables: 0.25 ≤ x1 ≤ 1.3, 0.05≤ x2 ≤ 2.0, and 2 ≤ x3

≤ 15.

Fig. 4.17: Spring design problem[6]

Table shows the simulation results for the spring design problem using M9 (the

MPCA with strategy two and strategy four) and M1(MPCA without the proposed

heuristic). The setting of the algorithm is shown as Table 4.10 The decision variable
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Table 4.10: Test result for spring design problem

values and optimized solution are summarized in the table 4.11. As can be seen

from the table, the MPCA with strategy two and strategy four (M9) finds the better

optimum solution compared to the MPCA without heuristics(M1).

Table 4.11: Main parameters for spring design problem

Parameter Value

Population size 200

Sub-population amount 8

Sub-population amount size 25

Selection proportion 0.3

Run times 20

Maximum iterations 1000
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5 CONCLUSIONS AND FUTURE WORK

Our target is to use heuristics to improve MPCA. Four heuristic strategies are put

forward in this thesis according to the weaknesses the existing MPCAs have, which

are stochastic knowledge selection, and constant knowledge migration interval. We

take a suit of benchmark optimization functions to test the efficiency of separate

heuristics and combinational heuristics. The experimental results show that, MPCA

with the heuristics have more efficiency in optimizing low-dimensional and unimodal

optimization problems. The combinational strategies can promote the MPCA most

in optimizing the unimodal function F1 over 1000 iteration.

M2(M1+S1): Individuals select knowledge sources based on individual memory

in the M2 algorithm. Test results indicate that individuals can select the more rea-

sonable knowledge sources during evolution, so as to improve the efficiency of the

original MPCA (M1).

M3(M1+S2): Individuals select knowledge sources based on social interaction

in the M3 algorithm. Different topologies of the social network in the population

have different effects on the M3, and the M3 using square topology can get the best

solutions compared to other topologies. M3 outperforms M2 in aspects of convergence

speed, stability, and precision of solutions on the five test functions.

M4(M1+S3) and M5(M1+S4): Knowledge migrates among the sub-populations

at dynamic intervals in the M4 algorithm. Alternately, with the M5 algorithm, knowl-

edge migrates among the sub-populations at intervals based on the population disper-

sion. Both M4 and M5 can improve the original MPCA on 10-dimensional functions

F1-F5 in mean fitness and standard deviation, but the performance of M2 and M3 is

better than M4 and M5.

M6(M1+S1+S3), M7(M1+S1+S4), M8(M1+S2+S3) and M9(M1+S2+S4): Indi-

viduals select knowledge sources based on individual memory and knowledge migrate

among the sub-populations at dynamic intervals in the M6 algorithm. With the
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M7 algorithm, individuals select knowledge sources based on individual memory and

knowledge migrate among the sub-populations at intervals based on the population

dispersion in this algorithm. Alternately, the M8 algorithm sees individuals select

knowledge sources based on social interaction, and knowledge migrates among the

sub-populations at dynamic intervals in this algorithm. With the M9 algorithm, indi-

viduals select knowledge sources based on social interaction and knowledge migrates

among the sub-populations at intervals based on the population dispersion in this al-

gorithm. The four MPCAs with the proposed combinational heuristics can get better

and more stable solutions on low-dimensional functions F1 to F5 compared to the

four MPCAs with the single heuristic strategy.

We have also applied M9(MPCA with S2 and S4) on a real-world optimization

problem, which demonstrates better performance compared to the MPCA without

our proposed strategies.

In the future work, we can improve the testing to include more benchmark func-

tions and dynamic environment can be tested as well.
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