Washington University in St. Louis

Washington University Open Scholarship

Engineeri d Applied Sci Th
nginectiiig and Apphied sclence Lheses & Engineering and Applied Science
Dissertations

Spring 5-15-2015

Application-Specific Memory Subsystems

Joseph George Wingbermuehle
Washington University in St. Louis

Follow this and additional works at: http://openscholarship.wustl.edu/eng etds
& Dart of the Engineering Commons

Recommended Citation
Wingbermuehle, Joseph George, "Application-Specific Memory Subsystems" (2015). Engineering and Applied Science Theses &

Dissertations. 94.
http://openscholarship.wustl.edu/eng_etds/94

This Dissertation is brought to you for free and open access by the Engineering and Applied Science at Washington University Open Scholarship. It has
been accepted for inclusion in Engineering and Applied Science Theses & Dissertations by an authorized administrator of Washington University Open

Scholarship. For more information, please contact digital@wumail.wustl.edu.

http://openscholarship.wustl.edu?utm_source=openscholarship.wustl.edu%2Feng_etds%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openscholarship.wustl.edu/eng?utm_source=openscholarship.wustl.edu%2Feng_etds%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=openscholarship.wustl.edu%2Feng_etds%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openscholarship.wustl.edu/eng_etds/94?utm_source=openscholarship.wustl.edu%2Feng_etds%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

WASHINGTON UNIVERSITY IN ST. LOUIS

Department of Computer Science & Engineering

Dissertation Examination Committee:
Roger D. Chamberlain, Chair
Kunal Agrawal
Ron K. Cytron
Viktor Gruev
Krishna Kavi
Hiro Mukai

Application-Specific Memory Subsystems
by
Joseph G. Wingbermuehle

A dissertation presented to the
Graduate School of Arts and Sciences
of Washington University in
partial fulfillment of the
requirements for the degree
of Doctor of Philosophy

May 2015

St. Louis, Missouri

(© 2015, Joseph G. Wingbermuehle

Table of Contents

List of Figures vi
List of Tables ix
Acknowledgments X
Abstract xi
Chapter 1: Introduction, 1
1.1 Research Questions 5
1.2 Contributions 6
1.3 Outline. 7
Chapter 2: Background and Related Work 8
2.1 On-Chip Memory 8
2.2 Off-Chip Memory 9
221 DRAM 13

2.2.2 Phase-Change Memory 14

223 Flasho 15

224 STT-RAM 16

2.3 Memory Components 16
2.3.1 Caches 16

2.3.2 Scratchpads 19

2.3.3 Prefetchers 20

234 Splits. . . .o 20

2.3.5 Address Transformations 20

2.4 Related Work 21
2.4.1 Superoptimizationo 21

2.4.2 Design Space Exploration 23

i

2.4.3 Software Techniques for Improving Memory Behavior 24

2.4.4 Tuning Cache Parameters 24
2.4.5 Non-traditional Memory Subsystems 25
2.4.6 Memory Interfaceso 27
Chapter 3: Tools 28
3.1 ScalaPipe 28
3.1.1 Kernel DSLo 29
3.1.2 Application DSLo 30

3.2 Memory Simulator 31
3.3 Memory Superoptimizer 35
3.4 Memory Generatoro 35
Chapter 4: Superoptimization of Memory Subsystems 37
4.1 Introduction 37
4.2 Method 37
4.2.1 Address Traces 38
4.2.2 Simulationo 39
4.2.3 Optimization o 41
4.2.4 Neighborhood Generation 43
4.2.5 Offset Selection Heuristic 45
4.2.6 Model Validation Lo 45

4.3 Benchmarks 46
4.4 Minimizing Total Access Time 47
441 FPGA Results. 48
4.4.2 ASIC Results o 53
4.4.3 Memory Subsystem Specificity 57

4.5 Minimizing Writes 59

1l

4.5.1 Motivation oL 59

452 Results. 60

4.6 Multi-Objective Superoptimization 67
4.7 SUmMmary .. oL ... 70
Chapter 5: Memory Subsystems for Streaming Applications 72
5.1 Introduction 72
5.2 Method 73
5.2.1 Address Traces 74
5.2.2 Simulationo 76
5.2.3 Optimization 76
5.2.4 Subsystem Generation 78

5.3 Benchmarks 79
54 Results 84
5.4.1 Input Specificityo 92
5.4.2 Discussion 94

5.5 Summary ... oL 95

Chapter 6: A Model for Faster Superoptimization of Streaming Applications 96

6.1 Introduction L 96

6.2 Method 100
6.3 Model Error 104
6.4 Benchmarks 105
6.5 Evaluation 107
6.5.1 Subsystem Performance 107

6.5.2 Superoptimization Run Time 114

6.6 Summary 117
Chapter 7: Conclusion 118

v

7.1 Future Worko 119
References 121
Appendix A: ScalaPipeo 134

A1l Kernel DSL o 134

A.1.1 Language Features 135
A12 Example 135
A.1.3 Intermediate Representation 136
A.1.4 Code Generation 138
A.1.5 Optimizations 140
A2 Application DSLo 144
A21 Overview 144
A.2.2 Resource Mapping 144
A23 Example 145
A24 TimeTrial 146

2.1
2.2
2.3
3.1
3.2
3.3
3.4
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16

4.17

List of Figures

Main Memory Layout 10
Main Memory Addressing 10
DRAM Cell 13
Simple ScalaPipe Kernel 29
Generic Split Kernelo 30
Averaging Application 30
Example Memory Description 33
Working-Set Sizes 47
Best-case FPGA Speedup 48
Realized FPGA Speedup 48
Superoptimized Memory Subsystems for the FPGA Target 50
Best-case ASIC Speedup 54
Realized ASIC Speedup 54
Superoptimized Memory Subsystems for the ASIC Target 5%)
FPGA Subsystem Specificity 57
ASIC Subsystem Specificity L 57
Speedup with Different Inputs 59
Write and Access Time Improvement 61
Superoptimized Memory Subsystems for bitcount 62
Superoptimized Memory Subsystems for dijkstra. 63
Superoptimized Memory Subsystems for heap 64
Superoptimized Memory Subsystems for jpegd 65
Superoptimized Memory Subsystems for patricia. 66
Superoptimized Memory Subsystems for gsort 67

vi

4.18
4.19
5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

Multi-Objective Superoptimization 68

Memory Subsystems for jpegdo 69
Split-Join Topology 74
merge Topology 80
nbody Topology 80
laplace Topology 82
mm Topology 83
median Topology 83
Simulated Speedupo 85
Actual Speedup 85
Subsystem for the Hash Kernel 88
Subsystem for the Heap Kernel 88
Subsystem for the Distribute Kernel 90
Subsystem for the Buffer Kernel 91
Subsystem for the Streamer Kernel 91
Subsystem Specificity 93
Simple Applicationo 96
Example Topology 98
Simulation Algorithmo 102
Superoptimization Algorithm 103
Speedup 107
Subsystem for the Heap Kernel 110
Subsystem for the Hash Kernel (Full) 110
Subsystem for the Hash Kernel (Model) 110
Subsystems for the Distribute Kernel 112
Subsystems for the Buffer Kernel 113

vii

6.11 Subsystems for the Streamer Kernel 114

6.12 Simulations Required for Superoptimization 116
A1 Example Kernel 135
A.2 Mersenne Twister Kernel 137
A.3 ScalaPipe Fibonacci Kernel 139
A.4 Intermediate Representation of the Fibonacci Kernel 140
A.5 Optimized Fibonacci Kernel 141
A.6 Example Applicationo 145

viil

2.1
3.1
4.1
5.1
5.2
6.1
6.2
6.3

List of Tables

Main Memory Parameters oL 12
Memory Subsystem Components 34
Main Memory Parameters oL 40
Main Memory Parameters o oL 7
laplace FIFO Implementations 86
Model Parameters 98
Laplace FIFO Comparison 109
Matrix-Matrix Multiply FIFO Comparison 111

1X

Acknowledgments

I would like to thank my adviser, Dr. Roger D. Chamberlain, for his excellent guidance.
Our many discussions, his detailed feedback on manuscripts, and general advice have been

invaluable to me. I am extremely grateful for his support.

I would like to thank my co-adviser Dr. Ron K. Cytron. His wealth of ideas and encour-
agement have proven indispensable in helping me complete my dissertation and I appreciate

them greatly.

[am grateful for the financial support provided by NSF awards CNS-09095368 and CNS-0931693
as well as the financial support provided by Exegy Inc. and VelociData Inc. This support

allowed me to focus exclusively on my research.

I would like to thank the members of my dissertation committee, whose valuable feedback

helped define and focus my research.

[would like to thank my parents, George and Elaine Wingbermuehle, for their encouragement

and support.

Finally, I would like to thank my partner, Ryan Richt, for his awesome ideas, unparalleled

patience, and unwavering support throughout my time as a graduate student.
Joseph G. Wingbermuehle

Washington University in St. Louis

May 2015

ABSTRACT OF THE DISSERTATION

Application-Specific Memory Subsystems
by
Joseph G. Wingbermuehle
Doctor of Philosophy in Computer Science
Washington University in St. Louis, 2015
Professor Roger D. Chamberlain, Chair

The disparity in performance between processors and main memories has led computer ar-
chitects to incorporate large cache hierarchies in modern computers. These cache hierarchies
are designed to be general-purpose in that they strive to provide the best possible perfor-
mance across a wide range of applications. However, such a memory subsystem does not

necessarily provide the best possible performance for a particular application.

Although general-purpose memory subsystems are desirable when the work-load is unknown
and the memory subsystem must remain fixed, when this is not the case a custom mem-
ory subsystem may be beneficial. For example, in an application-specific integrated circuit
(ASIC) or a field-programmable gate array (FPGA) designed to run a particular application,
a custom memory subsystem optimized for that application would be desirable. In addition,
when there are tunable parameters in the memory subsystem, it may make sense to change
these parameters depending on the application being run. Such a situation arises today with
FPGAs and, to a lesser extent, GPUs, and it is plausible that general-purpose computers

will begin to support greater flexibility in the memory subsystem in the future.

In this dissertation, we first show that it is possible to create application-specific memory
subsystems that provide much better performance than a general-purpose memory subsys-
tem. In addition, we show a way to discover such memory subsystems automatically using
a superoptimization technique on memory address traces gathered from applications. This

allows one to generate a custom memory subsystem with little effort.

x1

We next show that our memory subsystem superoptimization technique can be used to
optimize for objectives other than performance. As an example, we show that it is possible
to reduce the number of writes to the main memory, which can be useful for main memories

with limited write durability, such as flash or Phase-Change Memory (PCM).

Finally, we show how to superoptimize memory subsystems for streaming applications, which
are a class of parallel applications. In particular, we show that, through the use of ScalaPipe,
we can author and deploy streaming applications targeting FPGAs with superoptimized
memory subsystems. ScalaPipe is a domain-specific language (DSL) embedded in the Scala
programming language for generating streaming applications that can be implemented on
CPUs and FPGAs. Using the ScalaPipe implementation, we are able to demonstrate actual
performance improvements using the superoptimized memory subsystem with applications

implemented in hardware.

xii

Chapter 1: Introduction

As processors become faster and more numerous, memory access time is increasingly be-
coming the biggest bottleneck for many applications [80, 127]. To combat this performance
gap between processing engines and main memory, modern computers employ large cache
hierarchies. This situation has advanced to the point where 40% to 50% of the area [12] and

up to 75% of the power budget [118] of a modern processor is dedicated to caching.

By exploiting both temporal and spatial localities in memory references, cache hierarchies
are able to reduce the number of accesses to main memory, and, therefore, reduce memory
access time. In this way, cache hierarchies are often able to greatly improve the performance
of applications, explaining their prevalence [103]. However, in many cases, the application
must be modified to expose locality to the cache hierarchy [10, 36, 67, 100]. In addition, the
best cache parameters for one application are not necessarily ideal for all applications [70, 79].

Finally, certain classes of applications have little or no locality to exploit.

Although cache hierarchies are ubiquitous in general-purpose computers today, other types
of memory components could also be considered. Indeed, modern processors often include
other components, such as prefetchers [30, 53]. Also, scratchpads [5] are common in embed-
ded systems. This leads us to the notion of a generalized memory subsystem. A generalized
memory subsystem could contain caches, prefetchers, scratchpads, and possibly other com-
ponents, with the goal of providing some form of improvement over direct access to main
memory. Thus, here we define a memory subsystem as an on-chip memory that sits between

a computation unit (such as a CPU, GPU, or FPGA) and off-chip main memory.

1

To provide a motivating example, consider matrix-matrix multiplication. Performing matrix-
matrix multiplication is an important step in many applications. Unfortunately, matrix-
matrix multiplication is computationally intensive for large matrices. Worse, a naive imple-
mentation typically has extremely poor cache performance. For these reasons, matrix-matrix
multiplication has been a popular choice in benchmarks, such as LINPACK [33], and scien-

tific libraries, such as BLAS [32], for many years.

Due to the need for fast matrix-matrix multiplication, the problem is well-studied [37, 43] and
cache-efficient algorithms exist. However, these cache-efficient algorithms are more difficult
to implement than the naive algorithm. Further, the techniques used to improve the access
patterns of matrix-matrix multiplication do not generalize to all problems, leaving us to start

over as soon as we are presented with a new problem.

If we were to implement matrix-matrix multiplication on an FPGA without considering how
it worked, a cache would be a likely memory subsystem choice. Unfortunately, due to the ac-
cess patterns of a naive matrix-matrix multiplication implementation, a cache would provide
only a limited benefit. One way to improve the situation would be to modify the algorithm
to make better use of the cache at our disposal or tune the cache parameters to better ac-
commodate the algorithm. However, if we extend our search to other memory subsystem
components, we might arrive at a more appropriate memory subsystem without needing to
change the algorithm. In addition, if we were able to perform this search automatically,
such a technique could require very little effort on the part of the designer and would be

applicable to a wide range of problems.

Because of the potential improvement that a custom memory subsystem may provide in
terms of performance, energy, or other metrics, we propose the use of a memory subsys-
tem tailored to a particular application. Such custom memory subsystems are already in

wide use today in applications deployed on Application-Specific Integrated Circuits (ASICs)

2

and Field-Programmable Gate Arrays (FPGAs) [5, 41, 94] as well as embedded systems in
general [9]. Further, it is conceivable that general-purpose computer systems may one day
be equipped with a more configurable memory subsystem if such reconfigurability provided

enough of an advantage.

With a cache, one possible customization involves changing the cache parameters, such as the
line size, associativity, or replacement policy. Selecting the optimal parameters for custom
cache hierarchies is commonly done and remains an active area of research [39, 48, 56].
However, in our example application and in general, there is no reason to believe a traditional
cache hierarchy would perform better than some other memory subsystem structure, such

as a scratchpad.

Given our hypothetical matrix-matrix multiply application to be deployed on an FPGA, the
person tasked with the design of the memory subsystem might select a small set of likely
candidate designs and then perform some number of simulations to tune the designs and
select the best. Unfortunately, this process is labor intensive for the designer and, worse,
it is possible that the optimal design is not even considered. Ideally, this process could
be automated in a way that provides a custom design beyond a fixed candidate memory
structure. Therefore, our goal is to start with an empty memory subsystem, and add caches,
scratchpads, address transformations, splits, and other components to the memory subsystem
to arrive at an optimal memory subsystem, given the memory subsystem components at our

disposal.

Using the techniques described in this work, we are able to design custom memory subsys-
tems for applications, such as matrix-matrix multiply, that can out-perform generic memory
subsystems such as cache hierarchies. For matrix-matrix multiply, one of the best-performing

memory subsystems discovered by the work presented here contains not only a cache, but

also address transformations to “transpose” one of the matrices (described in detail in Chap-

ter 4).

This research draws motivation from superoptimization, which was introduced with the goal
of finding the smallest instruction sequence to implement a function [76]. Superoptimization
differs from traditional program optimization in that superoptimization attempts to find
the best sequence of instructions to implement a particular function at the expense of a
potentially long search process rather than simply improving upon an existing sequence of

instructions using a brief transformation process.

Traditionally, superoptimizers have used exhaustive search, however, as the search space gets
larger, exhaustive search becomes prohibitively time-consuming. To address this issue, the
notion of stochastic superoptimization [99] was introduced. Using stochastic superoptimiza-
tion, one is able to discover larger instruction sequences, however, we lose the guarantee
of finding the best instruction sequence in finite time. Fortunately, in practice stochastic

superoptimization provides good results.

In this work we are concerned not with optimal instruction sequences, but instead with
optimal memory subsystems. Therefore, although historically superoptimization has been
defined as the search for the optimal code sequence to implement a function, here we gener-

alize the definition as follows:

Superoptimization is the search for a near-optimal design solution with little

structural restriction at the expense of substantial search time.

Thus, as an example, with traditional superoptimization all combinations of instructions
are considered rather than only those sequences that a particular compiler knows how to
generate. For our purposes, we consider all memory subsystem components that the super-

optimizer is capable of considering rather than a fixed memory structure.

4

Our initial investigation focuses on the discovery of application-specific memory subsystems
providing the lowest possible execution time for single-threaded applications. To that end,
using a memory address trace from the application, we use a stochastic superoptimization
technique to discover a suitable memory subsystem. The discovered memory subsystems can
be very unusual, but always provide at least as good of performance as a traditional cache

and usually better.

We also show that it is possible to superoptimize a memory subsystem for objectives other
than performance. In particular, we show that it is possible to reduce writes to main
memory. Such an objective is important for certain types of memory technologies whose
lifetime is limited by the number of writes, such as flash [11] and Phase-Change Memory
(PCM) [126].

Because modern computer systems are becoming increasingly parallel, we next investigate
the use of application-specific memory subsystems for parallel applications. In particular,
we focus on streaming applications, which are a class of parallel applications that are par-
ticularly well-suited for implementation on ASICS, on FPGAs, and in heterogeneous hard-
ware settings [19]. Streaming applications provide several additional challenges for memory
subsystem superoptimization, including the communication between kernels and the enor-
mous search space. Nevertheless, using heuristics and a queuing model, we are able to
superoptimize the memory subsystems for streaming applications in a reasonable amount of

time.

1.1 Research Questions

In this dissertation we attempt to answer the following research questions:

e (Can application-specific memory subsystems provide a performance improvement over

general-purpose memory subsystems?
e [s it possible to discover automatically application-specific memory subsystems?

e Can application-specific memory subsystems be beneficial for other main memory tech-

nologies, such as phase-change memory?
e Can application-specific memory subsystems be discovered for parallel applications?

e What can be done to reduce the time to find application-specific memory subsystems?

1.2 Contributions

To answer these research questions, this work makes the following contributions:
e ScalaPipe, which is a tool for generating streaming applications [120, 121].

e A tool to simulate quickly address traces using arbitrarily complex memory subsys-

tems [122, 123].

e A method for the superoptimization of memory subsystems for single-threaded appli-

cations [122, 123].

e An evaluation of memory subsystems superoptimized to minimize writes to main mem-

ory as well as memory subsystems superoptimized for multiple objectives.

e A method for extending the superoptimization process to support the superoptimiza-

tion of memory subsystems for streaming applications [124].

e An comparison of application-specific memory subsystems and general-purpose mem-

ory subsystems for applications implemented on an FPGA device [124].

6

e A queuing model to reduce the number of events that need to be simulated for the

superoptimization of memory subsystems for streaming applications.

1.3 Outline

The remainder of this dissertation is organized as follows: Chapter 2 introduces background
and related work. Chapter 3 describes the tools built to explore this area. Chapter 4
describes our superoptimization technique and how to apply it to simple single-threaded
applications implemented in ASICs and FPGAs. Chapter 5 extends the superoptimization
technique to a class of parallel applications and provides an evaluation of the technique
for applications implemented on an FPGA device. Chapter 6 describes and evaluates a
model to allow faster superoptimization of parallel applications. Finally, Chapter 7 provides

conclusions and future work.

Chapter 2: Background and

Related Work

In this chapter we provide a background for some of the concepts that we will use in later
chapters. In particular, we provide an overview of both on-chip and off-chip memories. We
then describe the various memory subsystem components that we consider for superopti-

mization. Finally, we present related work.

2.1 On-Chip Memory

In this work, it is useful to make a distinction between on-chip and off-chip memories.
On-chip memory is memory that is present on the same die as the processing unit, where a
processing unit might be a general-purpose processor, GPU, ASIC, or FPGA. As an example,
on an FPGA on-chip memory is typically available in the form of block-RAM (BRAM). Off-
chip memory, on the other hand, is memory that is physically separate from the processing

unit, for example, the main memory in a general-purpose computer.

Because on-chip memory is co-located with the processing unit, it is typically much smaller
than off-chip memory due to space limitations. However, on-chip memory is usually much
faster than off-chip memory since there is no need to access a physically distant component.
In addition, access to on-chip memory happens over separate data and address lines, which

allows fast access and makes the interface to on-chip memory relatively simple compared

to that of off-chip memories, which will be described in the next section. Due to these
advantages, memory subsystems, such as caches and scratchpads, are typically implemented

in on-chip memory.

Static random-access memory (SRAM) is the most common memory technology used with
on-chip memories [55]. SRAM is a volatile memory in that it requires a source of power
to maintain its contents. Further, SRAM uses a relatively large area, typically using six
transistors per bit, and it is power-hungry. Nevertheless, SRAM is popular because it is very

fast and it uses the same fabrication process as a typical microprocessor.

Due to the the prevalence of SRAM, we assume that all on-chip memory is implemented as
SRAM for our experiments. Further, we will use only on-chip memory for the implementation
of memory subsystem components, such as caches and scratchpads. Off-chip memory will
be used exclusively for the main backing store that stores the whole memory image, which

we call main memory.

2.2 Off-Chip Memory

Off-chip memory is memory that is physically separate from the processing unit. Since off-
chip memory is located on a separate physical device, potentially spanning multiple devices,
the off-chip memory can be larger than is possible with on-chip memory. However, this
separation limits performance due to wire delays, large multiplexers, and the fact that the
physical pins of the device are used for multiple purposes to reduce pin count. Here we give
only a high-level overview of the operation of a typical main memory implemented as off-chip

memory. See [55] for a thorough treatment.

Figure 2.1 shows a typical main memory layout. Here, memory cells are arranged into rows

(also known as pages) and columns. Each memory array is known as a bank and multiple

9

Rank 0 Rank 1 Rank n
Bank O Bank 0 Bank O
(2] [2] [%2]
= E =
o o o
i o [
Columns Columns Columns
Bank 1 Bank 1 Bank 1
2] (2] 2]
E E =
o o o
[an [vny [an
Columns Columns Columns
Bank m Bank m Bank m
2] 2] 2]
= E =
S [} S
i o o
Columns Columns Columns

Figure 2.1: Main Memory Layout

banks are combined to form ranks. In addition, multiple channels can be provided to allow

greater parallelism in the main memory.

Figure 2.2 shows an example of how a memory address might be divided up to access main
memory. In this example, there are four ranks selected using bits 29 and 30. Within each
rank there are four banks selected using bits 14 and 15. Finally, within each bank there is a
memory array consisting of 8192 rows and 512 columns. Each column is 8 bytes, or 64 bits,
making each page 32,768 bits.

30..29 28 .. 16 15..14 13..3 2..0
" Rank Row " Bank Column Offset

Figure 2.2: Main Memory Addressing

In the interest of keeping pin count down, the column and row addresses as well as the data

are multiplexed over the same physical pins of the device. Thus, to access a word, first the

10

row address is sent to the appropriate bank, which loads the row into the row buffer. Next,
the column address is sent to the memory, which selects the portion of the row buffer to
read or write. Note that for most devices, it is necessary to precharge the bitlines before
selecting a row. This is necessary to prevent the wrong value from being read if the memory

cells have a weak influence on the bitlines.

In a memory arrangement such as shown in Figure 2.1, each rank operates in lockstep. The
banks, however, each have their own row buffer, allowing multiple requests to be serviced in
parallel. Further, once loaded into the row buffer, it is possible to access multiple columns of
the selected row without selecting a new row or precharging the bitlines. Keeping rows open
in this fashion is known as open-page mode. Open-page mode has benefits when multiple
accesses hit in the same row. On the other hand, closed-page mode is when the row is not
held open. In particular, with closed-page mode the bitlines are precharged immediately
after an access to prepare for the next access, which allows the device to access the next
row more quickly. Thus closed page mode is faster if multiple hits in the same row are

unlikely.

Another performance improvement that is common is reading bursts of data from the mem-
ory. Once the row buffer is loaded for a read or write, multiple words can be accessed at a
time. This is known as a burst. For example, if the size of a word is 16 bits and the burst

size is 4, every access will consist of 64 bits.

Most modern devices are synchronous rather than asynchronous. This means that all oper-
ations on the device are managed by a fixed clock. Further, double-data rate (DDR) devices
are prevalent today. A double-data rate device transfers data on both the rising and falling
clock edges, allowing it to transfer two times more data than the clock would otherwise

indicate.

11

Parameter ‘ Description
Frequency | DRAM I/0O frequency

CAS Cycles to select a column (Column-address strobe)
RCD Cycles from row select to access (RAS-CAS delay)
RP Cycles required for precharge (RAS precharge)

Page size | Size of a page in bytes
Page count | Number of pages per bank
Width Channel width in bytes
Burst size | Number of columns per access
Page mode | Open or closed page mode
DDR Double data rate

Table 2.1: Main Memory Parameters

Modeling of an off-chip memory device requires consideration of several important timing
parameters. These timing parameters are summarized in Table 2.1. Note that there are more
timing parameters to consider, especially for modern, high-speed devices. Such parameters
are essential for correct operation when designing a memory controller, but for our purposes

we consider this simplified model.

In Table 2.1, the frequency is the I/O frequency of the device (assuming synchronous oper-
ation). The CAS (column-address strobe) latency is the number of cycles required between
selecting a column and reading the data. The RCD (RAS-CAS delay) latency is the number
of cycles required between selecting a row and selecting a column (note that RAS stands
for row-address strobe). The RP (RAS precharge) latency is the number of cycles required
to precharge a row. Finally, the page size is the size of each row and the page count is the

number of pages per bank.

Next we provide an overview of several competing technologies used to implement main

memory cells.

12

Bit Line

Word Line

e

Figure 2.3: DRAM Cell

2.2.1 DRAM

Due to its low cost and small size, dynamic read-only memory (DRAM) is the most common
main memory technology in use today [98]. Because of its prevalence, for most of the
experiments presented here we assume that the main memory is a DRAM device, though
we note that our superoptimization technique is generic and could be used with another

memory model.

DRAM works by storing charge in a capacitor. The typical DRAM cell consists of a single
transistor and a capacitor, shown in Figure 2.3. To access a word, first the bitlines are
precharged to an intermediate value. This is done because the charge on the capacitors is
weak, thus precharging to an intermediate value allows the device to detect if the charge
on the capacitor is pulling the bitline voltage up or down. Next, the row is selected, which
activates all the transistors on the row, thereby connecting the capacitors in the row to the

bitlines.

Selecting a row loads all the bits of the row into the sense amplifiers, which are integrated
with the row buffer (note that there is a sense amplifier circuit for each bit in a row). The
sense amplifiers detect if each bit is a one or a zero based on the effect of the capacitor on
the precharged bitline. In addition to reading the value from the bitlines, the sense amplifier
recharges the capacitor. Finally, once the requested row is loaded into the sense amplifiers,

the column is selected.

13

Another aspect of a DRAM device is refresh. A DRAM device must be refreshed periodically
(typically once every 64 milliseconds) to preserve the charge stored in the capacitors. The
process of refreshing is accomplished by accessing every row of the device, which causes the
capacitor to be recharged due to the design of the sense amplifier. Refresh can require a
significant amount of time that could be used for memory accesses, especially with larger
DRAM devices [109]. However, since we do not have control over refresh, we ignore it in our

performance model.

DRAM has long been the technology of choice for main memories, but there is ample room
for improvement. Three problems with DRAM include scaling, energy, and volatility. Be-
cause DRAM stores charge in a capacitor, there is a limit to scaling due to the ratio of
the capacitance between the cell and the bitline [74]. In addition, the cell capacitor re-
quires a continuous refresh, making DRAM devices volatile and inefficient from an energy

perspective.

2.2.2 Phase-Change Memory

Phase-change memory (PCM) is a newer memory technology that is often cited as a potential
replacement for DRAM [69, 93, 128, 135, 136]. Rather than storing charge in a capacitor
as is the case with DRAM, PCM uses chalcogenide glass, whose state can be altered by
heating it and then cooling it according to different temperature schedules [126]. When
the chalcogenide glass is heated to a high temperature and cooled rapidly it remains in an
amorphous state, which has a high resistance. When heated just above the crystallization
threshold and held at that temperature for somewhat longer time, however, the chalcogenide
glass stays in a crystalline state, which has a lower resistance. States between the two
extremes are also possible, making the way for multi-level cells (MLCs), which allow the

storage of more than one bit per cell.

14

Some benefits of PCM over DRAM include the fact that PCM is non-volatile and that
PCM scales better than DRAM, since PCM does not use a capacitor to store charge and
it can store multiple bits per cell. Because PCM is non-volatile, it does not require a
refresh, which is costly in terms of energy and performance, especially as main memories get
larger. Unfortunately, both reads and writes to PCM require more energy and time than
the equivalent access to DRAM. Further, PCM has limited write endurance of around 10%

write cycles per cell, which limits the lifetime of the part.

2.2.3 Flash

Flash memory [11, 49] is another non-volatile technology with some similar properties to
PCM. Flash memory stores data by storing charge in a floating-gate transistor, whose floating
gate is capable of storing charges for years. To introduce a charge to the floating gate, a
high voltage is passed through the transistor, which causes some electrons to get trapped in
the floating gate. To clear the charge, a high-voltage in the opposite direction is applied. As

with PCM, multi-level cells are possible with flash memory.

Unfortunately, like PCM, flash memory has a limited write-endurance, however, whereas
PCM has a write endurance of around 10% write cycles, flash has an endurance of only

around 10° [69]. In addition, writing to flash is slow and requires a lot of energy.

Flash memory comes in two varieties: NAND and NOR. With NOR flash devices, each
cell is connected to ground. This allows each bit to be written individually. However, the
extra ground connection limits the density of NOR flash devices. Thus, NAND flash was
developed, where several cells are connected in series. This makes for improved density, but
requires that all transistors in the series be erased together. Despite this pitfall, NAND

devices are more popular today [21].

15

Due to the high energy and time required to erase flash as well as its limited write endurance,
flash is generally used as disk replacement rather than a DRAM replacement. As a disk

replacement, NAND flash has been extremely successful.

2.2.4 STT-RAM

Finally, we consider spin-transfer torque RAM (STT-RAM), which is an emerging memory
technology. Like PCM, STT-RAM is often cited as being a replacement for DRAM [64, 128].
Unlike other technologies, STT-RAM stores data in a magnetic field. Although STT-RAM
lacks the write endurance issues of PCM and flash, writes to STT-RAM are slow and consume

significant energy.

2.3 Memory Components

Here we give a brief overview of some of the memory subsystem components that we will
consider in later chapters. There is, of course, an endless supply of memory subsystem
components that one could consider. In addition, there are more generic forms of the com-
ponents that we describe here, which would provide more parameters to tune. Here we
describe those components and parameters that we will consider in the superoptimization
process. One could extend the superoptimizer to support a wider array of components and

parameters.

2.3.1 Caches

Caches are small memories that are used to store recently used data from main memory [103].

To accomplish this, caches are typically organized into lines, such that each line can store

16

some contiguous chunk of of words from main memory. A typical line size is 64 bytes. Since
the line could be associated with multiple addresses in main memory, the most significant

bits of the address must also be stored with each line.

Associativity

A cache in which each line can be associated with any address in main memory is called
a fully-associative cache. Unfortunately, looking up a data element in such a cache can be
too time consuming and require a significant amount of hardware to implement. Therefore,
caches are often set-associative. This means that some fixed number of lines are consulted
for each memory reference rather than all of the lines of the cache. For example, in a cache
that is 4-way set associative, each memory address can be stored in one of four possible lines
in the cache. Finally, a direct-mapped cache is a cache in which each memory address can
only be stored in one line in the cache. There are trade-offs between the associativity of the
cache and the hit rate for the application [110]. Caches with lower associativity use fewer

resources and are often faster than highly-associative caches.

Replacement Policies

For caches that are either fully-associative or set-associative, we have to decide which line to
evict when a new line is brought into the cache. This decision is known as the replacement
policy of the cache. Here we consider the most popular cache replacement policies, but we
note that there are many others [22, 57, 61, 92, 134]. The best policy depends on both the

resource usage required to implement the policy and the behavior of the application [2].

Perhaps the most common replacement policy is the least-recently-used (LRU) policy. With

an LRU cache, the line that has been accessed least recently is selected for replacement first.

17

This type of policy is intuitive since items that are often used will stay in the cache. Unfor-
tunately, it requires [lgn] bits of storage per line to implement where n is the associativity

of the cache.

Similar to the LRU policy is the most-recently-used (MRU) policy. With an MRU cache, the
line that has been most recently used is evicted first. This policy seems like it would rarely
be beneficial, and indeed, that is often the case. Nevertheless, it is possible to construct a
memory access sequence that would benefit from such a policy. As with the LRU policy,

[lgn] bits of storage per line are required.

Another common policy is the first-in first-out (FIFO) cache policy (also known as the round-
robin policy), which has been used in commercial products such as the Intel XScale [52] and
ARM ARMI11 processors [3]. With a FIFO policy, the oldest line in the set is replaced.
Unlike the LRU policy, accesses to the line after it has been brought into the cache do
not affect the replacement decision. Since a FIFO cache requires only a counter per set to
determine the next line to evict, the FIFO policy requires only [lgn] bits of storage per set

where n is the associativity of the cache.

Finally, we consider a pseudo-LRU (PLRU) policy, which attempts to approximate the true
LRU policy, but with simpler hardware. There are several ways of implementing a PLRU
policy. Here we consider the method where a single bit of storage per line is used. This
bit is set every time a cache line is accessed. If the bit for all the lines in a set are set, the
bits are reset. Upon replacement, the first line with a unset bit is selected. Although this
technique does not implement true LRU, it can allow a higher associativity than could be
used with a true LRU policy due to resource constraints and it can be faster due to simpler

hardware.

18

Write Policies

In general, reads from a cache are either serviced by the cache directly in the case of a hit, or
cause a line to be replaced in the case of a miss. However, there are more options available

for writes to a cache.

The first decision regarding the write policy is whether the cache should be write-through
or write-back. On a write-through cache, all writes go directly to the next memory in the
hierarchy whereas with a write-back cache, writes are cached and only cache lines evicted
from the cache get written to the next memory. Both write-through and write-back caches
have advantages. A write-back cache can reduce the amount of write traffic to the next
memory. On the other hand, a write-through cache can avoid cache pollution and, on multi-

processor systems, a write-through cache makes coherency simpler.

Another write policy decision is how lines are allocated on writes if the write is a miss. If
on a cache miss a line is allocated, we say that the cache is write-allocate. Otherwise, if no
line is allocated, that is, the write goes directly to the next memory without allocating a
line in the cache, we say that the cache is write-over. Typically, write-through caches use

write-over and write-back caches use write-allocate.

2.3.2 Scratchpads

A scratchpad is a small, fast memory that handles memory accesses to a fixed portion of
the address space [5]. Scratchpads find most use in embedded devices since they are easy
to implement and have deterministic access times (unlike caches). The use of scratchpads is
somewhat limited, however, because their use typically requires either manual programmer

intervention or a custom compiler [114].

19

2.3.3 Prefetchers

Prefetching provides a method to “hide” memory latency by requesting an item from memory
before it is needed by the computation. There are many prefetching mechanisms that have
been proposed for both hardware and software [115]. A simple hardware method that we
consider here is prefetching a word n bytes away from the current word after each read.
Such a prefetcher would likely cause too much cache pollution to be of use in a general-
purpose setting, but could be useful in an application-specific setting in part of the memory

subsystem.

2.3.4 Splits

A memory subsystem can be split such that addresses below a certain threshold go to a
different set of memory subsystem components than addresses above the threshold [83]. For
example, it may be desirable in an application to have the stack stored in a cache separate

from the heap.

2.3.5 Address Transformations

Transforming the address is another technique that can be used in the interest of improving
memory performance. Some transformations that could be used include adding a constant to
the address, flipping one or more bits of the address, and rotating the address bits. Although
it may seem that such a transformation would be unproductive, when combined with other
components, such as scratchpads, address transformations could be potentially very useful.
Note that it is often necessary to reverse a transformation to maintain correctness (when

used within a split memory, for example).

20

2.4 Related Work

There is much related work spanning several broad categories. Here we evaluate the related

work in each category.

2.4.1 Superoptimization

Superoptimization was originally introduced in [76]. In that work, exhaustive search was used
to find the smallest sequence of instructions to implement a function. This is in contrast
with traditional code optimization where pre-defined transformations are used in an attempt
to improve performance. Note that traditional code optimization is not truly optimization in
the classical sense, but instead simply code improvement. Superoptimization, on the other

hand, does produce an optimal result when applied in this manner.

Because of its long run time, superoptimization is typically not applied to complete programs,
but, rather, it is applied to a few critical functions. One of the examples in [76] is the signum

function, which is defined as follows:

1 ifx >0
signum(z) =< _1 ifzr <0

0 otherwise

When run through the superoptimizer in [76], it turns out this function can be implemented
for the Motorola 68020 microprocessor [73], using only four instructions (shown below),
whereas a naive implementation would take eight and a clever implementation would take

SiX.

21

; X in dO

add.1l do, do ; Add dO to itself

subx.l di, di ; Subtract (d1 + carry) from dO
negx.l doO ; Put (0 - dO - carry) into dO
addx.1l di1, di1 ; Add (d1 + carry) to di

; signum(x) in di

Unlike prior implementations by compiler backends or humans, this implementation is very
unusual and much more efficient. Although it is conceivable that a human would devise such
an implementation, it would likely require significant effort with no guarantee of success.

Using a superoptimizer, on the other hand, requires minimal human effort.

Functions such as signum appear in many programs, and, therefore, it is advantageous for a
compiler to have a fast implementation available. Since its introduction, superoptimization
has been successfully used in compilers such as GCC [44], peephole optimizers [6], and binary
translators [7]. However, this body of work is the first to expand the scope of superoptimiza-

tion beyond the optimization of instruction sequences.

Because of the enormous search space, there have been a few attempts to reduce the number
of points in the search space. Denali [59] uses a theorem prover to avoid testing incorrect

instruction sequences and TOAST [13] uses answer set programming.

Another technique that has been used with superoptimizers is stochastic search [99]. This
allows the superoptimizer to explore much larger search spaces than would be possible with
exhaustive search. One disadvantage of such a technique is that the guarantee of optimality
is lost unless the stochastic search is allowed to run for a very long time. Nevertheless,
here we use a stochastic search technique to make the search for good memory subsystems

tractable.

22

2.4.2 Design Space Exploration

Design space exploration for hardware and software systems is an active and wide area of
research. The goal is of design space exploration is to find the optimal or near-optimal

parameters for a particular system.

For designs with a large number of parameters, exploring the design space via exhaustive
search can be intractable. Thus there exist several techniques to improve upon exhaustive
search. In [54], the design space is sampled to build a model of the interactions between
parameters. Regression modeling is used in [68] to predict the performance and power of var-
ious configurations. In [86], a method is presented for decoupling certain design parameters

to reduce the search space.

Design space exploration has been applied to many fields, such as system-on-chip (SoC)
communication architectures [65], integrated circuit design [129], FPGA designs [104], and
many others [82, 106, 132]. Although a single objective, such as performance or energy, is

often used, design space exploration for multiple objectives is also common [71, 87, 88].

For streaming applications targeting FPGAs, the optimization of both the computation and
communication between kernels has been considered [28]. Similarly, in [125], an approach to
improving the memory behavior for FPGA applications implemented in a high-level language
such as C or C++ is presented. Unlike these works, here we treat the computation as fixed,

but consider a wider search space for memory subsystems.

Of particular interest to us is design space exploration applied to memory subsystems. Design
space exploration has been used extensively to find optimal cache parameters [39, 48, 56].
This line of work has been extended to consider a cache and scratchpad together [23]. How-
ever, the ability to change completely the memory subsystem for a specific application and

main memory subsystem distinguishes this work from previous work.

23

2.4.3 Software Techniques for Improving Memory Behavior

Here we are focused primarily on hardware techniques, however, there also exist software
techniques for improving memory behavior. Such techniques include the use of profiling to
guide the placement of variables in the virtual address space to decrease cache conflicts and
improve locality [14] and compiler optimizations to improve data locality across loop iter-
ations [15]. Other software techniques include reorganization and cache-conscious memory

allocation [25] as well as the splitting and reordering of data structures [24].

At a higher level, there are approaches to application design that focus on improving cache
performance. In particular, access ordering [81] and cache-aware algorithms [100] attempt to
take advantage of a particular cache structure. Likewise, the performance of cache-oblivious

algorithms [36] is asymptotically optimal on an ideal cache hierarchy.

Although these software methods are often successful at improving the memory behavior of
an application with respect to a particular memory, in this work we treat the application as

fixed. Thus, these software techniques can be considered complementary to this work.

2.4.4 Tuning Cache Parameters

Tuning cache parameters is an active research topic that is related because we, too, are
tuning cache parameters. There are two broad types of work in this area: static methods
and dynamic methods. With static parameter tuning, the properties of a fixed cache are
selected before deploying the hardware. On the other hand, dynamic methods allow certain
parameters of a cache to change at run time. Each technique has advantages and it is possible

to mix them.

24

Dynamic methods include changing the size and associativity of a cache hierarchy dynam-
ically [4, 111] as well as the ability to disable various levels of a multi-level cache in the
interest of reducing latency and reducing power consumption [20]. Adjusting the size of

cache lines dynamically to lower the cache miss rate has also been considered [117].

There are also many approaches to tuning cache parameters statically. A method for selecting
cache parameters analytically has been described for single-level caches [40, 56]. In addition,
heuristic methods for selecting the parameters of a two-level cache have been presented [41,

42].

Although we are mostly concerned with static parameter selection, dynamic methods could
be incorporated into our superoptimizer to allow it to select such a cache. As far as the static
methods are concerned, we note that, although we are considering a larger search space, it
may be possible to incorporate such a technique into the optimizer to allow it to search the
space of possible cache parameters more efficiently. Thus, our work is complementary to

both types of cache parameter tuning.

2.4.5 Non-traditional Memory Subsystems

Many non-traditional memory subsystems have been proposed. These structures are often
intended to be general-purpose in nature, but to take advantage of some aspect of application
behavior that is common across many applications. However, there are also many non-
traditional memory subsystems designed for particular applications, usually with much effort.
Such designs are a common practice for applications deployed on FPGAs and ASICs |26,
35, 101]. Due to strict resource constraints, embedded systems in general commonly employ

specialized memory subsystems [9].

25

One notable example of a general-purpose non-traditional memory subsystem is the victim
cache [60], which is a small, fully-associative cache structure used to store recently evicted
items from a larger cache with low associativity. Victim caches work on the assumption that
some cache sets can benefit from a higher associativity than others. The use of such caches

in embedded applications has been explored [133].

Another general-purpose memory subsystem is the annex cache [58]. The annex cache is
similar to the victim cache, but instead of storing recently evicted items for a larger cache,

the annex cache stores items that have yet to be moved into the main cache.

Although performance is perhaps the most common objective, non-traditional memory sub-
systems optimized for other objectives have also been considered. For example, the filter
cache [62] was introduced to reduce energy consumption with a modest performance penalty.
A filter cache provides a very small first-level cache in front of a second-level cache with a
similar structure to a traditional first-level cache. Micro-caches [8] are similar to filter caches,
but designed to provide performance/area efficiency in chip multiprocessors instead of energy
efficiency on a single core. Note that the term microcache has been previously used in [78],
which describes a method for reducing cache size and power consumption by allowing the

compiler to allocate regions of the cache to specific objects.

The combination of multiple memory subsystem components has also been considered to
various degrees. For example, the combination of a scratchpad and cache has been consid-
ered [89, 94]. Further, the combination of multiple caching techniques including split caches

has been considered [83].

Unlike our work, these works present a particular memory subsystem. Our work, on the
other hand, attempts to discover memory subsystems with arbitrary structure. Therefore, it
is possible that our superoptimizer would discover similar structures if provided the necessary

memory subsystem components.

26

2.4.6 Memory Interfaces

Finally, we consider related work in making off-chip memory easier to use. Implementing a
memory intensive application in hardware using either an FPGA or ASIC can be a difficult
task. This is due to the fact that off-chip memory bandwidth is limited and on-chip memory
resources are scarce. Thus, designing a good memory subsystem requires one to efficiently al-
locate the on-chip memory and share the off-chip memory between various compute elements.

As an additional complication, the interface to off-chip memory is platform-specific.

LEAP scratchpads [1] attempt to alleviate some of the issues with sharing memory resources
among kernels by providing a portable memory abstraction. This memory abstraction may
contain caching and can be backed by a larger main memory. A related approach is provided
by CoRAM [27], which is similar to LEAP scratchpads, but lower-level. CoRAM provides
an SRAM-style interface to memory. Unlike block RAM resources embedded in the FPGA,
however, CoRAMSs can be backed by a larger main memory. In the interest of improving the

performance of such abstractions, prefetching [131] has been considered.

Both LEAP scratchpads and CoRAM are are similar to our work in that both provide an
abstract interface to a potentially large memory. However, providing an interface is not our
primarily goal. Here, we are more interested in discovering the memory subsystem to use

between the interface and the off-chip memory.

A related technology is MPack [116], which attempts to optimize the packing of data into
block RAM resources. In our work we do not consider packing multiple subsystem compo-

nents, though doing so could allow for a higher utilization of block RAM resources.

27

Chapter 3: Tools

Here we discuss the tools that we developed for memory superoptimization. This includes
tools for gathering address traces, simulating memory subsystems, superoptimizing mem-
ory subsystems, and deploying applications with custom memory subsystems. With the
combined tool set described here (ScalaPipe, the memory simulator, the memory superopti-
mizer, and the memory generator), it is possible to take a design from a high-level language
to an FPGA implementation with a custom memory subsystem without the need to write

HDL.

3.1 ScalaPipe

Here we provide a brief overview of ScalaPipe [120, 121], which is a streaming application

generator. For a more complete description see Appendix A.

Stream processing is a parallel programming paradigm in which processing kernels commu-
nicate over fixed communicate channels. The streaming paradigm is used in systems such
as Streamlt [112] and many others [17, 29, 45, 46, 105]. Within the streaming paradigm,
conceptually, each kernel has its own independent memory address space. Communication
between kernels is performed via explicit communication channels implemented as FIFO
buffers. Our interest in the streaming paradigm stems from our desire to superoptimize

memory subsystems for parallel applications, as explained in Chapter 5.

28

val Adder = new Kernel {

val x0 = input (UNSIGNED32)
val x1 = input(UNSIGNED32)
val y = output (UNSIGNED32)

y = x0 + x1

Figure 3.1: Simple ScalaPipe Kernel

ScalaPipe provides a pair of domain-specific languages (DSLs) embedded in the Scala pro-
gramming language [85]. By using ScalaPipe, one is able to author streaming applications
that can then be deployed to a combination of CPUs and FPGAs. Using ScalaPipe to im-
plement some of our benchmarks allows us not only to implement quickly an application
that will run on an FPGA without the need to write in a hardware description language
(HDL), but it also allows us to automatically extract an address trace, which we can use for
superoptimization. Further, ScalaPipe allows us to deploy automatically the applications

along with their superoptimized memory subsystems on an FPGA device.

To support the streaming paradigm, ScalaPipe allows one to author kernels in a kernel DSL

and then describe the communication channels between kernels in the application DSL.

3.1.1 Kernel DSL

Here we describe ScalaPipe’s kernel DSL. A simple kernel to add pairs of 32-bit unsigned
integers is shown in Figure 3.1. This kernel has two inputs, x0 and x1, and one output, y.
Each time an input is referenced, a value is read off of the input channel associated with
that input. Each time an output is referenced, a value is written to the output stream.
Conceptually, ScalaPipe kernels run in an infinite loop processing data until all input is

exhausted.

29

class GenericSplit(t: Type, n: Int) extends Kernel {
val x = input(t)
for (i <- Range(0, n)) {
val y = output(t)
y =X

Figure 3.2: Generic Split Kernel

val app = new Application {
val rngl = Random()
val rng2 = Random()
val result = DivideBy2(Add(rngl, rng2))
Print(result)

Figure 3.3: Averaging Application

Because a ScalaPipe kernel is implemented in the Scala programming language, it is possible
to write generic kernels. For example, a kernel to divide an input stream of type t among n
output streams is shown in Figure 3.2. Specific instances of this kernel can be created using
new, just as one would create objects in Scala. Those familiar with Scala will note that we
use Range explicitly in the GenericSplit kernel to force the loop to be unrolled before the
code is generated. Thus, n outputs are created and the input is sent to each output in a

round-robin fashion.

3.1.2 Application DSL

To connect kernels together to form a streaming application, ScalaPipe provides an appli-
cation DSL. Using the application DSL, kernels are connected together much like function
application, where the arguments to the kernel are the inputs and the result of the function
application contains the outputs. For example, a simple application to average two streams

of random numbers is shown in Figure 3.3.

30

By default, ScalaPipe will map all kernels to general-purpose processing cores and generate
C code for their implementation. To map kernels to another resource, we can insert map
statements. For example, to map everything but the Print kernel of our example application

to a an FPGA device, we would use the following map statement:
map (ANY_KERNEL -> Print, FPGA2CPU())

This statement states that any edge entering a Print kernel will move from an FPGA

resource to a CPU resource.

In addition to map statements, ScalaPipe supports various parameters that affect the way it

generates code. Of particular interest to us is the trace parameter:
param(’trace)

This parameter causes ScalaPipe to generate a memory address trace for each kernel when
executing an application on a CPU resource. This address trace will be of use to us for the

superoptimization process.

3.2 Memory Simulator

To evaluate custom memory subsystems, we developed a memory subsystem simulator. Un-
like extant simulators, our simulator is capable of simulating arbitrarily complex memory
subsystems and parallel address traces from streaming applications. The simulator is capa-
ble of evaluating multiple aspects of the memory system, including performance, writes to
main memory, and the energy consumption of the main memory. It is also able to output
compressed queue traces, which will be described in more detail in Chapter 6. As will be
shown in Chapter 4, in addition to its ability to simulate complex memory subsystems, the

ability for the simulator to run an address trace quickly is essential.

31

To support complex memory subsystems, the simulator takes a machine and memory sub-
system description, encoded as S-expressions [72], as input. This encoding allows arbitrarily
complex memory subsystems to be expressed. For example, Figure 3.4 shows a memory

system for a streaming application with two kernels.

As shown in Figure 3.4, there are three main sections in the application description. The
first section, machine, describes the platform on which the application will be run. In the
example, this platform is a Xilinx Spartan-6 FPGA device running at 100 MHz. The second
section of the application description is the memory section. This section describes the main
memory (in this case, a DRAM device) as well as the memory subsystems for each kernel
and communication channel. Finally, the benchmarks section points the simulator to the

address traces for each kernel.

Our simulator is capable of simulating the memory subsystem components shown in Ta-
ble 3.1. When targeting an FPGA device, the latency shown in Table 3.1 is used, which
matches our VHDL implementation of the memory components. The CACTTI tool [113] is
used to determine latencies for ASIC targets. For the main memory, the simulator assumes

that there is a priority arbiter in front of a main memory with a single read /write port.

For caches, the simulator supports four replacement policies. The supported policies include
least-recently used (LRU), most-recently used (MRU), first-in first-out (FIFO), and pseudo-
least-recently used (PLRU). The PLRU policy approximates the LRU policy by using a single
age bit per cache way rather than lgn age bits, where n is the associativity of the cache.
With the PLRU policy, the first way where the age bit is not set is selected for replacement.
Upon access, the age bit for the accessed way is set and when all age bits are set for a set,

all but the accessed age bit are cleared.

The offset, rotate, and xor components in Table 3.1 are address transformations. The

offset component adds the specified value to the address. The rotate component rotates

32

(machine

(target fpga)

(part xc6s1x45)

(max_luts 12000)

(max_regs 36000)

(max_cost 92)

(frequency 100000000)

(addr_bits 30))

(memory
(main (memory
(dram

(frequency 100000000)
(cas_cycles 3) (rcd_cycles 3) (rp_cycles 3)
(page_size 1024) (page_count 8192)
(width 2) (burst_size 4)
(open_page false)
(ddr true))))

(subsystem (id 1) (depth 65536)

(memory (spm (size 8192) (memory (main)))))
(subsystem (id 2) (depth 131072)

(memory
(split (offset 16384)
(bank0
(cache

(1ine_count 1024) (line_size 8)
(associativity 1)
(write_back true)
(access_time 3) (cycles_time 3)
(memory (join))))

(bank1

(cache
(line_count 1024)(line_size 4)
(associativity 2) (policy plru)
(write_back true)
(access_time 3) (cycles_time 3)
(memory (join))))
(memory (main))))))
(fifo (id 1) (depth 16) (word_size 4))
(benchmarks
(trace (id 1) (name Kernell))
(trace (id22) (name Kernel2))

Figure 3.4: Example Memory Description

33

Component ‘ Description ‘ Parameters (n € Z.) | Latency (cycles)

Line size (2")
Line count (2")
Cache Parameterizable cache Associativity (1...line_count) 3
Replacement policy
Write policy

FIFO FIFO implemented in BRAM | Depth (27) 1
Offset Address offset Value (+n) 0
Prefetch | Stride prefetcher Stride (£n) 0
Rotate Rotate address transform Value (£n) 0
Scratchpad | Scratchpad memory Size (2") 2
Split Split memory Location (n) 0
XOR XOR address transform Value (n) 0

Table 3.1: Memory Subsystem Components

the bits of the address that select the word left by the specified amount (the bits that select
the byte within the word remain unchanged). Note that for a 32-bit address with a 4-byte
word, 32 —1g 4 = 30 bits are used to select the word. Finally, the xor component inverts the

selected bits of the address.

Other supported components include prefetch and split. The prefetch component per-
forms an additional memory access after every memory read to do the prefetch. This ad-
ditional access reads the word with the specified distance from the original word that was
accessed. Finally, the split component divides memory accesses between two memory sub-
systems based on address: accesses with addresses above a threshold go to a separate memory
subsystem from addresses below the threshold. Accesses that are not resolved within the

split are sent to the next memory subsystem or main memory.

34

3.3 Memory Superoptimizer

Because we are interested in the superoptimization of memory subsystems, we developed a su-
peroptimizer to generate valid memory subsystems for simulation. This superoptimizer then

uses the results of each simulation to generate another memory subsystem to check.

To ensure the validity of each memory subsystem, the superoptimizer is fed a list of con-
straints. The superoptimizer checks the constraints using an FPGA synthesis tool (such
as the Xilinx Synthesis Tool, XST [130]) when targeting an FPGA device or CACTTI [113]
when targeting an ASIC. Because the superoptimization process can take a very long time,

intermediate results are stored in a PostgreSQL [91] database.

The memory superoptimizer is described in detail in Chapter 4. Enhancements to the
superoptimizer to allow the superoptimization of streaming applications are described in

Chapter 5 and Chapter 6.

3.4 Memory Generator

Once we have a superoptimized memory subsystem, we need some way to deploy it for
evaluation. Although it would be possible to manually create the superoptimized memory
subsystems from the high-level description emitted from the superoptimizer, doing so would
be tedious and error-prone. Therefore, we implemented a tool to generate the memory

system automatically.

Our memory generator takes an S-expression [72]| description of the memory system as de-
scribed in Section 3.2 for input. It then generates synthesizable VHDL for deployment on an

FPGA device. To support this, we implemented the VHDL for each of the components de-

35

scribed in Table 3.1. The memory generator then needs only generate the interfaces around
the memory subsystem components. For streaming applications, we implemented a priority
arbiter, described in Chapter 5, which the memory generator uses to connect the various

components to a single main memory.

36

Chapter 4: Superoptimization of

Memory Subsystems

4.1 Introduction

In this chapter we present the general method for superoptimizing memory subsystems for
single-threaded applications and the outcome for several benchmark applications. This chap-

ter is based on [122] and [123].

4.2 Method

Here we describe how one generates a superoptimized memory subsystem for a single-
threaded application. This process involves several steps. First we require a memory address
trace from the application. This trace allows us to simulate the performance of the appli-
cation with different memory subsystems. Next, we perform the superoptimization, which
involves generating proposal memory subsystems and simulating them to determine their

performance. Finally, we generate the memory subsystem to be used in the application.

37

4.2.1 Address Traces

In order to evaluate the performance of a particular memory subsystem for an application,
we use address traces. There are many ways of obtaining an address trace for an application.

Here we consider three distinct methods:
e traces gathered from applications run on a CPU,
e traces gathered from synthetic kernels, and
e traces generated from ScalaPipe [120] applications.

To gather the address traces for applications running on a CPU, we use a modified version of
the Valgrind [84] lackey tool. This allows us to obtain concise address traces for applications
that contain only data accesses (reads, writes, and modifies). We ignore instruction accesses
since the instructions would likely be stored in a separate memory, such as a read-only
memory (ROM) or in the FPGA or ASIC logic itself. We use this method of address
trace acquisition for existing applications, such as applications in the MiBench benchmark

suite [47].

A synthetic kernel is a kernel where we use an application to generate an address trace
directly rather than performing the computation. For example, the address trace for matrix-
matrix multiply can be generated without the need to actually perform the multiplication,
as can many others. An advantage of this method is that the address trace can be computed
on-the-fly as it is being simulated with little overhead, which saves us from storing large

traces.

Finally, for applications implemented in ScalaPipe, we can generate traces automatically. By

extending ScalaPipe with the ability to instrument generated applications, address traces

38

can be gathered by running the application on a CPU target. Since ScalaPipe supports

high-level synthesis, the application can then be retargeted to an FPGA device.

For now, we ignore the notion of processing time in the trace for all of the address traces.
This is because our focus is exclusively on memory performance. Because there is no notion
of processing time, however, certain memory subsystem components, such as prefetchers, are
less likely to be useful. Introducing processing time is possible, but to do so would require a

specific implementation of the application, which would make the results less general.

All of the address traces contain virtual (instead of physical) addresses and are gathered
for 32-bit versions of the benchmark applications. To evaluate a general-purpose memory
subsystem, the physical addresses are important since some levels of cache use physical
addresses to avoid flushing the whole cache when context switching. However, we note that
our memory subsystems are specific to an application and, therefore, using virtual addresses
is appropriate. Further, in embedded devices as well as ASICs and FPGAs, it is often the

case that only a single application is executed.

4.2.2 Simulation

To evaluate the performance of the memory subsystems proposed by the superoptimizer, we
use the custom memory simulator described in Section 3.2. As previously mentioned, we use
a custom memory subsystem simulator for three reasons. First, we need to simulate complex
memory subsystems beyond simple caches. Second, rather than the number of cache misses,
we are interested in total memory access time. Note that cache misses would not provide
enough information to the superoptimizer for it to decide between a single level and a multi-
level cache, for example, and simply using memory access time is insufficient for deciding

how to divide up the memory resources among multiple memory subsystems. Finally, the

39

Parameter ‘ Description Value

Frequency | DRAM I/0O frequency 400 MHz
CAS Cycles to select a column 5
RCD Cycles from open to access 5

RP Cycles required for precharge 5t

Page size | Size of a page in bytes 1024

Page count | Number of pages per bank 65536

Width Channel width in bytes 8

Burst size | Number of columns per access 4

Page mode | Open or closed page mode open
DDR Double data rate true

Table 4.1: Main Memory Parameters

simulator must be fast enough to simulate large traces many thousands of repetitions in a

reasonable amount of time.

The memory subsystem superoptimizer supports seven distinct subsystem components, de-
scribed in detail in Section 3.2. However, adding additional components is simply a matter of
adding a synthesizable HDL model of the component and a simulation model for the memory
subsystem simulator and superoptimizer. Likewise, additional parameters can be added to
the existing components. Unfortunately, adding additional components or parameters can
make the superoptimization process take longer since more steps will be required to explore

the search space.

The communication between each of the memory components as well as the communication
between the application and main memory is performed using 4-byte words. The bytes
within the word are selected using a 4-bit mask to allow byte-addressing. The address bus

is 30 bits, providing a 32-bit address space.

For the results presented here, the main memory is assumed to be a DRAM device. As

is the case with the memory subsystems, it is possible to model main memories with other

40

properties if required. For our purposes, we consider a DDR3-800D memory, whose properties

are shown in Table 4.1.

We target both a FPGA platform and an ASIC. For the FPGA platform, we target a
Xilinx [130] Virtex-7 with a 250 MHz clock. We assume there are 64 BRAMs available
for the deployment of our custom memory subsystems. For the ASIC, we target a 45nm
process and assume that there is 1mm? available for the deployment of our custom memory

subsystems. We assume a clock frequency of 1 GHz for the ASIC target.

4.2.3 Optimization

To guide the optimization process, we use a variant of threshold acceptance [34] called old
bachelor acceptance [51]. Old bachelor acceptance is a Markov-chain Monte-Carlo (MCMC)
stochastic hill-climbing technique similar to simulated annealing [63]. Old bachelor accep-
tance provides a compromise between search space exploration and hill climbing. Thus,
although we may not get the best possible memory subsystem with this technique, we do get

fairly good results in much less time than it would take to perform an exhaustive search.

We use old bachelor acceptance because of its ability to avoid local optima without the
need to select an overly high initial threshold or slow cooling schedule. With simulated
annealing, the guarantee of discovering the optimal result relies on a very slow or adaptive
cooling schedule [38]. Thus, the use of simulated annealing is impractical even if we want
to be guaranteed an optimal result. If we are willing to drop the optimality requirement,
we can select a cooling schedule for simulated annealing that would allow the search to
converge more quickly, however, selecting such a cooling schedule requires a trade off between
search time and the quality of the result. With old bachelor acceptance, we can use a more

aggressive cooling schedule since the threshold can increase. There are other metaheuristics

41

that could be explored to reduce the search time, however, here we consider only old bachelor

acceptance.

Using stochastic hill-climbing, one typically selects an initial state, s; = s¢, and then gener-
ates a proposal state, s*, in the neighborhood of the current state. The state is then either
accepted, becoming s, 1, or rejected. With threshold acceptance, the difference in cost be-
tween the current state, s;, and the proposal state, s*, is compared to a threshold, T}, to
determine if the proposal state should be accepted. Thus, we get the following expression

for determining the next state:

s if e(s*) < c(sy) + Ty
St41 =
s; otherwise

For our purposes, the state is a candidate memory subsystem and the cost function, ¢(+), is the

total access time in cycles that the application will experience from memory accesses.

With threshold acceptance, the threshold is initialized to some relatively high value, T; = Tj.
The threshold is then lowered according a cooling schedule. The recommended schedule
in [34] is T34y = Ty — AT, where A € (0,1). Old bachelor acceptance generalizes this,
allowing the threshold to be lowered when a state is accepted and raised when a state is not
accepted. This allows the algorithm to escape areas of local optimality more easily. For our

experiments, we used the following schedule:

Tt — ATt lf C(S*) < C(St) + E
Tt+1 =

T, + AT, otherwise

42

Because the evaluation of a state involves simulating a memory subsystem for an address
trace, each state evaluation can take several minutes or even longer depending on the size of
the trace. Further, to discover a good memory subsystem, the total number of states visited

can be large, which can make the optimization process take a prohibitively long time.

To reduce the time required for superoptimization, we employ two techniques to speed up
the process. First, we memoize the results of each state evaluation so that when revisiting a
state we do not need to simulate the memory trace again. The second improvement is that
we allow multiple superoptimization processes to run simultaneously sharing results using a

database, thereby allowing us to exploit multiple processor cores.

4.2.4 Neighborhood Generation

Our memory subsystem optimizer is capable of proposing candidate memory subsystems
comprised of the structures shown in Table 3.1. These components can be combined in

arbitrary ways leading to a huge search space limited only by the constraints.

For the FPGA target, the constraints include the minimum clock frequency and the maxi-
mum number of block RAMs (BRAMs) for the memory subsystem. BRAMSs are fast on-chip
memories that have a configurable aspect ratio. For the ASIC target, the constraint is the

area as reported from the CACTT tool [113].

Given a state, s;, we compute a proposal state s* by performing one of the following ac-

tions:
1. Insert a new memory component to a random position,
2. Remove a memory component from a random position, or

3. Change a parameter of the memory component at a random position.

43

With MCMC algorithms such as simulated annealing and threshold acceptance, it is neces-
sary that the generated proposal states be ergodic. Ergodicity means that it is possible to
reach every state from any given state in a finite number of steps. Obviously this property
is necessary since if one hopes to reach an optimal solution, one must be able to get to that
solution via some number of steps from a non-optimal solution. It is easy to see that the
proposal generation process described above is ergodic as actions 1 and 2 are capable of

canceling each other and action 3 can cancel itself.

To ensure that any discovered memory subsystem is valid, we reject any memory subsystem
that exceeds the constraints. However, there are other ways a memory subsystem may be
invalid. First, because we support splitting between memory components by address, any
address transformation occurring in a split must be inverted before leaving the split. To
handle this, we always insert (or remove) both the transform and its inverse when inserting

(or removing) an address transformation.

Another situation that can lead to an invalid memory subsystem is when a complex memory
subsystem prevents the subsystem from achieving the required clock frequency on the FPGA
device. Note that for an ASIC device we increase the number of cycles required to access
the memory component. Although we synthesize each component for the FPGA target
separately to prevent this, it is still possible that a combination of components prevent the

complete memory subsystem from achieving the required clock frequency.

To prevent the optimizer from generating a memory subsystem that is unable to run at the
required clock frequency, the optimizer keeps a rough estimate on the longest combinational
path and prevents the path from becoming too long. Nevertheless, it is still possible that a
particular superoptimized memory subsystem may not achieve the required clock frequency.
Therefore, for the FPGA results, we synthesize the superoptimized memory subsystems to

validate them.

44

4.2.5 Offset Selection Heuristic

Because the search space is so large, arbitrarily selecting addresses to segment the address
space in a split component can be problematic. Therefore, rather than proposing arbitrary
addresses for split offsets, we restrict the set of addresses to values that actually exist in
the address trace. We do this by recording the address ranges that are used during the first
evaluation of the trace for the initial state. To further improve these results, the addresses
we generate are weighted such that those addresses at the ends of address ranges are more

likely to be selected.

Given an address range of length n that starts at a, addresses used for splits are selected

according to the following algorithm:

p

a w.p. 1/8
Ala,n) = a+n—1 w.p. 1/8
A(a, [n/2]) w.p. 3/8
\A(CH_ |In/2],[n/2]) w.p. 3/8

Here w.p. stands for “with probability”. Thus, there is a 12.5% chance of selecting the
first address in the range, a 12.5% chance of selecting the last address, and a 75% chance of

selecting an address between these two extremes.

4.2.6 Model Validation

To validate the simulation model used during the optimization process, our optimizer gen-

erates synthesizable VHDL that has the characteristics shown in Table 3.1. By synthesizing

45

the VHDL, we can ensure that the discovered memory subsystem is able to run at the re-
quired frequency and fit on our target device. The synthesis targets a Xilinx [130] Virtex-7

running at 250 MHz.

4.3 Benchmarks

We use a collection of six benchmarks from the MiBench benchmark suite [47] as well as four
synthetic kernels for evaluation purposes. The MiBench benchmark suite contains single-
threaded benchmarks for the embedded space that target a variety of application areas. For
some benchmarks, the MiBench suite contains large and small versions. We chose the large

version in the interest of obtaining larger memory traces.

The locally developed synthetic kernels include a kernel that performs random lookups in a
hash table (hash), a kernel that performs matrix-matrix multiply (mm), a kernel that inserts
and then removes items from a binary heap (heap), and a kernel that sorts an array of
integers using the Quicksort algorithm [50] (gsort). Rather than implement an application
to perform these operations and use Valgrind to capture the address trace, the addresses
traces for these kernels are generated directly during a simulation run, which allows us to

avoid processing large trace files for the kernels.

Because we are superoptimizing the memory subsystem, the amount of memory accessed by
each benchmark is important. If a particular benchmark accesses less memory than is avail-
able to the on-chip memory subsystem, then it should be possible to have all memory accesses
occur in on-chip memory, though such a design may require clever address transformations.

A graph of the total working-set size for each benchmark is shown in Figure 4.1.

In Figure 4.1, we see that there are two benchmarks, bitcount and dijkstra, that are

small enough that all memory accesses could be mapped into 64 BRAMs, which is 2,359,296

46

KiB
100000

10000}

1000+ -

64 BRAMS

100

— — |72)
T =252 5 5% %%
g © 8 85 g ®
S @ 09 = A
g g e Q.
=S S
2

Figure 4.1: Working-Set Sizes

bits, or 294,912 bytes. All of the other benchmarks are too large to fit completely within 64

BRAMs, which is the constraint on BRAMs we consider for the FPGA target.

For the 45nm ASIC process with an area constraint of 1mm?, we can store a total of 379,392
bytes in a scratchpad according to our CACTI model. This means that, as with the FPGA,
both the bitcount and dijkstra benchmarks are small enough to be mapped into a scratch-

pad, but all of the remaining benchmarks access too much memory.

4.4 Minimizing Total Access Time

Here we present the results of superoptimizing the memory subsystem to minimize total ac-
cess time. To evaluate the performance of our superoptimized memory subsystems, we com-
pare the performance of the superoptimized memory subsystems against a baseline cache.
For our baseline cache, we selected a cache that closely resembles the data cache in a Rasp-
berry Pi [95]. This is a 64 KiB, 4-way set-associative write-back cache with 32-byte lines and

a PLRU replacement policy. The FPGA implementation of this cache uses 16 BRAMs and

47

Speedup Speedup

100 100

24.50

.48

3.68
2.64 3.12
1.50 1.53 1.57 160 153. 1.56 l o1 171
. 1100 1.02 1.04 1.04 Loz

z & = £ £ 3 E E % & ° Z & = F 3 8 % % &£ ¢
: Z =5 & % 8 37 = : =5 & % 8 37 =
=1 & S g =1 & S g
Figure 4.2: Best-case FPGA Speedup Figure 4.3: Realized FPGA Speedup

meets our 250 MHz target frequency. According to CACTI, the 45nm ASIC implementation

is 0.18mm? with a 1-cycle access time and a 3-cycle cycle time.

4.4.1 FPGA Results

For the first set of experiments, we target a Xilinx [130] Virtex-7 with a target frequency of
250 MHz and a constraint of 64 BRAMs maximum. On the Virtex-7 part, each BRAM has
a base aspect ratio of 512 bits by 72 bits, or 36,864 bits. The main memory is assumed to

be the DDR3 device whose properties are shown in Table 4.1.

The first question we attempt to answer is: how much better might we make the memory
subsystem than the baseline cache? To determine this, we compare the performance of each
benchmark to a “best-case” access time. For the best-case access time, we assume that all
memory accesses hit in the fastest memory component available for each of our targets. For
the FPGA target, this means that all accesses hit in a scratchpad and, therefore, take two
cycles to complete. This best-case speedup for our benchmarks running on the FPGA target

is shown in Figure 4.2.

48

The g-mean bar in Figure 4.2 represents the geometric mean. Assuming that we could
somehow arrange for all of the memory accesses to hit in the scratchpad we would get a
3.12x speedup over the baseline cache for the FPGA target. Note that, in reality, such a
speedup is not possible since we do not have enough resources available to make all of the

accesses hit in a scratchpad.

Figure 4.3 shows the speedup that the superoptimized memory subsystem provides over the
baseline memory subsystem. Across the set of benchmark applications, the performance gain

varies from very little to over 9x with a geometric mean speedup of 1.71x.

Although some of the results are not much better than the baseline memory subsystem, we
note that for all of the benchmarks there was some improvement, though less than 1% in a
few cases. There are a few benchmarks, however, that exhibit substantial performance gain.
The matrix-matrix multiply kernel shows the best speedup of over 9x. Because the main
memory is not much slower than the cache structures running on a 250 MHz FPGA fabric,
we do not anticipate substantial gains for all of the applications (see Figure 4.2). A number

of the discovered memory subsystems are, however, worth considering in more detail.

The first interesting memory subsystem we consider is the superoptimized memory subsystem
for the hash benchmark, shown in Figure 4.4a. The hash benchmark performs random probes
into a hash table containing 8,388,608 entries, each 4-bytes. This type of access pattern
causes problems for caches due to the lack of locality. In Figure 4.4a, memory accesses
enter the top and accesses to main memory come out the bottom. There are two address
transformations and a 262,144-byte scratchpad. The first address transformation toggles
a bit of the address. The transformed address then enters the scratchpad. The second
transformation reverses the first transformation so that the addresses remain unchanged as
they enter the main memory (recall that address transformations are always inserted and

removed in pairs).

49

xor 2097152

spm 262144

xor 2097152

(a) hash

[0,%0)
split
@134965056
[0,134965056) [134965056,)

cache 1024x4 cache 4096x4
2-way LRU WB 4-way FIFO WB

®
[0,0)

(c) bitcount

[0,0)

split @274944

[274944,)
[0,274944)

rotate 23

cache 1024x4
direct WB

rotate -23

[
[0,0)

cache 8192x32
2-way LRU WT

(b) mm

[0,%)

split
@134513324
[0,134513324) [134513324,)

cache 16384x4
8-way PLRU WB

®
[0,)

(d) jpegd

Figure 4.4: Superoptimized Memory Subsystems for the FPGA Target

The reason that the address transformation is beneficial for the hash benchmark is due to
the random accesses to the hash table being slightly unbalanced. Removing the address
transformation results in a very slight decrease in performance. If we remove the scratchpad
completely, there is again only a slight decrease in performance. Here we note that the
speedup is primarily due to the removal of the cache, which serves only to cause overhead
when there is no locality. The scratchpad speeds up some of the accesses, but only a small

fraction.

Another interesting memory subsystem, which also provides the greatest performance im-
provement, is discovered for mm: the matrix-matrix multiply benchmark. This benchmark
performs a matrix-matrix multiply using the naive O(n?) algorithm with 256-by-256 matri-
ces. Each element of the matrix is 4 bytes. The superoptimized memory subsystem for this
benchmark is shown in Figure 4.4b. In the superoptimized memory subsystem for the mm
benchmark, memory accesses enter the top and are then split, with accesses below address
274944 going directly to a 262,144-byte cache at the bottom of Figure 4.4b and accesses to
addresses above and including 274944 going to a separate memory subsystem before going
to the 262,144-byte cache. For accesses to addresses above and including 274944, first the
bits of the address that select the word are rotated left by 23 bits. The accesses then enter
a 4,096-byte, direct-mapped cache, and finally, the address is rotated right by 23 bits before

entering the larger cache.

To understand why the memory subsystem for the mm benchmark provides such good per-
formance, we consider the way the memory is organized for the benchmark. There are 3
matrices: two sources and a destination. The first source matrix, which is accessed in row-
major order, is stored in addresses 0 through 262140. The second source matrix, which is
accessed in column-major order, is stored at addresses 262144 through 524284. Finally, the

destination matrix is stored at addresses 524288 through 786428.

o1

With this memory organization in mind, we note that the address split moves most accesses
for the second source matrix as well as the destination matrix into a separate memory
subsystem. Within this subsystem, the addresses are transformed and then routed to a
cache. Given that the second source matrix is accessed in column-major order, for the
first column, we access 00040000:¢, 0004040044, ... 0007EF'C00:6 for the first column, then
0004000446, 000404044¢, ... 0007FC044¢ for the second column, and so on. However, after
the split and address transformation, the addresses from the perspective of the 1024 entry
cache look about like this: 00000000:¢, 00000008:¢, ... 00000F F'8¢ for the first column,
0100000046, 0100000844, ... 01000F F8:¢ for the second column, and so on. The result is
that each column of the matrix is cached and can be reused 256 times before the next column

is required.

Note that due to the layout of the matrices, one would expect that the ideal address for
the split would be 262144 instead of 274944. Indeed, changing the split address results in a
0.46% improvement in performance. Thus, running the superoptimizer longer would likely
result in an even better memory subsystem. Further, this implies that there may be better

ways to propose offsets for splits.

A final observation about the memory subsystem for the mm benchmark is the large cache
after the split. This cache has 32-byte cache lines, which allows it to prefetch values for
the source matrix. Also, the cache is write-through rather than write-back, which prevents

cache pollution due to writes to the destination matrix.

The memory subsystem discovered for the bitcount benchmark is shown in Figure 4.4c.
This memory subsystem only provides a small performance improvement over the baseline
(a speedup of less than 1%), but it also uses fewer block RAMs than the baseline memory
subsystem (9 instead of 16). This feat is accomplished by splitting the address space between

two caches. The first cache handles accesses to heap allocations whereas the second cache

52

handles accesses to the stack. This type of split is common for the benchmarks that have

accesses to a separate stack and heap.

Finally, we consider the memory subsystem for the jpegd benchmark, shown in Figure 4.4d.
For the jpegd benchmark, the superoptimizer selected a split memory subsystem where only
memory accesses to addresses 134513324 and higher go to a cache. This causes accesses to

the program stack to be cached, but not accesses to heap allocations.

Of the superoptimized memory subsystems for the FPGA target, none contained only a
single-level cache component. Five of the memory subsystems contained splits (bitcount,
fft, jpegd, mm, and sha), five contained scratchpads (dijkstra, hash, heap, patricia, and
gsort), and five contained address transformations (dijkstra, hash, mm, patricia, and
gsort). Further, all of the superoptimized memory subsystems performed better than the

baseline memory subsystem, even if only marginally better in some cases.

4.4.2 ASIC Results

For the next set of experiments, we target a 45 nm ASIC process running at 1 GHz. Using
CACTT [113] for area and timing results, we constrain the area to Imm?. As with the FPGA
target, the main memory is assumed to be the DDR3 device whose properties are shown in

Table 4.1.

The best-case speedup for the ASIC target is shown in Figure 4.5. For the ASIC target, we
assume that, in the best case, all memory accesses hit a scratchpad with a 1-cycle access
time and cycle time. Here we see that the geometric-mean best-case speedup is 17x. As in

the FPGA case, it is not necessarily possible to achieve such a speedup.

Figure 4.6 shows the speedup that the optimized memory subsystem provides over the base-

line memory subsystem. The geometric mean speedup is 6.52x. The superoptimizer is able

93

Speedup Speedup

176.00
102.00
100 100 68.40
46.10
15.40 17.00
10.}7.00 7.24 7.49 7.75 722 7.40 10.£7.00
6.33 585 618 , o 6.32 531 652
412
))]
g & 3 g § % B B § & ® g2 & & § § % 8 B % & ®
=3 o © B =1 = S B
Figure 4.5: Best-case ASIC Speedup Figure 4.6: Realized ASIC Speedup

to get more impressive speedups for the ASIC than the FPGA for two reasons. First, the
ASIC is assumed to be running at a higher clock frequency than the FPGA (1 GHz versus
250 MHz), making a miss in the memory subsystem have a greater impact. Second, there are
more trade-offs for the ASIC memory components. In particular, when targeting an ASIC,
the optimizer uses the access time and cycle time results from CACTI rather than using a

fixed access time and cycle time as is done for the FPGA.

The greatest increase in performance is again seen for the mm benchmark, whose memory
subsystem is shown in Figure 4.7b. This memory subsystem has two sets of address rotations.
The rotation by 27 bits causes every eighth entry of the first source matrix for 16384 entries
to be stored in the first scratchpad, which has a cycle time of 1 cycle. Another 65536 entries
of the first source matrix are stored in the second scratchpad, which has a cycle time of 3
cycles. Finally, the second set of rotations causes columns of the second source matrix to be
cached in a way similar to the memory subsystem for the FPGA. Although the first address
rotation may seem unnecessary, by reducing conflict misses in the cache, it actually improves

the performance of the memory subsystem.

o4

rotate 27

spm 262144 spm 65536
rotate -27
rotate 22
spm 262144
spm 65536
rotate 22
rotate -22 cache 256x4
8-way FIFO WT
(a) hash rotate -22
(b) mm
[0,0)
split
@134590036
[134590036,%)

[0,134590036)
[0,)
cache 2048x4

cache 2048x4 4-way LRU WB

4-way FIFO WB
cache 8192x4

[0,%)
split l6-way LRU WB
@135020348
[135020348,)
[0,135020348) cache 8192x4
l6-way PLRU WB

cache 1024x4

16-way LRU WB
cache 2048x4

l6-way LRU WB

o
[0,) °
[0,%)
(c) bitcount cache 2048x4
4-way LRU WT
(d) jpegd

Figure 4.7: Superoptimized Memory Subsystems for the ASIC Target

95

The memory subsystem for the hash benchmark targeting the ASIC is shown in Figure 4.7a.
As is the case with the mm benchmark, the subsystem for the hash benchmark is similar to
the subsystem for the FPGA. However, rather than an xor transform, this subsystem uses a

rotate. In addition, this subsystem incorporates two scratchpads instead of one.

The memory subsystem discovered for the bitcount benchmark, shown in Figure 4.7c, is
similar to the memory subsystem discovered for the bitcount benchmark for the FPGA
target, shown in Figure 4.4c. Note that the split offset is only slightly different. However,

here we have a cache before the split rather than on the left side of the split.

The last memory subsystem we consider in detail is the memory subsystem for the jpegd
benchmark, shown in Figure 4.7d. This memory subsystem is one of the most complex
memory subsystems discovered. The split causes access to the memory in the stack space to
be mapped to a 4-level cache. Finally, accesses to both the stack and heap are backed by a
smaller cache. The four levels of cache in the split each have slightly different properties and
removing any one of the caches causes a decrease in performance. Having separate, smaller

caches such as this can be beneficial since smaller caches are faster than larger caches.

As is the case with the FPGA target, none of the superoptimized memory subsystems
for the ASIC target contained only a single-level cache component. Four of the memory
subsystems contained splits (bitcount, jpegd, patricia, and sha), six contained scratch-
pads (dijkstra, fft, hash, heap, mm, gsort) and six contained address transformations
(dijkstra, fft, hash, heap, mm, and gsort). Further, like the FPGA target, all of the
superoptimized memory subsystems performed better than the baseline memory subsys-

tem.

o6

jpegd sha -

fft -

heap (- 0.0 mm 0.0

mm 0.1 dijkstra 0.1

hash - 02 jpegd 02

dijkstra - 0.3 fft - 0.3

k= 04 == 0.4

§ gsort - § heap

S S
5 5
m m

patricia
patricia bitcount -
sha - qsort -

bitcount - hash

fft -

L Il Il Il Il Il Il Il L Il L Il Il Il Il L Il
< < = ko) < < = < e = (=9 < < b1 = <
EEEE LG EE 3528 %8 3
= ‘B] ‘g)
Ef_' & & % 5-'_" .:é & = 5 % IS
B a, 3 kS ST
Subsystem Subsystem

Figure 4.8: FPGA Subsystem Specificity Figure 4.9: ASIC Subsystem Specificity

4.4.3 Memory Subsystem Specificity

Finally, we consider how specific each of the memory subsystems is to the application for
which the subsystem was superoptimized. Figure 4.8 shows a heat map comparing the results
of running each of the 10 benchmarks with each of the 10 superoptimized memory subsystems
for the FPGA target. The results are computed by dividing the total access time of each
benchmark running with each memory subsystem by the total access time of the benchmark
running with the memory subsystem that was superoptimized for that benchmark. In the

figure, darker colors represent better performance.

In Figure 4.8, we see that the mm and heap benchmarks appear to run well only on the
memory subsystems that are superoptimized for them. For the mm benchmark, the per-
formance improvement from the rotate in the memory subsystem is significant enough to
prevent any of the other memory subsystems from approaching the performance of the mm
memory subsystem. The heap benchmark contains only a scratchpad, which causes accesses

to the start of the heap, which are most frequent, to be fast. However, such a structure

o7

is suboptimal for the other benchmarks, though the hash benchmark performs fairly well
with the memory subsystem for the heap benchmark. In all cases, the memory subsystem
that was superoptimized for a particular benchmark provides the best performance for that

benchmark.

Figure 4.9 shows a heat map comparing the results of running each of the 10 benchmarks
with each of the 10 superoptimized memory subsystems for the ASIC target. As is the case
with the FPGA results, the benchmarks all perform best with the superoptimized memory
subsystem for the particular benchmark. In fact, the results are more specific for the ASIC
target than for the FPGA target, which is likely due to the fact that the ASIC target runs

faster and has a more complex search space.

Given that the superoptimized memory subsystems are specific to the benchmark for which
they were superoptimized, we note that the memory subsystem may further be specific to a
particular run of the benchmark. To investigate this, we used a different input data set of
the same size for each of the benchmarks for the ASIC target. For example, for the jpegd
benchmark, a different input image of the same dimensions as the original was chosen. A
comparison of the speedups over the baseline memory subsystem for the original data set

and the new data set is shown in Figure 4.10.

In Figure 4.10, the lighter bars (on the left) show the speedup of the superoptimized memory
subsystem over the baseline memory subsystem for the original data set and the darker bars
(on the right) show the speedup for the modified data set. For many of the benchmarks there
is little or no difference and in one case (dijkstra), the speedup actually improved. Overall,
the geometric mean dropped from 6.43x to 6.27x. Although its impossible to draw anything

conclusive from these results, it appears that the effects of over-fitting are minimal.

o8

Speedup

100

— — @

g é‘ =d g 3 = E: B 2 = c'|°
Q 7 2z £ @ =] = Q S

8 n = S ag 2. = =1
£ =1 /a o. @
1=} & 5 g
=

Figure 4.10: Speedup with Different Inputs

4.5 Minimizing Writes

Until now we have been focused on reducing total memory access time. However, as pre-
viously noted, the superoptimization technique is generic and, therefore, can be used to
optimize for other objectives. Here we investigate minimizing the number of writes to main

memory.

4.5.1 Motivation

Although DRAM is the most popular choice for main memory in modern computer systems
today [98], there are several disadvantages to DRAM technology leading researchers to seek
other technologies. Two such problems with DRAM include its volatility and scaling issues.
Because DRAM is volatile, meaning it requires periodic refresh, DRAM can be power-hungry
since it requires power just to retain information. This is particularly apparent when used
in a setting with infrequent main memory accesses. However, when used in a setting with
frequent memory accesses, the refresh requirement for a large DRAM can greatly reduce

application performance [109]. As far as DRAM scaling is concerned, there are significant

29

challenges to scaling down DRAM cells [74] since bits are stored as charge on a capacitor,

which further limits energy efficiency and performance.

Several alternative main memory technologies have been proposed, including PCM [69] and
STT-RAM [64]. Although there are many possible main memory technologies that could be
considered, a common theme for many proposed main memory technologies is an aversion
to writes. For PCM, there is a limited write endurance, making it beneficial to avoid writes
to extend the lifetime of the device. Further, on PCM devices writes are slow and energy-
hungry. For STT-RAM, although writes do not limit the lifetime of the device, writes are
much slower than reads and consume more energy. Therefore, avoiding writes to the main

memory is a likely objective when faced with such a technology.

Because writes are often costly with respect to energy, performance, and endurance, here we
seek to determine if it is possible to modify the memory subsystem to reduce the number
of writes to main memory. We are particularly interested in the possibility of reducing the
number of writes beyond what a memory subsystem superoptimized for performance would

provide.

4.5.2 Results

To demonstrate the use of our superoptimization technique for the reduction of writes, here
we present results for several of the benchmarks mentioned in Section 4.3. We target the
ASIC platform described in Section 4.4.2. The cost function used to guide the superop-
timization process is the total writes to main memory for the complete execution of the
benchmark application. Thus, we are no longer optimizing for performance, but exclusively

for a reduction in writes to main memory.

60

W Writes
B Access Time

Improvement
N
\

1 4 J
0 - IIII IIII IIII IIII IIII IIII

heap
jpegd
gsort

bitcount
dijkstra
patricia

Figure 4.11: Write and Access Time Improvement

To determine if the memory subsystem superoptimized for writes is actually any better at
reducing writes than a memory subsystem superoptimized for total access time, we compare
each of the memory subsystems. The first column of Figure 4.11 shows the improvement
that the memory subsystems superoptimized for writes have over the memory subsystems
superoptimized for total access time (that is, W;/W,, where W, is the total number of writes
to main memory when using the memory subsystem superoptimized for writes and W, is the
total number of writes to main memory when using the memory subsystem superoptimized
for access time). The second column shows the improvement that the memory subsystems
superoptimized for total access time have over the memory subsystems superoptimized for
writes (that is, T,,/T;, where T; is the total access time when using the memory subsystem
superoptimized for access time and T, is the total access time when using the memory
subsystem superoptimized for writes). Thus, bars above one indicate an advantage of one

superoptimized memory subsystem over another.

61

[0,%0)

cache 2048x4
4-way FIFO WB

[0,%)
split
@135020348
cache 512x64 [135020348,00)
4-way LRU WB [0,135020348)
cache 1024x4
l6-way LRU WB
(a) Writes
o
[0,0)

(b) Access Time

Figure 4.12: Superoptimized Memory Subsystems for bitcount

Here we expect all bars to be at least one, indicating that the memory subsystem superopti-
mized for a particular objective is at least as good for that objective as a memory subsystem
superoptimized for the other objective. Indeed, all bars in Figure 4.11 are one or greater. In
some cases, there is little or no difference between the superoptimized memory subsystems.
For example, for the bitcount benchmark, both memory subsystems reduce the number of
writes to zero and the memory subsystem superoptimized for total access time provides only
a slight improvement in total access time over the memory subsystem superoptimized for
writes. However, in most cases, a different memory subsystem is able to provide the best

results for either objective.

The memory subsystem superoptimized for writes for the bitcount benchmark is shown
in Figure 4.12a and the memory subsystem superoptimized for total access time for the
bitcount benchmark is shown in Figure 4.12b. As previously mentioned, both memory
subsystems were able to reduce the number of writes to zero for this benchmark due to

the small number of distinct address that are written. For this benchmark, the memory

62

cache 2048x4
4-way PLRU WB

rotate 27

xor 8388608

spm 4096

cache 2048x64
2-way LRU WB

Xor 8388608

(a) Writes

rotate -27

cache 16384x4
direct WB

cache 2048x4
4-way LRU WB
(b) Access Time

Figure 4.13: Superoptimized Memory Subsystems for dijkstra

subsystem superoptimized for total access time provides only a small advantage over the

simpler memory subsystem that was discovered to reduce writes to main memory.

For the dijkstra benchmark, the memory subsystem superoptimized for writes is shown
in Figure 4.13a and the memory subsystem superoptimized for total access time is shown
in Figure 4.13b. As with the bitcount benchmark, both memory subsystems are able to
reduce the number of writes to zero. However, here we note that the very unusual memory

subsystem that was discovered when superoptimizing for total access time is able to provide

63

a much greater reduction in total access time than the memory subsystem discovered when
superoptimizing for writes. Considering both subsystems were able to reduce the number
of writes to zero, it is unsurprising that a simpler subsystem can be used if we do not care

about total access time.

spm 131072 spm 131072
xor 131072 rotate 22
cache 1024x16 cache 1024x16
4-way LRU WB 4-way LRU WB
spm 32768 spm 32768
xor 131072 rotate -22

(a) Writes (b) Access Time

Figure 4.14: Superoptimized Memory Subsystems for heap

The next memory subsystems we consider are those superoptimized for the heap kernel.
The memory subsystem superoptimized to minimize writes is shown in Figure 4.14a and the
memory subsystem superoptimized to minimize total access time is shown in Figure 4.14b.
Interestingly, these memory subsystems are very similar with the only difference being the
address transformation. Despite the similar appearance, the each of the memory subsystems

is able to provide a benefit over the other.

The memory subsystem superoptimized for writes for the jpegd benchmark is shown in
Figure 4.15a and the subsystem superoptimized for access time is shown in Figure 4.15b.

Again, the memory subsystem that was superoptimized to minimize total access time is

64

[0,0)

split
@134590036

[134590036,0)
[0,134590036)

cache 2048x4
4-way LRU WB

cache 8192x4
l6-way LRU WB

cache 65536x4 cache 8192x4
4-way LRU WB l6-way PLRU WB

cache 2048x4
(a) Writes 16-way LRU WB

o
[0,0)

cache 2048x4
4-way LRU WT

(b) Access Time

Figure 4.15: Superoptimized Memory Subsystems for jpegd

much more complex than the one to minimize writes. The memory subsystems for this
benchmark represent the most specificity for their respective objectives of all the benchmarks

attempted.

The memory subsystem superoptimized for writes for the patricia benchmark is shown in
Figure 4.16a and the subsystem superoptimized for total access time is shown in Figure 4.16b.
An interesting observation is the large and highly-associative caches that are used when
minimizing writes is the objective. These caches are effective at eliminating writes, but they

are quite slow.

Finally, we consider the memory subsystems for the gsort benchmark. Figure 4.17a shows

the memory subsystem superoptimized for writes and Figure 4.17b shows the memory subsys-

65

[0,0)

cache 2048x4
4-way LRU WB

[0,0)
cache 8192x4 split
64-way LRU WB @134971980
[0,134971980) [134971980,0)
cache 262144x1 cache 2048x4 cache 8192x4
l6-way LRU WB 4-way PLRU WB 16-way LRU WT
(a) Writes
[0,0)

(b) Access Time

Figure 4.16: Superoptimized Memory Subsystems for patricia

tem superoptimized for total access time. One notable difference between these subsystems
is the presence of the prefetch component in the memory subsystem superoptimized for total

access time.

Overall, memory subsystems superoptimized to minimize total access time appear to be
capable of large reductions in total access time over memory subsystems superoptimized to
minimize writes. On the other hand, while a memory subsystem superoptimized for writes is
often able to reduce the number of writes compared to a memory subsystem superoptimized
for total access time, the improvement is usually less pronounced. An explanation for this
is that usually the total access time decreases as the number of reads and writes to main

memory decrease.

Another observation is that the memory subsystems superoptimized for writes are usually
simpler than those superoptimized for total access time. Although a large cache will typically

eliminate writes, the large cache will likely be slow. This implies that a large cache may be

66

xor 16

cache 8192x16
8-way PLRU WB
cache 1024x16
4-way PLRU WT

prefetch 64

cache 8192x16

4-way LRU WB
cache 512x16

4-way LRU WB

(a) Writes

xor 16

(b) Access Time

Figure 4.17: Superoptimized Memory Subsystems for gsort

sufficient if we only care about writes, but something more exotic will likely provide better

results if we want to minimize total access time.

4.6 Multi-Objective Superoptimization

Here we investigate multi-objective superoptimization. From the previous section, we note
that the memory subsystems that are superoptimized to minimize total access time are fairly
good at reducing the number of writes to main memory, however, the memory subsystems
superoptimized to minimize writes usually do better. On the other hand, the memory subsys-
tems that are superoptimized to minimize writes often perform poorly with respect to total

access time. Thus, one might wonder if it is possible to optimize for both objectives.

We use the weighted sum method (see [75]) to combine the objective functions to minimize

writes and total access time. Figure 4.18 shows the improvement possible for various objec-

67

29 m writes

B Access Time

Wl

Figure 4.18: Multi-Objective Superoptimization

Relative Performance

10w+90a
Ow+100a

100w+0a
90w+10a

tives for the jpegd benchmark with objective weights ranging from 100%-writes, 0%-access
time through 0%-writes, 100%-access time. The graph shows uses the performance relative
to the best result for writes and total access time. For the bars on the left, the graph shows
Wy /Wi, where W, is the number of writes to the main memory when using the memory
subsystem superoptimized for multiple objectives and W,, is the number of writes to the
main memory when using the memory subsystem superoptimized to minimize writes. For
the bars on the right, the graph shows T;/T,,, where T,, is the total access time when using
the memory subsystem superoptimized for multiple objectives and T; is the total access time
when using the memory subsystem superoptimized to minimize total access time. Thus,

higher values (closer to 1) indicate better results.

As can be seen in the graph, the largest differences in how good the memory subsystems
perform for each objective occur when only a single objective is considered. When multi-
ple objectives are considered, although there is some difference in how good the memory

subsystems are, the result is very close to the best for all mixtures.

68

cache 1024x128
2-way LRU WB
cache 65536x4
4-way LRU WB
cache 16x64
direct WT

(a) 100w + Oa
(b) 90w + 10a

b&w)

split
@134590036

[134590036,%)
[0,134590036)

cache 2048x4
4-way LRU WB
cache 1024x64

2-way LRU WB
cache 8192x4

l6-way LRU WB
cache 1024x256

4-way LRU WB cache 8192x4

16-way PLRU WB

spm 2048 cache 2048x4

i 16-way LRU WB

(c) 10w + 90a
[0,%)

cache 2048x4
4-way LRU WT

(d) 0w + 100a

Figure 4.19: Memory Subsystems for jpegd

69

Figure 4.19 shows the memory subsystems for each mixture. When minimizing writes is most
important, we see that a simple cache suffices. However, when minimizing total access time is
also important, the large cache is separated into two caches, which makes sense since smaller
caches are faster. Finally, when writes are no longer considered, a very complex memory
subsystem is discovered, which does little to minimize writes, but provides the lowest total

access time of all the memory subsystems considered.

4.7 Summary

In this chapter, we have shown that it is possible to superoptimize memory subsystems
for specific applications that out-perform a general-purpose memory subsystem in terms
of either performance or writes. Unlike previous work, the memory subsystems that our
superoptimizer discovers can be arbitrarily complex and contain components other than
simple caches. To superoptimize a memory subsystem, we use old bachelor acceptance,
which is a form of threshold acceptance. We are then able to improve the discovery process

by using information from the address trace.

This work targets both an FPGA as well as an ASIC process. For the FPGA target, we have
validated the discovered memory subsystems by generating VHDL for each of the subsystems.
The VHDL was then synthesized to ensure that the discovered memory subsystems are
realizable at the required frequency. For the ASIC process, we used the CACTI [113] tool

to get area and time estimates for each of the memory components.

An obvious shortcoming of the superoptimization technique presented so far is that it only
works on single-threaded applications. Thus, due to the inherently parallel nature of ASIC
and FPGA devices, this approach has limited applicability. Nevertheless, this technique is

applicable for single-threaded applications and parallel applications in which only a single

70

thread accesses main memory. In the next chapter we extend the superoptimization approach

to a class of parallel applications.

71

Chapter 5: Memory Subsystems for

Streaming Applications

This chapter expands on the methods presented in Chapter 4 to superoptimize memory
subsystems for streaming applications. In addition, an empirical validation of the superop-
timized memory subsystems is provided for applications deployed on an FPGA target. This

chapter is based on [124].

5.1 Introduction

Modern computer systems are becoming increasingly parallel [90]. This especially true of
ASICs and FPGAs, which are naturally parallel devices and likely targets for superopti-
mized memory subsystems. Thus, here we investigate extending the notion of application-
specific memory subsystems to parallel applications. In particular, we consider streaming
applications, which are well-suited to heterogeneous systems consisting of general-purpose

processors, FPGAs, GPUs, and other devices.

Streaming is a parallel programming paradigm where application kernels communicate over
fixed communication channels. The streaming paradigm is used in systems such as ScalaPipe
(described in Section 3.1) and Streamlt [112], among many others [17, 29, 45, 46, 105].
Within the streaming paradigm, conceptually, each kernel has its own independent memory

address space. Communication between kernels is performed via communication channels

72

implemented as FIFO buffers. Unlike a single-threaded application, which has a single
memory subsystem to optimize, a streaming application can potentially have a separate
memory subsystem for each kernel. In addition, each communication channel or FIFO

between kernels is yet another memory subsystem to be optimized.

Due to the number of memory subsystems in a streaming application, the already complex
problem of superoptimizing a single-threaded address trace is compounded. This is because,
in addition to a shared resource constraint, the performance of one kernel can affect another
both directly, by moving the bottleneck, and indirectly, by consuming excessive main memory
bandwidth. Thus, we use a heuristic to guide the search to those memory subsystems that

are most likely to benefit the application.

To evaluate our superoptimized memory designs, we target an FPGA with an external
LPDDR (low-power double date rate) main memory. The FPGA device is a Xilinx Spartan-6
LX45 clocked at 100 MHz. The external LPDDR is a 512 Mib device clocked at 100 MHz.
All memory subsystems share access to the external LPDDR memory device. The Spartan-6
LX45 has 116 block RAMs (BRAMs), which we use to implement our custom memory

subsystems. Each BRAM is 18 Kib, providing a total of 2,088 Kib on-chip memory.

By evaluating our applications on a physical device, we show that it is possible to achieve real

performance improvements over a generic memory subsystem with minimal extra effort.

5.2 Method

Given a streaming application to be deployed on either an ASIC or FPGA, the process to
create a custom memory subsystem consists of several steps. First, the design without a
memory subsystem is evaluated to determine what ASIC or FPGA resources are not used

and, therefore, available for the memory subsystem. Next, an address trace is gathered for

73

the application. This address trace is then fed into the memory subsystem superoptimizer,
which proposes memory subsystems and simulates them to determine their performance.
Finally, the memory subsystem generator is used to generate a custom HDL design for the

application to use.

5.2.1 Address Traces

To superoptimize a memory subsystem, we first require an address trace. Unlike single-
threaded address traces, we require a separate trace per kernel (note that each kernel has its
own memory subsystem). In addition, communication between kernels must be recorded to
allow us to accurately model the parallel kernels and optimize the size of the FIFOs between
the kernels. Finally, some notion of the computation time between memory accesses must be

recorded to accurately predict how long each kernel will run relative to other kernels.

B/AXC
N A

Figure 5.1: Split-Join Topology

Consider the simple streaming application topology shown in Figure 5.1. The vertices of the
graph represent kernels and the edges represent communication channels. Here we have four
kernels (A, B, C, and D) where kernel A produces data on two channels (1 and 2) and kernel

D consumes data on two channels (3 and 4).

74

Each kernel has a separate address trace. For example, the trace for kernel B might look

something like:

Consume an element from channel 1
Read 4 bytes from address 0x1234
Perform a computation taking 8 cycles
Write 8 bytes to address 0x200

Produce an element on channel 3

Recording the interaction over the communication channels as produce and consume allows
the superoptimizer to change the size of the FIFOs used for the communication channels
without affecting correctness of the application provided the FIFOs are at least as large as

the application requires.

Although recording an address trace for split kernels (such as kernel A in Figure 5.1) and
join kernels (such as kernel D) would provide a valid trace, such a trace may not give the
superoptimizer sufficient freedom to resize the communication channels. For example, if
kernel A were a load balancer, it might output more items to one channel than the other
depending on its ability to write to the channel. To handle such situations, our simulator
is capable of modeling certain split and join kernels internally without using an address

trace.

There are several ways to obtain address traces. Because our benchmarks are implemented
in ScalaPipe, we modified ScalaPipe to have the ability to dump an address trace for kernels
mapped to processor cores. This allows us to first run the application on general-purpose pro-
cessor cores to gather the address traces. After an address trace is gathered, the application

can be mapped to an FPGA device for deployment with a custom memory subsystem.

5

An additional benefit to using ScalaPipe to gather the traces is that, since ScalaPipe is
capable of high-level synthesis, we can also record the number of cycles that the computa-
tion will take between memory accesses in the address trace. This information allows the

superoptimizer to divide the memory resources among the kernels more effectively.

For benchmarks not implemented in ScalaPipe, it is possible to manually instrument the
application to generate the required trace data. For example, an application implemented
in a hardware description language (HDL), such as VHDL or Verilog, could be manually

instrumented and then run in a simulator.

5.2.2 Simulation

To evaluate the performance of the memory subsystems proposed by the superoptimizer, we
use the custom trace-based memory simulator described in Section 3.2. For the experiments
presented here, we use the fact that the simulator reports the total number of cycles that
the application would take to run on our target platform. For the main memory, the sim-
ulator assumes that there is a priority arbiter in front of the main memory with a single
read/write port. The main memory is modeled as a DRAM device with the parameters
shown in Table 5.1, which were chosen to model closely the main memory on our experimen-

tal platform.

5.2.3 Optimization

As before, we use old bachelor acceptance [51] to guide the superoptimization process. Unfor-
tunately, the search space is much larger when multiple kernels are considered than it is for
single-threaded applications. Because of this, in addition to the address selection heuristic

presented in Chapter 4, here we use a heuristic to guide the superoptimizer to spend more

76

Parameter ‘ Description Value

Frequency | DRAM I/0O frequency 100 MHz
CAS Cycles select a column 3
RCD Cycles from open to access 3

RP Cycles required for precharge 3

Page size | Size of a page in bytes 1024

Page count | Number of pages per bank 8192

Width Channel width in bytes 2

Burst size | Number of columns per access 8

Page mode | Open or closed page mode closed
DDR Double data rate true

Table 5.1: Main Memory Parameters

effort exploring the memory subsystems that are most likely to benefit the application. To
do this, the memory subsystems for each kernel and FIFO are weighted by the product of
their resource usage and their total memory access time. The superoptimizer then randomly
selects a memory subsystem to modify based on these weights. This causes the superopti-
mizer to spend more time on those memory subsystems that consume a large portion of the
resources and those memory subsystems that can gain the most benefit from the memory

subsystem.

Since our target device is an FPGA, we constrain the superoptimization process by FPGA
resources. Specifically, we constrain the superoptimization process such that the final appli-
cation uses no more than 80% of the slices and no more than 80% of the BRAMs available
on the FPGA. By constraining the resources to 80%, we prevent the design from becoming
too congested, which could prevent the design from being routed or meeting timing closure.
Note that this resource constraint differs from the constraint used in Chapter 4 in that here
we are constraining based on both slices and block RAMs whereas in Chapter 4 the only
constraint was the block RAMs. The additional constraint on slices makes it easier to fit the
application on the FPGA along side the memory subsystem (before we were concerned only

with the memory subsystem).

7

In addition to the resource constraints, we put a lower bound of 100 MHz on the system
clock for the design. The clock constraint prevents the superoptimizer from slowing down

the computation with an overly-complex memory subsystem.

To enforce the resource constraints, rather than build each proposed memory subsystem, the
superoptimizer tracks the resource usage of each memory subsystem component by storing
the results of synthesis runs in a database. The sum of the resources used for each component
are then used in the superoptimization process. To ensure the design will run at the required
frequency, memory subsystem components whose synthesis estimates are less than 100 MHz

are not considered.

Although the constraints on BRAMs and slices are fairly conservative, the constraint on
frequency could easily be broken with too complex of a design. To address this, we maintain
an estimate of the maximum path length in the superoptimizer and use the estimate as an

additional constraint.

5.2.4 Subsystem Generation

Once a memory subsystem has been superoptimized, we use an automatic memory subsys-
tem generator (see Chapter 3 for details) to generate a VHDL description of the memory
subsystem. This subsystem generator is capable of generating all of the memory subsys-
tems shown in Table 3.1. Each memory subsystem has a simple SRAM-style interface with
per-byte write enables. The memory subsystems are connected to the main memory using
a priority arbiter capable of allowing multiple outstanding main memory requests (one for

each memory subsystem).

The word size of various components in the memory subsystem need not be equivalent. To

handle this, an adapter is inserted between each component in the memory subsystem. For

78

example, if there is a two level cache where the first level has a word size of 8 bytes and the
second level has a word size of 16 bytes, the adapter will direct the reads to the correct part
of the larger word and set the byte mask appropriately for writes. If the second level cache
has the smaller word size, each access from the first level cache will be turned into multiple
accesses. For simplicity, the word size is restricted to a power of two. Note that this differs
from the method used in Chapter 4. In Chapter 4 all levels of the memory subsystem used

a fixed word size whereas this restriction has been lifted for these results.

5.3 Benchmarks

Following is a description of the benchmarks used to evaluate our custom memory subsys-
tems. All of the benchmarks are implemented in ScalaPipe [120]. ScalaPipe is a streaming
application generator that allows one to author an application in a high-level language and

then generate code for deployment on CPUs and FPGAs.

We have enhanced ScalaPipe with the ability to generate applications that output memory
address traces for kernels deployed on standard processor cores and to use our custom mem-
ory subsystems for kernels deployed on FPGAs. This allows us to first deploy the application
on processor cores to generate the address traces and then generate the application on FPGA

cores for deployment with our custom memory subsystems.

Merge Sort

The first benchmark we consider is the merge benchmark, which is a merge sort application
capable of sorting up to one million 32-bit integers. This benchmark makes use of a generic
merge kernel with a single input channel and a single output channel. The kernel is replicated

[lgn] times to sort n elements, as shown in Figure 5.2. Each kernel in the pipeline sorts

79

sequences of elements 2x longer than the sequences from the preceding kernel by using
an internal buffer to store half the elements. This sort algorithm is described in detail

in [18].

Due to the memory requirements of sorting one million integers, this benchmark requires
off-chip memory. However, exactly how the BRAM resources of the FPGA should be divided

up among the kernels and FIFOs is not immediately apparent.

Input
IHTUt Buffer
Merge-2 Streamer
Merge-4 Force
|
[
Merée—m Accumulate
Qutput Update
Figure 5.2: merge Topology
Output

Figure 5.3: nbody Topology

n-Body

The next benchmark we consider is the nbody benchmark, which is an application to simulate
the 3-dimensional n-body problem using the naive O(n?) algorithm. An n-body simulation
predicts the positions and velocities of point masses in space at various times given their

position, mass, and velocity. The naive algorithm updates each point by considering the

80

gravitational effect of all other points using the following equation:

m;im; Di
RO
1{75] |p.7 pl|
where G is the gravitational constant, m; is the mass of the ¢*® particle, and p; is the position

of the ¢*® particle.

The topology of the nbody benchmark is shown in Figure 5.3. In the nbody benchmark,
the Input kernel reads the initial positions of each particle to be simulated. The Buffer
kernel buffers the points for the next iteration (or from input on the first iteration). Next,
the Streamer kernel sends the particles past the Force kernel, which computes the forces on
each particle. The Accumulate kernel then sums the forces on each particle. Once the total
force on a particle has been computed, the Update kernel updates the particle’s position
and velocity, sending the results to both the Output and Buffer kernels Finally, the Qutput

kernel saves the results.

In this benchmark, there are two kernels that use off-chip memory: the Buffer kernel and
the Streamer kernel. In addition to the memory subsystems used by these two kernels, there
are eight FIFOs to be optimized. Although it would be possible to simulate a small number
of particles without using off-chip memory, larger problems necessitate the use of off-chip

memory, leaving us to determine how to best use the BRAM resources.

Laplace

The laplace benchmark is an application to solve Laplace’s equation using a Monte-Carlo
technique [96]. Laplace’s equation is a second-order partial differential equation (PDE) that

can be used to model steady-state heat diffusion [108]:

81

Pu Pu

o2 "o "

Given the temperature at the boundaries of an object, solutions to Laplace’s equation provide
the interior temperatures at equilibrium. Like the n-body simulation, the application to

solve Laplace’s equation is easily decomposed into a streaming application, as shown in

Figure 5.4.
RNG
|
Split
/ \
Walk Walk
\ /
Avg
|
Output

Figure 5.4: laplace Topology

In the laplace benchmark, random numbers are generated using the Mersenne twister [77]
random number generator in the RNG kernel. The Split kernel divides the random numbers
among two Walk kernels, which perform a random walks from each position of interest. Next,
the Avg kernel averages the results of the random walks and sends the output to the Output

kernel.

The only kernel in this benchmark to use a memory array is the RNG kernel, which uses 2,496
bytes of memory. So although this benchmark does not require the use of off-chip memory,

off-chip memory could potentially be used effectively for the RNG kernel and one or more of

the FIFOs.

82

Matrix-Matrix Multiply

The mm benchmark is a streaming application to perform matrix-matrix multiplication on

two 256x256 matrices of 32-bit floats. The topology is shown in Figure 5.5.

Matrixy Matrixp
\\\\\\\\S A//////// Input
Distribute
z//////// \\\\\\\\& Hash
Product, e Product,,
z/////// Heap
Combine
j Output
Output

Figure 5.6: median Topology
Figure 5.5: mm Topology

In the mm benchmark, the source matrices are provided by the Matrix4 and Matrixp kernels.
The Distribute kernel holds the matrix data and streams it past the Product kernels. Each
Product kernel performs a dot product. In our experiments, we use two Product kernels.
Next, the Product kernels send the dot products to the Combine kernel, which collects the

results in the correct order. Finally, the Output kernel outputs the results.

With this benchmark, only the Distribute kernel uses a memory array: an array to store
the matrices totaling 524,288 bytes. In addition to the memory subsystem in the Distribute

kernel, there are FIFOs connecting all of the kernels, which could potentially be resized.

Median

Finally, we consider the median benchmark, which is an application to find the median of a

stream of up to one million unique integers. This benchmark is a simple two-stage pipeline,

83

shown in Figure 5.6, where the Hash stage removes duplicates using an open-address hash

table and the Heap stage uses a binary heap to recover the median value.

In the median benchmark, both the Hash and the Heap kernels require more memory the
FPGA has available. The Hash kernel uses 8 MiB and the heap kernel uses 4 MiB. In
addition to the memory subsystems for the kernels, the FIFO between the kernels is another

subsystem whose size and implementation is to be optimized.

5.4 Results

As a baseline, we implement all FIFOs as registers (FIFOs that can hold a single element).
All memory subsystems for kernels are connected directly to the arbiter for the main memory.
This type of memory structure uses the least amount of area on the FPGA device and requires
the least amount of effort to implement. Thus, although it might not be the final design for

a particular application, it does represent a likely starting point.

Figure 5.7 shows the speedup of the superoptimized memory subsystems over the baseline for
each benchmark as reported by the memory simulator (the g-mean bar shows the geometric
mean). Because the simulator takes into account computation time as well as memory access
time, the simulated speedup should be an accurate representation of the actual speedup one
would expect to obtain by running the application on the physical device. However, there
are two potential sources of error. The first source of error is the main memory model, which
does not take all possible parameters into account (for example, refresh is not included in the
simulated memory model). The other source of error is the application input and output,

which is done over a USB interface.

Figure 5.8 shows the actual speedup from running each benchmark on the FPGA device

described in Section 5.1. The first bar in each group shows the speedup over the baseline for

84

Speedup

Speedup
6 6L
5} 5:,

4t

Figure 5.7: Simulated Speedup Figure 5.8: Actual Speedup

the superoptimized memory subsystem. As before, the g-mean group shows the geometric

mean.

In addition to a comparison of the superoptimized memory subsystem against the baseline,
we also compare a generic memory subsystem as well as a naive memory subsystem. For the
generic memory subsystem (the second bar in each group in Figure 5.8), each kernel memory
subsystem has a 8 KiB direct-mapped cache and each FIFO is 256 items deep and imple-
mented in BRAM. This generic memory subsystem demonstrates the performance one might
expect from a memory subsystem that was selected without considering the implementation
details of the kernels. The plot shows the speedup of the generic memory subsystem relative

to the baseline described earlier.

For the naive memory subsystem (the last bar in each group in Figure 5.8), no BRAM is
used for the kernel memory subsystems and each FIFO is 256 items deep implemented in
main memory instead of BRAM. The naive memory subsystem attempts to demonstrate a
worst-case memory subsystem where every access contends for main memory. Again, the

plot shows the speedup of the naive memory subsystem relative to the baseline.

85

Comparing the actual results to the simulated results, we see that in most cases the actual
speedup was slightly higher than the simulated speedup. This is due to the fact that reducing
the number of main memory accesses improves performance more than the simulated memory
model predicts. However, for the laplace benchmark, the actual speedup is less than
predicted. Again, this is due to the main memory model since, as we will see later, two of

the FIFOs between kernels were moved into main memory rather than using BRAMs.

Laplace

The laplace benchmark exhibits a smaller speedup than the simulation would imply. For
the laplace benchmark, the superoptimizer selected a 4,096-byte scratchpad for the RNG
kernel. This moves all memory accesses RNG into the faster BRAM, avoiding the main

memory completely. In addition, several of the FIFO sizes were adjusted, as shown in

Table 5.2.

FIFO ‘ Depth ‘ Implementation
RNG — Split 1 | register

Split — Walk; 256 | main memory
Split — Walky | 256 | BRAM

Walk; — Avg 64 | main memory
Walky — Avg 8 | BRAM

Avg — Output 1 | register

Table 5.2: 1aplace FIFO Implementations

Because the superoptimizer tries to find the memory subsystem that provides the lowest
execution time using as few resources as possible, several of the FIFOs are implemented in
main memory rather than directly in BRAM. According the the simulation model, this does
not slow down the benchmark since the computation time is able to hide the memory latency.
However, since the main memory model is imprecise, there is a benefit to implementing

the FIFOs in BRAM that is unknown to the superoptimizer. By implementing all of the

86

FIFOs in BRAM, we are able to obtain a speedup slightly better than the simulation model

estimates.

For the laplace benchmark, the superoptimized memory subsystem provides more than a
3x speedup over the baseline. However, the generic memory subsystem provides a similar
speedup. This is because this benchmark is very sensitive to the size of the FIFOs. Because
of this, even the naive memory subsystem offers a performance improvement over the baseline

memory subsystem due to the increased FIFO sizes.

Median

For the median benchmark, the superoptimized memory subsystem for the Hash kernel is
shown in Figure 5.9. In the figure, memory accesses from the kernel enter the top and
memory accesses to the main memory exit the bottom. In this particular memory subsystem,
the address is transformed by flipping a bit (xor). The address transformation is followed
by a 16,384-byte scratchpad, which is followed by a single-entry cache having a single line
that is 16 bytes (the WB in Figure 5.9 stands for write-back). Finally, the last address
transformation reverses the first transformation. Note that the superoptimizer automatically
inserts address transformations in pairs like this to ensure the correct section of main memory

is accessed.

The effect of the address transformation is to move certain parts of the hash table into the
scratchpad. The cache can be helpful here since the main memory interface is 16-bytes wide
and we only access 4 bytes at a time. Therefore, the cache allows us to avoid main memory

accesses in the case where multiple words are requested within the same 16-byte range.

87

xor 32768

spm 16384 spm 131072
cache 1x16 cache 2048x16
direct WB 4-way PLRU WB
xor 32768

Figure 5.10: Subsystem for the Heap Kernel

Figure 5.9: Subsystem for the Hash Kernel

The superoptimized memory subsystem for the Heap kernel is shown in Figure 5.10. Again,
we have a scratchpad followed by a cache. This is logical for a binary heap structure since

the early addresses are accessed much more frequently than later addresses.

Finally, the FIFO between the Hash and Heap kernels is 16 entries deep and implemented in
BRAM. This allows the Hash kernel to keep running even if the Heap kernel backs up. The

other FIFOs are 1 entry deep.

Merge Sort

The merge benchmark has 15 memory subsystems for the Merge kernels and 23 memory
subsystems for FIFOs, giving a total of 38 memory subsystems. Although there are 20
Merge kernels, only 15 have memory subsystems since ScalaPipe does not generate memory

subsystems if the size of the memory is less than 1,024 bytes.

For the Merge kernels with smaller memory subsystems that need to store fewer than 32,768
bytes, the superoptimizer selects scratchpads. However, for the larger memory subsystems,

the superoptimizer selects small, direct-mapped caches. The scratchpads allow the smaller

88

memory subsystems to run without accessing main memory at all. The small direct-mapped
caches, on the other hand, reduce the number of accesses going to main memory since the

main memory is 16 bytes wide and each access is only 4 bytes.

Most of the FIFOs between kernels were selected to be a single element deep and implemented
as a register. However, several of the FIFOs between the later stages are 1,024 and 2,048
elements deep implemented in BRAM. This is because the access latency between the later

stages will vary since not all the accesses will hit in cache.

In terms of performance, the superoptimized memory subsystem for the merge benchmark is
over 3X the baseline memory subsystem and closely matches what the simulation predicted.
In this case, the generic memory subsystem provides a performance improvement, but just

over 2x the performance of the baseline memory subsystem.

Matrix-Matrix Multiply

As shown in Figure 5.8, the superoptimized memory subsystem for the matrix-matrix mul-
tiply benchmark (mm) provides about a 2x speedup over the baseline benchmark. For this
benchmark, only the Distribute kernel uses external memory. The superoptimized memory

subsystem for the Distribute kernel is shown in Figure 5.11.

There are several interesting features of the memory subsystem shown in Figure 5.11. The
first observation is the split. The split causes the memory accesses for the two source matrices
to go to separate caches. The left side of the split handles the matrix that is accessed in
column-major order whereas the right side handles the matrix that is accessed in row-major
order. After the split, the first matrix is stored in a cache, whereas the second matrix is

transposed from the memory subsystem’s perspective before entering a cache.

89

l

split @262128

N

xor 131072

\

rotate 17

cache 512x16
4-way FIFO WB

cache 512x16

direct WB
prefetch 32

:

rotate -17
xor 131072

cache 8192x16
4-way PLRU WB

Figure 5.11: Subsystem for the Distribute Kernel

90

prefetch 32

cache 512x32

direct WB
spm 131072

prefetch 32
cache 1024x16

direct WB

cache 2x32
2-way LRU WB

Figure 5.13: Subsystem for the Streamer

Figure 5.12: Subsystem for the Buffer Kernel

All but four FIFOs are implemented as registers in the superoptimized memory subsystem
for the mm benchmark. The two FIFOs between the Distribute kernel and the Product
kernels are 256 entries and implemented in BRAM. The FIFOs between the Product kernels

and Combine kernel are 128 entries deep and implemented in BRAM as well.

n-body

For the nbody benchmark, neither the simulated nor actual speedup are very large. This is
because the nbody benchmark is compute-bound. However, we note that there is a perfor-

mance gain even in this case.

For this benchmark, all of the FIFOs are implemented as single-element registers. This allows

all of the memory resources to be dedicated to the two kernel memory subsystems.

The superoptimized memory subsystem for the Buffer kernel is shown in Figure 5.12. This
memory subsystem contains two prefetch components, two caches, and a scratchpad. The

first prefetch requests the value 32 bytes after the current address, which causes the first

91

cache to request the next line after the current access. Likewise, the second prefetch has the
same effect on the second cache. Finally, the scratchpad stores the first elements rather than

storing everything in main memory.

The memory subsystem for the Streamer kernel, shown in Figure 5.13, is a scratchpad
followed by a cache. Unlike the previous memory subsystem, in this case the scratchpad
is the first part of the memory subsystem. This is likely due to the fact that placing the
scratchpad after a cache, as is done for the memory subsystem for the Buffer kernel, incurs
extra latency and poisons the cache. However, the prefetch components used for the Buffer

kernel memory subsystem reduce this effect.

Given the way the benchmark works, it is not intuitive that the superoptimized memory
subsystem for the Buffer kernel would be more complex than the memory subsystem for
the Streamer kernel since the Streamer kernel streams the data past the Force kernel.
However, because the Force kernel is computationally intensive, the memory delays that
the Streamer kernel experiences do not contribute much to the overall run time. Instead,
reducing the memory access times for the Buffer kernel provides a greater performance

advantage.

5.4.1 Input Specificity

Although we are able to obtain a performance improvement for each of the benchmarks, we
note that this improvement is not for the benchmark, but for a particular data set used with
the benchmark. Because we are using only a single address trace for the optimization, it
is possible that the memory subsystems could be over-fitted. Indeed, this appears to have
happened for the Hash kernel for the median benchmark (Figure 5.9), which contains an

address transformation to move certain parts of the hash table into a scratchpad.

92

5 —

4 —
o
2
2 8-
[oR
w

"““"" I

|

0- |||||||||| |||||||||| |||||||||| |||||||||| ||||||||||
m

laplace median merge m nbody

Figure 5.14: Subsystem Specificity

To determine to what extent over-fitting affects the results, we re-ran each of the benchmarks
with ten separate inputs. The results are shown in Figure 5.14. Here each bar shows the
speedup of the superoptimized memory subsystem over the baseline memory subsystem for a
particular data set. The left-most bar in each group shows the result from the original data

set presented above. The nine remaining bars show the speedup for different data sets.

For the laplace benchmark, to change the input we used a different random number seed.
As shown in Figure 5.14, using a different random number seed has little effect on the
speedup. For both the median and merge benchmarks, we used different data sets of the
same size as the original. As with the laplace benchmark, there is little difference in the
speedup provided by the superoptimized memory subsystem for both of these benchmarks.
Finally, for the nbody benchmark, we used a different input size for each run (sized 1,000 to

10,000 in increments of 1,000).

As Figure 5.14 shows, there is very little difference in the performance gain with different
input data sets. This implies that the superoptimized memory subsystems are not over-

fitted. Nevertheless, it is conceivable that some superoptimized memory subsystems could

93

be overly specific for a particular data set. In some cases, this could be desirable. For
example, if an application used a hash table and the data stored in the hash table never

changed. However, typically this is something we would likely want to avoid.

5.4.2 Discussion

As the above results indicate, it is possible to superoptimize memory subsystems for stream-
ing applications. The structure of some of the superoptimized memory subsystems are not
surprising. For example, the memory subsystem for the laplace benchmark is likely very
similar to what one would select manually. On the other hand, some of the memory subsys-
tems are logical, but would likely require manual experimentation to discover. For example,
the memory subsystems for the median and the merge benchmarks are fairly standard, but
require the tuning of many parameters. Finally, the superoptimizer is able to discover mem-

ory subsystems that are very unusual, such as those for the mm and nbody benchmarks.

The superoptimization process can take a long time. Exactly how long the process takes
is dependent on the number of memory subsystems and the length of the memory address
traces. The superoptimized memory subsystems presented here were generated by running
the superoptimizer for between 10,000 and 200,000 simulation runs, depending on the bench-
mark. Applications with only a few memory subsystems, such as the laplace benchmark,
require far fewer simulation runs than those with many memory subsystems, such as the

merge benchmark.

The run time of each simulation depends on the length of the address trace as well as the
complexity of the memory subsystem. For the benchmarks presented here, the simulation
time is in the range of 5 to 15 minutes. To reduce the total run time for the superopti-

mization process, we made use of multiple processing cores and stored the results from each

94

simulation in a database. This allows the superoptimizer to revisit prior results without

simulation.

Note that the longer the superoptimization process runs, the better the memory subsystem
it will discover. However, at all points the memory subsystem is usable. Thus, it is possible
to terminate the process as soon as a satisfactory memory subsystem is discovered. For our
experiments, the superoptimization process was terminated in an ad-hoc fashion, however,

only after a sufficient time such that additional performance gains were infrequent.

5.5 Summary

In this chapter, we have described a technique for creating superoptimized memory sub-
systems for streaming applications. We have shown that not only do these superoptimized
memory subsystems perform well in simulation, but, by deploying the applications on an
FPGA device, we have also shown that these memory subsystems perform well in actual
hardware. Through the use of ScalaPipe with our superoptimizer, we were able to create a
design implemented on an FPGA device using a customized memory subsystem with minimal

effort and without writing HDL.

Although the method presented in this chapter to superoptimize streaming applications
works well, we note that it quite slow. Therefore, in the next chapter we attempt to im-
prove the time required to superoptimize the memory subsystem for a streaming application

through the use of a queuing model.

95

Chapter 6: A Model for Faster

Superoptimization of Streaming

Applications

Here we introduce a queuing model for streaming applications to reduce the amount of time

required for superoptimizing memory subsystems.

6.1 Introduction

Superoptimization for a single-threaded application is a time-consuming process due to the
need to simulate many different memory subsystems. Thus, the superoptimization process
for a streaming application consisting of multiple kernels and communication channels can
prohibitively time-consuming. This is due to the need to simulate an address trace for all
kernels of the application simultaneously where each address trace may be quite long and
contain kernel-to-kernel communication along with memory references.

A——B

Figure 6.1: Simple Application

To understand how much more computationally intensive the superoptimization process is
for a streaming application than for a single-threaded application, we consider the simple

streaming application shown in Figure 6.1. This application has two kernels, A and B, and

96

a single communication channel. If we assume that the address traces for A and B are of
approximately equal length, this means that the simulation of the system will take twice as

long for the streaming application as it would for either kernel individually.

Here we distinguish between memory access events and queue events in kernel traces. A
memory access event is a memory read or write whereas a queue event is either a produce
or consume. For simplicity, assume that the address traces for both kernels A and B contain
M memory access events and () queue events. Next, assume that the number of simulations
required to find a suitable memory subsystem for kernel A is the same as the number of
simulations required for B, and let that be S. That is, S is the number of simulations that
would be required to find a suitable memory subsystem for a kernel if it were treated as a
single-threaded application. This means that we can find a suitable memory subsystem for

a particular kernel in the streaming application by simulating S(M + Q) events.

For the streaming application, assume that the shared resource constraint does not affect the
number of simulations required to find a suitable memory subsystem for a particular kernel.
This means that since there are two memory subsystems to discover and two address traces to
simulate, the streaming system with two kernels takes 2 x 2 = 4 times more event simulations

to find a suitable solution than finding a suitable solution for either kernel individually.

In addition to the memory subsystems for the individual kernels, when presented with a
streaming application we are also concerned with the memory subsystems for the FIFOs
between the kernels. For simplicity, we assume that the only parameter for these FIFOs is
their size. This means that we must consider multiple sizes for the FIFOs, which further

adds to the number of events that must be simulated.

In general, if we have K kernels in the streaming system, for each proposed memory sub-
system we need to simulate K (M + Q) events. If there are F' FIFOs and we need to test

an average of Z sizes for each proposed memory subsystem, the number of events to simu-

97

late per proposed memory subsystem increases to K F'Z(M + Q). Therefore, the number of
events that must be simulated to find a suitable memory subsystem for one of the kernels of
the streaming system is SKFZ(M + @), which is K'F'Z times more events than required for
an individual kernel. Thus, the number of events that must be simulated to find a suitable
memory subsystem for all kernels of the streaming system is SK?FZ(M + @Q), which is

K?FZ times more events than for an individual kernel.

Considering how long it takes to find a suitable solution for a individual kernel (about two
weeks of total CPU time for the patricia benchmark in Chapter 4), this is obviously much
longer than ideal even for a modest number of kernels. Therefore, here we describe a method
for reducing the number of events that must be simulated to superoptimize the memory
subsystem for the streaming application from SK2FZ(M + Q) = SK*FZM + SK*FZQ
down to SKM + SKFZQ).

A
B C
D
Figure 6.2: Example Topology

The parameters of the queue model are summarized in Table 6.1.

Value | Description

The number of kernels in the system

The number of FIFOs in the system

The mean number of events in a memory address trace

The mean number of events in a queue trace

The simulations required to find a suitable memory for a particular kernel
The mean number of FIFO sizes to be tested per queue

A trace of queue operations for queue ¢

Maximum depth of queue ¢

FEINOO TS

Table 6.1: Model Parameters

98

As an example, suppose we have a streaming application with 4 kernels (K) and 4 queues
(F), as shown in Figure 6.2. Further, assume there are an average of 100 million memory
access instructions (M) and 1 million queue instructions () in the per-kernel traces. These
numbers can vary significantly, but are fairly typical. Finally, assume we need 10 thousand
iterations (S) to find a suitable memory subsystem and we need to try an average of 5 FIFO
sizes (Z) for each queue. Using these figures, we can estimate how many fewer events would

need to be simulated using the proposed model.

Using full simulation we get:

SK?FZ(M + Q) = 10* x 4% x 5 x 5 x (10® + 10%) ~ 4 x 10 events

Using the model:

SKM+ SKFZQ =10" x4 x 10° 4+ 10" x 4 x 5 x 5 x 10° ~ 5 x 10'? events

Thus, using the model we simulate 80 times fewer events, which means a superoptimization

process that took months before is now reduced to days.

In addition to the reduction in events to be simulated, our proposed method finds near-
optimal queue sizes at all stages rather than leaving the queue sizes as parameters to be
optimized. This means that the number of parameters to the superoptimizer is reduced,
which translates into a smaller number of required iterations. It should be noted that we
still need to simulate the same number of queue events, but queue events are much faster to
simulate than memory access events. As a result, the model provides a substantial reduction

in time required to superoptimize the memory subsystem for a streaming application.

99

6.2 Method

To reduce the number of address trace simulations required, we model the streaming system
as a queuing network. Then, rather than simulate the memory accesses and queue operations
of all kernels, we use a trace of the queue operations for each kernel. A trace of queue
operations consists of triples specifying the queue operation (produce or consume), the queue,
and the time elapsed since the last queue operation. These traces consist of less data than
the full address traces since they do not contain information concerning memory accesses (Q
instead of M + Q). Further, these traces tend to compress easily (we use LZ77 [137]) and are

easy to simulate since simulating a queue is easier than simulating a memory subsystem.

The queue traces are obtained by simulating the full address traces for each kernel in iso-
lation. These full simulations contain queue operations, memory accesses, and computation
time. When simulating the full address traces, the simulator assumes that there is always
input available for the kernel to consume and the output channels always have space avail-
able. This ensures that arrival times and service times are not affected by blocking on the
communication channels. The result is a queue trace describing the queue operations that

would occur if the kernel were allowed to run without blocking.

Using the queue trace determined from the address trace simulation and holding the max-
imum queue depths, k;, constant, we can simulate the queuing network. By “pausing” the
queue trace when there is a blocking operation, we can then determine the run time for
the kernel in the full application context. The simulation is over once the final queue in
the network has exhausted its trace. All but the last queue in the network restart their
traces after exhausting them to allow for differences in the number of items consumed due
to differing queue depths and split/join kernels. The ending simulation time then provides

an approximation of the run time for the full streaming application.

100

Previously, we left the maximum queue depths as additional parameters to superoptimiza-
tion. Although we could leave the depths a parameter or even select them a priori, using the
queue traces it is easy to determine the optimal queue depths after each kernel trace simu-
lation. To determine the queue depth, k;, for each queue, we start all queues with depth 1
and simulate the queues. The queue that is blocked most often is the bottleneck. Therefore,
the size of that queue is doubled. This process repeats until the performance of the system
no longer improves or we run out of resources. Determining the queue depth in this fashion
takes longer at each step, but it reduces the number of steps needed for superoptimization
while sizing the queues such that they are close to optimal. Doubling the queue sizes rather
than incrementing them greatly reduces the number of simulations required, though at the

expense of finding the true optimal queue sizes.

In general, a communication channel could be implemented in a number of ways. However,
here we assume that the communication channel will be implemented either as a register
or as a FIFO implemented in BRAM. From the results in Chapter 5, this seems to be the
most common case. Further, this seems to be a logical choice since a BRAM (or register)
implementation will always be the fastest and other implementations would contend for main
memory bandwidth. Supporting arbitrary memory subsystems for FIFOs would be possible,

but would require a more complex queue simulation.

To summarize, once we have queue traces from the kernels, the process to determine the
total application run time for a particular memory subsystem is shown in Figure 6.3. The
process to determine the best memory subsystem for a streaming application is shown in

Figure 6.4.

As can be seen from Figure 6.4, the address trace for only a single kernel needs to be simulated
for each modification to a memory subsystem. Thus, each modification, M events need to

be simulated to extract an updated queue trace. Next, to simulate the queue network,

101

— Determine run time and queue sizes for queue network n
function GETRUNTIME(n)
— Determine initial Tun time (t) and bottleneck queue (b)
for all i € Queues do
end for
t,b <~ SIMULATENETWORK(n, k)

— Determine queue sizes
while RESOURCESAVAILABLE do
— Double the size of the bottleneck queue (b)
k?b — 2]{/’1,
t*,b <~ SIMULATENETWORK(n, k)
if t* =t then
- No improvement
k’b — kb/2
return ¢, k
end if
t < t*
end while

— Out of resources
return ¢, k
end function

Figure 6.3: Simulation Algorithm

FQ events need to be simulated. The queue network is simulated an average of Z per
modification, giving FQQZ. This gives a total of M + FQQZ events per modification. Since
S modifications to the memory subsystem are required per kernel to arrive at a suitable
memory subsystem, this means SM + SF(Q)Z total events must be simulated for each kernel,

giving SKM + SKFQZ total events for the application.

Of note is that with every modification to a memory subsystem, multiple queuing network
simulations must be performed to determine the new queue depths and estimate application
run time. Fortunately, these queuing network simulations are typically must faster than the

simulation of an address trace. These multiple simulations effectively explore more of the

102

function SUPEROPTIMIZE
— Initialize memory subsystems (m) and get queue traces (n)
m <« {0,...}
for all i € Kernels do
n; <— SIMULATEKERNEL(m;, 1)
end for

— Initialize acceptance threshold (T) and best result (b)
T,k < GETRUNTIME(p)

by < T — Best time

by <— m — Best memory subsystem

by < k — Best queue sizes

— Perform optimization
while TIMEREMAINING do
— Perturb memory and get new run time
i < RANDOM(1, [Kernels|)
m; <— PERTURBSUBSYSTEM/(m;)
nf < SIMULATEKERNEL(m], 7)
t,k* < GETRUNTIME(n")

— Update best
if t < b; then
b, <t — Best time
by, +—m
b <= m; — Best memory subsystem

b, < k* — Best queue sizes
end if

if ¢t <T then
— Accept the proposal
m; <— m;
k <+ k*
end if
T < UPDATETHRESHOLD(T, t)
end while
return b,,, by
end function

Figure 6.4: Superoptimization Algorithm

103

search space than would be explored via the naive algorithm without requiring the simulation

of additional memory access events.

6.3 Model Error

Because the queue simulation operates using queue traces, if we assume that the kernels
operate independently of each other, there is no error introduced and the result from the
queue simulation should match the result from a simulation of the full streaming applica-
tion. However, the kernels are not completely independent for two reasons. First, there
is communication between the kernels over the queues and, second, there is a shared main

memory.

As far as the communication between kernels is concerned, we note that this does not actually
alter the correctness of the result since the queue simulation models this communication by
pausing the traces of blocked kernels. Unfortunately, the shared main memory remains a
concern. This is because each of the kernels is run independently to obtain the queue trace,
which will have timings from memory accesses independent of other kernels that may contend

for memory bandwidth.

Although contention for the shared main memory will likely change the absolute timing
results when compared to a full simulation, we do not expect it to affect much the result
of superoptimization in most cases. This is because we expect any kernel that is using up
significant main memory bandwidth would be a prime candidate for a better memory subsys-
tem. Thus, those memory subsystems will be altered by the superoptimizer to reduce main
memory traffic, just as would be the case for a complete simulation. Further, kernels that
do not use much main memory bandwidth will likely be affected little by additional delays

when they do access main memory. Nevertheless, it is possible that given an application

104

with multiple kernels making excessive use of main memory bandwidth, the results from the
model could vary so much from the results of a full simulation that the superoptimization

process would fail to find a suitable memory subsystem.

To avoid the situation where the model and full simulation disagree, the superoptimizer
periodically performs a full simulation. If the full simulation disagrees with the model by
more than 1%, the superoptimizer will stop using the model and instead use full simulation
for its results. This validation ensures that the superoptimizer is able to find a suitable

memory subsystem even in cases where the model is inaccurate.

Obviously, a full simulation can be extremely time-consuming. Therefore, validations using
full simulation are performed on the initial memory subsystem. Next, the frequency of
performing validation using full simulation is backed off in an exponential fashion. If at any
point the model is discovered to be inaccurate, full simulation is used for the remainder of

the superoptimization process.

6.4 Benchmarks

We use a collection of applications implemented in ScalaPipe [120] for benchmarks. These
benchmarks are the same benchmarks as used in Chapter 5. As mentioned in Chapter 3,
ScalaPipe is a streaming application generator that allows one to author streaming appli-
cations in a high-level language and deploy them either to general-purpose processors or
FPGAs. Using ScalaPipe, we can obtain the necessary memory address traces for the ker-
nels automatically. The benchmarks used here are the laplace, median, merge, mm, and

nbody benchmarks.

The topology of the laplace benchmark is shown in Figure 5.4. This benchmark finds a

solution to Laplace’s equation using a Markov-Chain Monte-Carlo technique. For this partic-

105

ular implementation, only one kernel, RNG, uses a memory array. The memory requirement
of this kernel is very small, requiring only 2,496 bytes of memory. Therefore, it is reason-
able to expect that a superoptimized memory subsystem for this application may not use
off-chip memory at all, though additional memory could be used for the FIFOs between the

kernels.

Next, the topology of the median benchmark is shown in Figure 5.6. This benchmark is
a two-stage pipeline to find the median of one million unique 32-bit integers. The first
stage (the Hash kernel) performs a hash lookup to remove duplicates and the second stage
(the Heap kernel) performs operations on a binary heap to insert the values and extract the

median. Thus, this benchmark has two kernels that require off-chip memory.

The topology of the merge benchmark is shown in Figure 5.2. This benchmark sorts a series
of one million 32-bit integers using generic merge kernels with a single input channel and a
single output channel. Since ScalaPipe uses off-chip memory resources for kernels that use
more than 1024 bits of memory, there are 15 kernels in this benchmark that use external
memory. Note that there are 20 Merge kernels in this benchmark giving a total of 22 kernels

and 21 queues.

The topology of the mm benchmark is shown in Figure 5.11. The mm benchmark is a streaming
matrix-matrix multiply implementation. Like the laplace benchmark, the mm benchmark
only has one kernel that accesses external memory, the Distribute kernel. However, the
memory requirements of the Distribute kernel are greater than the RNG kernel used in the

laplace benchmark and off-chip memory is required.

Finally, the topology of the nbody benchmark is shown in Figure 5.3. This benchmark
performs an n-body simulation using the naive O(n?) algorithm. Like the median benchmark,
the nbody benchmark has two kernels, Buffer and Streamer, that access off-chip memory

and, therefore, two memory subsystems to be optimized.

106

6.5 Evaluation

To evaluate our model, we compare the results of superoptimization using the model to those
obtained without the model from Chapter 5. We are interested in two objectives. First, we
are interested in how the discovered memory subsystems differ. Ideally, there would be little
or no difference in the performance of memory subsystems discovered via superoptimization
using the model and superoptimization without the model. Second, we are interested in the
run time of the superoptimization process. Since the purpose of our model is to reduce this

run time, we hope to see a reduction in the amount of run time required to get a similar

result.

6.5.1 Subsystem Performance

5 —

H Full
4 B Model
3 —

Speedup

laplace
median
merge*

nbody

Figure 6.5: Speedup

107

First we consider how the memory subsystems differ when we use the model for superop-
timization from running a full simulation at each step. As in Chapter 5, we use a baseline
memory subsystem that uses a single register for all FIFOs between kernels and makes all
kernel memory accesses go directly to the main memory. Figure 6.5 compares the speedup
of the memory subsystems superoptimized using full simulation (from Chapter 5) against

those superoptimized using our model.

Laplace

For the laplace benchmark, the performance of the memory subsystem superoptimized
using the model is actually slightly better than the performance of the memory subsystem
superoptimized using full simulation, however, this difference is very small (less than 1%).
Such a situation can arise not only due to the stochastic nature of the search, but also because
the model can often do a better job of sizing the FIFOs for each proposed memory subsystem.
With the full simulation the FIFO sizes are just another parameter to be explored, and,
therefore, it may take many additional simulations to discover the optimal value for the
FIFO sizes. As might be expected, the memory subsystem discovered for the RNG kernel is
the same for the two superoptimization techniques: because the memory footprint of the

kernel is so small, a scratchpad suffices to service all accesses.

To understand why there is a difference in performance for the laplace benchmark, one
must consider the implementation of the FIFOs. Using full simulation, the superoptimizer
has more FIFO implementations available. In particular, the superoptimizer has the option
to implement the FIFOs in main memory rather than BRAM. Because a main memory
implementation uses fewer BRAM resources, the superoptimizer prefers such an implemen-
tation. Thus, the memory subsystem discovered using full simulation has several FIFOs

implemented in main memory rather than BRAM, as shown in Table 5.2. The memory

108

FIFO Model Full
Depth ‘ Implementation | Depth ‘ Implementation

RNG — Split 1 | register 1 | register

Split — Walk; | 2304 | BRAM 256 | main memory
Split — Walk, 1 | register 256 | BRAM

Walk; — Avg 1152 | BRAM 64 | main memory
Walky; — Avg 1152 | BRAM 8 | BRAM

Avg — Output 1 | register 1 | register

Table 6.2: Laplace FIFO Comparison

subsystem discovered using the model, on the other hand, has larger FIFOs that are imple-
mented completely in BRAM, whose sizes are shown in Table 6.2. Given enough time, it
is likely that the full simulation would arrive at the same solution as the model or possibly

better, which uses more resources at the expense of a minor performance improvement.

Median

As with the laplace benchmark, for the median benchmark the performance of the memory
subsystem superoptimized using the model is slightly better than the performance of the
memory subsystem superoptimized using full simulation. Superoptimization using the model
selected a depth of 13,824 for the FIFO between the Hash and Heap kernels whereas the

superoptimization using the full simulation selected to have a depth of only 16.

For the median benchmark, the memory subsystem discovered for the Heap kernel using
the model, shown in Figure 6.6, is the same as the one previously discovered using full
simulation. However, the memory subsystems for the Hash kernel differs. The memory
subsystem discovered using the model for the Hash kernel is shown in Figure 6.8. For
comparison, the memory subsystem discovered for the Hash kernel using full simulation

(from Chapter 5) is shown in Figure 6.7.

109

xor 32768

spm 131072 spm 16384
cache 4x16
4-way MRU WB
cache 2048x16 cache 1x16
4-way PLRU WB direct WB
xor 32768 Figure 6.8: Subsystem for

Figure 6.6: Subsystem for the Hash Kernel (Model)

the Heap Kernel

Figure 6.7: Subsystem for
the Hash Kernel (Full)

Merge Sort

The merge benchmark is an interesting case. As previously noted, the merge benchmark has
15 kernels contending for main memory access. Thus, it should come as little surprise that
the model is not accurate within 1% for this benchmark. In fact, the model differs from full
simulation by more than 50%, therefore, the superoptimizer does not use the model for this
benchmark. Because the superoptimizer switched to full simulation for this benchmark, the
results shown in Figure 6.5 come from superoptimization using full simulation instead of the

model.

The question one might ask when confronted with this situation is: would the model still find
a good memory subsystem? Unfortunately, in this case it would not. Although the memory
subsystem that the superoptimizer discovers for the merge benchmark is better than the
baseline, the superoptimizer allocates more resources to the FIFOs between the kernels than
to the kernels themselves, when, at least in this case, the kernels are the bottleneck due to

main memory contention.

110

Matrix-Matrix Multiply

The memory superoptimized for the Distribute kernel of the mm benchmark using the model
is shown in Figure 6.9b. Comparing this memory subsystem to the memory subsystem that
was superoptimized using full simulation, shown in Figure 6.9a, we see that while they
are different, there are several similar aspects. The differences in the memory subsystems
are likely due to the stochastic nature of the search and the fact that, when using the
model, the superoptimizer is able to try more distinct memory subsystems since the queue

implementations are not search parameters.

In addition to the differences in the memory subsystems themselves, the sizes of the FIFOs
differ between the two results. A comparison of the FIFO implementations is shown in
Table 6.3. Here we see that the implementation of the FIFOs is the same other than their

depths: the FIFOs generated from the model are deeper than those discovered using full

simulation.
FIFO Model Full
Depth ‘ Implementation | Depth ‘ Implementation

Matrixy — Distribute 1 | register 1 | register
Matrixp — Distribute 1 | register 1 | register
Distribute — Product; 1152 | BRAM 256 | BRAM
Distribute — Products 1152 | BRAM 256 | BRAM
Product; — Combine 1152 | BRAM 128 | BRAM
Product,; — Combine 1152 | BRAM 128 | BRAM
Combine — Output 1 | register 1 | register

Table 6.3: Matrix-Matrix Multiply FIFO Comparison

From Figure 6.5, we see that the memory subsystem superoptimized using the model is
able to provide a greater speedup than the memory subsystem superoptimized using full
simulation. There are two possible reasons for this. First, as previously noted, the memory

subsystems are different. Secondly, the FIFO depths are different. In this case, although the

111

Xor 262144
split @262128

spm 131072
xor 131072
rotate 17 cache 512x16
direct WB
cache 512x16
4- FIFO WB
ey © rotate 16

cache 512x16

direct WB
prefetch 32
prefetch 16
rotate -17
cache 2048x16
xor 131072 4-way LRU WB
cache 8192x16
4-way PLRU WB rotate -16
Xor 262144
(a) Full
(b) Model

Figure 6.9: Subsystems for the Distribute Kernel

112

prefetch 32

cache 512x32

di t WB rotate 20
irec
prefetch 32 spm 65536
cache 2x32
2-way LRU WB rotate -20
spm 16384
(b) Model
(a) Full

Figure 6.10: Subsystems for the Buffer Kernel

deeper FIFOs explain a small part of the performance difference, most of the difference is

explained by the memory subsystem.

n-body

The memory subsystem superoptimized using the model for the Buffer kernel is shown in
Figure 6.10b. Compared to the memory subsystem superoptimized using full simulation,
shown in Figure 6.10a, the memory subsystem superoptimized using the model is much
simpler. Likewise, the memory subsystems for the Streamer kernel are shown in Figure 6.11b
(model) and Figure 6.11a (full simulation). Again, the memory subsystem superoptimized

using the model is simpler.

Comparing the performance of the memory subsystems in Figure 6.5, we see that there is
little difference in performance between the two memory subsystems. However, from the

raw data we see that the memory subsystem superoptimized using full simulation performs

113

spm 131072

spm 32768
cache 1024x16
direct WB
(b) Model
(a) Full

Figure 6.11: Subsystems for the Streamer Kernel

slightly better than the memory subsystem superoptimized using the model (though there
is less than a 1% difference). This is likely due to a discrepancy in the performance reported
from the model and full simulation. The model shows that the memory subsystem discovered
using the model performs better even though the other memory subsystem performs better
in reality. Because the memory subsystems are so similar in performance, however, the
superoptimizer does not switch to full simulation and we are left with a memory subsystem

that performs slightly worse than we would likely have had we used full simulation.

6.5.2 Superoptimization Run Time

Finally, we consider the amount of time required to superoptimize the memory subsystem for
a streaming application. Recall that the model presented here was able to correctly predict
the performance (within 1%) of 4 of the 5 benchmarks; full simulation was required for the
merge benchmark. Here we use the median benchmark to compare superoptimization using

the model with superoptimization using full simulation.

On our test system, a full simulation of memory trace for the median benchmark with an
empty memory subsystem takes about 90 seconds. In isolation, the Hash kernel takes about

4 seconds to simulate and the Median kernel takes about 40 seconds, giving an average of

114

22 seconds per kernel containing a memory subsystem. However, to use our queue model
we need queue traces rather than a timing result, which makes the simulation take slightly
longer: 5 seconds for the Hash kernel and 51 seconds for the Median kernel, for an average

of 33 seconds.

To get the equivalent of a full simulation using our model, we need to simulate one of the
memory subsystems, which takes an average of 33 seconds, and then perform a simulation
of the queuing network for all queue sizes of interest. The queue sizes are doubled for
the bottleneck queue, which makes the maximum number of queuing network simulations
required logarithmic in the number of resources remaining after allocating resources to the

memory subsystems.

For our experimental platform, we are given 92 BRAMs. Each BRAM can support up to
512 4-byte entries in a queue. If we assume that the bottleneck does not move around,
this means that we are limited to [lg512 x 92] = 16 simulations per step. The situation is
slightly worse if we assume that the bottleneck moves around after each simulation, since we
must then multiply by the number of queues: 16 x 3 = 48 simulations. Thus, in the worse
case, one step using the model could take 33 + 48 x 3 = 177 seconds. However, typically
the bottleneck does not move around and we usually have fewer than 92 BRAMs remaining
(since the memory subsystems use them). Assuming a typical case where the bottleneck
does not move around and we have half of the BRAMs available, this means one step takes

33+ [lgh12 x 92/2] x 3 = 78 seconds.

Although it may seem a reduction from 90 seconds per iteration (using full simulation) to 78
seconds (using the model) is insignificant, it is important to note that each iteration provides
much more information when using the model. In particular, since the sizes of the FIFOs are
determined during the simulation of the queue network, so in practice many fewer iterations

are required. How many fewer iterations are required is a function of the number of resources

115

available and the number of queues. For the median benchmark, if we assume half of the 92
BRAM resources can be allocated to queues, given that there are three queues of interest,
this is a reduction of somewhere near (92/2) x 3 = 138 times. However, the superoptimizer

may explore only a fraction of these when using full simulation.

5*
_ + Full
3 : x Model
s 4
>
o
S
g 37
Q
3 M
= 2%
[0) *
£
'_
c 1 o —
>
c
04
\ T T T \
o o o o o
o o o o
o o o o
Yo} o Yol 8

Simulation

Figure 6.12: Simulations Required for Superoptimization

Figure 6.12 compares the best result after each simulation for the median benchmark using
both superoptimization with full simulation and superoptimization with the model. To make
the results more comparable, for this experiment the superoptimization process assumes all
FIFOs are implemented in BRAM rather than using the implementation as yet another
parameter, as was done in Chapter 5. Here we see that not only does the model speed
up the time required for each simulation, but, because the queue simulation determines
near-optimal queue sizes after each simulation, the model allows the superoptimization to
find good results with fewer simulations. Note that the superoptimization process with full
simulation leaves the queue sizes as another superoptimization parameter. Thus, when the

model works it provides results much more quickly than would otherwise be possible.

116

6.6 Summary

In this chapter we presented a model to reduce the amount of time required to superoptimize
the memory subsystem for a streaming application. This model allows one to superoptimize
memory subsystems more quickly and approach problems where it might not otherwise
be reasonable to use superoptimization. We showed that although this model makes a
simplifying assumption about main memory bandwidth, it still allows us to discover memory
subsystems that are similar to those discovered using full simulation and sometimes better
due to the improved method of finding queue sizes. There are cases where where the model
breaks down when there is excessive main memory contention, but we are able to detect
this easily. For most of our benchmarks we were able to use the model to realize significant

reductions in the time to perform superoptimization.

117

Chapter 7: Conclusion

In this dissertation, we investigated the use of highly-specialized memory subsystems for
applications. In particular, we investigated combinations of caches, scratchpads, address
transformations, split address spaces, and other components in the memory subsystem.
Combining these components, we showed that it is possible to produce memory subsys-
tems that out-perform traditional memory subsystems, such as cache hierarchies. To do
this, we provided a superoptimization technique to discover custom memory subsystems
for single-threaded applications to be deployed on FPGAs and ASICs. This required the
development of tools including a memory subsystem simulator and a memory subsystem

superoptimizer.

Although performance is our primary focus in this work, we also showed that our superop-
timization technique is generic by optimizing to reduce writes to main memory. Reducing
writes to main memory is an increasingly important objective since an increasing number
of alternative main memory technologies, such as Phase-Change Memory (PCM) and Flash,
have an aversion to writes. This aversion stems from limited write endurance, increased
energy from writes, and long write latencies. Our results show that there is gain to be had

by taking writes into account.

Next, we investigated the superoptimization of memory subsystems for streaming applica-
tions, which are a class of parallel applications. To this end, we extended our superopti-
mization technique to support streaming applications. To obtain traces for the parallel ap-

plications, we used applications developed in ScalaPipe, which is another tool we developed.

118

Our results revealed that impressive performance improvements are possible with streaming
applications, both in simulation and when deployed on an FPGA device. Unfortunately,

these results take a long time to obtain due to the lengthy search process required.

Finally, to address the long search process required for the superoptimization of streaming
applications, we developed a model to allow us to reduce the number of events that need
to be simulated. Using this model, we are able to significantly reduce the run time of the
superoptimization process for many applications. Although the model breaks down in some
cases, it appears to work well in most case and we are able to identify those cases where the

model does not work.

7.1 Future Work

There are many possible directions for future work. Here we describe several possibili-

ties.

Other Memory Components An obvious extension of this work is the consideration of
other memory subsystem components. Unfortunately, adding additional components would
likely make the superoptimization process more time-consuming. Therefore, finding the right
mix of components to be able to obtain good results in a reasonable amount of time would

be desirable.

Datapath Optimization Although this work considers only memory subsystem opti-
mization and not data path optimization or topology optimization, optimizing these simul-

taneously could lead to better results. For example, it is often the case that the number

119

of kernels can be increased to increase parallelism at the expense of more resources and

additional memory bandwidth contention.

Faster Superoptimization Despite the heuristics presented here and the queuing model
used for streaming applications, the superoptimization process is still extremely time con-
suming. There remain several techniques that could be investigated to improve the situation.
For example, using some of the previous work on speeding up cache simulations could be
incorporated into the superoptimizer to allow it to evaluate multiple caches simultaneously.
Also, it may be possible to classify application behavior using a model rather than precisely

with an address trace.

Improved Model Although the queuing model described in Chapter 6 works in many
cases, it can become inaccurate when there is excessive main memory contention. In this
work we simply validate the model periodically and switch to the slower method of using
full simulation when the model falls apart. A better solution, however, would be to modify

the model to account for main memory contention.

Application Phases In this work we assumed that each application or kernel could only
use a single memory subsystem throughout its execution. However, many applications ex-
hibit distinct phases of execution such that it could be useful to alter the memory subsystem
at run time [102]. Supporting multiple superoptimized memory subsystems for different

application phases represents an interesting opportunity for future work.

Multiple Application Support Although we have investigated superoptimized memory
subsystems for single-threaded and parallel-applications, we have not considered any form of

resource sharing among multiple applications. Extending this work to support virtual mem-

120

ory and/or multiple running applications represents an interesting opportunity for future
work. Because our superoptimized memory subsystems are application-specific, changing
the subsystem for a particular application would likely have a significant overhead that
would need to be considered in the superoptimization process. Further, the issue of virtual
memory presents unique challenges for simulation since it is usually not possible to determine

ahead of time what physical addresses will be used.

Other Models of Parallelism Here we described the streaming paradigm for parallelism
due to the explicit nature of the communication channels and independent memory sub-
systems for kernels. However, shared-memory parallelism is extremely common today. To
work toward a completely shared-memory type of parallelism, it may be possible to support

specific types of shared data structures, such as queues, hashes, and locks.

Better General-Purpose Memories Our focus has been on application-specific memory
subsystems, but the technique proposed here could be used for general-purpose memories.
Using superoptimization for general-purpose memories could find novel memory subsystems

that perform better than traditional cache hierarchies.

121

1]

[10]

References

Michael Adler, Kermin E Fleming, Angshuman Parashar, Michael Pellauer, and Joel
Emer. LEAP scratchpads: automatic memory and cache management for reconfig-
urable logic. In Proc. of 19th ACM/SIGDA Int’l Symp. on Field-Programmable Gate
Arrays (FPGA), pages 25-28, February 2011.

Hussein Al-Zoubi, Aleksandar Milenkovic, and Milena Milenkovic. Performance evalu-
ation of cache replacement policies for the SPEC CPU2000 benchmark suite. In Proc.
of 42nd Southeast Regional Conference, pages 267-272, 2004.

ARM1136JF-S and ARM1136J-S technical reference manual. Technical Report 0211K,
ARM Holdings ple, February 2009.

Rajeev Balasubramonian, David H Albonesi, Alper Buyuktosunoglu, and Sandhya
Dwarkadas. A dynamically tunable memory hierarchy. IEEE Trans. on Computers,
52(10):1243-1258, October 2003.

Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, M Balakrishnan, and Peter Mar-
wedel. Scratchpad memory: design alternative for cache on-chip memory in embedded

systems. In Proc. of 10th Int’l Symp. on Hardware/Software Codesign, pages 73-78,
2002.

Sorav Bansal and Alex Aiken. Automatic generation of peephole superoptimizers. In
ACM SIGPLAN Notices, volume 41, pages 394-403. ACM, 2006.

Sorav Bansal and Alex Aiken. Binary translation using peephole superoptimizers.
In Proc. of 8th USENIX Symp. on Operating Systems Design and Implementation
(OSDI), volume 8, pages 177-192, December 2008.

Michela Becchi, Mark Franklin, and Patrick Crowley. Performance/area efficiency in
embedded chip multiprocessors with micro-caches. In Proc. of 4th ACM Intl Conf. on
Computing Frontiers. ACM, May 2007.

Luca Benini, Alberto Macii, and Massimo Poncino. Energy-aware design of embedded
memories: A survey of technologies, architectures, and optimization techniques. ACM
Transactions on Embedded Computing Systems (TECS), 2(1):5-32, 2003.

Kristof Beyls and Erik H D’Hollander. Refactoring for data locality. Computer,
42(2):62-71, 2009.

122

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Roberto Bez, Emilio Camerlenghi, Alberto Modelli, and Angelo Visconti. Introduction
to flash memory. Proceedings of the IEEFE, 91(4):489-502, 2003.

Shekhar Borkar and Andrew A Chien. The future of microprocessors. Communications
of the ACM, 54(5):67-77, 2011.

Martin Brain, Tom Crick, Marina De Vos, and John Fitch. TOAST: Applying answer
set programming to superoptimisation. Logic Programming, page 270, 2006.

Brad Calder, Chandra Krintz, Simmi John, and Todd Austin. Cache-conscious data
placement. In Proc. of 8th Int’l Conf. on Architectural Support for Programming Lan-
guages and Operating Systems, pages 139-149, 1998.

Steve Carr, Kathryn S. McKinley, and Chau-Wen Tseng. Compiler optimizations
for improving data locality. In Proc. of 6th Int’l Conf. on Architectural Support for
Programming Languages and Operating Systems, pages 252-262, 1994.

Hassan Chafi, Zach DeVito, Adriaan Moors, Tiark Rompf, Arvind K. Sujeeth, Pat
Hanrahan, Martin Odersky, and Kunle Olukotun. Language virtualization for hetero-
geneous parallel computing. In Proc. of ACM Int’l Conf. on Object Oriented Program-
ming Systems, Languages, and Applications, pages 835847, 2010.

Roger D. Chamberlain, Mark A. Franklin, Eric J. Tyson, James H. Buckley, Jeremy
Buhler, Greg Galloway, Saurabh Gayen, Michael Hall, E.F. Berkley Shands, and
Naveen Singla. Auto-Pipe: Streaming applications on architecturally diverse systems.
Computer, 43(3):42-49, March 2010.

Roger D. Chamberlain and Narayan Ganesan. Sorting on architecturally diverse com-
puter systems. In Proc. of 3rd Int’l Workshop on High-Performance Reconfigurable
Computing Technology and Applications, November 2009.

Roger D Chamberlain, Joseph M Lancaster, and Ron K Cytron. Visions for application
development on hybrid computing systems. Parallel Computing, 34(4):201-216, 2008.

Jichuan Chang, Parthasarathy Ranganathan, David Andrew Roberts, Mehul A Shah,
and John Sontag. Data storage apparatus and methods, March 2012. US Patent App.
2012/0131278.

Yuan-Hao Chang, Jian-Hong Lin, Jen-Wei Hsieh, and Tei-Wei Kuo. A strategy to
emulate NOR flash with NAND flash. ACM Transactions on Storage (TOS), 6(2):5,
2010.

Mainak Chaudhuri. Pseudo-LIFO: the foundation of a new family of replacement poli-
cies for last-level caches. In Proc. of 42nd IEEE/ACM Int’l Symp. on Microarchitecture,
pages 401-412, 2009.

123

[23]

[25]

[26]

[27]

[32]

[33]

Yu-Ting Chen, Jason Cong, and Glenn Reinman. HC-Sim: a fast and exact L1 cache
simulator with scratchpad memory co-simulation support. In Proc. of 9th Int’l Conf. on
Hardware/Software Codesign and System Synthesis (CODES+ 1SSS), pages 295-304.
IEEE, 2011.

Trishul M. Chilimbi, Bob Davidson, and James R. Larus. Cache-conscious structure
definition. In Proc. of ACM SIGPLAN Conf. on Programming Language Design and
Implementation, pages 13-24, 1999.

Trishul M Chilimbi, Mark D Hill, and James R Larus. Cache-conscious structure
layout. In Proc. of ACM Conf. on Programming Language Design and Implementation,
pages 1-12, 1999.

Young-kyu Choi, Jason Cong, and Di Wu. FPGA implementation of EM algorithm
for 3D CT reconstruction. In Proc. of 22nd Symp. on Field-Programmable Custom
Computing Machines (FCCM), pages 157-160. IEEE, 2014.

Eric S Chung, James C Hoe, and Ken Mai. CoRAM: an in-fabric memory architecture
for FPGA-based computing. In Proc. of 19th ACM/SIGDA Int’l Symp. on Flield-
Programmable Gate Arrays, pages 97-106, February 2011.

Jason Cong, Muhuan Huang, and Peng Zhang. Combining computation and commu-
nication optimizations in system synthesis for streaming applications. In Proc. of 22nd
Int’l Symp. on Field-Programmable Gate Arrays (FPGA), pages 213-222. ACM, 2014.

Charles Consel, Hedi Hamdi, Laurent Réveillere, Lenin Singaravelu, Haiyan Yu, and
Calton Pu. Spidle: a DSL approach to specifying streaming applications. In Generative
Programming and Component Engineering, pages 1-17. Springer, 2003.

Pat Conway, Nathan Kalyanasundharam, Gregg Donley, Kevin Lepak, and Bill
Hughes. Cache hierarchy and memory subsystem of the AMD Opteron processor.
IEEE Micro, 30(2):16-29, 2010.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. Efficiently computing static single assignment form and the control depen-
dence graph. ACM Transactions Programming Languages and Systems (TOPLAS),
13(4):451-490, October 1991.

Jack J Dongarra, Jeremy Du Croz, Sven Hammarling, and Tain S Duff. A set of level
3 basic linear algebra subprograms. ACM Transactions on Mathematical Software

(TOMS), 16(1):1-17, 1990.

Jack J Dongarra, Piotr Luszczek, and Antoine Petitet. The LINPACK benchmark:
past, present and future. Concurrency and Computation: Practice and Ezperience,
15(9):803-820, August 2003.

124

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Gunter Dueck and Tobias Scheuer. Threshold accepting: a general purpose optimiza-
tion algorithm appearing superior to simulated annealing. Journal of Computational
Physics, 90(1):161-175, 1990.

James P Durbano and Fernando E Ortiz. FPGA-based acceleration of the 3D finite-
difference time-domain method. In Proc. of 12th Symp. on Field-Programmable Custom
Computing Machines (FCCM), pages 156-163. IEEE, 2004.

Matteo Frigo, Charles E Leiserson, Harald Prokop, and Sridhar Ramachandran. Cache-
oblivious algorithms. In Proc. of 4/0th Symp. on Foundations of Computer Science,
pages 285-297, 1999.

Kyle Gallivan, William Jalby, Ulrike Meier, and Ahmed H Sameh. Impact of hierar-
chical memory systems on linear algebra algorithm design. International Journal of
High Performance Computing Applications, 2(1):12-48, 1988.

Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs distributions, and the

Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine
Intelligence, (6):721-741, 1984.

Arijit Ghosh and Tony Givargis. Analytical design space exploration of caches for em-
bedded systems. In Design, Automation and Test in Furope Conference and Ezxhibition,
pages 650-655. IEEE, 2003.

Arijit Ghosh and Tony Givargis. Cache optimization for embedded processor cores:
An analytical approach. ACM Trans. on Design Automation of Electronic Systems,
9(4):419-440, October 2004.

Ann Gordon-Ross, Frank Vahid, and Nikil Dutt. Automatic tuning of two-level caches
to embedded applications. In Proc. of the Conf. on Design, Automation and Test in
Europe, page 10208, 2004.

Ann Gordon-Ross, Frank Vahid, and Nikil Dutt. Fast configurable-cache tuning with
a unified second-level cache. In Proc. of Int’l Symp. on Low Power Electronics and
Design, pages 323-326, 2005.

Kazushige Goto and Robert A Geijn. Anatomy of high-performance matrix multipli-
cation. ACM Transactions on Mathematical Software (TOMS), 34(3):12, 2008.

Torbjorn Granlund and Richard Kenner. Eliminating branches using a superoptimizer
and the GNU C compiler. In Proc. of ACM SIGPLAN Conf. on Programming Language
Design and Implementation (PLDI), pages 341-352, 1992.

Clemens Grelck, Sven-Bodo Scholz, and Alex Shafarenko. A gentle introduction to
S-Net: Typed stream processing and declarative coordination of asynchronous compo-
nents. Parallel Processing Letters, 18(2):221-237, 2008.

125

[46]

[47]

[48]

Jayanth Gummaraju, Joel Coburn, Yoshio Turner, and Mendel Rosenblum.
Streamware: programming general-purpose multicore processors using streams. In
Proc. of 13th Int’l Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 297-307. ACM, March 2008.

Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin, Trevor Mudge,
and Richard B Brown. MiBench: A free, commercially representative embedded bench-
mark suite. In Proc. of 4th Int’l Workshop on Workload Characterization, pages 3—14,
2001.

Mohammad Shihabul Haque, Jorgen Peddersen, Andhi Janapsatya, and Sri
Parameswaran. Dew: A fast level 1 cache simulation approach for embedded pro-
cessors with FIFO replacement policy. In Proc. of Conf. on Design, Automation and
Test in Europe, pages 496-501. European Design and Automation Association, 2010.

Eli Harari. Flash memory-the great disruptor! In Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), pages 10-15. IEEE, 2012.

Charles AR Hoare. Quicksort. The Computer Journal, 5(1):10-16, 1962.

Te C Hu, Andrew B Kahng, and Chung-Wen Albert Tsao. Old bachelor acceptance:
A new class of non-monotone threshold accepting methods. ORSA Journal on Com-
puting, 7(4):417-425, 1995.

Intel XScale® core developer’s manual. Technical Report 273473-002, Intel Corpora-
tion, January 2004.

Intel® 64 and TA-32 architectures optimization reference manual. Technical Report
248966-029, Intel Corporation, March 2014.

Engin Ipek, Sally A McKee, Rich Caruana, Bronis R de Supinski, and Martin Schulz.
Efficiently exploring architectural design spaces via predictive modeling. In Proc. of
12th Int’l Conf. on Architectural Support for Programming Languages and Operating
Systems, pages 195-206, 2006.

Bruce Jacob, Spencer Ng, and David Wang. Memory Systems: Cache, DRAM, Disk.
Morgan Kaufmann, 2010.

Andhi Janapsatya, Aleksandar Ignjatovic, and Sri Parameswaran. Finding optimal
L1 cache configuration for embedded systems. In Proc. of Asia and South Pacific
Conference on Design Automation, pages 796-801. IEEE, 2006.

Song Jiang and Xiaodong Zhang. LIRS: an efficient low inter-reference recency set
replacement policy to improve buffer cache performance. ACM SIGMETRICS Perfor-
mance Evaluation Review, 30(1):31-42, 2002.

126

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[69]

Lizy Kurian John and Akila Subramanian. Design and performance evaluation of a
cache assist to implement selective caching. In Proc. of Int’l Conf. on Computer Design
(ICCD), pages 510-518. IEEE, 1997.

Rajeev Joshi, Greg Nelson, and Keith Randall. Denali: a goal-directed superoptimizer.
In Proc. of ACM SIGPLAN Conf. on Programming Language Design and Implemen-
tation (PLDI), pages 304-314. ACM, June 2002.

Norman P Jouppi. Improving direct-mapped cache performance by the addition of
a small fully-associative cache and prefetch buffers. In Proc. of 17th Int’l Symp. on
Computer Architecture, pages 364-373, 1990.

Martin Kampe, Per Stenstrom, and Michel Dubois. Self-correcting LRU replacement
policies. In Proc. of 1st Conf. on Computing Frontiers, pages 181-191, 2004.

Johnson Kin, Munish Gupta, and William H Mangione-Smith. The filter cache: an
energy efficient memory structure. In Proc. of 30th ACM/IEEE Int’l Symp. on Mi-
croarchitecture, pages 184-193. IEEE, 1997.

Scott Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated anneal-
ing. Science, 220(4598):671-680, 1983.

Emre Kultursay, Mahmut Kandemir, Anand Sivasubramaniam, and Onur Mutlu. Eval-
uating STT-RAM as an energy-efficient main memory alternative. In Proc. of IEEE
Int’l Symp. on Performance Analysis of Systems and Software (ISPASS), pages 256—
267. IEEE, 2013.

Kanishka Lahiri, Anand Raghunathan, and Sujit Dey. Design space exploration for
optimizing on-chip communication architectures. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 23(6):952-961, 2004.

Joseph M. Lancaster, E. F. Berkley Shands, Jeremy D. Buhler, and Roger D. Cham-
berlain. Timetrial: A low-impact performance profiler for streaming data applications.
In Proc. of IEEFE Int’l Conf. on Application-Specific Systems, Architectures, and Pro-
cessors (ASAP), pages 69-76. IEEE, September 2011.

Alvin R Lebeck and David A Wood. Cache profiling and the SPEC benchmarks: A
case study. Computer, 27(10):15-26, 1994.

Benjamin C Lee and David M Brooks. Accurate and efficient regression modeling
for microarchitectural performance and power prediction. In Proc. of 12th Int’l Conf.

on Architectural Support for Programming Languages and Operating Systems, pages
185-194, 2006.

Benjamin C Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting phase
change memory as a scalable DRAM alternative. ACM SIGARCH Computer Archi-
tecture News, 37(3):2-13, 2009.

127

[70]

[71]

[77]

[78]

[79]

[30]

[81]

Dennis C Lee, Patrick J Crowley, Jean-Loup Baer, Thomas E Anderson, and Brian N
Bershad. Execution characteristics of desktop applications on Windows NT. ACM
SIGARCH Computer Architecture News, 26(3):27-38, 1998.

Martin Lukasiewycz, Michael Glaf, Christian Haubelt, and Jiirgen Teich. Efficient
symbolic multi-objective design space exploration. In Proc. of Asia and South Pacific
Design Automation Conference, pages 691-696. IEEE Computer Society Press, 2008.

John MacCarthy. Recursive functions of symbolic expressions and their computation
by machine. Communications of the ACM, 3(4):184-195, 1960.

Doug MacGregor, Dave Mothersole, and Bill Moyer. The Motorola MC68020. IEEFE
Micro, 4(4):101-118, 1984.

Jack A Mandelman, Robert H Dennard, Gary B Bronner, John K DeBrosse, Rama
Divakaruni, Yujun Li, and Carl J Radens. Challenges and future directions for the

scaling of dynamic random-access memory (DRAM). IBM Journal of Research and
Development, 46(2.3):187-212, 2002.

R Timothy Marler and Jasbir S Arora. Survey of multi-objective optimization methods
for engineering. Structural and Multidisciplinary Optimization, 26(6):369-395, 2004.

Henry Massalin. Superoptimizer: a look at the smallest program. In Proc. of 2nd Int’l
Conf. on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 122126, 1987.

Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Transactions on
Modeling and Computer Simulation, 8(1):3-30, January 1998.

David May, Dan Page, James Irwin, and Henk L. Muller. Microcaches. In Proc. of 6th
Int’l Conf. on High Performance Computing (HiPC), pages 21-27. Springer, December
1999.

Ann Marie Grizzaffi Maynard, Colette M Donnelly, and Bret R Olszewski. Contrasting
characteristics and cache performance of technical and multi-user commercial work-

loads. In ACM SIGPLAN Notices, volume 29, pages 145-156. ACM, 1994.

Sally A McKee. Reflections on the memory wall. In Proc. of 1st Conf. on Computing
Frontiers, page 162, 2004.

Sally A McKee and William A Wulf. Access ordering and memory-conscious cache
utilization. In Proc. of 1st IEEE Symp. on High-Performance Computer Architecture
(HPCA), pages 253-262. IEEE, 1995.

128

[82]

[80]

[87]

Matteo Monchiero, Ramon Canal, and Antonio Gonzélez. Design space exploration
for multicore architectures: a power/performance/thermal view. In Proc. of 20th Int’l
Conf. on Supercomputing, pages 177-186. ACM, 2006.

Afrin Naz. Split Array and Scalar Data Caches: A Comprehensive Study of Data
Cache Organization. PhD thesis, Univ. of North Texas, 2007.

Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dy-
namic binary instrumentation. In Proc. of ACM SIGPLAN Conf. on Programming
Language Design and Implementation, pages 89—100, 2007.

Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth,
Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and Matthias

Zenger. An overview of the Scala programming language. Technical Report
1C/2004/64, Ecole Polytechnique Fédérale de Lausanne, 2004.

Shobana Padmanabhan, Yixin Chen, and Roger D. Chamberlain. Convexity in non-
convex optimizations of streaming applications. In Proc. of IEEE 18th Int’l Conf. on
Parallel and Distributed Systems (ICPADS), pages 668675, December 2012.

Gianluca Palermo, Cristina Silvano, and Vittorio Zaccaria. Discrete particle swarm
optimization for multi-objective design space exploration. In Proc. of 11th Conf. on
Digital System Design Architectures, Methods and Tools, pages 641-644. IEEE, 2008.

Maurizio Palesi and Tony Givargis. Multi-objective design space exploration using
genetic algorithms. In Proc. of 10th Int’l Symp on Hardware/Software Codesign
(CODES), pages 67-72. IEEE, 2002.

P.R. Panda, N.D. Dutt, and A. Nicolau. Local memory exploration and optimization
in embedded systems. IEEE Trans. on Computer-Aided Design of Integrated Clircuits
and Systems, 18(1):3-13, 1999.

Jeff Parkhurst, John Darringer, and Bill Grundmann. From single core to multi-core:
preparing for a new exponential. In Proc. of IEEE/ACM Int’l Conf. on Computer-
Aided Design, pages 67-72. ACM, 2006.

http://www.postgresql.org.

Moinuddin K Qureshi, Aamer Jaleel, Yale N Patt, Simon C Steely, and Joel Emer.
Adaptive insertion policies for high performance caching. In ACM SIGARCH Com-
puter Architecture News, volume 35, pages 381-391, 2007.

Moinuddin K Qureshi, Vijayalakshmi Srinivasan, and Jude A Rivers. Scalable high
performance main memory system using phase-change memory technology. ACM
SIGARCH Computer Architecture News, 37(3):24-33, 2009.

129

[94]

[98]
[99]

[100]

101]

[102]

103]

[104]

[105]

[106]

P Ranjan Panda, Nikil D Dutt, Alexandru Nicolau, Francky Catthoor, Amout Vande-
cappelle, Erik Brockmeyer, Chidamber Kulkarni, and Eddy De Greef. Data memory
organization and optimizations in application-specific systems. [EEE Design & Test
of Computers, 18(3):56-68, 2001.

http://www.raspberrypi.org.

JF Reynolds. A proof of the random-walk method for solving Laplace’s equation in
2-D. The Mathematical Gazette, pages 416-420, 1965.

Tiark Rompf and Martin Odersky. Lightweight modular staging: a pragmatic ap-
proach to runtime code generation and compiled DSLs. In Proc. of 9th Int’l Conf. on
Generative Programming and Component Engineering, pages 127-136, 2010.

John P Scheible. A survey of storage options. Computer, 35(12):42-46, 2002.

Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. In Proc.
of 18th Int’l Conf. on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 305-316, March 2013.

Sandeep Sen, Siddhartha Chatterjee, and Neeraj Dumir. Towards a theory of cache-
efficient algorithms. Journal of the ACM, 49(6):828-858, November 2002.

Muhammad Shafiq, Miquel Pericas, Raul de la Cruz, Mauricio Araya-Polo, Nacho
Navarro, and Eduard Ayguadé. Exploiting memory customization in FPGA for 3D
stencil computations. In Proc. of Int’l Conf. on Field-Programmable Technology (FPT),
pages 38-45. IEEE, 2009.

Xipeng Shen, Yutao Zhong, and Chen Ding. Locality phase prediction. In Proc. of
11th Int’l Conf. on Architecture Support for Programming Languages and Operating
Systems (ASPLOS), volume 39, pages 165-176, November 2004.

Alan Jay Smith. Cache memories. ACM Computing Surveys (CSUR), 14(3):473-530,
1982.

Byoungro So, Mary W Hall, and Pedro C Diniz. A compiler approach to fast hard-
ware design space exploration in FPGA-based systems. In ACM SIGPLAN Notices,
volume 37, pages 165-176. ACM, 2002.

Jesper H Spring, Jean Privat, Rachid Guerraoui, and Jan Vitek. StreamFlex: high-
throughput stream programming in Java. ACM SIGPLAN Notices, 42(10):211-228,
2007.

Vinoo Srinivasan, Shankar Radhakrishnan, and Ranga Vemuri. Hardware software
partitioning with integrated hardware design space exploration. In Proc. of Design,
Automation and Test in Furope, pages 28-35. IEEE, 1998.

130

107]

[108]

[109]

[110]

[111]

[112]

113]

114]

[115]

[116]

[117)

[118]

[119]

John E. Stone, David Gohara, and Guochun Shi. OpenCL: A parallel programming
standard for heterogeneous computing systems. Computing in Science and Engineer-
ing, 12:66-73, 2010.

Walter A Strauss. Partial Differential Equations: An Introduction. Wiley, 1992.

Jeffrey Stuecheli, Dimitris Kaseridis, Hillery C Hunter, and Lizy K John. Elastic
refresh: Techniques to mitigate refresh penalties in high density memory. In Proc. of
48rd IEEE/ACM Int’l Symp. on Microarchitecture, pages 375-384, 2010.

Ching-Long Su and Alvin M Despain. Cache design trade-offs for power and perfor-
mance optimization: a case study. In Proc. of Int’l Symp. on Low Power Design, pages
63-68. ACM, 1995.

Karthik T Sundararajan, Timothy M Jones, and Nigel P Topham. Smart cache: A self
adaptive cache architecture for energy efficiency. In Proc. of Int’l Conf. on Embedded
Computer Systems, pages 41-50, 2011.

William Thies, Michal Karczmarek, and Saman Amarasinghe. Streamlt: A language
for streaming applications. In Proc. of 11th Int’l Conf. on Compiler Construction,
pages 179-196, 2002.

Shyamkumar Thoziyoor, Naveen Muralimanohar, Jung Ho Ahn, and Norman P
Jouppi. CACTI 5.1. HP Laboratories, 2, April 2008.

Sumesh Udayakumaran. Compiler-Decided Dynamic Memory Allocation for Scratch-
Pad Based Embedded Systems. PhD thesis, Univ. of Maryland, 2006.

Steven P Vanderwiel and David J Lilja. Data prefetch mechanisms. ACM Computing
Surveys (CSUR), 32(2):174-199, 2000.

Jasmina Vasiljevic and Paul Chow. MPack: global memory optimization for stream
applications in high-level synthesis. In Proc. of 22nd ACM/SIGDA Int’l Symp. on
Field-Programmable Gate Arrays (FPGA), pages 233-236, February 2014.

A.V. Veidenbaum, W. Tang, R. Gupta, A. Nicolau, and X. Ji. Adapting cache line
size to application behavior. In Proc. of 13th Int’l Conf. on Supercomputing, pages
145-154, 1999.

Manish Verma and Peter Marwedel. Overlay techniques for scratchpad memories in
low power embedded processors. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 14(8):802-815, 2006.

R.A. Walker and S. Chaudhuri. Introduction to the scheduling problem. IEEFE Design
& Test of Computers, 12(2):60-69, summer 1995.

131

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

128]

[129]

130]
131]

[132]

Joseph G. Wingbermuehle, Roger D. Chamberlain, and Ron K. Cytron. ScalaPipe: A
streaming application generator. In Proc. of 2012 Symp. on Application Accelerators
in High-Performance Computing, pages 244-254, July 2012.

Joseph G. Wingbermuehle, Ron K. Cytron, and Roger D. Chamberlain. Compiling
for power with ScalaPipe. Journal of Systems Architecture, 59(8):615-625, September
2013.

Joseph G. Wingbermuehle, Ron K. Cytron, and Roger D. Chamberlain. Optimization
of application-specific memories. Computer Architecture Letters, April 2013.

Joseph G. Wingbermuehle, Ron K. Cytron, and Roger D. Chamberlain. Superopti-
mization of memory subsystems. In Proc. of 15th Conf. on Languages, Compilers, and
Tools for Embedded Systems (LCTES), June 2014.

Joseph G. Wingbermuehle, Ron K. Cytron, and Roger D. Chamberlain. Superopti-
mized memory subsystems for streaming applications. In Proc. of 23rd ACM/SIGDA
Int’l Symp. on Field-Programmable Gate Arrays (FPGA), February 2015.

Felix Winterstein, Samuel Bayliss, and George Constantinides. Separation logic-
assisted code transformations for efficient high-level synthesis. In Proc. of 22nd Int’l
Symp. on Field-Programmable Custom Computing Machines (FCCM), pages 1-8, 2014.

H-SP Wong, Simone Raoux, SangBum Kim, Jiale Liang, John P Reifenberg, Bipin Ra-
jendran, Mehdi Asheghi, and Kenneth E Goodson. Phase change memory. Proceedings
of the IEEE, 98(12):2201-2227, 2010.

Wm A Wulf and Sally A McKee. Hitting the memory wall: Implications of the obvious.
ACM SIGARCH Computer Architecture News, 23(1):20-24, March 1995.

Yuan Xie. Modeling, architecture, and applications for emerging memory technologies.
IEEFE Design and Test of Computers, 28(1):44-51, 2011.

Yuan Xie, Gabriel H Loh, Bryan Black, and Kerry Bernstein. Design space exploration
for 3D architectures. ACM Journal on Emerging Technologies in Computing Systems
(JETC), 2(2):65-103, 2006.

http://www.xilinx.com.

Hsin-Jung Yang, Kermin Fleming, Michael Adler, and Joel Emer. Optimizing under
abstraction: Using prefetching to improve FPGA performance. In Proc. of 23rd Int’l
Conf. on Field-Programmable Logic and Applications (FPL), pages 1-8, 2013.

Lin Yuan and Gang Qu. Design space exploration for energy-efficient secure sensor
network. In Proc. of Int’l Conf. on Application-Specific Systems, Architectures and
Processors, pages 88-97. IEEE, 2002.

132

[133] Chuanjun Zhang and Frank Vahid. Using a victim buffer in an application-specific
memory hierarchy. In Proc. of Design, Automation and Test in Europe Conference
and Exhibition, pages 220-225, 2004.

[134] Baihua Zheng, Jianliang Xu, and Dik Lun Lee. Cache invalidation and replacement
strategies for location-dependent data in mobile environments. [EEE Transactions on
Computers, 51(10):1141-1153, 2002.

[135] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. A durable and energy efficient
main memory using phase change memory technology. In ACM SIGARCH Computer
Architecture News, volume 37, pages 14-23. ACM, 2009.

[136] Omer Zilberberg, Shlomo Weiss, and Sivan Toledo. Phase-change memory: an archi-
tectural perspective. ACM Computing Surveys (CSUR), 45(3):29, 2013.

[137] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compres-
sion. IEEE Transactions on Information Theory, 23(3):337-343, 1977.

133

Appendix A: ScalaPipe

This appendix is an extension of Section 3.1 and is based on [120] and [121]. As men-
tioned in Section 3.1, ScalaPipe provides two domain-specific languages (DSLs) in the Scala
programming language [85] that are used to generate streaming applications. The kernel
DSL provides a way to implement processing kernels and the application DSL provides a
way to connect the kernels together and map them to the target architecture. Because the
streaming application is described in DSLs embedded in Scala, Scala language constructs
can be used to generate potentially large and complex application topologies and resource

mappings.

A.1 Kernel DSL

The ScalaPipe kernel DSL provides a simple imperative programming language that can be
used to implement kernels. To use the kernel DSL, one extends the Kernel class. Within
the kernel DSL, the inputs and outputs for the kernel are specified as well as the imple-
mentation. Note that it is possible to use existing kernels in target-specific languages such
as Verilog or C. To use such kernels, an external statement is used to inform ScalaPipe
of the implementation code. It is also possible to mix multiple external implementations
for various platforms as well as an internal implementation, which is used if no matching

external implementation is available for the desired target.

[134]

A.1.1 Language Features

The kernel DSL features many of the standard language constructs available in a traditional
programming language for conditionals and looping. By using a version of the Scala compiler
with language virtualization features [16], ScalaPipe is able to use the standard Scala control
structures such as if and while. Because of this, much Scala code can be easily reused in

ScalaPipe with few changes, which eases the prototyping and testing of kernels.

In addition to the basic control structures and math operators, ScalaPipe provides a rich
set of data types, which includes primitive types such as integer, floating point, and fixed
point types, fixed length arrays, structures, and unions. Kernels that use only these features
can run on any resource that ScalaPipe supports. To allow more flexibility and the ability
to interface with library code, ScalaPipe also allows function calls to external libraries and
pointers. However, kernels using such features can only be mapped to traditional proces-

SOTs.

A.1.2 Example

val AverageU32 = new Kernel {
val in0 = input (UNSIGNED32)
val inl = input (UNSIGNED32)
val out = output(UNSIGNED32)

out = (in0 + inl) / 2

Figure A.1: Example Kernel

A simple example kernel is shown in Figure A.1. This kernel inputs two values from separate

input streams and outputs their average on an output stream. First, the kernel will wait for

[135]

input to be available from both channels. It then adds the values together and divides by two.

Finally, the kernel outputs the average, blocking on the output stream if necessary.

A more complex example for generating pseudo-random numbers using the Mersenne twister
algorithm [77] is shown in Figure A.2. This kernel demonstrates several additional features

of ScalaPipe, such as local variables and control flow.

In addition to the language facilities that ScalaPipe provides, the Scala language can be used
as a type-safe macro pre-processor to enable generic kernel code. Such generic kernels could
have compile-type types or other parameters. Further, it is possible to develop kernels that
support a compile-time configurable number of ports, as demonstrated by the GenericSplit

kernel in Figure 3.2.

The code within a kernel can be thought of as executing in a continuous loop. Each time
an input port is referenced, a new value is expected and the kernel will wait until input is
available if necessary. Likewise, each time an output port is assigned, a new value is produced
for the consumer, again blocking if the output queue is full. Kernels that require no inputs

run continuously until they execute a stop statement or the application terminates.

A.1.3 Intermediate Representation

Before kernel code can be generated, it is necessary to turn the kernel DSL program into
an intermediate representation. Since the kernel DSL is embedded in Scala, the issue of
parsing is handled by the Scala compiler. The DSL code turns into function calls where the
variables in the DSL are actually objects to represent the variables, which are created in the
input, output, and local functions. Because variables in the kernel DSL are objects, Scala
code and kernel DSL code can be mixed, allowing Scala to act as a macro language. This

is similar to lightweight modular staging introduced in [97] where variable types determine

[136]

val MT19937 = new Kernel {
val out = output(UNSIGNED32)
val mt = local(Vector (UNSIGNED32, 624))
val index = local (UNSIGNED32, 0)
val configured = local(BOOL, false)

val i = local (UNSIGNED32, 5) // Random number seed
val j = local (UNSIGNED32)
val y = local (UNSIGNED32)

if (configured) {
if (index == 624) {
for(i <- 0 until 624) {

j=1i+1
if (j == 624) {
j=20
}
y = (mt(i) >> 31) + (mt(j) & Ox7FFFFFFF)
j =i + 397
if (§ > 623) {
j —= 624
}
mt(i) = mt(j) =~ (y >> 1)
if (y& 1) {
mt (i) “= 0x9908b0df
}
}
index = 0
}
y = mt(index)
y "= (y > 11)
y "= ((y << 7) & 0x9d2c5680)
y "= ((y << 15) & 0xefc60000)
y "= (y > 18)
index += 1
out =y
} else {

mt (index) = i

i = 0x6c078965 * (i ~ (i >> 30))
1 += index

index += 1

configured = index == 624;

Figure A.2: Mersenne Twister Kernel

[137]

whether an expression is executed when the application generator runs or if the expression

is compiled into code to be executed later.

Once the abstract syntax tree is built from the kernel code, it is either used directly for
code generation or converted to a control flow graph. When generating code for traditional
processors or GPUs, the abstract syntax tree is used directly for code generation. However,
for FPGASs the abstract syntax tree is first converted to a control flow graph to enable better

Verilog code generation.

A.1.4 Code Generation

For traditional processors, C code is emitted. For graphics processors, OpenCL C [107]
code is generated. Finally, for FPGAs, Verilog is generated. Since the kernel language
maps easily into the C programming language, the abstract syntax tree is used directly for
generating code targeted for traditional processors. Unfortunately, generating code for GPUs

and FPGAs requires more work.

For GPUs, it is desirable to allow multiple threads to run the same kernel on different data
elements. To allow this, ScalaPipe checks the kernel to see if there is state that needs to
be preserved across invocations. If there is no state to be preserved, then each element in
the input queues can be processed in parallel. In this case, ScalaPipe will generate code to
process each item in the input buffer in a separate thread. Note that this simple method
for extracting parallelism leaves much to be desired. However, it provides a prototype for
evaluating alternative resource mappings. If a higher performance implementation is sought,

it is possible to substitute a custom implementation.

Like GPUs, FPGAs present a problem for automatic code generation from an imperative-

style language. To generate Verilog, the abstract syntax tree is first converted into a three-

[138)]

address intermediate representation; that is, most operations can be represented by an op-
erator, a destination, and two sources. These operations are then collected into blocks of
operations that can execute simultaneously. This organization allows ScalaPipe to generate
state machines where each variable represents a register or wire. Before any of the opti-
mization passes, each operation occupies its own state and all variables are mapped into

registers.

As an example of how ScalaPipe generates register-transfer level (RTL), consider the kernel

in Figure A.3 for computing the n* term of the Fibonacci sequence.

val n = input (UNSIGNED32)
val result = output(UNSIGNED32)
val i = local (UNSIGNED32)
val last = local (UNSIGNED32)
val current = local (UNSIGNED32)
val temp = local (UNSIGNED32)
i=n

last = 1

current = 0

while (i > 0) {
temp = current
current += last
last = temp
i—-=1

}

result = current

Figure A.3: ScalaPipe Fibonacci Kernel

Figure A.4 shows the kernel after conversion to ScalaPipe’s intermediate representation.
Each label represents a state and the goto statements indicate state transitions. In some
cases, a state may take multiple cycles to complete. This can happen, for example, when

waiting for an input, as is the case for state S1 in Figure A.3, or performing a division

[139]

instruction. In such cases, a guard is inserted to prevent the state machine from advancing

to the next state until the operating completes.

S1: i =n

S2: last =1

S3: current = 0

S4: t1 =1>0

S5: if t1 then S6 else S11
S6: temp = current

S7: current = current + last
S58: last = temp

S9: i=1i-1

S510: goto S4
S11: result = current
S512: goto S1

Figure A.4: Intermediate Representation of the Fibonacci Kernel

As can be seen from this simple example, this straightforward translation leaves quite a bit
of room for improvement. The optimization passes in ScalaPipe attempt to address this
issue. The kernel after optimization is shown in Figure A.5. After optimization, the number
of states in the state machine has been reduced from 12 states to 4. Note that state S3 reads
and writes to the same variables. This is acceptable because when converted to RTL, all
sources will be evaluated before the assignment. Despite additional room for improvement,

the current version of ScalaPipe is unable to improve this code any further.

A.1.5 Optimizations

ScalaPipe performs several optimization passes when generating kernels to target hardware.
These passes are mostly traditional compiler optimizations, however, some are specific to

the goal of generating hardware.

[140]

S1: i =n
last = 1
current = 0
S2: if (i > 0) then S3 else S4
S3: temp = current
current = current + last
last = temp
i=1i-1
goto S2
S4: result = current
goto S1

Figure A.5: Optimized Fibonacci Kernel

Variable Renaming Variable renaming is an optimization performed by ScalaPipe to
expose additional opportunities for other optimizations. In the variable renaming pass,
ScalaPipe converts each basic block to static single assignment (SSA) form [31]. ScalaPipe
currently does not convert the entire kernel to SSA form to avoid dealing with ¢ func-

tions.

Common Subexpression Elimination Common subexpression elimination (CSE) is a
traditional compiler optimization that replaces expressions that are recomputed with the
earlier result. Such expressions can be expressed directly in the source program or generated
by the compiler when converting the source program into its intermediate representation (for

example, math required for array references).

Dead Store Elimination Dead store elimination (DSE) is a compiler optimization that
eliminates stores to variables that are not referenced. Such stores are rare since they serve

no purpose, but they can show up especially in generic code.

[141]

Dead Code Elimination Dead code elimination (DCE) is an optimization that eliminates
code that is not used. As is the case with dead store elimination, dead code is rare, but can

appear with generic code.

Strength Reduction Strength reduction is an optimization that replaces expensive op-
erations with less expensive operations. For example, division by a power of two can be
converted into a shift operation. Although it is possible to write code that already takes
strength reduction into account, applying strength reduction as an optimization pass can
allow code to be written in a more natural way. Moreover, the values that allow for strength
reduction (for example, divisors that are powers of 2) may be present only in some uses of a

particular piece of code.

Copy Propagation Copy propagation—another traditional compiler optimization—replaces
uses of variables that are the target of direct assignments with their value. For example,

given the following code segment:

N
]
»
+
=

Copy propagation would yield:
z=y+1

Sequences such as these are common in the code generated by the front end of the compiler.
Therefore, this optimization is often applicable even if the source program does not contain

any such sequernces.

State Space Compression State space compression is an optimization that ScalaPipe

uses to collapse multiple operations into a single state. ScalaPipe does this by moving all

[142]

operations into the earliest possible state. Note that this is equivalent to ASAP schedul-

ing [119]. For example, given the following sequence:

S1:

)
1]
o
+
o

S2: a=a-1

S3: x =y + z

Sl1: a=Db + ¢

X

I
<
+
N

S2: a=a-1

Note that states S1 and S2 cannot be combined because of a read-after-write data dependency

on a.

State Elimination State elimination is an optimization that ScalaPipe uses to combine

a string of operations into a single state. For example, given the following sequence:

S1: a

Il
o
+
(@]

S2: a=a-1

S3: x =y + z

State elimination would eliminate the second state by combining it with the first state:

S1: a b+c-1

S3: x =y + z

[143]

A.2 Application DSL

The ScalaPipe application DSL is used to connect kernels together and map them to re-

sources. To use the application DSL, one extends the Application class.

A.2.1 Overview

The application DSL allows one to specify how kernels are connected using functional com-
position. Each kernel takes a list of streams for input and returns a list of streams, which
can then be passed to other kernels. To allow large and complex topologies to be generated,

Scala can be used as a type-safe macro language.

In addition to the application topology, the application DSL is where resource mapping is
described. The map function is used for this purpose. Given a stream or edge specification as

a parameter, the map statement marks where data flows from one resource to another.

A.2.2 Resource Mapping

The application DSL creates a graph of kernels connected by streams. Some streams may
change resources as indicated by a map statement. To map the kernels onto resources,
ScalaPipe first assumes all kernels are unassigned and then processes the streams one-by-one
until either all kernels are assigned a resource or no more changes occur. If any resources
remain unmapped at this point, they are assumed to reside on a traditional processor. Note
that it is possible for an invalid mapping to be specified. In this case, the error is reported

when the ScalaPipe application generator is run.

[144]

Once the resource mapping is complete, ScalaPipe generates the kernels for the required
resources and then creates an application with the queues and threads necessary to run the
kernels. This application also includes any code necessary for routing data to other devices
such as GPUs or FPGAs. For GPUs, ScalaPipe generates code to use OpenCL [107] for
communication and compiling of the kernel code. For FPGA devices, code to communicate
with the driver for the FPGA device is generated on the software side. On the hardware

side, a top level file is generated to connect the kernels on the FPGA device.

A.2.3 Example

val app = new Application {
val randl = Random()
val rand2 = Random()
Print (AverageU32(randl, rand2))

map (AverageU32 -> Print, FPGA2CPU())

Figure A.6: Example Application

A simple example application is shown in Figure A.6. This application generates two streams
of random numbers by instantiating two Random kernels. The outputs of these kernels is then
averaged using the AverageU32 kernel described in Section A.1.2. Finally, the output of the

AverageU32 kernel is printed to the screen via the Print kernel.

The example also demonstrates a map statement. The map statement describes the edge
between the AverageU32 and Print kernels. The type of edge is an FPGA2CPU edge, meaning
that this edge connects a CPU resource to an FPGA resource. The result is that all the
kernels except the Print kernel will be implemented on an FPGA device; the Print kernel

will be implemented for a general-purpose processor. Each kernel implemented on a general-

[145]

purpose processor is assigned its own thread. Note that it is possible to specify multiple

FPGA or CPU resources using arguments to the FPGA2CPU function.

A.2.4 TimeTrial

To support performance profiling of a streaming application, ScalaPipe has TimeTrial [66]
built-in. TimeTrial allows one to instrument the queues between kernels. For example, to
discover a bottleneck one might be interested to know which queues are consistently full.
The use of TimeTrial in ScalaPipe works much like resource mapping, but with measure

statements instead of map statements.
An example TimeTrial statement for the application in Figure A.6 is shown below.
measure (ANY_KERNEL -> AverageU32, ’backpressure)

This statement causes ScalaPipe to instrument all edges entering the AverageU32 kernel.
In this case, there are two such edges. For each of these edges, TimeTrial will monitor
“backpressure”, which is the fraction of time the producer could not enqueue an item to the
queue due to the queue being full. This information is reported as the application runs each
frame, which is typically a 1-second interval of time. Using statements such as this, it is

possible to track down bottlenecks in the application.

[146]

	Washington University in St. Louis
	Washington University Open Scholarship
	Spring 5-15-2015

	Application-Specific Memory Subsystems
	Joseph George Wingbermuehle
	Recommended Citation

	CMR12

