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Abstract

The properties of online social networks are of great interests to the general public as well

as IT professionals. Often the raw data are not available and the summaries released by

the service providers are sketchy. Thus sampling is needed to reveal the hidden proper-

ties and structure of the underlying network. This thesis conducts comparative studies on

various sampling methods, including Random Node(RN), Random Walk(RW) and Random

Edge(RE) samplings. The properties to be discovered include the average degree and popu-

lation size of the network. Additionally, this thesis proposes a new sampling method called

STAR sampling and applies this method to an online social network Weibo. Furthermore,

visualization of network structure is studied to explain the impact of network structure on the

performance of sampling methods. We show that RE sampling is better than RN sampling

in general. This result is supported by over 20 real-world networks.
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Chapter 1

Introduction

1.1 Motivation

The properties and structure of online social networks are of interest to a variety of

stakeholders, including the general public as well as IT professionals. With the knowl-

edge of the topology of the network, users can post their status on the network, so that

their information can diffuse more effectively. Often the raw data are not available and

the summaries released by the service providers are sketchy. Thus sampling is needed

to reveal the hidden structure of the underlying data.

Online social networks are so large that exhaustive exploration of the network is in-

feasible. In fact, we can only obtain a small sample of the network and estimate the

properties of the network using the sample.

For instance, we may want to learn the average number of followers in the network,

or the average in degree of the graph. One obvious but often impractical method is to

select randomly a set of users {U1, U2 . . . , Un}, count the in-degrees {d1, . . . , dn} for each

user, and calculate the sample mean d

d =
1

n

n∑
i=1

di (1.1)

The sample mean is an unbiased estimator of the population if the users can be selected

randomly with uniform distribution. Unfortunately this is not the case in practice.

When microbloggers are selected, they are often not picked randomly due to the limited

access methods.

1



Chapter 1. Introduction 2

Average degree is just one of the many properties that are of interest. Other properties

include the order (the number of nodes), the size (the number of edges) of the graph, the

distribution of degrees, the diameter of the graph, the centralities commonly used in so-

cial network measurement such as betweenness, the closeness, the eigenvector centrality,

the clustering coefficients. All those properties can be calculated with the presence of

the complete data, even though some of the properties can not be computed efficiently.

Different sampling methods shall be employed depending on the properties we want to

reveal. On the one hand, we need to learn the macroscopic properties such as size of the

network and the average number of followers. These properties can be better discovered

using uniform sampling, i.e., every account is sampled using equal probability. On the

other hand, it is interesting to find out the top bloggers, their topological structure,

or even clusters. Those top bloggers are easier to have higher probabilities of being

sampled.

This thesis contains four papers addressing different aspects of OSNs analysis including

degree estimation, size estimation, follower estimation and visualization. The following

sections in this chapter introduce the background in general terms of four papers.

1.2 Average Degree Estimation

The norm of practice in estimating graph properties is to obtain uniform random (node)

samples whenever possible. Often uniform random node (RN) samples are hard to

obtain, henceforth the less costly simple random walk (RW) sampling is applied instead.

Chapter 2 contains our paper that tries to answer the question as for which method

is better in estimating average degree, disregarding the extra cost to obtain uniform

random samples by methods such as rejection sampling. Two basic sampling schemas

are UR(Uniform Random) sampling and PPS(Probability Proportional to Size) sam-

pling. In UR sampling, each node is sampled with equal probability, thus the sample

(dx1, dx2, . . . , dxn) is uniform at random. The arithmetic mean is applied in estimating

average degree:

〈̂d〉UR =
1

n

n∑
i=1

dxi



Chapter 1. Introduction 3

In PPS sampling a node is sampled with probability proportional to its size. The

harmonic mean is used:

〈̂d〉PPS = n

[
n∑
i=1

1

dxi

]−1

Corresponding to these two basic sampling schemes, a graph can be sampled by RN(Random

Node) and RE/RW(Random Edge/Random Walk) sampling methods. We conduct ex-

periments on 18 real-worlk large networks and evaluate the accuracy of three sampling

methods in terms of RRMSE(Relative Rooted Mean Square Error).

After comparing the results of the sampling methods, we find that when the network

is large and scale-free, RE sampling is much better than RN sampling and even if the

network is not large or not following the right distribution, we still can distinguish the

good from the bad by using the coefficient of variation of the degree.

Since RE is not practical in some real applications, we use RW sampling instead. From

the comparison, we also find that RW can be better than the costly RN in orders of

magnitude for some datasets, yet it can be worse for some other datasets, depending

on the degree variance and conductance of the graph. Furthermore, we show the ratio

between RW and RE sampling depends on the structure of the graph which we use

conductance to describe.

1.3 Size Estimation

Chapter 3 contains our paper that describes the performance of different sampling

methods in estimating the network population. Population is the very fundamental

property of the network and size estimation has been widely studied. As same as average

degree estimation, we still compare RN, RW and RE sampling methods. The estimator

for RN sampling is:

N̂N =

(
n

2

)
1

C
≈ n2

2C
.

While the estimator for RW and RE sampling is:

N̂E = Γ

(
n

2

)
1

C
≈ Γ̂

n2

2C

where C is the collision(s) in the sample and Γ = γ2 + 1 is the coefficient of variation of

the degree.



Chapter 1. Introduction 4

Based on these two estimators, we derive the variance for RN sampling and RE sampling.

We verify the estimated variance with the observed variance from the experiment and

they agree with each other very well. This gives us the confidence to further quantify

the difference between RE and RN sampling methods. The only difference between

RE and RN sampling is Γ and this suggests that with the same sample size n, RE

sampling creates Γ times more collisions. Therefore the variance of N̂E is smaller by a

factor of Γ. The experiment result confirms that
√

Γ is the upper bound for the ratio of

RSEs(Relative Standard Error) between RE and RN sampling methods.

We also use RW sampling to approximate RE sampling since RE is rarely possible in

real applications. We find that random walk mixing time plays an important role in the

performance of size estimation. If there is no loosely connected components existing,

RW is better than RN, otherwise, RW will be increadibly bad.

1.4 Follower Estimation

Chapter 4 contains our paper which describes follower estimation by a high-efficient

sampling method called STAR sampling and this sampling method derived from simple

RW sampling. Different from simple RW sampling that takes only one sample at each

step, STAR sampling takes all the neighbours as valid samples. As a result, It is more

efficient than random walk sampling by a factor of the average degree. Moreover, STAR

sampling is a kind of PPS sampling indicating large nodes will be sampled with higher

frequency which are proportional to their degrees. We benifit from this character that

we can easily focus on the sub graphs of the top users.

We apply STAR sampling in estimating the number of followers of the top nodes who

have the most links in the graph. We first conduct experiment on six local datasets

whose ground-truth are known. The results on six networks show that our method

works very well as the empirical results according to the true values.

Then we apply our method on Weibo, the Chinese version of Twitter, whose properties

are rarely studied albeit its enormous size and inuence. Before applying star sampling,

we use ID sampling(known as Rejection-Acceptance Sampling) to estimate the size of

Weibo. The sample obtained by ID sampling is a uniform random sample, as the by-

product of the uniform random sample, the degree distribution has been plotted to give

a direct impression of Weibo. Surprisingly, we find that the average in-degree is larger

than the average out-degree.

We explain this by investigating the number of followers for the users in the network.

After pouring the uniform random IDs, we get a STAR sample to estimate the numbers
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of followers of the top 1000 users. In general the estimated follower number is consistent

with the claimed number, but there are cases that the follower numbers are inflated by

a factor up to 132.

1.5 Visualization

Chapter 4 contains our paper that uses random spanning tree to visualize large online

social networks. Since visulization could bring too much benifit to realize the topology

of large networks, many research works have been done to draw the structure of large

graphs. However, most approaches can only handle small graphs with a couple hundred

nodes and edges. To show the overall structure of OSNs with huge size, we reduce the

number of nodes and edges by producing a representative subgraph. This subgraph is

produced by simple random walk, due to its PPS character, the nodes are sampled with

probability proportional to their degrees, so that large nodes with more connections have

a higher probability of being sampled. The edges are reduced further using uniform

random spanning tree. We use NCP(Network Community Profile) plots to explain

that the subgraph produced by our method preserves the structure of original graph,

thus it is representative. Lastly, we visualize six real-world networks and explain their

conductance values by inspecting the visualizations.
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Figure 2.1: A graph and three sampling methods to select six sample nodes. The
three sampling methods are random node (RN), random edge (RE), and random walk
(RW). Nodes can be sampled multiple times as shown in sub-figures for RE and RW

samplings.

2.1 Introduction

Many datasets can be viewed as graphs, especially the Web and online social networks

such as Twitter and Facebook. These graphs are large, and sometimes are hidden behind

searchable interfaces. Thus, the direct process of the graphs is not efficient or feasible,

and sampling is the other option to reveal the hidden properties or structure of the

underlying data. In the past, extensive research was carried out to explore the profile of

search engines [2] and other data collections [3–5]. Many of them focused on obtaining

uniform random samples [6, 7]. Recently the problem becomes more urgent due to the

wide spread adoption of big data, resulting in a spate of research on this topic, such as

[8–13] to name a few of them.

Two of the basic sampling methods are uniform random sampling and PPS (Probability-

Proportional-to-Size) sampling. In uniform random sampling, each item is sampled with

equal probability. In PPS sampling an item is sampled with probability proportional to

its size. Corresponding to these two basic sampling schemes a graph can be sampled by

random nodes (RN) and random edges (RE) as illustrated in Figure 2.1. In random node

sampling, each node is sampled uniform randomly. In random edge sampling, two nodes

incident to a random edge are collected. Random walk (RW) sampling approximates the

random edge sampling by selecting the next random node in the current neighbourhood.
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A fundamental question in graph sampling is which sampling method is better. There

is no single answer to this question because it depends on the graph properties to be

revealed, and the graph structure being investigated [10]. This paper tries to answer a

narrowed-down question: which sampling method is better for estimating the average

degree of a scale-free graph? By focusing on one property, we can give a more definite

answer, and then expand the answer to other properties. Average degree itself is an

important metric for any network. Furthermore, it can lead to the discovery of other

properties such as the population size of a network [14, 15], the variation of the degrees,

and even the threshold value for the occurrence of large components in message diffusion

[16]. Section 2.3.4 will discuss the utilization of the average degree in the estimation of

these properties in more details.

While it is easy to understand that RN sampling does not work well for scale-free

networks due to its large variation of degrees, it is far from clear whether other sampling

methods can reduce the variance. Take Twitter and Facebook, two popular online

social networks, for example. They are both scale-free networks, yet they favour different

sampling methods. Twitter prefers RE sampling, but Facebook is the other way around.

What is more surprising is that for Twitter network, RE sampling is hundreds of times

better than RN sampling in terms of sample size. Such huge difference has a great

impact on the theory and practice of big data analysis. In practice, the selection of

the correct sampling method can save the cost in orders of magnitude. In theory, new

sampling methods need to be developed to exploit this difference. Naturally, we ponder

when RE is better than RN sampling, and how much better it can be in reality.

The main contribution of this paper is that the normalized variance of the degrees

dictates the sampling method we should use. More precisely, the ratio of the estimation

errors between RE and RN samplings can be quantified by the coefficient of variation

(γ) of the degrees of the data. Their Pearson’s correlation coefficient is as high as 0.9354

among 18 networks we studied. In theory, the variance and γ may not exist when the

slope of the power law distribution is between 1 and 2. In practice, all the real networks

have a maximal degree, resulting in a bounded variance for each network. Among 18

networks we studied, most of them have γ ranging between 1 and 36. In other words,

RE can be roughly 36 times better than RN sampling in terms of estimation error, or

hundreds of times better in terms of sample size. On the other hand, RN sampling can

outperform RE sampling when γ is small, as shown by four datasets in our experiments

described in Section 2.4.

This empirical result can be justified by our derivations based on the assumption of the

scale-free degree distribution. We prove that if the data satisfy Zipf’s law with exponent

one, the variance of RN sampling grows linearly with the data size, while the variance
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of RE sampling grows logarithmically. In RE sampling, the variance of the estimator

is dependent on the variance of the reciprocals of the degrees instead of the degrees

themselves as shown in Section 2.3. The variance of the reciprocals has not been studied

in literature. Our experiments on 18 real-world networks show that it is indeed smaller

or similar to the variance of the degrees.

Based on the analysis on RE and RN samplings, we extend the comparison to random

walk (RW) sampling, since RW sampling is often preferred in real applications [17, 18].

RW sampling is an approximation to RE sampling in that RW also samples nodes

with probability proportional to their degrees, but only asymptotically. Because of this

difference, we show that RW sampling is always worse than RE sampling for all the

datasets. For some networks, RW sampling is very close to RE sampling, while others

are much worse. The question is when RW can approximate RE sampling.

This paper shows that the ratio of standard errors between RW and RE sampling is

dependent on the conductance of the graph. When the conductance is small, there are

loosely connected components, causing RW being trapped in a component. However, it

can be still better than RN sampling when there are no loosely connected components,

or the conductance of the graph is not very small. When there are only two options to

select from, namely RW or RN, the choice will be rather difficult because there are two

factors we need to take into consideration: γ and conductance Φ.

Our results on these basic sampling methods also shed light on the directions to devise

new sampling methods. Since RE is the best sampling method but may not be sup-

ported in real applications, what we need to do is to approximate RE sampling as much

as possible based on the provided sampling interfaces. Simple random walk is one of

the approximations [19] [17], but it may suffer from random walk traps due to loosely

connected components. To overcome this problem, simple random walk can be improved

by uniform random restart as verified in [20]. To make it closer to RE sampling, we can

select the random restart node with probability proportional to its degree, and make

the random restart more frequent. In the extreme case when random walk restarts after

every one step, the RW sampling method morphs into RE sampling.

2.2 Related work

Graph sampling has been widely studied [10, 13], and finds its applications in online so-

cial networks [9, 12, 17, 18], real social networks [21, 22], web graphs [6], and search en-

gine index and deep web [7, 23, 24]. The typical underlying techniques include Metropo-

lis Hasting Random Walk (MHRW) [25] for uniform sampling and Random Walk (RW)
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[19] for unequal probability sampling. The norm of the practice is to use uniform ran-

dom node (RN) samples whenever possible. Only recently there are a few work on the

comparison between RN and RW sampling.

Some research compared RW sampling with MHRW sampling [17, 26] instead of uniform

random samples. Although MHRW does produce uniform random samples, it incurs

additional unknown cost that is usually rather high. Therefore it is easier to observe

that RW can be better than MHRW sampling. We compare RW with uniform random

samples ignoring the cost of obtaining these random samples, thereby removed the noise

introduced by MHRW. Rasti et al. observed that random walk sampling can outperform

MHRW in the context of peer-to-peer networks [26], Gjoka et al. showed that RW (called

re-weighted random walk in their paper) and MHRW are comparable [17]. We make a

stronger claim that RW can outperform RN sampling even when the cost of uniform

random sampling is ignored.

One of the few direct comparisons between RW and RN sampling is done by Katzir

et al. [14] for the estimation of network size, not for average degree. They showed

that RW sampling could outperform RN sampling in synthesized data and several real-

world networks. We show that the result is data dependent– RW outperforms RN

sampling only when the graph does not have loosely connected components. Instead

of comparing RW and RN directly, we break it down into two subproblems, i.e., the

comparison between RN and RE, and the comparison between RW and RE.

Our earlier work on the comparison between RW and RN samplings on Twitter data

[16] motivated the studies conducted in this paper. [16] found that on Twitter data

RW sampling is much better than RN sampling. Our further study on dozens of other

datasets finds that it is not always true. We identify two orthogonal factors influencing

the sampling method: the degree variation and the conductance. High degree vari-

ation will guarantee that RE sampling works well, and the lack of loosely connected

components insures that RW sampling can approximate RE sampling.

The harmonic mean estimator was first derived and studied in depth by Salganik et al.

[21] to estimate the properties of hidden population such as drug-addicts. The degree

sampling of networks, which is the focus of this paper, has also received special attention.

Stump et al. studied the sampling of degree distribution [27] for two sampling schemes,

i.e., random sampling and the degree dependent sampling of the nodes. One result of

the paper is that in random node sampling the degree distribution still follows power law

if the original network is scale-free, with a steeper slope. For average degree estimation,

both [28] and [29] used uniform random sampling of the nodes. [28] discussed the lower

bound of the estimation. Based on this result, [29] proposed a sampling scheme that

put more weight on the nodes that have less probability of being sampled.
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Table 2.1: Summary of notations

Notation Meaning Properties

N population size
n sample size
di degree of node i

τ volume of all the nodes τ =
∑N

1 di = N〈d〉
dxj degree of the j th sampled node xj ∈ {1, 2, . . . , N}
pi probability of node i being visited pi = di/τ ,

∑N
1 pi = 1

〈d〉 mean degree 〈d〉 = τ/N

〈d2〉 mean of the squared degrees 〈d2〉 =
∑N

1 d2i /N
σ2 variance of the degrees σ2 = 〈d2〉 − 〈d〉2
γ2 coefficient of variation γ2 = σ2/〈d〉2 = 〈d2〉/〈d〉2 − 1
〈dE〉 asymptotic mean degree of RE sampling 〈dE〉 = 〈d2〉/〈d〉

The impact of sampling methods (sampling by node, edge, and random walk) on the

discovery of graph properties has also been studied in [10, 27, 30, 31]. They cover a

wide range of network properties, and focus on the properties of the derived sub-graph,

instead of the estimation of the properties of the original graph. For instance, [10] in-

vestigated several network characteristics like the distribution of connected components.

[31] showed that random node sampling performs better than random edge sampling in

approximating the clustering coefficient of the graph. There are also works to find rep-

resentative subgraphs that preserve community [32] or page rank values [33]. A related

area is the data stream algorithms [34] that use a snapshot of the data to predict overall

structural properties.

In contrast to the traditional sampling in ecology and social studies, the diversity of the

access interfaces to web data collections opens up opportunities for designing sampling

schemes that take advantages of interface specifics. For instance, [17] samples valid

Facebook IDs from an ID space of 9 digits, utilizing the Facebook implementation details

that make the number of invalid IDs not much bigger than the valid ones; [35] leverages

the prefix encoding of Youtube links; [36] depends on the negation of queries to break

down the search results; [37] deals with the return limit of the search engines.

2.3 Sampling methods and their estimators

2.3.1 The problem

Suppose that in a graph there are N number of nodes labeled from 1 to N . Node i

has a degree di, i ∈ {1, 2, . . . , N}. Let the total number of degree is τ =
∑N

i=1 di, and
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the mean of degrees is 〈d〉 = τ/N . The variance σ2 of the degrees in the population is

defined as [38]

σ2 = 〈d2〉 − 〈d〉2 (2.1)

where 〈d2〉 is the second moment, i.e., arithmetic mean of the square of the degrees in

the total population. The coefficient of variation (CV, also denoted as γ) is defined as

the standard deviation, or the square root of the variance, normalized by the mean of

the degrees:

γ2 =
σ2

〈d〉2
=
〈d2〉
〈d〉2

− 1. (2.2)

A sample of n elements (dx1 , . . . , dxn) is taken from the population, where xi ∈ {1, 2, . . . , N}
for i = 1, 2, . . . , n. Our task is to estimate the average degree 〈d〉 using the sample. There

are different ways to take the samples, notably by RN, RE, and RW samplings. Dif-

ferent sampling method may require its own estimator as described in the following

subsections. Table 2.1 summarizes the notations used in this paper.

2.3.2 RN sampling

In random node (RN) sampling, the sample (dx1, . . . , dxn) is uniform random. The

arithmetic mean is an unbiased estimator as defined below:

〈̂d〉RN =
1

n

n∑
i=1

dxi (2.3)

Although it is an unbiased estimator, the problem is that its variance can be very

large for scale-free networks. The degrees of most real life networks are close to Zipf’s

distribution, inducing a large variation of the degrees. What we need is to quantify the

variance so that we know how good the estimator is. Unfortunately it is hard to predict

the variance because 1) real data does not fit exactly the Zipf’s law; 2) the exponent

and cut-off value vary from data to data.

Nonetheless, we can assume a distribution to gain some understanding of the variance.

By inspecting the degree frequency distributions of the 18 graphs, we find that most

of them can be described using Zipf-Mandelbrot law di = A/(α + iβ) [39], where A,α

and β are constants. β is the constant for the slope and we assume it is one to simplify

the problem. Note that this is the rank-degree exponent, and the corresponding degree-

frequency exponent is β + 1 = 2. This is a variation of Zipf’s law, adding α to account

for the drooping curve that exists in most real data. α is a small value relative to N that

corresponds to the turning point in the rank-degree plot. When α = 0, the distribution
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is reduced to the simplified Zipf’s law, and the log-log plot turns to be straight line.

With such assumptions, we can have

Theorem 1. Suppose the degrees follow Zipf’s law with exponent one, i.e., di = A
α+i .

The variance of the random node estimator is

var(〈̂d〉RN ) ≈ 〈d〉
2

n

(
N

[
(α+ 1) ln2 N + α

1 + α

]−1
− 1

)
. (2.4)

Proof. See appendix.

The intuitive understanding of the theorem is that the variance grows almost linearly

with the data size N , in the order of O(N/ln2N). In other words, the sample size n needs

to be in the order of O(N/ln2N) so that satisfactory estimates can be obtained. When

the data is very large, almost all the nodes need to be checked before an estimation can

be made. That is equivalent to saying that the estimation is infeasible for very large

scale-free graph using uniform random sampling.

As an illustrative example, consider the star graph that has a large node connecting

with every other node (degree=N-1), while all the remaining (N-1) nodes connect with

the large node only (degree =1). Such graph in a much larger scale is also found in real

NotreDame web graph as shown in Figure 2.7. The average degree is (N−1+N−1)/N ≈
2, assuming 1/N ≈ 0. Most of the uniform random samples will include the small nodes

only, even when the sample size is close to N . Thus most of the estimations will be 1,

while occasionally there are very large estimations when the large node is sampled.

When RE sampling is used, both small and large nodes are sampled, resulting in sampled

degree sequence (1, N − 1, 1, N − 1, . . . ). For these sampled degrees, the sample mean

is N/2, which over estimates grossly because a nodes is sampled with the probability

proportional to its degree. Such samples need a different estimator, i.e., the harmonic

mean instead of arithmetic mean. The harmonic mean of four sample degrees is 4/(1 +

1/(N − 1) + 1 + 1/(N − 1)) ≈ 2. This approximates the true value very well.

2.3.3 RE and RW Sampling

In random edge (RE) sampling, each edge has an equal probability of being sampled, and

the two incident nodes of the selected edge are taken. In random walk (RW) sampling

a node is selected randomly from its current neighbourhood. In both RE and RW

sampling, nodes are sampled with probability proportional to their degrees. For this

kind of samples, arithmetic mean estimator tends to overestimate the average degree

〈d〉 by (γ2 + 1) times. Borrowing the techniques from PPS (Probability Proportional
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to Size) sampling that is based on Hansen-Hurwitz estimators [40], the harmonic mean

should be used for these samples:

〈̂d〉RE = 〈̂d〉RW = n

[
n∑
i=1

1

dxi

]−1
(2.5)

For the detailed derivation of this estimator, we refer to [21]. In the idealized case when

the degrees follow exactly Zipf’s law, we have the following theorem that can highlight

the reduced variance of the estimator:

Theorem 2. When the degrees follow Zipf’s law whose exponent is one, the variance of

the estimator is

var(〈̂d〉RE) ≈ 〈d〉
2

n

(
1

2
ln
N + α

1 + α
− 1

)
. (2.6)

Proof. See appendix.

Comparing the estimators 〈̂d〉RN and 〈̂d〉RE , we can see that the variance of 〈̂d〉RE grows

logarithmically with graph size N , while 〈̂d〉RN increases in the order of O(N/ln2N),

almost linearly with N when N is large. In other words, in order to make the variance

commensurate to the real value 〈d〉2, the sample size n should be in the order of N for

〈̂d〉RN , but merely lnN for 〈̂d〉RE .

Example 1. The sampling and estimation methods can be illustrated using Figure 2.1.

The average degree of the graph is 2.7. The sample degrees taken by RN, RE, and RW

sampling methods are (1,2,3,5,3,4), (3,3,6,5,6,3), and (2,6,3,5,6,3), respectively. The

estimations for RN, RE, and RW samples are:

〈̂d〉RN =
1 + 2 + 3 + 5 + 3 + 4

6
= 3

〈̂d〉RE =
6

1
3 + 1

3 + 1
6 + 1

5 + 1
6 + 1

3

≈ 3.9

〈̂d〉RW =
6

1
2 + 1

6 + 1
3 + 1

5 + 1
6 + 1

3

≈ 3.5

2.3.4 Other estimators

Average degree 〈d〉 can be used to derive other properties. For instance, the coefficient

of variation of the degrees can be decided by:

γ2 =
〈dE〉
〈d〉
− 1, (2.7)
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Table 2.2: Statistics of the 18 graphs, sorted in decreasing order of the coefficient of
degree variation γ. Each graph has a citation indicating where the data is from.

Graph # Nodes γ 〈d〉 Max degree

Twitter [41] 41,652,230 35.95 70.51 2,997,652
WikiTalk[10] 2,394,385 26.34 3.89 100,029
BerkStan[10] 685,230 14.69 19.41 84,230
EmailEu[10] 265,009 13.93 2.75 7,636
Stanford[10] 281,903 11.79 14.14 38,625

Skitter[10] 1,696,415 10.46 13.08 35,455
Youtube[42] 1,138,499 9.65 5.25 28,754

NotreDame[10] 325,729 6.40 5.25 10,721
Gowalla[10] 196,591 5.54 9.67 14,730
Epinion[10] 75,879 4.02 10.69 3,044
Google[10] 875,713 4.02 9.87 6,332

Slashdot[10] 82,168 3.35 12.27 2,552
Facebook-1[43] 2,937,612 3.14 14.27 4,356

Flickr [10] 105,936 2.65 43.43 5,425
Facebook-2 [44] 63,731 1.56 25.64 1,098

Amazon[10] 410,236 1.27 11.89 2,760
CitePatents[10] 3,774,768 1.20 8.75 793

RoadNet [10] 1,965,206 0.35 2.82 12

where 〈dE〉 is the average degree of the samples obtained by RE sampling. γ in turn

can be used to estimate the number of nodes by the following estimator [14–16]:

N̂ = (γ2 + 1)
n2

2C
, (2.8)

where n is the sample size, C is the number of collisions in the samples. When γ = 0,

every node has an equal probability of being sampled and the above estimator is reduced

to N̂ = n2/(2C), a well-known equation in birthday paradox.

2.4 Experiments

2.4.1 Datasets

We conducted experiments on dozens of large networks we can find. Most of them are

from Stanford SNAP graph collection [10]. Due to space limitation, for some network

categories only one graph is reported if they have similar behaviour. For instance, cita-

tion graphs have similar degree distribution, similar coefficient of variation, and similar

error ratios between RN, RE, and RW sampling. For these categories, we choose only

one graph for each category. In the category of the Web graph datasets, RW sampling
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deviates greatly from RE sampling. So we include several Web graphs, including the

Web graph on the domains of Notre Dame, Stanford, and Berkley-Stanford, to investi-

gate the cause for such deviation. Facebook data is one of the few exceptions that RE

sampling is not obviously better than RN sampling. Therefore we include two Facebook

graphs that can be found. More complete data description and programs can be found

at http://cs.uwindsor.ca/∼jlu/graph.

Altogether 18 graphs are reported and their statistics are summarized in Table 2.2. They

are sorted according to γ, the coefficient of variation of the degrees. γ is proportional

to the RRMSE of RN sampling, and decides whether RE is better than RN sampling.

In the last a few datasets, the maximal degrees are smaller relative to their data sizes,

causing small γ value. We highlight four datasets with italic font, whose RE sampling

is not as good as RN sampling.

The degree distributions give an overview of the data and are shown in Figure 2.2.

Among these graphs, most of them have a long-tail distribution, resulting in large co-

efficient of variation. Graphs in the last row have small γ values because the maximal

degrees are small compared to their data sizes. In particular, RoadNet graph has max-

imal degree 12. They are scale-free networks since their log-log plots obviously deviate

from straight-lines. For these graphs RE sampling does not have clear advantage. Web

graphs (sub-figures 3, 5, 8) do not form a straight line in the upper part of the log-

log plots, indicating irregularity in the graph structure. For these graphs, simple RW

sampling should be avoided.

It is interesting to note that two representative social networks Twitter and Facebook are

in the two extremes of the spectrum of γ values, due to the way the networks are formed.

Twitter allows unlimited number of followers, while Facebook has an up-limit for the

maximal number of friends. Therefore Twitter is a scale-free network with large degree

variation, while Facebook has a sharp dropping curve causing low γ value. Because of

their structural difference, for Twitter data RE is hundreds of times better than RN

sampling in terms of sample size, for Facebook data RE and RN samplings are similar.

The estimators are evaluated by RRMSE (Relative Rooted MSE), which is defined as

below:

RRMSE(〈̂d〉) =
1

〈d〉

√√√√ 1

n

n∑
i=1

(
〈̂d〉i − 〈d〉

)2
(2.9)

where 〈̂d〉 is an estimator, 〈d〉 is the true average degree, 〈̂d〉i is the estimation obtained

in the i-th run. All the RRMSE data are obtained by 5000 independent runs, except for

Twitter data that has 2000 runs due to its large size and the long computation time of

the sampling. Twitter data is the complete user network collected in 2009 [41]. It has
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Figure 2.2: Degree distributions of 18 graphs. Plots are sorted in decreasing order
of coefficient of variation γ. Graphs in the last row have small γ values because the
maximal degree is small compared to the data size. For these graphs RE sampling does
not have obvious advantage. Web graphs (sub-figures 3, 5, 8) do not form a straight
line in the upper part of the log-log plots, indicating irregularity in the graph structure.

For these graphs simple RW sampling should be avoided.

billions of edges that can not fit into computer memory. We use index engine Lucene

to store the data in hard drive and use search engine to mimic the random sampling

methods.

2.4.2 RE vs. RN sampling

Panel A in Figure 2.3 shows that RE outperforms RN sampling on most of the data.

The estimation error of RN sampling is proportional to γ as expected. Consequently,

the figure shows that RRMSE of RN sampling grows from RoadNet up to Twitter, since

the datasets are sorted according to γ.

In contrast to the monotonic increase of RN sampling, RRMSE of RE sampling remains

mostly a constant as Theorem 2 indicates. Because of this, the RRMSE ratio between

RN and RE sampling grows almost linearly with the coefficient of variation γ as shown

in panel (B) of Figure 2.3. For Twitter and WikiTalk networks, RN sampling is around

15 times worse than RE sampling in terms of RRMSE. When translated into sample size,

that means 225 (= 152) times more samples are needed to produce the same confidence

interval as RE sampling.

This huge difference between RN and RE sampling will change the practice of sampling,

especially in big data. Here we are not talking about a few percentage of improvement.

It is a saving in several orders of magnitude. We project the advantage of RE sampling



Chapter 2. Uniform Random Sampling on Graph: To Be or Not To Be? 18

(A) RRMSE of three sampling methods for 18 graphs.
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Figure 2.3: Summary of the three sampling methods on 18 graphs. (A) Comparison
in terms of RRMSEs. (B) The advantage of RE grows as a linear function of γ. It
shows that RRMSE of RN/RE grows almost linearly with γ. Pearson’s coefficient of
correlation is 0.9354. Inset: there are four cases where RN/RE is smaller than one.
These four graphs from left to right are RoadNet, Citation, Facebook-2, and Flickr. In
both (A) and (B) the sample size is 400, and RRMSEs are obtained over 5000 runs

except for Twitter data that has 2000 runs.

will become even more prominent with the growth of data size. Although most data

exhibit power law distributions with similar exponent, their coefficient of variations grow

with the data size, therefore the savings of RE sampling.

There are only four datasets whose RE sampling is slightly worse than RN sampling.

Panel B in Figure 2.3 shows that four datasets are below the horizontal line 1. A closer

inspection on these datasets shows that they all have small degree variations as shown

in Figure 2.2. RoadNetwork has maximal 12 degrees, and its degrees show a log-normal

distribution. Facebook has a limit on the number friends, thus the maximal degree is
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Figure 2.4: RRMSEs of RN, RE, and RW samplings as a function of sample size for
18 graphs. The dotted, dashed, and solid lines are for RN(. . . ), RE(−−), and RW(–)
samplings respectively. It shows that in most cases the sample size does not change the
relative positions of the sampling methods. The exceptions are the web graphs 3 and 5
where RW sampling does not improve with the increase of sample size because of the

random walk traps.
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Figure 2.5: The degree distributions of the samples obtained from RE (Random
Edge) samplings. n=8,000. The log-log plots in the first two rows exhibit a “V” shape,
where the sampled small nodes resemble the distribution of the original graph, while
the sampled large nodes have a tail pointing upwards. These plots in the first two
rows indicate that both small and large nodes are well represented in the sample. The
plots in the last row indicate that the sample distribution is similar to the original
distribution, therefore the RRMSE of RE sampling is similar to that of RN sampling.
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abnormally small compared with its size. Flickr has an irregular degree distribution that

has a large bump around degree 100.

Another perspective to understand the reduced variance of RE sampling is its sample

distributions in Figure 2.5, where the sample size 8000. It shows that most of the sample

distributions have a “V” shape, indicating that the small nodes still follow power law

roughly as in the original data, while the large nodes can be sampled many times. In

other words, both small and large nodes are sampled multiple times but for different

reasons. Small nodes are sampled because there are many of them. Although each

individual small node has a very small probability of being sampled, collectively the large

number of small nodes will guarantee that some will be sampled. On the other hand,

large nodes are sampled because they have higher probability of being hit by random

edges, even though there are only a few of them. Therefore both small and large nodes

are well represented in the sample, resulting in small variance of the estimation. In RN

sampling, large nodes are included by chance, inducing a large variance in estimation.

The datasets that do not have the “V” shape in RE sampling happen to be the ones not in

favour of RE sampling. They do not have the long tail, do not have very large nodes, and

do not have large nodes that are sampled many times. Their RE sample distributions are

just similar to the original data, or to RN sample distribution. Therefore RE sampling

does not have an advantage in this kind of data.

Two of the representative online social networks are Twitter and Facebook. It is in-

teresting to see that they favour different sampling methods, one RE sampling and the

other RN sampling. Moreover, their RN/RE ratios happen to be on the two extremes of

the spectrum. Twitter has the second highest RN/RE ratio because it is scale-free and

the largest network in our experiment. Facebook-2 has the lowest RN/RE ratio because

it has a cap on the number of friends.

2.4.3 RW vs. RN sampling

In many practical situations, RE sampling is not easy to implement, while RW sampling

is supported by most real networks such as Twitter. RW sampling can be regarded as

an approximation to RE sampling in that asymptotically the node sampling probability

is proportional to its degree. The difference between RW and RE is dependent on the

mixing time, the steps to reach closely enough the stationary distribution. The mixing

time, in turn, is inversely proportional to the square of the conductance of the graph

[45]. Let V be the set of nodes of a graph. The conductance of a subset of nodes S of
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V is

Φ(S) =

∑
i∈S,j∈V \S Aij

min(A(S), A(V \S))
(2.10)

where A is the adjacency matrix of the graph, and A(S) =
∑

i∈S,j∈V Aij . The conduc-

tance of the graph is

Φ = minSΦ(S). (2.11)

Our experiments as depicted in Figure 2.3 (A) show that RW is worse than RE consis-

tently as expected. To have a detailed comparison between RW and RE samplings, Fig-

ure 2.6 plots the ratio of RRMSEs (RW/RE) against graph conductance for 18 datasets.

The sample size for both RN and RW samplings is 400, and each RRMSE is obtained

from 2000 runs. It shows that all the ratios are above the dashed green line for the value

of one, indicating RE is always better than RW. When the conductance is not very small

(the left section of the plot), overall RW can approximate RE sampling well, thereby

outperforms RN sampling. When the conductance is small, indicating the existence

of loosely connected components, RW can be dramatically worse than RE. The ratio

RW/RE can be as large as that of RN/RE, thereby offsets the advantage gained by PPS

(probability proportional to size) sampling, making RW and RN incomparable. Taking

NotreDame and Flickr are example, their RW samplings are around 15 times worse than

RE sampling in terms of RRMSE. When measured in sample size, they can be 152 = 225

times worse. This reveals the reason why there are mixed results for the comparison

between RW and RN samplings. Both RN and RW can be 10 times worse than RE,

but for different reasons. RN is worse because of the large degree variance, while RW is

because of the existence of loosely connected component indicated by small conducatnce

Φ. It is remarkable that both degree variance and loosely connect component can be

the dominant factor.

To find out the reason for the poor performance of RW sampling for some datasets,

we plot the random walk traces in Figure 2.7 for six networks. Three of them (Flickr,

NotreDame, and Stanford) have low graph conductance, while three others (Facebook,

Amazon and Youtube) have high conductance as comparison. These six networks are

also highlighted in Figure 2.6 using different markers. Figure 2.8 shows the conduc-

tances over the size of the subcomponents. For the networks in the first row, their

lowest conductance are smaller than 10−3. For Flickr data, the conductance value dips

down only when the component size is large (≈ 104). This is reflected in its random

walk trace where there are two components clearly separate by a long single edge link.

Both NotreDame and Stanford have many loosely connected components, as shown by
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Figure 2.6: Standard error ratio between RW and RE vs. graph conductance Φ for
18 datasets. Sample size is 400.

many low conductance values over a variety of component sizes. Those three networks

are in contrast to the well enmeshed networks Facebook-2 and Youtube, whose the con-

ductances are high. Amazon also has a low conductance (≈ 10−3), but reaches the

lowest point only when the component size is around 100. This small component has

less impact on the overall network structure as shown in the RW trace, and little impact

on the performance of RW as shown in Figure 2.6.

2.5 Conclusions

This paper shows the importance of selecting the appropriate sampling method –the

difference between the sampling methods can be infinitely large in theory and orders

of magnitude in observed data. Such a large difference will have great impact on the

sampling practice, especially for web-based networks such as online social networks where

the sampling process is costly because of network traffic and daily quota.

It is remarkable to notice that it is uniform random node (RN) sampling that is on the

downside of the comparison. In the past, great efforts are devoted to obtain uniform

random samples using methods such as Metropolis-Hasting Random Walk [7]. During

the sampling process many nodes are visited, examined, and rejected. In the end these

precious uniform random samples can be much worse than the samples obtained using

low cost simple random walk that are supported by many online data sources.

RN sampling is not always inferior to RW or RE sampling. When the data has a normal

distribution RN sampling should be the method of choice. When the network is large

and scale-free with Zipf law exponent one, we show that RE sampling is much better.
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Figure 2.7: (Best viewed in colour) Random walks on six networks. Flickr,
NotreDame and Stanford have loosely connected components while Amazon, Facebook
and Youtube are well enmeshed. Each random walk contains 6 × 104 nodes except
NotreDame which has 15 × 104 nodes. Node colour indicates the degree of the node.
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For data not following some distribution exactly, we suggest to use γ, the coefficient of

variation of the degrees, to select the sampling method. While it is easy to understand

that uniform random sampling has large estimation error for data with large variance,

it is not straightforward to see whether RE sampling can reduce the variance for data of

various distributions. We show that the estimation error of RE sampling varies slightly

across all the data we examined.

Although we have a clear answer for the selection of sampling methods between RN

and RE samplings, RE sampling may not be supported in some real applications. RW

sampling is a more practical method that can approximate RE sampling in that both

methods sample nodes with probability proportional to its size. The difference is that

in RW sampling this is true only asymptotically. Thus the performance of RW sampling

differs from data to data. Our experiments show that in general RW sampling performs

a little bit below RE sampling as expected, but sometimes it can be much worse, even

worse than RN sampling when there are loosely connected components in the graph

characterized by graph conductance.

This paper focuses on average degree estimation so that the detailed analysis and com-

parison could be done. It is the first building block on top of which other properties

could be derived. For instance, population size estimation is built on top of average

degree estimation as shown in Section 2.3.4. In addition to the degrees sampled, size

estimation depends on the collisions observed. This additional dimension of variation

makes the evaluation of the sampling methods not so straightforward.

Overall, we study the most basic sampling methods for the simplest property of a graph

so that we can draw conclusive results. Based on this result, we can develop more

advanced sampling methods for more complex properties. For sampling methods, with

the understanding that RE sampling is the best for scale-free networks, we can design

a sampling method that can approximate RE sampling as much as possible, such as

random walk with restart. For graph properties to be estimated, we can also discover

friends of friends and Gini coefficient in addition to population size [16], and we expect

that RE sampling would be better for some other structural graph properties such as

clustering coefficient.
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2.7 Appendix

Both Theorem 1 and Theorem 2 assume that the degrees follow the Zipf’s-Mandelbrot

law [39] which states that if the degrees di are sorted in descending order, then

di =
A

α+ i
, (2.12)

where α and A are constants. α� N . All the degrees sum up to τ , i.e.,

N∑
1

di ≈
∫ N

1

A

α+ x
dx ≈ A ln(

α+N

α+ 1
) = A lnB = τ, (2.13)

where we use B = (α+N)/(α+1) to make our derivations more concise. The normalizing

constant A = τ/ lnB. Besides,
∑N

1 d2i can be approximated by the following since N is

a very large number:

N∑
i=1

d2i ≈
∫ N

1

A2

(α+ x)2
dx ≈ A2

α+ 1
. (2.14)

2.7.1 Proof of Theorem 1

Proof. Based on Equations 2.13 and 2.14, the variance of all the degrees is

σ2 = 〈d2〉 − 〈d〉2 = 〈d〉2
[
N

∑N
1 d2i

(
∑N

1 di)2
− 1

]

≈ 〈d〉2
[

N

(α+ 1) ln2B
− 1

]
. (2.15)

Using central limit theorem,

var(〈̂d〉RN ) =
σ2

n
=
〈d〉2

n

[
N

(α+ 1) ln2B
− 1

]
. (2.16)

2.7.2 Proof of Theorem 2

Proof. When nodes are sampled with simple random walk, the asymptotic probability

of the node i being visited is pi = di/ τ . When n nodes (x1, x2, . . . , xn) are sampled,

where each xi ∈ {1, . . . , N}, the Hansen-Hurwitz size estimator of the population size
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N is [38]:

N̂H =
1

n

n∑
i=1

1

pxi
=
τ

n

n∑
1

1

dxi
, (2.17)

and the variance of N̂H is [38]:

var(N̂H) =
1

n

N∑
i=1

pi

(
1

pi
−N

)2

. (2.18)

Replacing pi with di/τ and expanding di with A/(α+ i), we have

var(N̂H) =
1

n

(
τ

A

N∑
1

i−N2

)
≈ N2

n

(
lnB

2
− 1

)
. (2.19)

The Taylor expansion of 〈̂d〉RE around N is

〈̂d〉RE =
τ

N̂H

= τ

(
1

N
− N̂H −N

N2
+ . . .

)
. (2.20)

By the Delta method, the variance of 〈̂d〉RE is

var(〈̂d〉RE) = τ2
var(N̂H)

N4
=
〈d〉2

n

(
lnB

2
− 1

)
. (2.21)
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3.1 Introduction

Size estimation is a classic problem that has many applications, ranging from the war

time problem of finding out the number of German tanks [46], to the more recent problem

of gauging the size of the Web and search engines [2, 7, 47, 48] and online social networks

[14]. In the era of big data, the first thing we want to know is how big the data is. The

size is of interests to general public and decisions makers, and determines the way for

IT practitioners to perform data analysis and data mining.

The direct calculation of data size is often not for possible or desirable for several reasons.

The data can be distributed and there is no central data deposit, such as in the case of

peer-to-peer networks or the Web [2]. Even when the data are available in one place,

there are requirements for fast just-in-time analysis of the data. Quite often, data are

hidden behind some searchable interfaces and programmable web APIs, such as online

social networks where the access is limited and the data in its entirety is not available

[14, 18]. Regardless of a large variety of application scenarios, a common approach to

solving these problems is to use a sample to have a fast estimation of the data size,

instead of slow and direct counting of the data.

Many datasets can be viewed as graphs, especially the Web and online social networks

such as Twitter and Facebook. These graphs are large, often distributed and hidden

behind searchable interfaces. The sampling process requires the sending of queries that

occupies network traffic. In addition, most data sources impose daily quotas. In such

case it is paramount to choose an efficient sampling and estimation method.

The norm of sampling practice in general, and size estimation in particular, is to use

uniform random samples whenever possible. This paper shows that, on the contrary,

uniform random sampling should be avoided when PPS (probability proportional to

size) sampling is available. For ease of discussion, sampling is modelled in the context

of graph, where uniform sampling corresponds to uniform random node (RN) sampling,

PPS sampling corresponds to random edge (RE) sampling. In this setting, we prove

that RN sampling is always inferior to RE sampling, and show that the performance

ratio between RN and RE samplings can be quantified by the relative degree variance of

the nodes. Since large and scale-free networks can have very large degree variance, RE

sampling can excel RN sampling in orders of magnitude. Furthermore, we show that

random walk (RW) sampling can approximate RE sampling when the graph conductance

is not very small (equivalently when there are no loosely connected components).
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Very recently, we gave the size estimator for RE sampling in [15]:

N̂E ≈ Γ̂
n2

2C
. (3.1)

Here n is the total number of sampled nodes, C is the number of collisions, and Γ = γ2+1

where γ is the coefficient of variation of node degrees. [15] analyzed and corrected its

bias. This paper derives its variance, and consequently proved that it is better than RN

sampling.

More specifically, our main contributions are: 1) we derive the variance of the size

estimators for RN sampling and RE sampling, and analytically show that RE sampling

is better than RN sampling up to a factor
√

Γ in terms of sample size. This result is

also supported empirically by 18 large real-world networks; 2) Empirically we show that

RW can approximate RE sampling in many datasets, and fail for networks with loosely

connected component. We show that the ratio between RW and RE is dependent on

the conductance of the graph.

3.2 Background and Related Work

3.2.1 Random Node Sampling

The traditional and widely applied size estimator is the Petersen estimator [49] that

assumes the nodes are sampled uniformly at random. It is also used for the estimation

of the size of WWW [2, 50] and other online data sources [5]. Suppose that we sample n1

number of distinct nodes first, then sample another n2 number of distinct nodes. In both

sampling occasions, assume that each node has the equal probability of being sampled.

Among two captures, there are D number of duplicates. The Petersen estimator is

N̂P =
n1n2
D

(3.2)

This estimator is also the starting point for the capture-recapture method that is well

studied in ecology [49]. When there are multiple capture occasions, several estimators

are developed. Among them is the approximate Maximum Likelihood Estimator (MLE)

N̂D that is given by Darroch [51]:

n−D = N
(

1− e−
n
N

)
, (3.3)

Where n is the total number of sampled nodes including duplicates, D is the duplicates.

In the context and random graph theory, this equation has also been used to predict the
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isolated nodes in random graph when nodes are connected randomly [52]. Unfortunately

it does not have a simple closed form solution [52], i.e., it can not be solved algebraically

for N . In online social network studies, [53] used numeric method to find the solution

to this estimator. In deep web size estimation, [23] gives an approximate solution for

N that reveals a power law governing the data not being sampled and the overlapping

rate.

Alternatively, there is an estimator based on the number of collisions [54] instead of

number of duplicates in Equation 3.3. Let fi denote the number of nodes that are

sampled exactly i times. Collisions C =
∑+∞

i=1

(
i
2

)
fi, while duplicates D =

∑+∞
i=1 (i−1)fi.

The random node estimator N̂N is

N̂N =

(
n

2

)
1

C
≈ n2

2C
. (3.4)

All these estimators assume that nodes are sampled with equal probability, i.e., they

are in the category of RN sampling. They have similar performance, and analytically

Equation 3.3 can approximate the other two estimators by applying Taylor expansion

on the right side of the equation. In literature, most approaches use one of these estima-

tors, while the major research challenge is to obtain the uniform random samples using

algorithms such as Metropolis-Hasting random walk [7].

3.2.2 Sampling Nodes With Unequal Probability

When the node sampling probability is not uniform, the estimation becomes notoriously

difficult. If we continue to use the estimators in the previous section, there will be a neg-

ative bias because the same population will induce more collisions (or duplicates) when

sampling probabilities are not equal. Some researches adjust the bias by devising new

estimators [23, 47, 48]. Broder et al.[47] assigned less weight to large documents being

sampled; Shokouhi et al. [48] run regression on past data to establish the relationship

between the homogeneous and heterogeneous data; Lu et al. [23] went a step further by

using γ, the degree of heterogeneity, to adjust the discrepancy. All those estimators are

mostly empirical and data dependent.

On the other hand, unequal sampling probability gives us a great advantage for size

estimation when we known that the sampling probability is proportional to its degree

(or PPS sampling). We gave the following estimator in [15], which can be also derived



Chapter 3. Uniform Random Sampling not Recommended for Size Estimation 31

from [14, 54]:

N̂E = Γ

(
n

2

)
1

C
≈ Γ̂

n2

2C
, (3.5)

where Γ = γ2 + 1. Comparing Equations 3.9 and 3.5, we can see that the only difference

is Γ. It means that we can estimate the size as if the nodes were sampled uniformly at

random, then increase the estimation by a factor of Γ. When Γ is small, as in the case of

most studies in Ecology where Γ is typically in the range of 1..2, the difference between

N̂N and N̂E is small. In large scale-free networks, Γ can be as large as 1000, as in the

case of Twitter user network. This results in striking difference between N̂N and N̂E .

Given the same sample size n and graph size N , large Γ also induces more collisions,

consequently higher accuracy as we will explain. In other words, the advantage of PPS

sampling becomes more prominent when Γ is large.

We want to emphasize that Equation 3.5 can be applied only in PPS sampling, or random

edge sampling. In literature, for instance in [14], an estimator equivalent to the above

was developed for samples obtained by random walk (RW), based on the assumption

that RW sampling can approximate RE sampling in that asymptotically the sampling

probability of a node is proportional to its degree. While RW can approximate RE

sampling for well enmeshed fast mixing networks, it can differ greatly from RE sampling

when the graph conductance is low. [14] suggested that RW sampling outperforms RN

sampling on datasets IMDB, DBLP and Facebook. We prove that it is RE sampling, not

RW sampling, that outperforms RN sampling. Empirically we repeated the experiments

on these three datasets as well as 15 other networks. While it is true that for these

three networks RW does outperform RN sampling, for some other datasets, especially

the Web graphs formed by web pages and hyperlinks, we observe that RW is much worse

than RE sampling.

The estimator N̂E is not well studied in literature, partially because Γ̂ is not easy

to estimate in traditional applications such as wildlife population estimation [49]. In

applications such as online social networks, PPS sampling or its approximations are

possible, making the estimation of Γ feasible. Among the n number of samples obtained

by RE sampling, suppose that their degrees are dx1, dx2, . . . , dxn. Let 〈d〉 and 〈dE〉
denote the average degree of the graph and average degree obtained by RE sampling,

respectively. We showed that Γ can be estimated by [15]

Γ̂ =
〈̂dE〉
〈̂d〉

, (3.6)



Chapter 3. Uniform Random Sampling not Recommended for Size Estimation 32

where

〈̂dE〉 =
1

n

n∑
i=1

dxi, (3.7)

〈̂d〉 =
n∑n

i=1 1/dxi
. (3.8)

3.2.3 Evaluation of Estimation Methods

Estimators are normally evaluated in terms of bias (bias(N̂)), variance (var(N̂)), and/or

the combination of them, i.e., mean squared error (MSE(N̂) = bias(N̂)2 + var(N̂)). In

most of size estimation research, the evaluations are empirical, for instances in [14, 16,

26, 55]. Empirical evaluation is data dependent, and the result may not be extended to

other datasets. This problem is more acute for network size estimation where network

topology differs greatly. For instance, both [14] and [16] observed that RW outperforms

RN sampling in terms of MSE when the same number of samples are taken, one on

DBLP and Facebook networks, the other on Twitter data. On other networks such as

the Web graphs, we find that RW is actually much worse than RN sampling.

To draw more conclusive results, we derive the variances for RN and RE estimators,

thereby their performance can be compared analytically. We show that RE sampling is

guaranteed to outperform RN sampling. What is more, the improvement ratio can be

quantified by the relative degree variance. On the other hand, the comparison between

RN and RW samplings depends on both degree variation and graph conductance.

3.2.4 Graph Sampling

It has been an open problem to decide which is a better sampling method for graph

[10, 27]. There are three basic sampling methods for graph, namely, random node

(RN), random edge (RE), and random walk (RW) [10, 30], and various combinations

and improvements [20]. Most of the research focuses on the comparison of RW sampling

with RN sampling [14, 16, 26], Metropolis-Hasting Random Walk [17, 26], and variations

of RW sampling [18]. [31] is one of the few studies on RE sampling. For data size

estimation, recently it was observed empirically that RW sampling could be better than

RN sampling for some datasets such as Twitter [16], DBLP, Facebook, and IMDB [14].

No definitive analytical answer was obtained because the performance of RW sampling

method depends on many factors including the degree distribution, graph topology, and

the property to be discovered.

Instead of comparing RW and RN directly, this paper uses RE sampling as a bridge to

connect them. Unlike RW sampling where the node sampling probability is dependent
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on many factors, in particular the mixing time of random walk, RE sampling selects

a node with probability proportional to its degree. Thanks to this property, we prove

analytically that RE is better than RN sampling, and quantify the improvement rate

by the coefficient of variation (γ) of node degrees. Furthermore, we show that RW can

approximate RE sampling when graph conductance (Φ) is not very small, thereby it is

better than RN sampling. When conductance is small, indicating that RW mixing time

is long, RW sampling can fail grossly for some datasets. Our result is supported by 18

representative real-world networks collected from various sources.

3.2.5 Other Size Estimation Approaches

In contrast to the traditional sampling in ecology and social studies, the diversity of the

access interfaces to web data collections opens up opportunities for designing sampling

schemes that take advantages of interface specifics. For instance, [17] samples valid

Facebook IDs from an ID space of 9 digits, utilizing the Facebook implementation details

that make the number of invalid IDs not much bigger than the valid ones; [35] leverages

the prefix encoding of Youtube links; [36] depends on the negation of queries to break

down the search results; [37] deals with the return limit of the search engines. Dasgupta

et al. use random walk in query space to probe database properties [56] [36]. This

paper differs those more practical applications in that they focus on the methods to find

the (mostly uniform) samples, while we discuss the performance of different estimators

regardless of the sampling details.

3.3 Random Node (RN) Sampling

When n number of nodes are selected with equal probability with replacement from a

graph, the total number of nodes N can be estimated by random node estimator N̂N ,

which is derived from the classic birthday problem and used in several papers [14, 15]:

N̂N =

(
n

2

)
1

C
≈ n2

2C
, (3.9)

where C is the total number of collisions. The approximation holds because we only

consider big data in this paper where the size N and sample size n are both large.

Therefore n2 ≈ n(n − 1). What we are interested in is the variance of the estimator.

Based on the assumption that N is large, we derive
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Graph N(×103) γ or
√

Γ− 1 Φ(×10−5)

WikiTalk [10] 2,388 26.32 2,700
BerkStan [10] 654 14.51 5.3
EmailEu [10] 224 13.66 13
Stanford [10] 255 11.51 5.8

Skitter [10] 1,694 10.46 56
Youtube [42] 1,134 9.64 440

NotreDame [10] 325 6.40 9.4
Gowalla [10] 196 5.54 1,200
Epinion [10] 75 4.02 610
Google [10] 855 4.00 62

Slashdot [10] 82 3.35 1,900
Facebook [43] 2,937 3.14 590

Flickr [10] 105 2.64 68
IMDB [57] 374 2.05 130
DBLP [58] 511 1.61 560

Amazon [10] 410 1.27 98
Gnutella [10] 62 1.21 9,100

CitePatents [10] 3,764 1.20 1,100

Table 3.1: Statistics of the 18 real-world graphs, sorted in descending order of the
coefficient of degree variation γ. Φ is the conductance.

Lemma 1 (Variance of N̂N ). The estimated variance of RN estimator N̂N is

v̂ar(N̂N ) ≈ N2

E(C)
≈ 2N3

n2
(3.10)

Proof. See Appendix.

Intuitively, the expected number of collisions decides the accuracy of the estimation.

For instance, when the expected collisions E(C) = 100, the estimated variance is ap-

proximately N2/100 and the standard error (SE) is 0.1N . Therefore the 95% confidence

interval is N ± 1.96 × SE = N ± 0.196N . In other words, the range is within [0.8N,

1.2N] when there are 100 collisions. When the number of collisions is 400, the esti-

mated relative standard error (RSE) is 1/20 = 0.05, so the confidence interval is about

N ± 0.1N .

We conducted experiments on 18 datasets listed in Table 1 to validate Lemma 1. Since

all the datasets have very close results, in Figure 3.1 we only show the result for one of the

graphs, a Facebook graph from [43]. The red (upper) lines depict the estimated variance

given by Equation 3.10 and the observed variance with 3000 runs for RN sampling. It

demonstrates that Equation 3.10 can predict the variance very well. The blue lines are

for RE sampling that will be discussed in the next section. The sample sizes ranges
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Figure 3.1: Relative standard errors of RE and RN samplings on Facebook data when
sample size ranges between 10 ×

√
2N and 20 ×

√
2N , where

√
2N = 2423. The red

lines are for RN sampling and blue lines are for RE sampling.

Figure 3.2: Comparison of RE and RN in terms of standard error when the sample
size of RE is

√
Γ times smaller than that of RN, for 18 datasets. The expected C for

both RE and RN sampling is 100.

between 10×
√

2N and 20×
√

2N , so that the expected collisions are between 100 and

400. In all the other datasets, Lemma 1 can also predict the variance accurately as

corroborated in Figure 3.2 and 3.4.
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Figure 3.3: Estimated and observed RSE of RE sampling with the growth of sample
size over 18 datasets. The sample size ranges between 10×

√
2N/Γ and 20×

√
2N/Γ,

i.e., the expected collisions are between 100 and 400.

3.4 Random Edge (RE) Sampling

In RE sampling, each edge is sampled with equal probability. When an edge is selected,

two nodes incident to the edge are chosen as samples. Although traditionally RE sam-

pling is hard to implement, RE sampling becomes possible in modern web applications,

such as sampling two bloggers by picking a random message connecting them. In this

sampling scheme, each node is selected with probability proportional to its degree. Large

nodes have higher probability being selected, resulting in higher number of collisions for

the same sample size in RN sampling. In this sampling method, the number of nodes

N can be estimated by the random edge estimator N̂E [14, 15]:

N̂E ≈ Γ̂
n2

2C
, (3.11)

where Γ = γ2 + 1, and γ is the coefficient of variation of the degrees in the graph.

This estimator has been evaluated only empirically in the context on RW sampling [14].

In order to understand its performance, we need to derive the variance as below:

Lemma 2 (Variance of N̂E). The estimated variance of RE estimator N̂E is

v̂ar(N̂E) =
N2

E(C)

(
1 +

nΓCV 2(Γ)

2N

)
=

2N3

n2Γ

(
1 +

nΓCV 2(Γ)

2N

)
, (3.12)

where CV (Γ) is the coefficient of variation of Γ.
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Figure 3.4: Comparison of three sampling methods. The sample size n =
√

2NC
where

√
C = 10. It shows that for RN sampling (red solid bars), the relative standard

error is equal to 1/
√
C = 0.1 across all the datasets. RE sampling is consistently smaller

than RN sampling, and decreases with the growth of γ. RW sampling can approximate
RE sampling for some datasets. For NotreDame etc. that have low conductance, RW

is grossly wrong.

Proof. See Appendix.

When N is very large, the ratio n/N can be very small to produce enough collisions. So

the second term in Equation 3.12 can be omitted when Γ is small, rendering Equation

3.12 as

v̂ar(N̂E) =
N2

E(C)
=

2N3

n2Γ
. (3.13)

In this case, the variance is N2/E(C), or the relative standard error (RSE) is 1/
√
E(C).

When E(C) = 100, RSE should be around 0.1. Figure 3.3 shows the estimated and

observed RSE over 18 datasets. The sample size ranges between 10 ×
√

2N/Γ and

20 ×
√

2N/Γ, i.e., the expected collisions are between 100 and 400. As expected by

Lemma 2, both the estimated and observed RSEs are around 0.1 when
√
E(C) = 10

and Γ is small for the datasets in the last row of the figure. For datasets with larger

Γ, the second term in Equation 3.12 takes charge and becomes more dominant. That

explains why the estimated (and observed) RSEs of the datasets in the first row of the

figure are greater than 0.1. Similarly, when sample size n = 20 ×
√

2N/Γ, i.e., when

E(C) = 400, the RSE is around 0.05 as expected for datasets with small Γ. Again for

larger Γs, the RSE is higher than 1/
√
E(C).
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Figure 3.5: (Better viewed in colour) Subgraphs obtained by RW sampling from
Flickr, EmailEu, Stanford and Youtube. Each subgraph contains 60,000 nodes. Node
colour represents its degree in the original graph. Green=1; Blue=2 ∼ 9; Orange=

10∼99; Red=100∼ ∞.

Comparing Equations 3.10 and 3.13, the only difference is Γ. Given the same sample

size n, RE sampling creates Γ times more collisions. Therefore the variance of N̂E is

smaller by a factor of Γ. i.e.,

Theorem 3 (RN vs. RE). To achieve the same variance of N̂E , N̂N needs to use at most
√

Γ times more samples.

These results can be explained from two perspectives using Figures 3.1 and 3.2. In these

figures and other plots throughout this paper, all the observed variances are calculated

from 3000 repetitions. The variance is depicted using relative standard error (RSE) so

that it is normalized by data size and different datasets are comparable in y-axis. First,

we focus on one dataset using Figure 3.1 that compares the variances of RE and RN

sampling side by side for the Facebook data. It shows that 1) the estimated variance
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agrees with the observed variance very well; 2) when n = 10
√

2N , i.e., the expected

number of collisions is 100 for RN sampling, the RSE is about 3 times higher than that

of RE sampling, which is a good approximation to our Theorem 1; 3) It also shows that

the RSE of RN sampling drops with faster speed, causing the diminishing advantage of

RE sample as the sample size grows.

Secondly, we compare them on all the 18 datasets for a fixed value of expected collisions

in Figure 3.2. In this figure E(C) = 100 for both RE and RN sampling, i.e., the sample

size of RE sampling is
√

Γ times smaller than that of RN sampling. As indicated by

Theorem 1, RE sampling and RN sampling has similar RSEs. But RE can have higher

variance when Γ is large since the second term in Equation 3.12 can no longer be omitted.

3.5 Random Walk (RW) Sampling

Although RE sampling is possible nowadays, RW sampling is more prevalent and sup-

ported by most real networks such as Twitter and Facebook [17]. RW sampling can be

regarded as an approximation to RE sampling in that asymptotically the node sampling

probability is proportional to its degree. Based on this assumption, the same RE esti-

mator N̂E is used in this paper and others’ such as [14, 16, 18, 55]. It was reported that

RW is better than RE sampling for Twitter [16], DBLP, IMDB, and Facebook [14]. Now

we run 18 datasets with 3000 repetitions. The sample size is
√

2NC where C=100. i.e.,

the expected number of collisions is 100 for random node sampling. The comparison of

three sampling methods is depicted in Figure 3.4. As Lemma 1 indicates, RSE of RN

sampling is approximately 1/
√

100 = 0.1. For RE sampling, the same sample size will

create more collisions, thereby less RSE according to Lemma 2.

RW sampling does approximate RE sampling for many datasets, including the ones

reported in literature. However, there are several datasets (Stanford, NotreDame, Berk-

Stan, Google, EmailEu, and Flickr) whose RW is very wrong. Most of them are Web

graphs. Datasets NotreDame, Stanford, and BerkStan are the Web graphs in the do-

mains of the universities of NorteDame, Stanford, and the combination of Berkeley-

Stanford. Dataset Google is the sample Web graph collected by Google. EmailEu is a

graph created from email senders and receivers. Flickr is a network created by picture

sharing.

Our question is why these graphs defy RW sampling. Random walk sampling is based on

the assumption that the nodes are sampled with probability proportional to its degree.

This assumption can be hardly met in many real networks, mainly due to two reasons:

1) mixing time: sampling probability is proportional to its degree only after the mixing
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Figure 3.6: The ratio of RSEs between RW and RE samplings over the conductance
Φ. For the four graphs with the lowest conductance, RW is around 10 times worse than
RE sampling. Sample size n =

√
2NE(C) where E(C) = 100. RSE is obtained over

3000 runs.

time. The mixing time can be very large when there are loosely connected components;

2) thinning rate: the estimator assumes that the nodes are sampled independently. In

random walk a node selection is actually dependent on the previous node. To reduce such

dependency, thinning is often applied, i.e., taking the samples every a few steps, while

discarding the samples in between. More precisely, given a sequence of sampled nodes

(x1, x2, . . . , xn), there are correlations between the samples when they are obtained by

random walk. To reduce such autocorrelation, we thin the chain by disregarding all

but every s-th sample. s is called the thinning rate. [59] reported that the medium

of thinning rate is 40 among 21 papers that applied thinning. So we choose 40 as the

thinning rate in this experiment. We also tried other thinning rates, with limited impact

on the RW result.

The other more important factor is random walk mixing time, which is inversely pro-

portional to the square of the conductance of the graph [45]. So we calculate the con-

ductances of all the 18 graphs using SNAP graph API [1] , and plot their correlation

with the RSE ratios between RW and RE sampling in Figure 3.6. It shows that there

is a strong positive correlation between the performance of RW sampling and the log of

the inverse of conductance, where the Pearson correlation is 0.8. Among the top four

small conductance graphs (BerkStan, Stanford, NotreDame, and EmailEu), the conduc-

tances are in the order of 10−5, and they are about ten times worse than RE sampling.

On the other hand, most datasets have the ratio values close to 1, indicating that RW

approximates RE sampling. Thereby it is also better than RN sampling.

For low conductance graphs, we may wonder whether longer burn-in period or random

restart [20] will improve RW sampling. The answer is yes, but the performance of RW
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can be still far away from RE sampling. Imagine that there is a subgraph which is a bolas

graph [19]–there is a long single path, connecting with a densely connected component.

Suppose the size of this subgraph is k, the mixing time can be in the order of k3 [19] in

the worst case. That is, one such small component with size 100 will cost 106 steps to

escape from the RW trap. Such large mixing time is impossible to implement, not to

mention that k can be well above 100.

We demonstrate that such bolas subgraphs do exist in real networks in Figure 3.5. It

shows the subgraphs obtained from random walk from three datasets (Flickr, EmailEu,

and Stanford) whose conductances are low and one normal graph (Youtube) as a com-

parison. The node colour indicates the degree of the node. It is clear that Flickr has

two loosely connected components with a long narrow tube, indicated by the blue/green

colour of the tube. What is more, the two components obviously have different aver-

age degrees, since one component is dominated by orange/red colour and the other by

green/blue colour. It shows that RW will take long steps to escape from one component

to the other. Depending on where it visited, RW will produce very different estimation.

EmailEu has a different topology even though its conductance is equally small. The

subgraphs are mostly stars, maybe caused by group emails. RW will be trapped in those

large stars. Web graphs such as Stanford has many bolases as subgraphs. A densely

connected subgraph can be easily created using a few computer commands, such as

automated generation of documents in JavaDoc or HTML version of PPT slides. Many

bolas subgraphs will make the RW on the Web almost impossible.

3.6 Discussions and Conclusions

This paper gives the variances of random node and random edge sampling for graph

size estimation. The result is surprisingly simple: the relative standard error is the

reciprocal of the square root of the collisions. As a rule of thumb, if we want the 95%

error bound to lie within the range ±0.2N , the expected number of collisions should

be 100. This rule applies for both RN sampling and RE sampling. However, in RE

sampling the large nodes tend to be sampled more often, resulting in higher collisions

given the same sample size. It is easy to understand that RE sampling requires a smaller

sample size to produce the same number of collisions, or the same standard error. What

is more interesting is that we can quantify how much less samples are needed using the

coefficient of variation of node degrees. So the second rule of thumb is that the ratio of

RSEs between RE and RN samplings has an upper bound
√
γ2 + 1.
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Traditionally RE sampling is rarely possible. Therefore, it was hardly studied and

compared with. But it is a bridge to connect RN and RW samplings. With clear

understanding of the relationship between RE and RN samplings, we can infer whether

RW sampling is better than RN sampling. The third rule of thumb is that if the graph

does not have loosely connected components, most probably RW will be better. This is

because the random walk mixing time is small, and RW can approximate RE sampling.

This explains why RW is better for the datasets (DBLP, IMDB, and Facebook whose

conductances are high) in [14], and why various methods need to be proposed to improve

the simple random walk for datasets such as Flickr [18].

As a corollary, this paper implies that RW sampling is not good for the estimation of

the properties of the Web. For all the Web graphs we studied, including the ones listed

in this paper (NotreDame, Stanford, BerkStan, Google), they all have loosely connected

components, resulting in very large estimation error. This may explain why the Web is

usually not sampled by RW.

This observation also reveals a fundamental distinction between the Web and online

social networks such as Facebook and citation networks. The Web is created with the

help of computer programs. A single computer instruction can spawn a large subgraph

that is loosely connected to other parts. On the other hand, online social networks evolve

more naturally with full participation of people. It is unlikely large loosely connected

component can be engineered in movie actor networks, Facebook, Twitter, or citation

networks. We conjecture that random walk works for the networks created by humans,

but not for the networks created by computers.

3.7 Appendix

3.7.1 Proof of Lemma 1

Proof. Expanding the definition for N̂N we have

var(N̂N ) = var

(
n2

2C

)
=
n4

4
var

(
1

C

)
(3.14)

The variance of 1/C can be derived using Taylor expansion of 1/C around µ = E(C) as

below:

1

C
=

1

µ
− C − µ

µ2
+

2

µ3
(C − µ)2

2!
. . .
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When selecting two nodes, the probability that the same node i is visited twice is 1/N2.

Among all the nodes, the probability of having a collision is p =
∑N

i=1 1/N2 = 1/N .

Since there are
(
n
2

)
pairs in a sample of size n, the number of collisions follows the

binomial distribution B(n(n− 1)/2, 1/N) whose variance is

var(C) =

(
n

2

)
p(1− 1/N) = µ(1− 1/N) (3.15)

When N is large, var(C) ≈ µ. Since C follows binomial distribution, E(C − µ)/µ � 1

when µ is not a very small number, causing the third term above is negligible compared

with the second term. Therefore

1

C
≈ 1

µ
− C − µ

µ2
, (3.16)

and

var

(
1

C

)
≈ var(C)

µ4
≈ 1

µ3
.

Substitute the above into Equation 3.14, we have:

var(N̂N ) ≈ n4

4µ3
=
N2

µ
. (3.17)

3.7.2 Proof of Lemma 2

Proof. Let random variables X = γ̂n
2+1 and Y = n2/(2C), where 〈̂γ2〉n is the estimated

γ when the sample size is n. Applying the formula for variance of a product of two

random variables, we have

var(N̂E) = Ȳ 2var(X) + X̄2var(Y ) + var(X)var(Y )

=
N2

X̄2
var(X) + X̄2 N

2

X̄2µ
+ var(X)

N2

X̄2µ

=
N2

µ

(
µ
var(X)

X̄2
+ 1 +

var(X)

X̄2

)
=
N2

µ

(
1 + (µ+ 1)

var(X)

X̄2

)
where X̄ and Ȳ are the expectations of X and Y . Let CV(X) denote the coefficient

of variation of X, which is a constant for a given dataset. var(X) = CV 2(X)X̄2/n.
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Substitute this into the above equation, we have

var(N̂E) =
N2

µ

[
1 + (µ+ 1)

CV 2(X)

n

]
≈ N2

µ

[
1 +

nXCV 2(X)

2N

]

When data size is large, n� N , the second term in the above equation can be omitted,

resulting in

var(N̂E) ≈ N2

µ
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4.1 introduction

The properties of online social networks (OSNs) are of interests to a variety of stake-

holders, including general public as well as IT professionals [60]. Often the raw data are

not available and the summary released by the service providers are sketchy. OSNs are

so large that exhaustive exploration of the network is infeasible. Instead, we can only

obtain a small portion of the network and estimate the properties of the network using

the sample [17] [61] [13].

There are many studies on sampling methods for OSNs. Two of the basic sampling

methods are uniform random sampling and PPS (probability proportional to size) sam-

pling. Uniform random sampling is the norm of the practice, the method opted for

whenever possible, also the method not easy to implement in many applications. In

OSN studies, it is often realized by uniform ID sampling [61] [17], or Metropolis-Hasting

random walk [17].

Some properties, such as the top bloggers, are innately not suitable for uniform random

sampling, especially for scale-free networks where most of the bloggers have small number

of followers [57]. It was widely accepted [62], as well as demonstrated in this paper, that

most OSNs are scale-free networks. Uniform random sampling gives each blogger an

equal probability of being sampled, meaning that top bloggers have no more chance

of being sampled than other people. Consequently, the sample is mostly comprised of

small accounts. Most top bloggers are not even sampled at once, let alone to study their

properties.

Therefore, there is a need to use PPS sampling to sample the large microblog accounts

more often. PPS sampling is hard to implement directly using existing OSN access

methods. Most OSNs support random walk sampling, which can approximate PPS

sampling in the sense that the sampling probability of a node(account) is proportional

to its degree asymptotically [19]. It is not efficient in that in every random walk step,

only one random sample is obtained from all the neighbours of the current node. This

problem becomes more acute in OSN sampling where each step involves remote access

to the API through internet, and sometimes there are daily quotas for the total number

of accesses allowed. When one API call retrieves all the neighbouring nodes (followees),

it is too costly to select only one of them and discarded all the others.

Thus, we propose star sampling that is an efficient approximation to PPS sampling. It

selects random nodes first using ID sampling that is enabled by several OSNs, including

Weibo OSN being studied. Then, for each random node we select all its neighbours

connected by outgoing links, as if expanding the node to a star. In this way, the sampling

process is faster by a factor of the average degree of the nodes. Yet, it is a kind of PPS
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sampling as we will demonstrate in this paper. This method also avoids other difficulties

in random walk sampling, such as dead-ends, infinite loops, and isolated components

[19].

Before applying star sampling on Weibo OSN, we first verify it on six networks whose

ground-truth values are known. We compare the empirical average with the true value,

and the empirical variance with the theoretical predication. All six datasets support our

method very well. Based on this result, we apply our method to explore a variety of

properties of Weibo, including degree distributions and follower numbers. Although most

of the accounts conforms to our estimation, there are outliers whose claimed followers

are much higher than our predication.

In the following, we will first introduce the background knowledge and related work.

Then we use ID sampling to obtain uniform random samples. From the uniform random

nodes, we apply star sampling to samples whose capture probability is proportional to

its size. From these samples, we estimate their followers and reveal the discrepancy.

4.2 Background and Related Work

4.2.1 OSN Access Methods

An efficient sampling method needs to fully utilize the access interfaces provided by the

OSN service provider. There are several approaches to accessing OSN data, including:

• By probing account IDs: In some microblog sites such as Weibo and Twitter, mi-

croblogger’s account can be accessed using http request such as www.weibo.com/1234567890,

where the number is the account ID. Because every account can be accessed using

an ID, and the ID space is not very large (a 10 digit number for Weibo), uni-

form random accounts can be found by generating a random number within the

ID space. This method is used to obtain uniform random nodes (accounts) from

Facebook [17], Youtube [35] and Weibo [61] .

• By crawling using web API: Most OSNs provide programmable web APIs, typically

supporting programmers to navigate in the network, such as getting the out-going

and in-coming links. New blogger data can be obtained by following the links

provided in the current account.

• By crawling HTML pages and screen scraping: Instead of using more organized web

APIs, OSN data can be also directly extracted from its HTML pages. By following
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the hyperlinks imbedded inside the web pages, we can find the neighbours of the

current blogger.

• By sending queries: Most OSNs provide searchable interfaces, either by providing

an API or an HTML form. In either way, we can send queries and retrieve matched

pages.

We use ID probing and web API calls in combination. ID probing is used to get uniform

random samples, while web API is used to get all the out-going links of those random

bloggers.

4.2.2 Graph sampling

An OSN can be modelled as a graph, where an account(or a blogger) is a node, and

nodes are connected by following relationship. In general, a graph can be sampled by

random node, random edge, and random walk. Their comparative studies are conducted

in [31] [27] [10].

4.2.2.1 Uniform Random Node Sampling

In this sampling method, each node is sampled with equal probability. It can be realized

by selecting the nodes directly, as in random ID sampling, or by following the links using

certain strategies such as Metropolis-Hasting random walk [25] [63] [17].

4.2.2.2 Random edge sampling

In random edge sampling each edge is selected with equal probability. Consequently,

each node is selected with probability proportional to its degree. Thus it is a PPS

sampling that we want to perform. However, random edge is not easy to realize in many

cases, often approximated by random walk sampling.

4.2.2.3 Random walk sampling

Simple random walk sampling selects the next node from one of its neighbours with

equal probability. The variations come when we decide how many nodes to select in the

next step, how to choose the next step (with same probability or different probability

depending on some measurement, and what we can do when the walk is stuck in a dead

end and loop.
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4.2.3 Weibo and other OSN sampling

There are very few papers depicting the landscape of Weibo OSN despite its enormous

size and influence. Very recently [61] uses uniform samples to estimate the properties

of Weibo OSN. They report a wide range of estimated properties such as number of

accounts, active accounts according to messaging information, and geographic distribu-

tions. Due to the limitation of uniform random sampling, they are not able to find out

the degree distribution, the number of followers of top bloggers. We apply both uniform

random sampling and PPS sampling, thereby obtain more interesting results.

Similar OSNs are extensively studied, including Facebook [17] [64] [65] [66] and Twitter

[67] [62] [41] [68] [15]. Compared to this groups of work, we are not aware of the star

sampling method proposed in this paper, neither any study on properties of top bloggers.

4.3 Uniform ID Sampling and Size Estimation

Suppose that the set of possible ID is {1, 2, . . . , U}. Among them there are N number of

valid IDs, and U −N number of invalid IDs. Our target is to obtain a uniform random

sample.

The ID sampling process (Algorithm 1) can be explained as follows: A random number

is generated within the range of 1, . . . , U , and is tested whether it is valid by sending the

ID to the web site. Overall n number of tests are made, among them v = |V | number

of tests are valid. Note that the random numbers can have duplicates and they are

included in the counting. The number of accounts can be estimated by

N̂ =
v

n
U, (4.1)

whose approximate relative standard deviation (RSD) is

RSD(N̂) =
√

1/v. (4.2)

We refer to Appendix for the proof. Intuitively, the 95% confidence interval depends on

v, the number of valid IDs being sampled. For instance, when v = 104, 95% confidence

interval is

N̂ ± 1.96×RSD × N̂ ≈ N̂ ± 0.02N̂ .

In the case of Weibo each user account ID is a 10-digit number, i.e., U = 1010. Although

some accounts have account names, they are still have a 10-digit ID that is accessible by
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Algorithm 1: Uniform ID sampling

Input: ID range 1..U, sample size n;
Output: Valid IDs V .
V=empty sequence;
i = 0;
while i < n do

i+ +;
generate a random number id within 1..U;
if id is a valid account then

add id into V ;
end

end

our method. As Equation 4.2 shows, the success of ID sampling hinges on the value of v,

which in terms is decided by the ration of N/U . If the universe U were very large (say,

by allowing for arbitrary length of letters), most of the randomly generated IDs would be

invalid ones. Such low ratio will render the ID sampling infeasible. Fortunately, in the

case of Weibo, the ratio is rather large and the probability of success is 21104/848969 ≈
0.025. To expedite the speed, the DNS resolution is done once and cached for later use.

We run ID sampling in December 2011. Figure 4.1 shows four independent sampling

processes, along with the projected error bound derived from Equation 4.2. Each process

has sample size around 500,000. Overall, the estimation of the total number of accounts

is 243 million (95% Confidence interval is between 238 million and 247 million).

Our results coincide with the size estimation reported in [61], where 269 millions of

account are projected in January 2012. Within one month, we observe an increase about

9 % of user accounts. Another observation we have is that relatively small number of

samples are needed to reach an accurate estimation of the user account number.

4.3.1 Degree and message distributions

Using the same ID sampling algorithm we obtain further 1,184,964 uniform IDs. This

time we do not record the times the ID probing fails. Instead, we focus on the valid IDs

by downloading its degree and message information to study their distributions.

It is reported that a uniform random sample can reflect the distributions of the original

data [27]. Figure 4.2 shows the distributions of the in-degree, out-degree, and messages.

All are in log-log plot since they have long tails. Each data is plotted in two ways: The

degree-rank plots in the first row focus on the top nodes, while the frequency-degree

plots on the second row focus on the nodes with small degrees. In a degree-rank plot, all

the nodes are sorted according to its degree in increasing order, then a rank is assigned
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Figure 4.1: Estimated number of accounts against sample size. The estimation sta-
bilizes when only 20,000 random IDs are tested.

to each node. In frequency-degree plot, the occurrence frequency of a degree is plotted

against the degree.

Figure 4.2 (A) shows that the out-degree has a limit around two thousand. Its corre-

sponding frequency-degree plot in subplot (D) shows that there are more than 105 nodes

that have only one out-going edge among the one million sampled nodes.

In-degrees are closer to power-law distribution, similar to most other networks such as

Twitter [41], Facebook [17], and the Web graph [69]. Subplot (B) shows an almost

straight line with exponent one, similar to that of Twitter data [41]. This plot also

demonstrates that uniform random sampling can only reveals the shape of the follower

distribution, not the details of top bloggers. For instance, there are only two of the sam-

pled accounts that have follower number greater than one million. Using star sampling

discussed in the next section, we found that there are 691 millionaires who have more

than one million followers. Subplot (E) is the corresponding frequency-degree plot that

shows most of the bloggers have small number of followers. For instance, in the sampled

nodes, there are more than 105 number of nodes/bloggers who have only one follower.

Subplots (C) and (F) describe the message distribution among the samples. Subplot

(C) is the rank-message plot, describing that the number of messages descreases quickly.

The top sampled blogger sends close to 105 number of messages. Overall, the curve fit

better with Mendelbrot law [39].

The standard deviations are 103.2708 and 2916.8887 for in-degrees and out-degrees,

respectively. From the uniform random samples we can estimate the average in-degree
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Figure 4.2: Estimated out-degree, in-degree, and message distributions of Weibo.

and out-degree as 32.10 (CI 32.29 and 31.91 54.39 (CI 49.02,59.76), respectively. .

〈̂d〉
out

=
1

n

n∑
i=1

douti = 32.1083

〈̂d〉
in

=
1

n

n∑
i=1

dini = 54.3973

Surprisingly, the average in-degree is markably larger than the average out-degree. Such

inconsistency can be caused by several sources. One may be the inflated follower number

as suggested in the next section.

4.4 Star sampling and Follower Number Estimation

Fake OSN followers has become a multimillion dollar business. In Twitter zombi fol-

lowers are sold in large quantities ranging from thousands to millions. There are robots

to generate zombies to follow designated bloggers, and there are also tools to detect

the percentage of zombi followers1. This paper addresses another type of fake follower

number, where the zombis are not added, instead the follower number is artificially

inflated.

1For instance in http://www.socialbakers.com/twitter/fakefollowercheck/
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Algorithm 2: Star sampling

Input: Valid uniform IDs V , sample size n;
Output: Sample sequence S.
i=0;
S is empty;
while i < n do

x is a valid ID randomly selected from V;
Expand node x into a star that contains edges {x→ x1, x→ x2, . . . , x→ xk};
Add nodes i1, i2, . . . , ik to sample sequence S;
i=i+k;

end

4.4.1 Star sampling

To find the follower number of the top bloggers, it is no longer effective to use uniform

random sampling, where all the nodes, most of them are small nodes with few connec-

tions, have equal probability of being sampled. To drive the samples concentrating on

the top bloggers, large nodes should have high probability of being sampled. There-

fore, we opt for PPS sampling where nodes are sampled with probability proportional

to their degrees. There are several choices to run PPS sampling, such as random edge

and random walk samplings. Random edge sampling is not easy to implement in Weibo

sampling, random walk can approximate PPS especially in OSNs where the mixing time

is small. However, it is not efficient in that in every step only one random node is

selected among all the neighbours.

Since we already have the uniform random IDs, and every remote API call gets back all

the neighbours, we utilize all the neighbouring nodes by employing the following star

sampling as described in Algorithm 2: select a set of uniform random nodes, and expand

each node as a star that contains all the neighbours. Put all the nodes in the neighbours

into the sample.

Intuitively, star sampling approximates random edge sampling in that a set of edges are

selected randomly. The centre of the star is discarded because its selection probabil-

ity is uniform. The other nodes being pointed to are selected because their selection

probability is roughly proportional to their in-degrees.

Suppose that in the directed graph G, there are N number of nodes labeled as 1, 2, . . . , N .

Define the volume of the graph vol(G) as the sum of all the in-degrees, i.e., vol(G) =∑N
1 di, where di denote the in-degree of node i. Given a sample containing n nodes

{x1, x2, . . . xn}, where xi ∈ {1, 2, . . . , N}. Suppose that node i occurs fi number of

times in the sample. Our task is to estimate the number of followers (in-degrees) Fi of

node i.
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The probability node i being sampled is

pi =
di

vol(G)
(4.3)

The number of times node i is selected after n sample nodes are taken can be approxi-

mated by the binomial distribution as below:

P (k) =

(
n

k

)
pki (1− pi)n−k (4.4)

It is well known that the expected number of captures of node i is E(fi) = npi. Thus, the

occurrence probability of node i in the population can be estimated using the following,

which can be also derived from maximal likelihood method:

p̂i =
fi
n
. (4.5)

The number of the followers of node i is estimated by

〈̂d〉i = p̂i vol(G) =
fi vol(G)

n
=
fi
n
N̂ 〈̂d〉

out
. (4.6)

Because of the binomial distribution, the variance of fi is

var(fi) = npi(1− pi) ≈ npi. (4.7)

The approximation is valid because pi is very small in our scenario. The variance of the

estimator is

var(〈̂d〉i) = var(fi) vol(G)2/n2 = fivol(G)2/n2. (4.8)

Hence the relative standard deviation is

RSD(〈̂d〉i) =
√

1/fi. (4.9)

Equation 4.9 gives the guideline to select the sample size so that satisfactory estimation

can be obtained. For instance, if we want the 95% confidence interval to be within

〈̂d〉i ± 0.2〈̂d〉i ≈ 〈̂d〉i ± 1.96 ×
√

1/fid̂i, fi needs to be greater than 100. We use this

guideline to design our experiments.
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4.4.2 Pilot study on local datasets

The accuracy of the star sampling depends on the assumption that nodes are sampled

with probability proportional to their degrees. In one extreme case where every star

has only exactly one out-going edge, star sampling resembles random edge sampling,

and it is a PPS sampling. In the other extreme when a star is very large and covers

all the remaining nodes in the network, all those nodes are equally sampled. Therefore,

it becomes uniform random node sampling. In most cases stars are of moderate size,

since the vast majority of the nodes are small ones because of the scale-free nature of

the network.

Another perspective to understand the problem is that the estimator and the variance is

deduced based on the binomial distribution for sampling with replacement where each

edge is selected one at a time. That edge is put back, and can be sampled again in

the next sampling occasion. In our star sampling, a set of edges in a star are sampled

simultaneously without replacement–there is no chance that an edge within the same

star can be sampled twice when that star is selected. This sampling process will result in

hypergeometric distribution. When the size of star is much less than the total population,

which is true in our case, it is known that binomial distribution can approximate the

hypergeometric distribution very well.

To validate our assumption, we carried out a pilot experiment on local datasets. Since

the ground truth values are known, the estimator and the variance can be evaluated.

Our local datasets are six networks whose statistics are summarized in Table 4.1. Star

sampling are applied to each network. We evaluate the estimation performance on the

top 15 nodes for each network, by comparing their empirical variance with the theoretical

variance, and empirical average with the true value as demonstrated in Figure 4.3.

The 95% error bounds are calculated from Equation 4.9, the box plots are obtained from

100 repetition of the experiments. The average of 100 estimations fit well with the true

value across all the networks and all the top 15 nodes. This indicates that star sampling

is indeed unbiased. In addition, most of the estimations fall within the estimated error

bound, demonstrating that star sampling can approximate PPS sampling. The sample

size is controlled so that each of the 15-th node can be sampled at least 50 times.

Depending on the degree of the 15-th node and the overall degree distribution, varying

sample size is needed for each network (50K for WikiTalk, 200K for Skitter, 80K for

Youtube, 80K for NotreDame, 200K for Stanford and 40K for EmailEU).
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Figure 4.3: Degree estimation of six networks using star sampling. Boxplots are
obtained from 100 repeated experiments.
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Network # Nodes γ 〈d〉 Max degree

WikiTalk[10] 2,394,385 26.34 3.89 100,029
EmailEu[10] 265,009 13.93 2.75 7,636
Stanford[10] 281,903 11.79 14.14 38,625

Skitter[10] 1,696,415 10.46 13.08 35,455
Youtube[42] 1,138,499 9.65 5.25 28,754

NotreDame[10] 325,729 6.40 5.25 10,721

Table 4.1: Statistics of the 6 real-world graphs, sorted in descending order of the
coefficient of degree variation γ = variance/〈d〉2.

fi di 〈̂d〉i Difference Ratio

1 85016 23,335,290 16,859,105 6,476,185 0.38
2 75243 15,945,306 14,921,069 1,024,237 0.06
3 71417 15,247,604 14,162,354 1,085,250 0.07
4 37914 13,394,620 7,518,539 5,876,081 0.78
5 61962 13,278,161 12,287,380 990,781 0.08
6 63308 13,153,177 12,554,298 598,879 0.04
7 59969 12,990,041 11,892,158 1,097,883 0.09
8 57100 12,604,270 11,323,220 1,281,050 0.11
9 59406 12,097,122 11,780,512 316,610 0.02

10 54264 12,003,137 10,760,827 1,242,310 0.11

Table 4.2: Estimation for the top 10 Weibo accounts. fi: capture frequency of the

account i; di claimed in-degree or number of followers; 〈̂d〉i: estimated number of
followers.

4.4.3 Results for Weibo data

During October 2011 and January 2012, we selected 1,184,964 number of uniform ran-

dom nodes, on average each random node has 32.08 number of out-going links. We

expand each uniform random node as a star, and collect all the nodes pointed by the

out-going edges as the sample. Overall 38,019,277 number of sample nodes are collected,

including duplicates. The largest account has claimed 23,335,290 number of followers,

and is captured 85,016 times. We reckon according to Equation 4.9 that around 100

of captures are required to produce meaningful estimation. Thus, we take only the top

10,000 accounts, the lowest has 16,038 followers and is captured 65 times.

The estimation is consistent with the claimed number for many accounts. Let ratio

denote the relative inflation rate, i.e.,

ratio = (di − 〈̂d〉i)/〈̂d〉i, (4.10)
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Figure 4.4: Weibo followers estimation. Panel A: inflation ration over 104 top ac-
counts. Panel B: the smoothed version of A. Panel C: All the accounts whose inflation
ratio is higher than one. Panel D: top 500 accounts. Panel E: comparison of top 104

accounts, smoothed. Panel F: difference between the claimed and estimated followers.
Smoothed.

where di is the claimed number of followers (in-degree), and 〈̂d〉i is the estimated number

of followers. Table 4.2 listed the estimations for the top 10 accounts in Weibo.

For the claimed top 10,000 accounts, there are in total 6,069 accounts whose ratio is

between -0.2 and 0.2, 52 is smaller than -0.2, and 3,930 is larger than 0.2. The minimal

ratio value is -0.482, while the highest is 132.8413. Overall the total number of claimed

followers is 23% more than the estimated followers. The claimed follower numbers are

taken at the end of the experiment, while the whole sampling process spans a few months.

Given the dynamic nature of the network, especially the fast increasing number of new

accounts and followers, it is understandable that overall claimed number is higher than

the estimated number.

However, there are many accounts with very high inflation rate. The inflation rate for

all 10,000 accounts are plotted in Figure 4.4 (A), where the accounts are sorted by

their claimed follower numbers in decreasing order. Figure 4.4 (B) is the corresponding

smoothed ration plot using moving average with 500 window size. Those two plots

show that there are higher inflation rate for accounts ranked between 1,000 to 2,000.

In general, the inflation rate drops for smaller accounts. Altogether, there are 194

accounts whose ratios are greater than five (1,342 accounts greater than one), a very
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Figure 4.5: Estimated followers vs. claimed followers. The Pearson correlation coef-
ficient is 0.9797.

large discrepancy that is hard to explain. We plot those 1,342 accounts in log-log scale

in Figure 4.4 (C). Interestingly enough, the inflation rate also follows power law.

Figures 4.4 (D) depicts the comparison between the estimated and claimed follower

numbers for the top 500 accounts. There are spikes pointing downwards, indicting

the accounts having high inflation rate. Figure 4.4(E) gives an overall picture of all the

accounts, both lines are smoothed using window size 100 using log-log plot. Figure 4.4(F)

is the smoothed difference (claimed -estimated) for all the accounts. The smoothing

window size is also 100.

Lastly, we draw the correlations between the claimed and estimated followers in Figure

4.5. The inflated number does not change greatly the overall landscape of the rankings

of the accounts. The estimation is closely related to the claimed number as evidenced

by the high Pearson correlation coefficient 0.9797. However, it is also clear from the plot

that some accounts deviate a lot from the estimations.

From these analyses, it seems that some accounts have their follower numbers artificially

inflated, while most of the accounts, especially the smaller ones, have the follower number

consistent with our estimation.

4.5 Discussions and Conclusions

This paper proposes the star sampling to estimate properties of online social networks.

Some network properties prefer PPS sampling, which is not easy to carry out for most

online social networks. Random walk can approximate PPS sampling, but it collects only

one random node in its neighbours. Star sampling improves the performance of random
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walk sampling by a factor of 〈d〉, the average degree of the network. We demonstrate

on six local datasets that star sampling approximates PPS sampling very well.

We then applied the star sampling to explore Weibo, the Chinese version of Twitter

that has 243 million accounts in 2011. We find that Weibo is a power-law network, and

has similar degree distribution as Twitter. In particular, we find that there are some

accounts whose claimed follower numbers are much higher than our estimations.

We will apply the star sampling to discover other network properties, such as community

structure of top bloggers.
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4.7 Appendix

The occurrence probability P of the valid ID can be estimated by the maximum likeli-

hood estimator:

P̂ =
v

n
. (4.11)

Therefore, the number of accounts can be estimated by

N̂ = P̂U =
v

n
U. (4.12)

Although it is an unbiased estimator, what matters is the variance, and whether it is

feasible in our application. Note that the number of times v of hitting a valid ID follows

a binomial distribution whose variance is

var(v) = nP (1− P ). (4.13)

Consequently, the variance of N̂ is

var(N̂) =
P (1− P )

n
U2. (4.14)

Given that P is a rather small value, the relative standard deviation is

RSD(N̂) =

√
1− P
nP

≈
√

1/v. (4.15)
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5.1 Introduction

The topology of large network is hard to visualize, yet it is crucial for data mining

applications. If we plot a network with millions of nodes, not to mention hundreds of

millions of them, it will be hard to discern the community structure no matter what

graph layout is used, and how powerful the computer is. To reveal the visual cues to the

structure of the network, we need to reduce the number of nodes and edges by producing

a representative subgraph.

Network visualization has been widely studied [70]. Most approaches can only handle

graphs of size up to hundreds of nodes and thousands of edges [71]. Beyond this limit,

it will be hard to discern the nodes from edges, preventing the discovery of patterns in

the graph. Since the tree layout algorithm has the simplest complexity to implement, it

is a common practice to reduce the number of edges by turning the graph into a tree,

especially a spanning tree representation [72]. The crucial issue is which spanning tree

is more representative of the original graph. A spanning tree obtained by breadth-first

search will distort the structure of the original network. Numerous efforts have been

devoted in adding weights and finding the minimal spanning tree. When the network

is very large, computationally it may not be feasible to compute the minimal spanning

tree.

Instead of artificially tweaking the parameters for a better spanning tree, we argue that

a uniform random spanning tree should be a more natural choice. A typical algorithm

to find the uniform spanning tree borrows the idea from random walk [73], therefore,

the complexity of the algorithm is the same as the random walk cover time. Although

for uniform random graphs the cover time is in the order of O(NlogN), where N is the

number of nodes in the network, real-world networks are often scale-free and clustered.

Thus we need to prepare for the worst case complexity which is O(N3) [19]. Obviously,

the cost is too high for large networks if we use that algorithm directly.

We observe that it is not necessary to keep all the nodes to reveal the topological

structure of large networks. The number of nodes also need to be cut down for very

large networks even when tree representation is adopted. We can imagine that a large

network has many layers of meshes lying in stack. When all the layers are plotted, the

nodes and the structure are obscured by the meshes. If we plot only one random mesh,

the crucial nodes and the structure are revealed.

Such random mesh can be obtained by casting the edges uniform randomly–each edge

has the same probability of being selected. When an edge is casted, two nodes incident to

the edge are collected. In this way, a node will be selected with probability proportional

to its degree size. Since random edge selection is not supported in many online social
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networks, we use simple random walk to approximate the process, considering that

the node selection probability is the same asymptotically as random edge sampling

[19]. Based on this random walk we simultaneously generate the corresponding random

spanning tree. Thereby we reduce the number of nodes and edges at the same time

efficiently.

The evaluation of the visualization also imposes a challenge. Since the entire network

can not be effectively plotted, the visual comparison between the sub-graph and the

original graph is impossible. In particular we would like to see whether the community

structure can be visualized. For this purpose we use NCP (network community profile)

[1] to evaluate the visualization. As a result, we find that our visualization corresponds

to NCP very well.

Contributions 1) We propose an efficient algorithm to visualize large networks. It

can scale to very large networks when they are scale-free and crucial nodes and sub-

sequent structure can be surfaced quickly using random walk; 2) We demonstrate that

the visualization can preserve the community structure by comparison to the NCP; 3)

The random spanning tree algorithm is adapted into our random walk node sampling

process, reducing the potential high complexity (O(N3)) to a linear algorithm.

5.2 Our method

There are at least two ways to select the representative nodes in a graph: by selecting the

nodes uniform randomly, or selecting the nodes with probability proportional to their

sizes (PPS). When uniform random node selection is applied, most of the nodes will be

small nodes with low degrees due to the scale-free nature of the network. The large node

with many connections most probably will not be sampled and omitted in the subgraph.

Thus we use PPS sampling to obtain the representative nodes, where large nodes have

higher probability of being selected. Simple random walk is an efficient sampling method

that is supported by many real online social networks, and node sampling probability

is proportional to its size asymptotically. Since our random walk is rather long (6× 104

distinct nodes in our experiments) and well exceeds the mixing time of the graph, the

sampling probability can approximate PPS sampling.

Even when the number of nodes are reduced, the network structure is still being obscured

by excessive number of edges. Various methods have been proposed to reduce edge size,

such as turning the graph into a spanning tree [70, 72]. We propose to use random

spanning tree, which can be generated using random walk as illustrated in Algorithm 3.

It was originally given by [73], and can be explained as follows: we perform the simple
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Algorithm 3: Random Spanning Tree

Data: Graph G;
Result: Random spanning tree T of size n.
Let n0 be a uniform random node from G;
mark n0;
while i¡n do

neighbours(ni−1)= all the neighbours of ni−1;
ni is a random node of neighbours(ni−1) ;
if ni is not marked then

i++;
mark ni;
add edge (ni−1, ni) to T ;

end

end

random walk as usual, but add an edge to the tree only when the edge does not form a

loop. According to [73], we have the following surprising result:

Theorem 4. Among all the spanning trees of graph G, T is one of the uniform random

sample.

It may take very long random walk to cover all the nodes of a graph, especially when the

graph is scale-free and clustered. The worst case complexity is in the order of O(N3).

Since node selection also uses random walk, we combine the two random walks together

to trim nodes and edges simultaneously, avoiding the need to cover all the nodes.

When the random spanning tree is plotted using two-dimensional layouts such as the

well-known spring model, the structure is still cluttered for trees containing tens of

thousands nodes. We use 3D hyperbolic layout [71] to ameliorate the problem.

5.3 Community structure

We demonstrate our method on the discovery of community structure. The community

structure is measured using NCP (network community profile) plot proposed in [1]. We

refer to Figure 5 in [1] for a good explanation of NCP, where complete small network

visualizations are compared side-by-side with NCP. That figure explains that NCP cor-

responds well to network visualization in small size (∼ 100 nodes), while we show that

the profile is also reflected in our visualization for large networks consisting of millions

of nodes.

In network studies, one important measurement for network structure is its conductance,

which can be used to characterize the spectral gap and random walk mixing time [45].
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Table 5.1: Statistics of the six networks, each has a citation indicating where the data
is from. 〈d〉 is the average degree, CV stands for coefficient of variation.

Network # Nodes CV 〈d〉 Max degree

Flickr [10] 105,936 2.65 43.43 5,425
NotreDame[10] 325,729 6.40 5.25 10,721

Stanford[10] 281,903 11.79 14.14 38,625

Amazon[10] 410,236 1.27 11.89 2,760
Facebook [44] 63,731 1.56 25.64 1,098

Youtube[42] 1,138,499 9.65 5.25 28,754

The conductance is defined as follows: Let V be the set of nodes of a graph. The

conductance of a subset of nodes S of V is

Φ(S) =

∑
i∈S,j∈V \S Aij

min(A(S), A(V \S))
(5.1)

where A is the adjacency matrix of the graph, and A(S) =
∑

i∈S,j∈V Aij . The con-

ductance of the graph is Φ = minSΦ(S). NCP not only looks at the minimal graph

conductance, but also the component conductance over the component size.

We conducted experiments on dozens of large networks we can find. Most of them are

from Stanford SNAP graph collection [10]. Due to space limitation, we only report the

comparison with NCP on six networks1. Their statistics are summarized in Table 5.1.

To demonstrate the scalability of our method, we plot a subgraph obtained from the

complete Twitter user network that contains 4.1× 107 nodes and 1.4× 109 edges [41] in

Figure 5.1. The overall structure clearly differs from other networks plotted in Figure

5.3. In contrast to the well enmeshed Facebook network, Twitter has a string of super

large nodes(bloggers) stacking on each other. Each super node has its own circle of

fans with little interaction between them. The veracity of such topology is not easy to

verify using NCP, because NCP can not be calculated due to the huge size. However,

we can gain some confidence from other relatively smaller networks where NCP can be

computed as shown in Figures 5.2 and 5.3.

Figure 5.2 shows the NCP plots, the conductances over the size of the subcomponents

for the original six networks. They are plotted using SNAP API [1]. The insets (in red

colour) are the NCP plots obtained from the corresponding subgraphs. We can see that

the NCP from subgraph resembles the shape of NCP from the original graph.

Our visualizations of these networks are plotted in Figure 5.3. The colour of the nodes

represents the node degree in the original network. Among the six networks, three of

1Complete data description and programs can be found at http://cs.uwindsor.ca/∼jlu/visualization.
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Figure 5.1: Visualization of Twitter user network.

them (Flickr, NotreDame, and Stanford) have low graph conductance, while three others

(Facebook, Amazon and Youtube) have high conductance as comparison.

Overall, each visualization corresponds well to its NCP plot of the original network.

Several networks are remarkably different from others. Take the first network, Flickr,

for example. The NCP plot of the original network in Figure 5.2 shows a sharp dip

(∼ 10−3.5) around the component size 104, indicating that there is a large component

separated from the remaining part. Our visualization in Figure 5.3 reflects this dumbbell

structure clearly. There is a long link connecting these two components, the nodes along

the link are mostly of blue and green colour, indicating that the passage between those

two components is narrow in the original network. These two components are well

enmeshed, coinciding with the NCP plot showing that for most component sizes the

conductance is rather large (above 10−2).

NotreDame and Stanford web graphs exhibit a different pattern in both visualization

and NCP plots. In their NCP plots, there is a low conductance when the component

size is commensurate to the total size. Correspondingly, in the visualization there are

clusters of similar sizes. In NCP plots, there are many low conductances when the

component size is small. Correspondingly, in the visualization there are many small

clusters that is obviously different from the Flickr network.

Amazon, Facebook, and Youtube networks have high conductances as shown in their

NCP plots. Correspondingly their visualizations show well enmeshed networks. Note

that although the minimal conductance of Amazon network is rather small, the cut

happens when the component size is around 100, well below the total size. Therefore,

its visualization does not show large clusters.
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Figure 5.2: Conductance Φ(S) over |S|, the size of the the components, for six net-
works. Insets: The corresponding NCP plots obtained from the subgraphs.
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Figure 5.3: (Best viewed in colour) Visualization of six networks. The networks in
the first row (Flickr, NotreDame, and Stanford) are clustered, while the networks in
the second row (Amazon, Facebook and Youtube) are well enmeshed. Node colour
indicates the node degree in the original network. More graphs can be found at

http://cs.uwindsor.ca/∼jlu/visualization.
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5.4 Conclusions

We demonstrate a practical method to visualize the structure of large networks. The

method reduces both the number of nodes and edges of the network dramatically, yet

it retains the global topology of the networks. More importantly, our method is very

efficient, and works even when the data in its entirety is not available as long as simple

random walk is supported.

This is the first attempt to use random spanning tree to reduce the size of the graph for

visualization purpose. Direct application of the random spanning tree algorithm does

not scale. By combining the random spanning tree algorithm with PPS node sampling,

we propose a very efficient algorithm to reduce both the number of nodes and the number

of edges leveraging the scale-free nature of the networks. 3D layout is also essential to

capture the overall structure.

The calculation of NCP requires the access of the entire data, and may not be feasible

for very large networks. As a companion to NCP (network community profile), our fast

visualization method sheds a light for the prediction of NCP using only a small sample

of the data.
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