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Abstract 
 

Multiply Sectioned Bayesian Network (MSBN) provides a model for probabilistic reasoning 

in multi-agent systems. The exact inference is costly and difficult to be applied in the context 

of MSBNs. So the approximate inference is used as an alternative. Recently, for reasoning in 

MSBNs, LJF-based Local Adaptive Importance Sampler (LLAIS) has been developed for 

approximate reasoning in MSBNs. However, the prototype of LLAIS is tested on Alarm 

Network (37 nodes). But further testing on larger networks has not been reported. In this 

thesis, LLAIS algorithm is tested on three large networks namely Hailfinder (56 nodes), 

Win95pts (76 nodes) and PathFinder (109 nodes), to measure for its reliability and 

scalability. The experiments done show that LLAIS without parameters tuned shows good 

convergence for Hailfinder and Win95pts but not for Pathfinder network. However, when the 

parameters are tuned the algorithm shows considerable improvement in its accuracy for all 

the three networks tested. 
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Chapter 1 

 

Introduction 

1.1 Motivation 

The Bayesian network is a directed acyclic graph (DAG) representing the probabilistic 

relationship in a complex system. The Bayesian network model has been used over the 

last 25 years as a tool for managing uncertainty using probability. It is basically used to 

represent knowledge. As the computational power of Bayesian network is increasing day 

by day so it is used as an effective tool to explore and explain complex problems. In the 

last few years a lot of techniques have been developed in order to assess and solve belief 

networks, various belief networks have been available today and are used by many 

diagnostic reasoning systems, for example, MUNIN, ALARM, Pathfinder and QMR-DT.  

 

In [1], the intelligent agent or computational system is the one that can sense the 

surrounding and then take necessary actions according to the set targets, these agents 

process local observations produce required decisions and later on make execution of the 

chosen decisions and take actions. A probabilistic agent uses probabilistic knowledge 

representations and reasons with regard to the state of the domain. In recent years the 

systems involving the multiple agents have become quite prevalent. In the multi-agent 

paradigm, a set of cooperative agents make use of their local knowledge and inter-agent 

communication to collectively reason about the state of uncertain domain. For instance 

we can think of problem [1] in which four driverless cars on city streets will cooperate 
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with each other and coordinate in their actions so as to avoid any accident and safely pass 

a four-way-stop intersection. So, the main challenge faced today is the adequate 

utilization and extension of the current representation models and available inference 

algorithms for the single agent paradigm to multi-agent settings. 

 

Multiply Sectioned Bayesian Network (MSBN) is the model grounded on the idea of 

cooperative multi-agent probabilistic reasoning. It is an extension of the traditional 

Bayesian network model and provides us with solution to the probabilistic reasoning 

under cooperative agents. From [2], these agents working in cooperation are assigned 

many different tasks depending on the type of application; one of the common tasks is to 

make estimation about the true state of the domain so that they can act accordingly.  An 

MSBN consist of a set of inter-related Bayesian subnets and each subnet encodes agent‟s 

knowledge on sub domain. In order to make multi-agent inference, the existing methods 

for inference in single-agent Bayesian network (BN) have been extended. The Multiple 

agents [1] collectively and cooperatively reason about the problem domain on the basis of 

their local knowledge, local observation and limited inter-agent communication.  

 

Many existing inference calculations in MSBN are generally carried out in some 

secondary structure which is known as linked junction tree forest (LJF). An LJF 

constitutes local junction trees (JT) and linkage trees to make connections between the 

neighboring agents. 

 

It has been seen that message passing in Hugin-based architecture is quite expensive and  
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also it is impractical to carry out the efficient calculation in case of MSBNs due to 

excessive computational time and memory requirements. Though many efforts have 

resulted to be advantageous in developing the approximate techniques for Bayesian 

networks but still a lot of research has to be done in extending these solutions to MSBNs. 

As discussed in [2], the probabilistic inference in MSBN is performed in distributed 

fashion. The algorithms for multi-agent inference in MSBNs are the extension of methods 

for inference in single-agent Bayesian network, for example message passing in junction 

trees.  

 

The important problem to approach is the issue of feasibility of probabilistic inference 

when the size of practical models available today is increasing in size from few variables 

to several hundreds of variables. The exact inference has been proved to be NP-hard [3], 

so the approximate inference techniques are used to estimate the posterior probabilities. 

The approximate algorithms belong to the family of stochastic sampling algorithms 

which is also called stochastic simulation or Monte-Carlo algorithms. It is very important 

to study the practicability and convergence properties of sampling algorithms on large 

Bayesian networks.  

Localized stochastic sampling: 

To date there are many stochastic sampling algorithms proposed for Bayesian networks 

and are widely used in BN approximation but this area is taken to be quite problematic. 

Many attempts have been made in developing MSBN approximation algorithms but all of 

these forgo the LJF structure and sample MSBN directly in global context. Also it has 

been shown that such type of approximation requires more inter-agent message passing 
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and also leaks the privacy of local subnet [4]. Hence, sampling MSBN in global context 

is not good idea as it analyzes only small part of the entire multi-agent domain space. So 

in order to examine local approximation and to maintain LJF framework, the sampling 

process is to be done at each agent‟s subnet. The LJF-based local adaptive importance 

sampler (LLAIS) is an example of the extension of BN importance sampling techniques 

to JT‟s. An important aspect of this algorithm is that it facilitates inter-agent message 

calculation along with the approximation of the posterior probabilities. 

 

1.2 Objective 

Since the exact inference is considered to be expensive and difficult as the problem 

domain becomes larger and complex, so the approximate inference algorithms are being 

developed. The algorithm LLAIS is used for approximate reasoning in LJF local-JT in 

MSBN. It is the application of adaptive importance sampling on LJF local-JT to produce 

the posterior probabilities of local beliefs. The prototype of LLAIS has been tested on 

smaller network consisting of 37 nodes (Alarm network). In MSBN, the size of local JTs 

or subnets can vary so it is important to test the scalability and reliability of the algorithm 

when the size of local JT goes beyond 37 nodes.  One way of testing the efficiency and 

reliability of approximate algorithms is to use them on the larger network.  

 

The networks used for testing LLAIS are as follows:  

(i) Hailfinder(56nodes)  (ii) Win95pts(76nodes)  and (iii) Pathfinder (109nodes).  

 

 

Each network represents in itself the size of local JT in MSBN. Hence we limited 

ourselves up to 109 nodes network; this size is quite agreeable to test the algorithm since 
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it is local adaptive importance sampling which is applied locally on the subnets or local-

JTs and therefore, to deal with this much big size of local JT will be quite appropriate as 

the local JTs are formed after the sectioning of the large BN. 

 

For experimentation, these networks are taken from the Genie and Smile [5]. The testing 

of LLAIS will include comparing its sampling output (using approximate importance 

function) with that from using exact importance function which is considered to be the 

optimal one.  

 

The comparison of performance using the exact importance function will help in knowing 

how close the approximate importance function in LLAIS is able to reach the optimal 

results. It is believed that computing the exact importance function will also affect the 

running time of algorithm since it is the optimal and do not require updating and learning 

of importance function as required by approximate importance function and hence saving 

a lot of time.  

 

Further, there are various tunable parameters in LLAIS that will be discussed in chapter 

4, we believe if the values of these tunable parameters are tuned properly it may lead to 

the improvement in algorithm in terms of time efficiency and accuracy. Hence to 

summarize the objective of this thesis is firstly, to test LLAIS algorithm for its scalability 

and reliability by applying it on larger networks and secondly, tuning the various tunable 

parameters to improve the accuracy and time efficiency of the algorithm. 
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1.3  Overview of Thesis 

The outline of the thesis is as follows: 

 Chapter 2: Background Study – In this chapter we will be giving a brief 

introduction to the probability theory. Various concepts and notations will be concisely 

discussed giving readers idea about the background of the probability theory. Section 2.2 

discusses the probabilistic graphical models and why they are important to study. We will 

also be giving gentle introduction to the Bayesian networks and inference in Bayesian 

network including their mathematical and technical concepts. We will discuss major 

exact and approximate inference techniques; focussing more on the approximate 

inference in BN and hence discussing it in detail. This chapter will talk about the multi-

agent reasoning with MSBN and Linked Junction Forests (LJFs) and how inference is 

done in LJF. Basically we tried to cover as much as possible the literature review of the 

graphical models, BNs, MSBNs and reasoning in BN and MSBN, giving more emphasis 

on the approximate algorithms for inference. 

 

 Chapter 3: Adaptive Importance Sampling in Bayesian Networks – This 

chapter discusses the adaptive importance sampling applied in the context of Bayesian 

networks and linked junction forests in MSBN. In this chapter we will be talking about 

the algorithm LLAIS which is to be tested and explaining it in detail. 

 

 Chapter 4: Methods for testing and Improving LLAIS – This chapter 

discusses the methods and experiments procedure followed in testing the scalability and 

reliability of LLAIS. Further the improvement in LLAIS algorithm is also discussed by 

comparing its performance with the original LLAIS algorithm. 
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 Chapter 5: Testing and Improving LLAIS with Experiment Results – This 

chapter discusses the experiment results of the testing of LLAIS on the larger networks. 

The comparison of the results of LLAIS improved with original LLAIS will also be 

discussed. On the whole this chapter include the graphs plotted for the experiments 

results along with tables showing the information of comparisons made. 

 

 Chapter 6: Conclusion – This chapter includes the summarization of the thesis 

with some directions for future research. 

 

 

1.4  Thesis Contribution 

As discussed so far the application of LLAIS is done on smaller network consisting of 37 

nodes which is treated as local JT in LJF. LLAIS produced good estimates of local 

posterior beliefs for this smaller network but its further application on larger networks is 

not reported. So in this thesis, we tested LLAIS for its scalability and reliability on the 

three larger networks treating them as local JTs in MSBN. It is important to test the 

algorithm since the size of local JT can vary and go beyond 37 nodes network, on which 

preliminary testing has been done. Our testing demonstrated that LLAIS is quite scalable 

for the 56 and 76 nodes network but once it is applied to 109 nodes network its 

performance deteriorates. The calculation of the exact importance function resulted in 

saving a lot of time since it does not need updating and learning as required by the 

approximate importance function, hence making the algorithm quite time efficient. 

Further, since there are various tunable parameters in LLAIS when these parameters are 
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tuned properly it results in significant improvement in the performance of algorithm; the 

improved LLAIS requires less number of samples and less updates than required by the 

original algorithm to give better results. 
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Chapter 2 

 

Background Study 

In this chapter, a brief introduction to the probabilistic graphs will be discussed, in 

particular about the Bayesian network and Multiply Sectioned Bayesian network. The 

inference including exact and approximate inference techniques will also be discussed. 

 

2.1 Concepts in Probability 

2.1.1 Probability Theory 

The probability is the study of uncertainty. One of the most common notions of 

probability theory is random variable. A random variable is a variable whose values are 

outcome of a particular experiment. Just as the other variables random variables can take 

any different values. From [1], all the possible outcomes of random variables are 

mutually exclusive and collectively exhaustive. These outcomes together as a set form the 

domain of the variables. The probability of a random variable is measured by a function 

that maps each possible outcome, or instantiation, of this random variable into the 

interval [0, 1]. 

Notations: Capital letters such as           denote random variables. Bold capital 

letters, such as X or Y, denote sets of variables and E usually denote the set of evidence 

variables.  Lower case letters, such as a and x denote particular instantiation of variable A 

and X respectively. Bold lower case letters, such as x and y denote particular instantiation 
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of sets X and  Y respectively while the bold lower case letter e is used to denote the 

observation for the set of variables E. 

 

Given the set of random variables as   *           +,  joint probability is defined as 

a probabilities of all combinations of the possible outcome of each variable in  .  

Joint probability distribution or JPD is denoted as: 

 ( )   (                       ) 

                        (             ),  

where               are the respective values which those variables may take. 

 

The domain of   is the cross join of the domains of all variables in *           +; 

further, each element from the domain of a set of variables is known as an instantiation of 

these variables. 

 

The Marginalization is defined as the process of summing out some variables from the 

probability distribution. For example we can obtain the probability distribution of a 

subset   of   by summing out all the variables in a set of   excluding   (which is 

denoted as    ).  

Hence the Marginal Probability Distribution (MPD) of X from  ( ) is denoted as : 

 ( )   ∑ ( )

   

 

where  ( ) is called the marginal probability distribution and can also be written as 

   (V).  
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It is to be noted that the probability distribution of some random variable is updated once 

it observes the realization of another random variable or in other words we can say that 

the probability distribution of random variables changes after receiving the information 

that another variable has taken up some value. This is the relation of dependency and is 

expressed as conditional probability distribution (CPD). Let   and   are two disjoint 

subsets of   , and let   and   be their instantiations (or values).  

 

Then the CPD of     given     denoted as  (       ) and also abbreviated as 

 (   ) is formulated as: 

       (   )   
 (   )

 ( )
                               (2.1) 

where P( )                                                       

The conditional probability distribution of some variable   with given evidence e, is 

denoted as  (     ) is also known as posterior probability distribution of     

 

2.2  Probabilistic Graphical Models 

The probabilistic graphical models provide ground to reason for uncertainties in real 

world applications. These models use the knowledge given to them to make conclusions. 

They play a key role in modeling uncertainties in the real world.  

 

From [6] for example, sometimes a doctor might have to take information about the 

patient- his name, symptoms, test results, personal characteristics to reach to the 

conclusion what disease he might be suffering and what course of treatment has to be 

followed, but in complex systems there are many uncertainties, since real world is 
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affected by many factors, it is because due to large systems we are often not sure about 

the true state of the system. It may be due to the fact that our observation is partial or it 

may be due to that only some aspect of the world is being exposed to us. As a result, it 

might happen that true disease of the patient is not observed directly or even the future 

prognosis made by him is never observed. Further it has to be kept in mind that due to 

lack of observation we are not clear about the true state of world, so we can say that 

relationships are not deterministic; hence it can happen that there are very few diseases 

where we can have true relationship between the disease and its symptoms and even 

fewer such relationships between the disease and its prognosis. So there was a need for 

reasoning system to take into account all the different possibilities about the state of 

world. 

 

The probability theory provides us with the formal framework where multiple possible 

outcomes and their likelihood can be considered. So the probabilistic framework helped 

in deterministic specification of the behavior of the complex system 

 

The probabilistic graphical models are significant tool in helping the agent to reason 

about its uncertain domain and taking the action accordingly. These models use graphical 

representation to represent the complex probabilistic distribution. The graphical models 

are described [7] as representation of probabilistic structure along with functions that are 

used to derive the joint distribution. From [1], the probabilistic graphical models merge 

together the representation and algorithmic power of both the probability theory and the 



13 
 

graph theory where the data is modeled as a set of nodes which represent random 

variables and the connecting arcs represent the dependencies between the variables. 

 

2.3 Dependency Model 

The probabilistic model for a set of random variables is defined by joint probability 

distribution but in order to specify a probability model using full JPD is an impractical 

task. Since the domain described by   boolean variables requires a table of size  (  ) 

and takes  (  ) time to process that table, so to lower down this cost we have to take 

into account the advantages of dependence and independence relationship among 

variables. 

Let           be disjoint subsets of     

  and   are unconditionally independent if the following conditions will hold: 

             (   )   ( )  ( )                                    (2.2) 

The above unconditional independency can be denoted as conditional independency 

statement (CIS)  (     ) or   (     ). 

  and   are conditionally independent given   if the following holds: 

           (     )   (   )  ( )                                  (2.3) 

The above conditional independency relation can be expressed as conditional 

independency statement (CIS) I(X, Z, Y) or I(X, Y|Z). 

 

We can conclude that dependency model is any model M of a set of variables   denoted 

as   *              +, from where we can decide whether I(X,Y|Z) is true or not 

for all possible disjoint     and    
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An easy and direct way to model dependency models is to use directed acyclic graphs 

(DAG). DAG stands for directed acyclic graph consist of set of nodes as the random 

variables, and a set of directed links between nodes but with no directed cycles. The 

Bayesian network is represented in the form of DAG. To identify the independency 

relationship in DAG, concept called d-separation is used.  

 

Definition 2.1:  D-separation 

Let   be a Directed Acyclic Graph and       be disjoint set of nodes in  . A path   

between nodes     and     is closed by   if one of the following two conditions 

holds: (1) There exists     that is either tail-to-tail or head-to-tail on    There exists a 

node   that is head-to-head on   and neither   or any descendant of   is in  . If both 

conditions fail, then   is rendered open by  . 

Nodes   and   are d-separated by   if every path between   and   is closed by  ; 

  and   are d-separated by   if for every     and    ,   and   are d-separated by 

   

 

2.4 Bayesian Network - Definition and Example 

The Bayesian networks have been seen as a powerful tool in Artificial Intelligence in 

order to simulate and approximate real situations. They are defined as probabilistic 

graphical model for reasoning under uncertainty [1].  It provides the coherent framework 

for the various decision support systems which function using uncertain knowledge 

available to them, such as in machine learning, bioinformatics, medical diagnosis and so 

on. 
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In [7], Bayesian networks also known as belief networks, causal probabilistic networks, 

directed Markov fields or influence diagrams (given some additional structure). It is a 

directed acyclic graph in which nodes represent random variables, and arcs represent 

direct probabilistic dependence between directly connecting variables. Each node is 

assigned probabilistic distribution conditioned on that node‟s parents. Then Joint 

probability distribution determined from the factorization of CPD‟s assigned. 

 

From [8], Bayesian Network is a triplet     (     )    is a set of variables,   is a 

connected DAG whose nodes correspond to one-to-one to members of   such that each 

variable is conditionally independent of its non-descendants given its parents. Each 

variable    in   is represented as a node in DAG, it is associated with CPD denoted by   

which is defined as: 

  * (     (  ))     +     

Here the   (  ) denote the parents of node    in the DAG. The product of these CPD‟s 

defines JPD given as: 

 ( )   ∏  (  |  (  ))     
                      (2.4) 

Equation  2.4 defines the factorization which is also known as Bayesian factorization 

done in terms of CPDs. The DAG   is commonly referred to as dependency structure of 

Bayesian network.  

 

Hence we conclude that Bayesian network models by providing the compact 

representation of JPD also captures the independency among random variable. 

Consider the simple BN in the Figure 2.1 named Asia travel network.  
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Figure 2.1: The Asia Travel Network-simple BN. 

 

The Asia Travel Bayesian network is DAG defined over the set   of variables 

where    *               +,  

the corresponding set of CPDs is: 

    * ( )  ( )  (   )  (   )  (   )  (    )  (   )  (    )+, 

These two components will now define Joint Probability distribution (JPD) and expressed 

as:      

  ( )   ( )  ( )  (   )  (   )  (   )  (    )  (   )  (    ),     (2.5) 

the CPD factorization in above Equation 2.5 gives the Bayesian factorization of   ( )  

 

2.5  Inference in Bayesian Networks 

The assignment of values to the observed variables is known as evidence. The most 

important form of reasoning used in Bayesian networks is called belief updating which 

involves computing the posterior probability distribution of the variables of interest when 
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the value of their evidence is given. A lot of research is being done in the field of 

reasoning. In [9], the Bayesian network is known to provide the efficient and natural way 

for modeling the causal structures along with the computational basis for probabilistic 

inference. The inference task in the Bayesian network is represented as  (     ) 

where   denotes the set of variables and   denotes evidence set; while set of variables   

is denoted as hidden variables and is represented by        . Since we have joint 

probability distribution defined over the random variables so probabilistic inference can 

be performed by summing out the hidden variables using the sequence of multiply and 

addition operations. 

 

2.5.1 Exact Inference 

The calculation of exact value of posterior probability is called exact inference.  

The following Equation 2.6 calculates for the exact value for inference according to the 

probability theory [1]:   

 (     )   
 (   )

 ( )
 =   (   )    ∑  (     )                  (2.6) 

where   is a normalization value    ( ). 

 

So, in order to calculate the value of  (   ), we need to perform summation over all 

variables except for the evidence variables in  (       )  There are different ways to 

process summation giving rise to different algorithms, only idea behind them is getting 

the value of evidence using minimum number of computations. It is a combinatorial 

optimization problem [7]. The Enumeration algorithm for computing the posterior 

probability is not feasible when applied to large networks, due to number of arithmetic 
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operations involved. So, many have been developed to make the inference approachable 

and easy. 

 

As asserted in [10], In 1980s, Pearl gave the algorithm for efficient message passing for 

inference for polytrees but it was regarded as polynomial time complexity in number of 

nodes, later he gave exact inference algorithm for multiply connected networks called 

loop cutset conditioning. The loop cutset conditioning algorithm works by changing the 

connectivity of the multiply connected graph rendering it singly connected graph and 

instantiating the selected subset of nodes that are referred as loop cutset. The complexity 

for this algorithm is calculated from the number of different instantiations that need to be 

considered and resulting in its time complexity growing exponentially with the size of 

loop cutset being  (  ), where d is the number of values which random variables can 

take and c giving the size of loop cutset so here it is required to reduce the size of loop 

cutset in case of multiply connected networks but the problem of finding the minimum 

loop cutset is known to be NP-hard. 

 

The variable elimination (VE) algorithm works by eliminating variables other than the 

queries one by one by summing out them. The complexity of VE can be measured by the 

number of numerical multiplications and numerical summations it performs. An optimal 

elimination ordering is one that results in the least complexity. The problem of finding an 

optimal elimination ordering is NP-complete. 

 

In [10] the most popular exact inference algorithm is junction tree propagation developed  
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by Lauritzen and Spiegelhalter [11]. The inference task is performed on secondary 

structure of BN which is junction tree. A junction tree (JT) is a graph which is formed by 

the nodes that are subsets of the domain variables called clusters or cliques.  

 

The following steps will elaborate in detail about the conversion of Bayesian network to 

the junction tree: 

Step 1. Moralizing the original graph: Moral graph is formed by connecting the pair of 

nodes that have common child, that is, two nodes with same child are said to be married, 

and then replacing the directed edges with undirected edges. 

Step 2. Triangulating the moral graph: In a triangulated graph, for every cycle of length 

greater than or equal to four, a link is drawn between two non-adjacent nodes on the 

cycle. The problem for finding the optimal triangulation is NP-complete [12], but fast 

triangulation algorithms that can produce high quality results are available [13] [14]. 

Step 3. Identifying the cliques: After the triangulation has been performed we identify the 

cliques. A clique or cluster is nothing but a maximal complete subgraph. Every clique 

corresponds to the node of junction tree.  

 

The JT is constructed using an important property which is called running intersection 

property [1] which says that if a variable belong to two distinct JT clusters, then it should 

belong to every cluster on the path connecting the two clusters. So taking this property as 

the basis the set of common nodes to a pair of neighboring clusters are defined as their 

Separators. The construction of optimal JT is discussed in [15].  Once the junction tree is 

formed, every clique is assigned initial function   which is called potential of the clique. 
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It is product of all the conditional probability distributions which the clique has received. 

If a clique has not received any CPD it will be initialized to 1. The initial potential of the 

cluster does not represent cluster marginal so message passing has to be done so that the 

information of probability distribution of each cluster is made consistent to the other 

clusters.  

 

The Hugin architecture [16] [17] and the Shenoy-Shafer architecture [18][19][20] are the 

two major variations for the JT-based exact inference calculations. The clique tree 

propagation works well with sparse networks but its performance gets affected as the size 

of network increases. Its complexity is exponential to the size of the largest clique made 

out from the undirected graph. 

 

But unfortunately the problem of exact inference in Bayesian networks is NP-hard. So as 

the researchers were faced with intractability of exact inference in large and complex 

networks, so it led them to investigate to develop the approximate inference algorithms as 

an alternative. 

 

2.5.2 Approximate Inference 

Today when the size of practical models is increasing to the size of hundreds of variables, 

the problem of finding the feasibility of probabilistic inference becomes important. The 

exact inference algorithms including the JT algorithm become impractical and [7] when 

applied to larger and complex networks it require either prohibitive amount of memory or 

a prohibitive amount of computation and unable to complete.  
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Although the approximation algorithm to the desired precision is also shown to be NP-

hard [21] but they are the only alternative which can produce any result at all.  

 

As discussed in [1] [7], the various approximate inference techniques developed so far 

are: 

Model Simplification: This method simplify the original structure of model in some way 

and hence weakening the network dependencies and then exact methods can be applied to 

the simplified network so as to obtain the approximation solution. These simplification 

methods involve the reduction in the cardinality of the size of JT clusters [22], some 

methods reduce the model complexity by annihilating small probabilities [10], Sarkar‟s 

algorithm approximates the Bayesian network by finding the optimal tree-decomposable 

representation which is closest to the actual network. Another most widely used method 

is reducing the edges of an original network. Some simplification methods also involve 

using the variational methods for fitting parameters to simple logistic function [23] [10]. 

 

Search Based Algorithms: Search based methods assumes that small fraction of joint 

probability mass contain the majority of probability mass. It finds the high probability 

instantiations with large probability mass in the joint probability distribution and uses 

them to obtain reasonable approximations. These methods give good approximations of 

the network with almost all extreme conditional probabilities. These include Henrion‟s 

“Top-N” search based methods [24], Poole‟s search approach using conflicts [25] [26] 

[27]. 
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Loopy Belief Propagation:  As discussed in [28], there has been a lot of research going 

on the use of Pearl‟s polytree propagation in Bayesian network with loops. In [29] 

researchers have analytically demonstrated that loopy belief algorithm can perform quite 

well in error-correcting codes and computer vision. It performs well on the graphs with 

loops but fail to give good convergence when the density of graph increases resulting in 

poor results. 

 

Stochastic Sampling Methods: The stochastic sampling algorithms also known as 

Monte-Carlo algorithms are the most well- known and most commonly used simulation 

methods. These algorithms generate randomly selected instantiations of the network as 

per the probabilistic distributions of the model and then the frequencies of these 

instantiations are calculated for nodes of interest as an approximation of the inference. 

The accuracy of these algorithms depends upon the size of samples irrespective of the 

topology of the network. The most important characteristic of the stochastic sampling 

algorithm is its nice any-time property such that the computation can be interrupted at 

any given time in order to yield an approximation [10]. 

 

The main idea behind the stochastic sampling algorithm which is the class of algorithm 

under approximate inference is that these algorithms sample the probability distribution 

and estimate the probability of queries depending upon the samples obtained by 

calculating the frequencies of instantiations of interest. The advantage of using the 

stochastic sampling is that the execution time is independent of the topology of network 

and is linear with number of samples. Also these algorithms have any real-time property  
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such that their computation can be interrupted at any time with guaranteed results [7]. 

 

2.6  Sampling in BN 

The sampling algorithms are the most common approximate inference technique used for 

calculating the posterior probabilities. The main idea behind the sampling is to randomly 

instantiate each node in Bayesian network in topological order and produce single 

sample. These samples are generated a number of times and finally after some specific 

number of times or after generating some specific amount of samples the posterior 

probabilities are calculated for each node by counting the frequency of each possible 

instantiation of every node in all the samples generated. Now we will discuss some of the 

common sampling algorithms: 

 

1. Forward Sampling: It is the simplest sampling algorithm. In this we start by 

ordering the nodes in topological order, assign the values of evidence variables and 

number of samples generated. The sampling will proceed by first sampling the parent 

node and then the child node. The evidence nodes are instantiated to observed state and 

so omitted from sample generation. The root node is randomly instantiated to one of its 

possible states as per the prior probability of this node and child node is instantiated 

depending upon the parent node instantiation, to one of its possible states according to the 

conditional probability distribution. The procedure is followed a number of times, once   

samples are generated, the posterior probability  ( ) is obtained calculating the ratio 

between the total score sum and the number of samples. 
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2. Likelihood Weighting: The LW sampling is same to the forward sampling but it 

never discards the sample [43] [44]. It assigns weight to each sample generated. Suppose 

we have Bayesian Network which has evidence nodes as             that are 

instantiated to             respectively. Then the weight of the sample    will be 

calculated as  (     |  (  ))   (     |  (  ))          (     |  (  )). 

In other words the weight of the sample is the product of the probability that each 

evidence node will have the desired value given the value of its parents in the sample  . 

Once   number of samples are generated the posterior probability is calculated for each 

node   and each possible value   by summing out weight of sample in which   is 

instantiated to   and divided by total weight of all   samples. 

 

It is most commonly used simulation method for Bayesian network inference. It is simple 

and is able to increase the precision by generating more number of samples than the other 

algorithms in the same amount of time. Its convergence deteriorates when the evidence is 

very unlikely. 

 

3. Importance Sampling: Importance sampling is same as the generic sampling 

algorithm [44]. The importance sampling has two variants called self-importance (SIS) 

and heuristic importance. Here the importance function is updated trying to revise the 

conditional probability tables periodically in order to make the sampling distribution 

gradually approach the posterior distribution. From [45], since the data used to update the 

importance function and to compute the estimator, this process introduces bias in the 

estimator. There are certain algorithms that are combination of self-importance and 
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heuristic importance [44] [46] but promising direction in the work on sampling 

algorithms has not been achieved yet. Now, we will be going through the theoretical roots 

of importance sampling since it is the basic step to understand in order to learn about the 

existing know-how of stochastic sampling algorithms for Bayesian networks which will 

ground the basis of our thesis.  

 

2.6.1 Mathematical Foundation of Importance Sampling 

Let  ( ) be the function of   variables   (          ) over a domain       

such that computing  ( ) for any   is feasible. Consider the problem of approximate 

computation of the integral 

                                                    ∫  ( )  
 

                                             (2.7) 

Importance sampling approaches this problem by writing the integral (2.7) as 

                                                   ∫
 ( )

 ( ) 
  ( )                                 (2.8) 

where  ( ) often called importance function, is a probability density function over Ω. 

The samples can be generated from  ( ) using importance sampling if the importance 

function is zero only when the original function is zero, that is,  ( )      ( )     

 

Once the samples have been generated from n points as                    according 

to the probability density function  ( ), we can estimate the integral I by 

     ̂   
 

 
 ∑

 (  )

 (  )

 
                                    (2.9) 

And estimate the variance of   ̂ by: 
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                 ̂  ( ̂ )   
 

 (   )
 ∑ (

 (  )

 (  )
   ̂ )

  
                  (2.10) 

The estimator thus obtained has the following properties: 

1.  ( ̂ )    

2.        ̂    

3. √  ( ̂   )
   
→          (    ( )

 )       

  ( )
   ∫ (

 ( )

 ( )
  )

 

 ( )  
 

 

4.  . ̂  ( ̂ )/   ̂  ( ̂ )  
  ( )
 

 
  

The variance  ̂  is proportional to    ( )
  and inversely proportional to the number of 

samples. To minimize the variance we can either increase the number of samples or we 

can reduce    ( )
 . Taking into consideration latter, [47] reports the following theorem and 

corollary: 

 

Theorem 2.6.1: The minimum of   ( )
 is equal to   

  ( )
  (∫

 
  ( )   )      

And occurs when   is distributed according to the following probability density function 

 ( )   
  ( ) 

∫
 
  ( )   

 

Corollary 2.6.1: If   ( )   , then the optimal probability density function is 

 ( )   
 ( )

 
 

And   ( )
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In practice, sampling precisely from   ( )   
 ( )

 
 will happen very rarely but we still 

expect that the functions close to it can help in reducing the variance effectively. Usually 

the closer the shape of the function  ( ) is to the shape of the function  ( ), the smaller 

is   ( )
   It is essential to put in more strength towards choosing the importance function 

whose shape is as close as possible to that of   ( )  than to apply the Brute-force method 

of increasing the number of samples. 

 

It is worth noting that when  ( ) is uniform then the importance sampling becomes 

general Monte-Caro sampling. One another property of importance sampling is that one 

should avoid  ( )    ( )     ( )  in any domain of sampling even if  ( ) matches 

well with   ( )  , it is because in this case the variance can become very large or even 

infinite. In order to adjust this we can make  ( ) to be larger in unimportant regions of 

the domain of    

 

Till now we discussed about the importance sampling for continuous variables but the 

results discussed remains valid for discrete variables where the integration is substituted 

with summation. 

 

2.6.2 Importance Sampling for BN 

From [1], the family of stochastic sampling belongs to the BN approximate algorithm  

class. The importance sampling is commonly used simulation technique which is used to 

sample modified distribution called importance function. The underlying idea is to 
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approximate the average over a set of numbers by an average over a set of sampled 

numbers. 

 

In order to evaluate the sum    ∑  ( )    for some real function   , samples are 

generated from the importance function   such that ( )     ( )   , we have  

   ∑  ( )     ∑
 ( )

 ( )    ( )     0
 ( )

 ( )
1                       (2.11) 

By the definition of expected value we can estimate I as 

 ̂   
 

 
∑  (  ) 
                                                                   (2.12) 

where   (  )   
 (  )

 (  )
, is called sample weight or score. 

In order to compute the probability of evidence  (   ) from a JPD  ( )  

 ∏  (     (  ))
 
    of a BN model, we have to sum over all the non-evidence nodes: 

                                        (   )   ∑  (     )                                                    (2.13) 

                  =   ∑ ∏  (     (  )    ) 
       

Let      , we simplify the above equation 2.13 as: 

    (   )   ∑  (       )        (2.14) 

We can apply the principal of importance sampling. 

 

Assume that our proposal distribution or sampling distribution Q is the importance 

function such that  (       )     (   )   .   

Equation 2.14 can be re-written as: 

  (E  )   ∑
 (       ) 

 (   )
 (   )                             (2.15) 
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By the definition of expected value, we have  

      ∑   (   )

   

 

Equation 2.15 becomes: 

 (   )     0
 (       )

 (   )
1     , (   )-          (2.16) 

where  (   ) denote the score of each sample and is calculated as: 

 (   )   
 (       )

 (   )
 

Suppose we sampled from Q and obtained a sample set (             )  then 

                              ̂(   )   
 

 
∑

 (        )

 (    )

 
    

 

 
∑  (    )
 
          (2.17) 

As the size of sample increases the expected value will approach the true average. It 

means we can say that as      ̂(   )   (   ), thus such estimator is 

unbiased. 

 

In order to obtain the posterior probability  (   ) we can separately compute the two 

terms  (   ) and  ( )  and then combine them by the definition of conditional 

probability. 

 ̂(         )   
 ̂(         )

 ̂(   )
  

∑  (     ) (  )
 
   

∑  (  )
 
   

          (2.18) 

where  (     )    if and only if the sample    contains      , Otherwise  (     )  
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It is important to note here that two terms  (   ) and  (         ) can be 

separately estimated unbiasedly, the estimation thus obtained by combining them through 

Equation 2.18 is not an unbiased estimator [45]. 

 

The quality of importance function depends upon how close the sampling distribution is 

to the true distribution. Many importance sampling algorithms have been developed so 

far for Bayesian networks where choice of importance function may vary from the prior 

distribution as in the likelihood weighting algorithm [6] to more refined choices such as 

there exist algorithms that update the importance function through learning processes [45] 

or calculate the importance function directly with loopy belief propagation [48].  

 

The main aim of these methods is to ultimately reach the optimal importance function, 

which is a function proportional to the posterior distribution and should have a thick tail 

[49] [50]. This section has discussed in detail about the mathematical foundation of 

importance sampling and how it is applied in context of Bayesian networks for 

approximate reasoning.  

 

2.7  Multiply Sectioned Bayesian Network (MSBN) 

Today intelligent systems are being applied to the larger and complex domains and there 

are many applications that are found to be suitably addressed by multi-agent systems [30] 

[31]. In [6], multi-agent system is the one which consist of a number of agents interacting 

with each other typically by the exchange of messages through the computer network 
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infrastructure. In general cases, the agents will be acting or representing users or owners 

having different goals and motivations.  

 

The problem domain in multi-agent systems is distributed naturally among the agents and 

typically with increased size and complexity, so in order to model such a domain as 

single BN becomes difficult and performing inference becomes challenging [8]. As a 

result it is natural to consider one single, large and complex domain being divided into 

subdomains; where each subdomain is individually represented and managed by a 

relatively light weighted single agent. The basic assumption taken is that these agents are 

expected to be cooperative in the sense that they will always provide truthful information 

about their local domains to other agents. 

 

The Multiply Sectioned Bayesian Network (MSBN) [8] extends the traditional BN model 

from a single agent oriented paradigm to the distributed multi-agent paradigm and 

provides a framework to apply probabilistic inference in distributed multi-agent systems. 

Under MSBNs, a large domain can be modeled modularly and the inference task can be 

performed in coherent and distributed fashion.  

 

The MSBN model is based on the following five assumptions: 

1. Agent‟s belief is represented as probability. 

2. Agents communicate their beliefs based on a small set of shared variables. 

3. A simpler agent organization is preferred. 

4. A DAG is used to structure each agent‟s knowledge. 
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5. An agent‟s local JPD admits the agent‟s belief of its local variables and                 

the shared variables with other agents. 

 

An MSBN [32] consist of inter-related Bayesian subnets and each subnet encodes agent‟s 

knowledge on a subdomain. The agents are organized in hypertree structure and 

exchange of messages is done through hyperlink between the adjacent agents. The 

complexity of communication among all the agents is linear on the number of agents and 

the complexity of local inference is the same as if subnet is a single agent based Bayesian 

network.  

 

The MSBN is described in terms of the following definitions [8]. 

Definition 2.2:  Let   (   ) be a connected graph, with the set of random variables V 

and connecting edges E, sectioned into subgraphs *   (     )+  

Let the subgraphs be organized into an undirected tree   where each  node is uniquely 

labeled by a    and each link between    and    is labeled by the non-empty interface 

      such that for each               is contained in each subgraph on the path 

between           in ψ. Then ψ is a hypertree over G. Each    is a hypernode and each 

interface is a hyperlink. 

 

Definition 2.3:  Let G be a directed graph such that a hypertree over G exists. A node   

contained in more than one subgraph with its parents   ( ) in G is a d-sepnode if there 

exists at least one subgraph that contains    ( ). An interface I is a d-sepset if every 

    is a d-sepnode. 
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Definition 2.4: A hypertree MSDAG         where each    is a DAG, is a connected 

DAG such that (1) there exists a hypertree ψ over G, and (2) each hyperlink in ψ is a d-

sepset. 

 

Definition 2.5: An MSBN M is a triplet (V, G,P).         is the domain where each    

is a set of variables.         (a hypertree MSDAG) is the structure in which nodes of 

each DAG    are labeled by elements of   . Let   be a variable and   ( ) be all the 

parents of   in G. For each   , exactly one of its occurrences (in a    containing (* +  

  * +) is assigned  ( |  ( ))  and each occurrence in other DAGs is assigned a 

uniform potential.    ∏     is the JPD, where each    is the product of the potentials 

associated with nodes in   . A triplet    (        ) is called a subnet of M. Two 

subnets            are said to be adjacent if           are adjacent on the hypertree 

MSDAG. 

 

Figure 2.2 below shows an example [2] where subnets in an MSBN are satisfying the 

hyper tree condition. Here         (hence the hypertree condition is trivially 

satisfied). But in general       can be non-empty. The interface between the subnets in 

an MSBN must form a d-sepset. So here each of the           in the interfaces is a d-

sepnodes. Hence, the interfaces *     + and *   + are d-sepsets. If we reverse the arcs 

from j to l, the node j would no longer be a d-sepnode consequently *   + would no 

longer be a d-sepset. Both the hypertree and d-sepset conditions ensure syntactically that 

the agents can communicate their belief by passing messages over the interfaces only. 
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Figure 2.2: The Graph G in (a) is sectioned into       and    in (b). ψ in (c) is a hypertree over G. 

 

An MSBN consists of a set of inter-related Bayesian subnets, each of the subnets 

encoding the agent‟s knowledge on the subdomain. Every agent maintains its local BN 

subnet which represents the partial view of the entire larger problem domain. The union 

of all subnet DAGs must be a DAG and these subnets are organized into hypertree 

structure. Each node in hypertree corresponds to the subnet and each hyperlink 

corresponds to d-sepset, which are the shared variables between the adjacent subnets. The 

hyperlink renders the two sides of the network conditionally independent. MSBN 

provides a framework for uncertainty reasoning in cooperative multi-agent systems. 

Today MSBN have been used in many fields such as building surveillance [33], medical 

and equipment diagnosis [34][35].  MSBN have also been used to provide support for the 

object-oriented Bayesian networks [36]. 

 

2.8  Linked Junction Tree Forests (LJFs) in MSBNs 

The inference or belief updating in MSBN is usually compiled into a secondary structure 
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called linked junction tree forest (LJF). We can say that LJF is derived dependence 

structure which is adopted for distributed probabilistic inference in MSBNs. An LJF [37] 

is constructed through the process of cooperative and distributed compilation so that each 

hypernode in hypertree is transformed into a local JT and each hyperlink into a linkage 

tree. A linkage tree is nothing but it is a special name given to the junction tree 

constructed from a d-sepset. In a linkage tree, each cluster is called a linkage and each 

separator is known as linkage separator. The cluster in the local JT which contains a 

linkage is called Linkage host. The two adjacent subnets maintain their own linkage tree 

corresponding to the same d-sepset.  

 

The Linked Junction Forest LJF as described in [8]: 

Definition 2.6: A linked Junction Forest is a tuple (V,G,T,L) 

        is the total universe where each    is a set of variables called a subdomain, 

       , where each    (     ) is a chordal graph such that there exist a hypertree 

ψ over G. 

  *  + is a set of JTs, each of which is a corresponding JT of   . 

  *  + is a collection of linkage tree sets. Each    *    + is a set of linkage trees, one 

for each hyperlink incident to    in ψ. Each      is a linkage tree of    with respect to a 

hyperlink      . 

 

 Figure 2.3 shows the Bayesian network which is sectioned into three subnets and its 

corresponding MSBN hypertree structure. The three subnets being formed are 

             and are maintained by agents              respectively. Once the hyper 
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tree structure is formed, it is converted to the LJF and inference is carried out in this LJF 

structure which is secondary structure of MSBN. Figure 2.4 shows the LJF constructed 

from the MSBN in Figure 2.3. Here the local Junction trees are               are 

constructed from the BN subnets              respectively, shown in the solid line 

boxes. The linkage trees are derived from the d-sepsets and enclosed in dotted line boxes. 

Each pair of adjacent subnets maintains identical linkage trees. For example, the linkage 

tree     contains the linkage     and     and their linkage hosts in    are the clusters 

*   + and  *   +. 

 

Figure 2.3: (a) A BN (b) A small MSBN with three subnets (c) the corresponding MSBN hypertree. 

 

2.8.1 Initialization of LJF  

During the initialization process of LJF, [37] exactly one of all the occurrences of a 

variable   (from the subnet containing * +    * +) is assigned the CPD  ( |  ( )) 

and all other occurrences are assigned unity potential. Along with it unity potential is also 

assigned to the separators in the local JT and linkages in the linkage tree of LJF. Figure 

2.4 shows the initialization process where from all the seven occurrences of the variable 
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b, only one occurrence of   in cluster *   + of local junction tree    is assigned the CPD  

 (    ) and rest, all other occurrences are assigned unity potential. 

 

Figure 2.4: An MSBN LJF shown with initial potentials assigned to all the three subnets. 

 

The initial potential of a local JT is either the product of all of its assigned CPDs or 1 if 

no CPD is assigned. This initial potential in general does not provide complete 

information for an agent to correctly reason about its own problem subdomain. The 

reason behind it is that local JT is yet to be consistent and more important thing is that the 

potential of each subnet does not represent the JPD of its local variables called prior 

marginal distribution. The initial potentials of all the three subnets in Figure 2.4 can be 

represented as:  (  )   ( )  ( )  ( )  (    )  (  )   (    )  and  (  )  

 (    )  (   )  (    )  but none of these potentials forms the JPD over the 

corresponding local variables. Although it is possible to achieve local consistency 

through message passing in the local JT, inter-agent communication is necessary to 

provide each MSBN subnet the missing information to form the prior marginal.  
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This process is known as marginal calibration. 

 

2.9 Inference in MSBNs 

The belief updating in case of MSBN is done in its secondary structure which is called 

Linked Junction Tree Forest (LJF). As discussed in the previous section the LJF consist 

of local junction tree each of which is constructed from an MSBN subnet. The 

communication between the adjacent subnets is done through the linkages which act as 

interface between two adjacent local JTs. The main concept behind a linkage tree is that it 

renders the two sides of MSBN network conditionally independent. The agents reason 

about its subdomains within the local JTs and then collaborate to solve distributed 

inference problems by communicating over the linkage trees [38]. 

 

Many algorithms have been proposed extending from BN message passing schema to the 

existing MSBN LJF inter-agent message passing for exact belief updating [39][40]. The 

belief propagation process in MSBN requires two rounds of global message passing on 

the corresponding LJF. This process can be related similar to the message passing in JTs 

but here only difference is we are using it in the contexts of MSBN subnets. The 

messages are passed recursively inward and outward relatively to the pre-selected root 

node. During the inward message passing each agent passes message to its neighbor 

towards the root‟s direction and during the outward message passing each agent passes a 

message to its neighbor away from the root‟s direction beginning with the root node 

itself. Hence in total two messages will be passed over each single linkage.  
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Figure 2.5: Inter-agent message passing. 

 

For example, in Figure 2.5 let the shaded node    represents as root node. The solid 

arrows indicate the direction of inward message starting from the all the leaf nodes while 

dashed arrows indicate the direction of outward message passing originating from the 

root    . 

 

From [41], the first general inference method in MSBNs [42], [40] is extension of the 

junction tree based inference method [16] for single-agent BN‟s. In [41], they have called 

this method as product based inference with linked junction forest (LJF), it allows for the 

efficient exact inference when done autonomously in a cooperative multi agent system 

when the dependence structure is dispersed. The inference performed by an agent is said 

to be autonomous if it can performed by an agent alone without communicating with 

other agents, and later after the inference has been done, the agent is able to answer all 

the probabilistic queries exactly conditioned on the local knowledge and observations as 

well as on the global knowledge and observations till the last communication.  
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However it has been seen that [38] performing exact inference in context of MSBN is 

very expensive process. There are two reasons behind this: First, the local belief of each 

subnet has to be represented exactly similar to Bayesian network. Secondly, the local 

belief of each subnet needs to be recomputed every time whenever a new inter agent 

message arrives. For example, in the above Figure 2.5, the root node    has to compute 

its local potential three times for the messages it will receive from             . The 

amount of re-calculation done in each of the subnet is not dependent upon the selection of 

root but to the network topology. For the large networks except for the simpler ones such 

repeated update of the exact belief requires prohibitive amount of resources. Hence 

agents have to perform repeated message passing in order to maintain local consistency 

during the message calculation. 

 

2.9.1 Importance Sampling for LJF local-JT  

The research done so far has highlighted many difficulties in applying stochastic 

sampling to MSBNs at global level [2]. Along with it even the direct local sampling in 

MSBN subnet is not possible since these subnets lack characteristics for valid BN 

structure. So in this regard the LJF local JT, which is secondary structure of a subnet, can 

be calibrated using marginal over all the local variables [37] and hence making local 

sampling possible.  Many algorithms have been proposed to be applied on calibrated LJF 

local JT which combine sampling with the JT belief propagation [6] [51] [52].  Many of 

the algorithms developed are based on the Markov Chain Monte Carlo and thus do not 

support efficient inter-agent message calculation in case of MSBNs [1]. 
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In [4], the concept of JT-based importance Sampler is introduced, although the 

importance sampling in JT was previously done by [53] but [4] introduced explicit form 

of importance function which will facilitate the learning of optimal sampling distribution 

as well as provide for the efficient inter-agent message calculation. 

 

From [4], the JPD over all the variables in a calibrated local JT can be obtained similar to 

Bayesian network DAG factorization. Let             be the   JT clusters given in 

the ordering which satisfies the running intersection property. The separator       for 

    and        (               ) for             Since       , the 

residuals are defined as         . The junction tree running intersection property 

guarantees that the separator    separates the residual    from the set (          

    )    in junction tree. 

 

Applying chain rule to partition the residues given by the separators and have JPD 

expressed as: 

           (        )  ∏  (     )
 
                              (2.19) 

The main idea is to select the root from the JT clusters and then directing all the 

separators away from the root forming a directed sampling JT. It is analogous to BN 

since both follow recursive form of factorization. 

 

Once the JPD has been defined for LJF local JT, the importance function    is defined as 

follows: 

                                                  (   )   ∏  (       )    
 
       (2.20) 
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The vertical bar in  (       )     indicates the substitution of e for E in  (       ). 

 

The importance function in Equation 2.20 is factored into a set of local components each 

corresponding to the JT clusters. It means that when the calibrated potential is given on 

each JT cluster    we can easily compute for every cluster the value of  (     ) directly. 

For the root cluster: 

         (     )   (  )   (  )        (2.21) 

 

The sampling JT is traversed and sampling is done on the variables of residue set in each 

cluster corresponding to the local conditional distribution. This sampling is taken to be 

similar to the BN sampling except now group of nodes are being sampled and not the 

individual nodes. Whenever cluster is encountered with the node in the evidence set E, it 

will be assigned value which is given by evidence assignment. A complete sample consist 

of the assignment to all the non- evidence nodes according to the local JT‟s prior 

distribution. 

 

The score for each sample can be computed as: 

        
 (    )

  (  )
                (2.22) 

 

The score so computed in Equation 2.22 will be used in the LLAIS algorithm for adaptive 

importance sampling as we will see in the next chapter 3. Consider the example shown in 

Figure 2.6 generating the samples for the local JT    with cluster     as the root cluster. 

Suppose the evidence is observed at  , because sampling has to be performed in 
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topological order so first sampling is done over variables     since it is root cluster 

according to its local importance function. 

 

 

Figure 2.6: Sampling local JT with {abc} as root. 

 

Now, for the cluster  af, only   will be sampled from its local importance function since   

is already sampled. For the cluster    , only   will be sampled according to the local 

importance function given the already sampled values of   and   and next we have to 

sample over   for cluster     given the values of   and   already determined. 

 

Since it has been proven that the optimal distribution function for BN importance 

sampling is the posterior distribution  (     )[45], so applying the same rule to JTs, 

we can define the optimal importance function as: 

 (   )   ∏  (        ) 
                 (2.23) 

The above Equation 2.23 takes into account the influence of all the evidences from all 

clusters in the sample of current cluster. 
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2.10 Discussion 

In this chapter, we have given a background study where it is emphasized that BNs have 

emerged as a powerful tool for reasoning under uncertainties. Although the exact 

inference in BN is proved to be NP-hard; hence many practical approximate algorithms 

are being developed to solve wide range of inference tasks. We discussed about 

approximate reasoning in detail by focusing on the various sampling techniques and 

mathematical background for importance sampling. 

 

The extension of Bayesian networks to Multiply Sectioned Bayesian networks is also 

discussed in detail. MSBN provides with the model through which large and distributed 

domain can be modeled in the form of organized subdomains. Since MSBN maintain the 

hypertree structure so the BN JT inference algorithm can be easily and naturally extended 

to MSBN‟s secondary structure called LJF. We also discussed about the application of 

importance sampling to LJF local JT and how it helps in reasoning in case of MSBNs. 

 

Despite the similarities between the BN JT and MSBN hypertree till date global inference 

in LJF has not been made effective. Since the exact inference in MSBN has been proved 

to be very costly so later in the thesis local inference in MSBN hypertree will be 

discussed through approximate methods for reasoning. 
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Chapter  3 

 

Adaptive Importance Sampling in Bayesian Networks 

In this chapter, adaptive importance sampling will be discussed in the context of 

Bayesian networks and how this sampling technique has led to the significant 

improvement in probabilistic inference. The adaptive importance sampling shows 

significant results where the stochastic sampling algorithms so far developed show poor 

convergence and also takes too long to converge to the reasonable estimates of the 

posterior probabilities as the probability of evidence goes more and more unlikely. 

 

3.1 Adaptive Importance Sampling in BN (AIS-BN) 

Since the existing stochastic algorithms convergence rate was quite slow in case of 

unlikely evidence. These algorithms fail to learn good importance function and also they 

fail to reduce the sampling variance. In 2000, Adaptive Importance Sampling algorithm  

(AIS-BN) was proposed by [45] that proved to be a significant achievement in field of 

approximate reasoning in BN by showing promising results in convergence rate even in 

case of unlikely evidence.  

The importance function used by them is:                                

                                        (   )   ∏  (     (  )  )
 
                     (3.1) 

 

The concept of Importance Conditional Probability Tables (ICPT) was introduced 

where ICPT of a node   is table of posterior probabilities  (    ( )    ) conditional 
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on the evidence and indexed by its immediate predecessors,   ( )  These are the 

probability tables which are initially equal to the CPTs and then updated after each 

updating interval.  

 

In [45], the learning rate is defined as the rate at which optimal importance function will 

be learned as per the formula   ( )   (
 

 
)
 
    ⁄  , where a = initial learning rate,  

b = learning rate in the last step, k = number of updates, and      = total number of 

updates.  

The updating interval defines the number of samples after which AIS-BN will update the 

importance function.  

 

Algorithm 3.1.1: AIS-BN 

Step 1. Ordering the nodes in the topological order. 

Step 2. Specify the total number of updates K, Desired number of samples M, Updating 

interval L. 

Step 3.  Initialize the importance function    (   ) same as  

  (   )   ∏   (  |  (  ))           
, modifying it by applying heuristic cut off to 

handle small probabilities and changing the CPT tables of the parents of an evidence 

node E to uniform distribution only when   (   )    (    ) 

Step 4. Generate L samples according to the current ICPT table. Update the importance 

function    (     (  )  ) based on the total samples. 

Step 5. Update the ICPT tables based on the following learning function 

    (     (  )  )     (     (  )  )   ( ) (   (     (  )  )    
 (     (  )  )), 
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where  ( ) is the learning rate. 

Step 6. Modify the importance function with the heuristic of Є-cutoff. For the next 

update, goto Step 4. Update the importance function till     . 

Step 7. Generating M samples and calculating the score arrays. 

Step 8. Normalizing the score arrays for every node and getting the posterior 

probabilities. 

 

There were certain heuristic initializations done in this algorithm for performance 

improvement: They are as follows:- 

(i) two heuristics for initialization of importance function greatly affected the speed of 

convergence. (a)The importance function is taken to prior probability distribution over 

the network variables, P(X). (b) The ICPT tables of the parents of the evidence nodes to 

uniform distributions,   

(ii) learning method for importance function, 

(iii) dynamic weighting function for combining samples from different stages of the 

algorithm. 

 

In [45], they stopped learning after 10 iterations to save time. The heuristics used have 

shown to accelerate the speed of learning process. Hence AIS-BN results in getting fairly 

good estimates of posterior probabilities in limited time and has been proven to show 

dramatic improvement in the convergence rates in case of large Bayesian networks when 

compared to other existing approximate inference techniques. 
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3.2 LJF local Adaptive Importance Sampling (LLAIS) 

We discussed in chapter 2 about the importance sampling application to LJFs in MSBN, 

Here in this section we will be talking about the adaptive importance sampling applied in 

the context of local JT in MSBN. 

 

In 2010, LJF local JT importance sampler called LLAIS [4] was designed that follows the 

principle of adaptive importance sampling as discussed in the section 4.1 for learning 

factors of importance function. This algorithm was specifically designed for the 

approximation of posteriors in case of local JT in MSBN providing the framework for 

calculation of inter-agent messages between the adjacent local JTs. 

 

The sub-optimal importance function used for LJF local adaptive importance sampling is 

as follows, 

   (   )   ∏  (           ) 
                      (3.2) 

 

This importance function is represented in the form of set of local tables. This importance 

function is learned to approach the optimal sampling distribution. These local tables are 

called the Clustered Importance Conditional Probability Table (CICPT). These CICPT 

tables are created for each local JT cluster consisting of the probabilities indexed by the 

separator to the precedent cluster (based on the cluster ordering in the sampling tree) and 

conditioned by the evidence. For non-root JT clusters, CICPT table are defined in the 

form of   (       ), and for the JT root cluster, CICPT table are of the form of 

 (       )   (    ). 



49 
 

The learning strategy is to learn these CICPT tables on the basis of most recent batch of 

samples and hence the influence of all evidences is counted through the current sample 

set. These CICPT tables have the structure similar to the factored importance function 

and are alike to an ICPT table of Adaptive Importance Sampling of BN in the previous 

section 4.1 and are updated periodically by the scores of samples generated from the 

previous tables. 

 

Algorithm 3.2.1: LLAIS 

Step 1. Specify the total number of samples M, total updates K and update interval L, 

Initialize the CICPT tables as in Equation 3.2. 

Step 2. Generate L samples with the scores according to the current CICPT tables. 

Estimate     (       ) by normalizing the scores for each residue set given the states of 

separator set. 

Step 3. Update the CICPT tables based on the following learning function [45]: 

                      (       )  (   ( ))  (       )   ( )  (       ),  

where  ( ) is the learning rate. 

Step 4. Modify the importance function if necessary, with the heuristic of Є-cutoff. For 

the next update, goto Step 2. 

Step 5.Generate the M samples from the learned importance function and calculate scores 

as in Equation 2.22 (From Chapter 2). 

Step 6. Output the posterior distribution for each node. 
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In LLAIS the importance function is dynamically tuned from the initial prior distribution 

and samples obtained from the current importance function are used to refine gradually 

the sampling distribution. It is well known that thick tails are desirable for importance 

sampling in BNs. The reason behind it is that the quality of approximation deteriorates in 

the presence of zero probabilities due to generation of large number of samples having 

zero weights [15][109][32]. This issue is solved using the heuristic Є-cutoff [14], the 

small probabilities are replaced with Є if less than a threshold Є, and the change is 

compensated by subtracting the difference from the largest probability. 

 

3.3 Discussion 

In this chapter, we discussed about the application of adaptive importance sampling in 

case of full BN and MSBN subnets. AIS-BN is the adaptive importance sampling applied 

to singly connected Bayesian networks while the extension of it, LLAIS is applied to the 

local JT in MSBN. There is difference in the initialization of importance function 

between the two algorithms but both of them as per the literature review have been 

proved to be remarkable in giving the estimations of posterior probabilities. LLAIS can 

play an important role in solving the MSBN communication bottlenecks by facilitating 

inter-agent message passing and hence making it possible for realizing inference in case 

of full scale multi-agent probabilistic systems.  
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Chapter 4 

 

Methods for Testing and Improving LLAIS 

This thesis will address two concerns that are listed as follows: 

1) To test the scalability and reliability of LLAIS on larger networks; since initial 

testing of the algorithm is done on 37 nodes network and testing beyond it has not 

been reported. 

2) To improve the performance of LLAIS by tuning the various tunable parameters. 

Hence in this chapter, we will be discussing about the methods and experimental 

procedure designed for testing and further improving LLAIS. 

  

4.1 Motivation behind Testing of LLAIS 

As discussed in chapter 3, LLAIS uses adaptive importance sampling to estimate 

posterior distribution of non-evidence nodes given the set of evidence nodes, LLAIS 

learns importance function sequentially to approach the optimal distribution. The 

prototype of LLAIS has been tested on relatively smaller network ALARM consisting of 

37 nodes. The algorithm showed good convergence and accuracy on this network. 

LLAIS‟s performance did not deteriorated even when the probability of evidence was 

getting more and more unlikely on this network. So to check for the scalability and 

reliability of LLAIS it was necessary to test it on larger networks whether the algorithm 

performs equally well for larger networks. LLAIS is local adaptive importance sampling 

done on local JT in LJF; the size of local JT can vary and can be more than 37 nodes 
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when large BN is sectioned, so it makes it necessary to verify the performance of the 

algorithm. 

 

The scalability and reliability are important factors to examine the algorithm, it means 

that we are checking whether the algorithm will perform equally well on the networks of 

variable sizes and topologies and also that if it will gives good estimates of posterior 

probability of non- evidence nodes as the  ( ) becomes more and more unlikely.  

 

We know that in the case of unlikely evidence many of the algorithms give poor 

performance and convergence so it made significant for us to check if LLAIS is efficient 

enough to perform well in case the evidence goes more and more unlikely and also 

assessing the convergence of algorithm in larger networks. So far the testing of LLAIS on 

network with greater than 37 nodes has not been reported. Hence, we are extending the 

testing of LLAIS from 37 nodes network up to 109 nodes network. 

 

We will test LLAIS on the three large networks namely – (i) Hailfinder (56 nodes)                  

(ii) Win95pts (76 nodes) and (iii) Pathfinder (109 nodes). 

 

4.2 Network Selection  

We selected the networks larger than 37 nodes and used them for testing the performance 

of LLAIS. The networks are selected from Genie and Smile Bayesian repository [5]. 

Basically we want to test LLAIS for its scalability on the networks larger than the one 

used for preliminary testing [4]. 
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For testing LLAIS, we used biggest network of size 109 nodes because LLAIS is the 

application of adaptive importance sampling to the LJF-local JT in MSBN. As we know 

that the sectioning of large Bayesian network results in the formation of subnets which 

denote in itself LJF-local JT in MSBN. So, the three networks selected for testing are 

treated as the three subnets formed as a result of sectioning of some fictitious MSBN.  

 

It implies that our testing of LLAIS will include the subnets of sizes 56 nodes (Hailfinder 

network), 76 nodes (Win95pts network) and 109 nodes (Pathfinder network) denoting 

LJF-local JT in MSBN and will demonstrate about the scalability and affectivity of the 

algorithm when applied to larger local JTs in LJFs. 

 

4.3 Experiments for Testing LLAIS 

In this section we will be first discussing about the performance measures used and then 

the method for doing experiments for testing LLAIS for its scalability and reliability.  

 

4.3.1 Performance Measures 

Before beginning with the method for testing LLAIS, the performance measures used for 

computing the accuracy will be discussed.  

 

We used Kevin Murphy‟s Bayesian network toolbox in MATLAB for experimenting 

with LLAIS. For testing of LLAIS algorithm, the exact importance function is computed 

and then the performance of sampling is compared with that of approximate importance 

function in LLAIS.  
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The accuracy of sampling results is preferred to be measured in terms of the distance 

metric named Hellingers distance , the reason behind it is that [49] the Hellingers 

distance weights small absolute probability differences near 0 much more heavily than 

similar probability differences near 1.  

 

From [49], the Hellinger’s distance between two distributions    and    which have the 

probabilities   (   ) and   (   ) for state   (           ) of node   respectively, such 

that      is defined as: 

 (     )   
√
∑ ∑ *√  (   ) √  (   )+ 

   
         

∑         
                  (4.1) 

where N is the set of all nodes in the network, E is the set of evidence nodes and    is the 

number of states for node      (   ) and   (   ) are sampled and exact marginal 

probability of state   of node  . 

 

In [4], for the initial testing of LLAIS, Mean Square Error (MSE) was used as the 

performance measure. MSE can be defined as follows: 

                          √
 

∑         
∑ ∑ *  (   )    (   )+ 

   
         

            (4.2) 

where N is the set of all nodes, E is the set of evidence and    is the number of states of 

node  .   (   ) and   (   ) are sampled and exact marginal probability of state   of node 

 . But, MSE is not considered to be perfect performance measure since it has drawback 

that [49] it assigns equal distance for the same absolute probability difference all over the 

range [0,1].  
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As we know that probability differences near 0 are considered to be much more important 

than those near 1[49]. So for experiments with LLAIS we preferred using Hellinger’s 

distance since it handles zero probabilities better than MSE which are very common in 

case of Bayesian Network [49].  

 

4.3.2 Example for Testing Procedure 

This section will explain the procedure of testing LLAIS with an example. This example 

will be helpful for the readers to have better understanding of the design of the  

experiment discussed in section 4.3.3. 

 

Consider Hailfinder network with 56 nodes, out of the 56 nodes, 9 nodes are selected 

randomly as evidences denoted in Equation 4.3:  

             *                +                                                     (4.3) 

                       are randomly selected evidence nodes. 

 

For simplicity of example, let the evidence nodes be instantiated using binary values 

where „0‟ will denote state of node to be false and „1‟ will denote true state respectively.  

 

The evidence nodes are randomly instantiated as shown below: 

            *                            +     (4.4) 

 

Equation 4.4 denotes    as single test case representing the assignment of random values 

to each of the 9 evidence nodes in set.  
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In total, ten test cases are generated corresponding to the 9 evidence nodes set where the 

evidence nodes are fixed and are assigned different values randomly for ten time as can 

be seen below: 

              *                             + 

     *                           + 

…………………………………………… 

…………………………………………… 

     *                             + 

      *                             + 

Now,                  represents ten different test cases. 

 

For each of the ten test cases,   ( ) is computed using exact inference method as shown 

below:                   

     (  ) 

     (  ) 

.    

     

      (   ) 

 

where  (  ),  (  )     (   ) are the exact values of probability of evidence computed 

using variable elimination exact inference method corresponding to each of the ten test 

cases generated respectively. 
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For each of the ten test cases,  

Let       (       ) denotes the exact value of probability for state   of node   where 

    , 

Let          (       ) denotes the approximate value of probability for state    of 

node    where     , computed from sampling using the approximate importance 

function in LLAIS, 

Let         (       ) denotes the approximate value of probability for state   of 

node   where       computed from sampling using the exact importance function in 

LLAIS. 

 

For computing the accuracy of results using approximate importance function, 

Hellinger’s distance is calculated as follows: 

             (                )  
√
∑ ∑ *√         (   ) √      (   )+ 

   
         

∑         
     (4.5) 

For computing the accuracy of results using exact importance function, Hellinger’s 

distance is calculated as follows: 

           (               )   
√
∑ ∑ *√        (   ) √      (   )+ 

   
         

∑         
            (4.6) 

The estimates of posterior probabilities of non-evidence nodes from approximate and 

exact importance function is done after running sampling for ten times and for each run  

Hellinger’s distance is computed and average of Hellinger’s distance is calculated for 

each of the ten test cases. 
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Now we have all the required information for plotting the graph of performance. The ten 

test cases generated from the set of 9 evidence nodes have ten values of  ( ) and 

corresponding distance measure calculated from approximate and exact importance 

function respectively as shown below: 

     (  )   
∑    (                )
  
   

  
     

∑    (               )
  
   

  
 

     (  )   
∑    (                )
  
   

  
    

∑    (               )
  
   

  
 

…………………………………………….. 

……………………………………………… 

     (  )   
∑    (                )
  
   

  
     

∑    (               )
  
   

  
 

        (   )   
∑    (                )
  
   

  
     

∑    (               )
  
   

  
 

The same steps are followed for computing     and plotting the graph for analyzing the 

performance of LLAIS. 

 

To summarize the procedure, we randomly selected a set of 9 evidence nodes, assigned 

these fixed set of evidences different values randomly for ten times resulting in ten test 

cases. Then for each test case, compute the exact value of probability of evidence and 

compute the accuracy of results produced from approximate importance function and 

exact importance function in terms of Hellinger’s distance by running sampling for ten 

times and averaging the Hellinger’s distance corresponding to each test case. Lastly, plot 

the graph to observe the performance of LLAIS as the value of evidence goes more and 

more unlikely.  
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The procedure discussed in this section is by taking a set of 9 evidence nodes which 

denotes the first sequence of 10 test cases.  

Likewise, second and third sequences are generated consisting of ten test cases each 

respectively.  

The three sequences generated for each network being tested are described as follows: 

 First Sequence = 9 evidence nodes are fixed in a set and are given random values 

for ten times indicating the generation of ten test cases corresponding to the 

respective sequence of 9 evidence nodes. 

 Second sequence = 11 evidence nodes are fixed in a set and are given random 

values for ten times indicating the generation of ten test cases corresponding to 

the respective sequence of 11 evidence nodes. 

 Third sequence = 13 evidence nodes are fixed in a set and are given random 

values for ten times indicating the generation of ten test cases corresponding to 

the respective sequence of 13 evidence nodes. 

 

Figure 4.1: Procedure for testing LLAIS. 

Bayesian 
network to be 

tested 

•For each of the three networks,Generate 30 test cases 
consisting of three sequences of 10 test cases for  each 
of the 9,11 and 13 evidence nodes respectively. 

Sampling  
•using approximate importance function 

•using exact importance function 

Comparison of 
results 

•For approximate importance function - compare the 
difference in estimated and exact posterior beliefs 
using MSE and Hellinger's distance  

•For exact importance function- compare the difference 
in estimated and exact posterior beliefs using MSE 
and Hellinger's distance 
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Total Test cases generated for each of the three networks tested = 30  

                                       (3 sequences   10 test cases (from each sequence respectively)) 

Figure 4.1 discuss in brief the general procedure for testing LLAIS on the three networks. 

The test cases are plotted on graph for the analyzing the performance of LLAIS. 

 

4.3.3 Design of Experiment 

Now, in this section the design of the experiment for testing LLAIS will be discussed.  

Step 1: Downloading three networks named Hailfinder (56 nodes), Win95pts (76 nodes) 

and Pathfinder (109 nodes) from Genie and Smile and converting it to the format 

acceptable in MATLAB. 

Step 2: For each of the three networks, randomly generating a set of evidence nodes. The 

evidence nodes are fixed in the set and are given random values defining a test case.  The 

assignment of random values to the set of fixed evidence nodes is done for ten times 

respectively to generate ten test cases. 

Step  3: Calculating the exact value of  ( ) using exact inference method corresponding 

to each of the ten test cases. 

Step 4: Computing          (       ) using approximate importance function in 

LLAIS and         (       ) using exact importance function, for state   of node 

  where      respectively for each of the ten test cases. 

Step 5: Computing the Hellinger’s distance and Mean Square Error (MSE) for the values 

of          (       ) and         (       )  for each of the ten test cases generated  

respectively to compare the estimates of posterior beliefs from approximate importance 

function and exact importance function. 
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Step 6: Plotting the graph showing relation between the performance measures computed 

in step 5 and  ( ) estimated in step 3. 

The above 6 steps are followed for three sequences of 9, 11 and 13 evidence nodes set 

respectively generating in total of 30 test cases and hence analyzing the performance of 

LLAIS. 

 

4.4  Improving LLAIS by Tuning the Tunable Parameters 

So far the testing of LLAIS as discussed in the Section 4.1 has been done on 37 nodes 

network and it showed good results for estimating the posteriors. But apart from testing it 

is equally important to improve the algorithm. The second part of the thesis deals with the 

tuning of parameters to improve the performance of LLAIS. There are many tunable 

parameters in LLAIS such as the heuristic value of threshold         , updating 

intervals, number of updates, number of samples, learning rate discussed as follows: 

 

1. Threshold          is used for handling very small probabilities in the 

network. For example, from [45], if the root node with state   has prior probability 

  ( )           and the posterior probability is given by   (   )     , from the 

simple calculation we can assume that if we update the importance function with 1000 

updating interval then we can think of hitting   only one time after ten updates so it can 

result in slow convergence. So this problem is overcome by setting the threshold value   

and replacing every probability     by    As discussed in [45] the convergence rate is 

quite sensitive to this threshold and it is important to set for its proper value. 
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Since the distribution of probabilities is different for all the networks and also the most 

extreme probabilities in these networks make the inference task more difficult, so the role 

of threshold cut-off becomes important. It is equally very important to set and adjust 

these cut-off values to get better performance output. This technique of          

heuristic as discussed earlier was originally proposed in [45] and it asserted that the 

smaller threshold might lead to slow convergence in some cases and faster in others, so if 

one threshold does not work well we can change it to the specific value for improving the 

convergence. 

 

The proper tuning helps the tail of importance function not to decay faster, the optimal 

value for           is dependent upon the network, so in [49] experiments are done by 

giving different cutoff values to the nodes with different number of outcomes. Hence the 

heuristic cutoff value depends upon the nature of distribution of network for better 

performance. Similarly it also plays vital role to get less error and better precision. 

 

We performed experiments on three networks, that is, Hailfinder, Win95pts and 

Pathfinder network, relatively the most extreme probabilities were encountered in 

Pathfinder and Hailfinder and so the threshold value had to be adjusted to improve the 

performance of LLAIS. From the empirical testing on the three networks we could not 

determine any universal value of threshold which can always yield better results for every 

network which is to tested, since if one heuristic cutoff works well on one network it 

might not work on the other. So the nature of distribution of probabilities in the network 

plays role in selection of          . From the various experimentations done on the 
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three networks, we recommend to use        for the nodes with the number of 

outcomes less than 5,         for nodes with the number of outcomes between 5 and 8, 

otherwise         . These experiments with different cutoff values were motivated 

from [49]. 

 

2. The next tunable parameter is the number of updates and updating interval. 

The number of updates plays an important role in the sense that it denotes how many 

times scores in table have to be updated so that they give us optimal output and updating 

interval denotes the number of samples that have to be updated.  The proper value of 

updating interval and number of updates is crucial, if the value of updating interval is 

small it may result in time consuming process as the small set of samples may have to be 

updated many times to get the optimal value. LLAIS uses five updates and taking small 

set of 2000 samples which is quite time consuming to update 5 times and we believe that 

better tuning of parameters can result in getting better output in less updates. From our 

tuning of parameters and many empirical tests we fixed the value of updating interval to 

be 2100 and it requires only three updates to give better results as compared to LLAIS 

with five updates.  

 

3. The number of samples is a very important parameter, since in the stochastic 

sampling algorithm the performance of the algorithm increases as the number of samples 

increases but it is always good to have minimum number of samples that can help you 

reach better output and hence making the sampling process time efficient. In original 

LLAIS, [1] they have used 5000 samples but with the proper tuning of other parameters 
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we are able to reduce this number to 4500 and getting much better performance in 

comparison to the original LLAIS. 

 

4. The learning rate in [45] is defined as the rate at which optimal importance 

function will be learned as per the formula  ( )   (
 

 
)
 
    ⁄ , where a = initial 

learning rate, b = learning rate in the last step, k = number of updates, and      = total 

number of updates.  For LLAIS, the values were set as a=0.4 and b=0.14. The value of 

learning rate should also be tuned well because if the value of learning rate is small then 

the algorithm takes too much time to converge and if its large then the algorithm starts 

showing divergence. We did not change these values and kept the learning rate same as 

[4] with a =0.4 and b=0.14. 

 

The tunable parameters are tuned after many experiments in which they were given 

heuristically different values and then checked for their performance. Since the values of 

thresholds have to be fixed in according to the probability distribution of the CPTs so it 

means every network requires different values of tunable parameters. After the 

experimentation with different values of tunable parameters, the values of tunable 

parameter are finalized in such a way that they give good result in terms of improved 

accuracy and take less time for all the three networks tested. 

 

Table 4.1 below shows comparison of the values of tunable parameters for original 

LLAIS algorithm and the improved LLAIS.  
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Tunable 

parameters 
Original LLAIS Improved LLAIS 

Number of 

samples 
5000 4500 

Number of 

updates 
5 3 

Updating 

interval 
2000 2100 

Threshold 

value 

Nodes with outcomes <5 Nodes with outcomes < 5 

= 0.05 = 0.01 

Nodes with outcomes < 8 Nodes with outcomes < 8 

= 0.005 = 0.006 

Else = 0.0005 Else = 0.0005 

    
 

Table 4.1: Shows the comparison of values of various tunable parameters for original LLAIS and improved 

LLAIS. 

 

4.5 Methods for Testing the Improved LLAIS 

In this section the design of experiments for comparing the original LLAIS and improved 

LLAIS will be discussed along with the performance measure used. 

 

4.5.1 Design of Experiment 

For each of the three networks, that is, Hailfinder, Win95pts and Pathfinder - we 

generated three sequences each containing ten test cases of  9, 11 and 13 evidence nodes 

set respectively.  

The steps for experiments are same as followed during the testing of LLAIS starting from 

downloading of networks then generating ten test cases corresponding to the set of  9, 11 
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and 13 evidence nodes. Then computing the exact value of P(E) for each of the ten test 

cases respectively. Then, computing     (       ) from original LLAIS without tuning 

of parameters and     (       ) from LLAIS improved after tuning the parameters, 

for state   of node   where      respectively for each of the ten test cases. Then 

calculating the Hellinger’s distance using      (       ) and     (       ) 

respectively for each of the ten test cases generated respectively to compare the estimates 

of posterior beliefs from original LLAIS and LLAIS improved and finally plotting the 

graph to analyze the performance of original LLAIS and improved LLAIS. 

 

We expect that after tuning the parameters LLAIS will become time efficient for now it 

requires less number of samples and less updates for learning the optimal importance 

function, that is, now improved LLAIS in 4500 samples instead of 5000 gives better 

results with number of updates = 3 instead of 5 to learn the optimal distribution and also 

it is expected that it will give more accurate results since the threshold values for dealing 

with small probabilities have been tackled more properly. 

 

4.5.2 Performance Measure 

For comparing the performance of original LLAIS and improved LLAIS, Hellinger’s 

distance is preferred. As discussed in section 4.3.3, Hellinger’s distance, handles zero 

probabilities in BN more efficiently than MSE.  

 

4.6 Discussion 

In this chapter we discussed about the methods and design of experiments for testing and  
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improving LLAIS. The experiment procedure to test LLAIS for its scalability and 

reliability are discussed in detail starting from the making of networks in MATLAB to 

applying performance measures for computing accuracy. Since we know that LLAIS has 

many tunable parameters so these parameters are tuned and now there is a possibility that 

tuning of parameters will result in improving the algorithm and producing better 

accuracy. 
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Chapter 5 

 

Experiment Results for Testing and Improving LLAIS 

In this chapter, the experiment results for testing LLAIS on the three networks will be 

discussed. Also there are various tunable parameters in LLAIS as discussed in chapter 4, 

these parameters are tuned and experiment results in this chapter will demonstrate that 

LLAIS properly tuned shows significant improvement in the performance. 

 

5.1 Testing of LLAIS 

In this section, LLAIS will be tested on large networks to check for its scalability and 

reliability. In the case of unlikely evidence many of the approximate algorithms give poor 

performance so it is significant to check if LLAIS is efficient enough to perform well in 

case of unlikely evidence and also to assess the convergence of the algorithm on large 

networks.  

 

As discussed in chapter 4, the testing of LLAIS is done on three networks-  

(i) Hailfinder (56 nodes) (ii) Win95Pts (76 nodes) (iii) Pathfinder networks (109 nodes).  

 

For the testing of LLAIS algorithm, the exact importance function is computed so that it 

is easy to determine how close is the performance of approximate importance function in 

LLAIS to the exact importance function.  
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In order to compare the accuracy of sampling using the exact and approximate 

importance we calculated their departure from the exact solution obtained using variable 

elimination method.  

 

                                    Figure 5.1: Steps for testing LLAIS on larger networks. 

 

The Figure 5.1 explains diagrammatically the general procedure of experiments for 

testing LLAIS on larger networks in brief.  

 

5.2 Experiment Results 

The following section will discuss in detail about the experiment results for testing 

LLAIS on each of the three networks to determine how close the approximate importance 

function (LLAIS) is able to reach optimal results.  

 

 

For each of the 3 networks- Generating in total 30 test cases consisting of three sequences of 10 
test cases for each of the 9,11 and 13 evidence nodes set respectively. 

•First sequence: 9 evidence nodes are fixed in a set and are given random  values for ten times. 

•Second sequence: 11 evidence nodes are fixed in a set and are given random values for ten times. 

•Third sequence: 13 evidence nodes are fixed in a set and are given random values for ten times. 

Computing the exact value of P(E) for each of the 30 test cases generated (3 sequences   10 
test cases). 

The average Hellinger's distance and MSE is computed by running sampling for ten times  for 
each of the 30 test cases  using approximate importance function in LLAIS. 

The average Hellinger's distance or MSE is computed by running sampling for ten times for 
each of the 30 test cases using exact  importance function in LLAIS. 

Plotting the graph between P(E) and average Hellinger's distance or MSE. 
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5.2.1 Testing Results on Hailfinder BN (56 nodes network) 

The first network tested for LLAIS performance is The Hailfinder Network. 

The Hailfinder network contains 56 nodes representing 56 discrete random variables, this 

network was designed for forecasting severe summer hail in northeastern Colorado[54]. 

The following Figure 5.2 shows the topology of the network.  

 

 

Figure 5.2: [5] Structure of Hailfinder Bayesian network 

      with 56 nodes and 66 edges. 

 

The following Figure 5.3 represents the graph for the performance of sampling using 

approximate importance function in LLAIS and the exact importance function in terms of 

Hellinger’s distance with 9 evidence nodes set. As discussed in chapter 4, procedure 

involves assigning random values to the fixed set of  9 evidence nodes for ten times and 

computing exact value of  ( ) for each time. Then calculating the average Hellinger’s 

distance corresponding to each test case respectively after running LLAIS for ten times in 
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each test case. It should be noted that  ( ) plotted in the graphs for all the networks is 

calculated by using exact inference method to compare the accuracy of the estimates 

obtained using LLAIS. 

 

The graph in Figure 5.3 is drawn representing the relation between Hellinger’s distance 

and  ( ). The Hellinger’s distance is plotted on y-axis while  ( ) is plotted on the x-

axis. The  ( )‟s are arranged in the descending order ranging from the most likely 

evidence to the most unlikely evidence. Then the average Hellinger’s distance is plotted 

against each  ( ) respectively. As observed from the graph the most likely evidence 

from the set of 9 evidence nodes is 1.97e-05 while the most unlikely is 1.88e-07. It can be 

seen in the graph that the performance of approximate importance function in LLAIS is 

really good when compared to the exact importance function output. 

 

Figure 5.3: Performance comparison of approximate importance function and exact importance function 

using Hellinger’s distance on Hailfinder network with 9 evidence nodes. 
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Similarly, following the same procedure for doing experiments as discussed in section 

5.1, the second sequence of ten test cases consisting of 11 evidence nodes set is 

generated. The  graph is plotted in the same way as done for the  set of 9 evidence nodes 

in previous case between the  ( ) and Hellinger’s distance as shown in Figure 5.4 by 

taking  ( ) along x-axis marking its range from the most likely to unlikely evidence and 

Hellinger’s distance along y-axis. 

 

Figure 5.4: Performance comparison of approximate importance function and exact importance function 

using Hellinger’s distance  on Hailfinder network with 11 evidence nodes. 

 

From the graph in Figure 5.4, it can be seen that the most likely evidence encountered for 

this evidence set is 1.44e-05 while the most unlikely evidence is 1.26e-08. As seen in the 

graph, sampling accuracy using the approximate importance function in LLAIS is quite 

comparable to the results obtained using the exact importance function. 

 

Figure 5.5 represents the graph drawn for the analyses of performance of LLAIS when 

third sequence of 13 evidence nodes set is taken. The graph is plotted from the output 
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showing relation between Hellinger’s distance and  ( ) in order to determine the 

performance of LLAIS as the evidence goes unlikely, it can be seen in the graph the most 

likely evidence for this case is 2.31e-07 while unlikely evidence is 3.57e-11. The 

performance of LLAIS using approximate importance function is achieving almost the 

same accuracy as achieved by exact importance function. 

 

Figure 5.5: Performance comparison of approximate importance function and exact importance function 

using Hellinger’s distance on Hailfinder network with 13 evidence nodes. 

 

From the analysis of graphs drawn using 9, 11 and 13 evidence nodes set for Hailfinder 

network we can say that the performance of sampling by using approximate importance 

function in LLAIS is somewhat same as that of using exact importance function. The 

only drawback we can talk here about using approximate importance function is that it is 

time inefficient because it requires updating and learning of optimal distribution.  

 

Figure 5.6 represents the histogram which displays frequency distribution of  ( ) for the 

all the 30 test cases generated for Hailfinder network, where we took three sequences of 
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10 test cases each. The histogram shows the information about the order of unlikeliness 

of evidence generated from our randomly selected evidence set of 9,11 and 13 evidence 

nodes. From the histogram it is easily observed that the most frequently occurring 

 ( ) from the evidence set we generated is of the order of      for Hailfinder network 

and most unlikely of the order of        and      .  

 

 

Figure 5.6: Frequency distribution of P(E) in Hailfinder network. 

 

The following Table 5.1 shows the statistical information of the results by combining all 

the 30 test cases generated during the experimentation for testing LLAIS. As seen in the 

table the maximal Hellinger’s distance from approximate importance function is 0.0147 

and from the exact importance function is 0.0157 which is more than the former. Also the 

minimal Hellinger’s distance using approximate importance function in LLAIS is 0.0095 

while for the exact value of importance function is 0.0075. The variance using exact 

importance function is more in comparison to approximate importance function; hence 
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we can say that LLAIS is quite scalable for this network since its sampling results vary 

less in comparison to the results obtained using exact importance function. 

Hellinger’s 

distance 

Using approximate 

Importance 

Function 

Using Exact 

Importance Function 

Minimum Error 0.0095 0.0075 

Maximum Error 0.0147 0.0157 

Median 0.0118 0.0111 

Variance 1.99e-06 4.92e-06 

Mean 0.0118 0.0113 

 

Table 5.1: Statistical results for all the 30 test cases generated to test LLAIS for Hailfinder network in terms 

of Hellinger’s Distance. 

 

 

Figure 5.7: Performance comparison of approximate and exact importance function combining all the 30 

test cases generated in terms of Hellinger’s distance  for Hailfinder network. 
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Since we wanted to make the comparison between the performances measures 

Hellinger’s distance and Mean Square Error (MSE) so MSE is also calculated for all the 

test cases with same evidence nodes sets and same values.  

 

The maximal MSE computed using exact importance function is 0.0146 while using 

approximate importance function is 0.02 which is much more than the former. Also the 

minimal MSE obtained using approximate importance function is 0.0082 and from the 

exact importance function in 0.0071. The variance for exact importance function is little 

less than using approximate function, the value of variance from the results of 

approximate importance function is 4.64e-06 using MSE while from Hellinger’s distance 

as seen earlier in Table 5.2 was 1.99e-06, which shows difference in capturing of errors 

by two performance measures. As discussed in chapter 4 we can interprete that accuracy 

obtained from Hellinger’s distance is much more accurate than from MSE. 

 

Mean Square 

Error 

Approximate 

Importance Function 

Exact Importance 

Function 

Minimum Error 0.0082 0.0071 

Maximum Error 0.02 0.0146 

Median 0.0103 0.0104 

Variance 4.65e-06 4.10e-06 

Mean 0.0107 0.0106 

 

Table 5.2: Statistical results for all the 30 test cases generated to test LLAIS for Hailfinder network in terms 

of Mean Square Error. 
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Figure 5.8: Performance comparison of approximate and exact importance function combining all the 30 

test cases generated in terms of Mean Square Error for Hailfinder network. 

 

Hence from the experimentation of testing on Hailfinder network, it can be concluded 

that the approximate importance function in LLAIS performs quite good when compared 

with the performance of sampling from the exact importance function. We can say that 

the LLAIS is scalable and reliable to be applied on this network even when  ( ) goes 

unlikely. 

 

5.2.2 Testing Results on Win95pts BN (76 nodes network) 

The Win95pts Bayesian network containing 76 random variables is developed by 

Microsoft Research is basically an expert system which was developed for trouble 

shooting in the Windows 95[5]. 

 

The experiment for testing is performed in the similar way as discussed in the last section 

5.2. In total 30 test cases are generated with three sequences of ten test cases each taking 
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9, 11 and 13 evidence nodes for each of the three sequences respectively. The graph is 

plotted between  ( ) and Hellinger’s distance for each of the ten test cases respectively. 

 

 

Figure 5.9 :  [5] Structure of win95pts Bayesian network 

with 76 nodes and 112 edges. 

 

The first sequence of ten test cases is generated where the set of evidence nodes consists 

of  9 evidence nodes and for ten times these fixed 9 evidence nodes are given random 

values. The graph is plotted where   ( ) is plotted against x-axis with the Hellinger’s  

distance plotted along y-axis in the same way as previous graphs drawn is case of 

Hailfinder network. For the set of 9 evidence nodes, as can be seen in Figure 5.10, the 

most likely evidence encountered is 6.12e-03 while the most unlikely evidence is 8.99e-

17. From the graph it can be determined that performance of approximate importance 
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function in LLAIS is still not bad when compared with the sampling results from exact 

importance function and is showing results quite close to the exact importance function. 

 

Figure 5.10: Performance comparison of approximate importance function and exact importance function 

using Hellinger’s distance on Win95pts network with 9 evidence nodes. 

 

Similarly, for the second sequence consisting of ten test cases from 11 evidence nodes, 

the graph is plotted between the Hellinger’s distance and  ( ) as shown in Figure 5.11.  

 

As seen in the graph, the most likely evidence obtained from the set of 11 evidence nodes 

is 4.61e-02 while the most unlikely evidence is 2.67e-14.  For this case as we can observe 

in the graph that the sampling done using the exact importance function shows  better 

results than using approximate importance function in LLAIS but still we can say that the 

results from the approximate importance function are still not that bad as compared to the 

results obtained using the exact importance function. 
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Figure 5.11: Performance comparison of approximate importance function and exact importance function 

using Hellinger’s distance  on Win95pts network with 11 evidence nodes. 

 

Now the third sequence of ten test cases consisting of 13 evidence nodes set is generated. 

The graph is plotted in the same way as done in the earlier cases shown in the Figure 

5.12, the exact value of  ( ) is calculated for 10 times and average of Hellinger’s 

distance is plotted corresponding to each  ( ) after running LLAIS using approximate 

and exact importance function for ten times. By analyzing the graph in Figure 5.12 we 

can see that the most likely evidence observed is 2.73e-07 and most unlikely evidence is 

5.34e-13.  It is also viewed in graph that exact importance function in LLAIS gives better 

performance as compared to the approximate importance function in LLAIS.  

 

Hence, from the graphs drawn for the set of 9, 11 and 13 evidence nodes it can be 

observed that the approximate importance function in LLAIS almost reaches the same 

accuracy given by exact importance function. So in case of Win95pts network the 
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performance of approximate importance function can be taken comparable to the exact 

importance function and hence can be regarded as scalable for this network too. 

 

Figure 5.12: Performance comparison of approximate importance function and exact importance function 

using Hellinger’s distance  on Win95pts Network with13 evidence nodes. 

 

 

Figure 5.13: Frequency distribution of P(E) in Win95pts network. 
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In order to observe the frequency distribution of the order of unlikeliness of 

 ( ) generated, the histogram is plotted as it can be seen in the Figure 5.13. From the 

analysis of the histogram shown below it can be interpreted that from the randomly 

selected evidence nodes the most frequently occurring  ( ) for this network is of the 

order of      . 

 

In order to make comparison between the performance measures MSE is also computed 

in addition to Hellinger’s distance.  

 

The following Tables 5.3 and 5.4 shows the difference in capturing of error by the two 

performance measures. The Table 5.3 below shows the statistical information of the 

performance measured using Hellinger’s distance from the combination of all the 30 test 

cases.  

Hellinger’s 

distance 

Using Approximate 

Importance Function 

Using Exact 

Importance Function 

Minimum Error 0.0084 0.0054 

Maximum Error 0.0154 0.0178 

Median 0.0114 0.0084 

Mean 0.0114 0.0095 

Variance 3.18e-06 1.03e-05 

 

Table 5.3: Statistical results for all the 30 test cases generated for Win95pts network in terms of Hellinger’s 

distance.  
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As seen in the Table 5.3 the maximal Hellinger’s distance from the approximate 

importance function is 0.0154 while from the exact importance function is 0.0178 almost 

comparable to each other. The minimal Hellinger’s distance from the exact importance 

function is 0.0054 and from the approximate importance function 0.0084 hence not much 

difference between the two. On the other hand, the variance for exact importance function 

is much more than that of using approximate importance function which shows that 

approximate importance function in LLAIS gives better performance for this network in 

terms of Hellinger’s distance. 

 

Figure 5.14: Performance comparison of approximate and exact importance function combining all the 30 

test cases generated in terms of Hellinger’s distance for Win95pts network. 

 

Similarly, calculating the statistical measures for the sampling results in terms of MSE. 

The Table 5.4 below shows the performance of approximate and exact importance 

function in LLAIS in terms of MSE.  
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Mean Square 

Error 

Approximate 

Importance Function 

Exact Importance 

Function 

Minimum Error 0.0086 0.0046 

Maximum Error 0.0162 0.0154 

Median 0.0113 0.0077 

Mean 0.0113 0.0086 

Variance 2.56e-06 8.90e-06 

 

Table 5.4: Statistical results for all the 30 test cases generated for Win95pts network in terms of Mean 

Square Error.  

 

Figure 5.15: Performance comparison of approximate and exact importance function combining all the 30 

test cases generated in terms of Mean Square Error for Win95pts network. 

 

As seen in Table 5.4 the maximal MSE for approximate importance function in LLAIS is 

0.0162 while for the exact importance function it is 0.0154. The minimal MSE using 

approximate importance function is 0.0086 and from the exact importance function is 

0.0046. The maximal and minimal values of MSE are almost comparable for both the 
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importance functions. The variance recorded by MSE is more for sampling results using 

the exact importance function. 

 

To summarize the testing experiments on Win95pts network, we can say that the 

approximate importance function in LLAIS performs quite good and comparable to the 

exact importance function. As seen in the graphs in Figure 5.14 and Figure 5.15 

approximate importance function in LLAIS shows less in the variance in results in 

comparison to the exact importance function. So LLAIS using approximate importance 

function can be regarded as scalable and reliable for this network too. 

 

5.2.3 Testing Results on Pathfinder BN (109 nodes network) 

The third network tested is The Pathfinder network consisting of 109 nodes. It is basically 

an expert system which is created to assist surgical pathologists in the diagnosis of 

lymph-node disease [55]. The Figure 5.16 shows the structure of Pathfinder taken from 

Norsys Software Corp [56]. 

 

                  Figure 5.16:  Structure of Pathfinder Bayesian network from Norsys Software Corp. 
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The experiments for testing LLAIS on Pathfinder network are performed in the same way 

as in case of Hailfinder and Win95pts network. The sampling output from approximate 

importance function in LLAIS is compared with that of exact importance function. 

Following the same procedure in total 30 test cases are generated for this network too 

consisting of three sequences of ten test cases each of the 9, 11 and 13 evidence nodes 

respectively. Then Hellingers’ distance is calculated to measure the performance of 

LLAIS. 

 

Figure 5.17 shows the comparison of efficacy of sampling using approximate and exact 

importance function for 9 evidence nodes set in Pathfinder network. The most likely 

evidence for this evidence set is 3.76e-03 while the most unlikely is 4.22e-39 which 

seems to be quite extreme as compared to the unlikely evidences encountered in other 

two networks. So this network can be thought as challenging enough for testing LLAIS 

because of the presence of extreme probabilities. 

 

Figure 5.17: Performance comparison of approximate importance function and exact importance function 

using Hellinger’s distance on Pathfinder network with 9 evidence nodes. 
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It can be seen in Figure 5.17 that the performance given by LLAIS is different from the 

other two networks showing lots of ups and down in the accuracy. The reason behind this 

can be generation of bad samples for some cases and for some dealing with extreme 

probabilities. Since it can be seen in the graph the range of  ( ) shows lot of variation in 

comparison to the other two networks so graph is showing strange trend in the sampling 

results. 

 

In this case the approximate importance function in LLAIS did not give good results as it 

gave in other two networks tested earlier. The performance of exact importance function 

is also not good since there is lot of variance obtained but still the exact importance 

function performs better in this case. 

 

Figure 5.18: Performance comparison of approximate importance function and exact importance function 

using Hellinger’s distance on Pathfinder network with 11 evidence nodes. 

 

Figure 5.18 shows the graph for the set of 11 evidence nodes and it can be seen that the 

most likely evidence encountered for this case is 6.50e-04 and the most unlikely evidence 
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is 2.39e-36. Hence in this case also it is seen the range of order of unlikeliness of 

evidence is too extreme hence here also the performance of sampling will show lots of 

variance. From the graph in Figure 5.18, it can be observed that the performance of 

approximate importance function is again not too good in comparison to the exact 

importance function. The exact importance function somewhat converges even when the 

evidence goes more unlikely but it did not happened in case of approximate importance 

function. 

 

The third sequence of ten test cases consists of 13 evidence nodes. As done in the former 

cases the graph is plotted as can be seen in Figure 5.19 between Hellinger’s distance 

and  ( ). The most likely evidence for 13 evidence node set is 4.87e-07 while the most 

unlikely evidence captured is 9.32e-54. This value of evidence which is of the order of 

      is much less as compared to unlikely evidence encountered in [45][49]. 

 

Figure 5.19: Performance comparison of approximate importance function and exact importance function 

using Hellinger’s distance on Pathfinder network with 13 evidence nodes. 
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For the set of 13 evidence nodes as it can be seen in Figure 5.19 that the approximate 

importance function in LLAIS again did not performed well in comparison to the exact 

importance function. The sampling output using the exact importance function as we can 

observe in the graphs above has resulted in relatively less error even in the case when 

 ( ) goes more and more unlikely. The performance of approximate importance 

function showed large variation as the  ( ) was reaching extreme probabilities denoting 

that LLAIS is not scalable for this network. 

 

From the randomly selected evidence set for this network the most likely event 

encountered is 3.76e-03 and the most unlikely event being 9.32e-54. The histogram in 

Figure 5.20 will show the frequency distribution of   ( ) to help in analyzing the order 

of unlikeliness of evidence for this network and it makes us to conclude that from our 

randomly selected evidence set the most frequently occurring  ( )  for this network is of 

the order of      and      . 

 

Figure 5.20: Frequency distribution of P(E) in Pathfinder network.  
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Table 5.5 shows the statistical data of the results obtained from LLAIS using the 

approximate and exact importance function in terms of Hellinger’s distance. The minimal 

Hellinger’s distance using the approximate importance function in LLAIS is 0.0168 but 

using the exact importance function it is 0.0038 which is far less than former. 

Hellinger’s 

distance 

Using Approximate 

Importance Function 

Using Exact 

Importance 

Function 

Minimum Error 0.0168 0.0038 

Maximum Error 0.1 0.0774 

Median 0.0379 0.0313 

Mean 0.0403 0.0269 

Variance 6.05e-04 4.41e-04 

 

Table 5.5: Statistical results for all the 30 test cases generated to test LLAIS for Pathfinder network in 

terms of Hellinger's distance. 

 

On the other hand the maximal Hellinger’s distance using the exact importance function 

is 0.0774 which is less than the maximal Hellinger’s distance 0.1 using approximate 

importance function in LLAIS. The variance and mean value of Hellinger’s distance is 

also less using the exact importance function in contrary to the approximate importance 

function in LLAIS as can be seen in Table 5.5 above. Figure 5.21 shows the graph for 

Hellinger’s distance plotted corresponding to the total 30 test cases generated. We can 

see in the graph that the exact importance function performs far better than the 

approximate importance function. 

 

For the comparison of performance measures MSE is also calculated as shown in Table 

5.6 for all the test cases as we did for the other two networks. The maximal MSE as we 
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can see in Table 5.6 for approximate importance function in LLAIS is 0.106 while using 

exact importance function its 0.0038. The variance in the sampling results from 

approximate importance function is more in comparison to that of the exact importance 

function, showing that sampling from the approximate importance function of LLAIS 

results in poor accuracy and it not reliable enough to apply on this network. 

 

Figure 5.21: Performance comparison of approximate and exact importance function combining all the 30   

test cases generated in terms of Hellinger’s distance for Pathfinder network. 

 

 

 

 

 

 

 

 

 

Table 5.6: Statistical results for all the 30 test cases generated to test LLAIS for Pathfinder network in 

terms of Mean Square Error. 

Mean Square Error 
Using Approximate 

Importance Function 

Using Exact 

Importance 

Function 

Minimum Error 0.0147 0.0038 

Maximum Error 0.106 0.0698 

Median 0.0389 0.0299 

Mean 0.0407 0.0257 

Variance 6.31e-04 3.77e-04 
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Figure 5.22: Performance comparison of approximate and exact importance function combining all the 30 

test cases generated in terms of Mean Square Error for Pathfinder network. 

 

The difference in values of statistical measures from the two performance measures is 

due to the fact Hellinger’s distance is considered to handle zero probabilities much more 

accurately than MSE. 

 

The sampling from the exact importance function gave significant results in comparison 

to the approximate importance function on this network and almost took less than 50% of 

the total time taken by sampling using the approximate importance function in which it 

updates and learns the optimal distribution.  We cannot assert in case of this network that 

the LLAIS using approximate importance function is scalable and reliable enough as it 

was in case of Hailfinder network (56 nodes) and Win95pts network (76 nodes) since it 

performed really bad giving poor precision for Pathfinder network (109 nodes). 
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5.3 Summary of Testing 

In the last section 5.2 the experiment results for testing LLAIS on the larger networks are 

discussed, and it can be concluded that sampling from the approximate importance 

function in LLAIS almost gives as good results as given by exact importance function in  

case of Hailfinder and Win95pts network but its performance degrades once it is applied  

to the Pathfinder network which is the largest of the three networks being tested.  

 

The reason behind this is there are lots of zero probabilities in case of Pathfinder network 

and topology of network is quite complex so LLAIS did not showed good performance 

on this network resulting in large variance of sampling output. During the experiments 

for testing certain concerns aroused and were fixed. 

They are discussed as follows: 

 Firstly, many times the exact value of  ( ) was encountered to be zero for the  

test cases generated, especially in case of Pathfinder Network this situation was 

too frequent. After investigating it is concluded that reason behind it is the fact 

that the randomly chosen evidences from the network were having extreme values 

of probabilities as 0 or too close to 0 in original CPTs, hence for the particular 

assignment of evidence nodes where the evidence nodes were given random 

values it always resulted in  ( )=0. To clarify it further, when the values in 

original CPTs for the evidence nodes were changed (making them > 0) then for 

the same set of evidences with same instantiations non zero value of  ( ) is 

yielded.   
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 Secondly, getting NAN value of error produced for some test cases generated. 

Since so far LLAIS was tested on 37 nodes network so issue of NAN value did 

not arise due to absence of extreme probabilities in this small network but once 

the algorithm was applied to larger network having extreme probabilities NAN 

was yielded as the sampling output. This problem was also fixed during the 

testing of LLAIS after dealing with division by zero in the algorithm.  

 

 

5.4 Tuning the Parameters and Improving LLAIS 

The second part of the thesis deals with the tuning of parameters to improve the 

performance of LLAIS since in the last section 5.2 we have seen that LLAIS performs 

really bad in case of Pathfinder network. So there is a need to tune these parameters such 

as threshold, number of updates and updating interval so that the algorithm is able to give 

good results for all the networks. 

 

The experiments are performed on the same three networks, that is, Hailfinder, Win95pts 

and Pathfinder; relatively the most extreme probabilities were encountered in Pathfinder 

and Hailfinder. So we believe that tuning of parameters will result in improvement in 

performance of sampling. From the empirical testing on the three networks we could not 

determine any universal value of threshold which can always yield better results, since if 

one heuristic cutoff works well on one network it did not work on the other. So the nature 

of distribution of probabilities in the network plays an important role in selection of 

threshold         .  After testing and analyzing results for different threshold values, 

we recommend to use        for nodes with the number of outcomes less than 5, 



95 
 

         for nodes with the number of outcomes between 5 and 8, otherwise 

         , the experiments with different cutoff values are motivated from [49]. 

 

As discussed earlier in the last chapter 4, we used 4500 samples and used three updates of 

updating 2100 samples instead of 5000 samples and five updates of 2000 samples. Since 

we updated the importance function three times instead of five so it resulted in saving 

time and having different values of threshold resulted in much more accuracy than the 

original algorithm.  

 

The improved LLAIS has shown quite good results in comparison to the original LLAIS 

as we will see in the next section 5.5. 

 

5.5 Experiment Results  

5.5.1 Experiment Results for Improved LLAIS on Hailfinder BN 

The experiments are performed for analyzing the performance of improved LLAIS 

following the same procedure as followed for the testing of LLAIS as discussed in 

chapter 4. The graph plotted as shown in gives the comparison of the results from the 

original LLAIS and improved LLAIS. 

 

The summary of the results from the combination of 30 test cases generated is shown in 

Table 5.7 below. Table 5.7 describes the comparison of statistical measures for the 

original LLAIS and the improved LLAIS. The minimal Hellinger’s distance from 

improved LLAIS is 0.0076 while for the original LLAIS it is 0.01. The maximal 
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Hellinger’s distance from the improved LLAIS is 0.014 which is far less than 0.0205 

obtained from the original LLAIS. Further the average error using the original LLAIS is 

0.0128 while for the improved LLAIS it is 0.0101 which is quite less and also the 

variance in sampling result for improved LLAIS is less in comparison to the original  

LLAIS.  

 

 

 

 

 

 

 

Table 5.7: Statistical results for all the 30 test cases generated to compare the performance of original 

LLAIS with improved LLAIS on Hailfinder network in terms of Hellinger’s distance. 

 

 

Figure 5.23: Performance comparison of original LLAIS and improved LLAIS for Hailfinder network. 

Hellinger’s distance for each of the 30 test cases plotted against P(E). 

Hellinger’s 

distance 

Original 

LLAIS 

Improved 

LLAIS 

Minimum Error 0.01 0.0076 

Maximum Error 0.0205 0.014 

Median 0.0119 0.0097 

Mean 0.0128 0.0101 

Variance 7.08e-06 2.73e-06 
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The graph shown in Figure 5.23 gives the performance of original and improved LLAIS 

for all the 30 test cases generated where  ( ) is taken along x-axis ranging from most 

likely evidence to most unlikely evidence. The Hellinger’s distance is plotted along y-

axis in the same way as we plotted during the testing of LLAIS. 

 

From the analyses of the graph in Figure 5.23 and Table 5.7 it can be seen that the 

performance of improved LLAIS after tuning the parameters is quite good in comparison 

to the original LLAIS. The improved LLAIS is also time effective for it requires less 

number of samples and less updates than the original one.  

 

Hence for the Hailfinder network we are able to see good performance of improved 

LLAIS showing better convergence as compared to the original LLAIS. 

 

5.5.2 Experiment Results for Improved LLAIS on Win95pts BN 

For this 76 nodes network, the experiments are performed in the same way as done in the 

earlier cases in Section 5.4.1, that is, generating total of 30 test cases constituting three 

sequences of ten test cases each of  9, 11 and 13 evidence nodes set respectively.  

 

The following Table 5.8 displays the statistical information for comparing the 

performance of the original LLAIS and improved LLAIS. The minimal Hellinger’s 

distance for the improved LLAIS is 0.0054 while for the original LLAIS it is 0.0087. The 

maximal Hellinger’s distance for original LLAIS is 0.02 which is more than 0.0125 given 

using improved LLAIS. In addition to this, the variance in output is again less in case of 



98 
 

improved LLAIS as compared to the original LLAIS. So for this network too improved 

LLAIS showed good results by updating the importance function three times only in 

comparison to original LLAIS. 

 

Hellinger’s 

distance 

Original 

LLAIS 

Improved 

LLAIS 

Minimum Error 0.0087 0.0054 

Maximum Error 0.02 0.0125 

Median 0.0105 0.0075 

Mean 0.0114 0.0078 

Variance 6.45e-06 2.50e-06 

 

Table 5.8: Statistical results for all the 30 test cases generated to compare the performance of original 

LLAIS with improved LLAIS on Win95pts network in terms of Hellinger’s distance. 

 

Figure 5.24: Performance comparison of original LLAIS  and  improved  LLAIS for Win95pts  network. 

Hellinger’s distance for each of the 30 test cases plotted against P(E). 
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Figure 5.24 shows the graph which is plotted between  ( ) and Hellinger’s distance. 

The  ( ) is arranged along the x-axis in the descending order ranging from the most 

likely evidence to the most unlikely and the corresponding value of Hellinger’s distance 

is plotted on y-axis for all the 30 test cases respectively.  

 

From the graph in Figure 5.24 it can be seen that the performance of improved LLAIS is 

quite good in comparison to the original LLAIS and  also it does not degrade as the  ( ) 

is reaching the extreme value of the order of      .  

 

From the analyses of the graph in Figure 5.24 and Table 5.8, it can be concluded that the 

performance of improved LLAIS is quite better than the original LLAIS. It is also to be 

noted that improved LLAIS is also time efficient for it now requires only three updates 

instead of five updates required by original LLAIS and also gives better performance than 

latter. 

 

Hence for Win95pts network containing 76 nodes the performance of improved LLAIS is 

good and shows better convergence in comparison to the original algorithm.  

 

5.5.3 Experiment Results for Improved LLAIS on Pathfinder BN 

The Pathfinder network containing 109 nodes has many probabilities as 1 and 0 showing 

deterministic relationship between the nodes. It contains many extreme probabilities that 

have to be dealt with the heuristic cutoff so that the algorithm will result in good 

precision. So, following the same experiment methods as done in the previous cases 30 
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test cases were for this network consisting of three sequences containing 10 test cases of 

9, 11 and 13 evidence nodes set respectively. As seen in the last section 5.2, LLAIS 

performed very poorly on this large network and has shown large variance in the result so 

there is a need to improve it and the modification done by the tuning of parameters 

proved to be very effective in reducing the error rate for Pathfinder network in 

comparison to the original LLAIS as can be seen in the Table 5.9.  

 

 

 

 

 

 

 

Table 5.9: Statistical results for all the 30 test cases generated to compare the performance of original 

LLAIS with improved LLAIS on Pathfinder network in terms of Hellinger’s distance. 

 

 Figure 5.25: Performance comparison of original LLAIS and improved LLAIS for Pathfinder 

  network. Hellinger’s distance for each of the 30 test cases plotted against P(E). 

 

Hellinger’s 

distance 

Original 

LLAIS 

Improved 

LLAIS 

Minimum Error 0.0168 0.0068 

Maximum Error 0.117 0.0451 

Median 0.0387 0.0149 

Mean 0.0427 0.0166 

Variance 7.80e-04 1.09e-04 
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As can be seen in the table below the maximal Hellinger’s distance for original LLAIS is 

0.117 while for the improved it is 0.0591 which is far less. The minimal Hellinger’s 

distance computed from the improved LLAIS is 0.0068 while for the original LLAIS is 

0.0168. The variance in case of improved LLAIS is quite less which again shows that 

improved LLAIS is better in comparison to the original LLAIS. 

 

The graph is plotted as can be seen in Figure 5.24 for all the 30 test cases generated. It 

can be observed that the improved LLAIS shows good performance and even for the 

unlikely evidence it did not performed as bad as original LLAIS resulting in the 

maximum average error which is almost 50% of that of the error from the original 

LLAIS. 

 

Hence it can be concluded that improved LLAIS is effective in time requiring less 

updates and less samples as well as more accurate than the original LLAIS. 

 

5.6 Summarizing the Experiments in terms of Time Taken 

As we have seen in chapter 3, LLAIS used 5000 samples, 5 updates and updating interval 

of 2000 to reach the optimal distribution and give results. For testing LLAIS on larger 

networks, the exact importance function is calculated so that it is easy to determine how 

close the approximate importance function is able to reach optimal importance function.  

The framework in [4] gave us an opportunity to compute the exact value of importance 

function which does not require learning and updating and hence saving a lot of time. The 

following Table 5.10 displays the comparison of time taken by the approximate and exact 
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importance function in LLAIS. The time shown in Table 5.10 includes the time taken by 

the approximate importance function when it is initialized, updated using the previous set 

of samples five times, learned and producing the posteriors. The time displayed is the 

average of time taken by the algorithm for ten test cases. 

 

As we can see in Table 5.10 a lot of time is saved when exact importance function is used 

since it does not require updating and learning process while the approximate importance 

function takes too much time especially in case of Pathfinder network where the single 

iteration is too time consuming.  

Name of Network 

Average time taken using 

Approximate Importance 

Function(LLAIS) in minutes 

Average time taken using 

Exact importance 

Function in minutes 

Hailfinder 8.742 2.362 

Win95pts 10.328 3.482 

Pathfinder 30.751 8.203 

 

Table 5.10: Comparison of the average time taken for ten test cases by approximate importance function 

and exact importance function in producing the posterior probabilities. 

 

Furthermore, the tuning of parameters apart from improving the performance of LLAIS 

in terms of accuracy also resulted in saving of time, though not so significant difference 

in consumption of time is recorded but still taking less time in comparison to the original 

LLAIS and also giving better precision. 
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From the experiments done for testing the performance of improved LLAIS as seen in 

section 5.5 it is seen that the estimation of posterior beliefs for non-evidence nodes from 

improved LLAIS is quite better as compared to the original LLAIS. The data in Table 

5.11 shows the difference in time taken by improved LLAIS and original LLAIS taking 

the average time taken by ten test cases; So we can compare that for every sequence of 10 

test cases, improved LLAIS takes around 33 minutes less for 56 nodes network, 28 

minutes less for 76 nodes network and approximately 95 minutes less for 109 nodes 

network; showing that the improved LLAIS is quite time efficient as compared to the 

original LLAIS. 

 

 

 

 

 

 

 

Table 5.11: Comparison of the average time taken for ten test cases by original LLAIS and improved 

LLAIS in producing the posterior probabilities. 

 

It can be concluded that calculating the exact importance function resulted in saving a lot 

of time since no time is spent on updating and learning of optimal importance function. 

On the other the tuning of various tunable parameters not only resulted in improving the 

accuracy of the original algorithm as seen in the last section 5.5 but also made it time 

efficient to some extent. 

 

Name of Network 
Average time taken using 

original LLAIS in minutes 

Average time taken using 

improved LLAIS in minutes 

Hailfinder 9.087 6.032 

Win95pts 9.502 6.701 

Pathfinder 33.905 22.091 
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5.7 Discussion 

In this chapter we have presented and discussed the experiment results. The approach and 

procedure for testing LLAIS by comparing results from the exact importance function 

and improving the algorithm LLAIS by tuning the parameters are briefly discussed. We 

used three networks for the experimentation - Hailfinder, Win95pts and Pathfinder  

consisting of  56, 76 and 109 nodes respectively; also these networks are treated as  

subnets or local JT in MSBN. It is to be noted that the application of this algorithm to 

such big subnets is not been reported yet. 

 

From the experiments performed for testing of LLAIS on large networks we can conclude 

that the performance of the approximate importance function in LLAIS for estimating the 

posterior probabilities in case of Hailfinder and Win95pts networks is quite good when 

compared to the exact importance function but once the algorithm is applied to Pathfinder 

(109 nodes) it did not gave good results. So the algorithm was not scalable and reliable 

enough when applied to large network which denote in itself local JT in LJF. 

 

The proper tuning of parameters resulted in effective results by improving the algorithm. 

It was seen that adjustment of small probabilities led to the significant betterment in the 

performance of algorithm and now it requires less number of samples and less updates to 

for estimating posteriors. So we can say that if the network contains extreme probabilities 

then for good precision adjustment of these tunable parameters will lead to convincing 

and sound results as seen in the experiment results in this chapter. 
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Chapter 6 

 

Conclusion 

In this chapter thesis summary will be discussed and then some additional remarks will 

be given for future research. 

 

6.1 Thesis Summary 

Since the exact inference algorithms have been proved to be NP-hard [3], so it led to the 

development of various approximate inference algorithms so that they can be applied to 

decision theory in knowledge-based systems. In MSBN where a large BN is sectioned 

into sub-domains it becomes very important to deal with the reasoning between the sub-

domains so formed, in addition to this, as the size of those sub-domains increases and 

become complex, the exact inference becomes quite difficult and costly. For example, [4] 

network may contain subnets that are too large and complex to allow for the exact local 

representation. So it is obvious to trade off exact inference against the calculation speed 

and communication cost with approximate approaches [4]. 

 

In MSBN, LJF provides a coherent framework for doing inference in MSBN. LLAIS 

developed by [4] is the extension of BN importance sampling techniques to JTs and it 

integrates local sampling with existing LJF framework. The prototype of LLAIS was so 

far tested on 37 nodes Alarm network and it was important to test the scalability and  

reliability of this algorithm on larger network and as we know that the best way to test the 

 



106 
 

approximate inference algorithms is to apply them on larger networks.  

 

For this purpose we chose three networks named –  

(i) Hailfinder (56 nodes) (ii) Win95pts (76 nodes) and (iii) Pathfinder (109 nodes).  

We limited ourselves up to 109 nodes network since LLAIS is local adaptive sampling 

and has to be applied to the local JT which is formed after sectioning of large BN. So 

testing LLAIS up to 109 nodes network is a quite adequate decision. 

   

The testing of LLAIS is done by comparing the performance of sampling from the 

approximate importance function in LLAIS with that from the exact importance function. 

The main idea is to test the algorithm on larger network for its performance when the 

 ( ) goes unlikely. The departure from the exact solution is computed using variable-

elimination algorithm. The accuracy is preferred to be measured in terms of Hellinger’s 

distance rather than Mean Square Error since former weights small absolute probability 

differences near 0 much more heavily than similar probability differences near 1. 

 

The networks for testing were downloaded from Genie and Smile Bayesian repository 

and platform used for experiments is MATLAB. From the testing of LLAIS on large 

networks we concluded that the algorithm performed quite well in case of Hailfinder and 

Win95pts network but did not showed good results in case of Pathfinder network. The 

reason behind it is the presence of extreme probabilities in Pathfinder that have to 

adjusted to produce better results.  
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The second part of thesis is to improve LLAIS by tuning the various tunable parameters 

such as threshold value of           number of samples, updating interval and number 

of updates. Since some of the Bayesian networks contain many small probabilities so 

they need to be dealt properly for getting better precision. In this regard different 

threshold values were adjusted for nodes with different number of outcomes. It resulted 

in improving the performance of algorithm with less number of updates and less number 

of samples. 

 

From the empirical testing of LLAIS, tuning the parameters resulted in improving the 

algorithm. The setting of updating interval to 2100 required only three updates instead of 

five (as used by original algorithm) to get much better results with less number of 

samples in comparison to the original LLAIS and hence making it more time efficient. 

The tuning of parameters resulted in improving the accuracy of the original algorithm on 

all the three networks. 

 

6.2 Future Work 

It has been seen that learning time of the optimal importance function takes too long, so 

the choice of initial importance function     (   ) close to the optimal importance 

function can greatly affect the accuracy and convergence in the algorithm. The algorithm 

can be improved by developing methods for estimating the posterior distribution with 

better accuracy. As mentioned in [4], there is still one important question that remains 

unanswered how the local accuracy will affect the overall performance of the entire 

network. Further experiments are still to be done on the full scale MSBNs. 
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