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ABSTRACT 

In silico prediction of drug target interactions has gained its popularity with the 

growth of publicly available information in chemical and biological sciences. The 

old paradigm of 'one drug-one target' is quickly becoming outdated. It was smart 

way of understanding the drug-protein interactions but the biological systems we 

are dealing with are made up of myriad of proteins exhibiting multiple functions. 

To analyze and understand these systems as a whole, we require efficient 

computational models. In this work we have improved a machine learning method 

by integrating more correlated information about the drug compounds and extend 

this method to weighted profile method in order to infer novel interactions for 

drugs and targets with no prior interaction information, which was not possible 

with the current model. We have evaluated our method using area under the ROC 

curve and the results obtained show that the proposed model can predict drug 

target interactions accurately. 
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CHAPTER 1 

1.1 Preface 

The study of molecular biology through analysis of bio-molecular networks has been 

fundamental in leading scientists and researchers venture deep in understanding the 

natural and chemical sciences at the molecular level. Many still unknown discoveries are 

yet to be unearthed which can pose as efficient solutions to the problems faced by our 

community, for example cure for diseases such as cancer which still haunts the most 

intelligent species on this planet. The field of study which deals with the study of 

different types of drugs and their action is known as pharmacology. To understand the 

relationship between the drug compounds and therapeutic targets in traditional lab 

settings is not only time taking but also expensive. Hence, in silico computational 

methods are now being employed in order to study, predict and analyze the drug protein 

interactions, which is the fundamental step of genomic drug discovery, drug design and 

pharmacology. Machine learning techniques which involve the design of algorithms that 

can detect useful patterns from existing data are used to learn from available drug target 

interaction data and infer unknown interactions from different types of heterogeneous 

data sets related to these drugs and proteins.   

1.2 Biological Terms and Definitions 

In Silico drug target interaction prediction using machine learning techniques is fast 

gaining popularity. This section gives a simple introduction to the biology involved in this 

study. 
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The basic terms used throughout this work are defined in the context of the problem being 

addressed.  

Drugs: Drugs can be defined as the chemical compounds which have bio-chemical 

or physiological effects on humans and other living organisms. In the view point 

of pharmacology, drugs can be defined as chemical substances which are man-

made or endogenous used to prevent and cure diseases thus by enhancing physical 

and mental health of a living being.  

Proteins targets: Proteins are bio molecules (functional modules) of living 

organisms formed by sequence of amino acid chains. In the context of 

pharmacology, a biological target (protein) can be defined as anything inside a 

living organism to which ligands or drugs bind. The commonly known biological 

target families in humans are enzymes, ion channels and receptors.  

Drug target interaction networks: The proteins inside a living body are targeted by 

drugs in order to either enhance or inhibit the function carried out by that protein 

thus each drug targets certain specific set of proteins and this property of drugs 

can be studied and analyzed in terms of network topology where each node in a 

network represents a drug or a target proteins (drug target interactions network). 

1.3 Thesis Outline 

In this work we propose a model which predicts true drug target interactions based on the 

RLS model predicted in [27] using more sophisticated drug and target kernels and extend 

the result to weighted profile method to infer novel interactions for new drug (protein 

targets). The chapters are organised as follows: Chapter 1 gives an introduction to the 
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problem being solved and explains the basic terminologies used in this work. Chapter 2 

starts by explaining the problem being solved, motivation to solve the problem and the 

contribution made by this work. In chapter 3, we discuss the background study required to 

understand the proposed method which includes previous methods employed to solve the 

problem, how these past methods tie up into the current model and related work which 

explains the concepts used in the proposed algorithm. Chapter 4, we define a problem 

framework and then explain the steps implemented in the current model. We also explain 

the techniques employed to evaluate the performance followed by the results obtained 

using the proposed method in Chapter 5, which clearly indicate that the small yet 

effective improvement yields a better performance than state of art algorithms. Chapter 6 

we conclude by summarizing the method, it superior performance and we discuss some of 

the ways to explore in future which can improve the current model to make it more 

effective in inferring true drug target interactions. 
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CHAPTER 2 

2.1 Drug Target Interaction Prediction Problem 

All living organisms are made up of cells and different functions exhibited in the living 

body are because the protein molecules present in these cells. Any desired or an undesired 

effect in the body is because of the functions carried out by these proteins. The proteins 

inside a living body are targeted (bound) by drug compounds to enhance or inhibit 

functions carried out by proteins. Each drug target specific set of proteins inside the body 

of a living organism. This property of drugs can be studied and analysed by representing 

drug-target interactions using network graphs. 

Huge amounts of publicly available chemical data and genomic data motivates 

multidisciplinary researchers to bridge the gap between biology and chemistry by 

integrating and analyzing the molecular information. For example, the Molecular 

Libraries Roadmap initiative taken up by National Institutes of Health is promoting the 

development of public databases such as PubChem [28] which is fostering new research 

areas related to pharmaceuticals. The available information on drugs and targets can be 

integrated to form high throughput data sets for understanding their relationship which 

help to discover new targets for existing drugs and novel targeting drugs for existing 

proteins. This not only helps in analyzing the therapeutic effects of unknown drugs but 

also adverse effects of known drugs. Therefore, many unknown so called off targets of 

these drug compounds can be significant data for further clinical trials in wet labs, crucial 

step in drug discovery and drug design. 
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Figure 2.1 Similarity based drug target interaction inference model [33] 

The figure-2.1 represents how recent machine learning methods are applied to infer novel 

drug target interactions by integrating different information of drug compounds and target 

proteins and using this data a model is trained to predict unknown interactions. With the 

recent advancement in technology and huge amount of biological and chemical data 

available through online public databases such as KEGG [12], BRENDA [22], 

SuperTarget [8] etc., there is a need for predicting drug target interactions accurately 

using computational methods. Different types of computational approaches have been 

proposed for predicting drug target interactions. Two well-known approaches are text 

mining [36] and docking simulations. Though these methods produced useful insights 

into drug target relationships, they have some serious limitations with respect to the type 

of data required to implement these methods for example, docking techniques require 3D 

structures of target proteins and scarcity of data available on 3 dimensional structures, this 

approach cannot be implemented on a large scale. Literature text mining on the other 
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hand requires keyword searching which is plagued by redundant names of drugs and 

proteins and also cannot be employed on novel findings in chemical and bio sciences.  

Statistical learning algorithms are well known for the tasks such as classification and 

regression, data repositories such as KEGG [12], STICH [14], SuperTarget [8], Matador 

[8], BRENDA [22] and DrugBank [29] which store information about drug target 

interactions and other useful data such as information about genomic sequences, drug 

responses of target proteins, chemical structures, side effect information and molecular 

descriptors of drugs which can detect hidden drug protein interactions often prove to 

unearth adverse effects of drugs during drug design.  

So, the data available is in the form of matrices. A drug target network can be represented 

using a bipartite graph where one set of nodes represent the drugs, other set of nodes 

represent the proteins being targeted and the edges connecting pair of nodes denotes the 

interactions. From this graph we can obtain an adjacency matrix in which each row 

represents a drug interaction vector and each column represents interaction vector of a 

target protein in which a known interaction between a drug target pair is set to 1 and 

unknown interactions are marked as 0. Applying regression, we can define a function 

over the relationship between the drug- protein interactions and similarity measures of 

individual drugs and targets respectively. Molecular and functional information available 

such as chemical structure similarity of the drugs, then similarity of drugs based on side 

effect keywords and genomic sequence similarity of the target proteins can be integrated 

for inferring the relationship between the nodes of the bipartite graph i.e., drugs and target 

proteins. The figure-2.2 gives the intuition of current machine learning models based on 

drug similarity. Let D = {D1 D2 D3 Dnew} represent set of drug compounds and P = {P1 P2 
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P3} represent protein targets where the known interacting pairs are {(D1P1) (D2P3) (D3P2) 

(D3P3)} and we have to infer interactions of Dnew. In the below figure we can see the 

corresponding adjacency matrix and drug similarity matrix of Dnew with respect to all the 

drugs. Inferring interactions of Dnew using nearest neighbor algorithm that Dnew has 

highest probability of interaction with P3 as it nearest neighbor D3 interacts with P3 and 

as the similarity between drugs decreases the probability of sharing common target 

decreases. This is a simple method where the interaction with a given protein is weighted 

using the similarity of neighboring drugs and their interaction with the corresponding 

protein. All the machine learning methods proposed are based on a common assumption 

that similar drug compounds share similar target proteins and vice versa. 

 

Figure 2.2 A graphical representation of nearest neighbor algorithm to infer novel 

drug target interactions  
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2.2 Research Motivation 

The traditional method adopted in the pharmaceutical industry by testing the effects of 

known drug compounds systematically is considered as obsolete, superfluous amount of 

human genome data available publicly altered the industry’s internal working model. As 

scientists can now employ a bottom-up approach, working through genomic data to find 

relationships between certain genotypes and diseases and then screening drug data to 

identify therapeutic candidates. The old paradigm of 'one drug-one target' is quickly 

becoming outdated. It was smart way of understanding the drug-protein interactions but 

the biological systems we are dealing with are made up of myriad of proteins exhibiting 

multiple functions. To analyze and understand these systems as a whole, we require 

efficient computational models, and then we will be able to predict the adverse effects of 

a drug or the therapeutic effects of a drug efficiently. The currently available drug target 

interactions across various data sources are not experimentally validated. So, there is a 

strong need to predict these interactions accurately.  

This problem is being tackled from various angles. Methods such as docking simulations 

based on the 3D structure of proteins, approaches based on machine learning algorithms 

using text mining and similarity based methods. As 3D simulation is time consuming and 

text mining medical documents for drug target relationships is affected with redundant 

names of genes and compounds the researchers started working with drug-drug and 

target-target relationships to understand drug-target interactions based on similarity 

measures. 
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So, current trend has shifted towards more simple yet sophisticated machine learning 

techniques based on statistical data analysis such as classification and regression using 

various similarity measures of drugs and proteins and known drug target interactions. The 

underlying assumption of these methods is that similar proteins are targeted by similar 

drugs and similar drug compounds tend to bind with similar proteins. This is an important 

property and very useful to infer interactions of drug target networks. The similarity 

between two given drugs can be described from various perspectives like physiochemical 

properties of molecules or number of 2D/3D structures, number of side effect keywords 

in drug package inserts and molecular descriptors like number of chemical double bonds 

etc. on the other hand similarity between two given proteins can be calculated based the 

sequence alignment of amino acid chains, gene ontology similarity or PPI closeness. 

Learning algorithms can be designed to integrate these different types of data available at 

disposal that can be used to predict drug target interactions accurately. 

Hence, there is a strong need for design and development of new algorithms which can 

infer true drug target relationships effectively and our work is a small effort in this 

direction. 

  2.3 Thesis Contribution 

The contribution of our work is two-fold: First we define more sophisticated kernels on 

different similarity measures of drugs and target proteins available using the radial basis 

function. Then integrate two different types of similarity measures for drugs namely 

chemical sub structure similarity and pharmacological similarity based on side effect key 

words and obtain a new kernel for drug compounds. We incorporate newly obtained 

kernels into Kernel Regularized Least Squares method to infer new interactions for 
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protein targets (drugs) with at least one known interaction. Second, we extend the result 

of RLS method, using the newly predicted interaction scores to infer the interactions of 

new drugs and proteins for which there is no known interaction data hence, solving the 

unknown candidate problem of method proposed by the authors in [27].    

The whole process for predicting drug target interactions is divided into two steps: In the 

first step initially, we apply kernel regression using Regularized Least Squares algorithm 

to infer new interactions for proteins with at least one known interaction based on already 

known drug target interactions and kernels defined over chemical structure similarity and 

pharmacological similarity of drugs respectively then, use the predicted interaction 

profiles of neighboring proteins to infer interaction profile of target proteins for which all 

interactions are unknown. The neighbors for target proteins are defined by the score in 

genomic sequence similarity kernel matrix. Similar approach is followed for drugs 

initially we infer new interactions for drugs with at least one known interaction and use 

this new interaction profiles of neighbors to predict the interaction profile of unknown 

drugs (unknown drugs are the drug compounds with no prior known interaction). We 

have two independent predictions of same drug target pair and we use a weighted 

combination of those two scores to obtain a final interaction score. The interaction 

profiles of neighboring proteins of new target proteins obtained after KRLS algorithm are 

real valued scores unlike binary and thus be more useful in training phase of weighted 

profile method to predict true interactions. Thus, we improve the drug target prediction 

problem by using more informative Gaussian kernels defined over the similarity measures 

of drugs and target proteins and also by supplying the real valued labelled data 

(interaction scores) for the training phase of instance based leaning algorithm. The results 
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clearly indicate that these small yet significant improvements prove to be effective in 

predicting the true interactions accurately. We have analyzed the predictive power of 

proposed method using area under ROC curve [6] which is the plot of true positives and 

false positives in the prediction for varying thresholds. 
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CHAPTER 3 

3.1 Previous Works 

This section describes the various state-of-art methods proposed by eminent researchers 

in order to predict drug target interactions efficiently. The following paragraphs review 

these methods and how these methods tie up into the model proposed to tackle the drug 

target interaction prediction problem. 

3.1.1 Yamanishi .Y et al, Prediction of drug-target interaction networks from the 

integration of chemical and genomic spaces. 2008. 

The method proposed is a supervised bipartite graph learning method [32]. The authors 

build this model to understand the relationship between drug target network topology, 

drug chemical structures similarity and protein genomic sequences similarity. In this work 

they refer chemical structure similarities among all the drugs in the data as chemical 

space, the protein sequence similarities as genomic space and the existing drug target 

interactions to pharmacological space respectively. The goal is to infer unknown drug 

target interactions by integrating the chemical space and genomic space onto 

pharmacological space and they proceed by mapping these three spaces onto one single 

unified space such that the interacting drugs and targets are close to each other while non-

interacting drug target pairs are placed further apart in the unified space. Once a mapping 

function is learned the unknown drug target pair is mapped onto this pharmacological 

space to infer the interaction score by determining how close the queried drug target pair 

is in the mapped pharmacological space. Known interactions are referred as ‘gold 
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standard’ data and it is used as training set to infer unknown interactions and for 

evaluation in cross validation as well. 

The steps followed in the current model are:  

1. Map drugs and targets known to be interacting into ‘pharmacological space’. 

2. A model between chemical/genomic space and pharmacological space is learned 

and queried drug/proteins are mapped onto the unified space. 

3. Infer new interactions among drug-target pairs by connecting the pairs which are 

closer than a given threshold in the pharmacological space. 

  

 

Figure 3.1 Representation of supervised bipartite graph inference method [32] 

The figure-3.1 illustrates the idea of method proposed by the authors. The circles 

represent drugs, squares represent target proteins, colored ones are known and uncolored 

ones are new drugs and targets respectively. We can see that using corresponding 

mapping functions fc and fg the chemical space and genomic space are mapped onto 

pharmacological space. 
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The drug target interaction network is represented by a bipartite graph G = (V1+V2, E) 

where V1 is set of drugs, V2 is set of proteins and E is set of interactions between 

interacting elements of V1 and V2. A kernel similarity matrix is calculated in the 

following way:  

  (
      

   
    

)  (3.1) 

Where (Kcc)ij = exp(        / h
2 

), for i,j = 1, …, nc, (Kgg)ij = exp(       / h
2 

),               

for i,j = 1,…,ng and (Kcg)ij = exp(       / h
2
), for i =1, …, nc , j = 1, …, ng   

Here d is the shortest distance between all objects on the graph and h is the width 

parameter optimize via cross validation experiments. An appropriate identity matrix is 

added to K to make it positive definite. 

The dimensions of the matrix K is (nc + ng) x (nc + ng) it is not easy to operate on so, 

eigenvalue decomposition of K is computed as: 

K = Г˄
1/2

 ˄
1/2 

Г
T 

= UU
T
         (3.2) 

Where the diagonal elements of ˄ are eigenvalues, columns of matrix
 
Г are eigenvectors, 

 U= Г˄
1/2

 and row vectors of the matrix, U = (   ,….,     
,    ,….,     

)
T
. The space 

spanned by uc and ug is ‘pharmacological space’. 

A kernel regression model is proposed for correlating chemical/genomic space and 

pharmacological space as: 

 u =  (    )  ∑  (    )   
 
             (3.3)  
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Where s(
.
 , 

.
) is a similarity score function,     is a weight vector and    is a noise vector.  

Thus, we obtain the following loss function. 

L =       –           
          (3.4)  

S is n x n similarity matrix, W = (w1,….,wn)
T 

and ||.||F  is Frobenius norm.  

Two models fc and fg are learned one for cnew and the other for gnew respectively.  The 

scores for three types of drug target pair are calculated by inner product as follows   

(1). corr(cnew, gj) =      
.            (3.5) 

(2). corr(ci, gnew) =    
.              (3.6)  

(3). corr(cnew, gnew) =      
.               (3.7) 

Finally high scoring drug target pairs are predicted to interact with each other by 

measuring the distance in the unified space. High scoring pairs are close to each other in 

the pharmacological space. A more detailed derivation of the model can be obtained from 

the paper. 

SIMCOMP is used to calculate the chemical similarity score between two compounds and 

normalized Smith-Waterman score is computed to measure the sequence similarity for 

targets. The authors conclude by claiming that their method is first of its kind in 

formalizing drug target interaction prediction problem as supervised learning problem for 

a bipartite graph and also in the integration of chemical and genomic spaces. They also 

suggest one or two important improvements that can be made to the current model like 

usage of more sophisticated kernel similarity functions for drug and target similarities and 

incorporating additional information related to drugs and proteins in the data to improve 

the efficiency of a model and also accuracy in inferring true drug target interactions. 
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3.1.2 Campillos .M et al, Drug Target Identification Using Side-Effect Similarity. 

2008. 

A propitious method based on the use of ‘phenotypic side effect similarities’ to predict 

drug target interactions has been proposed by the authors. Drug perturbations occur when 

the given drug not only interacts with its primary target but also with the additional off-

targets in an organism. The surprising behaviour of these drugs by targeting off-targets is 

generally considered harmful but in some cases it has been proved to be a good one, 

leading us to new therapeutic results of known drugs. “Similar side effects of unrelated 

drugs can be caused by their common off-targets” [2]. Identification of additional targets 

through chemical similarity and docking simulations has been effective in a smaller 

perspective of human system. This has motivated the authors to explore the use of side 

effect information to predict drug target interactions and in this process they computed a 

side effect similarity measure for marketed drugs and analyzed the likelihood of two 

given drugs sharing protein targets. Their study has shown that two given drugs even 

though dissimilar based on their chemical structure, their high side effect similarity is one 

of the reasons to share common targets and thus identified additional targets for known 

drugs. Drug package inserts of marketed drugs were used to extract side effect 

information and they have classified side effects based on Unified Medical Language 

System ontology. The method proposed here does not actually predict drug target 

interactions instead it calculates the probability of a given drug pair to share a common 

target. This probability is calculated based on two drug-drug relationships namely 

chemical similarity and side-effect similarity, calculated based on relevant terms in the 

ontology by fitting a different functions to the corresponding data. 
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The best fitting function to infer the probability of sharing a common target based on the 

chemical similarity is given by: 

P2D (y) = (1 + e
(B-y)/A

)
-1

         (3.8) 

Where P2D is the probability of sharing a common target as a function of chemical 

similarity of given drug pair. A (6.91) and B (0.68) are the parameters of the sigmoid 

function. Chemical similarities were ranked and the function is fitted based on the 

percentiles [2]. 

In the second case, the probability of sharing a common target for a given drug pair is 

calculated based on side effect similarity measure computed using the logarithmic 

percentiles of their ranked similarity values as follows: 

PSE (x) = A 
.
 x + B          (3.9) 

Where PSE is the probability of sharing a common target for a given drug pair, A (-0.084) 

and B (0.047) are parameters fitted to the function. 

In the third case the combination of two similarity measure is used to calculate the 

probability and the sigmoid function fitted is as follows:  

      (   )      (    (      (        
 

   
) ) (      (       

 

 
)   √(   )  (   ) ))    (3.10) 

PSE, 2D represents the probability of a given drug pair to share a common target with side 

effect similarity P value and chemical similarity. The parameters A (0.0167) B (55.507) C 

(-80.16) D (-129.6) E (455.6) F (617.3) G (0.415) H (0.83) are fitted accordingly.  
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The authors noted that the integrated method improved the sensitivity and specificity 

measures and conclude that side effect similarity of drugs indeed has a strong correlation 

towards the probability of sharing common targets and should be further explored.  

3.1.3 Jacob .L et al, Protein-Ligand Interaction Prediction: an improved 

chemogenomics approach. 2008. 

The authors propose a method to combine the chemical and biological information which 

infer interactions of a small molecule with any given targets. Support vector machine 

algorithm is used for prediction in a combined space by training the SVM with known 

drug target interactions to predict interactions for targets with no known ligand 

information from ligand similarity and target similarity kernels. The SVM classification 

algorithm makes use of a pair-wise product kernel, a combination of ligand similarity 

kernel and kernel(s) of target proteins by supplying known labeled information of drug-

target pairs. They have used different types of protein similarities.  

The drug-target pair-wise similarity is computed as follows: 

s((d,p),(di,pj)) = sd(d,di) 
.
 sp(t,tj)       (3.11) 

And the SVM classifier is trained using this information to infer unknown drug-target 

interaction scores. It is one of the efficient machines learning approaches, as only one 

single classifier has to be trained in order to infer any number of unknown drug target 

interactions. The basis of this method is to represent a pair of drug target by vector and 

estimate a linear function fit to the data whose sign will predict the ligand protein 

interaction [11]. The limitation of this method surfaces when we are dealing with large 
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datasets for example, if a dataset has m drugs and n proteins, the size of kernel matrix is 

(m x n) and considering a case where n = 700 and m = 900 due to limitations of memory 

all the instances cannot be used in training and in worst case we have stick to random 

sampling of negative instances and not much efficient practically [5]. 

3.1.4 Xia .Z et al, Semi-supervised Drug-Protein Interaction Prediction Using 

Heterogeneous Spaces. 2009. 

All network based supervised prediction algorithms works only with the help of labeled 

data supplied to it in the training phase. Sometimes unlabeled data can also be helpful in 

revealing hidden drug target interactions in the network. Authors propose a semi-

supervised prediction framework to infer unknown drug target interactions on a large 

scale. As they tackle the major issue of biological databases, having very little validated 

data regarding the target information of drug compounds. The semi-supervised algorithm 

integrates known drug target interaction information with chemical structure similarity 

and genomic sequence similarity of drugs and target proteins respectively as they 

successfully move past the traditional classification methods which infer interactions of a 

single given protein based on the chemical structure similarity of drugs in the data. The 

current model is based on the Laplacian regularized least square algorithm which predicts 

interaction for drugs and targets separately and the individual scores are combined to 

yield an average score for the interactions. General LapRLS is improved using a kernel 

based on the known drug target information and is referred as NetLapRLS in this work. 

“In LapRLS and NetLapRLS, the data-dependent regularization terms are normalized 

Laplacian operation on graphs”.[31] A data dependent model using geometry of 
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probability distribution is implemented during which two individual classifiers using 

LapRLS are trained using chemical similarity and genomic similarity matrices and then 

are combined using average function. Two types of proposed method are employed first 

one is the standard LapRLS which is trained using only chemical and genomic spaces and 

the second is the extended version of the first NetLapRLS where training the model 

incorporates drug target interaction information along with chemical and genomic spaces. 

The prediction function with respect to drug interaction domain is as follows: 

  
   = Wd (Wd+dLdWd)

-1
 Y            (3.12) 

The prediction function with respect to target interaction domain is as follows: 

  
   = Wp (Wp+pLpWp)

-1
 Y

T 
and       (3.13) 

The two individual predictions are combined to obtain the final interaction for drug target 

pairs with the help of average function: 

F* = (  
    

 )            (3.14) 

Wd (Wp) is the drug (target) domain similarity which is a linear combination of chemical 

structure (genomic sequence) similarity and drug target interaction network similarity of 

drug compounds (target proteins) respectively. Ld  (Lp) is normalized graph Laplacian of 

drug (target) domain and Y is the drug target interaction network 

The authors highlight that the method employed did not use any negative samples to 

predict the new drug target interactions. They suggest some ideas to improve their model 



CHAPTER 3 RELATED WORK  

21 

 

by including more sophisticated kernels and more informative biological kernels such as 

drug side effects information. 

3.1.5 Yamanishi.Y et al, Drug-target interaction prediction from chemical, genomic 

and pharmacological data in an integrate framework. 2010. 

The main objective of this work is to analyze and understand the relationship between 

chemical space, pharmacological space (drug side effect similarity) and drug target 

interaction space. The authors based on their results obtained using supervised bipartite 

method show that the drug target interactions are more related to drug side effect 

similarity (referred to as pharmacological effect similarity) than chemical structure 

similarity of drug compounds.   

The supervised model implemented in predicting drug target interactions is based on the 

integration of chemical, pharmacological data of drug compounds and genomic sequence 

information of protein targets. In order to predict the new interactions for drug 

compounds which are not yet marketed i.e. (without any side effect information), the 

authors implement a method to predict pharmacological effect similarity from chemical 

structure similarity. Then, the predicted pharmacological effect similarity is integrated 

with chemical structure similarity of drugs and genomic sequence similarity of targets to 

infer the drug target interaction on a large scale. The proposed method has two steps: 1). 

Prediction of pharmacological similarity of drugs based on their chemical structure 

similarity with respect to other drug compounds and 2). Prediction of unknown drug 

target interactions based on the pharmacological effect similarity of drugs. The authors 
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claim that this is the first instance where pharmacological effect similarity is integrated 

with chemical and genomic spaces for inferring unknown drug target interactions. 

Pharmacological data is obtained using Japan Pharmaceutical Information Center 

database which manages the drug package inserts in Japan, approved by Health and 

Welfare Minister of Japan. The entries of JAPIC database are in XML format with 

package inserts are categorized using keyword tags and the authors extracted them and 

based on ‘pharmaceutical effect’ tag, similarity between two drugs is calculated based on 

the frequency of the keyword in the data. The similarity matrix obtained is referred as 

‘pharmacological space’ in this work. 

In the initial step of the proposed method the prediction of pharmacological effects from 

chemical structures of drugs, a similarity matrix regression model is formulated based on 

two similarity matrices C and P using training set and prediction set:  

  (
       

  

      
)                        (3.15) 

  (
       

  

      
)             (3.16) 

In the above equations p represents prediction set and t represents training set. 

Sphar (y, y’) = f(x, x`) + є = u(x)
T
 u(x`)+є, where      (3.17) 

  ( )  ∑      (    ) 

 

   
        (3.18) 
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Here  = (
 
    

 
)T 

is a weight vector and n is the number of compounds in the 

training set. A detailed derivation of the method can be found in the paper [33].  

Therefore, using this method unknown pharmacological effects similarity for drugs are 

inferred from the chemical structure similarity and the authors mention that even though 

there exists a relationship between chemical structure similarity and side effect similarity 

of drug compounds,  there are handful of exception cases where drugs with high chemical 

structure similarity have low pharmaceutical effect similarity. In the second step of the 

this framework unknown targets of drugs are inferred using supervised bipartite graph 

model based on distance learning algorithm using pharmacological information of drugs 

and genomic sequence similarity of targets. A similar method was employed in [32] but 

with chemical similarity of drugs.   

g(y, z) = ∑   
 ∑    

 αij sphar (yi ,y) sgeno (zj ,z)       (3.19) 

Where y represents new compound, z represents a target, n represents number of drugs, m 

represents number of targets in the training set, sphar (
.
, 

.
) represents pharmacological 

similarity function, sgeno (
.
, 

.
) represents genomic sequence similarity function and αij are 

the parameters learned. 

The method can be summarized as follows:  

1. Known drug target interactions are mapped onto a unified space in which 

interacting drug target pairs are placed closed to each other. 

2. A correlation model is learned between pharmacological effect similarity of drugs, 

genomic sequence similarity of targets and unified space then new drugs are 
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mapped onto to the unified space based on pharmacological similarity and new 

proteins are mapped onto unified space using genomic sequence similarity. 

3. If g(y, z) is greater than a threshold value in the unified space, then y is predicted 

to be interacting with z. 

Since, the authors wanted to study the relationship between pharmacological effect 

similarity of drugs and drug target interactions the method is implemented for new drug 

candidate compounds. They also note that the drug target interactions are more related to 

pharmacological similarity of drugs than chemical structure similarity. Finally, the 

authors conclude by saying that the performance of the model implemented can be 

improved by the use of more sophisticated kernels designed for chemical similarity and 

genomic similarity. 

3.1.6 Laarhoven et al. Gaussian interaction profile kernels for drug-target interaction. 

2011. 

The authors employ kernel regularized least squares classifier using Gaussian interaction 

profile kernel for prediction of new interactions for drugs and targets with at least one 

known interaction.  The authors show that network topology of drug target interactions 

pose to be a very good source for inferring new interactions and propose two variations of 

RLS method. First, the prediction of new interactions for drug compounds and target 

proteins is implemented separately using target kernel and drug kernel respectively and 

the final interaction scores for a pair are computed using an average function. New 

kernels are employed in both individual predictions which are defined over drug 

interaction profile vectors and target interaction profile vectors respectively. An 
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interaction profile is a binary vector with each entry (0 or 1) represents presence or 

absence of interaction with corresponding drug or target protein. Y an adjacency matrix 

for drug target interaction network is defined in which each row represents target 

interaction profile vector of a drug and each column represents drug interaction profile 

vector for corresponding target. A Gaussian kernel is constructed for drugs and proteins 

from these interaction profile vectors and drug-drug, target-target similarity matrices are 

obtained. The kernel matrix score for drugs di, dj is calculated as follows: 

KGIP,d (di, dj) = exp (-γd
 ||          

 )         (3.20) 

Here γd controls the kernel bandwidth. The parameter is normalized, dividing it by the 

average number of interactions per drug in the following way: γd = Φd /(
 

  
 ∑   
       

 ) 

where, Φd = 1. A kernel for targets is constructed using drug interaction profiles in a 

similar fashion. 

In the next step kernels are constructed from chemical structure similarity matrix Sd and 

genomic sequence similarity Sg by making them symmetric and adding a small multiple 

of identity matrix to impose positive definite property and are denoted by Kchemical,d and 

Kgenomic,t respectively. Further integration of chemical similarity kernel and genomic 

similarity kernel with respective Gaussian  interaction profile kernel(s) is computed using 

weighted average function as follows: 

Kd = αd Kchemical,d + (1 - αd) KGIP,d           (3.21) 

Kt = αt Kgenomic,t + (1 - αt) KGIP,t           (3.22) 
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Where αd = αt = 0.5. The above kernels are used in the regularised least squares classifier 

defined for drugs and targets individually. The RLS classifier for predicting new 

interactions for drug compounds using target similarity kernel and the RLS classifier for 

predicting new interactions for targets using drug similarity kernel are combined to obtain 

final drug-target pair interaction scores. The equation below represents a closed form 

solution as follows: 

Ŷ =  
 
 (Kd(Kd + σI)

-1
Y) +   

 
 (Kt(Kt + σ I)

-1
Y

T
)
T         

(3.23) 

Y is the adjacency matrix of drug target interaction network. Ŷ is the predicted value(s) 

and σ = 1. This method is referred as RLS-avg. 

Another way of combining drug and target kernels is employed by the authors using the 

Kronecker product kernel i.e. K =  Kd  Kt  of drug and target kernels. The prediction of 

interactions for all pairs is computed in a single step as shown: 

vec(Ŷ
T
) = K (K + σ I)

-1
 vec(Y

T
)          (3.24) 

Where vec(Y
T
) is a vector of all interaction pairs obtained by stacking the columns of Y

T
 

and refer this as RLS-Kron in this study. A better implementation of this method based on 

Eigen decomposition is presented for the kernel as:  

K =  Kd  Kt = V˄V
T
             (3.25) 

Where V= Vd  Vt and ˄= ˄d  ˄t are the Eigen vectors and Eigen values respectively. 

Now the closed form solution for prediction is: 

Ŷ = Vd Z
T
   

               (3.26) 
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The vector Z is calculated as: 

 vec(Z) = (˄d  ˄t) (˄d  ˄t + σ I )
-1 

vec(  
        )     (3.27) 

The Eigen decompositions reduce the runtime considerably. With three different kernel 

combinations possible by altering the αd [0, 0.5, 1] and αt [0, 0.5, 1] the two RLS 

classifiers are implemented accordingly. In the case where αd = αt = 0 the prediction is 

obtained based on chemical structure and genomic sequence similarity only. When αd = αt 

= 1, the predictions are obtained based on Gaussian interaction profile kernels of drug 

and targets respectively and when αd = αt = 0.5, the prediction scores are obtained based 

on the average of the two types of kernels.  

The authors claim that the best results are obtained for both RLS-avg, RLS-Kron 

classifiers using the combination of GIP kernels with chemical and genomic kernels when 

compared with predictions based on the individual kernels alone. The authors mention 

that the information from the known drug-target interaction network is an effective source 

of information for predicting true drug target interactions. They further indicate that the 

method implemented in this work is applicable for a drug or a target which has at least 

one prior known interaction in the drug target network. And also suggest a few 

improvements to further improvise the current method by using other sources of 

information about the drugs and targets involved.  

 



CHAPTER 3 RELATED WORK  

28 

 

3.1.7 Gӧnen. M. Predicting drug-target interactions from chemical and genomic 

kernels using Bayesian matrix factorization. 2012. 

The method proposed by the author is the first of its kind employed for inferring drug 

target interactions based on full probabilistic model. To make the network inference more 

efficient the method makes use of variational approximation based on covariance 

calculations. Drug compounds and target proteins are projected onto a unified space 

based on Bayesian formulation using chemical structure similarities for drugs and 

genomic sequence similarities for proteins. The method is a combination of non-linear 

dimensionality reduction based on kernels, matrix factorization and binary classification 

techniques in order to predict drug target interactions. Integrated Bayesian formulation of 

projecting drugs and targets into a unified space is the fundamental idea behind the whole 

approach. 

Computational approaches such as docking simulations are downplayed by the author as 

they require 3D structural information of targets to infer interactions. Ligand based 

methods  according to authors do not perform up to the mark when a target with very 

limited ligand information is queried, literature text mining techniques are based on 

keywords and are affected with redundant names due to non-standardized naming is also 

noted by the author and finally, the author(s) point out that the general approach of binary 

classification for inferring networks with the use of pair wise kernels is computationally 

complex when a large number of drug target pairs are involved.  

Bayesian matrix factorization is improvised by formulating a full conjugate probabilistic 

model and the method uses a deterministic variational approximation technique to infer 
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interactions in the network which is based on the fundamental idea of projecting drugs 

and proteins onto a unified space with the help of chemical similarity and genomic 

similarity kernels.  

 

Figure 3.2 Representation of Bayesian matrix factorization method 

The method proposed is represented by the figure-3.2 [7]. Which shows Ad and At 

parameter matrices used to project drug similarity kernel matrix Sd and genomic sequence 

similarity kernel matrix of target proteins St into corresponding low dimensional spaces 

Gd and Gt respectively to estimate an interaction matrix Y generated from score matrix F. 

Normal and gamma distributions are used in the probabilistic model to improve the 

efficiency because of conjugacy between them and by considering random variables as 

deterministic values, the score matrix is decomposed as follows:  

F =   
    = (  

   )
T
 (  

    ) =   
     

          (3.28) 

In here Kd represents drug similarity kernel which is nothing but Sd and Kt represents 

target similarity kernel which is St , and we can notice that by parameterizing the 

projected Gd and Gt low dimensional matrices in terms of kernel matrices Kd and Kt,  the 

factorization of F is carried out enabling to make predictions for out-of-sample points. 
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The prediction is done based for three scenarios and in the first case, inferring interactions 

for a given new drug    for the set of targets Xt , the initial step is to compute the 

similarities between   and the drug in the set Xd :      = [  (  ,   )   (  ,   ) …  

  (  ,    
)]

T 
where Nd is the number of drugs in set Xd. 

The interaction scores are computed as follows:  

ƒ
*
 = (  

     )
T
 (  

   ) =     
     

                     (3.29) 

Where positive values are predicted to be interacting targets with   . 

In the second case, new interactions are predicted for a new protein   from the set of drug 

compounds   , the similarities between    and set of target proteins    is obtained as 

following:      = [  (  ,   )   (  ,   ) …    (  ,    )]
T
 

And the interaction scores are calculated as shown: 

   = (  
   )

T
 (  

     ) =   
     

                  (3.30) 

Where positive values are predicted to be interacting drugs with protein   . 

In the third scenario, prediction is done for a new drug target pair which can be thought of 

as a combination of the first two methods and to infer an interaction score between    a 

new drug and a new target    and is computed as follows: 

   
  = (  

     )
T
 (  

     ) =     
     

                         (3.31)                                             

Where a positive value is voted as a presence of an interaction between the new drug 

target pair. 
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The problem with the method proposed is in estimating three matrices Ad, At and F using 

an iterative process initialized to random variables which tend to be inefficient while 

dealing with larger data sets. The authors point out that the method can be further 

improvised by introducing other kernel functions defined over drug-drug similarity or 

protein-protein similarity such as side effect similarity for drugs and also the method can 

be extended to use multiple kernel learning. 

In the above paragraphs, we have discussed existing machine learning methods proposed 

to solve the problem of inferring true drug target interactions. All the methods work on 

the same fundamental assumption that similar drugs tend to target similar set of target 

proteins and similar proteins tend to be targeted by similar set of drug compounds. The 

similarity between any two given drugs can be obtained by comparing those two 

compounds with respect to their chemical structures, side effects, number of carbon 

bonds, molecular and other functional information. Along the same line two given 

proteins can be compared for similarity with respect to their genomic sequences, gene 

ontology annotations and protein-protein interaction network distances etc. The success 

of proposed methods and techniques in this area has unearthed many new interactions and 

has taken drug design, drug discovery to a whole new level but there is still a lot left to be 

done to design efficient machine learning techniques which can detect true drug target 

interactions with high accuracy and continual progress to employ new approaches or 

improvise existing methods is required. Our work makes an effort to modify and extend 

the method proposed in [27]. The major issue with the method is that it is not applicable 

for new drugs or targets with no prior interaction information. So, we extend the RLS 

algorithm to weighted profile method. To be clear we make three major improvements to 



CHAPTER 3 RELATED WORK  

32 

 

the method: i).We use more sophisticated kernel functions defined over drug-drug 

similarities and target-target similarities ii). We integrate the drug kernel Kd with more 

effective pharmacological effect similarity of drug compounds and iii). We extend the 

result of RLS algorithm to weighted profile method thus enabling us to infer novel 

interactions for new drugs or targets with no known interactions. 

3.2 Background Concepts 

The following section prepare the reader to understand the propose method more clearly.  

Supervised machine learning prediction methods involve designing a model which can 

predict an outcome based on the previous knowledge about the data. The model is 

represented in terms of a response variable and independent variable and the task is to 

predict the outcome of response variable based on the independent variable. A variable 

can be numeric/continuous or discrete valued and there are two types of modeling 

techniques based on the type of response variable,   i). Classification: a model in which 

the goal is to predict a discrete valued output  i.e. the process where the task is to separate 

the data into classes pertaining to the response variable in typical settings there are two 

classes 0 or 1 ii). Regression: a model in which the goal is to predict a continuous or 

numeric valued output. By applying a threshold function a regression model can be 

modified to represent a classification model. Unsupervised learning does not rely on the 

labels of known data samples (training data) instead by discovering the inherent patterns 

in the data tries to predict the output value for unknown data instances. Different types of 

classification models are which include, linear classification models, quadratic classifiers, 

decision trees, neural networks and support vector machines etc. The models based on 
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kernels functions produce real valued prediction scores and they make use of classifiers 

for example, binary classifier such as decision tree to infer the class labels.  

In the following sections we discuss the models based on nearest neighbor classification 

and least squares method as these form the basis of the proposed model. 

3.2.1 k- Nearest neighbor classification method 

The nearest neighbor algorithm is one of the most used classification algorithm mainly 

due to its ease of use and works based on distance measure. It stores all the available class 

labels and when a new data point is queried it classifies the query point based on the 

majority vote of its k nearest neighbors measured with a distance function (or similarity). 

An important thing to note is that in the case of distance, the smallest value in the training 

set corresponds to the nearest neighbor of the unknown data sample and when dealing 

with similarities, the highest value in the training sample corresponds to the nearest 

neighbor of the queried sample in the data.  
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Figure 3.3 Representation of k – nearest neighbor method 

In the above shown figure there are two classes based on the shapes triangle and square. 

Let the question mark point be the query data point and the task is to predict or classify to 

which class it belongs based on the k-nearest neighbor rule. Depending on the value of k 

we may get different output. In the figure when k = 1, the point will be classified as 

triangle and on the other hand when k = 3, the query point will be classified as a square. 

So, the value of k is an important parameter of k-NN algorithm. 

A formulation of the k-nearest neighbor method: 

Let the instances be a m-dimensional feature vector y = (  , … ,  ) and a mapping 

function   f(  ).  

During the training phase it stores all the known data samples <   , f(  )> in the memory 

and in the classification (regression) phase, given a query point   , it first locates nearest 

data point in the sample training data    and estimate   (  ) ← f(  ) when k = 1 and 
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When k > 1 given   , take a majority vote based on its k nearest neighbors if it is a 

discrete valued function or take the mean of f values of k nearest neighbors if it is a 

continuous valued function (regression) as follows: 

   (  ) ← 
∑  (  )
 
   

 
          (3.32) 

The main aspects of k-nearest neighbor algorithm are the distance (similarity) function 

and the value of k. The k-NN classification is also known as lazy classification method. 

3.2.2 Weighted k-Nearest neighbor method  

This method is similar to the above approach and is used when we want to weight the 

neighbors of the query point more heavily. 

 In the training phase it stores all the known data samples <   , f(  )> in the memory and 

in the classification (regression) phase for categorical valued function f :    
 → A, given 

a query data point    and its nearest neighbors denoted by    , … ,    we get:  

  (  ) ←           ∑    (   (  ))
 
          (3.33) 

Where (x, y) = 1 if x = y or (x, y) = 0 if x  y,     
 

 (     )
 
 and  

For continuous valued function f :      , given the query point yp to be regressed: 

   (  ) ← 
∑     (  )
 
   

∑   
 
   

         (3.34) 

Where d(   ,   ) is the distance between    and    . In this case we can use all the training 

samples i.e. k = m. 
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3.2.3 Introduction to kernels and kernel based methods 

Machine learning methods dealing with classification and predictions require data to be 

represented as feature vectors but kernel methods makes use of kernel functions, which 

deal with similarities of data points. Kernel functions enable us to operate in a high 

dimensional feature space without the need for calculating the coordinates of data points 

in that space instead by computing the inner products of projections of all data pairs in the 

high dimensional feature space. This is called kernel trick and using this any linear model 

can be transformed into a non-linear model where features are replaced by kernel 

function. A function that returns the dot product between the projections of two data 

points is called a kernel function and can be formulated from a feature map as : B → F, 

where F is a Hilbert space known as the Feature space. Feature map defines a kernel as: 

<b1, b2> ← K(b1 , b2) = <(b1), (b2)>      (3.35) 

Where  is mapping function.  

Some examples of kernel functions are given below: 

i. Linear kernel K(b1,b2) = <b1,b2> 

ii. Polynomial kernel K(b1,b2) = (  (b1,b2) + 1)
d
 ,     , d   N 

iii. Radial basis function kernels: This kernels satisfy K(b1,b2) = K(||b1 – b2||)  

i. Gaussian kernel: K(b1,b2) =  
         

 

    , µ > 0 

ii. Laplacian kernel: K(b1,b2) =  
         

  , µ > 0  
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Using available kernel(s) we can make new kernels or combine two individual kernels to 

yield a new integrated kernel. The set of kernels have a closure property under certain 

operations. For example, given two kernels K1 and K2: 

K = K1 + K2 is a kernel 

K = c K1 or K = c K2 is a kernel for c > 0 

K = a K1 + b K2 is a kernel provided a, b > 0 and many more 

We can make different sophisticated kernels using simple kernels but modularity is 

important in this process. Kernel methods stores a training example by earning its 

corresponding weight and prediction for test set inputs are inferred by using a similarity 

function (kernel) between the test instance and all the training inputs. 

A kernel is a similarity function k(b1 , b2) > 0 is the similarity of b1, b2    and                   

feature representation f, f(b) = (f1(b), … , fm(b)) is a feature vector which defines a kernel 

according to mercer’s theorem as follows: 

k(b1 , b2) = f(b1) . f(b2) = ∑    (  )   (  )
 
          (3.36) 

Feature based methods and kernel based methods are interchangeable mathematically as 

feature and kernel representations are duals. Features based learning algorithms map 

features into feature space and learn the stats of features whereas kernel based learning 

algorithms use similarities between test set and training set and learn stats of training 

data.  
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Given below is an example for a kernelized binary classifier which computes a weighted 

sum of similarities as follows: 

 â = sgn ∑      (    
 ) 

           (3.37) 

Here (     ) is the i
th

 training example,   is the unlabeled test input, â   {-1, +1} is the 

prediction label of binary classifier for the unlabeled input   , k :  x  → R is a kernel 

function measuring similarity between any given input pair b    and     .  

   (     )    
 , is the training set where      {-1, +1} and wi   R are the weights of 

corresponding training examples. The sgn function determines the outcome to be positive 

or negative.  

3.2.4 Least squares method 

A regression problem is to find a function that is best fit of given labeled data and use the 

fitted function to predict the value of test data, in a geometric sense it refers to hyper-

plane fitting the given data points and in the case of linear regression the task is to find a 

linear function that best fits the data. The optimal solution for this problem known as least 

squares is to find a line that minimises the sum of squares of distances from training data 

points. And regression methods can also be used for solving classification problems by 

introducing a threshold function. 

Let us assume that a training set B with bi     R
n
, ai   A  R, We have to find a 

function f that interpolates the data 

a = f(b) = <w 
.
 b> + c         (3.38) 
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According to the least squares method we have to choose the parameters (w, c) such that 

it minimizes the sum of squared deviations of the data calculated using the square loss 

function L as follows: 

L(w, c) = ∑ (              )  
         (3.39) 

Loss for a particular choice of parameters by sum of squares is obtained and the amount 

of loss associated can be computed using a variety of loss functions. Given,  ̂  ̂ = (    ́ )́ 

and  ̂   (
 ̂ 
 

   

 ̂ 
 
) where  ̂ 

  = (    ́ )́, the loss function L is minimised by differentiating it 

with respect to parameters (w, c) and equating the resulting expressions to zero as shown:  

The loss function L is represented as:  

L( ̂) = (a –  ̂ ̂)́ (a –  ̂ ̂)          (3.40) 

By equating the derivative of loss to zero we get the following normal equation 

   ̂  ̂  ̂ =   ̂ a          (3.41) 

By taking the inverse of   ̂  ̂ , we have the solution as: 

 ̂ = (  ̂  ̂)
-1

    ̂ a          (3.42) 

The above solution can also be applied for ridge regression and we obtain the following 

solution: 

 ̂ = (  ̂  ̂ + σI)
-1

    ̂ a         (3.43) 
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A dual representation of ridge regression leads us to a classification case where the 

prediction function is obtained as shown: 

f(b) =  ́ (σI + G)
-1 

k          (3.44) 

Where G =   ́ is gram matrix of inner products of training data points, here K can be a 

similarity matrix kernel between all data points in B and ki = <b 
.
 bi>. 
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CHAPTER 4 

4.1 Preface 

Biochemical databases such as KEGG [12], PubChem [28], SuperTarget [8], Matador [8] 

are full of information about drug compounds and proteins but information regarding 

drug target interactions and the amount of validated drug-protein interactions are very few 

in number when compared with the number of drugs or number proteins in a given 

database. So, this motivated researchers to employ computational approaches to predict 

the drug target interactions. The prediction of drug target interactions is a very crucial 

step in drug design and drug discovery which not only leads us to discover novel drug for 

new target proteins but also help us to discover many hidden off target interactions for 

marketed drugs. In silico methods can be thought of as a precursor to lab experiments to 

validate drug target interactions which are time consuming and expensive. Traditional 

approaches involve docking simulations which rely on 3D target protein structures which 

are rarely available hence, machine learning techniques which are more efficient than 

docking simulations are being employed. To obtain better results we need to employ 

robust statistical learning methods which are efficient and accurate. Text mining 

approaches [36] which use information from biomedical documents are good but not 

efficient enough because of literature redundancy. Many research scholars have proposed 

successful machine learning methods based on drug-drug similarities and target-target 

similarities (supervised and semi-supervised) for predicting drug target interactions from 

heterogeneous data sources such as chemical structure similarities, side effect similarities 

of drug compounds and genomic sequence similarities and other functional information. 

The underlying assumption in all these methods is that similar drugs target similar 



CHAPTER 4 SIMILARITY BASED LEARNING METHOD FOR DRUG TARGET INTERACTION  

42 

 

proteins and vice versa. Various methods proposed include kernel regression (supervised 

bipartite graph inference) [32, 33], pairwise kernel method [23], Laplacian regularized 

least squares method [31], Gaussian interaction profile kernels method [27] and 

kernelized Bayesian matrix factorization method [7] and so on. These models have two 

steps for predicting drug target interactions first step is training phase, where a model is 

learned based on the available drug target interactions represented in the form of a 

bipartite graph and the next step is to predicting new interactions based on the trained 

model. In the approaches based on kernels, set of data points for example drugs and target 

proteins are represented in a Hilbert space by a set of points which defines an elementary 

system where the relative positions of the data points in the Hilbert space refer to the 

interactions between drugs and proteins. Kernels methods are quite effective to build a 

model for inferring the interactions between data points. In the case of drug target 

prediction the there are two classes of data points one represent drug compounds and the 

other represent target proteins and using similarity kernels a relationship is learned 

between drugs and target proteins. Prediction of drug target interactions can be done in 

four scenarios: First, predicting interaction for known drug and known target i.e. drugs 

(targets) with at least one known interaction(s), second case involves predicting new 

targets for drugs with known interaction(s). Third scenario is to predict new drugs for 

target proteins with at least one known interaction(s) and in the final fourth predicting 

interactions for a new drug and a new target candidate for which we do not have any prior 

interaction information. In the current chapter we propose a method for predicting drug 

target interactions based on the work in [27]. We modify the RLS algorithm which uses 

chemical structure similarity of drugs and genomic sequence similarity of proteins in two 
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ways: first we introduce more useful pharmacological effect similarity based on side 

effect keywords [33] of drug compounds and we design more sophisticated kernels for 

chemical structure similarity, pharmacological effect similarity of drugs and genomic 

sequence similarity of targets. And show that these simple yet effective changes to the 

existing method have better results. This method predicts interaction for drug and targets 

with at least one known interaction in the dataset and thus not possible to detect 

interaction for novel drugs (targets). Hence, we extend the results obtained from the 

modified RLS (from here on we refer to the proposed method as KRLS) method to a 

simple straight forward weighted profile method which can infer interactions for new 

drugs or proteins with no prior information about their interactions based on their 

similarity with neighboring drugs or proteins and their interaction profiles.  

4.2 Problem framework 

First we define a problem framework and use the following notations in this and 

subsequent chapters. Let D = {d1, d2, d3, …,    
}be set of drugs in the dataset (let the 

number of drugs for which interactions are known in the data is m) and T = {t1, t2, t3, 

…,   } (let the number of proteins for which interactions are known is n) be set of targets 

in the dataset. Let Sc be the chemical similarity matrix, Sp be the pharmacological effect 

similarity matrix for drugs where the (i, j)
th

 element of a given matrix Sc(di,dj) or Sp(di,dj) 

denote the similarity score for a pair of drugs di, dj (i = j = 1 to md) and Sg be the genomic 

sequence similarity matrix for target proteins where (i, j)
th

 element of Sg(ti, tj) denote the 

genomic sequence similarity score for a pair of proteins ti and tj (i = j = 1 to nt). Assume A 

to be the binary adjacency matrix of known drug target interactions (m x n matrix 

represents the bipartite graph). The (i, j)
th

 element of A denoted by A(di, tj) = 1 if the drug 
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di interacts with target tj or else A(di, tj) = 0 (i = 1 to md and j = 1 to nt)    denotes 

interaction profile vector of  drug di and   
 denotes interaction profile vector of protein tj. 

This dataset of known interactions is used as a gold standard data for evaluating the 

performance of the proposed method in the cross validation stage. 

4.3 Proposed Method 

In the process of inferring interactions for a protein target tnew whose drug interactions are 

unknown using genomic sequence similarity and interactions of its neighbors, our 

proposed method can be divided into two steps as depicted in figure-4.1:  

Figure 4.1: Proposed Model for Drug Target Interaction Prediction 

Step 1: We infer novel interactions for target proteins present in A
T
 using Kernel 

Regularized Least Squares algorithm (KRLS) with drug kernel calculated from a 

weighted combination of chemical structure similarity kernel denoted by Kc and 

pharmacological effect similarity kernel denoted by Kp. The chemical structure similarity 

kernel is computed from chemical structure similarity matrix Sc of drugs and the 
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pharmacological effect similarity kernel is computed from pharmacological effect 

similarity matrix Sp. Hence, we get a new drug target interaction matrix Â
T
 which contains 

newly predicted real valued drug interaction scores for protein targets with one or more 

known interactions in A
T
 (this step is a small and effective improvement of the method 

proposed in [27]). This step of the model is depicted in the figure-4.2. 

Figure 4.2 Proposed Model: Modifying the RLS Algorithm 

 ii). In the second step, interaction score vector of new target protein tnew for which all of 

its interactions are unknown are predicted using weighted profile method based on 

genomic sequence similarity kernel denoted by Kg which is computed from genomic 

sequence similarity matrix Sg of protein targets and the new real valued interactions score 

matrix Â which contains (newly predicted real valued) interactions of neighbors of tnew. 

We get a vector      
 which contains interaction scores of tnew with respect to all the drugs 

(di to    
) where high scoring entries indicate the presence of interaction with individual 

drug compound (this step extends the RLS algorithm proposed in [27] to infer 

interactions for new protein targets). This step is depicted in the figure 4.3. 
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Figure 4.3 Proposed Model: Extending the RLS Algorithm to Weighted Profile Method 

From drug point of view, interaction score vector      for a new drug compound dnew is 

inferred in a similar way. First, novel interactions for drug compounds in matrix A are 

predicted using KRLS method based on genomic similarity kernel Kg and a new real 

valued interaction score matrix Â is obtained which is carried to second step where using 

weighted profile method based on drug kernel Kd and Â obtained in the initial step, 

interaction score vector of new drug dnew is computed where high scoring entries in the 

vector indicate a presence of interaction with corresponding protein target. 

Considering the interaction prediction problem for a given drug target pair (dnew, tnew) we 

compute the interaction score by taking a weighted average of each individual scores 

obtained one from        and the other from      . Therefore, we now can predict the 

high scoring values to be presence of interaction between dnew and tnew. The entire idea 

discussed above is as follows: 

To predict the interaction score vector       for a new target protein tnew, first we 

compute the drug kernel Kd as represented in the figure-4.4:  
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Kd = (α) Kc + (1 - α) Kp , where  α is a parameter      (4.1) 

Figure 4.4 Proposed Model: Computing Weighted Drug Similarity Kernel 

Kc and Kp are the drug similarity kernels obtained from chemical structure similarity and 

pharmacological effect similarity of drug compounds respectively which are computed 

using the radial basis function as shown: 

Kc =  
(  

    (     )   (     )  
 

   
)
         (4.2) 

Where    is the chemical structure similarity matrix of drug compounds and   (     ) is 

the chemical structure similarity score of drug compounds           respectively. ( i = j 

= 1 to md, md is the total number of drugs in the dataset). 

Kp =  
(  

    (     )   (     )  
 

   
)
         (4.3) 

Where    is the pharmacological effect similarity matrix of drug compounds and 

  (     ) is the pharmacological effect similarity score of drug compounds           

respectively. ( i = j = 1 to md, md is the total number of drugs in the dataset) and  = 1. 
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Now the novel interactions are predicted for target proteins in A using KRLS method and 

we have a closed form solution as shown: 

   =    (   + σ   )
-1

           (4.4) 

Where Id is md x md identity matrix and we have used σ = 1.  

   is real valued matrix in which      represent the real valued interaction score vector of 

target protein tj with each drug di (i = 1 to md) and is used in weighted profile method to 

infer the interaction score vector for a new target tnew based on genomic sequence 

similarity kernel Kg. 

Kg the protein similarity kernel is computed from Sg the genomic sequence similarity 

matrix using Gaussian kernel function as shown in the figure-4.5: 

Kg =  
(  

    (     )   (     )  
 

   
)
         (4.5) 

Figure 4.5 Proposed Model: Computing Target Similarity Kernel 
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Where    is the genomic sequence similarity matrix of targets and   (     ) is the 

genomic sequence similarity score of protein targets           respectively. (i = j = 1 to nt, 

where nt is the total number of proteins in the dataset) and   =1. 

In the next the interaction score vector       for tnew is inferred as shown: 

       
 

  
 ∑   (       ) 

 
               (4.6) 

Where    is a normalizing factor calculated as: 

    ∑   (       )
 
            (4.7) 

And finally high scoring entries in the 1 x md,       are predicted to be interacting with 

target protein tnew. 

Similarly the interaction score vector for drug dnew is also inferred; first we predict novel 

interactions for drugs in binary matrix A using KRLS method based on genomic kernel Kg 

we have a closed form solution as shown: 

Â = Kg (Kg + σ   ) A          (4.8) 

Where It is nt x nt Identity matrix and we have used σ = 1.  

  is real valued matrix in which    represent the real valued interaction score vector of 

drug compound di with each target tj (i = 1 to md and i = 1 to nt) and is used in weighted 

profile method to infer the interaction score vector for a new drug compound dnew based 

on drug similarity kernel Kd. 

The interaction score vector      for dnew is inferred as shown: 
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 ∑   (       ) 

 
              (4.9) 

Where    is a normalizing factor calculated as: 

    ∑   (       )
 
            (4.10) 

And finally high scoring entries in the 1 x nt,      are predicted to be interacting with 

drug compound dnew. 

To infer an interaction score for drug target pair (dnew, tnew) we take the weighted average 

of    (         )      (         ) as shown: 

 Score (dnew, tnew) = 
  (         )     (         ) 

 
      (4.11) 

High scored values are predicted to be interacting pairs.  

Hence, by extending the result of KRLS method to weighted profile method we are able 

to predict the interaction for protein targets (drugs) for which we do not have any 

interaction information which was not possible by the method proposed in [27].  

4.4 Similarity Measures 

This section provides a summary of how the authors in the paper [33] computed drug-

drug and target-target similarity measures from drug data and target protein data extracted 

from chemical and biological databases. 
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4.4.1 Computing Chemical structure similarity measure for drug compounds 

The chemical structure similarity of drug compounds is computed using a program called 

SIMCOMP [10] which is based on the graph alignment algorithm finds common sub 

structures between a given pair of drugs and gives out a global similarity score. The 

similarity between two compounds structures     and     is calculated using Tanimoto 

coefficient as follows: 

Schem(   ,    ) = |    ∩    | / |   ⋃     |      (4.12) 

The similarity score obtained is referred to as ‘chemical structure similarity’ and applying 

this to all compounds in a dataset, a similarity matrix Sc is obtained which represents 

chemical space. The chemical structures of drug compounds are retrieved from KEGG 

DRUG and KEGG LIGAND databases [12]. 

4.4.2 Computing Pharmacological effect similarity measure for drug compounds 

Approved by Health and Welfare Minister of Japan, Japan Pharmaceutical Information 

Center (JAPIC) maintains all information of pharmaceutical products in JAPAN and from 

drug package inserts pharmacological effect keywords are obtained which were in 

Japanese language and they were analyzed with the help of MeCab  

(http://lsd.pharm.kyoto-u.ac.jp/en/index.html) to nouns and phrases. 

http://lsd.pharm.kyoto-u.ac.jp/en/index.html
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 The obtained information is translated to English and with the help of life science 

dictionary synonyms were unified. XML format was used to describe the JAPIC entries 

and using various tags different set of profiles for drugs were generated. Similar tags were 

used to form groups and they obtained five tag groups with a specific number of 

keywords for each group, the table-4.1 summarizes the XML tag names, number of 

corresponding keywords and a small description provided by the authors in [33]. 

XML tag  Number of keywords Description 

Caution 16849 Adverse events such as caution for 

application, overdose and warning 

Interaction 14223 Combined used of drugs 

Patient 16362 Types of patients based on gender, age 

or disease 

Pharmaceutical effect
*
 17109 Efficacy, usage and pharmacology 

Property 17142 Properties such as melting point, 

partition coefficient, pharmacokinetics 

and solubility  

Table 4.1 Summary of XML tag names and side effect keywords  

Now to calculate the pharmacological similarity score for the drug compounds, first every 

drug in the data set is represented using a binary profile vector y = (y1, y2, …, yk)
T
 where a 

k is the number of keywords and pharmacological keyword is coded 0 or 1, across 17109 

keywords. Using weighted cosine correlation coefficient, similarity score between two 

given drug compounds y and    is obtained as follows: 

Sphar (y,   ) = 
∑      

 
 

 
   

√∑   
 
     

   √∑    
 
 
  

   

      (4.13) 

Where wk is the weight function for the k
th

 keyword defined as wk =  (   
     ⁄ ), k = 1, 2, 

…, K, dk is the frequency of the k
th

 keyword in the data and K is the total number of 

keywords in the data and ɤ is the standard deviation of { dk     
 and h is a parameter. 
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Applying this operation for all drug-drug pairs in the data we obtain a similarity matrix Sp 

and it represents ‘pharmacological space’. The weight function is used to give more 

importance to less frequent words found in the package inserts. 

4.4.3 Computing genomic sequence similarity measure for proteins 

Using normalized version of Smith-Waterman scores, genomic sequence similarity 

between two given proteins z and    is calculated as follows: 

Sgenomic (z,   ) = SW(z,   ) / √  (   ) √  (     )      (4.14) 

Where SW (
.
 , 

.
)  is the original Smith-Waterman score, and amino acid sequences were 

retrieved from KEGG GENES [12] database. Applying this to all the target proteins in the 

dataset a similarity matrix Sg is obtained and is used to denote ‘genomic space’. 

4.5 Performance evaluation methods 

4.5.1 Cross validation technique 

Cross validation is a technique used to measure the performance of learning algorithms, 

the idea behind this technique is to calculate the predictive performance of the model 

learned from the given data, can also be used to compare two or more different models in 

order to see which model best suits the given data. It is done by dividing data into two 

parts:  

i). Training set: used for learn/training the model 

ii). Test set: used for validating the model 
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Generally the training set and test set are chosen in a way that they successively cross 

over such that every data instance gets an equal chance of being validated. Typical form 

used across the machine learning community is k-fold cross-validation. Mostly other 

forms of this technique are special case of k-fold cross validation which includes leave-

one-out cross-validation and hold-out validation etc.     

4.5.1.1 k - Fold Cross-Validation 

In this technique, the data is randomly split into k segments of roughly equal size, one of 

the partitioned subsample is used as test data for validating the model and the remaining k 

– 1 segments are used for training the model for prediction. This process is repeated k 

times where each of the k subsamples is being used as the test data while the rest used as 

training set. By doing this we get k results one from each fold of k-fold cross validation 

and by taking the average of these k results we obtain a single measure of the 

performance of the trained model for the given data set. During the whole process all the 

instances are used for validation and training where each observation is used as test set 

exactly once. The value of k is set by the user and can take the values k = 1,2,3,4.., N.   

We have used 5-fold cross-validation in this work. In this technique first we divide the 

given dataset into five equal subsamples, any one of the five subsamples is used as test 

data and rest four are used for training the classifier and the prediction of drug target 

interactions is done for the test set. After obtaining the new interactions we calculate the 

performance of the trained model. We end up with five scores of Area under the Receiver 

Operating Characteristic curve for each fold of 5-fold cross-validation and then we 



CHAPTER 4 SIMILARITY BASED LEARNING METHOD FOR DRUG TARGET INTERACTION  

55 

 

calculate the average of these five scores to obtain the final AUC score. The figure-5.1 

illustrates the 5-fold cross validation procedure. 

4.5.2 ROC Analysis 

Performance of a binary classifier can be measured using Receiver operating 

characteristic by varying the threshold. The ROC curve is plotted with the fraction of 

false positives out of total actual negatives (false positive rate) on x-axis and the fraction 

of true positives out of total actual positives (true positive rate) on y-axis obtained at 

different threshold values. True positive rate is also known as sensitivity and False 

positive rate is obtained by 1 - specificity. ROC analysis enables us in choosing optimal 

models or parameters for classification. One point in the ROC space corresponds to an 

individual result of the classifier. The figure-4.6 depicts a ROC curve. The dotted line 

indicates an instance where the classifier performance is average and the curve closer to 

left top corner indicates a better performance of the a given classifier.  

 

Figure 4.6 Receiver Operating Characteristic Curve: an example 
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In general there are two types of classifiers, one which predicts the class label directly and 

the other type produces continuous output to which by applying different thresholds we 

predict the class label. Assuming the value 1 to be an interaction and 0 to be a non-

interaction, the outcome of the classifier has four possible cases, if the original value is 1 

and the predicted value is also 1 we count it as a true positive, but if the predicted value is 

0 then, we count that as false negative and if the original value is 0 and the predicted 

value is 1, we count it as false positive, but if the predicted value is also 0 then, we count 

it as true negative. So, we can construct a two-by-two confusion matrix which is shown in 

the table-4.2:  

 

Table 4.2 Confusion Matrix Table 
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Where TP, FP, TN and FN refer to true positives, false positives, true negatives and false 

negatives respectively and we can calculate different metrics using the confusion matrix 

above as follows: 

Total positive results P 

P = TP + FN            (5.4) 

Total negative results N 

N = TN + FP            (5.5) 

True positive rate (TPR), sensitivity 

TPR = TP / P = TP / (TP + FN)        (5.6) 

False positive rate (FPR) 

FPR = FP / N = FP / (TN + FP)        (5.7) 

Specificity (SPC) or True Negative Rate 

SPC = TN / N = TN / (FP + TN) = 1 - FPR       (5.8) 

ROC graphs can be obtained by plotting false positive rate on x-axis and true positive rate 

on y-axis which depicts relative trade-offs between false positives and true positives. For 

a given classifier, by varying thresholds we obtain different (fp rate, tp rate) pairs which 

correspond to several points in the ROC space. 

4.5.2.1 Area under ROC curve 

To compare two or more different classifiers or model we calculate area under the ROC 

curve, which can be interpreted as “the probability that the classifier will rank a randomly 

chosen positive instance than a randomly chosen negative instance” [6]. This is similar to 

the Wilcoxon test of ranks. Generally while comparing two classifiers using area under 

the ROC curve, higher values of AUC score corresponds to better the performance of the 
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classifier. The figure-4.7 shows the ROC curve obtained for classifier B by varying 

threshold values and AUC for classifier A for a single threshold value. 

 

Figure 4.7 Area under ROC curve: an example [6] 
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CHAPTER 5 

5.1 Preface 

In this section we discuss the experiments performed and the performance evaluation of 

the proposed method in terms of Area under Receiver Operating Characteristic curve. 

Initially we explain the data sets used in this work like how they are represented to fit the 

proposed model. Then, we show that using the proposed method we have obtained higher 

AUC (area under roc curve) when compared with state of art methods and our results 

indicate that the proposed method can predict true drug target interactions accurately.  

5.2 Data set 

We have used the same dataset provided in [33] 

http://cbio.ensmp.fr/˜yyamanishi/pharmaco/  

The data set contains four different protein classes of drug-target interactions networks in 

human beings which involve enzymes, ion-channels, G-protein-coupled receptors and 

nuclear receptors. Table-5.1 presents some statistical information regarding the four 

different classes. 

Class Number of drugs Number of targets Number of drug-

target interactions 

Enzyme 212 664 1515 

Ion-channel 99 204 776 

GCPR 105 95 314 

Nuclear receptor 27 26 44 

Table 5.1Statistical Information on Dataset 
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5.2.1 Drug target interaction data 

The drug target interactions are obtained from the following databases KEGG BRITE 

[12], BRENDA [22], SuperTarget [8] and DrugBank [29].  

The known drug target interaction data is considered as gold standard data and it is being 

used to train the classifier to infer unknown drug target interactions and also during cross 

validation in order to evaluate the performance our proposed method. 

5.3 File format 

For each protein family there are four different files we have used and the table-5.2 gives 

an idea about the files and their format for a dataset.  

File (all are text files) Format Description 

Adjacency matrix of gold 

standard drug-target 

interaction data 

[
         
   

         

] 
A binary matrix where an 

entry       1 indicates 

presence of interaction 

between the drug-target 

pair. 

m is number of drugs and 

n is number of targets in 

the dataset. 

Chemical structure 

similarity matrix [
         
   

         

] 
A real valued matrix 

where        1 the 

higher the value the more 

similar the given drug-

drug pair and the diagonal 

is 1. 

Pharmacological similarity 

matrix [
         
   

         

] 
A real valued matrix 

where        1 the 

higher the value the more 

similar the given drug-

drug pair and the diagonal 

is 1. 
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Genomic sequence 

similarity matrix [

         
   

         

] 
A real valued matrix 

where        1 the 

higher the value the more 

similar the given target-

target pair and the 

diagonal is 1. 

Table 5.2 Explains Format of Data files  

5.4 Evaluation  

We discuss the evaluation technique used to assess the performance of our proposed 

method in the section 4.5 of the thesis. The adjacency matrix of drug target interactions 

(bipartite graph) provided in the paper [33] is used as gold standard data and is used for 

evaluation. We employ 5-fold cross validation and calculate AUC score (area under 

receiver operating curve) for each protein family of drug target interactions. In this 

section we compare the result of the proposed model to state-of-art methods based on 

AUC measure.  

5.4.1 Performance evaluation for the proposed method 

We employ the same procedure followed by the authors in the work [33]. We explain in 

the context of predicting interactions for new proteins and a similar procedure is followed 

for drug compounds. So, initially for each dataset we split the target proteins into five 

subsets of equal size. Then, each subset is used in turn as the test set and classifier is 

trained on the remaining four subsets. This process is repeated five times. For a protein 

target in test set, we assume all of its interactions are unknown and are labeled as 0. 

Performance of the classifier is assessed using area under the ROC curve. The ROC curve 

is plotted using (tpr, fpr) pair obtained for different thresholds. Here upper one percentile 
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in the prediction score is chosen as threshold as prediction scores are interpreted as 

confidence. Since, in our work we did not validate new interactions, what we do is 

assume the target proteins in the test set (present in gold standard data) to be new proteins 

i.e. their interactions with all the drugs in the dataset to be unknown and thus we train the 

classifier on the dataset with interaction profiles of remaining proteins in the training set 

(gold standard data) and predict the interactions of the proteins in the test set. The results 

in the table-5.3 indicate that our method has slightly better AUC (average) on all four 

protein families. 

 
Proposed 

method KRLS 

KR-

CG 

KR-

TP 

KR-

PP 

RLS-GIP-

AVG-avg 

RLS-GIP-

KRON-avg 

Enzyme 95.7 82.1 89.2 84.5 93.7 93.4 

Ion-Channel 96.9 69.2 81.2 73.1 94.7 94.9 

GCPR 94.6 81.1 82.7 81.2 91.3 91.7 

Nuclear 

Receptor 
93.0 81.4 83.5 83.0 90.8 90.2 

Table 5.3 Comparison Table of AUC Scores 

Here, we compare with previous state of art methods [27, 33] employed in the prediction 

of drug target interactions. KR-CG refers to the Kernel regression method proposed in 

[32] which is a supervised bipartite graph inference based on chemical structure similarity 

of drugs, KR-TP and KR-PP refers to kernel regression methods proposed in [33] where 

TP indicates they have used true pharmacological similarity and PP indicates they have 

used predicted pharmacological similarity by assuming the drugs in test do not have any 

pharmacological similarity data and it is inferred using chemical similarity by a similarity 

regression method. RLS-GIP method is proposed by the authors in [27] where RLS-AVG 
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refers to the method in which predictions are made for drugs (using genomic kernel) and 

target proteins (using drug kernel) separately and are combined using an average 

function, RLS-KRON refers to the method where the authors have used Kronecker 

product kernel for drugs and proteins to infer drug target interactions. It should be noted 

that the result obtained from this method corresponds to the scenario where we have at 

least one known interaction for the drugs (proteins) in test set. 

The results in the above table indicate that in our method by improvising the RLS method 

with kernels defined over drug-drug and target-target similarities and extending it to 

weighted profile method is effective in predicting true drug target interactions.  

5.4.2 Relevance of Kernels on drug target interaction prediction 

We have also tested the model by varying the value of the 

parameter                      , by varying the values between 0 (drug kernel) Kd = Kp 

(pharmacological similarity kernel) and 1 (drug kernel) Kd = Kc (chemical similarity 

kernel). It should be noted that altering the parameter   changes the KRLS method while 

inferring interactions for new proteins and whereas altering the parameter αd changes the 

weighted profile method when inferring interactions for new drug compounds. As the 

value of    increases, the chemical similarity kernel has more impact on the predicted 

interactions and as the value of    decreases predicted interactions are influenced 

pharmacological similarities of drug compounds. 
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Figure 5.1 Relevance of drug similarity kernels (AUC for different values of αd)  

In the figure-5.1, as we move from left to right the value of 

                                 indicating that the effect of pharmacological similarity 

of drugs on the drug target interaction inference is decreasing while the effect of chemical 

similarity of the drug compounds is increasing. It can be observed that the drug target 

interactions are more related to the pharmacological similarity of drug compounds than 

chemical similarity of drug compounds which is also observed by the authors in [33]. 

Even though drug target interactions are correlated to pharmacological similarity, we 

have achieved a good result where combined average of both the drug similarity kernels 

is used. In the case of bigger datasets such as Enzymes, it can be seen that the chemical 

similarity kernel is a bit uninformative in detecting the true drug target interactions.  

Finally, as mentioned by the authors in [31] that there is a wealth of information available 

in the drug target interaction network, we have tested the result of including this 
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information in the to see its effect on the performance of method proposed by calculating 

nt x nt interaction similarity kernel                   for all the proteins in the bipartite 

graph A, where the entry    (ti, tj) is the number of common drugs shared by the proteins ti 

and tj. We obtain    in a similar way employed by the authors in [31] but since the 

bipartite graph is different from the one used in [31], we had to re-compute the similarity 

matrix. And now this similarity kernel matrix    is integrated with the genomic sequence 

similarity kernel Kg. 

The chart below shows the results obtained after integrating the genomic kernel with new 

target protein kernel (drug target network information) and it can be observed that using 

the information from the drug target interaction network does prove to be effective to 

some extent in inferring the unknown drug target interactions. 

 

Figure 5.2 AUC scores after integrating DTN information into target protein kernel 

As we can see data sets with higher rate of known interactions are benefited more with 

the inclusion of information on drug target interaction network topology. 
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CHAPTER 6 

6.1 Conclusion 

In this work, we have proposed an algorithm that modifies and extends a previously 

implemented method [27] to predict new drug target interactions by integrating the 

weaker drug kernel with more informative pharmacological effect similarity used in [33] 

and also as the method in [27] cannot be applied to infer interactions for new 

drugs(proteins) i.e. drugs or protein targets in test set with no known interaction, we 

extend the method to more simple yet effective weighted profile method thus enabling us 

to predict interactions for new drugs (proteins). The novelty of the proposed method can 

be described in two ways: 

 i). We improvise the RLS method employed in [27] by introducing kernels defined on 

drug-drug and target-target similarities using radial basis function, then the drug kernel is 

altered by integrating a similarity measure for drugs which is more correlated to drug-

target interactions (pharmacological effect similarity of drugs with chemical similarity) to 

obtain more effective interaction predictions. 

  ii). As the RLS method proposed in [26] cannot predict interactions for proteins or drugs 

with unknown interaction profiles we extend the result of KRLS method to weighted 

profile method which infers interaction for new proteins (drugs) using the target similarity 

kernel (drug similarity kernel) based on the interaction profiles of its neighbors. The real 

valued prediction scores obtained from KRLS method has better information on 

interaction profiles of neighboring drugs (proteins) corresponding to new drugs (protein 
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targets) and achieves a better prediction result than weighted profile method which uses a 

binary matrix of drug target interactions[32]. 

To evaluate the performance of the prediction, we have calculated area under the ROC 

curve measure, which measures sensitivity as the function of 1-specificity. Sensitivity 

(TPR) defines the number of correctly predicted positive interactions among all positive 

interactions available while testing the model and 1 - specificity (FPR) defines the 

number of incorrectly predicted positive interactions among all unknown interactions 

(negative samples) available during the test. Obtained results with high AUC scores 

indicate that our method can predict true drug target interactions and also integrating the 

drug kernel with pharmacological effect similarity further improved the performance of 

prediction. 

6.2 Future Work 

A simple linear combination of drug based prediction scores and target based predictions 

scores is being employed in the current model and we can improve our model to a more 

sophisticated method of combining these individual predictions. And furthermore we 

believe that integrating more similarity measures of drugs such as drug-drug interaction 

closeness, gene expression based similarity and for proteins such as protein-protein 

interaction closeness, gene ontology based similarity can prove to be effective in 

detecting many unknown and useful off targets for drugs. We used a weighted 

combination of drug-drug similarity kernels in this work and techniques based on feature 

selection can be next step of improvement to make better informed predictions. The 

performance of our method has been evaluated based on the gold standard data provided 

in [33] and the practical applicability of our method can be investigated further for 
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example, in identifying targets of drug compounds for drug design and experimental 

validations. On a concluding note we can say that any work of research can always be 

improved upon and we are working towards it.  
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