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ABSTRACT 

Artificial life (Alife) studies the logic of living systems in an artificial environment in order to 

gain a deeper insight of the complex processes and governing rules in such systems. EcoSim, an 

Alife simulation for ecological modeling, is an individual-based predator-

prey ecosystem simulation and a generic platform designed to investigate several broad 

ecological questions, as well as long-term evolutionary patterns and processes in biology and 

ecology. 

Speciation and extinction of species are two essential phenomena in evolutionary biology. Many 

factors are involved in the emergence and disappearance of species. Due to the complexity of the 

interactions between different factors, such as interaction of individuals with their environment, 

and the long time required for the observation, studying such phenomena is not easy in the real 

world. Using data sets obtained from EcoSim and machine learning techniques, we predicted 

speciation and extinction of species based on numerous factors. Experimental results showed that 

factors, such as demographics, genetics, and environment are important in the occurrence of these 

two events in EcoSim. 

We identified the best species-area relationship (SAR) models, using EcoSim, along with 

investigating how sampling approaches and sampling scales affect SARs. Further, we proposed a 

machine learning approach, based on extraction of rules that provide an interpretation of SAR 

coefficients, to find plausible relationships between the models' coefficients and the spatial 

information that likely affect SARs. We found the power function family to be a reasonable 

choice for SAR. Furthermore, the simple power function was the best ranked model in nested 

sampling amongst models with two coefficients. For some of the SAR model coefficients, we 

obtained clear correlations with spatial information, thereby providing an interpretation of these 

coefficients.  

Rule extraction is a method to discover the rules explaining a predictive model of a specific 

phenomenon. A procedure for rule extraction from Random Forest (RF) is proposed. The 

proposed methods are evaluated on eighteen UCI machine learning repository and four 

microarray data sets. Our experimental results show that the proposed methods outperform one of 

the state-of-the art methods in terms of scalability and comprehensibility while preserving the 

same level of accuracy.  
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Chapter	1	

1. Introduction	

1.1. Motivation	
Artificial life (Alife) investigates systems related to life including the processes and the evolution 

in software, hardware, and biochemical [1]. Alife studies the logic of living systems in an 

artificial environment in order to gain a deeper insight of the complex processes and governed 

rules in such systems. The general modeling approach in Alife is to model and simulate the 

generic principles underlying life [2]. 

Among biological disciplines, behavioral ecology has a strong tradition of accounting for the role 

of organism–environment interactions in behavior [3]. Behavioral ecology and the related field of 

optimal foraging theory [4] model animal behavior in terms of optimal adaptation to 

environmental niches. The goal is to interpret the behavior of organisms and also to generate 

testable hypotheses, rather than test whether organisms actually behave optimally [5]. One 

approach for understanding the behavior of complex ecosystems is individual-based modeling, 

which provides a bottom-up approach allowing for the consideration of the traits and behavior of 

individual organisms [6]. It models every single individual agent and their interactions with the 

other agents and also their reactions to the environmental conditions such as food resources or 

predator stress in an artificial ecosystem. The main outcome of the artificial ecosystem is the 

emergence of some high level phenomena, which are the results of the whole set of interactions. 

By simulating the general interaction rules of real ecosystems, patterns similar to what are 

observed in nature could emerge in the artificial ecosystem. These patterns include population 

migration, shape of spatial distribution of individuals, extinction, and speciation. 

Ecological modeling is still a growing field, at the crossroad between theoretical ecology, 

mathematics and computer science [7]. Since natural ecosystems are very complex (in terms of 

number of species and also ecological interactions), ecosystem models aim to characterize the 

major dynamics of ecosystems, in order to synthesize the understanding of such systems, and to 

allow predictions of their behavior [6]. Ecosystem simulations can also help scientists to 

understand theoretical questions regarding the evolutionary process, the speciation, and the 

extinction of species. One of the main interests of such ecosystem simulations is that they offer a 

global view of the evolution of the system, which is difficult to observe in nature [8]. 
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Such artificial ecosystem simulation can provide vast amount of data related to every single 

individual, something that is not available in nature or it is hard to measure. Having those data is 

very beneficial because data can be turned into information and then information gives rise to 

insight. Therefore, data analysis plays an important role after running the simulation in order to 

turn the generated raw data into insight. Data analysis is an iterative process consisting of 

collecting, processing, cleaning, transforming, and finally modeling the data to be able to 

discover useful knowledge and drawing conclusions [9], [10]. Machine learning is one of the 

most popular methods in data analysis. They are able to extract useful knowledge, suggesting 

conclusions, and helping decision-making by learning from the raw input data [11]. Regression, 

classification, feature selection, rule extraction are examples of machine learning methods that 

can be used for this purpose. 

1.2. Objective	
The main objective of this dissertation is to investigate to what extent the combination of Alife 

and artificial intelligence (AI) contributes in ecology. To answer this question, we use EcoSim as 

the main platform. EcoSim [12], [13], [6] is an Alife simulation for ecological modeling and an 

artificial individual-based predator-prey ecosystem simulation. It is a generic platform designed 

to investigate several broad ecological questions, as well as long-term evolutionary patterns and 

processes in biology and ecology. We investigated the creation and disappearance of species and 

their spatial distribution in EcoSim to evaluate and verify the conformity of the output patterns of 

EcoSim to the real ecosystems. Not only did these studies aid the model validation, but they also 

provided deeper understanding of those phenomena in the natural ecosystems. For data analysis 

and extracting meaningful explanation, machine learning techniques were applied to the vast 

amount of data generated by EcoSim. Our main challenge concerns the reasons behind speciation 

and extinction of species and their spatial distribution pattern using species-area relationship, 

three fundamental subjects in ecology. The geographical and spatial distribution of individuals in 

one species is a leading phenomenon for speciation. Therefore, we investigated the speciation 

mechanism by studying how the spatial and spatiotemporal distributions of individuals influence 

speciation. Applying machine learning techniques, we wanted to investigate how this information 

influences speciation in EcoSim. In another words, our aim was to test if there is some correlation 

between such features and speciation. Positive answer to this question would also be a 

confirmation of the validity of the model of evolution and species emergence in EcoSim. 

Speciation and extinction of species can be affected by several factors. Based on Darwin's theory, 

natural selection is the main reason for speciation and emerging genetics studies strengthened this 
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theory by explaining variation in a population via genetic operations [14]. Pre- and post-zygotic 

barriers, which lead to reproductive isolation, are also very important in speciation. 

Geographically isolated populations tend to form new species as well [15], [16]. Moreover, 

sexual selection plays an important role in speciation [17]. Likewise, there are many factors 

involved in extinction that can be classified into three main areas of demographics, genetics and 

environmental factors [18], [19]. Demographic factors can affect the birth rate and the death rate 

of the population. Additionally, the effect of demographic stochasticity is greater in small than in 

larger populations [20]. There is also possibility of genes being lost when a huge reduction occurs 

in a population and the gene frequencies may be changed due to drift or inbreeding [21]. 

Diminishing genetic variation may increase extinction risk by limiting the adaptation ability to 

stressful environments [18]. Lastly, environmental factors such as natural catastrophes, 

availability of food, competitors, predators, and diseases influence the population by changing the 

demographic parameters and increase the likelihood of extinction. Predicting these two 

phenomena and discovering important factors involved, would bring new insights in evolutionary 

and conservation biology. Observing and studying species in nature to extract species information 

is a difficult and time consuming process. In addition, speciation and extinction processes occur 

at very long time scales and most of the time is not possible to observe them in nature. However, 

using simulated ecosystem facilitates such studies. Our aim was to predict these two events based 

on several demographical, genetic, environmental, and spatial features, which are likely effective 

on these two events. Afterward, based on prediction results, we investigated the important factors 

(or features) involved in these events and analyzed their accordance with biological evidence. 

Being able to demonstrate that the emergence of species and their extinction in EcoSim is similar 

to what happens in nature would allow ecologists to propose more specific studies that can be 

performed using EcoSim.  

Identifying the best species-area relationship (SAR) model using EcoSim, along with 

investigating how sampling approaches and sampling scales affect SARs was the third objective. 

Further, we attempted to determine a plausible interpretation of SAR model coefficients for the 

best performing SAR models. The species-area relationship (SAR) is one of the most well-known 

and oldest patterns in ecological modeling that has a number of practical applications for 

managing natural communities [22], [23], [24]. Identifying the most biologically appropriate 

mathematical SAR model to characterize these behaviors has been one of the most important and 

controversial issues in biodiversity. Our aim was to answer questions such as: Is the power 

function the best suited SAR model overall?  How do nested sampling and random sampling 
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affect the shape of the SAR curves? Do different sampling scales affect the SAR models? Is there 

any correlation between SAR model coefficients and spatial information? We employed EcoSim 

and machine learning techniques to answer such questions. 

One of the most common approaches for data analysis and inferences in the above mentioned 

objectives was rule extraction. Rule extraction is a technique to simply explain the underlying 

predictive model, which is in general mostly a black-box model. Therefore, we were looking for a 

rule extraction method that not only gives simple and comprehensible rule set, but it also provides 

high accuracy. Random forest (RF) [25] is an ensemble learning method and one of the high 

performance predictive models. Despite its good performance, one possible limitation of RF is 

that it generates a forest consisting of many decision trees. Therefore, it is viewed as a black box 

model because of its multitude of rules. Our aim was to build a rule extraction method based on 

RF that both maintain the accuracy level close to RF’s accuracy and drastically reduce the 

numbers of rules compared to RF.  

1.3. Contributions	of	the	thesis	
1. First speciation was studied in EcoSim [26], [16], [27]. We analyzed the ability of spatial and 

spatiotemporal information about species in our artificial ecosystem for the prediction of 

speciation events. We showed that some generic traits exist in EcoSim that characterize the 

speciation events. In addition, the effectiveness of demographics, genetics, environment, and 

spatial distribution features in speciation prediction was demonstrated. We extracted several 

simple rules from the constructed prediction model. These rules were semantically clear and 

sound reasonable based on biological evidence. This is an important result as the proposed 

approach has proven to have the capability of generating realistic rules when compared with real 

biological data. 

2. The second contribution was to study the reasons behind species extinction in EcoSim [27], 

[28]. We used three broad categories of genetic, environmental, and demographic features for this 

purpose. Afterward, we obtained a rule set for each category and showed that these rules can 

predict extinction in the next 100 time steps with a very high level of accuracy. We also 

demonstrated that these rules are generic by applying a model built on a training set to a 

validation set constructed using completely different simulation runs. The proposed approach was 

able to extract important features in extinction effectively, especially when there is a plethora of 

features and there is no exact knowledge about them. Second, the categorization idea helps to 

study the effect of features in a more fine-grained way and to extract the associated rules 
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accompanied by an evaluation of their accuracy. This may prove to be beneficial for conservation 

biologists from the point of view of being able to detect early signals of extinction. Further, this 

approach can be applied to test new hypotheses regarding new factors involved in extinction. 

While our results are not directly valid for real situations given that our model involves a high 

level of abstraction as well as being a simplification of the real world, our results provide 

interesting insights that could be of use to biologists in formulating new hypotheses relating to 

species extinction.  

3. We employed EcoSim, to investigate the SAR in terms of the best SAR model, effect of 

sampling strategy on SAR model, and finally study the correlation between SAR model 

coefficients and spatial information [29]. Our study demonstrated that although there is no unique 

function that best describes all species-area relationships, functions in the power family were the 

best ranked functions. Amongst them, the power function is the simplest model with the fewest 

coefficients and hence it is normally easier to fit the simple power function to the data. However, 

for more accurate results, a more complicated model may better fit the data. Furthermore, we 

demonstrated that a number of factors, such as sampling scale and sampling strategies, should be 

taken into account because they affect the shape of the SAR models. We found different models 

to be the most suitable function for different sampling methods and sampling scales. We 

proposed, for the first time, a machine learning approach to discern the meaning of the SAR 

functions' coefficients by providing several rules associated with their probability of prediction. 

We were able to determine the meanings of the SAR coefficients from these extracted rules.  

4. Random forest (RF) is a tree-based learning method, which exhibits a useful ability to 

generalize on real data sets. Nevertheless, a possible limitation of RF is that it generates a forest 

consisting of many trees and is viewed as a black box model because of its multitude of rules. We 

proposed, a procedure for rule extraction from a RF: the RF+HC methods [30]. Once the RF is 

built, a hill climbing algorithm is used to search for a rule set such that it reduces the number of 

rules dramatically, which significantly improves comprehensibility of the underlying model built 

by RF. The proposed methods are evaluated on eighteen UCI machine learning repository [31] 

and four microarray data sets. Our experimental results show that the proposed methods 

outperform one of the state-of-the-art methods, CRF method, in terms of scalability and 

comprehensibility while preserving the same level of accuracy.  
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1.4. Outline	of	thesis	
Chapter 2 reviews existing literature on evolutionary systems and the application of individual-

based modeling in ecology. It also gives an overview of the platform simulation used in this 

study, EcoSim, a predator-prey ecosystem simulation, which is a useful tool to study general and 

fundamental ecological and biological theories. 

Chapter 3 reviews rule extraction methods and mostly concentrated on the rule extraction 

methods from ensembles of decision trees. 

Chapter 4 discusses the effectiveness of various features on speciation events. It explains two 

distinct experiments to study speciation. 

Chapter 5 investigates the reasons behind species extinction using machine learning techniques. A 

rule set for each category of features is extracted, that show the conformation of species 

extinction with the extinction in real nature. 

Chapter 6 studies the species-area relationship (SAR), one of the most well-known and oldest 

patterns in ecological modeling. In addition to investigating the best mathematical model for 

SAR, the effect of different sampling strategies on the shape of SAR is discussed and finally the 

relationship between SAR model coefficients and ecological factors are investigated. 

Chapter 7 proposes the rule extraction methods derived from random forest. The experimental 

results discuss how the proposed methods improve the scalability and comprehensibility of one of 

the state-of-the-art methods.  
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Chapter	2	

2. Background	and	Literature	Review		

2.1. Artificial	life	
Artificial life is a field of study devoted to understanding life by creating artificial systems to 

acquire general theories underlying biological phenomena, and recreating these dynamics in other 

forms such as computer simulation [32]. There are three broad methods to implement such a 

system: software implementation of digital organisms (‘soft’), hardware implementation of life-

like systems (‘hard’), and using biochemical substances to synthesize living systems (‘wet’) [1]. 

The first Alife system was designed using self-reproducing, computation-universal cellular 

automata by Von Neumann [33] and at the same time using information theory and the analysis 

of self-regulatory processes by Wiener [34] to study fundamental of characteristics of the living 

systems. The goal of Alife is to provide a different perspective for biology researchers. Alife 

offers a synthetic perspective by constructing phenomena from their primitive units while 

biological research is mainly analytic, attempting to break down complex phenomena into their 

basic components. Alife implements simple rules and concepts, and combines them leading to the 

emergence of complex phenomena. Emergence is one of the main characteristics of Alife systems 

where phenomena at a certain level arise from interactions at lower levels [35], [36]. Alife also 

has overlap with computer science topics, especially artificial intelligence [37], as in both some 

form of intelligence is required for living in a changing environment. Moreover, both fields study 

natural phenomena [1]. However, there is a major difference in their modeling strategies. Most 

traditional AI models construct top down serial systems with a centralized and complicated 

decision controller that decides based on the knowledge about all aspects of global state. On the 

other hand, Alife is mainly concerned with gaining knowledge about living systems using 

computational bottom-up complex systems consisting of low-level and simple agents interacting 

with each other. Agents decide based on their local environment in parallel and their decisions’ 

impact is only on their own local environment. In this way, the global behavior of the whole 

system is shaped [1]. 

Complex systems consist of many elements interacting with each other simultaneously. The 

complex systems that learn or adapt to a changing environment are complex adaptive systems 

[38], and are the main focus of Alife [1]. Complex adaptive systems exhibit emergence where the 

behavior of the whole is more complex than the behavior of the parts. The characteristics of 

emergence are: (a) Emergence happens in systems which compose of different interactive units 
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that obey simple rules. (b) The interactions between the parts are nonlinear such that the overall 

behavior of the system cannot be predicted by summing the behaviors of the isolated parts. (c) 

The system functions change with the modification of context making difficult to predict 

emergent behavior. (d) The system complexity increases with increasing number of interactions 

[39]. Evolutionary emergence is an essential feature in Alife [40]. There are no rules in the 

system that dictates global behavior and any behavior at levels higher than the individuals is 

emergent. In the Alife systems with evolution mechanisms, there are two types of selection that 

might bring such emergence: "extrinsic adaptation where evolution is governed by a specified 

fitness function, and intrinsic adaptation, where evolution occurs automatically as a result of 

dynamics of a system cause by the evolution of many interacting subsystems" [41].   

2.2. Alife	for	Ecological	Modeling	
Alife uses individual-based modeling (IBM) which is a bottom-up approach to simulating the 

interactions among individuals or groups of individuals in an attempt to create complex 

phenomena. On the other hand, classical equation-based models (EBMs) are typically built up 

from set of interrelated differential equations. Unlike EBMs, IBM consists of interacting adaptive 

entities which are able to capture emergent behavior and provide a greater level of useful details. 

The ease of modeling renders IBM more flexible than EBM. IBM has been used on non-

computing related scientific domains such as ecological sciences [42] and social sciences [43].  

The benefits of IBM over other modeling techniques can be seen in several points. Agent-based 

models are a natural way to describe systems comprised of interacting entities. They are flexible 

and capture emergent phenomena. Finally, they provide access to a greater level of useful detail 

[44]. For instance, modeling interactions between entities is much easier in agent-based systems 

than in EBMs, even when one is comfortable with the concepts of partial differential equations. It 

is usually easy to increase the capacity of a simulation, by adding new agents to see if interesting 

effects are swamped by agent numbers, or by taking agents away if interesting detail is obscured. 

It is also possible to look at the results of simulations at different granularity levels such as the 

level of a single agent, the level of some specific group of agents, or the level of all agents 

together. All these things are harder to manage in EBMs. In addition to their inherent naturalness 

and flexibility, agent-based simulations allow one to identify emergent phenomena, which are the 

result of the actions and interactions of individual agents together and with the environmental 

factors. However, IBM has its own disadvantages. For instance, some experiments need very 

large population sizes and simulations over long periods of time. For these situations, IBM costs 

increase in terms of time and hardware requirements. Moreover, the number of parameters of 
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such modeling approaches is, in general, very large. Therefore, finding the best initial parameters 

is not straightforward as thorough exploration of the parameter space is not possible. Therefore, 

analyzing the effect of every parameter on the simulation and how the results are biased by a 

specific set of parameter is particularly difficult. In addition, the emergent properties sometime 

are artifacts from the model or implementation instead of being real features of the simulation 

[45]. 

For the past decade there has been an enormous growth in application of IBM addressing 

different questions in ecology and evolutionary biology. Whereas classical approaches to 

modeling ecology often ignore individual behavior and instead uses state-variable model that 

controls birth and death rates, IBM aims to "treat individuals as unique and discrete entities" [46] 

which provides for a more realistic simulation. IBM has been used in many areas in ecology 

including forest ecology [47], fisheries and marine life [48], conservation biology and spatial 

heterogeneity [49]. This approach has been used in the simulation of ecological and evolutionary 

processes such as ecological speciation [50], conservation applications [51], and gender change 

[52]. Many ecological IBM systems were not designed to be general platforms that could capture 

different aspects in ecology and evolution but rather these models answer specific question in a 

narrow domain. ATLSS (across trophic level system simulation), designed to simulate the 

ecological functioning of the Everglades region in Florida and model abiotic factors and various 

trophic levels [53], or individual-tree model of the forests of the northeastern United States [54] 

are examples of such systems. Other evolutionary IBMs were designed as platforms to study 

evolutionary behavior, emergence, adaptation, and complexity that are discussed below.  

2.2.1. Tierra	
Coreworld [55] and its improved version, Tierra [56] were the first experiments with populations 

of self-replicating computer programs performed in 1990. The Tierra model is the first widely 

known digital evolutionary ecosystem consisting of self-replicating computer programs based on 

natural selection. Competition in Tierra results from finite CPU-time and memory space. Tierra is 

based on a virtual operating system, complete with its own, relatively robust and simple (but 

universal) machine language and a fixed size address space. An evolutionary run starts by seeding 

the empty memory space with a hand-written self-replicator program. This replicator then 

produces a copy of itself which is instantiated as an independent process. A small amount of 

stochastic behavior is implemented for program execution, the copy process, and programs are 

also subject to point mutations. These mechanisms are responsible for introducing variety into the 

populations. If the modified programs retain their ability to replicate, and the modifications alter 
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their probability of reproduction, Darwinian evolution can occur. A number of interesting results 

have been obtained from such evolutionary runs. For example, 'parasites' have appeared-short 

pieces of code which run another program's copying procedure in order to copy themselves. 

Hyper-parasites (parasites of parasites) have also been observed, along with a number of other 

interesting ecological phenomena [56]. It was shown that it is possible to build an operating 

system in which self-replicating computer code can evolve. On the other hand, after a certain 

amount of time, Tierra fails to produce any new programs but only change in the number of 

existing ones [57]. 

A few numbers of other systems were built based on Tierra. Cosmos, a Tierra-like system 

configured in a two dimensional toroidal like grid environment, was used to study the role of 

contingency in evolution [58]. Furthermore, in Amoeba [59],  the language of the digital 

organism along with its self-replicating code is also subject to evolution. The Amoeba system, 

showed the possibility of spontaneous emergence of a self-replicating program.  

2.2.2. Avida	
Avida is a Tierra-like system [60], [61], in which self-replicating digital organisms consist of a 

circular list of instructions (its genome) and a virtual CPU evolve. Each organism lives in its own 

address space, unlike Tierra's shared address space. This enhancement increased the power of 

digital evolution as an experimental tool. Avida's environment comprises a number of cells; each 

cell can contain at most one organism, and the size of an Avida population is bounded by the 

number of cells in the environment. Organisms are self-replicating, that is, the genome itself must 

contain the instruction to create an offspring. When an organism replicates, a cell to contain the 

offspring is selected from the environment and its inhabitant organism is replaced (killed and 

overwritten). Since digital organisms are self-replicating and compete for space, a higher merit 

(all else being equal) results in an organism that replicates more frequently, spreading throughout 

and eventually dominating the population. Hence, Avida satisfies the three conditions necessary 

for evolution to occur: replication, variation (mutation), and differential fitness (competition). 

Individuals in Avida do not move and in order to measure complexity they use a fixed 

environment which is rarely seen in nature. This means that the system is only adapting to fix pre-

existing environmental conditions. The processes derived from Avida and Tierra are optimization 

processes, similar to evolutionary algorithms, for which it has been proved that it converge 

toward a maximum, either local or global. Finally, as with Tierra, the complexity growth in Avida 

always reaches an upper bound and stops. These results with Avida do not capture the kind of 
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continual growth in qualitative complexity or long term incremental evolution that we can 

observe in the biosphere.  

Avida was used to study numerous aspects of evolution [62]; issues of complexity in evolution 

[63], [64]. Furthermore, they investigated the emergence of complex behavior [65]. They showed 

that complex features do not appear suddenly but only evolve when simpler traits exist which 

served as a foundation upon which these complex features were built. In a recent study they 

showed how runaway sexual selection leads to good genes and how they should be viewed as 

interacting mechanisms that reinforce one another [66]. Evolving digital ecological networks was 

presented in [62] that models competition, parasitism and mutualism.  

2.2.3. Echo	
Echo [67] is a generic ecosystem in which agents evolve in a resource limited environment. The 

world is made up of a square toroid lattice of sites which has different kinds of evolving resources 

encoded by a letter. Agents interact with their environment and are able to move from one site to 

another. They gain energy by eating and spend it on their actions such as fighting, trading and 

mating. Reproduction in Echo happens when an agent has replicated itself with a possible 

mutation when it has gained enough resources to copy its genome asexually or by sexual mating. 

Selection is based on the interacting agents rather than by a predefined fitness function. Emergent 

phenomena arise such as formation of communities and trading networks. Echo was used to study 

the modeling of food web complexity [68]. Echo was intended to be a general model of intrinsic 

adaptive system rather than modeling and answering specific questions in evolutionary biology. 

Due to the high abstraction level of the Echo model, the degree of fidelity to real systems is 

uncertain. 

2.2.4. Polyworld 

In PolyWorld [69], more advanced haploid agents, each controlled by an artificial neural network, 

with a set of primitive behaviors and learning strategies, populate a continuous environment 

containing a number of energy sources ('food') upon which they rely on for survival. Possible 

actions for agents include eat, mate, fight, move, focus and light (for vision). Agents evolve under 

the influence of natural selection and die when their energy is fully depleted or lose a fight with 

another agent. An agent's genome specifies characteristics of its physiology and neural 

architecture which is adapted during its life through Hebbian learning [70]. In Hebbian learning, 

the weight between two neurons is increased if the two neurons activate at the same time, 

otherwise it is reduced. Therefore, the weights between two nodes which are both either positive 

or negative simultaneously have high positive weights, while the weights between two opposite 
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nodes have high negative weights. Yaeger was able to report the emergence of new population 

behaviors, such as fleeing, grazing, following, and flocking. Polyworld was used to study how 

evolution guides complexity [71] and the passive and driven trends in the evolution of complexity 

[72]. Genetic clustering for the identification of species was also presented in [73]. On the other 

hand, lack of semantics in the genomic structure (nodes) in Polyworld, makes it difficult to reason 

and link together different aspects of the model. Another criticism of PolyWorld, in the context of 

perpetual evolutionary emergence, is that learning appears to be overwhelmingly responsible for 

the results. This integrated learning process adds to the computational complexity of the model. 

Furthermore, the high complexity of the neural networks agents limits their number making it 

difficult to study large ecosystem phenomena's.  

Geb [74], [75] is another similar artificial neural network system considered to be simpler than 

Polyworld as it is not trying to mimic the real world as Polyworld do. Agents which are 

controlled by a neural network each populate a gridded arena and compete for space with no 

notion of energy. There is no learning process as agents do not change during their lifetime and 

thus results prove it to be suited to long-term incremental artificial evolution. Geb was proven to 

be the first autonomous artificial system to pass the Bedau and Packard's evolutionary test [41]. 

According to Bedau statistics, evolutionary dynamics in Gep was proven to be unbounded [76] 

and thus based on intrinsic evolution. Bedau et al. [41] developed a statistical measure for testing 

unbounded evolution.   

2.2.5. Framsticks	
Framsticks [77] is a 3D life simulation platform addressing both research and education. The 

platform consists of modules that facilitate the design of various experiments in optimization, 

coevolution, open-ended evolution, and ecosystem modeling. Agents have both mechanical 

structure (bodies) consisting of connected sticks and a control system (brain) using an artificial 

neural network. The neural network brain collects data from sensors and sends signals to the 

joints which control motion. The world is enriched with a complex topology and a water level 

along with energy balls consumed by agents. Although some locomotion behaviors have evolved, 

the high complexity of the model did not present any different results than those obtained from 

much simpler evolutionary systems.  This model is more concerned with the study of emerging 

motor behavior rather than modeling a multiple level interacting ecosystem. 
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2.2.6. Sugarscape	
Sugarscape [78] is an agent-based social simulation consisting of agents, a two-dimensional 

environment, and the rules that define the interaction of the agent with each other and the 

environment. The environment or cellspace is a 51x51 cell grid, where every cell contains either 

sugar or spice. It has some general properties that control the number of inhabitants and the 

overall fertility of sugar and spice distributions on the grid. An agent occupies all of one cell and 

there is no sharing of cells. Each cell has the following attributes: sugar, spice, and pollution. 

Sugar and spice are consumed by the agents visiting the cell and after harvested grow back based 

on a simulation parameter. There are also some randomly selected cells that cannot grow one or 

both of the sugar and spice.  

In every step of the simulation, agents look around and find the closest cell containing sugar or 

spice, then move to that cell and metabolize. Depending on the parameter setting defined at the 

set-up of the model, agents can leave pollution, die, reproduce, inherit sources, transfer 

information, trade or borrow sugar, generate immunity or transmit diseases. It can be used to 

study the effects of social dynamics such as evolution, marital status, and inheritance on 

populations. Each agent has the following characteristics: 1) id: a unique identifier 2) family: 

shared name which identifies either paternal or maternal lineage 3) parents: male and female 

agents and the attributes of their offspring is a mix of the parents attributes. The first generation 

agents lack parents. Agents inherit their metabolism and their vision properties from their parents. 

4) birthYear: specifies the start of the lifecycle of the agent 5) location: the current location of the 

agent 6) inheritance: initial allocation of sugar and spice received from parents 7) sugar: the total 

amount of sugar available for consumption, which is the summation of inherited sugar and the net 

sugar gathered, consumed, and traded 8) spice: the total amount of spice available for 

consumption, which is the summation of inherited spice and the net spice gathered, consumed, 

and traded. 

The agents need both sugar and spice to survive and shortage of either will lead to death. They 

also have trading ability randomly assigned at birth. The behavioral modeling of agents has been 

implemented using some rules. For example the ruleset for gathering is as follow: 1) The agent 

determines which good is needed urgently i.e. sugar or spice, which is called preferred good. 2) 

The agent look at its vision range and find the cell with the highest value of the preferred good 3) 

Then the agent moves to that cell and consume the good 4) If there is no preferred good available 

in the vision range, the agent relocates to the farthest cells within its vision range. 
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2.2.7. Other	predator‐prey	simulations	
Some of the above mentioned systems like Polyworld and Echo model predator individuals. 

Other predator-prey models have also been presented focusing more on the ecological predator 

prey dynamics and interactions. Smith [79] uses the Volterra [80] model which exhibits constant 

population dynamics, both in terms of oscillations in global populations as well as dynamic 

patchiness. The model integrated 2D spatial representation to study migration under different 

predation strategies. He showed that detailed movement patterns in predator and prey can affect 

their interaction. Smith only models simple predator-prey behavior with simple genomic 

representation as only migration parameters are able to mutate. In [81] digital predator-prey 

organisms were used to study the evolution of trophic structure represented by the food web. Bell 

showed how different energy flow levels among organisms affect species richness and diversity. 

In another study [82], Lotka-Volterra equations were integrated in an IBM to examine how 

evolution of prey use by predators affects community stability and whether complexity of the 

food web increases stability of the predator prey system. The results demonstrated that the 

number of existing species decreases with increasing complexity. 

A predator-prey simulation based on a spatial collection of individual finite state machine agents 

(animat) was first presented in [83]. This model can locate hundreds of thousands of individuals 

evolving in a two-dimensional featureless spatial plain. Every animat is represented using a small 

set of rules that direct its microscopic behavior and, at each time-step of the simulation, each 

animat executes one of these rules, causing it to: move, eat, or breed. In one study, the effect of 

introducing camouflage behavior as an available option for predators was investigated [84]. It 

was shown that individuals who adopt this behavior are relatively successful in obtaining prey 

and thus prolonging their lives against the threat of dying of hunger. This, in turn, led to higher 

numbers of successful older predators which caused a crash in the population of prey. In another 

study a time-delayed gestation period was introduced into the predator-prey selection and 

adaptation mechanisms [85]. The temporal behavior of individual animats was affected by the 

gestation period parameter and hence the macroscopic behaviors of the species were also 

affected. 

2.3. EcoSim	
Since, in this dissertation, EcoSim has been used to investigate several different biological 

questions, we give in this section a detailed description of EcoSim using the updated 7-point 

Overview-Design concepts-Details (ODD) standard protocol [86] for describing individual-based 

models. Several studies have validated some of the patterns observed in EcoSim. For example, in 
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[87], the species abundance patterns have been analyzed based on Fisher's log series. They 

demonstrated that their simulations produce results relating to species abundance patterns that 

cohere with patterns observed in real ecological systems. In another study, chaotic properties of 

the patterns generated by the system with multi-fractal properties has been established, which 

agrees with what has been observed for real ecosystems [88]. Golestani et al. [89] added small, 

randomly distributed physical obstacles into the simulations to investigate the influence of 

obstacles on the distribution of populations and species, the level of gene flow, as well as the 

mode and tempo of speciation. Hosseini et al. [90] were able to predict species extinction in 

EcoSim with high accuracy. These studies demonstrate the potential of EcoSim simulations to 

approximate some important features of real ecosystems, although admittedly it does have its 

limitations such as the absence of abiotic factors (climate, fluctuations in temperature, 

precipitation, wind, soil changes, or geographic features such as mountains, valleys, rivers, lakes). 

2.3.1 Purpose	
EcoSim is an individual-based predator-prey ecosystem simulation, which was designed to 

simulate agents’ behavior in a dynamic, evolving ecosystem [6], [12]. The main purpose of 

EcoSim is to study biological and ecological theories by constructing a complex adaptive system, 

which leads to a generic virtual ecosystem with behaviors similar to those found in nature. 

EcoSim uses, for the first time, a fuzzy cognitive map (FCM) to model each agent behavior (see 

section  2.3.4.1). The FCM of each agent, being coded in its genome, allows the evolution of 

agents’ behavior throughout the epochs of the simulation. 

In EcoSim, all the factors determining the reproductive success of an individual are free of pre-

defined fitness functions. The overall fitness of an individual, measured as its reproductive 

success and that of its offspring, depends only on the interaction between its phenotype 

(behavioral type) and the environment. These interactions result from the usage of the behavioral 

models of the individuals under various environmental circumstances. At each time step, the 

individuals in EcoSim consume some energy. This consumption is determined by a cost function 

that takes into account the complexity of the behavioral model of the individual (the number of 

edges it contains) and the action it performs. The more complex the model is and the faster the 

movements performed by the individual (such as escape and exploration) are, the more the energy 

is consumed. This cost function is pre-defined. Nevertheless, a cost function is not a fitness 

function since it does not determine the success of a particular behavioral model. A cost function 

is a ‘fix penalty’, which is assigned to behavioral models and actions independently of the 

environment in order to avoid an obvious continuous increase in the behavioral model complexity 
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and to model energy depletion with time. The success of a behavioral model relies on the tradeoff 

between the decisions it makes, knowing the current environment and the cost of the actions that 

are performed throughout the life of the individual. However, this tradeoff is not arbitrated by a 

predefined extrinsic function but results from the consequence of the actions undertaken. 

As a consequence, decisions made by individuals with distinct behavioral models do not rely on 

any external evaluation (pre-defined fitness function) in the interest of the action. Instead, 

decisions rely on the knowledge ‘learned’ from the environment in the behavioral model by the 

evolutionary process, tuning behaviors to a particular state of the local world, and on the 

individual perception of the local environment. The model determining the reproductive success 

of an individual is thus intrinsic to the simulation in the sense that no external information is 

involved for determining fitness [91]. This feature is very important because the systems with 

pre-defined fitness function behave as a genetic algorithm. These systems are optimization 

processes that the fate of the system is directly determined by its pre-defined fitness function. 

When targeting unbounded evolution and emergence of new adaptive behavior, evolutionary 

algorithms (using extrinsic adaptation) should be rejected and rather a model based on natural 

selection (intrinsic adaptation) is more suitable. 

2.3.2 Entities,	state	variables,	and	scales	
Individuals: There are two types of individuals: predators and prey. Each individual possesses 

several life-history characteristics (see Table  2‐1) such as age, minimum age for breeding, speed, 

vision distance, level of energy, and amount of energy transmitted to the offspring. Energy is 

provided to the individuals by the resources (food) they find in their environment. Prey consume 

primary resources, which are dynamic in quantity and location, whereas predators hunt for prey. 

Each individual performs one unique action during a given time step, based on its perception of 

the environment. Each agent possesses its own FCM coded in its genome and its behaviors are 

determined by the interaction between the FCM and the environment (see section  2.3.4.1). 

Energy is provided by the primary or secondary resources found in their environment. For 

example, prey individuals gain 250 units of energy by eating one unit of grass and predators gain 

500 units of energy by eating one prey. At each time step, each agent spends energy depending on 

its action (e.g., breeding, eating, and running) and on the complexity of its behavioral model 

(number of existing edges in its FCM). On average, a movement action, such as escape and 

exploration, requires 50 units of energy whereas a reproduction action uses 110 units of energy 

and the choice of no action results in a small expenditure of 18 units of energy. These constant 

numbers obtained by trial and error while they are logically plausible. 
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Cells and virtual world: The smallest units of the environment are cells. Each cell represents a 

large space, which may contain an unlimited number of individuals and/or some amount of food. 

The virtual world consists of torus-like discrete 1000 × 1000 matrix of cells.  

Table  2‐1. Several physical and life history characteristics of individuals from 10 independent EcoSim 

runs. 

Characteristic    Predator                                Prey 

Maximum age 42 time steps (+/- 6) 46 time steps (+/-18) 

Minimum age of reproduction 8 time steps 6 time steps 

Maximum speed 11 cells / time step 6 cells / time step 

Vision distance 25 cells maximum 20 cells maximum 

Level of energy at initialization  1000 units 650 units 

Average speed 1.4 cells / time step (+/- 0.3) 1.2 cells / time step (+/- 0.2) 

Average level of energy 415 units (+/- 82) 350 units (+/- 57) 

Maximum level of energy 1000 units 650 units 

Average number of reproduction action 

during life 

1.14 (+/- 0.11) 1.49 (+/- 0.17) 

Average length of life 16 time steps (+/- 5) 12 time steps (+/- 3) 

 

Time step: Each time step involves the time needed for each agent to perceive its environment, 

make a decision, perform its action, as well as the time required to update the species 

membership, including speciation events and record relevant parameters (e.g., the quantity of 

available food). In terms of computational time, the speed of a simulation per generation is 

proportional to the number of individuals. An execution of the simulation with an average of 250 

000 individuals simultaneously present in the world produced approximately 15000 time steps in 

35 days.  



18 
 

Population and Species: On average, in each time step, there are about 250,000 individuals, 

members of one or more species. A species is a set of individuals with a similar genome relative 

to a maximum dissimilarity threshold.  

2.3.3 Process	overview	and	scheduling	
The possible actions for the prey agents are: exploring the environment to gain information 

regarding food, predators, and sexual partners, evasion (escape from predator), search for food (if 

there is not enough grass available in its habitat cell, prey can move to another cell to find grass), 

socialization (moving to the closest prey in the vicinity), exploration, resting (to save energy), 

eating and breeding. Predators also perceive the environment to gather information used to 

choose an action from amongst: hunting (to catch a prey), search for food, socialization, 

exploration, resting, eating and breeding. After each action, the individuals’ energy is adjusted 

and their age in incremented by one. There are also two environmental processes: after all 

individuals perform their actions, the amount of grass and meat are adjusted.     

At each time step, the value of the state variables of individuals and cells are updated. The 

overview and scheduling of every time step is as follows (algorithm): 

1. For each prey individual:  

1.1. Perception of the environment  

1.2. Computation of the next action  

1.3. Performing actions and updating the energy level  

2. Updating the list of prey (it's done once for all prey individuals) 

3. Updating prey species (it's done once for all prey individuals) 

4. For each predator individual:  

4.1. Perception of the environment  

4.2. Computation of the next action  

4.3. Performing their action and update of the energy level  

5. Updating the list of predator individuals (it's done once for all predator individuals) 
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6. Updating predator species (it's done once for all predator individuals) 

7. For each cell in the world: 

7.1. Updating the grass level  

7.2. Updating the meat level  

8. Updating of the age of the individuals  

The complexity of the simulation algorithm is linear with respect to the number of individuals. If 

we consider that there are N1 prey and N2 predators and we exclude the sorting parts, which have 

a complexity of O(N1logN1) and O(N2logN2) but are negligible in the overall computational time 

as they are only performed once per time step, then the complexity of part 1 and part 2 of the 

above algorithm, including the clustering algorithm used for speciation, will be O(N1) and O(N2) 

respectively [92]. The virtual world of the simulation has 1000×1000 cells, therefore the 

complexity of part 3 will be O(k = 1000×1000). The complexity of part 4 will be O(N1+N2). As a 

result, the overall complexity of the algorithm is O(2N1+ 2N2+ k), which is O(N). 

2.3.4 Design	concepts	

2.3.4.1 Basic principles 

To observe the evolution of individual behavior and ultimately ecosystems over thousands of 

generations, several conditions need to be satisfied: (i) every individual should possess genomic 

information; (ii) this genetic material should affect the individual behavior and consequently its 

fitness; (iii) the inheritance of the genetic material has to be done with the possibility of 

modification; (iv) a sufficiently high number of individuals should coexist at any time step and 

their behavioral model should allow for complex interactions and organizations to emerge; (v) a 

model for species identification, based on a measure of genomic similarity, has to be defined; and 

(vi) a large number of time steps need to be performed. These complex conditions pose 

computational challenges and require the use of models that combine the compactness and ease of 

computation with a high potential for complex representation. 

In EcoSim, a Fuzzy Cognitive Map (FCM) [93] is the base for describing and computing the 

agent behaviors. Each agent possesses an FCM to compute its next action. The FCM is integrally 

coded in their genomes and therefore heritable and subject to evolution. FCMs are weighted 

graphs representing the causal relationship between concepts, allowing the observation of 
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evolutionary patterns and inference of underlying processes (Figure  2‐1) (see section  2.3.4.2 and 

 2.3.4.6). When a new offspring is created, it is given a genome, which is a combination of the 

genomes of its parents with some possible mutations. 

 

Figure  2‐1. A sample of a predator’s FCM including concepts and edges. The width of each edge shows 

the influence value of that edge. Color of an edge shows inhibitory (red) or excitatory (blue) effects. 

Formally, an FCM is a graph, which contains a set of nodes C, each node Ci being a concept, and 

a set of edges I; each edge Iij representing the influence of the concept Ci on the concept Cj. A 

positive weight associated with the edge Iij corresponds to an excitation of the concept Cj from the 

concept Ci, whereas a negative weight is related to an inhibition (a zero value indicates that there 

is no influence of Ci on Cj). The influence of the concepts in the FCM can be represented in an 

n×n matrix, L, in which Lij is the influence of the concept Ci on the concept Cj. If Lij = 0, there is 

no edge between Ci and Cj. In EcoSim, each individual genome code for its proper FCM, with 

one gene coding for one weight Lij. 
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In each FCM, three kinds of concepts are defined: sensitive (such as distance to foe or food, 

amount of energy, etc.), internal (fear, hunger, curiosity, satisfaction, etc.), and motor (evasion, 

socialization, exploration, breeding, etc.). The activation level of a sensitive concept is computed 

by performing a fuzzification of the information the individual perceives in the environment. For 

an internal or motor concept, C, the activation level is computed by applying the defuzzification 

function on the weighted sum of the current activation level of all the concepts having an edge 

directed toward C. Finally, the action of an individual is selected based on the maximum value of 

motor concepts' activation level. Activation levels of the motor concepts are used to determine the 

next action of the individual. For example, Figure  2‐2 represents two sensitive concepts (foeClose 

and foeFar), one internal (fear), and one motor (evasion). There are also three influence edges: 

closeness to a foe excites fear, distance to a foe inhibits fear, and fear causes evasion. Activations 

of the concepts foeClose and foeFar are computed by fuzzification of the real value of the 

distance to the foe, and the defuzzification of the activation of evasion tells us about the speed of 

the evasion (see section  2.3.4.6). 

 

 

Figure  2‐2. An FCM for detection of foe (predator) and decision to evade, with its corresponding matrix 

(0 for ‘Foe close’, 1 for ‘Foe far’, 2 for ‘Fear’ and 3 for ‘Evasion’) and the fuzzification and defuzzification 

functions [94]. 
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2.3.4.2 Emergence 

The behavioral model of individuals encoded in an FCM can react to the changes in the 

environment. For example, it has been shown that the contemporary evolution of prey behavior 

owing to predator removal is also accompanied by prey genetic change [95]. At the initiation of 

the simulation, prey and predators are scattered randomly all around the virtual world. Through 

the epochs of the simulation, the distribution of the individuals in the world is changed drastically 

based on many different factors: prey escaping from predators, individuals socializing and 

forming groups, individuals migrating gradually to find sources of food, species emerging, etc. 

The size of the world is large enough to accommodate population structures and the emergence of 

migrations. For example, an individual moving at its maximum speed could barely cross half of 

the world during its life span. Moreover, previous studies demonstrate that the usage of 

behavioral models lead to a non-random distribution of individuals and species in which 

individuals form populations that contain agents with similar genomes [89], [96]. Figure   2‐3 

shows an example of a snapshot of the virtual world after thousands of time steps with emerging 

grouping patterns. 

It has been shown that the data generated by EcoSim present the same kind of multifractal 

properties as those observed in real ecosystems [97]. Individuals' distribution forming spiral 

waves is one property of prey-predator models and it is an emerging property in EcoSim (Figure 

 2‐3). Prey near the wave break have the capacity to escape from the predators sideways. A 

subpopulation of prey then finds itself in a region relatively free from predators. In this predator-

free zone, prey start expanding extensively, forming a circularly expanding region. The whole 

pressure process and spiral formation will be applied to this subpopulation of prey and predators, 

leading to the formation of a second scale [98]. This process repeats many times, which is a 

common property of self-similar processes [99]. Because there are consecutive interactions 

between prey and predators over time, the same pattern repeats itself over and over. The result of 

this pattern repetition is the emergence of self-similarity in the spatial distribution of individuals. 

In addition, migration phenomena can be observed, since the relocation of individuals leads to the 

redistribution in the population [100]. 
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Figure  2‐3. A snapshot of the virtual world in one specific time step, white color represents predator 

species and the other colors show different prey species. 

2.3.4.3 Adaptation 

The genome maximum length is fixed (390 sites), where each site is a real number and 

corresponds to an edge between two concepts of the FCM and code for the weight associated to 

this edge. However, as many edges have an initial value of zero, only 114 edges for prey and 107 

edges for predators exist at initialization (see section  2.3.4.1). One more gene is used to code for 

the amount of energy, which is transmitted from the parents to their child at birth. The value of a 

site, which is a real number, corresponds to the intensity of the influence between the two 

concepts. The genome of an individual is transmitted to its offspring after being combined with 

the genome of the other parent and following the possible addition of some mutations. To model 

linkage, the weights of edges are transmitted by blocks from parents to the offspring. For each 

concept, its entire incident edges’ values are transmitted together from the same randomly chosen 

parent. The behavioral model of each individual is therefore unique. Step after step, as more 

individuals are created, changes in the FCM occur due to the formation of new edges (with 

probability of 0.001), removal of existing edges (with probability of 0.0005) and changes in the 

weights associate to existing edges (with probability of 0.005). These low probabilities, compared 
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to the crossover probability, reflect the fact that changes in genome should be relatively slow to 

avoid random evolution. Therefore, new genes may emerge from among the 265 initial edges of 

zero value.  

2.3.4.4 Fitness 

We calculated the fitness for each species as the average fitness of its component individuals. In 

order to realistically represent the capacity of an individual to survive and produce offspring that 

can also survive, fitness was calculated as the sum of age at death of the focal individual with the 

death age of its children (a post-processing computation). Since the sum involves all direct 

offspring, it is representative of the fertility and survivability of the individuals [101]. It is 

important to notice that it is a post-processing computation done only to analyze the results 

generated by the simulation and that this fitness is never using during the simulation process 

itself.  

2.3.4.5 Prediction 

So far, there is no learning mechanism for individuals during their life and they cannot predict the 

consequences of their decision. The only available information for every individual to make 

decisions is the information coming from their perceptions at that particular time step and the 

value of the activation level of the internal and motor concepts at the previous time steps. The 

activation levels of the concepts of an individual are never reset during its life. As the previous 

time step activation level of a concept is involved in the computation of its next activation level, 

this means that all previous states of an individual during its life participate in the computation of 

its current state. Therefore, an individual has a basic memory of its own past that will influence 

its future states.     

2.3.4.6 Sensing 

Every individual in EcoSim is able to sense its local environment inside its range of vision. For 

instance, each prey can sense its five closest foes, cells with food units, mates within its range of 

vision, the number of grass units in its cell and the number of possible mates in its cell. Moreover, 

each individual is capable of recognizing its current level of energy.  

It should be noted that the FCM process explained in section  2.3.4.2, enables, for example, 

distinguishing between perception and sensation: sensation is the real value coming from the 

environment, and perception is sensation modified by an individual’s internal states. For example, 

it is possible to add three edges to the map presented in Figure  2‐2: one auto excitatory edge from 
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the concept of fear to itself, one excitatory edge from fear to foeClose, and one inhibitory edge 

from fear to foeFar (Figure   2‐4). A given real distance to the foe seems higher or lower to the 

individual depending on the activation level of fear. Also, the fact that the individual is frightened 

at time t influences the level of fear of the individual at time t + 1. This kind of mechanism makes 

possible the modeling of the degree of stress for an individual. It also enables the individual to 

memorize information from previous time steps: fear maintains fear. It is therefore possible to 

build very complex dynamic systems involving feedback and memory using an FCM, which is 

needed to model complex behaviors and abilities to learn from evolution. 

 

Figure  2‐4. An FCM for detection of foe (predator) ‐ difference between perception and sensation [94]. 

This map shows different kind of interactions between three kinds of concepts: perception concept (Foe 

close and Foe far), internal concept (Fear) and motor concept (Evasion). 

2.3.4.7 Interaction 

The only action that requires a coordinate decision of two individuals is reproduction. For 

reproduction to be successful, the two parents need to be in the same cell, to have sufficient 

energy, to choose the reproduction action and to be sufficiently genetically similar. The 

individuals cannot determine their genetic similarity with their potential partner. However, if they 

try to mate and the potential partner is too dissimilar (the difference between the two genomes is 

greater than a specified threshold (half of the speciation threshold), then the reproduction fails.  

Predator’s hunting introduces another type of interaction in the simulation. For a predator to 

succeed in the hunting action, its distance to the closest prey is required to be less than one cell. 

When a predator’s hunting action succeeds, a new meat unit is added to the corresponding cell, 

and the energy level of the predator is also increased by one unit of meat energy. 

Furthermore, there is a competition for prey and predators for food. For example, if in a given cell 

there is only one food unit and two agents have chosen the action of eating, the younger will act 
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first, and so it will be the only one that can eat (in this cell) at this time step. This is a way to 

simulate the fact that older species members help younger species members to survive. 

2.3.4.8 Stochasticity 

To produce variability in the ecosystem simulation, several processes involve stochasticity. For 

instance, at initialization, the number of grass units is randomly determined for each cell. 

Moreover, the maximum age of an individual is determined randomly at birth from a uniform 

distribution centered at a value associated with the type of agent (see section  2.3.5). Stochasticity 

is also included in several kinds of actions of the individuals such as evasion and socialization. If 

there is no predator or partner respectively in the vision range of the individual, the direction of 

the movement would be random. Furthermore, the direction of the exploration action is always 

random. 

However, to understand the extent of randomness in EcoSim, Golestani et al. examined whether 

chaotic behavior exists in signals (time series) generated by the simulation. They concluded that 

the EcoSim is capable of generating non-random and chaotic pattern (time series) [102]. 

2.3.4.9 Collectives 

In EcoSim, the notion of species is implemented in a way that species emerge from the evolving 

population of agents. EcoSim implements a species concept directly related to the genotypic 

cluster definition [103] in which a species is a set of individuals sharing a high level of genomic 

similarity. In addition, in EcoSim, each species is associated with the average of the genetic 

characteristics of its members, called the ‘species genome’ or the ‘species center’. The speciation 

method involves a 2-means clustering algorithm [92] in which an initial species is split into two 

new species, each of them containing the agents that are mutually the most similar. Over time, a 

species will progressively contain individuals that are increasingly genetically dissimilar up to an 

arbitrary threshold where the species splits. After splitting, the two sister species are sufficiently 

similar that hybridization events can occur. Therefore, two individuals can interbreed if their 

genomic distance is smaller than an arbitrary threshold (half of the speciation threshold) even if 

they are designated as members of two sister species by our clustering algorithm. The information 

about species membership is only a label. It is not used for any purpose during the simulation but 

only for post-processing analysis of the results. Several studies have been conducted to analyze 

the concept of species in EcoSim. Devaurs & Gras [104] compared the species abundance 

patterns emerging from EcoSim with those observed in natural ecosystems using Fisher's 

logseries [105]. Species abundance is a key component of macro-ecological theories and Fisher's 
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logseries is one of the most widely known classic models of species abundance distribution. The 

results of this study proved that at any level in sample size, EcoSim generates coherent results in 

terms of relative species abundance, when compared with classical ecological results [28]. In 

another study, Golestani et al. [89] investigated how small, randomly distributed physical 

obstacles influence the distribution of populations and species, showing that there is a direct and 

continuous increase in the speed of evolution (e.g. the rate of speciation) with the increasing 

number of obstacles in the world.  

2.3.4.10 Observation 

EcoSim produces a large amount of data in each time step, including number of individuals, new 

and extinct species, geographical and internal characteristics of every individual, and status of the 

cells of the virtual world. Information regarding each individual includes position, level of 

energy, choice of action, specie, parents, FCM, etc. There is also the possibility to store all of the 

values of every variable in the current state of the simulation in a separate file, making possible 

the restoration of the simulation from that state onwards. All of the data is stored in a compact 

special format, to facilitate the storage and future analysis.  

2.3.5 Initialization	and	input	data	
A parameter file is used to assign the values for each state variable at initialization of the 

simulation. These parameters are as follows: width and height of the world, initial numbers of 

individuals, threshold of genetic distance for prey/predator speciation, maximum age, energy, 

speed, vision range, and initial values of FCM for prey/predator. Any of these parameters can be 

changed for specific experiments and scenarios. An example of a list of the most common user-

specified parameters is presented in Table  2‐2. For other initial parameters see Table  2‐3 to Table 

 2‐8. 

 Different values of initial parameters can lead to an extinction of either the prey or the predators 

or both of them. The current values lead to stable runs for the simulation. Some parameters like 

number of individuals are less sensitive than other. However, as long as the equilibrium between 

amount of grass, number of prey, and number of predators is maintained, the whole system is 

quite stable and many different combinations of values still tested have led to stable runs. 

Moreover, as far as the runs are stables, all the general patterns behavior described in section  2.3 

emerged and have been observed systematically. 
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Table  2‐2. Values for user‐specified parameters in EcoSim. 

User Specified Parameter Used Value 

Number of Prey 12000 

Number of Predators 500 

Grass Quantity 5790000 

Maximum Age Prey 46 

Maximum Age Predator 42 

Prey Maximum Speed 6 

Predator Maximum Speed 11 

Prey Energy 650 

Predator Energy 1000 

Distance for Prey Vision 20 

Distance for Predator Vision 25 

Reproduction Age for Prey 6 

Reproduction Age for Predator 8 

 

2.3.6 Submodels	
As mentioned earlier, each individual performs one unique action during a time step based on its 

perception of the environment. Each time step of EcoSim consists of the computation of the 

activation level of the concepts, the choice and application of an action for every individual. A 

time step also includes the update of the world: emergence and extinction of species and growth 

and diffusion of grass, or decay of meat. 

At initialization time there is no meat in the world and the number of grass units is randomly 

determined for each cell. For each cell, there is a probability, probaGrass, that the initial number 

of units is strictly greater than 0. In this case, the initial number is generated uniformly between 1 

and maxGrass. Each unit provides a fixed amount of energy to the agent that eats it. The preys 

can only eat the grass, and the predators have two modes of predation: hunting and scavenging. 

When a predatorʼs hunting action succeeds, a new meat unit is added in the corresponding cell 

and the predator is considered consuming another one. When a predatorʼs eating action succeeds 
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(which can be viewed as a scavenging action), one unit of meat is removed in the corresponding 

cell. The amount of energy is energyGrass for one grass unit when eaten by a prey and is 

energyMeat for one meat unit eaten by a predator. The number of grass units grows at each time 

step up to maxGrass, and when a prey dies in a cell, the number of meat units in this cell 

increases by 2, up to maxMeat. The number of grass units in a cell decreases by 1 when a prey 

eats, and the number of meat units decreases by 1 when a predator eats. The number of meat units 

in a cell also decreases at each time step, even if no meat has been eaten in this cell. For every 

action there is a cost, which is associated with the individuals' energy level and is updated based 

on the number of FCM arcs (nbArcs) and the individual's speed (equation 2-1).  

0.25
1 ( / 4 )t te e nbArcs speed                                                                                   (2-1) 

For the reproduction action, there is an extra cost for parents, which is based on following 

relations. 

1 / 2

( ( ) ) /100 ( ) 1

/100

t t nb

nb

e e e

MaxEnergy rand Maxsob sob sob if Maxsob sob
e

MaxEnergy sob otherwise

  

    
  

 (2-2) 

Where enb is new born energy, rand is random function, sob is state of birth (parental energy 

investment) and Maxsob is the maximum value for sob. 

1. Evasion (for prey only). The evasion direction is the direction opposite to the direction of the 

barycenter of the 5 closets foes within the vision range of the prey, with respect to the current 

position of the prey. If no predator is within the vision range of the prey, the direction is chosen 

randomly. Then the new position of the prey is computed using the speed of the prey and the 

direction. The current activation level of fear is divided by 2. 

2. Hunting (for Predator only). The predator selects the closest cell (including its current cell) that 

contains at least one prey and moves towards that cell. If it reaches the corresponding cell based 

on its speed, the predator kills the prey, eating one unit of food and having another unit of food 

added to the cell. When there are several prey in the destination cell, one of them is chosen 

randomly. If the speed of the predator is not enough to reach the prey, it moves at its speed 

toward this prey. If there are no prey in the current cell and in the vicinity or it does not have 

enough energy to reach a prey, hunting action is failed. 
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3. Search for food. The direction toward the closest food (grass or meat) within the vision range is 

computed. If the speed of the agent is high enough to reach the food, the agent is placed on the 

cell containing this food. Otherwise, the agent moves at its speed toward this food. 

4. Socialization. The direction toward the closest possible mate within the vision range is 

computed. If the speed of the agent is high enough to reach the mate, the agent is placed on the 

cell containing this mate, and the current activation level of sexualNeeds is divided by 3. 

Otherwise, the agent moves at its speed toward this mate. If no possible mate is within the vision 

range of the agent, the direction is chosen randomly. 

5. Exploration. The direction is computed randomly. The agent moves at its speed in this 

direction. The activation level of curiosity is divided by 1.5. 

6. Resting. Nothing happens. 

7. Eating. If the current number of grass (of meat) units is greater than 1, then this number is 

decreased by 1 and the preyʼs (predatorʼs) energy level is increased by energyGrass (energyMeat 

). Its activation level for hunger is divided by 4. Otherwise nothing happens. 

8. Breeding. The following algorithm is applied to the agent A: 

if A.energyLevel > 0.125 × maxEnergyPrey then 

for all A of the same type in the same cell 

if  A.energyLevel > 0.125 × maxEnergyPrey and D(A,A') < T and 

    A′has not acted at this time step yet and 

    Aʼs choice of action is also breeding 

then 

interbreeding(A,A') 

A.sexualNeeds ← 0 

A'.sexualNeeds ← 0 

If A' satisfies all the criteria, the loop is canceled 
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If none of the A' agents satisfies all the criteria, the breeding action of A fails.  

For every action requiring that the agent move, its speed is computed by the formula 

Speed = Ca × maxSpeedPrey  =>  for the preys 

Speed = Ca × maxSpeedPredator  => for the predators 

with Ca the current activation level of the motor concept associated with this action. 

The process of generating a new offspring (interbreeding function) consists of following steps. 

First, the value of birthEnergyPrey is transmitted with possible mutations from one randomly 

chosen parent to the offspring. Second, the edges’ values are transmitted with possible mutations, 

and the initial energy of the offspring is computed. To model the crossover mechanism, the edges 

are transmitted by block from one parent to the offspring. For each concept, its incident edges’ 

values are transmitted together from the same randomly chosen parent. Third, the maximum age 

of the offspring is computed. Finally, the energy level of the two parents is updated. 

Table  2‐3. The initial parameters of the EcoSim at the first time step of the simulation. There are 42 

parameters for each run of EcoSim. The value of these parameters has been obtained empirically and 

by biologists' expert opinion to preserve the equilibrium in the ecosystem. 

Parameter 
Initial 
Value 

Comments 

Width  1000 width of the world 
Height  1000 height of the world  
ProbaGrass  0.187 initial probability of grass per cell 
ProbaGrowGrass  0.0028 probability of diffusion of grass 
ValueGrass  250 energy value for a consumed grass 
ValuePrey  500 energy value for a consumed prey  
MaxGrass  8 maximum number of grass in a cell  
SpeedGrowGrass  0.5 speed of growing grass  
MaxMeat  8 maximum number of meat in a cell  
NbResources  2 number of food resources in the world 
ProbaMut  0.005 probability of mutation to a nonzero gene 
ProbaMutLow  0.001 probability of mutation to a zero gene  
MinArc  0.075 threshold for an arc to be counted as nonzero  
InitNbPrey  12000 initial number of prey  
InitNbPredator  2000 initial number of predator 
DistanceSpeciesPrey  1.5 threshold of genetic distance for prey species 
DistanceSpeciesPred  1.3 threshold of genetic distance for predator species  
AgeMaxPrey  46 maximum age for prey  
AgeMaxPred  42 maximum age for predator  
AgeReprodPrey  6 minimum reproduction age for prey 
AgeReprodPred  8 Minimum reproduction age for predator  
ClusterPrey  10 number of prey per  clusters at initialization 
ClusterPredator  20 number of predators per clusters at initialization   
RadiusCluster  5 radius in number of cell of each initial cluster 
EnergyPrey  650 maximum energy of prey 
EnergyPredator  1000 maximum energy of predator  
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SpeedPrey  6 maximum speed of prey  
SpeedPredator  11 maximum speed of predator 
VisionPrey  20 maximum vision of prey 
VisionPredator  25 maximum vision of predator 
StateBirthPrey  30 initial parental energy investment for prey 
StateBirthPred  40 initial parental energy investment for predator  
nbSensPrey  12 number of sensitive concepts in prey 
nbConceptsPrey  7 number of internal concepts in prey  
nbMotorPrey  7 number of motor concepts in prey  
nbSensPredator  12 number of sensitive concepts in predator 
nbConceptsPredator  7 number of internal concepts in predator 
nbMotorPredator  7 number of motor concepts in predator 
Restore  1 0-no restore, 1-restore 
MaxSave  500 0-no save, #-save every # states 
MinSave  0 0-no save, #-save every # states 
WorldSave  0 0-no save, 1-save world 

 

Table  2‐4. Initial FCM values for Prey (See Table  2‐5). Every prey individual has a FCM which represents 

its behavior. At first time step, all prey individuals have an initial FCM. During time and during each 

generation with operators like crossover and mutation, the FCM of individuals change. 

  FR  HG SP CU SD ST NU ES SF SC XP WT ET RP 

PC 4 0 0 0.1 0 -1 1 0 0 0 0 0 0 0 
PF -4 0 0 0 0 0.5 -0.5 0 0 0 0 0 0 0 
OC 0 0.5 0 -0.1 0.1 0.5 -0.5 0 0 0 0 0 0 0 
OF 0 0 -0.4 0.2 -0.2 -0.7 0.7 0 0 0 0 0 0 0 
FC 0 0 0.5 -0.1 0.1 0.5 -0.5 0 0 0 0 0 0 0 
FF 0 0 -0.4 0.2 -0.2 -0.5 0.5 0 0 0 0 0 0 0 
EL 0.4 4 -1.5 0 0 -2.2 2.2 0 0 0 0 0 0 0 
EH 0 -1 1.5 0.2 -0.2 1.5 -1.5 0 0 0 0 0 0 0 
OH 0 -0.2 0 -0.3 0.3 1.1 -1.1 0 0 0 0 0 2.6 0 
OL 0 0.2 0 1 -1 -1.1 1.1 0 0 0 0 0 -4 0 
PY 0 0 0 -0.4 0.4 0.5 -0.5 0 0 0 0 0 0 1.5 
PN 0 0 0.5 0.3 -0.3 -0.8 0.8 0 0 0 0 0 0 -4 
FR  0.5 0 0 0 0 0 0 1.5 -0.8 -1 0.3 -1 -1 -1 
HG 0 0.3 0 0 0 0 0 -0.8 2.1 -0.7 0.7 -0.5 4 -1.8 
SP 0 0 0.2 0 0 0 0 -0.2 0 1.5 0.5 -0.3 -0.4 3 
CU 0 0 0 0.1 0 0 0 -0.1 0.5 0.3 1.5 -0.2 -0.3 -0.2 
SD 0 0 0 0 0.1 0 0 0 -0.5 -0.3 -1.2 0.2 0.3 0.2 
ST 0 0 0 0 0 0 0 -0.1 -0.8 -0.2 -2 1.5 0.8 0.7 
NU 0 0 0 0 0 0 0 0.4 1 0.2 2 -1.2 -0.7 -0.7 
ES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
SF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
SC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
XP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
WT 0 0 0 0 0 0 0 0 0 0 0 0.2 0 0 
ET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
RP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table  2‐5. Prey/predator FCM abbreviation table. The abbreviation used to present concepts of FCM in 

EcoSim. These abbreviations have been used in other tables to show values of these concepts. 

NodeName Abbreviation NodeName Abbreviation 
Fear FR  PredClose PC 
Hunger HG PredFar PF 
SearchPartner SP FoodClose OC 
CuriosityStrong CU FoodFar OF 
Sedentary SD FriendClose FC 
Satisfaction ST FriendFar FF 
Nuisance NU EnergyLow EL 
Escape ES EnergyHigh EH 
SearchFood SF FoodLocalHigh OH 
Socialize SC FoodLocalLow OL 
Exploration XP PartnerLocalYes PY 
Wait WT PartnerLocalNo PN 
Eat ET PreyClose YC 
Reproduce RP PreyFar YF 
ChaseAway CA 
SearchPrey SY 

 

Table  2‐6. Parameters of prey defuzzification function (see Figure  2‐5). The function that has been used 

for fuzzifications uses three parameters which shape the fuzzification curve. 

NodeName Activation 
Fuzzy 

Parameter1 
Fuzzy 

Parameter2 
Fuzzy 

Parameter3 

PredClose 0 1 3.5 3.5 
PredFar 0 2 3.5 3.5 
FoodClose 0 1 6 6 
FoodFar 0 2 6 6 
FriendClose 0 1 5 5 
FriendFar 0 2 5 5 
EnergyLow 0 1 4 4 
EnergyHigh 0 2 4 4 
FoodLocalHigh 0 2 4 4 
FoodLocalLow 0 1 4 4 
PartnerLocalYes 0 2 1000 20 
PartnerLocalLow 0 1 1000 20 
Fear 0 0 1 3.5 
Hunger 0 0 1 3 
SearchPartner 0 0 1 3 
Curiosity 0 0 1 2.5 
Sedentary 0 0 1 2.5 
Satisfaction 0 0 1 3 
Nuisance 0 0 1 3 
Escape 0 0 1 3.5 
SearchFood 0 0 2 3 
Socialize 0 0 4 3 
Exploration 0 0 6 2.5 
Wait 0 0 7 3 
Eat 0 0 8 3.5 
Reproduce 0 0 10 3.5 
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Figure  2‐5. The three parameters that specify the shape of the curve. The first parameter specifies the 

center of curve in the horizontal axis, the second parameter specifies the lower band of curve in the 

vertical axis and the third parameter specifies the width of curve. 

 

Table  2‐7. Initial FCM for Predator (See Table  2‐5). Every predator individual has a FCM which represent 

its behavior. At first time step, all predator individuals have an initial FCM. During time and during each 

generation with operators like crossover and mutation, the FCM of individuals change 

  CA HG SP CU SD ST NU SY SF SC XP WT ET RP 

YC 0.7 0 0 -0.1 0 0.5 -0.5 0 0 0 0 0 0 0 
YF -0.5 0.7 0.1 0.4 -0.4 -0.5 0.5 0 0 0 0 0 0 0 
OC -0.5 0.7 0 -0.1 0.1 0.5 -0.5 0 0 0 0 0 0 0 
OF 0.8 -0.2 0.1 0.2 -0.2 -0.6 0.6 0 0 0 0 0 0 0 
FC 0 0 0.7 0 0 0.4 -0.4 0 0 0 0 0 0 0 
FF 0 0 -0.5 0.3 -0.3 -0.4 0.4 0 0 0 0 0 0 0 
EL 3.5 5 -1.2 0 0.2 -1.5 1.5 0 0 0 0 0 0 0 
EH -2 -3 1.4 0.3 -0.3 1 -1 0 0 0 0 0 0 0 
OH -1.5 0.3 -0.2 -0.3 0.3 1 -1 0 0 0 0 0 4 0 
OL 1.7 0 0.2 1 -1 -1 1 0 0 0 0 0 -5 0 
PY -0.3 0 0 -0.4 0.4 0.8 -0.8 0 0 0 0 0 0 2 
PN 0.3 0 0.5 0.3 -0.3 -0.8 0.8 0 0 0 0 0 0 -5 
CA 0.2 0 0 0 0 0 0 1.5 -0.2 -0.4 0.3 -0.4 0 -0.4 
HG 0 0.3 0 0 0 0 0 4 2.5 -1.2 0.3 -0.4 3.5 -0.8 
SP 0 0 0.2 0 0 0 0 -0.8 -0.8 1.5 0.3 -0.5 -0.6 3 
CU 0 0 0 0.1 0 0 0 0.3 0.3 0.3 1.5 -0.4 -0.3 -0.2 
SD 0 0 0 0 0.1 0 0 -0.3 -0.3 -0.3 -1.5 0.4 0.3 0.2 
ST 0 0 0 0 0 0 0 -0.8 -0.8 -0.2 -1.8 1 0.8 0.8 
NU 0 0 0 0 0 0 0 1 0.8 0.2 2 -1 -0.6 -0.8 
SY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
SF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
SC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
XP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
WT 0 0 0 0 0 0 0 0 0 0 0 0.2 0 0 
ET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
RP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 



35 
 

Table  2‐8. Parameters of predator defuzzification function (see Figure  2‐5). The function that has been 

used for fuzzifications uses three parameters which shape the fuzzification curve. 

NodeName Activation 
Fuzzy 

Parameter1 
Fuzzy 

Parameter2 
Fuzzy 

Parameter3 
PreyClose 0 1 4 4 
PreyFar 0 2 4 4 
FoodClose 0 1 5 5 
FoodFar 0 2 5 5 
FriendClose 0 1 5 5 
FriendFar 0 2 5 5 
EnergyLow 0 1 4.5 4.5 
EnergyHigh 0 2 4.5 4.5 
FoodLocalHigh 0 2 1000 20 
FoodLocalLow 0 1 1000 20 
PartnerLocalYes 0 2 1000 20 
PartnerLocalNo 0 1 1000 20 
ChaseAway 0 0 1 3 
Hunger 0 0 1 3.5 
SearchPartner 0 0 1 3 
Curiosity 0 0 1 2.5 
Sedementary 0 0 1 2.5 
Satisfaction 0 0 1 3 
Nuisance 0 0 1 3 
SearchPrey 0 0 1 3 
SearchFood 0 0 3 3.5 
Socialize 0 0 5 3 
Exploration 0 0 7 2.5 
Wait 0 0 8 3 
Eat 0 0 9 3.5 
Reproduce 0 0 11 3.5 
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Chapter	3	

3. Rule	Extraction	

3.1. Introduction	
Neural networks (NNs), support vector machines (SVMs), and ensemble methods have shown 

very good performance on the various data sets in different fields. However, they lack 

explanation ability as they construct black-box models that cannot explain their prediction results. 

Therefore, inferring the logic behind their constructed models is not straightforward. This is one 

of the important features of the predictive models in several fields of studies such as medical 

diagnosis, credit scoring, and computational biology [106], [107], [108]. Rule extraction (RE) 

methods are a solution to overcome to this problem. When knowledge encoded in a predictive 

model is more important than its prediction outputs, instead of using an opaque or black-box 

model, RE, as a white box model, is more beneficial. For example, financial institutions are 

required to explain specific reasons in case of credit application rejection [107]. In the medical 

domain, patients expect human-understandable explanations instead of using black box diagnosis 

systems for physician acceptance. It can also reduce the likelihood of application of regulatory 

barriers that limit the usage of black-box models for the medical-decision support systems. For 

example, in United States, there are some restrictions on usage of black-box models that can 

impact patient treatment [109]. Ecologists are also interested in interpreting fundamental rules 

behind ecological phenomena when they apply predictive models as a data analysis tool [27], 

[28], [29].  Also, there are a lot of applications of RE in bioinformatics such as in [110]. In 

general, automatic knowledge acquisition, induction of scientific theories, and studying the 

general pattern and behavior of a predictive model is the main aim of rule extraction [111]. RE is 

a method of presenting a comprehensive description of a predictive model and at the same time 

approximates the predictive model as accurately as possible. More formally, given an opaque 

model to predict hypothesis h: f(x) = y and the data set (x,y) on which it is trained where x is a set 

of features and y is the corresponding output vector, RE produces a description of the h, i.e. h' 

such that h' is understandable (or comprehensible) yet h ≈ h', which means that h' approximates h 

as closely as possible [112].    

When we talk about explaining the underlying predictive model, a compact and comprehensive 

representation model i.e., small number of rules and, more preferably, small number of features is 

desirable. There are different tradeoffs when considering a model for RE. First tradeoff is 

between accuracy and comprehensibility so that one should be sacrificed to obtain the other. In 
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other words, a higher number of rules can give better accuracy while it diminishes 

comprehensibility. For example, decision tree generates a comprehensive model especially by 

increasing the pruning rate. However, the accuracy can be weakened especially when it is 

compared with other methods such as SVM and ensemble methods such as Random Forest (RF) 

[25]. SVM is an opaque model with high accuracy. RF also generates a huge number of rules 

depending on the number of trees involved to construct the forest, while the accuracy is typically 

higher in compare to one tree. The second tradeoff is between number of rules and number of 

uncovered samples. This may happens for the methods that stop learning if a significant part of 

training examples has been covered [113]. Higher number of rules reduces the uncovered samples 

while it damages the comprehensibility.  

3.2. Categorization	of	RE	methods	 
There are different rule extraction techniques that can be categorized based on several criteria 

such as scope of use, dependency type on the underlying model, and format of the extracted rules 

[111], [112]. Some of the RE algorithms are used for classification [114], [115], [109] or 

regression [116], [117]. The majority are devoted for one of those while there are few methods 

that support both such as G-REX [118]. 

One way to obtain a transparent model is to induce rules directly from the training set. The 

sequential covering algorithm falls in this category and is a base method for many other 

algorithms. The general approach works in this way: First one rule is extracted and the samples 

covered by this rule are removed. Afterward, this process is repeated on the remained samples 

and it continues until a condition is met. It is obvious that extracting one rule is the key element 

of the sequential covering algorithm and different methods uses various techniques for this 

purpose. The stopping condition can be covering all the samples or covering significant numbers 

of them in a dataset. For example, CN2 [119] induces an ordered list of rules, which uses entropy 

as its evaluation method and consists of running a beam search to find a good rule, removing the 

samples covered by that rule and then a control algorithm for repeating the search.  Ripper [120] 

uses a standard separate-and-conquer algorithm and builds a rule set greedily by adding rules to 

an initially empty rule set repeatedly until all positive samples are covered. After finding a rule, 

all samples covered by that rule are removed; the rule is grown and then pruned to minimize error 

of the entire rule set. A combination of cross-validation and minimum-description length 

techniques is used to prevent over fitting. Minerva is also another example of this category [113]. 
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Another option to obtain a transparent model is to take advantage of the good performance of the 

existing opaque models such as SVMs, RF, or neural networks and generate rules from them. 

There are two different rule extraction methods based on an opaque model: decompositional and 

pedagogical [112]. Decompositional methods extract rules at the level of individual units of the 

prediction model such as neurons in neural networks, and therefore rely on the model's 

architecture. In contrast, in pedagogical approaches, the architecture of the predictive model does 

not matter and it is only used to produce predictions. In other words, the predictive model is used 

as an oracle. Obviously for this category, there should be one intermediate model such as a 

decision tree or a heuristic method, which uses those predictions in order to extract the rules. RE 

algorithms can be either independent or dependent of the underlying model. The independent REs 

include RE methods which are not designed for a specific opaque model such as SVM, neural 

network, or ensemble methods and can be applied to different underlying model. However, they 

need prediction results generated by their opaque model in order to infer the rules usually by 

solving an optimization problem. For instance, Jiang et al [110] used simulated annealing to find 

the optimal box in patient rule induction method presented in [121] to search interpretable rules 

for disease mutations. Johansson et al. [122] used genetic programming to maximize fidelity on 

the class probability estimation level. In fact, they tried to minimize the difference in class 

probability estimation between the extracted rules and the opaque model using generalized Brier 

score function [123]. They extracted rules from random forests and bagged NNs, two opaque 

ensemble models. On the other hand, dependent RE algorithms use the inner characteristics and 

architecture of the black box model to generate the rules for a specific opaque model such as 

methods relying on neural network [124], [125] and support vector machine [126], [127].  

There are also methods based on decision trees that are not RE method per se; however rules are 

generated as part of their learning process. For example, C4.5 [128] is a widely used algorithm in 

prediction. It is a greedy technique such that, at each step, the most discriminating feature is 

determined, and a node is split based on this feature. Each node specifies a decision on a single 

feature, which branches to its possible outcomes of that decision. Each leaf specifies a rule, which 

can classify a data sample if it matches to all the tests of the internal nodes from the root toward 

the leaf. C4.5 is not a RE method per se, but it can be used for this matter by extracting the rules 

correspond to all leaves. PART algorithm [129] is another example which is a combination of 

C4.5 and RIPPER, a partial decision tree is generated repeatedly. Each time the best leaf (i.e., 

with largest coverage) is converted to a rule. Then all the samples covered by the rule are 
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removed and this process is repeated until there are no samples left to cover. The collection of all 

the rules extracted is the final rule set. 

3.3. Motivations	for	Rule	extraction	from	Decision	Tree	Ensembles	
(DTEs) 
Rule extraction from NNs and SVMs are widespread in the literature due to their high accuracy. 

One of the major drawbacks of rule extraction methods from NNs and SVMs is the rule format, 

which is usually not comprehensible to humans. This problem has been the main obstacles for 

their practical application [109], [130]. 

However, DTEs are one of the most important prediction methods as they demonstrate high 

prediction accuracy such that for some data sets they overcome other prediction methods such as 

NNs and SVMs [131], [132]. They are very convenient and fast to be trained and easy to 

implement. Moreover, they can be easily implemented in parallel for big data [133]. Another 

advantage is that estimating the out-of-bag error often eliminates the need for cross-validation. 

They are robust to noise and can handle imbalanced data sets [25], [134]. More importantly, they 

generate a multitude of propositional if-then rules, which is the most widespread rule type in RE 

domain. Therefore, they have a very high potential to provide clear explanations and 

interpretations of their underlying model. They can improve the accuracy and the performance 

due to use of an ensemble of decision trees [135]. The rules are generated as part of the learning 

process and there is no need to extract the rules as in the other methods such as neural network or 

SVM based RE. Therefore, they deserve to be considered as one of the main opaque model for 

rule extraction.  

There are different methods to construct DTEs. Here, we briefly explain the main methods. 

Bagging [136] is an ensemble method that creates different classifiers by training each of them on 

a random redistribution of the training set. Each classifier’s training set is generated by randomly 

drawing examples with replacement from the original training set. As a result, many of the 

original examples may be replicated in the resulting training set. Each classifier in the ensemble is 

generated with a different random sampling of the training set. Breiman [136] showed that 

Bagging is effective on “unstable” classifier such as decision tree and neural networks where 

small changes in the training set result in large changes in predictions. Boosting [137], [138] 

methods focus on producing a series of classifiers. The training set used for each member of the 

series is selected based on the performance of the former classifier(s) in the series. In Boosting, 

examples which are incorrectly predicted by previous classifiers in the series are chosen with 
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higher probability than the correctly predicted examples. Therefore, Boosting attempts to 

construct new classifiers in favor of the examples that the current ensemble’s performance is poor 

for them. RF [25] is one type of bagging method, which adds an additional layer of randomness 

to bagging. A different tree learning algorithm is used such that each node is split using the best 

feature among a subset of features (m) randomly chosen at that node. In decision tree bagging, m 

is equal to the total number of features (n), but in RF, m is usually equal to 0.5 n , n , or 2 n . 

Recently, a research group in Microsoft proposed decision jungle [139]. They have proposed an 

ensemble of rooted decision directed acyclic graphs (DAGs) to build a compact and powerful 

classifier. A DAG allows more than one path from the root to each leaf, unlike the usual decision 

trees. During training, node splitting and node merging are driven by minimizing the weighted 

sum of entropies at the leaves. The experimental results on different datasets demonstrated that, 

compared to conventional decision forests and their variants, the proposed method requires 

dramatically less memory in addition to improving the generalization capacity of the model [139]. 

For all DTEs, there is an aggregation mechanism to provide the final result of the model. Most 

popular techniques to merge the results of different DTs are simple voting or weighted voting in 

classification problems and for regression problems the average is used instead. 

Bagging DTE has better performance than one DT most of the time, but it has often lower 

performance compared to boosting. Boosting is also sometimes less accurate than one DT and it 

has overfitting problems for noisy data that degrade the performance. RFs are more robust than 

boosting to noise and overfitting. It is faster than bagging and boosting and its performance is as 

good as boosting and sometimes better. As a results, RF has been widely used in the literature 

recently [140]. 

3.4. Rule	extraction	from	ensemble	of	decision	trees 
There are two broad categories in the literature that focused on constructing comprehensible 

ensembles of decision trees. The first group approach is to reduce the number of trees in the DTE 

while the second group focuses on the rules generated during DTE construction. We call the 

former tree-based and the latter rule-based methods. In addition to these two broad categories, 

there are also other methods to extract rules from DTEs. Similar to rule extraction from SVMs 

and NNs, DTEs also can be used as an oracle for rule extraction purposes. In this case, DTEs are 

used as a black box to generate the target values for the input data. This approach can remove 

noise and build cleaner data set. Then, the obtained data set is used by the other method such as 

J48 or Ripper algorithm to generate rules [141]. The last approach is to build a new DT that 
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mimic the DTE model. A pruning stage is an optional step that can improve the quality of 

extracted rules in terms of performance and comprehensibility. 

3.4.1. DTE	Rule	Extraction	Formalization		

Let ( , ), 1, 2,...,i iL x y i N  be a collection of N labelled instances such that ix   a 

vector of features and 1 2( , ,...., )i i i iMx x x x , where M is number of features and iy  , 

{1, 2, ..., }C   a discrete class label. Consider a learning algorithm that constructs a decision 

tree, :h    , from a given training set. The learning algorithm creates a tree by recursively 

splitting data into subsets using one of the features which maximizes Gini impurity or information 

gain, two commonly used data splitting criteria. In a DTE, a collection of classifiers (H) is built 

by bootstrap sampling. The final classification is obtained by combining the weighted outputs of 

all DTs. Therefore, the ensemble classifier is defined as:  

: . ( ) | 0, 1h h h
h H h

f x w h x w w


        (3 1)  

An instance is classified according to: 

1

arg max( ( ( ) )) :
T

t t
t

w I h x y y
 

      (3 2)  

where T  is the number of DTs and ( ) 1; ( ) 0I true I false  . 

With a different perspective, DTE can be seen as a rule-based ensemble and can be defined as 

follow: 

: . ( ) | 0, 1r r r
r R r

f x w r x w w


       (3 3)  

Where { | 1, 2,... }t rR r t N   ; | ( ) |r
h H

N Nodes h


    

Nodes is a function that returns the nodes of a given DT. In a special case, Nodes function only 

return the DT leaves. 

1

( ) ( )
n

t i ij j
j

r x I x s


         (3 4)  

n is the number of features in rt. jS is a subset of all possible values for feature j and (.)I  is an 

indicator of the truth of its argument. ( ) {0,1}t ir x  , when all the conditions are matched for xi, 

it is one, otherwise it is zero.  
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Let 
N r

P


 be the matrix (N: # of input instances; r R  ) indicating whether an input instance falls 

into a given leaf or, in the other word, 
N r

P


 specifies if the input instance is matched with the 

corresponding rule of a given leaf. 

1 ( , ) 1

0

i j

ij

match x r
P

otherwise







  

Therefore, rule extraction of DTE can be considered as an optimization problem to find r R

such that: 2arg min || ||
w

Y Pw  ,  0,1
r

w   , which is an NP-hard problem [142], [143]. 

3.4.2. Tree‐based	methods		
One way to have a comprehensible DTE is to reduce the number of decision trees, although these 

methods are mostly ensemble pruning, not RE methods per se. The general idea is to increase 

DTs diversity in the DTE such that the DTs in the ensemble occupy different points in the 

hypothesis space and as a result increase the generalization ability of the obtained sub-model. If 

every DT behaves similarly to the other DTs in DTE, little gain is achieved by combining their 

predictions. Therefore, various diversity measures have been investigated for DTE construction 

[144].  

One example of this approach, studied by Latinne et al. [145], attempted to reduce the number of 

trees in RF using the McNemar test [146] of significance on the prediction outputs of the trees. 

McNemar is a non-parametric test which is preferred to the parametric tests, such as t-test, as 

there is no need to make any assumption. In addition, it has a low type I error, which is the 

probability of detecting a difference incorrectly when there is no difference.  

The procedure is as follows: Cm and Cn are two subsets of DTs selected from ensemble models, 

where n>m, such that either selected DTs are completely independent or some of them are 

common between two sets. Comparing these two sets with McNemar and obtaining d(m,n) leads 

to the following scenarios (PF is the performance function): 

if d(m,n) = 1   then PF(Cn ) > PF(Cm ); Continue the procedure (selecting DTs from ensemble) 

with a higher number of classifiers than n. 

d(m,n) = 0   => PF(Cm ) ≈ PF(Cn ); keep minimal # of DTs = m and stop. 

They used (m,n= 1..200) and by using a grid search, they find the minimum m such that PF(Cm ) 

≈ PF(Cn ). Their results show that with lower number of DTs, it is possible to reach to the DTEs 

performance level.  
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Another tree-based methods was conducted by Zhang et al. [147] to search for the smallest RF. 

Similarly, they seek out a sub-forest that can achieve the accuracy of a large RF. They used three 

measures, i.e., one accuracy measure (they called it “by prediction”) and two similarity measures 

between trees in RF (“by similarity” and “by restricted similarity”) in order to determine the 

importance of trees in terms of their predictive power. In the “by prediction” method a DT is 

removed if its removal has the minimal impact on the overall performance of DTE. They used a 

backward removal procedure such that the DT which minimizes PF (DTE) – PF (DTE-DT) is 

subject to removal, where PF is performance function and DTE-DT is DTE with removed DT. 

In the “by similarity” method, the idea is to remove a DT which is similar to other trees in the 

forest. They defined similarity as the similarity between DTs predicted outcomes. For each DT 

subject to removal, the average similarity of the DT to other DTs in the ensemble is computed 

and a DT with maximum average similarity is removed. In the “by restricted similarity”, an initial 

weight (equal to 1) is assigned to all DTs in the DTE. Afterward, pair-wise similarity is computed 

between every pair of DTs. The pair, DT1 and DT2, the most similar is selected and then the 

average similarity of both DTs in this pair is calculated as discussed earlier. The one of these two 

DTs with higher average similarity is subject to removal. Finally, the other DTs weights are 

updated proportional to the similarity to the removed DT. The DT which is the most similar to the 

removed DT receives the higher weight update. Unfortunately, they did not mention what the 

weights are used for and this part has not been described well which makes it hard to evaluate the 

method completely. The experimental results demonstrate that such a sub-forest with 

performance as good as a large forest usually exists. The “By prediction” method was better as it 

reduced the size of the DTE to a manageable level while maintaining the performance. They 

argued that by reducing the size of a RF, it is no longer a black box. However, it is still far from a 

comprehensible model to be easy to understand. 

Similarly, Simon et al. [148] applied three methods to construct a smaller DTE. They applied 

sequential forward selection (SFS), sequential backward selection (SBS), and sequential random 

selection (SRS). At each iteration of the SFS method, each remaining DT is added to the current 

subset and the one that leads to the highest performance in DTE is retained. Likewise, in the SBS 

method, each DT of the current subset is removed, and the one for which the remaining ensemble 

exhibits the best accuracy is discarded. Finally, in SRS method, DTs are removed randomly 

without considering any criteria. Applying the proposed methods, they observed that a DTE with 

a smaller number of DTs can be found. However, when they applied the three above mentioned 
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approaches, they maximized the performance of the obtained sub-DTE on the test set, which 

implies some bias in the results.  

Gashler et al. [149] increased the diversity in DTE by combining different DT algorithms. They 

used a combination of entropy-reducing DTs and mean margins DTs. The first method builds axis 

aligned decision boundaries while the second one constructs oblique decision boundaries. Their 

results showed that a DTE combining 100 of their proposed models can reach an accuracy level 

equivalent to that of a bagging with 1000 DTs. 

Martı´nez-Munoz et al [143] proposed to avoid unspecified order aggregation of classifiers (using 

voting and averaging for classification and regression respectively) in the ensemble and instead 

they used six different metrics to specify the order in which CART trees [150] are aggregated in a 

bagging ensemble. The idea is that the classifiers that are expected to perform better are 

aggregated first. Appropriate ordering of the aggregation obtains the minimum generalization 

error at intermediate numbers of classifiers (about 20 classifiers) and it can outperform the whole 

ensemble. Oshiro et al., [140] also confirmed the findings of the above mentioned studies. They 

used different sizes for RF over a large number of data sets and observed that a large number of 

DT in RF sometimes only increases the computational cost and has no significant gain. 

Yang et al. [151] computed four different metrics based on the margin distribution of the RF 

model to evaluate the generalization ability of sub-DTEs and the importance of the DTs in the 

ensemble. DTs are ranked based on the margin metrics and then the least important trees are 

removed one by one. The margin is defined to be the difference between the numbers of correct 

votes and error votes in the ensemble. They believe that similarity based pruning cannot 

guarantee a good generalization ability of the ensemble classifier. This fact was also observed by 

Zhang et al. [147].  

Another approach for ensemble pruning is orientation ordering [142]. Orientation ordering is a 

signature vector of a classifier ht; i.e., an N-dimensional vector (N is the number of samples in the 

training set) with elements equal to +1 if ht(xi) = yi and -1 if ht(xi) <> yi. The average signature 

vector of all classifiers in an ensemble is called the ensemble signature vector or reference vector. 

Orientation ordering ranks the classifiers by increasing value of the angle between their signature 

vector and the reference vector. This ordering gives preference to classifiers that correctly classify 

those examples that are incorrectly classified by the full ensemble. They reduced the 

generalization error of a bagging ensemble consisting 200 DTs with only 30 to 60 DTs for 

different data sets. 
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All these methods are ensemble pruning and their aim is to build a smaller ensemble with 

performance as good as the ensemble and usually they result in different number of trees for 

various data sets. However, when a method prunes a DTE and finally keeps 20 DTs for example, 

it is still a large number of rules. Therefore, they are not really RE methods from DTE. However, 

these methods can be applied as the first phase of RE in DTEs. It means that first the size of the 

DTE can be reduced to a point that it keeps the performance of the initial DTE and then a rule 

extraction method can be applied for rule extraction. 

3.4.3. Rule‐based	methods	
Other methods with different approaches were proposed to select an optimal set of rules 

generated by RF.  

Rule ensembles (RuleFit), a predictive learning algorithm, was proposed by Friedman and 

Popescu [152]. They built an ensemble model where the base learners are prediction rules in form 

of prepositional rules that are obtained from CART trees [150]. A large number of CART trees 

are grown on randomly drawn subsets of the data. When a tree is grown, a rule is obtained from 

every node of the tree. The main idea is to build a linear function F(X), consisting of rules and 

features such that it approximates the whole DTE accurately. The rules are functions of the 

features, taking a value of 1 when the rule applies, and a value of 0 otherwise (see relation 3-4). 

The trees are grown until a pre-specified number of rules have been generated in the initial 

ensemble. In addition to the rules, all the features are also considered, to allow for estimation of 

linear functions. The final model is formed by applying the regularized regression of the response 

variable (outcome variable) on all prediction rules and features. Whereas with ordinary least 

squares (OLS) regression the coefficients of prediction functions are estimated by minimizing the 

residual sum of squares, with penalized regression, an additional penalty is placed on the 

coefficient. The RuleFit algorithm uses the lasso penalty [153] by default. More formally, they 

built an ensemble predictive model F(X) as follow: 

0

^ ^ ^

0
1 1

^

0 0 0
{ } 1 1 1 1 1

( ) ( ) ( )

{ } arg min , ( ) ( ) | | | |
K

k

K m

k jk j j
k j

N K m K m
K

i k k i j j ij k j
a i k j k j

F X a a r X b l x

a L y a a r x b l x a b

 

    

  

   
          

   

 

    
      (3-5)  

X=(x1,x2,...,xN) is a vector consisting of samples, 1{ ( )}K
kr X  is the set of K rules extracted from 

the trees in the ensemble.
^

( , )L y y represents loss or cost function for predicting 
^
y  while the 
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correct value is y. Variable m is the number of features that are used to build the regression 

model, N is the number of samples. The first term in Equation 3-5 computes the prediction loss 

on the training samples and the second term, which is a regularization term or "lasso" penalty, 

penalizes large values of the coefficients  1

K
ka  and  

1

m

jb . 0   is the regularization term. 

( )j ijl x  is a so-called "Winsorized" version of the j-th feature, which is used for robustness 

against the outliers and is defined as below: 

( ) min( , max( , ))j j j j jl x x                  (3-6) 

 Where j
  and j

  are the   and 1   quintiles ( 0.025   ) of the data distribution   
1

N

ij i
x


for 

each jx .  

The good performance of the RuleFit is due to linear combination of the rules and features. 

Although the rules are simple to interpret, combining the features weakens the comprehensibility.  

Node harvest (NH) [154] is another rule extraction method. An initial set of rules is generated 

randomly (default is 1000). Rules can be selected from a fitted tree ensemble such as RF. The 

rules that satisfy the maximal interaction order (number of features in the rule, with default value 

equals to 3) and minimal rule size (number of samples that match to the rule with default value 

equals to 5) constraints are added to the initial rule set, provided that they are not already 

selected. NH's aim is to find suitable weights on rules by minimizing the following empirical loss 

function under some constraints, which is a quadratic program with linear inequality constraints 

(see [154] for detailed solution). 
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Where .  means a sample is matched by a rule, X shows the samples and Y is the target value or 

response. N is the number of samples, q is the number of rules initially selected, M is N×q matrix, 

and g  is the mean of all samples that are matched with rule Qg. 
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If a new sample is covered by a unique rule, its prediction would be the mean response of all 

samples within this rule. If a new sample is covered by several rules, its prediction is the 

weighted average of the mean responses of all these rules. The weight of each selected rule is 

computed using quadratic programming with linear inequality constraints. Only few rules will 

have non-zero weight. The main important feature of NH is that the generated rules are 

particularly short. The reason is that NH considers not only the leaves in RF but also intermediate 

nodes in the trees as candidate rules for the initial rule set provided they conform with the pre-

defined constraints. The prediction accuracy is comparable with RF, however its performance is 

better for smaller signal-to-noise ratio. NH can be applied for regression and classification 

problems with multivariant features and it can also handle missing values.  

Liu et al. [155], [156] used RF as an ensemble of rules and proposed a joint rule extraction and 

feature selection method (CRF). They viewed RF as a collection of decision rules. They used a 

binary encoding mapping method such that for each sample xi the corresponding encoded vector 

is X=[X1, ..., Xq]
T ,where q is the number of rules in the RF. The value for a given Xj is equal to 1 

if xi is matched with the j-th rule in RF, otherwise it is 0. Therefore, matrix X shows the active 

and inactive rules for every sample in the training set. Then X is considered as the training set and 

the aim is to find weight vectors such that  
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where K is the number of classes in the data set. Then rule extraction is formulated using 1-norm 

regularization: 
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The first term of the equation 3-11 controls the number of rules in the final rule set and the 

second term specifies the error term, which is the number of misclassified samples. Therefore, the 

tradeoff between the final number of rules and error is determined by  . This parameter is 
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selected by cross-validation on the training set. They employed linear programming to solve the 

above optimization problem and reached to 96% accuracy of RF by selecting only 1% of the rules 

generated by RF. 

3.4.4. Other	methods	
There are also some other methods to increase comprehensibility of an ensemble or RF by 

compacting them into one decision tree. For example, a single decision tree was used to 

approximate bagging of decision trees. In this method, class distributions were estimated from the 

ensemble in order to determine the tests to be used in the new tree. They argued that a decision 

tree is able to represent any function as is the ensemble. Instead of computing the information 

gain from the original data set to determine the best test for each node in the DT, they used an 

ensemble to approximate it. Therefore, class distribution predicted by ensemble was used for that 

purpose. At the end, if all training examples end up in a node and are classified identical to the 

ensemble, no further splitting will be performed and the node will become a leaf. The 

experimental results showed that the proposed method can approximate an ensemble of 25 DT 

with one tree with size 2.5 times larger than the tree generated by J48 [157]. They assumed the 

tree obtained from J48 is comprehensible; however, the size of the tree in J48 can be very large 

depending on the pruning rate, which is not reported in that study. Although the proposed method 

seems interesting, we could not find any comparison of the proposed method with the other 

similar methods. In addition, the implemented tool is not available and for more evaluation it 

needs to be re-implemented. 

A similar method was employed to approximate a RF with just one decision tree [141]. The aim 

was to generate a weaker but transparent model using combinations of regular training data and 

test data initially labeled by the RF with 100 trees, which is called oracle coaching. They have 

two different data sets: one is a training data set, which is the original data set (E) and the second 

one is the oracle data (X); which is the test set with corresponding predictions from the RF as 

target values. To obtain the oracle data set, they train the RF with (E).  Afterward, they used J48 

to extract rules from different combination of the data sets i.e., the original data set (E), oracle 

data (X), and training data and oracle data (IX). 10x10-fold cross-validation was applied for 

purpose of evaluation. They obtained an equal accuracy level from both the RF and extracted 

rules using IX data set that shows the oracle coaching method effectively improved the accuracy. 

The obtained AUC with IX is 6% less than that of RF in average and the test fidelity is also about 

97%, which shows the percentage of the test set that are predicted in both identically. The result 

for X was worst than IX in terms of accuracy, AUC, and fidelity. However, as IX is using artifact 
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test set built by RF the results are not significant, although they claimed the approximation of 

random forest using only one decision tree with a good precision, on the specific test data. They 

also did not provide evaluation of the size of the tree generated by J48 which does not allow 

evaluating their method in term of comprehensibility. 
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Chapter	4	

4. Speciation	Prediction	

4.1. Introduction	
A species is a group of individuals that are capable to exchange genes within themselves, but are 

reproductively isolated from other such groups. Consequently, there is no direct gene flow 

between two species [158].  Speciation is the division of one single species into two or more 

genetically distinct ones. It extends through time and leads to a hierarchal tree of historical 

relationship between species. It consists of two steps [159]. First, a new population should be 

established. This new population can exist in the same habitat or can be completely separated 

from the main population, depending on the type of speciation mechanism. For example, in 

sympatric speciation, a new population emerges from a single local population while in allopatric 

speciation a physical barrier separates a sub-population from the initial population. Second, based 

on different factors such as genetic divergence, different habitats, and physical barrier a 

reproductive isolation should occur, that reduces or prevents gene flow between organisms of 

different species. Therefore, the geographical and spatial distribution of individuals in one species 

is a leading phenomenon for speciation [159], [160], [161]. For example, in [162], it has been 

shown that there is a linear relationship between genetic and geographic distance. It means that an 

increase in physical distance between individuals leads to increasing their genetic distance. If the 

genetic distance between individuals of the same population is too high, reproductive isolation 

will occur and leads to speciation. Consequently, increasing the physical distance between 

individuals increases the probability of speciation. 

However, considering spatial distribution metrics alone is not enough to study speciation. 

Because it is a continuous, ongoing process, the current spatial distribution of a species is not 

necessarily a reliable index of the species' historical distribution during its life time. Losos et al. 

[163] mentioned three pieces of evidence showing that the present spatial distribution of a species 

is greatly different from the one at its creation time. Therefore, observing species during its whole 

life time is also important to understand and eventually predict speciation.  

Predicting speciation and discovering important factors involved, would bring new insights in 

evolutionary and conservation biology. However, observing and studying species in nature to 

extract species information is a difficult and time consuming process. In addition, speciation 

needs a long time to appear and most of the time is not possible to observe it in nature. 
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Individual-based modeling is a possible theoretical approach to overcome these limitations. The 

interest of this approach is that it allows complex interactions between multiple agents to shape 

the whole behavior of the system making it a powerful tool to study how individuals’ actions 

influence the global ecosystem. Therefore, we applied machine learning techniques on the data 

generated by EcoSim to evaluate if selected features can predict splitting of species. If we can 

predict speciation, it means that they have impact on species splitting. 

In the first experiment, we wanted to investigate how spatial and spatiotemporal patterns 

influence speciation. However, speciation can be affected by several factors. Based on Darwinian 

theory, natural selection is the main reason for speciation and emerging genetics studies 

strengthened this theory by explaining variation in a population via genetic operations [14]. Pre- 

and post-zygotic barriers, which lead to reproductive isolation, are also very important in 

speciation. Geographically isolated populations tend to form new species as well [15], [16]. 

Moreover, sexual selection plays an important role in speciation [17]. In the second experiment, 

we used not only spatial distribution information but also demographic, genetic, and 

environmental features to predict speciation.  

4.2. Speciation	Prediction	using	Spatial	and	Spatiotemporal	
Features		

4.2.1. Preparing	Data	sets	
EcoSim generates huge amount of information for all the objects in the simulation, such as world 

(the landscape), species, individuals, and food which is stored separately. However, for this study, 

we only extract spatial distribution and spatiotemporal information for every species. 

4.2.1.1. Spatial Distribution Information  

In EcoSim, we have access to all the recorded information for each individual. Therefore, it is 

possible to specify the location of each individual at any time step in a 3-dimensional vector with 

two spatial and one temporal dimension. The world is a torus, which can be easily implemented 

by a rectangular array by allowing individuals to pass across one boundary and enter the opposite 

boundary. Based on the circular condition of the world applying traditional statistics is not 

possible, thus we used circular statistics for computing the species spatial center [164]. Therefore, 

we calculated spatial standard deviation, and the sum and the average Euclidian distance of all the 

individuals to the species center. 
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4.2.1.2. Spatiotemporal Metrics  

As mentioned before, considering spatial distribution metrics is not enough to study speciation, 

because it is a continuous, ongoing process and current spatial distribution information of species 

is just a snapshot of its lifetime. Therefore we considered several spatiotemporal metrics 

described in [165] as well. 

These metrics are used to characterize the complex spatiotemporal dynamics of ecological 

mosaics or categorical maps. This characterization is based on analysis of space-time cubes of 

data with two spatial dimensions x, y and time dimension t, which we call the 3D world. This 

cube includes successive spatial information of the environment sampled at uniform time 

intervals. Each spatial image in 3D world is a grid of cells. By adding temporal dimension, each 

spatial pixel becomes a 3-dimensional voxel having two spatial and a temporal dimension. 

Persistent entities, like prey in our simulation, occupied 3-dimensional forms consisting of several 

voxels that are adjacent in space-time, which are called a blob. In a 3D world, there might be 

different kinds of blob types. For example, in EcoSim, each blob type corresponds to one unique 

species. Moreover, each voxel in the 3D world may belong to different blob types because each 

cell in EcoSim may contain multiple individuals; therefore, it is likely that a voxel contains 

individuals from different species.  

 

 

 

 

 

 

  

 

In addition, each blob type is usually composed of multiple separated blobs in 3D world. For 

example, one species blob type may consist of four blobs based on the position of its individuals 

in the 3D world similar to what is shown in the dotted pattern blob type in Figure  4‐1. 

x

t 

y

Figure  4‐1. A Simple example of four blob types in the 3D world. Arrow shows 2 adjacent voxels 

with one shared face. The dashed cube is the bounding box of the green (wavy format) blob type.
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There are two 3D metrics categories for analyzing blobs: composition and configuration metrics. 

Volume, surface area, shape complexity, and fractal dimension are examples of composition 

metrics. A blob volume is the number of voxels it occupies. Surface area is the number of voxels 

in a blob with faces not shared by adjacent voxels of the same blob type. For calculating 

adjacency, we used 6-voxel vonNeuman neighbors by considering a voxel as an adjacent if it 

shares a face with the current voxel (Figure  4‐1). 

Shape complexity is a ratio between blob volume and volume of its bounding box. For example, 

assume the dotted line cube volume is four (Figure  4‐1). Then, the shape complexity of the wavy 

pattern blob type would be 0.5. Fractal dimension quantitatively describes how one object 

occupies its volume. We used count boxing method to calculate fractal dimension for each 

species. For this purpose, we successively covered the 3D world with a 3-dimensional filling box 

and recorded the number of boxes (N(r)) required to cover the whole cube provided that 

containing at least one voxel related to the given species. Afterward, we repeated this procedure 

with different box size r. For example, we used r=2, 5, 10, 20 and 25, where the size of 3D world 

is 1000×1000×50. A graph of ln(N(r)) versus ln(1/r) is generated. The slope of the linear 

regression line gives the fractal dimension. 

Moreover, we calculated some other composition metrics. Space-time density is the ratio of blob 

type volume and the 3D world volume. Population density is the number of individuals per voxel. 

Blob number is the number of isolated blobs in a specific blob type. For example, the blob 

number for the dotted blob type is 4 (Figure  4‐1). Blob volume average and standard deviation are 

average and standard deviation of isolated blob volumes for a specific blob type.  

Contagion and STC (spatiotemporal complexity) are two configuration metrics. Contagion was 

calculated based on Equation 4-1, which measures dispersion or clumpiness of a blob type. This 

metric is based on voxel adjacencies and probability of finding a voxel of one blob type next to 

voxels of other blob types. A lower value of contagion shows many small blobs and higher value 

indicates few large blobs. 

max

1
EE

EE
RC 

 
                                                (4-1) 

where, RC is contagion and max ln( )EE b b  and b is the number of blob types. Also  
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where ijn is number of adjacencies between voxels of blob type j and voxels of blob type i  and  
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STC is a feature to describe how one blob type occupies the three dimensional space. This metric 

can be applied only to two blob types per space-time cube. Because we may have multiple blob 

types based on the number of species in the current 3D world, we calculated STC for each blob 

type separately by considering all the other blob types as background. STC was calculated by 

counting number of voxels occupied by blob type i in a three dimensional windows of dimension 

n×n×n where n is much smaller than the 3D world size. For our case, n is 5 because it is much 

smaller than our 3D world dimensions and all the dimensions of the 3D world are  divisible by 5 

so that it can be fitted by this window size completely. The window moves successively in the 

space-time cube and measures the different occupation levels from 0 to 3n . Then STC was 

calculated by a relation as follow: 
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In Equation 4-4, STC is spatiotemporal complexity and 0<STC<1. kp is the relative frequency of 

occupation levels. STC is more effective than contagion in describing the complexity of a 

spatiotemporal pattern and is able to differentiate various patterns such as uniform blob shapes 

(for example a column), random and complex patterns. STC value is lower for uniform or ordered 

blob shapes and is higher for complex shapes [165]. 

In total, we computed three spatial and eleven spatiotemporal metrics. These metrics were 

computed for every species in five distinct runs of EcoSim for 10000 time steps of the simulation. 

The length of the time dimension in the 3D world for calculating spatiotemporal metrics was 

assumed 50. By increasing this length we would have more precise information about species 

spatial history but it also increases the computational complexity of the defined metrics. 
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Therefore, the size of the window to calculate spatiotemporal metrics was assumed 

1000×1000×50. 

4.2.2. Training	Algorithm	and	Evaluation	Criteria	
For preparing the data sets, we applied the following procedure to all five runs data sets: 

1) In each time step of the simulation, we calculated the spatial information for each species.  

2) We calculated 3D spatiotemporal metrics by considering the information of the fifty previous 

time steps for each species to construct the blob types and to compute the configuration and 

composition metrics.  

3) After merging the results of the steps 1 and 2, we constructed one training and one test set. 

There are two classes in this dataset, positive and negative, which specify if a speciation event 

will happen in next 100 times. 

4) Steps 1 to 4 are repeated for other 4 runs. 

These steps result in five training sets and five test sets from five different runs. The main 

problem in all these datasets is that about 90 percent of samples belong to the negative class and 

only about 10 percent of them are in the positive class. It means that only 10 percent of species 

split in the next 100 time steps. As a result, the dataset is strongly imbalanced. There are two 

main approaches to address unbalanced training sets [166]. One is to assign distinct costs to 

training examples. The second method is to re-sample, either by under-sampling the major class 

or over-sampling the minor class. We examined different algorithms and finally, we found out the 

smote algorithm [167] surpasses other algorithms for our data sets. For each sample of the 

minority class, smote generates synthetic samples by selecting some of the nearest neighbors and 

generates new samples along the line segments connecting k minority class nearest neighbors. For 

example, if the smote percentage is 200%, two nearest neighbors are selected and one sample is 

generated in the direction of each by multiplying the difference between a given sample vector 

and its nearest neighbor by a number between 0 and 1, and adding it to the sample vector under 

consideration. This operation finds this new point along the line segment between two samples.  

We applied the smote algorithm on all training sets. However, we only used the smote algorithm 

for the training sets keeping the test sets with the initial unbalanced properties of the whole 

dataset. C4.5 [128] algorithm was employed to build decision trees for all the training sets. The 

interest of using such an approach is that the obtained trees can be used for speciation event 

prediction as well as extracting the rules which can effectively determine the most important 

factors in speciation according to spatial and spatiotemporal information. Afterward, we 
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evaluated the classifier performance using test sets. To investigate the impact of different training 

sets on speciation event prediction, we repeated this procedure for the other four datasets. 

The performance of a machine learning algorithm is typically evaluated by overall accuracy. 

However, it is not applicable for an unbalance dataset where only 10 percent of species split. In 

this case, the training algorithm mostly is biased towards the major class (negative class) while 

the minor class is highly important as it shows the correct prediction of samples with a speciation 

event. Consequently, the overall accuracy is not a good measure to evaluate our classifiers 

performance. For evaluating the performance of these classifiers, we used two metrics: Recall and 

area under ROC curve (AUC) [168], in addition to the overall accuracy. 

4.2.3. Classification	Results	
The three data sets Run1, Run2 and Run4, had about the same number of species and they led to 

almost the same results. To simplify results presentation, we presented only the results for the 

Run3, Run4 and Run5 representing situations with small, medium and large number of species 

respectively. Before applying the Smote algorithm on the training sets, we reached a high value 

for overall accuracy (above 90%) but very low recall for minor class (less than 0.3). This happens 

because the classifier is biased to the majority class and almost ignores the samples from the 

minority class. 

For all the datasets, the oversampling method used by the Smote algorithm considerably 

improved the Recall and the AUC values especially for minor class. As expected, we observed 

that we always had better prediction for the test sets coming from the same run as the training set. 

For example, in Figure  4‐2 (a), Test5 and training set Run5 are from the same run. It shows that 

the classifier reached a very good result for Test5 in compares to other test sets. Although the 

results for the test sets from the other runs (Test1, Test2, Test3 and Test4 in Figure  4‐2) are not as 

good as Test5, it shows that the classifier has learned some general rules of EcoSim speciation 

event. This fact can be seen in Figure  4‐2 (b) and (c). 

Three different cases appear from these results: 

The number of species in Run5 was 438. It means that for Run5 we can expect to have more 

valuable information regarding speciation in comparison to other datasets such as Run3 with 115 

species. It is effectively confirmed by our results; when we used Run5 as a training set we had 

better predictions for all the test sets as it appears clearly in Figure  4‐2 (a).  On the other hand, the 

worst result is obtained when we used Run3 (115 species) as the training set to predict the 
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speciation for test sets samples (Figure  4‐2 (b)). We can also see that the results are much more 

variables than with the other training sets, confirming the lack of pertinence of the trained model. 

  (a)  (b)  (c) 

 

 

(a)  (b)  (c) 

Figure  4‐3. Comparing overall accuracy, Recall, and AUC. All shows the average result of train and test 

sets, Testing (same run) is the result for the testing set from the same run, Learning is the result for 

train set, Testing (others) means the result of the test sets which is built from different run, All Testing 

is the average result for all test sets (Test sets from the same run and the other run). (a), (b) , and (c) 

represent results for run5, run3, and run4 respectively. ST, S, and ST+S mean the result for the dataset 

of only spatiotemporal metrics, only spatial information, and all the features respectively. 

Run4 (with 238 species) as a training set had an intermediate performance (Figure  4-2 (c)). 

Therefore, we found out that if we use a run with more species to build a classifier it has better 

+ + +‐ ‐ ‐ 

Figure  4‐2. Results when Run5, Run4, and Run3 are used as learning sets in (a), (b), and (c) respectively 
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generalization ability than a classifier that has been trained with a training set from a run with less 

species. It also means that some general rules about speciation exist in our system, such as having 

more examples of speciation in one run help to predict speciation in another run with different 

conditions. 

4.2.4. Effect	of	spatial	and	spatiotemporal	information	on	prediction	
In order to investigate the effect of the different features on speciation prediction, we repeated 

this experiment two more times with different combinations of features; first with only spatial 

distribution information and the second with only spatiotemporal metrics. Figure   4‐3 shows the 

results summary. We showed the average of overall accuracy, recall for positive class and area 

under ROC curve for all the training and test sets together (the column showed by "All label"), 

test sets from the same run, training sets, test sets from other runs and finally all test sets for all 

five runs. 

These results clearly show that the best results are related to when all the features are in the 

training process i.e., ST+S dataset. The most important results are for Testing (others) as they 

show the generic prediction capacity of our models, however the results for Testing (same run) 

are also important as they show that some specific property of each run have been captured so 

that it can be useful to characterize a specific run. Even though S has only three features, it 

showed good capacity to learn generic rules. 

Therefore, spatial distribution information of individuals in the world of EcoSim is very effective 

in predicting speciation. Moreover, adding spatiotemporal information to the spatial information 

increases the quality of the prediction. If we build the classifier based on datasets S and S+ST 

before oversampling; recall or TP rate is very low for the minor class (about 0.05 to 0.08) in S 

while that of S+ST is around 0.20 to 0.3 with approximately the same overall accuracy. It also 

improved AUC by approximately 15% on average. Therefore, it shows that by adding 

spatiotemporal metrics, the classifier is able to predict more minor class samples in presence of 

unbiased dataset. On the other hand, for biased datasets we observed 5% improvement for both 

overall accuracy and AUC for dataset S+ST in average for all runs in compare to that of S. 

However, if we consider the Testing (same run), it improves AUC, overall accuracy and recall for 

10%, 8% and 10% respectively. 

These results demonstrate that spatial information of individuals in the world has great effect in 

speciation event prediction and spatiotemporal metrics can improve it. We also observed this fact 
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in the rules extracted from the classifiers. For example, for most of the predictors, spatial standard 

deviation is the decision tree root showing its importance for speciation prediction. However, 

more in-depth analysis of the set of rules generated still need to be done to be able to explain the 

speciation process based on such information. 

4.3. Speciation	Prediction	using	Spatial,	demography,	environmental	
and	genetic	Features	

4.3.1. Data	Set	Preparation	
We used the result of 10000 time steps of three different runs of EcoSim for this experiment. In 

each time step, there was a variable number of species with their corresponding features. Each 

run is different from the others in terms of demography, environmental and genetic features due 

to stochastic processes in the model. The features were used for this study are as follows. 

We used spatial distribution information such as spatial standard deviation, and the sum and the 

average Euclidian distance of all the individuals to the species center. Several features [169], 

[170] were also calculated to characterize the complex spatial dynamics of the world, similar to 

the ones calculated for the first experiment with the exception that we considered two 

dimensional world instead of 3D world. We also calculated the genetic diversity of a species, 

which measures how much diversity exists in the gene pool of the individuals of a species and 

corresponds to the entropy of the set of genomes. The entropy measure is commonly used as an 

index of diversity in ecology and increasingly used in genetics [171]. We also calculated several 

demographic features such as number of species, ratio of individuals in one species to the whole 

population (popRatio), ratio of new born individuals to the whole population (birthRatio), average 

population per cell (popDensity), interbreedingRatio, which is the ratio of new born individuals 

with parents from two different species to the whole number of new born individuals, the ratio of 

prey killed by the predators to the total number of individuals (killedRatio), and the ratio of dead 

prey because of old age and low energy to the total number of individuals (deadAgeRatio and 

deadEnergyRatio respectively). Moreover, several features related to individuals' actions were 

computed, which show the percentage of the individuals in a species choosing one action such as 

reproduction (reproductionAction), search for food (SearchFoodAction), and eat (EatAction). 

Some features related to the individuals' perception were chosen depicting the individual 

perception of its environment such as distance to predator (distancePred), distance to food 

resource (distanceFood), distance to other preys (distancePrey), distance to partner 

(distancePartner), distance to predator (distancePred), etc. These features give some insight about 
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the local environment properties of the individuals. Besides, several features related to the age 

and energy of individuals were calculated. For instance, the average energy and the average age 

of the dead individuals (deathEnergy and deathAge respectively), and the average age (age) and 

the average energy (energy) of individuals can be mentioned. Further, we used some features 

related to mating, such as average reproduction age and energy of parents at the breeding time 

(parentReproduceAge and parentReproduce Energy). Finally, MatingDistance which is the 

genetic distance between two parents' genome and also stateofBirth, which indicates the amount 

of energy that prey invests in the breeding process, were calculated. 

We created a dataset using 49 features (see Table  5-2. List of the features used to analyze and 

predict species extinction. Each feature is computed at each time step per species), each sample 

of the dataset shows the information about one species at a given time step. Species were 

classified based on a label feature that specifies if one species will split in the next 100 time steps. 

If the species split within this time period, the label is positive, otherwise it is negative.  

Massive raw data were used for this experiment, with an average of 20 (5), 27 (9), and 32 (7) 

species and 126000 (32000), 179000 (27000), and 197000 (26000) individuals respectively, at 

any given time step, for the three runs of EcoSim (the values in parenthesis are standard 

deviation). 

4.3.2. Classification	Results	and	Discussion	
In this section, we discuss the results of our experiments and also investigate the effect of the 

different features we used for speciation prediction. First we employed the original training set 

without changing the class distribution to build the classifier. The result of the classifier for the 

training, test, and validation sets is shown in Table  4‐1. 

TP Rate for minor class was low because the classifier tends to learn the samples from the 

majority class and almost ignore the ones from the minority class. Because the training and test 

sets were built from the mixture of result of two runs, their TP rates were close, but for the 

validation set, it was about 12 percent less than for the training and the test sets. It shows that the 

generalization ability of the classifier is not good enough to classify species for other runs. The F-

Measure value was also low for the validation set. 
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Table  4‐1. Result of Speciation Prediction using Imbalanced Training Set 

Data Set TP Rate FP Rate F-Measure AUC Accuracy 

Training 0.749 0.082 0.756 0.934 87.41% 

Test 0.743 0.076 0.758 0.935 87.66% 

Validation 0.625 0.082 0.679 0.917 83.64% 

 

We applied the smote oversampling technique on the training set to build a balanced data set. 

However, the test and validation sets retained unchanged. Afterward, we built the classifier and 

the results indicate that TP Rate improved by 21.2%, 21.2% and 30.7% for the training, test, and 

validation sets respectively (Table   4‐2). We observed only a 10% decrease in TN Rate, on the 

other hand we improved the TP Rate about 25% on average. F-Measure improvement for 

validation set was also about 7%.  

Table  4‐2. Result of Speciation Prediction using Balanced Training Set 

Data Set TP Rate FP Rate F-Measure AUC Accuracy 

Training 0.908 0.168 0.875 0.932 87.00% 

Test 0.901 0.154 0.736 0.933 85.83% 

Validation 0.817 0.177 0.729 0.904 83.21% 

 

Therefore, the classifier was able to predict the positive class, especially for the validation set, 

with higher accuracy. In this case, the classifier was more generalized, being able to classify 

species in a completely different run with a good accuracy. The last experiment was to use the 

most common features (13 out of 49 features) chosen by different feature selection algorithms 

such as Best Fit, Greedy Stepwise, Genetic Search, and Ranker (with InfoGain and GainRatio 

evaluators) in Weka [172] using the default parameter setting (Table   4‐3). As it shows, we 

obtained an improvement in the TP Rate and F-measure, especially for validation set. 

Table  4‐3. Result of Speciation Prediction using Selected Features 

Data Set TP Rate FP  Rate F-Measure AUC Accuracy 

Training 0.911 0.184 0.870 0.924 86.36% 

Test 0.916 0.191 0.705 0.925 83.20% 

Validation 0.899 0.206 0.738 0.923 82.30% 
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Using 13 selected features including demographics, genetics, and environmental features, we 

obtained almost the same accuracy as when all the features are used. In addition, the complexity 

of the classifier was reduced so that it also decreased the risk of overfitting and made the model 

easier to interpret. 

Removing some features did not mean they were not effective on speciation; instead they might 

be covered by the selected features. To investigate this coverage, we extracted the dependencies 

between several features in both problems by applying Bayes Net classifier. For example, genetic 

diversity, which seems to be an important feature, can be replaced by population ratio. This 

makes sense because increasing these two features makes a larger gene pool, which increases the 

speciation probability. Another example is in the spatial information category where patch area 

ratio can cover some features like SC and patch circumference. 

To investigate the validity of obtained results, we extracted several rules (Table  4‐4). When patch 

area ratio is greater than a threshold, it shows the individuals of the species are more dispersed, 

which increases the possibility of speciation as discussed in [4]. In speciation prediction, 

population ratio had a critical role. Having more individuals means a gene pool with higher 

variation. Therefore, one species with more individuals has higher probability for speciation.  

Table  4‐4. Several Samples of the Extracted Rules. t values are thresholds for each feature. Hit ratio is 

percentage of samples that match to one rule and the accuracy shows the performance of the rule on 

the matched samples for validation set 

Condition Result Hit Ratio Accuracy 

patchAreaRatio<= ta no speciation 45% 89% 

patchAreaRatio>ta speciation 54% 82% 

indvNoRatio<= ti no speciation 44% 90% 

indvNoRatio>ti speciation 56% 81% 

 

4.4. Conclusion	
In the first experiment, we analyzed the ability of spatial and spatiotemporal information about 

species in an artificial ecosystem for the prediction of speciation events. We used 14 features to 

extract this information and applying oversampling technique to build classifiers. We obtained 

very good results when the test set is coming from the same run as the training set. The good 

results for the test sets from different runs demonstrated that the classifier was able to extract 

general rules about speciation that exist in our system. For all datasets; S, ST, S+ST, we also 
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observed better performance for the classifier when the number of species increases in the 

training set. In other words, giving more examples of speciation events, even if they happen in the 

same run, leads to a more generic predictor. This indicates that some generic traits exist in our 

simulation that characterizes the speciation events.   

In the second experiment, we computed 49 demographics, genetics, environment and spatial 

distribution features for the species observed in EcoSim and investigated how these features 

affect speciation. After adjusting the class distribution, using an oversampling technique, we 

obtained promising results. The results show that the calculated features are effective in 

prediction of speciation and can help for better understanding of speciation.  Moreover, using 

feature selection strategies, we were able to reduce the number of features to capture more precise 

information involved in speciation. Finally, these techniques helped to reduce the size of the tree 

generated by the C4.5 algorithm, which facilitates the extraction of hypothesis for these two 

events for future work. We extracted several simple rules from the constructed decision tree. 

These rules are semantically clear and sound reasonable based on the biological evidence. This is 

an important result as the proposed approach has proven to have the capability of generating 

realistic rules when compared with real biological data. 
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Chapter	5	

5. Extinction	Prediction	

5.1. Introduction	
One of the most fundamental questions in population biology and conservation biology relates to 

species persistence and the risk of extinction where one species cannot survive because its 

individuals are unable to reproduce, or they simply cannot tolerate the environmental conditions. 

Species extinctions result from a variety of biotic and abiotic factors, such as population size [20], 

[173], habitat destruction and degradation, human intervention, infectious disease, reproduction 

rate, migration rate [174], invasive species [175], environmental variation [176], habitat 

fragmentation [177], habitat quality and size [178], the Allee effect [179], genetic inbreeding 

[180], genetic diversity [181], initial population size [182], patch size [183], age [184], and 

energy [185]. These factors increase the probability of extinction, and can be classified into three 

broad categories: demographic stochasticity, genetics and environmental factors [186], although 

admittedly there is overlap between these broad categories. 

Random fluctuations in demographic factors such as birth rate and death rate can have dramatic 

effects on populations. The effect of demographic stochasticity is greater in smaller populations 

than in larger ones [187]. In addition, there are factors relating to the transmission of genes from 

one generation to the next. Genes may be lost from a small population and the gene frequencies 

may be modified due to drift or inbreeding [187], [180]. Diminishing genetic variation may 

increase extinction risk by limiting the ability to adapt to stressful environments. Lastly, 

environmental factors such as natural catastrophes (including fires, floods, earthquakes, and 

volcanoes), temperature, availability of food, competitors, predators, and diseases influence the 

population by changing the demographic parameters. For example, Gregory and Courchamp 

[188] advanced experimental evidence suggesting that predators can produce the so-called Allee 

effect (a reduction in population size making extinction more likely). Further, there is reason to 

believe that volcanic activity had a major role to play in five mass species extinctions [189].  

Using mathematical modeling to study species extinction is prohibitively difficult, and 

consequently most results in this area are approximations at best, especially if a consideration of a 

mixture of relevant factors is desired [190]. Similarly, results obtained from laboratory 

experiments often conflict with field studies [186]. Moreover, observing and studying species in 

nature in order to extract species information is a highly time consuming and complicated process 
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given that populations exist within an interacting network of species, along with being distributed 

in a patchy manner over a heterogeneous space.  

The overall aim of this study is to use an individual-based modeling approach to investigate a 

wide variety of important factors contributing to extinction, along with investigating their 

predictive potential using methods that circumvent the difficulties with empirical studies and 

mathematical modeling. To achieve this aim, we analyzed the information gathered from EcoSim 

followed by the integration of the extracted knowledge to verify species extinction realization in 

EcoSim under the three broad categories of genetic, environmental, and demographic in line with 

[186]. We used individual-based computer simulations that take into account species interactions 

(including the effects of predation) and which are relatively inexpensive to run and which take a 

relatively short period of time to complete. We designed an approach based on a combination of 

feature selection, focusing on the most informative features, and predictive model building. We 

evaluated the accuracy of the predictive model building to assess the quality and the generality of 

the models obtained, with an eye towards extinction prediction. In addition, this predictive model 

helped us to extract some effective prediction rules based on these filtered features. This approach 

increases the testability of ecological and biological mechanisms of species extinctions.  

5.2. Data	Preparation	

We extracted our data from nine different runs of EcoSim, each run involving 10000 time steps, 

including all the applicable demographic, genetic, and environmental features for prey 

individuals. Additional details about these runs are provided in Table  5‐1. The runs are different 

from one another in terms of demography, environmental, genetic, and internal features, although 

they were initiated with the same parameter sets. This variance in the simulation results 

originated from internal variability due to stochastic processes in the model and chaotic properties 

of the overall system. The 49 computed features are shown in Table   5‐2 along with their 

definitions. Most of the features have been defined in chapter 4. Besides, we computed some 

action features such as explore, escape, search for food, and eat which show the percentage of the 

population choosing these actions. In addition, some perceptual features were chosen depicting 

the individual’s perception of its environment such as predator distance, food distance, partner 

distance, etc. These features provide insight regarding local environmental characteristics. 

Additional features related to age and energy were calculated such as the percentage of dead 

individuals, the energy of dead individuals, the average age of dead individuals, and the average 
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age and energy of living individuals. In addition, we computed various mating features such as 

average reproduction age and the energy of parents at the breeding period. 

Table  5‐1. General information for nine different runs of EcoSim including the number of species 

average, average population, extinction rate and speciation rate with standard deviation in parenthesis 

 Prey Predator 

Runs  Species 

Number 

Population Extinction 

Rate 

Speciation 

Rate 

Species 

Number 

Population Extinction 

Rate 

Speciation 

Rate 

Run1 21 (5.9) 160717 

(48465) 

0.0085 

(0.020) 

0.0091 

(0.022) 

5 (2.4) 19339 

 (6793) 

0.0008 

(0.012) 

0.0010 

(0.017) 

Run2 26 (8.7) 177477 

(36641) 

0.0096 

(0.020) 

0.0101 

(0.022) 

11 (7.4) 32052 

 (6815) 

0.0013 

(0.013) 

0.0016 

(0.016) 

Run3 29 (9.5) 182151 

(43434) 

0.0079 

(0.017) 

0.0083 

(0.019) 

15 (7.8) 32970 

 (9779) 

0.0015 

(0.011) 

0.0016 

(0.014) 

Run4 25 (9.5) 162410 

(49773) 

0.0078 

(0.019) 

0.0082 

(0.021) 

9 (5) 19258 

(6239) 

0.0012 

(0.013) 

0.0015 

(0.017) 

Run5 27 (8.5) 161180 

(42741) 

0.0072 

(0.017) 

0.0077 

(0.019) 

10 (3.7) 19375 

 (9955) 

0.0014 

(0.012) 

0.0016 

(0.015) 

Run6 34 (12) 188194 

(36851) 

0.0076 

(0.016) 

0.0080 

(0.019) 

14 (5.5) 24121 

 (8178) 

0.0013 

(0.010) 

0.0015 

(0.013) 

Run7 23 (7.6) 148550 

(47019) 

0.0089 

(0.020) 

0.0095 

(0.023) 

5 (3) 17270 

 (6398) 

0.0010 

(0.015) 

0.0014 

(0.022) 

Run8 34 

(10.7) 

226632 

(41173) 

0.0088 

(0.017) 

0.0093 

(0.019) 

15 

(5.4) 

34779 

(6032) 

0.0012 

(.009) 

0.0014 

(0.013) 

Run9 26 

(8.9) 

183714 

(43584) 

0.0091 

(0.020) 

0.0097 

(0.022) 

10 

(5.9) 

19297 

(5801) 

0.0009 

(0.010) 

0.0010 

(0.013) 

 

Table  5‐2. List of the features used to analyze and predict species extinction. Each feature is computed 

at each time step per species 

Feature Definition 

indivNo The total number of individuals 

specNo The total number of species  

deathRatio The ratio of the total number of deaths to the whole population 

deadAgeRatio The ratio of the number of deaths due to oldness to the whole population  

deadEnergyRatio The ratio of the number of deaths due to lack of energy to the whole population 

killedRatio The ratio of the number of killed individuals by predators to the whole population 
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reproducRatio The ratio of the newborn individuals to the whole population  

reproducFailRatio The ratio of the number of failed reproduction to the whole population 

compactness The average number of individuals per cell, also called the population density 

interbreedRatio The ratio of the births due to the interbreeding to the total births 

birthRatio The ratio of the number of new born individuals to the whole population 

energy The average energy of all individuals in the species 

predClose The average perception of the predators’ distance 

foodClose The average perception of the food’s distance 

preyClose The average perception of the friends’ distance 

localFoodQuant The average perception of the quantity of food in the vicinity  

localPartnerQuant The average perception of the quantity of partners in the vicinity 

geneDivers The diversity of alleles for all loci based on the entropy calculation  

geneCompl The number of loci having active alleles  

evolDist The average genetic distance between the reference genome (origin) and the current 

genomes  

matingDist The average genetic distance between mates 

speed The average speed (number of cell per time step) of all individuals in the species 

age The average age of all individuals in the species 

deadAge The average age at the time of death 

escapRatio The ratio of escape from predators to the whole population 

foragRatio The ratio of searching for food to the whole population  

socializRatio The ratio of socialization (try to find other prey) among preys to the whole population  

explorRatio The ratio of exploration to the whole population  

eatRatio The ratio of food consumption to the whole population  

sedentRatio The ratio of immobile individuals to the whole population  

parentInvestEnergy The ratio of energy which is transferred to a new individual at the birth time and 

decreases the parents’ energy (cost of the offspring care) 

innerEnergy The average perception of the amount of individual’s energy 

deadEnergy The average energy at the time of death 

parent1-matingAge The average age of choosy partner at the time of mating 

parent1-matingEnergy The average energy of choosy partner at the time of mating 

parent2-matingAge The average age of chosen partner at the time of mating 

parent2-matingEnergy The average energy of chosen partner at the time of mating 

spatialDivers The dispersal of individuals based on the species center  

patchAreaRatio The ratio of the area of a species patch (the number of cells that a species occupies) to 
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the species population 

patchCircum The number of outer cells in the species patch 

patchShapeCompl The ratio of the area of a species patch to the area of its bounding box (smallest square 

box that covers the patch area) 

spatialCompl Measure that shows how the species patches occupies the world  

spaceRatio The ratio of the species patch area to the area of the world 

patchNoRatio The ratio of the number of patches of one species to its population 

patchSizeAvg The average patch area of one species patches 

multiSpeciesCellRatio The ratio of the number of cells that are shared between more than one species to the 

species patch area 

contagion Measure that shows how disperse are the whole patch types 

fractalDim Measure that describes how one species occupies its area 

 

5.3. A	machine	learning	approach	

To study the important features involved in the extinction of species in EcoSim, we used the 49 

features defined in section 5.2 to build a predictive model. Species were labeled according to 

whether they reach extinction in the next 100 time steps of the simulation. Afterwards, we 

classified the different species with respect to various demographic, environmental, and genetic 

characteristics in order to discriminate between extinct and non-extinct species. For purposes of 

classification, we required a training set, a test set, and a validation set. The training set was used 

to build the classifier, the test set was used to evaluate its accuracy, and the validation set verified 

that the classifier was able to capture generic rules corresponding to the problem. In order to 

guarantee the generality and accuracy of the extracted features and rules, we employed three 

different combinations of three runs (run1+run2, run1+run3, run2+run3), each combination 

containing roughly 400,000 data samples. Each time, 40,000 data sampled from one combination 

were used to build the training set, and the remaining samples were used to build the test set. The 

data from the other runs (runs 4 through 9) were used to construct the validation sets (about 1500 

000 data samples in total). 

We employed several feature selection algorithms such as Best Fit, Greedy Stepwise, Genetic 

Search, and Ranker (with InfoGain and GainRatio evaluators) in Weka [172] using default 

parameters setting in order to remove irrelevant features. The factors selected by a majority of the 

algorithms were retained. This approach helps to avoid overfitting in the prediction model by 

selecting the most relevant features.  
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Because many of the remaining features were intercorrelated, we calculated the correlation 

between each pair of features using correlation analysis by measuring the correlation coefficient. 

Correlated and irrelevant features have the potential to degrade the performance of the prediction 

model [191]. For this reason, in highly correlated groups of features, we retained one feature in 

each group and removed the rest of them in order to obtain the most parsimonious but adequate 

model for predicting extinction risk. 

In the next step, we categorized the remaining features according to the three broad categories of 

genetic, demographic and environmental described by Griffen and Drake [186]. We then applied 

the C4.5 [128] algorithm to build a decision tree, which is our prediction model. The rationale for 

using decision trees is that the obtained trees can be used as a prediction model and also for 

extracting rules based on critical threshold values of the features. In order to determine the class 

of one new sample, one should start from the root node and, based on the test outcome, move to 

the next level of the tree, repeating this procedure to reach a leaf. However, in order to focus on 

the most significant rules, only the leaves of the decision tree that match a large number of data 

samples with high accuracy were considered. We pruned the decision tree in order to retain only 

the rules that match with at least 1000 samples to obtain more compact rule set. 

First, we built the decision tree for each feature to discern their significance separately, given that 

this is a widely used method for testing correlates of extinction risk [192]. Further, we used the 

decision tree to discern the significance of each broad category (demographic, genetic, and 

environmental) independently with respect to extinction.  

We used different metrics to evaluate the classifier such as the TP rate (or Sensitivity or Recall ), 

which is the percentage of actual positive samples (species extinction in this case) that are 

correctly identified as such; the TN rate (or specificity) which is the proportion of actual negative 

samples (no extinction) that are correctly identified as such; precision (positive predictive value 

or PPV), which is the proportion of all true positives against all the predicted positive results; 

negative predictive value (NPV) which is the proportion of all true negatives against all the 

predicted negative results; F-measure which is a harmonic mean of precision and sensitivity and 

finally the Area Under the ROC Curve (AUC) where the ROC curve depicts the relative trade-off 

between sensitivity and (1- specificity) in order to evaluate the accuracy of each classifier [193]. 

Because we wanted to focus on the rules, we picked the combination run1+run2 as the train set 

for rule extraction and the rest of the runs as the validation set.  
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5.4. Results	and	Discussion	

5.4.1. Feature	selection	and	correlation	analysis	

The results of the feature selection algorithms using 10-fold cross-validation are summarized in 

Table  5‐3. Most of the feature selection methods selected the same features, although there were 

some differences in rank-based methods in comparison with other methods. For example, 

indivNo was not selected by the first three methods, whereas its rank was low using ranking 

methods where lower rank shows the feature to be more important. 

Table   5‐3. The  features selected by applying  five different  feature selection methods  to  the  initial 49 

features  resulting  in  the  reduction of  the number of  features  to 25.  In  the  first  three algorithms,  the 

numbers specify the number of folds in 10‐fold cross‐validation for which the feature has been selected 

by  the  algorithm.  Therefore,  the  higher  values  show  the  importance  of  the  features  and  for  the 

InfoGain  and GainRatio  algorithms  the  numbers  are  the  average  rank  of  the  feature  based  on  two 

different  ranking  criteria  i.e.,  information  gain  and  gain  ratio  and  lower  values  show  the  more 

important features). Other features out of 49 were discarded by the feature selection methods. 

Feature BestFit Genetic Greedy InfoGain GainRatio 

interbreedRatio 10 10 10 22 18.9 

killedRatio 10 10 10 17 5.5 

deadEnergy 10 6 6 21 18.4 

parentInvestEnergy 7 9 7 23 23.1 

preyClose 10 10 10 20 13 

Foraging 4 7 4 25 24.9 

socialRate 10 10 10 18.1 16 

waitRate 7 7 7 24 22.3 

parent1_reprodAge 9 9 9 10 6.6 

parent1_reprodEnergy 10 10 10 15 2.8 

parent2_reprodAge 8 7 7 14 9.4 

parent2_reprodEnergy 10 10 10 16 8.6 

matingDist 10 10 10 11.6 2.8 

spaceDens 10 10 10 3.1 1.2 

patchsizeAvg 2 2 1 12.1 10.1 

shapeCompl 8 2 0 12.3 14.2 

fractalDim 7 8 7 5.8 17.6 
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reprodRate 7 8 7 3.9 10.5 

reprodFailRatio 5 7 6 8.4 21.7 

birthRatio 5 6 4 8.4 13.9 

explorRatio 3 4 3 18.9 23 

patchArea 6 2 6 5.9 11.1 

Compactness 1 4 1 6.5 11.3 

patchCircum 1 3 1 1 3.4 

indivNo 0 0 0 2 14.7 

 

Afterwards, we found four groups of highly correlated features (Table  5‐4), when we considered 

correlations (Pearson correlation coefficient) greater than 0.7. This value is a reasonable tradeoff 

because with higher values there is the risk of selecting too few correlated features, whereas with 

lower values, there is the risk of selecting too many features. We selected indivNo, birthRatio, 

parent1_reprodAge, and popDens from groups 1 through 4 respectively as they are more 

informative than the other features to explain the extinction and removed the rest.  

Table  5‐4. Four groups of highly correlated features (>0.7) using the correlation analysis method. The 

numbers in the parentheses refer to the correlation between the given feature and the features below 

it in that column. 

Group 1 Group 2 Group 3 Group 4 

indivNo 

 (+0.97, +0.98, +0.75) 

birthRatio 

 (+0.7) 

parent1_reprodAge 

(+0.93, +0.84, +0.8) 

patchArea 

(-0.84, -0.92, -0.89) 

patchCircum 

(+0.99, +0.76) 

reprodRate 

 

parent1_reprodEnergy 

(+0.84, +0.86) 

fractalDim 

(+0.7, +0.75) 

spaceDens 

(+0.76)   

parent2_reprodAge 

(+0.93) 

popDens 

(+0.88) 

shapeCompl 

   

parent2_reprodEnergy 

 

patchsizeAvg 

 

 

In group 1, indivNo had a very high positive correlation with patchCircum and shapeCompl 

because these features are calculated based on the cells which individuals inhabit. The reason that 

we do not see very high correlations between features in group 2 is that not all reproductive acts 

are successful in EcoSim due to a variety of factors. To have a successful reproduction, both 

parents must have a high energy level and also reach a high maturity level (both defined by a 

threshold). As a result, we observed high correlations in group 3. In group 4, patchArea has a 
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negative correlation with the other features, since increasing the patch area decreases fractal 

dimension, population density, and patch size average. 

5.4.2. Feature	Reduction	and	Categorization	

We reduced the number of features to 14 using feature selection and correlation analysis. We then 

categorized the remaining features into three broad groups: demography, genetic, and 

environmental (Table   5‐5) in line with the categorization proposed in [186]. In their proposed 

categorization, demographic features are associated with fluctuations in population due to 

variability in growth, reproduction, and lifespan. Thus, we placed all the features related to 

population, population density, birth ratio, reproductive age, and energy into demography.  

Table  5‐5. Three broad categories (demographic, genetic, environment) for the 14 reduced features 

Demographic Genetic Environment 

indivNo matingDist killedRatio 

birthRatio parentInvestEnergy waitRatio 

reprodFailRate   

  

  

  

  

  

  

explorRatio 

preyClose   

  

  

  

  

  

deadEnergy 

parent1_reprodAge 

socializRatio 

interbreedRatio 

Compactness 

 

The genetic category is associated with inbreeding depression and so in this category we placed 

matingDist, which characterizes the genetic distance between two individuals, and 

parentInvestEnergy, which is the amount of energy transferred to the offspring at birth, related to 

the genetic makeup of the parents. The environmental stressors in EcoSim are predators and food 

scarcity and so in this category we placed killedRatio, the ratio of prey killed by predators, and 

waitAction which is the attempt by an individual to save energy or avoid predators. Food scarcity 

may lead to exploration and so explorRatio was included under Environment. As Griffen and 

Drake [186] suggest, some of these features may affect one another. For example, if there is a 

larger number of prey (demographics) then this may positively affect the killedRatio 

(environmental) since there are more prey available to predators. Finally, as will be discussed 
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below, Table   5‐6 and Table   5‐7 illustrate that the three broad categories of demographics, 

genetics, and environment are effective predictors of extinction. 

5.4.3. Extinction	prediction	rules	

We evaluated each of the reduced 14 features to determine their ability to predict extinction. 

Eight out of the 14 features demonstrated a sufficiently high level of accuracy as shown in Table 

 5‐6. The remaining features failed to adequately predict extinction on their own, although they 

demonstrated better extinction predictability when combined with other features.  

Table  5‐6. The extracted rules along with their levels of accuracy. For Recall and Precision columns, the 

values for the extinction rules are TP Rate (ability to identify extinction samples) and Positive Predictive 

Values (shows how many percentages of extinction samples predicted). The values for the no extinction 

rules are TN Rate (ability to identify no‐extinction samples) and Negative Predictive Values (shows how 

many percentages of no‐extinction samples predicted) respectively. F‐Measure is a harmonic mean of 

precision and recall. AUC is the area under the ROC curve. The hit ratio represents the percentage of the 

dataset covered by the rule. 

Rule Code Recall Precision F-Measure AUC Hit Ratio 

Ext_R1 0.96 0.84 0.90 0.91 32% 

NoExt_R1 0.92 0.98 0.95 0.91 68% 

Ext_R2 0.94 0.80 0.97 0.90 29% 

NoExt_R2 0.98 0.97 0.98 0.90 62% 

Ext_R3 0.94 0.86 0.90 0.91 30.1% 

NoExt_R3 0.93 0.97 0.95 0.91 69.8% 

Ext_R4 0.91 0.81 0.86 0.85 27.8% 

NoExt_R4 0.90 0.96 0.92 0.85 56.3% 

Ext_R5 0.96 0.80 0.87 0.90 27.3% 

NoExt_R5 0.91 0.98 0.95 0.90 72.6% 

Ext_R6 0.96 0.82 0.88 0.90 29.4% 

NoExt_R6 0.91 0.98 0.95 0.90 70.6% 

Ext_R7 0.91 0.84 0.87 0.85 27% 

NoExt_R7 0.93 0.96 0.94 0.85 65% 

Ext_R8 0.88 0.85 0.87 0.90 32.8% 

NoExt_R8 0.92 0.94 0.92 0.90 61.3% 
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Table  5‐7. Combined Extinction/non‐extinction Rules (E = extinction, ~E = no extinction,  = there is a 

tendency towards) E.g., Ex_R1 reads “if the population number falls below a critical threshold, Tp, then 

there is a tendency towards extinction.”.Tp, Tpr1, Tpr2, Tpr3, Td1, Td2, Tc, Tb, Ts1, Ts2, Tm, Tk1, Tk2 are threshold 

values for the following rules such that Td1<Td2 ,  Tpr1 ≤ Tpr2< Tpr3 , Ts1< Ts2, Tk1< Tk2) 

Features Category Rule Code: Extinction / No extinction Rules 

indivNo Demographic 
Ex_R1: (indivNo ≤ Tp) E 

NoEx_R1: (indivNo>Tp)  ~E 

Parent_reprodAge Demographic 
Ex_R2: (parent_reprodAge< Tpr1)  E  

NoEx_R2: (Tpr2<parent_reprodAge< Tpr3)  ~E 

deadEnergy Demographic 
Ext_R4: (deadEnergy< Td1)  E  

NoExt_R4: (deadEnergy> Td2 )  ~E 

Compactness Demographic 
Ext_R5: (compactness < Tc )  E 

NoExt_R5: (compactness > Tc)  ~E 

birthRatio Demographic 
Ext_R6: (birthratio< Tb)  E 

NoExt_R6: (birthratio> Tb)  ~E 

socializRatio Demographic 
Ext_R8: (socializRatio< Ts1)  E  

NoExt_R8: (Ts1 <socializRatio< Ts2)  ~E 

Mating distance Genetic 
Ext_R3: (mating distance < Tm)  E 

NoExt_R3: (mating distance > Tm)  ~E 

killedRatio Environmental 
Ext_R7: (killedRatio< Tk1)  E 

NoExt_R7: (Tk1<killedRatio< Tk2)  ~E 

Based on accuracy metrics, the rules in Table   5‐6 are highly efficient with respect to extinction 

prediction. These results are the average results for training, test, and validation sets. In addition, 

because we had three different training sets and the threshold parameters associated with the 

features changed slightly, we repeated the experiments for every training set and calculated the 

average. As an example, in the genetic category we observed 0.0389, 0.0354, and 0.0584 as 
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thresholds for mating distance when we applied three different train sets. Some of the rules in 

Table  5‐6 do not cover 100% of the dataset. For example, Ext_R2 and NoExt_R2 combined cover 

91% of the dataset and Ext_R4 and NoExtR4 combined cover only 84.1% of the dataset such that 

Ext_R shows extinction rule and NoExt_R shows no extinction rule. This is to be expected, as a 

decision tree uses a combination of rules to make predictions, so that one rule does not 

necessarily cover all the data samples. 

5.4.4. Interpretation	of	combined	extinction/no	extinction	prediction	

rules	

The rules in Table  5‐6 can be combined for extinction/no extinction and categorized in terms of 

demographic, genetic, and environmental rules (Table   5‐7) in order to more fully discern their 

biological significance. 

5.4.4.1. Rules Based on Demographic Features 

There are six extinction/no extinction prediction rules based on the demographic features of 

compactness, deadEnergy, birthRatio, socializRatio, indivNO and parent_reprodAge (Table  5‐7). 

Rules R1 (Ext_R1 and NoExt_R1) and R5 (Ext_R5, and NoExt_R5) indicate that if the 

population number (indivNo) and population density in the prey species goes below critical 

thresholds then the species tends towards extinction. Small populations are more likely to become 

extinct because of demographic stochasticity [194]. Further, there is the potential for individuals 

to suffer reduced fitness from insufficient cooperative interactions with conspecifics (leading to 

inbreeding depression and hybridization) or individuals may have difficulty encountering 

potential partners resulting in socialization ratios and birth ratios falling below critical thresholds 

(rules R8, R6 respectively). These effects can cause negative growth rates of populations and lead 

to an unstable equilibrium at small population sizes, below which the population is more likely to 

become extinct [195]. 

Drake and Griffen [174] maintain that the causes of a population's decline are very important 

factors in predicting extinction. Rule R2 (Ext_R2 and NoExt_R2) relating to the parental 

reproductive age indicates that when parental reproduction is within an optimal range (not too 

young, not too old), the species does not tend towards extinction, whereas when the parental 

reproduction age is lower than the lowest threshold value, Tpr1, the species tends towards 

extinction. However, in the samples where the ParentRepAge was less than the threshold 

valueTpr1, the birth ratio was zero or very close to zero. This means that the part of rule R2 
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predicting extinction has as its basis the indirect effect of the birth ratio. The rule relating to the 

feature of deadEnergy (the average energy at the time of death), viz., R4 (Ext_R4 and NoExt_R4) 

predicts that the species will tend towards extinction if the amount of energy that individuals have 

at the time of death is below a critical threshold. Lower energy at the time of death suggests either 

food resource depletion or predator stress such that prey do not have enough time to find food. If 

there are not sufficient food resources available to sustain a larger number of individuals, then 

there will be a population decline and hence an increased chance of species extinction. 

5.4.4.2. Rule Based on Mating Distance (Genetic Feature) 

Rule R3 implies that closer mating distances below a critical threshold are associated with species 

extinction. Mating distance is connected with how genetically similar the two parents are. If the 

average mating distance of the population is less than a critical threshold the species will tend 

towards extinction (Table  5‐6 and Table  5‐7). The feature of mating distance is clearly associated 

with inbreeding depression. The lower value for this feature indicates that mating has occurred 

between two individuals with very similar genes such as siblings, which decreases individual 

fitness and population growth rates as has been observed in nature [196], [197], [198], [195]. 

Moreover, Frankham [199] demonstrated that inbreeding decreases the effective population size 

and can lead to extinction. He also mentioned that the most probable relationship between 

extinction and inbreeding is a threshold relationship with low probability of extinction below that 

threshold and higher thereafter, similar to what we obtained in EcoSim.  

5.4.4.3. Rule Based on KilledRatio (Environmental Feature) 

Rule R7 indicates that when the ratio of prey killed by predators is below a lower critical 

threshold, Tk1, the species tends towards extinction, whereas when the kill ratio is within an 

optimal range (between the lower threshold, Tk1, and a higher threshold, Tk2) the species tends 

towards no extinction. Although the first part of the rule predicting extinction when the kill ratio 

is below Tk1 may not initially seem to make sense, it becomes understandable when applied to 

lower population species which are less affected by predation vs. larger population species. We 

observed lower predation rates for low population species, given that predators tend to gravitate 

towards cells with higher populations. For example, 82% of the species with less than 5 

individuals went to extinction without being affected by predation and 67% of the species with 

five to 10 individuals went extinct without being affected by predation, illustrating that the most 

important reason for extinction of species with low populations is their population size. (27% hit 

ratio of the rules). The second part of the rule predicting non-extinction when the kill ratio is 
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within an optimal range (between Tpr2 and Tpr3) becomes intelligible when applied to larger 

population species (usually more than 100 prey) that are affected by predation but generally do 

not go to extinction (65% hit ratio).  

5.4.5. Combining	the	features	in	each	category	

When we combined the features in each category, we obtained more accurate rules than those 

based on individual features, although the decision tree was more complicated. In all categories 

we observed better AUC values and generally better F-measures in comparison with when we 

used just one feature. Sample rules in the decision tree are shown in Table  5‐9, with the accuracy 

metrics for each category presented in Table   5‐8. For example, in the demographic category, if 

the ratio of births and the socialization ratio (conducive to mating and reproduction) are above 

critical thresholds and the reproductive failure ratio is below a critical threshold, then there is a 

tendency towards no extinction. The accuracy metrics in Table   5‐8 show that the demographic, 

genetic, and environmental categories are effective predictors of species extinction. 

Table  5‐8. Prediction results of different categories when we merged all the features in each category to 

predict extinction 

Category Recall Precision F-Measure AUC Hit Ratio State 

Demography 
0.90 0.92 0.91 0.96 30% Extinct 

0.96 0.95 0.95 0.96 70% No Extinct 

Genetic 
0.88 0.91 0.90 0.92 30.5% Extinct 

0.95 0.93 0.94 0.92 69.5% No Extinct 

Environment 
0.88 0.89 0.89 0.94 30% Extinct 

0.94 0.93 0.93 0.94 70% No Extinct 

Finally, we combined all of the rules from across the three broad categories (Demographic + 

Genetic + Environment) and applied them to the datasets. Altogether, the results shown in Table 

 5‐10 indicate that combining all of the rules across the three categories gives rise to even better 

results than those achieved using rules applied to just one feature or combined rules in an 

individual category. What this demonstrates is that as rules and categories are combined, the 

accuracy level and hence predictive potential increase. This is an interesting result since the rules 

for each feature separately already have a high level of predictive accuracy, although even higher 

levels of predictive accuracy can be achieved by combining the rules, thus augmenting the ability 

to make predictions regarding extinction. Combining all of the rules across all categories covered 

all samples in the dataset. In addition, higher Recall values were reached except for Ext_R2 and 
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NoExt_R2 combined, although in this case the rule coverage was 91%. Moreover, F-measures 

and AUC values improved in comparison with when we used just one feature or individual 

categories. 

Table  5‐9. Sample rules with combined features in each category (~E = no extinction,  = there is a 

tendency towards) 

Category Rule 

Demography (birthRatio> Tb & socializRatio>Ts & reprodFailRatio<Trp)  ~E 

Genetic (matingDist> Tm & parentInvestEnergy<Tsob)  ~E 

Environment (Tk1 <killedRatio ≤ Tk2 & waitRatio> Tw)  ~E 

 

Table  5‐10. Prediction results by applying all rules: Demography + Genetic + Environment (C1: 

combination of all extinction rules; C2: combination of all no extinction rules) 

Rule Recall Precision F-Measure AUC Hit Ratio State 

C1 0.96 0.86 0.91 0.93 30.5% Extinction 

C2 0.93 0.98 0.96 0.93 69.5% No Extinction 

 

5.5. Conclusion	

In this study, we investigated 49 features associated with species extinction in EcoSim, a 

computer-based simulation method shown to agree with real ecosystems. Using several feature 

selection methods along with correlation analysis, we were able to eliminate a number of these 

features, resulting in 14 features which we then placed into the three broad categories of genetic, 

environmental, and demographic. We were able to use these 14 features to investigate whether 

extinction is a predictable phenomenon. For this purpose, we used data extracted from an 

individual-based prey-predator ecosystem simulation. We obtained a rule set for each category 

and showed that these rules can predict extinction in the next 100 time steps with a very high 

level of accuracy. We also demonstrated that these rules are generic by applying a model built on 

a training set to a validation set constructed using completely different simulation runs. In the rule 

extraction phase, we adjusted the pruning rate in the decision tree in order to simplify it. Finally, 

we combined the obtained rules for each of the three basic categories with the results indicating 

higher accuracy, in comparison with each feature separately. The acquired results suggest how 

powerful our proposed machine learning approach can be from several different perspectives. 

First, the proposed approach is able to extract important features in extinction effectively, 
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especially when there is a plethora of features and there is no exact knowledge about them. 

Second, the categorization idea helps to study the effect of features in a more fine-grained way 

and to extract rules associated with them accompanied by an evaluation of their accuracy. This 

may prove to be beneficial for conservation biologists from the point of view of being able to 

detect early signals of extinction. For example, we found that population size of the species and 

also average genetic distance of parents at breeding time in one species are really important 

features as we were able to predict extinction using those features alone with a high accuracy 

comparable to the accuracy level obtained when we used all the features in each categories such 

as genetic, environmental, and demographic. This is particularly useful for being able to obtain a 

high level of predictive accuracy based on a minimum amount of information from the 

environment. Further, this approach can be applied to test new hypotheses regarding new factors 

involved in extinction. While our results are not directly valid for real situations given that our 

model involves a high level of abstraction as well as being a simplification of the real world, our 

results provide interesting insights that could be of aid to biologists in formulating new 

hypotheses relating to species extinction. Finally, the model we have employed has the potential 

to be useful for more dedicated studies focusing on hypotheses emerging from the broad type of 

approach to the prediction of species extinction that we have advanced. Also to be acknowledged 

is the broader innovation of providing a methodology for ecological data analysis based on 

machine learning. 
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Chapter	6	

6. Investigating	of	Species‐Area	Relationship	in	EcoSim	

6.1. Introduction	

The species-area relationship (SAR) is one of the most well-known and oldest patterns in 

ecological modeling [22], [23], [24]. SARs have a number of practical applications for managing 

natural communities. For example, SARs can be used for predicting the extinction rate of a 

species based on habitat loss or reduction [200], [201], for designing optimal reserve sizes [202], 

for identifying hotspots and geographical regions of high species richness [203], for assessing 

human impacts on biodiversity [204], for predicting the species richness of certain taxa based on 

richness of other species [205], and for estimating the species richness of larger regions [206]. 

The fundamental characteristic of SAR modeling is that species richness increases with the 

sampling area, with the increment rate decreasing for larger areas. Identifying the most 

biologically appropriate mathematical SAR model to characterize these behaviors has been one of 

the most important and controversial issues in biodiversity. Two of the earliest and most 

frequently applied mathematical models for the SAR, i.e. the power and logarithmic functions, 

were proposed by Arrhenius and Gleason in the 1920s [22], [23]. Subsequently, a number of 

researchers investigated how well these simple mathematical models fit the field data set obtained 

from different taxa [207], [206], [208], [209], [210], [211]. Others investigated a variety of 

practical applications of SAR models [212], [205], [213].  

Still other researchers considered not only the simple mathematical models, but in addition tested 

new kinds of models based on more complex mathematical functions. Some of these new models 

are an extension of simple SAR models, while others are completely new functions for this 

domain. For example, several authors have argued that there is no universal model to describe all 

data sets and that the best model should be discovered for each data set separately [214], [215], 

[23], [216]. Others have proposed various models for different spatial scales [215], [217], [22]. 

Keeley and Fotheringham [218] have argued for a re-adoption of the traditional exponential 

model for certain kinds of plant data sets while retaining the power model for other kinds of data 

sets, depending on the structure of the plant community.  

However, there is support in the literature for the overall adequacy of the power function family 

in representing species-area relationships. Plotkin et al. [206] proposed a generalization of the 
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power function, whereas Dengler [24] suggested using the simple power function as a general 

model for all kind of species-area data on any scale. Ulrich and Buszko [208], Martin and 

Goldenfield [219], Drakare et al. [220], Surendra and Singh [221], Azovsky [213], along with 

Merwe and van Rooyen [222] all advocate the power function as providing an adequate account 

of species-area relationships with respect to selected data sets. Finally, Triantis et al. [223] 

reported that the power model along with other simple models best represent the island species 

relationship (ISAR). 

There are a number of plausible explanations in the literature regarding the apparent variation of 

SARs at different scales, for different types of species, and for various geographic locations. For 

example, Connor and McCoy [217] argue that the relative abundance distribution of the species 

or the range of sampling in one area can affect SARs. They also believe that different taxa within 

various spatial scales could generate a different functional form of SARs. He and Legendre [224], 

Martín and Goldenfeld [219], and Tjørve et al. [225] have shown that SARs are affected by 

species abundance and spatial distribution factors like species dominance and the level of 

aggregation. Sampling methods may also change the SAR model as discussed in Scheiner [226] 

and Dengler [24]. Drakare et al. [220] have observed that SARs are affected significantly by 

sampling schemes, spatial scales, and types of taxa or habitat. In other experiments, the effect of 

spatial distribution and aggregation information, spatial scale, evenness or measure of distribution 

of relative abundances of different species in a community, species abundance model, latitude, 

self-similarity, and sampling effort have been investigated [224], [227], [220], [225], [228], 

[229], [222], [230].  

Generally speaking, there are a number of shortcomings in the papers published on SAR models. 

First, several studies assume the power function as the default SAR model without considering 

other possible models [220], [221], [231]. Second, sampling methods and sampling scales have 

been neglected in many studies when researchers search for the best SAR models with several 

exceptions such as [232], [212], [233]. Finally, articles in the literature that address the issue of 

how to interpret the SAR coefficients tend to assume the simple power function as the default 

function without considering their meaning with respect to alternative functions [234], [235], 

[236], [231], [237]. 

To help resolve the debate regarding the best SAR function, we employed species richness data 

sets from computer simulations in order to address the following questions. 

1. Is the power function the best suited SAR model overall? 
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2. How do nested sampling and random sampling affect the shape of the SAR curves? 

3. Do different sampling scales affect the SAR models? 

4. Is there any correlation between SAR model coefficients and spatial information? 

To address these questions, we employed our individual-based modeling simulation, EcoSim, to 

investigate the SAR. This method helps with the investigation of the species area relationship by 

considering the abundance and the distribution of species from a finer-grained level of description 

in terms of the behavior of individual organisms. The number of species in a given region is the 

outcome of the evolutionary processes of speciation, extinction, and migration to that region 

which in turn are caused by processes operating at the level of individuals [238]. Thus, it is useful 

to study the dynamics of the SAR at the level of individual organisms which form the species. To 

answer the first three questions, we collected 28 different functions through literature searches 

and examined them for various sampling scales and sampling methods. For the last question, 

using potentially informative spatial information, i.e., spatial factors, gathered from previous 

studies and applying machine learning techniques [193], [239], [240], we attempted to find 

important factors that aid in the interpretation of the models' coefficients. 

6.2. Data	Generation	

The outcome of the interaction between individuals in a given ecosystem gives rise to ecological 

structures such as the species area relationship. We employed EcoSim to investigate the SAR. 

The predator-prey feature of EcoSim is useful in the investigation of the SAR since it contributes 

to species richness along with being a realistic depiction of actually existing ecosystems where 

there are both predator and prey species present. 

Figure  6‐1 shows a snapshot of the world in a time step of the simulation with emerging grouping 

patterns of species and grass distribution. There are several patterns emerging during the 

simulation such as strong clustering of individuals, a high overlap of species spatial distribution 

within clusters, forming coherent clusters with a large amount of empty space (which could lead 

to a barrier effect as for an ocean) among them (in average about 95% of the sub sample are 

empty cells) and also a partial overlap of predators and their prey (see snapshot of the world in 

Figure  6‐1). 
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(a)  (b) 

Figure   6‐1.  The  snapshot  of  the  virtual world  in  one  specific  time  step.  a)The white  color 

represents predator species and the other colors show different prey species. b) The pattern of 

grass in the world 

We used the data extracted from nine independent runs of EcoSim to analyze the spatial 

distribution patterns of the species using different sampling techniques. General information, 

along with the standard deviations, is provided in Table  6‐1. Although the initial parameters are 

the same for all runs, they are completely different because of the chaotic properties of the data 

generated by EcoSim [241], that leads to different interactions between individuals and between 

individuals and their environment and finally results in different runs. Considering the number of 

individuals in each simulation (about 200,000) and their interactions with the environment and 

also considering the large size of the world (1000×1000 cells), and given that each run has 25000 

time steps, it follows that each run differs markedly from the other runs. Moreover, there are a 

few features of the simulations that involve stochasticity. For instance, at initialization time the 

amount of grass units is randomly determined for each cell (a value between 1 and MaxGrass, 

which is a parameter of the simulation).  As another example, the maximum age of an individual 

is determined randomly at birth from a uniform distribution centered at a predefined value 

(MaxAge, see section  2.3.5). 

Various sampling methods are used to obtain the census of species in a habitat to determine SAR 

model. For sampling purposes, we considered four different sampling scales: 150×150 cells or 

small scale (SS); 300×300 cells or intermediate scale (IS); 600×600 cells or large scale (LS), and 

900×900 cells or very large scale (VLS). For each scale, we used two different sampling methods 

that will be discussed in the next section. In addition, we calculated some spatial information 
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which will be introduced later. The sampling and calculation of this information was performed 

every 200 time steps of the simulation to consider different habitat conditions in EcoSim. 

Considering the average speed of movement of the individuals (2.82 cells/time step), 200 time 

steps is reasonable to allow clusters of individuals to migrate and therefore to obtain global 

configurations of spatial distributions that are sufficiently different to be considered as 

independent. With nine runs and 24000 time steps per run (from 1000 to 25000) and four 

different sampling scales, we had 4320 sampling data and spatial information on 1080 different 

habitat conditions. 

Table  6‐1. General information, along with their standard deviations, about the nine runs used for this 

study 

 Prey Predator 

Runs  Species Number Population Species Number Population 

Run1 21 (5.8) 162130 (49254) 5 (3.5) 18414 (6021) 

Run2 33 (9.2) 202820 (25536) 19 (5) 32108 (5845) 

Run3 30 (6) 185970 (30750) 18 (4.5) 29831 (5350) 

Run4 23 (11.5) 162096 (72170) 12 (7.8) 18055 (8058) 

Run5 23 (8.6) 151581 (51858) 5 (4) 17309 (7542) 

Run6 32 (7) 205620 (32319) 20 (5.97) 32397 (5038) 

Run7 30 (8.8) 208020 (29776) 14 (6) 23224 (4855) 

Run8 30 (7) 202566 (31781) 19(5) 34326 (5640) 

Run9 26(9) 183714 (43584) 10(6) 19297 (5800) 

 

Beta diversity measures the variation in species richness between habitats, which can then be 

used to explain z-values for the power function family of SAR equations, as was done for 

example in [242]. In order to measure beta diversity, we used two R packages i.e. Betapart [243] 

and NStar [244] to calculate four beta diversity indices: the turnover and nestedness components 

of the Sorensen indices; the familiar Whitakker function measuring beta diversity as a proportion 

of gamma diversity (species diversity in a landscape) to alpha diversity (species diversity in a 

habitat within a landscape), and finally, N* which is an extended version of the Whittaker 

function that measures how species occupancies vary across regions [244]. The Sorrenson and 

Jaccard indices along with the Whittaker function measure what Storch et al. [245] call ‘broad-

sense’ species turnover where the magnitude of gain or loss of species is ignored. On the other 

hand, the N* function measures what Storch et al. [245] call ‘narrow-sense’ species turnover 

where gain or loss of species are taken into account. 
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 We picked 20 random time steps of the simulation and calculated the beta diversity measures for 

the four defined sampling scales (SS, IS, LS, VLS) and the two sampling methods (random and 

nested). For the purpose of replication, we repeated the sampling 30 times for each scale in each 

selected time step and then computed the average beta diversity measures. Finally, we performed 

a regression analysis for N* and the slope z in order to discern a possible relation between beta 

diversity and the slope z which measures the rate of species increase for a given area [236]. 

6.3. Sampling	methods	and	Curve	fitting	

Two main sampling approaches were applied: nested and independent areas sampling, i.e., 

random sampling [217]. Mean species richness was calculated taking inherent stochasticity into 

account. For every 200 time steps of the nine simulation runs, we repeated the following 

procedure for four different sampling scales: We picked 30 random cells as the centres for nested 

sampling as well as the starting points of the random sampling. The sizes of the subplots are 

based on sampling scales. For example, for SS, they are equal to (SS - k × delta) ×(SS - k ×delta) 

where k=1 for the largest subplot and k=24 for the smallest one.  When other sampling scales are 

used k varies from 1 to 29 and delta is 6, 10, 20 and 30 for SS, IS, LS and VLS, respectively. For 

example, in the case of small scale size (SS), we used a 150×150 plot size as the main plot around 

all the 30 centres and calculated the mean species richness for them (Figure   6‐2 (b)). Then we 

built inner subplots by decreasing the dimensions of the main plot by a quantity delta and again 

calculated the average richness (Figure  6‐2 (a)), repeating this step 25 times for SS and 30 times 

for the remaining sampling scales. In other words, we placed 30 main plots in the world and then 

calculated the mean species richness for the subplots with equal sizes located inside the main 

plots. We used a delta value of 6, 10, 20 and 30 for SS, IS, LS and VLS, respectively. For the 

previous example, subplot sizes were 144 × 144, 138 × 138, 132 × 132 ... . The smallest subplots 

in SS, IS, LS and VLS are 6×6, 10×10, 20×20, and 30×30 respectively. Similarly, in random 

sampling, in each main plot we calculated the average richness of the same subplot sizes 

(decreased by delta each time) as in nested sampling but instead of nested placement, we used 

random sampling (Figure  6‐2 (c)). Similar to nested sampling, we recorded the mean richness of 

every plot size. Obviously, in random sampling, depending on the initial positions of sub-plots, 

there is the possibility of overlapping sampling areas. 
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Entire sampling data sets were fitted with 28 functions (Table  6‐3) collected from several articles 

[246], [214], [215], [23], [216], which are widely considered as the most promising functions to 

describe the SAR. For this purpose, the non-linear regression algorithm implemented in Python 

libraries was employed (www.python.org). A genetic algorithm [247] was applied to find the best 

starting point of the regression because sometimes the fitting result was not good due to the 

random starting points (some parts of the implementation were obtained from http://zunzun.com). 

For the evaluation of fit, we applied AICc (Akaike's Information Criterion corrected for small n) 

(Equation 6-1) as the goodness-of-fit criterion and ∆AICc rank (Equation 6-2) to sort the 

functions based on average rank in the whole data set, as defined in Burnham and Anderson 

[248], and Dengler [24]. In fact, for every data set, we calculated the rank of each function based 

on ∆AICc and then the mean rank of all the functions on all data sets. The function with the 

lowest ∆AICc has the best rank. R2
adj (Equation 6-5) was also calculated to show the quality of 

the fit. In addition, we used the extrapolation capability of functions as another criterion. For this 

purpose, we defined Extrapolation Sum of Square Error (ESSE) as the square of difference 

between the species richness predicted by the model and the real richness value for 20% of the 

largest areas in every data set of our 4320 data sets. In this case, for every data set, we removed 

the 20% largest area, fitted the rest of the data set to all models, and then calculated ESSE for the 

largest area we removed. Finally, to verify the significance of the fit, the F-test was applied. For 

normality analysis, the Shapiro-Wilk test was applied. Table   6‐2 summarized the developed 

algorithm to find the best SAR model.  

 

(a)          (b)                   (c) 

Figure  6‐2. The two applied sampling methods for 30 main plots (grey boxes) with four different sizes, 

SS, IS, LS and VLS sizes. The richness is calculated by averaging over each of the equal size subplots 

(dotted box) for the 30 main plots. 25 subplots were used for SS and 30 for the rest of sampling scales. 

The sizes of the subplots are based on sampling scales. a) nested sampling used in every main plot,  b) 

30 main plots in the habitat,  c) random placement 
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Table  6‐2. The algorithms to find the best SAR model (Part I) and to build the classifier (Part II) for the 

selected SAR function 

Part I : Find_SAR_Functions_Ranks 

1) Run EcoSim in order to generate the species distribution patterns 

2) For each 200 time steps of the simulation 

2.1) For each area size in {SS, IS, LS, VLS} 

2.1.1)   Perform nested sampling 

2.1.2)   Perform random sampling 

2.1.3)   For each function in {F1 to F28} 

2.1.3.1)     Apply curve fitting method on the obtained sampling data 

             End of 2.1.3. 

2.1.4)   Calculate the rank and the function's goodness of fit         

2.1.5)   Select the best SAR function 

       End of 2.1. 

2.2) Calculate species distribution patterns (needed for part II) 

End of 2. 

3) Calculate the average rank of all functions 
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Part II: Extract_Rules_For_Selected_SAR_Function 

1) Extract coefficient values for the selected SAR functions from part I 

2) For each coefficient of the selected SAR function 

2.1) Discretize the coefficient values in two bins ( low and high i.e. class labels) 

2.2) Use the spatial information obtained in part I as the features and merge them  with the 
class labels in previous step to build the data sets (training and testing set) for 
prediction model.  

2.3) Apply c4.5 algorithm on data set to build the prediction model 

2.4) Extract the high coverage rules from decision tree and calculate the accuracy 

   End of 2. 

 

Table  6‐3. Different SAR functions available in the literature (x is the independent variable which shows 

the area and the parameters are named from 'a' to'd') 

ID Curve name Function Parameters 

(upper asymptote) 

Shape 

F1 Power bax  2 (no) convex 

F2 Extended power 1 (EPM1) cbxax
  3 (no) convex 

or 

sigmoid 

F3 Extended power 2 (EPM2) )(
x

c
b

ax


 
3 (no) sigmoid 

F4 Persistence1 (Plotkin) (P1) )( cxExpax b  3 (no) convex 

F5 Persistence2 (P2) 
)(

x

c
Expax b   3 (no) sigmoid 

F6 Logarithmic  )log( xba  2 (no) convex 

F7 Kobayashi logarithmic 
)1log(

b

x
a   2 (no) convex 

F8 Negative exponential ))(1( bxExpa  2 (yes) convex 

F9 Chapman-Richards cbxExpa ))(1(  3 (yes) sigmoid 

F10 Cumulative Weibull 

distribution 

))(1( cbxExpa  3 (yes) sigmoid 
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F11 Cumulative beta-p distribution 
)))(1(1( bd

c

x
a   4 (yes) sigmoid 

F12 Common logistic 
)(1 cbxExp

a


 3 (yes) sigmoid 

F13 Archibald logistic 
xcb

a


 3 (yes) sigmoid 

F14 Logistic with location 

parameter 
))((1 cxbExp

a


 3 (yes) sigmoid 

F15 Gompertz  )))((( cbxExpExpa   3 (yes) sigmoid 

F16 Gompertz with location 

parameter 

))))(((( cxbExpExpa   3 (yes) sigmoid 

F17 Morgan–Mercer–Flodin 

 
c

c

xb

ax


 

3 (yes) sigmoid 

F18 Lomolino  

x

c

b

a

log
)(1

 
3 (yes) sigmoid 

F19 EVF with location parameter ))))(((1( cxbExpExpa   3 (yes) sigmoid 

F20 Rational  
cx

bxa




1
 3 (yes) convex 

F21 Asymptotic regression xbca   3 (yes) convex 

F22 Michaelis–Menten (Monod) 

xb

ax


 

2 (yes) convex 

F23 He–Legendre  
cxb

a


 3(yes) sigmoid 

F24 Generalized cumulative 

Weibull distribution 

))))(((1( dcxbExpa   4 (yes) sigmoid 

F25 Power (quadratic) )2))(log()log((10 xcxba   3 (no) convex 

F26 Logarithmic (quadratic) 2))log(( xba   2 (no) convex 

F27 Logarithmic  

(general power) 

cxba ))log((   3 (no) convex 

F28 Extreme value  ))(1( cbxExpa  3 (yes) sigmoid 
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6.3.1. Rule	extraction	

One of the important issues related to SARs is to understand what spatial information affects the 

shape of SARs and to investigate the likely relation between spatial configuration and function 

coefficients. 

The second part of our method involves proposing a machine learning approach to discover 

spatial information associated with the functions' coefficients. For this purpose, we calculated 

several important factors which we gathered from the literature and which were applicable to 

EcoSim. Therefore, for each given time step we calculated number of patches (PatchNum); 

average patch size (PatchSizeAvg) where patch size is the number of cells in the patch (The 

average patch size is 3±3 cells in our case), area and perimeter of patches, fractal dimension 

(FracDim) of the spatial distribution of the individuals in the world using the box-counting 

method [249] and contagion. We also calculated for each time step spatial complexity, SC, a 

modified version of spatial temporal complexity STC [250] for a two-dimensional world. SC 

determines the level of patchiness of the world, where higher values correspond to very complex 

patterns that consist of irregular patches with different sizes (something close to a random 

distribution) and where lower values show patterns with large-sized regularly shaped patches 

consisting of fully occupied or completely empty areas). Other factors were species richness, 

population, and sampling scale (SScale). For each time step of the simulation we performed 

calculations on all of this information. 

To investigate which factors are effective for predicting any of the SAR models’ coefficients’ 

values, we discretized each coefficient into two bins showing high or low values and employed 

these values as the class labels for the data generated for every time step of the simulation that we 

used for sampling. Therefore, we built a data set in which each row described the spatial factors 

in a specific time step, with a class label that specified the value of the coefficients (low or high). 

The reason why we used two bins is that the more bins considered, the more complicated and 

more difficult the classification is, leading to a lower accuracy. Then, using machine learning 

techniques, we tried to classify the different habitat conditions based on the aforementioned 

factors such as habitat, with larger or smaller numbers of species, larger or smaller populations, 

and dispersed or aggregated spatial distribution of population. In this way, we were able to 

discriminate between various habitat conditions and different coefficients values (low or high).  

For this 2-class classification problem, the C4.5 algorithm [128] was applied because, in addition 

to the classification, it provides a decision tree that can easily be used to extract rules that can 
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explain which factors are involved in determining the value of a coefficient. In addition, several 

feature selection algorithms such as BestFit, GreedyStepwise, LinearForwardSelection, 

RandomSearch, and Ranker in Weka [172] were used to select the most important factors based 

on the ability to discriminate between different conditions. Then, the factors selected by most of 

the algorithms were retained. As a result, in addition to selecting the best factors, we avoided the 

overfitting problem (the learning of too specific rules of the learning set with weak predictive 

ability) and also decreased the number of rules obtained from the decision tree focusing on the 

most significant ones. The data set was split for each sampling method into a training set and a 

test set in such a way that 70% of the instances are in the training set and the rest are for the 

testing and evaluation of the classifier. We calculated the accuracy for every rule in the decision 

tree and selected the rules with the greatest accuracy (more than 70%).  

6.4. RESULTS	AND	DISCUSSION	

6.4.1. Effect	of	sampling	scale		

We found that F1, the power function, had a higher rank (lower delta-AICc value) in SS and IS 

than LS and VLS for both random and nested sampling. Likewise, F25, the quadratic power 

function and F2, the extended power function, had a higher rank in SS and IS than LS and VLS 

for nested sampling. This shows that F1, F25, and F2 (all generating convex curves) are more 

suitable models for small to intermediate sampling scales. On the other hand, F9, the Chapman-

Richards function and F18, the Lomolino function, and F24, the generalized cumulative Weibull 

distribution (all of which generate sigmoid curves) had higher ranks in LS and VLS than in SS 

and IS for both sampling methods. The dependence of the shape of the SAR curve on sampling 

scale has also been observed by Triantis et al. [223]. The best performing functions did not have 

any asymptotes for SS and IS sampling scales, while LS and VLS had an upper asymptote (Table 

 6‐4). However, what is also worth noting is that F4, the Plotkin persistence function, which is in 

the power function family, was the only function in the top six rankings for all sample scales for 

both random and nested sampling. This suggests that the overall best-suited SAR model is an 

extended power function. 
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Table  6‐4. The six best functions ranked based on ∆AICc (the values in parenthesis) for different 

sampling scales and the two sampling methods: nested and random. 

SS IS LS VLS 

Nested Random Nested Random Nested Random Nested Random 

F4 ( 6.7 ) F4 (5.0) F25 (6.2) F4 (4.1) F17 (5.4) F9 (4.1) F24 (3.7) F9 (3.3) 

F25 (6.9) F9 (6.6) F17 (6.2) F9 (4.5) F4 (6.0) F4 (4.2) F9 (4.1) F4 (3.6) 

F23 (7.1) F17 (6.9) F4 (6.3) F17 (4.6) F18 (6.1) F17 (4.3) F4 (4.2) F24 (4.9) 

F2 (7.1) F20 (7.8) F23 (6.4) F18 (5.7) F25 (6.2) F18 (4.5) F18 (5.5) F18 (4.9) 

F17 (7.7) F18 (8.0) F2 (6.6) F23 (6.5) F2 (6.6) F23 (6.0) F11 (6.0) F17 (5.9) 

F24 (8.0) F23 (8.7) F18 (8.0) F25 (7.6) F9 (6.7) F25 (6.6) F17 (6.7) F25 (6.8) 

 

Fridley at al. [251] and Dengler [24] believe that the best performing SAR functions do not have 

upper asymptotes, which agrees with our findings regarding the best-suited functions for SS and 

IS but which disagrees with our findings regarding the best-suited functions for LS and VLS. One 

plausible explanation for finding upper asymptotic functions to be the best-suited SAR functions 

for large and very large sampling scales is that the kinds of species are limited by the maximum 

size of the world in EcoSim. In support of this explanation, He and Legendre [215] and Tjorve 

[23] argue that there will be upper limits to the number of species that are able to colonize a given 

land area, so that curves describing the relationship between species richness and land area will 

have upper asymptotes as the size of the land area increases. In opposition to this view, Dengler 

[24] argues that even if it is granted that the limits of a given land area impose real limits on the 

number of species that can co-exist in that area, it does not follow that the best-suited SAR curve 

will be asymptotic. To back up this claim, he argues that the empirical data do not support the 

existence of upper asymptotes with respect to the variety of species that can occupy larger land 

areas [24].  

However, a recent study conducted by Triantis et al. [223] testing 20 SAR models using 601 

empirical data sets from terrestrial islands suggests that for at least very large land areas, the best-

suited SAR functions are sigmoidal even though the power function is the best-suited SAR model 

overall. These findings cohere with our results regarding the best SAR model as discussed below. 

In Table   6‐4, we present the six highest ranked functions for each sampling scale across both 

sampling approaches using ∆AICc rankings. What is noteworthy is that the highest (#1) ranked 
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SAR models for SS and IS are convex whereas the highest ranked (#1) SAR models for LS and 

VLS are sigmoidal. This concurs with the empirical findings of Triantis et al. [223].   

We conclude that although the power function family tends to be the best ranked function, SAR 

models are highly dependent on sampling scale and sampling approach as we found several high-

ranked SAR functions with respect to various sampling scales for the two different sampling 

strategies (Table  6‐4). 

6.4.2. Effect	of	Sampling	Method:	Nested	vs.	Random	sampling	

The fitting process, in both sampling approaches, was highly significant (p<0.0001 in most cases) 

and the residuals were normal (p>0.05) which indicates that we cannot reject the normality 

hypothesis. In general, we observed that most of the functions had a higher rank in random 

sampling than in nested sampling. One possible explanation is that there is higher stochasticity in 

the random sampling versus nested sampling method. For nested sampling (Table  6‐5), we found 

the persistence1 function or Plotkin (F4), a modification of the power function, to be the highest 

ranked using the ∆AICc rank criterion. This function provides a very good fit with real data sets, 

such as for the Polish butterfly species [208]. The second highest ranked function for nested 

sampling was the quadratic power function (F25), which was followed by the Morgan-Mercer-

Flodin (F17) and the extended power (F2) functions. All the functions mentioned above generate 

convex curves with no asymptotes except for F17 which generates a sigmoid curve. F17 was the 

highest ranked and the third highest ranked for LS sampling scales, consistent with what was said 

above. Therefore, the SAR models in the power function family were the highest ranked for 

nested sampling using the delta-AICc rank criterion. 

For random sampling (Table   6‐6), the highest ranked function overall was F4 followed by F9 

(Chapman-Richards function) and F17. F4 was also most frequently the highest ranked function, 

followed by the simple power function (F1). Although F1 had the second highest frequency of 

being the best ranked function (about 14%), its rank was lower than certain other functions 

(functions above F1 in Table   6‐6) for the remaining samples. Consistent with what was said 

above regarding the dependence of goodness of fit on sampling scale, the sigmoidal F9 function 

was the highest ranked SAR function for LS and VLS scales (see Table   6‐6). As with nested 

sampling, a few of the functions were in no cases the highest ranked function when fitted with 

data samples. The lowest ranked functions were the same as those for the nested sampling 

method, thereby demonstrating a consistency between the two sampling methods for these 

functions. 
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Table  6‐5. Average goodness‐of‐fit values (AICc, R2
adj ), using nested sampling for 28 different functions 

sorted based on ∆AICc rank. AICc STD is standard deviation of AICc. Frequency is the proportion of the 

samples for which a function is the best fitted function. Extrapolation rank shows the rank of 

extrapolation capability. 

Function AICc AICc 

STD 

Frequency ∆AICc 

Rank 

Extrapolation 

Rank 

R2
adj 

F4 -88.2 27.9 25.5% 5.8 10.2 0.997 

F25 -84.6 30.3 7.0% 6.5 9.1 0.997 

F17 -83.2 32.4 7.5% 6.5 9.1 0.996 

F2 -83 31.7 6.4% 7.1 9.4 0.996 

F9 -84.4 32.1 5.8% 7.3 8.4 0.983 

F18 -84.9 27.8 0.6% 7.5 7.8 0.996 

F24 -79.3 51 14.0% 7.6 9 0.957 

F11 -83.4 29.2 1.3% 9.2 8.7 0.996 

F23 -68.8 61.4 0.9% 9.6 12.6 0.982 

F3 -70.7 38.7 4.8% 10.2 11 0.995 

F5 -69 39.3 2.3% 11.4 11.5 0.995 

F20 -61.7 37.6 5.1% 11.5 10.7 0.993 

F1 -60.5 45 8.0% 12.4 13.1 0.992 

F10 -64.9 46 1.8% 12.5 12 0.993 

F27 -58.1 49.8 3.3% 13.6 11.8 0.975 

F21 -47.4 43.2 3.1% 14.2 14.7 0.99 

F7 -51.1 33.8 1.4% 15.5 11.1 0.989 

F28 -44.1 44.1 0.0% 16.8 16.2 0.979 

F26 -43 30.2 0.3% 17.5 12.3 0.985 

F22 -29.5 40.9 0.2% 19.9 16.5 0.98 

F16 -19.8 43.8 0.1% 21.2 20.8 0.976 

F8 -12.9 45.7 0.2% 23.2 22.1 0.967 

F13 2 54.3 < 0.1% 24.2 24.3 0.883 

F15 23.2 70.1 0.3% 24.3 24.4 0.787 

F14 -6.1 43.5 0.0% 24.7 24 0.963 

F12 32.4 60.5 0.0% 25.9 26.5 0.768 

F19 6.1 44.2 < 0.1% 26.3 26.4 0.944 

F6 28.6 36.7 0.0% 27.3 25.5 0.864 
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Table  6‐6. Average goodness‐of‐fit values (AIC, ∆AICc, R2
adj ), using  random sampling 

Function AICc 

Mean 

AICc 

STD 

Frequency ∆AICc 

Rank 

Extrapolation 

Rank 

R2
adj 

F4 -45.6 21.5 33.4% 4.2 13.1 0.988 

F9 -43.9 26.2 12.5% 4.6 13 0.971 

F17 -42.9 23.2 8.3% 5.4 13.2 0.987 

F18 -44.4 21.7 0.6% 5.8 12.9 0.987 

F25 -42.7 22.3 2.4% 7.8 13.6 0.987 

F2 -41.8 23.3 1.7% 8.8 13.7 0.986 

F23 -30.1 45.6 0.0% 9.8 14.6 0.971 

F20 -36.6 26.3 8.0% 10 12.7 0.986 

F24 -35.9 40.5 1.5% 10.1 13.5 0.946 

F11 -41.1 22.5 0.1% 11.6 13.1 0.986 

F7 -35.4 25.5 6.5% 12.1 12.6 0.984 

F1 -29.6 31.2 13.9% 13.2 15 0.982 

F3 -34.5 26.3 0.6% 13.3 14.4 0.985 

F10 -30.7 31.2 2.2% 13.4 14.3 0.983 

F21 -27.5 31.3 4.4% 13.7 13.4 0.982 

F27 -28.7 33.7 1.2% 13.8 14.4 0.97 

F5 -33.5 26.8 0.2% 14.4 14.6 0.984 

F26 -32 25.2 1.4% 15.1 12.8 0.982 

F28 -26.3 32.1 0.0% 15.9 14.6 0.974 

F22 -20.1 32.9 0.5% 18.7 13.9 0.977 

F16 -9 35.8 0.1% 21.6 15.9 0.969 

F8 -5.8 38.5 0.1% 22.5 16.7 0.964 

F13 9.7 48.4 0.0% 24.6 18.1 0.876 

F15 32.3 62.4 0.4% 24.7 19.9 0.776 

F14 1.8 37.5 0.0% 25.1 17.6 0.956 

F12 39.2 55.5 <  0.1% 26.3 21.1 0.756 

F19 12.5 39.2 0.0% 26.6 19.2 0.936 

F6 28.8 36.2 0.0% 27.3 18.8 0.874 

 

For both nested and random sampling, we know that F1 and F4 are both in the power function 

family, which strongly supports the idea that the power function family is the best fitting 

candidate for SARs, as argued in [210], [24]. This idea is strengthened when we examine the 
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ranks of F25 and F2 in both sampling methods. F17 was one of the functions that demonstrated a 

good fit for both sampling approaches with a rank very close to F9 as these models behave 

similarly [23]. F9 was also tested in [214] and reported it as having a good performance. F18 also 

had a relatively good rank as reported in several studies in [24], [210]. 

Regarding extrapolation capability for nested sampling (Table  6‐5), the Lomolino function (F18) 

had the highest rank, followed by the Chapman-Richards (F9) and the cumulative beta-P 

distribution (F11) functions. The high extrapolation capability of F18 makes sense given that it 

was consistently ranked in the top 6 SAR functions (except for SS nested sampling) indicating its 

high degree of fit with the data across sampling methods and sampling scales. Moreover, our 

results regarding the high extrapolation capability of the F18 function agrees with the findings of 

[252]. F25, F17, and F2 had the next highest ranks. F6, F19, and F12 had the poorest 

extrapolation capability, similar to their ∆AICc rank. In random sampling (Table   6‐6), the 

Kobayashi logarithmic (F7) and the rational (F20) functions were the highest ranked functions 

with respect to suitability for extrapolation followed by the quadratic logarithmic (F26) and F18 

functions. The quadratic and simple power functions (F25, F1) performed well and moderately 

well, respectively. F4 also performed well in terms of extrapolation toward smaller scales. F4 was 

the best model in this regard amongst the 28 functions studied for both nested and random 

sampling. (We removed 20% of smallest areas and fitted the rest of the data set to all models, and 

then calculated ESSE and the rank of all functions for the smallest area that were removed). 

6.4.3. Beta	diversity	analysis	and	the	explanation	of	slope	z	

As mentioned above, beta diversity is a measure of species turnover between habitats that can be 

used to estimate and explain the slope z of the power function and its variants [253]. We 

calculated 4 indices of beta diversity across the 4 sampling scales as described in section 6.3. We 

found that z decreased in value from smaller sampling scales to larger sampling scales (see Figure 

 6-3 and Table  6‐7), which coheres with the empirical findings in [236], [237]. This result suggests 

that z can be regarded as a measure of the rate of increase of species [236]; where for larger 

scales, the rate of increase is lower than it is for smaller scales given that there are already many 

species for the larger areas. Similarly, we found that the Whittaker and N* beta diversities 

decreased as the sampling scale increased (see Figure  6-3). The inverse relationship that we 

observed in our simulation study between turnover and sampling scale has in fact been observed 

in a number of empirical studies [254], [255], [256].  The above results suggest that there is a 

direct linear relationship between z and indices of beta diversity. That is, as species turnover 
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increases so does slope z. In particular, we found significant linear regressions for z vs. N* for all 

the sampling scales except for SS (see Figure   6‐4), thereby making possible the estimation of z 

from N* consistent with [253] for all but the smallest sampling scales. This result provides an 

explanation of the slope z: A possible reason for the decrease of the value of z is that there will 

presumably be a less pronounced difference from habitat to habitat in the kinds of species found 

(less turnover) given that there are more kinds of species found in larger land areas and hence 

more continuity between habitats [245]. An additional result relating to beta diversity is that there 

is a significant linear regression between N* vs. Sorenson turnover (p = 0.001) where N* and 

turnover vary directly, and that there is a moderately significant linear regression between N* vs. 

Sorenson nestedness (p = 0.05) where N* and nestedness vary inversely (see Figure  6‐5). These 

results make sense for two reasons. First, N* is an extension of the Whittaker index which itself is 

a measure of species turnover and second, as nestedness increases, presumably there would be 

less species gain and loss (lower N*) from one habitat to the next given that they share some 

species in common. 
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scales along with the power function coefficients 
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Table  6‐7. Average z‐value along with standard deviation for different sampling scale size. The results 
show larger z‐value in smaller sampling scales 

Sampling scale/ 

Sampling method 

SS IS LS VLS 

Nested 0.54(0.1) 0.51(0.08) 0.46(0.08) 0.4(0.07) 

Random 0.48(0.05) 0.49(0.06) 0.45(0.07) 0.4(0.07) 

 

 

 

 

Figure  6‐4. Regression analysis of the average N* and z‐value for four different scales 
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6.4.4. Coefficients	interpretation	based	on	rule	extractions	

As Gould [235] pointed out, many biologists have thrown up their arms adopting the view that 

SAR coefficients have no biologically real interpretation. An important result of our rule 

extraction technique is that it offers a relevant interpretation of the SAR coefficients in terms of 

spatial configuration along with spatial scales, ranging from moderate to very high levels of 

accuracy. For this purpose, we chose two functions: the Plotkin function F4, the highest ranked 

function for both sampling approaches and the simple power function, F1, the best ranked 

function for nested sampling amongst models with two coefficients.  

Table  6‐8 provides a list of extracted rules for the Plotkin function (F4) that paves the way for an 

interpretation of the coefficients 'a', 'b' and 'c' both for nested sampling (except for the constant 'c') 

and for random sampling. Each rule listed in Table   6‐8 shows how these coefficients behave 

under a variety of conditions for both nested and random sampling. With respect to the coefficient 

'a' for nested sampling, we see that 'a' is low when spatial complexity (SC) is less than or equal to 

its threshold (tsc) value and when the average patch size is greater than its threshold value 

(accuracy of 0.84). On the other hand, 'a' is high when SC is higher than its threshold value 

(accuracy of 0.79). Similar rules with even higher levels of accuracy (0.92, 0.85) were extracted 

for random sampling (see Table  6‐8 for further details). 

Table  6‐8. Extracted rules for F4 coefficients. Spatial complexity, patch size average, sampling scale size, 

and fractal dimension are the main factors to determine the coefficients values 

 Condition Coefficient Hit Ratio Accuracy 

N
es

te
d

 S
am

p
lin

g (SC ≤ tsc) and (PatchSizeAvg > tps) Low a 0.38 0.84 

SC > tsc High a 0.48 0.79 

(PatchNum > tpn) and (SScale > IS) Low b 0.26 0.75 

(PatchNum ≤ tpn) and (SScale > SS) High b 0.35 0.72 

R
an

do
m

 S
am

p
lin

g 

(SC < tsc) and (PatchNum < tpn) Low a 0.36 0.92 

SC > tsc High a 0.48 0.85 

(FracDim >  tfd) and (SC < tsc)  Low b 0.29 0.74 

FracDim ≤  tfd High b 0.48 0.71 

SScale > IS Low c 0.50 0.99 

SScale ≤ IS High c 0.50 0.88 
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 Intuitively, these rules indicate that the coefficient 'a' varies with respect to SC and either average 

patch size (nested sampling) or number of patches (random sampling). As Connor and McCoy 

[234] observe, the coefficient ‘a’ had been virtually ignored by biologists up until that time with 

the exception of Heatwole [257] who suggested that ‘a’ is related to the minimum area necessary 

to sustain a given species. Connor and McCoy [234] ultimately conclude that ‘a’ should be 

regarded simply as an uninterpreted constant given that some of its values for empirical data are 

negative and hence they have no real biological meaning. In subsequent articles, the coefficient 

‘a’ has simply been taken to denote the average number of species per unit area [208], [258]. 

What our results suggest is that for the Plotkin function, the magnitude of the coefficient ‘a’ (that 

is, the average number of species per unit area) is directly proportional to the spatial complexity 

of a given area so that ‘a’ can also be interpreted as an indicator of spatial complexity. In a world 

with high spatial complexity, there are less empty spaces so the probability of finding more 

individuals increases, which therefore increases the probability of finding new species. As a result 

'a' will have a higher value. On the other hand, with lower spatial complexity, there are more 

empty spaces, which leads to a lower probability of new species’ occurrence and a lower value of 

'a' [250]. 

Although we were unable to extract rules leading to an interpretation of the coefficient 'c' for 

nested sampling, we were able to extract rules with very high degrees of accuracy for random 

sampling. For random sampling, the coefficient 'c' varies with respect to the size of the sampling 

scale. When the sampling scale is greater than an intermediate size (IS), the coefficient 'c' is low 

(accuracy of 0.99), although when the sampling scale is smaller (less than or equal to IS), the 

coefficient 'c' is high (accuracy of 0.88). Ulrich and Buszko [258] suggest that ‘c’ might be a 

corrective for deviations of the power function at smaller sampling scales. If this interpretation is 

correct, then higher values of ‘c’ for smaller scales may correct for errors in the power function at 

these smaller scales. The inability to find rules leading to the interpretation of 'c' for F4 for nested 

sampling along with relatively moderate accuracy levels in some cases reveals the complexity of 

the problem. In classification problems, finding a linear or non-linear function which is able to 

discriminate between several classes is not always easily achievable. Using different 

classification algorithms such as support vector machine [259] may improve the results although 

for our experiments, these algorithms did not improve the results, therefore, we do not report 

those results here. It is possible that adding new factors could improve the classification accuracy 

although we will reserve that experiment for a future study. 
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Finally, 'b'(slope z) varies with respect to patch number and sampling scale size for nested 

sampling (accuracy of 0.75, 0.72) and it varies with respect to fractal dimension, SC and 

sampling scale size for simple random sampling (accuracy of 0.74, 0.71).With respect to the slope 

'b' the rules in Table  6‐8 indicate that in larger areas, 'b' is relatively low (SScale > IS), whereas in 

smaller areas, 'b' is relatively high (SScale > SS). This result agrees with experimental data cited 

by Martin [236]. According to Martin, the slope 'b' in the power function measures the rate of 

species increase so that larger values of z are associated with higher rates in the increase of new 

kinds of species [236]. Using three spatially neutral models, Cencini et al., [231] also found that 

as the rate of speciation increases so does the value of z. Martin [236] hypothesizes that in larger 

areas, there is a lower rate of increase in species diversity given that a high number of species 

already co-exist, so that the number of species that have not yet colonized decreases. In a recent 

empirical study, Franzen et al., [237] found that as the range size of an ecosystem increases, the 

value of slope z decreases (meaning a lower rate in the increase of species diversity), which 

agrees with the results of our study.  

Further, with respect to the rules in Table  6‐8 relating to the Plotkin function (F4), both for nested 

and random sampling, there are a number of factors in the conditions governing the relative size 

of 'a', 'b', and 'c' such as sampling scale (SScale), patch numbers, fractal dimension, average patch 

size, and spatial complexity (SC). This agrees with a suggestion made by Connor and McCoy 

[217] that there are possibly multiple non-mutually exclusive causes contributing to species-area 

relationships. 

Table   6‐9 provides a list of rules extracted for the simple power function, F1, with respect to 

nested sampling. The coefficient ‘a’ and the slope ‘b’ (z-value) both vary with respect to fractal 

dimension (a measure of spatial complexity), tempered by spatial scale. In particular, the value of 

‘a’ is low for smaller spatial scales and its value is high for larger spatial scales (see Table  6‐9). 

This makes sense given that in larger land areas there will tend to be more kinds of species 

present. The value of slope ‘b’ is low when the fractal dimension exceeds its threshold value 

relative to larger spatial scales (accuracy of 0.90). On the other hand, ‘b’ has a high value when 

the fractal dimension is below its threshold value relative to smaller spatial scales (accuracy of 

0.82). These results once again agree with the experimental data in [236] and [258]. Moreover, 

there is a consistency between how ‘b’ behaves for F1 and how it behaves for F4 given that its 

magnitude varies directly with spatial scale. Finally, it is worth noting that the conditions of the 

extracted rules for F1 (low fractal dimension paired with smaller spatial scale; high fractal 

dimension paired with larger spatial scale) are realistic since they agree with the observations of 
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Nams and Bourgeois [260] that in natural habitats, fractal dimension tends to vary directly with 

spatial scale.  

Table  6‐9. Extracted rules for F1 Coefficients in nested sampling (tfd, tfd* are threshold values so that 

tfd<tfd*) 

Condition Coefficient Hit Ratio Accuracy 

(FracDim≤  tfd) and (SScale ≤ LS) Low a 0.38 0.87 

(FracDim>  tfd) and (SScale > IS) High a 0.25 0.94 

(FracDim≤  tfd*) and (SScale ≤ IS) High b 0.32 0.82 

(FracDim>  tfd) and (SScale >IS) Low b 0.25 0.90 

 

Our results indicate that for the best ranked functions and across the two sampling methods, we 

were able to determine the meaning of the coefficients with a reasonable degree of accuracy. 

These results are a significant gain given the relative paucity of articles attempting to elucidate 

the meaning of coefficients in high performing SAR functions. 

6.4.5. Verification	of	the	rules	extracted	for	F1	and	its	extension	F4		

To verify the extracted rules for F1 and F4, we performed several regression analyses between 

spatial features versus the power function family coefficients (For all the regression analysis 

p<0.00001). We found that 'b' had an inverse relation with fractal dimension (R2=0.27), patch 

number (R2=0.25), and SC (R2=0.28). With higher fractal dimension, the species accumulation 

rate is faster which leads to lower 'b' [245]. There is a similar scenario when patch number or SC 

increases. However, 'b' had a direct linear relation with contagion (R2=0.3) and average patch size 

(R2=0.25). Larger contagion which implies larger patch size, leads to less accumulation of species 

due to the fact that the individuals in a patch are mostly from the same species given that they 

tend to group together for reproductive purposes. This results in a higher 'b' value. We also 

observed a direct linear relationship between 'a' and fractal dimension (R2=0.25). This finding is 

meaningful since 'a' is an estimation of the average number of species per cell and given that 

increasing fractal dimension increases the probability of finding new species. The reason that 

only sampling scale, SC and fractal dimension appeared in the rules is that other features such as 

patch size are covered by them and so redundant features are discarded by the applied rule 

extraction method. 



103 
 

6.4.6. Validity	of	our	simulation	approach	

To investigate the main source of the SAR variation in EcoSim, we plotted the SAR for 10 

different time steps of one of EcoSim's runs for two different sampling methods (Figure   6‐6). 

Also, Figure  6‐7 depicts the SAR for the nine different runs of the EcoSim at time step 25000 and 

for two different sampling methods. These figures show that the most important source of 

variation of the spatial configuration is variation in different runs with the second most important 

source being different sampling methods. This is another confirmation of the diversity of the 

world configurations generated by EcoSim even though the initial parameters are fixed.  

 

a) Nested Sampling  b) Random Sampling 

Figure   6‐6.  Species‐Area  curves  for 10 different  time  steps,  from  time  step 1000  (1k)  to  time 

step10000 (10k), of one of EcoSim's runs for nested and random sampling (The x‐ axis is the area 

base on the number of cells and the y‐axis is the number of species) 

Although EcoSim is a fairly unsophisticated simulation of the real world, it yielded distribution 

patterns with spiral shapes which have been observed in predator-prey systems [100]. The 

EcoSim simulation also yielded coherent patches inhabited by species along with the abiotic 

environment (food pattern) that approximate patterns often observed in nature (see Figure   6‐1). 

The dominance of the power function family over the other models, which corresponds to the 

situation in many real world communities, is another validation of our simulation. For the simple 

power function (F1), we obtained a very good fit (R2
adj= 0.98 in average) and z-value ranges from 

0.2 to 0.78 which is in the range of z-value in real communities (Table  6‐10). To the best of our 
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knowledge, EcoSim is the largest simulation that has been employed to study SAR models, as 

there is no limitation to the number of organisms and species in a vast habitat with one million 

cells. 

 

a) Nested Sampling  b) Random Sampling 

Figure  6‐7. Species‐Area curves for nine different runs at time step 25000 for nested and random 

sampling (The x‐ axis is the area base on the number of cells and the y‐axis is the number of 

species)	

 

6.5. Conclusions	

Using data extracted from EcoSim (to the best of our knowledge, the most complete ecosystem 

simulation in terms of number of individuals and species, behavioral model and evolution of 

individuals), our study demonstrated that although there is no unique function that best describes 

all species-area relationships, functions in the power family, and in particular the Plotkin 

extended power function (F4) were the best ranked functions. The power function family is 

suitable, as we observed them always among the six best ranked models in nested sampling. 

Amongst them, the power function is the simplest model with the fewest coefficients and hence 

from the point of view of pragmatic parsimony it may be easier to apply the simple power 

function to the data. However, for more accurate results, a more complicated model such as the 

Plotkin function may better fit the data. 
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Table  6‐10. z‐value of several studies along with z‐value for the current study. z‐value in EcoSim is in the 

range of this value in the real communities 

z-value Species Scale Reference 

0.11 to 0.64 Plants Continental [261] 

0.21 to 0.41 Birds Fragmented Forests [200] 

0.12 to 0.35 Plants Woodlands Sites [262] 

0.07 to 0.48 Plants Grassland and Forest [212] 

0.17 to 0.64 Birds, Mammals, 

Amphibians 

Continental [263] 

0.36 to 0.67 Trees Forest [221] 

0.05 to 0.64 Plants Silwood Park [264] 

0.157 to 0.485 Plants,Vertebrates,I

nvertebrates,Lichens

, Fungi 

Islands  [223] 

 

0.2 to 0.78 Prey EcoSim Current 

study 

 

Furthermore, we demonstrated that a number of factors, such as sampling scale and sampling 

strategies, should be taken into account because they affect the shape of the SAR models. We 

found different models to be the most suitable function for different sampling methods and 

sampling scales. Models generating convex curves tended to be more appropriate for small to 

intermediate scales whereas models generating sigmoid curves tended to be more accurate for 

larger scales. 

We proposed, for the first time, a machine learning approach to discern the meaning of the SAR 

functions' coefficients by providing several rules associated with their probability of prediction. 

We were able to determine the meanings of the SAR coefficients from these extracted rules. 

However, we are not arguing that our interpretations of the coefficients are the only possible 

interpretations, but merely that they are plausible. We are arguing that we have designed a 
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method to study and discover the specific meaning of some of these parameters for some specific 

environmental conditions, and that this approach can be applied to other data sets as well.  

Finally, we found that the slope z measuring the rate of species increase for SAR models in the 

power function family is directly proportional to beta diversity, which suggests that beta diversity 

and SAR models are to some extent both measures of species richness. 
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Chapter	7	

7. Rule	Extraction	from	Random	Forest:	the	RF+HC	

Methods	

7.1. Introduction	

The main machine learning method applied in the previous chapters was rule extraction. To 

extract the rules, we trained C4.5 algorithm to infer knowledge from data generated by EcoSim. 

Although constructing a decision tree is simple and the generated rules are typically 

comprehensible, the accuracy of the generated rules is not good for some data sets. The main 

reason is that the C4.5 method has lower performance in compare to other classifiers such as 

SVM, NN, or random forest (RF). One approach is to use an ensemble of decision tree such as 

RF to improve the accuracy. RF is an ensemble learning method for both classification and 

regression that constructs and integrates multiple decision trees at training step using 

bootstrapping. Additionally, it aggregates the outputs of all trees via plurality voting in order to 

classify a new input. It has few parameters to tune and it is robust against overfitting. It runs 

efficiently on large data sets and can handle thousands of input variables. Moreover, RF has an 

effective method for estimating missing data, and has some mechanisms to deal with unbalanced 

data sets [25]. In some applications, RF outperforms well-known classifiers such as support 

vector machines (SVMs) and neural networks [131], [132]. Finally, it has exhibited very good 

performance especially when the number of features is much higher than the number of samples 

such as in bioinformatics and computational biology data sets [265], [266].  

Despite good performance of RF in different domains, its major drawback is that, similar to 

neural networks and SVMs, it generates a 'black box' model in the sense that it does not have the 

ability to explain and interpret the model in an understandable form [147], [267] given that it 

generates a vast number of propositional if-then rules. As a result, ensemble predictors such as 

RF are very rarely used in domains where making transparent models is mandatory, such as 

predicting clinical outcomes [267]. In order to overcome this limitation, the hypothesis generated 

by RF should be transformed into a more comprehensible representation. 

In previous years, a high number of rule extraction methods using trained neural networks and 

SVMs have been published (see [112] for a good survey). Nevertheless, in the case of the RF 

model, few research projects have been conducted (see the reviews in chapter 3). A procedure for 
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the interpretation of the RF model is proposed: the RF+HC methods (Random Forest + Hill 

Climbing). The main idea is that, once the RF is built, a hill climbing algorithm is used to search 

for a minimum set of rules that has the highest predictive accuracy. The proposed methods can be 

treated as a decompositional rule extraction approach given that we employed all the generated 

rules by RF, which are dependent on the number of trees and also the tree structures in the RF. 

7.2. RF	+	HC	Methods	

As we mentioned in chapter 3, RE can be expressed as an optimization problem and one solution 

of this problem is to apply heuristic search methods. The main idea of our proposed RE methods 

is to use hill climbing method to search in a very large search space of the RF rule sets to find a 

good set of rules, which not only eases comprehensibility but also improves the overall accuracy. 

These methods overcome the complexity of finding the best rule set, which is an NP-hard 

problem [142], [143]. 

In this section, we present our algorithm (Algorithm 1) to extract comprehensible rules from a RF 

as follows. The algorithm consists of four parts: In the first part, RF is constructed and all the 

rules in the forest are extracted into the Rs set. The second part of the algorithm computes the 

score of all rules based on the RsCoverage matrix; a sparse matrix that shows which rules cover 

each sample and its corresponding class label. Afterwards, the scores are assigned to the rules in 

order to control the rule selection process, which can be based on different factors such as 

accuracy and rule coverage. We used equation (7-1) that has been shown to be a promising fitness 

function [268]: 

1
cc ic cc

ruleScore
cc ic ic k


 

 
                                                                                 (7-1) 

In this formula, cc (correct classification) is the number of training samples that are covered and 

correctly classified by the rule. Variable ic (incorrect classification) is the number of incorrectly 

classified training samples that are covered by the rule. Finally, k is a predefined positive constant 

value (in our case k=4, though other values can be used as it is mostly to avoid the denominator 

becomes zero). This scoring function ensures the retention of the rules with higher classification 

accuracy and higher coverage and removes the noisy rules. It also reduces the chance of the 

occurrence of identical values for different rules. Furthermore, it does not ignore the rules of 

minority classes. Obviously, other fitness measures can be used instead. One possibility would be 

to employ the rule score based on metrics such as number of features in the extracted rule set and 

number of antecedents to increase the quality of rules in terms of comprehensibility. 
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In the third step of the algorithm, a fitness proportionate selection method is used iniRuleNo times 

to generate an initial rule set (iniRs) with a probability to select a rule proportional to its score.  In 

order to search the RF rules space, we used the random-restart stochastic hill climbing method, 

which gives a local optimum point of the search space based on the random start locations. Any 

other search methods such as simulated annealing, tabu search, genetic algorithm, or any other 

greedy heuristic methods can be applied instead of HeuristicSearch function in the algorithm. We 

repeated the search with a predefined maximum number of iterations (MaxIteration), each time 

with a new initial rule set. This can compensate some of the deficiencies in hill climbing due to 

the randomized and incomplete search strategy [269].  

 Algorithm 1 RF+HC 
 
 Input: trainSet, tetsSet,iniRuleNo, treeNo 
Step 1: // Construct Random Forest 
RF = trainRF(trainSet, treeNo); 
Rs = getAllTerminalNodes (RF); 
 
Step 2: //compute rules coverage 
m = size(trainSet); 
n = size(Rs); 
RsCoverage=zeros(m, n); 
foreach sample in trainSet 
     foreach rule in Rs 
         if match(rule, sample)  
 RsCoverage(sample, rule) = class; 
         end if 
     end for 
end for 
RScore = ruleScore (RsCoverage); 
 
Step 3: // Repeat the HC method to obtain best rules 
iniRs = getRuleSet(RScore, n, iniRuleNo); 
impRs = iniRs; bestRs=iniRs; 
for i=1 to MaxIteration 
      impRs = HeuristicSearch (impRs, RScore); 
      if AccimpRs > AccbestRs 
               bestRs = impRs; 
          impRs = getRuleSet(RScore, n, iniRuleNo); 
      end if 
end for 
 
Step 4: // calculate the accuracy on test set 
calcPerformance (testSet, bestRs); 
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The hill climbing algorithm, searches for the best neighbor, the one that has the highest score, of 

the current location based on equation (7-1) in the search space and by changing 

(adding/removing) one rule to the current rule set. For adding/removing a rule, we used the same 

fitness proportionate selection procedure that was employed for producing the iniRs.  

First, a rule is selected. If that rule has already been selected it is removed otherwise the rule is 

added to the current rule set. The hill climbing score function was defined based only on the 

overall accuracy because the scoring schema of the second step already took into account both 

rule coverage and rule accuracy. If the new movement in the rule set space improves the score 

value, that change is retained. Otherwise it is discarded and then another neighbor in the rule 

space is sought. This means that the proposed method moves towards the first solution that can 

improve the objective function. We repeat this step for a pre-defined maximum number of 

iterations (MaxIteration). Finally, in the fourth step, we apply the best extracted rule set on the 

test set to evaluate the generalization ability of the extracted rules. 

One of the RF characteristics is that there is no pruning while it is constructed. Therefore, we 

expect to have long rules (with a large number of antecedents) in the rule set as well as in the 

extracted rule set using the proposed algorithm. Having long rules damages the interpretability of 

the model and thus rules' length should be considered in the applications for which the 

interpretation of the rules is important. Therefore, we proposed a second algorithm similar to 

Algorithm 1, except that a modified version of the rule score function (i.e., equation 7-2) was 

used, where rl shows rule length or number of antecedents. We called the new method 

RF+HC_CMPR (i.e., RF+HC method with an emphasis on comprehensibility). In the 

RF+HC_CMPR method more generalized rules (shorter length rules with higher accuracy) have 

higher priority than the more specialized rules (the longer rules with lower accuracy) based on the 

following equation: 

2 1
cc

ruleScore ruleScore
rl

                                                                                           (7-2) 

The inputs of the proposed methods are the training/test sets, initial number of rules (iniRuleNo) 

and the number of trees in the RF (see Algorithm 1). Variable iniRuleNo adjusts the tradeoff 

between accuracy and comprehensibility. In cases where prediction ability is important, higher 

values are used and in cases where the interpretation of the underlying model is important lower 

values should be used. For the implementation, in order to make fair comparison with the CRF 

method, we used Matlab as the source code available for the CRF method is also in Matlab. 
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7.3. Experiments	and	Discussion	

To evaluate our proposed methods, we applied CRF [155], [156] and RF on 22 different data sets. 

Different criteria have been proposed to evaluate a RE algorithm [270]. Accuracy is defined as 

the ability of extracted rules to predict unseen test sets and fidelity indicates how similar the RE 

output is to the underlying model output. In other words, it expresses the percentage of instances 

classified identically to the underlying model. Another major factor is comprehensibility, which is 

not easy to measure due to the subjective nature of this concept. Prior domain knowledge also 

plays an important role in comprehensibility. There are different factors that are used to 

determine comprehensibility such as, the number of rules and the average number of antecedents. 

Another desirable characteristic of a RE method is its potential to be applicable to a wide range of 

applications. If a RE algorithm is applicable to data sets with a large number of samples, features, 

or classes then it is said to be scalable. It is obvious that both running time and algorithm 

complexity are inherent in the notion of scalability. Finally, consistency shows the ability of RE 

to produce similar rules each time it is applied to the same data set, although there are different 

meanings for similarity itself. 

In our work, we measured the average accuracy of 10 times 3-fold cross-validation for evaluating 

accuracy. We used three folds given that we had some data sets with small numbers of samples, 

although we repeated it 10 times. This measure demonstrates the prediction and generalization 

ability of the extracted rules. Majority voting is used to classify a sample when more than one 

rule covers a sample. We assumed a default rule such that the samples not covered by any of the 

extracted rules are simply assigned to the high frequency class in the dataset. In the RF+HC 

methods, due to their stochastic nature, we repeated the whole procedure 10 times and computed 

the average results along with their standard deviations. For the CRF method, 10 different values 

for the lambda parameter (which indicates the tradeoff between the number of rules and accuracy) 

were used. To determine these values, we did a few pilot runs with each data set separately. To 

determine the best lambda, a cross-validation step is incorporated in the CRF method such that it 

selects the lambda value, which gives the minimum error for cross-validation. Therefore, in CRF, 

at the cross-validation step, the best lambda is selected and then it is used in the training step.  

In order to show the comprehensibility of the methods, we considered the number of rules, 

maximum rule length, and total number of antecedents in the extracted rule set. For the CRF 

method, these values are related to the lambda parameter value, which gives the lowest cross-
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validation error. On the other hand, those of RF+HC methods are related to 10 repetitions of the 

process. All the values are rounded to the closest integer value. 

Scalability is one of the most important evaluation metrics often overlooked in most of the RE 

methods such as the CRF method. To be realistic, the RE method should be applicable to 

different problems and data sets with a variety of characteristics. To have a fair comparison, we 

used 10 different lambdas in the CRF method and we divided the required time to find the best 

lambda by 10. This means that we did not count the time required for examining all the 10 

lambda values and we only considered the time for cross-validation using the best lambda plus 

the time for training and test steps. We considered the cross-validation time because the CRF 

method is an iterative method involving feature selection and optimization. At each iteration, the 

features in the extracted rules are kept and the rest are removed. For the new data set obtained 

from previous step, different lambda values can lead to the higher accuracy as some features were 

removed in the previous step. Therefore, finding the best lambda using cross-validation at each 

iteration is crucial in this method. We measured the computational time as a metric to evaluate 

the scalability. For RF+HC, we repeated each experiment 10 times and then divided the overall 

time by 10. We also considered the hill climbing repetition time (MaxIteration) in order to 

calculate the computation time. Because we used a collection of data sets with different 

characteristics, we were able to see the scalability of our methods in different situations. 

For this study, we did not consider fidelity because it is not a suitable measure in some RE 

methods, especially for the ensemble methods where the accuracy of the extracted rules is in 

some cases higher than those of the underlying models [114]. Similarly, we did not use 

consistency because there is no clear definition of similarity between rules. Moreover, for the RE 

methods based on the heuristic methods such as genetic algorithm or hill climbing, it is very hard 

to guarantee that consistent rules are generated at every step [268], [271]. Therefore, we 

compared the accuracy for RF+HC, RF+HC_CMPR, CRF, and RF. We also reported the number 

of rules, maximum rule length, and total number of antecedents in the extracted rule set in 

addition to the computational time. 

As the input of the proposed algorithm, we should specify the initial number of rules (iniRuleNo) 

for each data set. We obtained these numbers using a couple of pilot tests. We used 500 decision 

trees to build a RF with m n , which is the most frequently used default value in the literature. 

In the random-restart hill climbing, we repeated hill climbing from 10 initial rule sets. We took 

MaxIteration = 500 in all of our experiments. Higher values provide hill climbing with more 
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opportunities for improving the rule set score, although it did not happen in our case. For 

comparing the proposed methods with CRF in terms of performance, comprehensibility, and 

computation time complexity, we used Wilcoxon [272] and Friedman [273] tests as suggested in 

[274].  

7.3.1. Data	sets	

We used 22 data sets with various characteristics in terms of the number of features, the number 

of samples, and the number of classes to observe how the performance of the proposed methods 

varies depending on the data set type. Eighteen data sets were taken from UCI machine learning 

repository [31] and other four data sets are gene expression microarray data sets, Golub [275], 

Colon [276], Nutt [277], Veer [278]. The extreme cases are Veer with 24188 features, Magic with 

19020 samples, and Yeast and Cardio with 10 classes (Table  7‐1). 

Table  7‐1. Data	sets	along	with	their	characteristics 

DATA SET FEATURES CLASS SAMPLE 
BREAST CANCER 9 2 699 

MAGIC 10 2 19020 

MUSK CLEAN1 166 2 476 

WINE 13 2 178 

WINE QUALITY 11 6 1599 

IRIS 4 3 150 

YEAST 8 10 1485 

CARDIOGRAPHY 20 10 1726 

BALANCE SCALE 4 3 625 

CMC 9 3 1473 

GLASS 9 6 214 

HABERMAN 3 2 306 

IONO 34 2 351 

SEGMENTATION 19 7 210 

TAE 5 3 151 

ZOO 16 7 101 

ECOLI 7 8 336 

SPAM 57 2 4601 

GOLUB 5147 2 72 

COLON 2000 2 62 

Glimo NUTT 12625 2 50 

VEER 24188 2 77 
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7.3.2. Accuracy	and	Generalization	Ability	

On average, both the RF+HC and RF+HC_CMPR methods gave almost the same level of 

accuracy as the CRF method with marginal differences (Table  7‐2). Moreover, all three methods 

obtained 96% of the RF accuracy for the whole data sets on average. For some datasets, they 

demonstrated higher accuracy than RF such as Tae, Cmc, and Golub with RF+HC and Tae and 

Clean with CRF method.  

Table  7‐2 Percentage accuracy of the RF+HC, RF+HC CMPR, CRF, and RF methods on the selected data 

sets 

Data set RF+HC RF+HC_CMPR CRF RF 

Cancer   96.18 (0.32)   96.23 (1.56)   95.71 (1.01)   96.65 (1.75)  

Magic     85.37 (0.46)     85.6 (0.28)   83.65 (1.3)    88.12 (0.3)   

Clean    81.34 (3.25)    83.17 (4.3)   88.45 (1.55)    88.68 (2.18)   

Wine     92.07 (3.29)     95.93 (1.8)   91.93 (5.91)    98.99 (0.9)   

Wineqlty    65.13 (1.93)    62 (1.8)   62.79 (0.57)    68.59 (3.47)   

Iris     93.36 (2.4)    94.12 (3.25)   94.4 (2.61)   96.40 (1.67)   

Yeast    59.98 (1.5)   61.3 (0.7)   55.02 (2.75)    62.02 (1)   

Cardio    81.74 (0.82)   82 (0.6)   84.01 (0.84)    85.67 (2.19)   

BalancS    84.48 (0.52)    83.75 (2.36)   82.87 (2.86)    87.24 (1.6)   

Cmc      52.87 (0.99)   52.6 (2.5)   49.42 (3.65)    52.46 (2.57)   

Glass    74.33 (2.7)   73.75 (7.3)   72.77 (2.15)    78.02 (7.51)   

Haber    67.69 (2.1)    69.14 (1.7)   70.2 (4.42)    73.92 (4.2)   

Iono     90.14 (3.53)    91.9 (3.3)   91.45 (1.6)    93.16 (1.9)   

Segment    87.54 (1.86)    89.97 (2.4)   88.86 (3.7)   93.14 (2.1)   

Tae      57.60 (3.46)   53.45 (4.1)   62.29 (4.8)   55.60 (1)   

Zoo      91.33 (9.6)    92.96 (5.87)   93.94 (8.2)   97.02 (2)   

Ecoli    84.2 (3.11)    79.9 (4)   86.67 (11.54)    86.96 (1.74)   

Spam     94.04 (0.71)    94.33 (0.5)   94.2 (1.05)    95.24 (0.3)   

Golub    93.00 (6.7)    87.25 (7.6)   86.11 (9.62)   92.5 (4.5)   

Colon    74.76 (5.26)    76.1 (3.9)   82.46 (17.94)    75.00 (11.85)   

Glimo    64.11 (4.26)    66.3 (7.36)   54.9 (8.99)    71.69 (14.47)   

Veer     58.27 (7.88)    63.11 (8)   60.97 (8.99)    66.43 (13.76)   

 



115 
 

Table  7‐3 Each cell shows 'Number of extracted rules / Maximum length of rule / Total number of 

antecedents' in each method. The values in bold show the best results. 

Data set RF+HC RF+HC_CMPR CRF RF 

Cancer   36 / 8 / 159      33 / 6/ 129      463 / 9 / 1940      12075 / 13 / 65869  

Magic    2604 / 8 / 8186    2597 / 3 / 5697   3182 / 37 / 50668    608155 / 58 / 8514170  

Clean   83 / 15 / 586     78 / 10 / 473     104 / 18 / 947     18392 / 20 / 150309  

Wine    16 / 8 / 64     14 / 5 / 55     176 /  7 / 619     7590 / 10 / 26784  

Wineqlty   1258 / 21 / 12301    1259 / 12 / 10526    2282 / 24 / 22256    138889 / 30 / 1757860  

Iris    13 / 6 / 39      11 / 5 / 28     43 / 5 / 145       4202 / 9 / 13222  

Yeast   1037 / 25 / 13460    1303 / 13 / 11621    1836 / 27 / 18430    126936 / 32 / 1469328  

Cardio   1609 / 20 / 15720   1606 / 11 / 12951    2121 / 20 / 19003    126412 / 22 / 1150839  

BalancS   88 /  9 / 471     83 / 5 / 339     360 / 11 / 1768    19764 / 13 / 124447  

Cmc     332 / 16 / 2390    322 / 10 / 1818    2025 / 19 / 14695    74257 / 22 / 754197  

Glass   88 / 13 / 398     59 / 8 / 335     10050 / 12 / 30662      16530 / 16 / 115932 

Haber   28 / 13 / 165      25 / 8 / 140     410 / 16 / 2417     19697 / 18 / 142512  

Iono    41 / 11 / 193     36 / 7 / 145     155 / 12 / 784     10641 / 14 / 57312  

Segment   42 / 10 / 267      54 / 6 / 175     11134 / 13 / 24065      9905 / 12 / 59837 

Tae     91 / 13/ 495      76 / 8 / 359     177 / 13 / 997     14437 / 16 / 93530 

Zoo     16 / 6 / 66     15 / 4 / 51     185 / 7 / 608       4954 / 9 / 17615  

Ecoli   138 / 11 / 762    141 / 7 / 649    8900 / 14 / 29421    16761 / 16 / 105260 

Spam    476 / 34 / 5076    473 / 21 / 4228    1154 / 41 / 14852     118878 / 44 / 1455859 

Golub   9 / 3 / 18      6 / 2 / 10      1 / 3 / 3      2322 / 4 / 4939  

Colon   17 / 4 / 46      19 / 3 / 39     27 / 5 / 85      2620 / 6 / 8154 

Glimo   9 / 3 / 23      12 / 2 / 20     17  / 4 / 47     1953 / 4 / 4716 

Veer    18 / 4 / 45     17 / 3 / 33     39 / 5 / 128     3254 / 6 / 8513   

A similar result was observed in [114] when the authors used a neural network ensemble to 

extract the rules, observing higher accuracy for extracted rules than for the underlying model. The 

generalization ability of RF+HC depends on the selection of the high score rules in RF and  

depends on some probabilistic selection of rules with low scores in the training set, but which 

may be important for unseen data. 

Comparing the accuracy of CRF method with the proposed methods revealed that the null 

hypothesis with α =0.05 cannot be rejected with z= 0.41 (CRF vs. RF+HC) and z=0.42 (CRF vs. 

RF+HC_CMPR), while the critical z value is -1.96 in Wilcoxon test. Therefore, the difference is 

not significant, which proves that all methods are equivalent in terms of accuracy. 
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7.3.3. Comprehensibility	

Although a feature selection phase was incorporated in the CRF method, our methods were 

superior in the number of extracted rules in all the data sets except the Golub data set (Table  7‐3). 

The number of rules extracted by RF+HC or RF+HC_CMPR on average are 0.6% of the total 

number of rules in RF while that of CRF is 11.66%, which demonstrates an impressive 

improvement in compare to RF and CRF. The proposed methods significantly reduced the 

number of rules compared to CRF (z=-4.06$) and consequently improved the comprehensibility. 

However, the difference in terms of rule numbers for the two proposed methods was not 

significant (z=-1.89). There is one dataset (Golub) for which CRF extracted only one rule. In such 

cases, the extracted rule is related to one class and it can only explain that class. However, there is 

no information and interpretation regarding the other class(es). Therefore, we believe that this 

type of rule is not fully comprehensible as they cannot describe the underlying model completely. 

We found an issue in the implementation of the CRF method, which will affect the results. When 

the number of rules is reported, only the rules with the weights greater than a threshold (in this 

case 10e-6) are considered. However, all the extracted rules are used to do prediction for the test 

set. It means that the reported number of extracted rules is not correct. The CRF results in Table 

 7‐3 correspond to the correct number of rules. 

We used the modified version of the rule score function (i.e., equation 7-2) in order to give higher 

priority to the more generalized rules. Table   7‐3 shows the comparison between the original 

algorithm and RF+HC_CMPR. The results showed that RF+HC_CMPR have a stronger impact 

on the maximum rule length and also on the total number of antecedents (42% and 18% decrease 

respectively) in the rule set in comparison with RF+HC. In addition, we observed no significant 

change in the accuracy. These results indicate that RF+HC_CMPR improves the 

comprehensibility significantly (z=-4.16). 

Comparing the CRF method with the two proposed methods using Wilcoxon test (critical z=-

1.96) indicates that RF+HC had a significantly lower maximum rule length (z=-3.13) and also 

number of antecedents (z=-4.07) compared to CRF. RF+HC_CMPR was superior in all data sets 

in terms of maximum rule length (z=-4.09) and number of antecedents (z=-4.07) except for the 

maximum rule length for Golub. 

One important aspect of comprehensibility is the number of rules extracted from an underlying 

model. However, we have to consider the importance of the tradeoff between accuracy and 

comprehensibility. The extracted rules should not only be concise but also have good 
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performance on unseen samples. This is, in fact, the main objective of rule extraction. Therefore, 

a good rule extraction method should consider two facts simultaneously: comprehensibility and 

generalization ability, although it should be adjustable based on the application. More complex 

datasets will decrease one of them. For example, for the Magic dataset, RF generates 608155 

rules with approximately 88% accuracy. This number of rules shows the complexity of the model 

for this dataset. RF+HC methods extract only about 0.4% of the RF rules and give about 85% 

accuracy for this data set. We still can generate fewer rules by decreasing iniRuleNo, although it 

will reduce accuracy. Therefore, what needs to be considered in order to have a fair judgment is 

the combination of the number of rules and accuracy. The results we have presented here 

correspond to the smallest number of rules in order to achieve a level of accuracy as close as 

possible to the level of accuracy for RF.  

7.3.4. Complexity	and	Scalability	

We found a significant difference in terms of computational time between our methods and CRF 

(z=-4.07). For all data sets, the RF+HC methods were faster than CRF with the exception of the 

Iris data set, which had only a one-second difference (Table  7‐4). 

More specifically, in some cases with large numbers of classes such as Yeast, Glass, Ecoli, and 

Segment, our methods were 136, 310, 518, and 842 times faster than CRF respectively. We 

observed the same phenomenon for data sets with a large number of samples such as Magic, 

Spam, and CMC where RF+HC and RF+HC_CMPR were 13, 18, and 130 times faster than CRF. 

On average, the overhead time for the proposed methods and CRF method was 1.12, and 11.8 

times respectively relative to RF time.  

Moreover, we observed more computational time for CRF when there was a larger number of 

classes (Table  7-4) because the CRF method considers c classifiers (c being the number of 

classes) and finds a weight vector for each class. When there are a relatively large number of 

samples and a large number of classes simultaneously, the CRF method has an even worse 

performance. In addition, a large number of features can increase the computational time as CRF 

has a repeating feature selection step and in each step a new RF is built, the best lambda is found 

and then a new optimization problem is solved. However, RF+HC methods are based on a unique 

RF where there is a fixed amount of time for building the RF. The overhead time on top of RF in 

RF+HC methods has a strong linear correlation with the number of samples in the data sets 

(R2=0.994). Therefore, it can be said that the complexity of the proposed algorithm is O(N), 

where N is the number of samples in the data set.  
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Table  7‐4 Computational time for RF+HC, RF+HC_CMPR, CRF, and RF in seconds 

Data set RF+HC RF+HC_CMPR 

        

CRF 

          

RF 

Cancer  16 16 36 5 

Magic   1409 1425 19338 1050 

Clean  34 34 118 26 

Wine   4 5 13 1 

Wineqlty  52 56 5317 17 

Iris   4 9 3 1 

Yeast  46 49 6276 15 

Cardio  80 83 6410 31 

BalancS  17 17 233 4 

Cmc    36 36 4696 14 

Glass  5 5 1551 1 

Haber  10 10 15 2 

Iono   9 9 24 3 

Segment  7 7 5900 2 

Tae    5 5 14 1 

Zoo    3 3 14 1 

Ecoli  9 9 4669 2 

Spam   236 239 4479 166 

Golub  230 230 253 228 

Colon  56 56 62 54 

Glimo  633 633 720 631 

Veer   3165 3165 3558 3162 

 

7.4. Overall	Comparison	and	Major	Contributions	

The major contributions of both proposed methods in comparison to RF are that they refine RF in 

selecting the most valuable rules, which leads to a huge decrement in the number of rules i.e. 

0.6% of the random forest rules, while at the same time attaining 96% of the RF accuracy with a 

reasonable overhead time on top of RF time. In addition, both methods improved the 

comprehensibility in comparison with CRF while retaining the same accuracy. RF+HC decreased 

the number of rules, the maximum rule length, and the total number of antecedents by 27%, 16%, 
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and 49% respectively in average. RF+HC_CMPR also reduced them by 25%, 50%, and 59%. The 

RF+HC methods decreased the computational time in 21 of the 22 data sets. Moreover, for the 

data sets with a large number of samples and/or a large number of classes, they were much faster 

(up to about 800 times). 

Table   7‐5 summarizes the overall comparisons of RF+HC and RF+HC_CMPR with the CRF 

method. The numbers in the table specify the average rank of each method for Friedman test 

computed for the mentioned criteria in the table, where lower value demonstrates the better 

method. The Friedman test showed significant difference between the average ranks and the mean 

rank for each criterion. However, the difference was marginal for the accuracy as it was also 

confirmed by the Wilcoxon test. These results show that our proposed methods are better than 

CRF in terms of number of rules, computational time, maximum rule length, and also number of 

antecedents while they keep level of accuracy as the same as CRF method.   

Table  7‐5. Comparison summary for different methods. The values are the average rank with the 

standard deviation in the parenthesis 

RF+HC RF+HC_CMPR CRF 

Accuracy   2.23 (0.81)   1.73 (0.7)   2.05 (0.9) 

Rule#   1.77 (0.53)   1.32 (0.48)   2.91 (0.43)  

Time   1.34 (0.24)   1.7 (0.37)   2.95 (0.21)  

MaxCond   2.11 (0.26)   1.02 (0.11)   2.86 (0.35)  

Cond#   2 (0)   1 (0)   3 (0)  

7.5. Conclusions		

We introduced new rule extraction methods derived from a RF: RF+HC. Once the RF is built, a 

hill climbing algorithm is used to search for a rule set that has high predictive accuracy with a 

drastic reduction in the number of rules compared to RF. In addition, our methods are much more 

scalable than the state-of-the-art method, CRF. Experimental results showed that these methods 

are superior to the CRF method in terms of comprehensibility as they generate fewer and shorter 

rules while keeping the same level of accuracy. Finally, both are much more scalable than the 

CRF method and it can be applied more generally and on data sets with various characteristics. 
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Chapter	8	

8. Conclusion	and	Future	Works	
Understanding and investigating natural systems in the real world is always challenging for 

scientists due to the complexity involved in such systems. Among them, those related to biology 

and ecological phenomena are absolutely fascinating even though very difficult to understand. 

However, during recent decades new theoretical approaches, such as artificial life systems and 

artificial intelligence methods, have emerged that bring promising capabilities to investigate 

them. With increases in computational power, it is possible to make complex artificial life 

systems to simulate natural phenomena. More specifically, individual-based modeling is one 

approach for understanding the behavior of complex ecosystems. It is a bottom-up approach 

allows considering the traits and behavior of individual organisms and resulting in the emergence 

of some high level phenomena, outcome of the whole interactions. Simulating the simple and 

general interaction rules of real ecosystems creates an artificial ecosystem with patterns similar to 

what are observed in nature. 

However, due to the multiple interactions between individuals, such artificial systems have 

strongly emerging non-linear behaviors. Understanding of such systems is still challenging as 

they can generate vast amount of data related to every single components of the simulation. 

Therefore, data analysis plays an important role in order to turn the generated raw data into 

insight. Artificial intelligent methods, and more specifically machine learning, is one of the most 

popular methods in data analysis. They are able to extract useful knowledge, suggesting 

conclusions, and helping decision-making by learning from the input raw data. Regression, 

classification, feature selection, rule extraction are examples of machine learning methods that 

can be used for this purpose. Applying these types of methods helps to achieve two important 

aims. First, knowledge can be inferred from the generated raw data which can result in new 

insights about a phenomenon. Second, the conformity of the inferred knowledge can be verified 

by the real ecosystems.   

Biologists and ecologists can barely study many difficult evolutionary or ecological questions 

only by studying real ecosystems because, most of the time, there is not enough data available, or 

it is a very time consuming and expensive task to perform an experiment. We employed EcoSim, 

a generic complex simulation platform, to investigate several ecological questions, as well as 

long-term evolutionary patterns and processes such as speciation and extinction of species. The 

major difference between EcoSim and the classic modeling approaches is that classic ecological 
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modeling is based on a pre-defined fitness functions. This causes a bias as the decisions made by 

individuals with distinct behavioral models rely on an external evaluation (pre-defined fitness 

function) and is therefore not an emerging property. To avoid such bias a complex system in 

which fitness emerges from the multiple interactions between numerous individuals is needed.  

During my PhD study, three major phenomena related to the species have been investigated. The 

main reasons behind speciation and extinction of species are among the challenging problems for 

biologists. In addition, there is debate regarding the best function to describe the species-area 

relationship and also its coefficients interpretation. The first study was to investigate the ability of 

spatial and spatiotemporal information about species in an artificial ecosystem for the prediction 

of speciation events. We used various measures to extract this type of features and we use them to 

predict speciation. We obtained good prediction results showing that spatial distribution 

information of species effectively predict speciation events. Our results are confirmed with the 

real field studies showing that the geographical and spatial distribution of individuals in one 

species is a leading phenomenon for speciation. Our results also indicate that some generic traits 

exist in our simulation that characterizes the speciation events.  In another experiment, we 

investigated how various demographics, genetics, environment and spatial distribution features 

can predict speciation. We obtained very good accuracy for the prediction that show the 

calculated features are effective in prediction of the speciation and can help for better 

understanding of the speciation. We extracted several simple rules from the constructed decision 

tree. These rules are semantically clear and sound reasonable based on biological evidences. This 

is an important result as the proposed approach has proven to have the capability of generating 

realistic rules when compared with real biological data. 

In third study, we investigated three broad categories of genetic, environmental, and demographic 

features associated with species extinction in EcoSim. We obtained a rule set for each category 

and showed that these rules can predict extinction in the next 100 time steps with a very high 

level of accuracy. We also demonstrated that these rules are generic by applying the constructed 

predictive model on completely different simulation runs. The acquired results suggest how 

accurate our proposed machine learning approach can be from several different perspectives. 

First, the proposed approach is able to extract important features related to extinction effectively, 

especially when there is a plethora of features and there is no exact knowledge about them. 

Second, the categorization idea helps to study the effect of features in a more fine-grained way 

and to extract rules associated with them accompanied by an evaluation of their accuracy. This 

may prove to be beneficial for conservation biologists for being able to detect early signals of 
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extinction. For example, we found that population size of the species and also average genetic 

distance of parents at breeding time in one species are really important features as we were able 

to predict extinction using those features alone with a high accuracy comparable to the accuracy 

level obtained when we used all the features in each categories such as genetic, environmental, 

and demographic. This is particularly useful for obtaining a high level of predictive accuracy 

based on a minimum amount of information from the environment. Further, this approach can be 

applied to test new hypotheses regarding new factors involved in extinction. While our results are 

not directly valid for real situations given that our model involves a high level of abstraction as 

well as being a simplification of the real world, our results provide interesting insights that could 

be of aid to biologists in formulating and testing new hypotheses relating to species extinction. 

Finally, the approach we have employed has the potential to be useful for more dedicated studies 

focusing on species extinction. Also to be noticed is the general innovation of providing a 

methodology for ecological data analysis based on machine learning techniques. 

In other study, using data generated by EcoSim, we showed that although there is no unique 

function that best describes all species-area relationships, functions in the power family, and in 

particular the Plotkin extended power function were the best ranked functions. The power 

function family seems to be the most suitable set of functions, as we observed them always 

among the six best ranked models in nested sampling. Amongst them, the power function is the 

simplest model with the fewest coefficients and hence, from the point of view of pragmatic 

parsimony, it may be easier to apply the simple power function to the data. However, for more 

accurate results, a more complicated model such as the Plotkin function may better fit the data. 

Furthermore, we demonstrated that a number of factors, such as sampling scale and sampling 

strategies, should be considered because they affect the shape of the SAR models. We found 

different models to be the most suitable function for different sampling methods and sampling 

scales. Models generating convex curves tended to be more appropriate for small to intermediate 

scales whereas models generating sigmoid curves tended to be more accurate for larger scales. 

We proposed, for the first time, a machine learning approach to discern the meaning of the SAR 

functions' coefficients by providing several rules associated with their probability of prediction. 

We also were able to determine the meanings of the SAR coefficients from these extracted rules. 

However, we are not arguing that our interpretations of the coefficients are the only possible 

interpretations, but merely that they are plausible. We also are arguing that we have designed a 

method to study and discover the specific meaning of some of these parameters for some specific 

environmental conditions, and that this approach can be similarly applied to other data sets. 
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Finally, we found that the slope z measuring the rate of species increase for SAR models in the 

power function family is directly proportional to beta diversity, which suggests that beta diversity 

and SAR models both are, to some extent, measures of species richness.  

Complex systems, such as EcoSim, generate a huge amount of data. To be able to answer 

theoretical question using such systems, efficient methods for data analysis and knowledge 

extraction are also inevitable. We used various machine learning techniques to analyze the data 

generated by the EcoSim experiments. Our objective was to conduct a robust test to prove the 

effectiveness of our framework for identifying reasons behind different theoretical ecological 

phenomena such as speciation, extinction, and SAR. By interpreting the obtained models we were 

able to extract meaningful rules to enrich our knowledge about such phenomena. We also showed 

that machine learning techniques are particularly efficient to analyze such data bringing 

semantically interpretable rules with high predictive accuracy and therefore these techniques 

should be extended and considered as important tools for future theoretical or empirical studies. 

More specifically, the role of rule extraction was prominent when some explanations for the 

prediction result of the predictive model are needed. For our case we used decision tree to be able 

to extract the rules explaining the prediction results. The problem with decision tree is that in 

general it has lower performance compared to other predictive models such as SVMs and 

ensemble methods. However, those methods are not interpretable and cannot easily explain their 

prediction results. As a result, we introduced new rule extraction methods from random forest. 

The proposed methods search for a rule set that has high predictive accuracy with a drastic 

reduction in the number of rules compared to RF. In addition, our methods are much more 

scalable than the state-of-the-art method, CRF. Experimental results showed that the proposed 

methods are superior to the CRF method in terms of comprehensibility as they generate fewer and 

shorter rules while keeping the same level of accuracy. Finally, the proposed methods are much 

more scalable than the CRF method and it can be applied more generally and on data sets with 

various characteristics.  

All the research studies on EcoSim showed promising results, that they brought new insights in 

the ecology field and also the obtained results are plausible compared to the real nature. We 

showed that the speciation and extinction mechanisms cohere with the empirical studies based on 

the real ecosystems. In addition, we showed that the best SAR model in EcoSim is power 

function family as so in many of the research studies based on natural ecosystems. We also 

demonstrated that coefficients of the SAR model have meaning associated to some ecological 

factors. Therefore, our studies confirm the usefulness of EcoSim as a generic platform to study 
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broad evolutionary ecological phenomena. EcoSim provides opportunity for ecologist that 

besides the field studies, they can also benefit from EcoSim by conducting more in depth 

experiments related to the species specially when either not enough information is available or it 

is very time consuming and expensive to collect data. Different types of speciation mechanism 

can be implemented and tested. More in depth studies on species extinction to investigate the 

effect of factors such as initial population size, Allee effect, predator pressure, resource depletion, 

and catastrophe events can be performed, most of the times with few modifications in the 

simulation. It is also possible to construct a more specialized version of EcoSim to study a 

specific type of species by providing real data parameters. It is possible to easily conduct studies 

in different granularity levels such as individual level, species level, or the whole population in 

the ecosystem. In all such types of studies, data analysis has a prominent role. One of the 

effective analysis methods is machine learning that we showed some of their important aspects in 

this thesis. These types of analysis help biologists and ecologists to discern new insights and facts 

about different phenomena, especially when there are a lot of factors involved and there is not 

enough knowledge about their impact on such phenomena, which in turn can bring about new 

hypothesis and ideas about them. Therefore, a mixture of field studies, artificial life, and artificial 

intelligence is a very powerful research portfolio for ecologists and biologists. 

In terms of data analysis, only having the prediction results are not enough in some domains, 

especially when we need to know the reasons that lead to such results. For example, even though 

prediction of, for example, breast cancer is very useful, knowing why it happens is much more 

important. Because having the clear reasons makes it possible to prevent the diseases instead of 

just curing them. Therefore, in parallel with devising new improved prediction methods, more 

advanced rule extraction methods are also necessary. More specifically, rule extraction methods 

that are able to extract comprehensible yet accurate rules from big data are desired.     

 As a result and for future works, different ecological studies can be conducted using EcoSim 

such as studying the relationship between learning and evolution. For this purpose, new features 

and concepts should be added to the platform, for example learning capability should be 

implemented for the individuals. Another possibility is to implement speciation based on the 

various definitions existing in the literature and then study their impact on the results. We found 

rule extraction as a very useful tool to interpret the results of a predictive model, which is 

essential in many fields of study such as health, finance, etc. We proposed new rule extraction 

methods using a simple heuristic search method and we obtained promising results. Those 

methods can be extended in several ways. For instance, other advanced search methods such as 
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genetic algorithm or tabu search can be applied to find the best set of rules. In addition, different 

score functions can be tested for rule selection procedure. Investigating dimensionality reduction 

methods such as factorization methods to reduce the dimension of the RsCoverage matrix, 

described in chapter 7, is another direction for the future work.   
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