
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

7-11-2015

Influence Maximization Mining for Competitive
Social Networks
Xiaoni Cao
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Cao, Xiaoni, "Influence Maximization Mining for Competitive Social Networks" (2015). Electronic Theses and Dissertations. 5294.
https://scholar.uwindsor.ca/etd/5294

https://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F5294&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5294&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5294&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/5294?utm_source=scholar.uwindsor.ca%2Fetd%2F5294&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


In�uen
e Maximization Mining for Competitive So
ial Networks

by

Xiao Ni Cao

A Thesis

Submitted to the Fa
ulty of Graduate Studies

through the S
hool of Computer S
ien
e

in Partial Ful�llment of the Requirements for

the Degree of Master of S
ien
e at the

University of Windsor

Windsor, Ontario, Canada

2015


© 2015, Xiao Ni Cao



In�uen
e Maximization Mining for Competitive So
ial Networks

by

Xiao Ni Cao

APPROVED BY:

Dr. Animesh Sarker

Department of Mathemati
s and Statisti
s

Dr. Dan Wu

S
hool of Computer S
ien
e

Dr. Christie Ezeife, Advisor

S
hool of Computer S
ien
e

April 20, 2015



DECLARATION OF ORIGINALITY

I hereby 
ertify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publi
ation.

I 
ertify that, to the best of my knowledge, my thesis does not infringe upon

anyone's 
opyright nor violate any proprietary rights and that any ideas, te
hniques,

quotations, or any other material from the work of other people in
luded in my

thesis, published or otherwise, are fully a
knowledged in a

ordan
e with the standard

referen
ing pra
ti
es. Furthermore, to the extent that I have in
luded 
opyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright A
t, I 
ertify that I have obtained a written permission from the 
opyright

owner(s) to in
lude su
h material(s) in my thesis and have in
luded 
opies of su
h


opyright 
learan
es to my appendix.

I de
lare that this is a true 
opy of my thesis, in
luding any �nal revisions, as

approved by my thesis 
ommittee and the Graduate Studies o�
e, and that this thesis

has not been submitted for a higher degree to any other University or Institution.

iii



ABSTRACT

In�uen
e maximization (IM) is one of the fundamental problems in the area of in�u-

en
e propagation in so
ial networks. Re
ent studies in in�uen
e maximization have

primarily fo
used on the di�usion of single in�uen
e. In this thesis, we study the

problem under a new di�usion model named Competing General Threshold (CGT)

model, whi
h dis
overs k most in�uential nodes as early adopters of te
hnology A

(e.g., Apple) in a market where a 
ompeting te
hnology B (e.g., Bla
kberry) already

exists along with a set of early adopters of te
hnology B. To solve IM under the di�u-

sion of two in�uen
es, we �rst de�ne the CGT di�usion model, then estimate both A

and B in�uen
e probabilities by using Maximum-Likelihood Estimation from Twitter

networks. Next, we propose a new algorithm named 
gtMineA to �nd k in�uential

A-seeds under the CGT model. Experimental results on Twitter networks show that

our approa
h outperforms CELF by 15%.

Keywords. Competing Ideas, General Threshold Model, In�uen
e Maximization,

So
ial Networks.
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Chapter 1

Introdu
tion

1.1 So
ial and Information Network Analysis

So
ial networks su
h as Fa
ebook, Twitter, Google+, and so on 
an be modeled

as dire
ted graphs (also known as so
ial network graphs) where the nodes represent

individuals (e.g., human being or entities su
h as The New York Times ) and the edges

represent so
ial ties, relationships or intera
tions between individuals. In information

networks su
h as arXiv.org, wordpress, and so on, verti
es are information items

(e.g., resear
h papers, software engineering proje
ts, or blog posts), edges represent

intera
tions between items. Some main types of large-s
ale networks that resear
hers

have used for so
ial and information network analysis are listed below.

Friendship Networks. Examples of friendship networks in
lude Fa
ebook whi
h

has 1, 280, 000, 000 users as of June 2014, and Twitter whi
h has 645, 750, 000 users

as of 31 August, 2014. Friendship networks 
an be modeled using a dire
ted graph

where verti
es represent people, and there is an dire
ted edge (v, u) from v to u if v

knows and likes u. For example, on Twitter, there are two people, Peter (whose user

id is 318064061) and Mark (whose user id is 317756843). Peter follows Mark on July

7, 2011 (Twitter uses "follow" to say "I want to be friends with you"). In Figure 1.1,

1



we represent their so
ial relationship using a Twitter follow graph where nodes are

Peter and Mark respe
tively, a dire
ted edge between them means that Peter follows

Mark, a value "20110707" asso
iated to the edge (Peter,Mark) indi
ates the follow

date.

Figure 1.1: Following Graph on Twitter. Sour
e: Figure on Page 12, Greene [2011℄

Signed Networks. When two opposite relationships (su
h as like vs. dislike, love

vs. hate, trust vs. distrust, friend vs. foe, and so on) 
oexist in a so
ial network,

we model this kind of so
ial network using a weighted graph G = (V,E, s), where

individuals are represented by nodes, relationships between ea
h other are represented

by edges, and the sign (positive or negative) of relationships is represented by the edge

weight s ∈ {−1, 1}:

s =











1 if the relationship is like, trust, friend, et
.

−1 if the relationship is dislike, distrust, foe, et
.

For example, users on Wikipedia 
an vote for or against the nomination of others

to be Wikipedia administrator, users on Epinions 
an express trust or distrust of

other people's produ
t reviews by rating, parti
ipants on Slashdot 
an de
lare others

to be either "friends" or "foes" [Ahmed and Ezeife 2013℄, and users on Youtube 
an

express like or dislike of other people's 
omments.

Citation Networks. Citation networks 
an be modeled using a 
itation graph where

verti
es represent resear
h papers, and there is an dire
ted edge from paper A to paper

2



B if A 
ites B. Examples of 
itation networks in
lude arXiv.org.

Collaboration Networks. Collaboration networks (for example, Hollywood 
ol-

laboration network or a
ademi
 
ollaboration networks) 
an be modeled using a 
ol-

laboration graph where verti
es represent people, and there is an undire
ted edges

between two people if they work together on at least one movie or one resear
h proje
t.

Examples of 
ollaboration networks in
lude arXiv.org, Github, and DBLP.

Communi
ation Networks. Communi
ation networks model the "who-talks-to-

whom", or "who-emails-whom" stru
ture of so
ial networks. Su
h networks 
an be


onstru
ted from the logs of emails or from phone 
all re
ords [Mumu and Ezeife

2013℄. Examples of 
ommuni
ation networks in
lude email 
ommuni
ation network

from Enron (as in the Enron S
andal). The Enron email network 
onsists of 1, 148, 072

emails sent between employees of Enron between 1999 and 2003 [KONECT 2014℄.

A number of algorithmi
 problems in online so
ial and information networks anal-

ysis that resear
hers have been working on in
lude (a) dis
overing the sentiment

(positive, neutral, negative, or irrelevant attitude) toward 
elebrities (e.g., Obama),

produ
ts (e.g., iPhone6), or topi
 (e.g., Super Bowl), exploring how news, opinions,

or marketing information spread, predi
ting the trends and opinions on Twitter (b)

making re
ommendations based on user pro�les, examining friendships on Fa
ebook,

(
) pro
essing resumes automati
ally and �nding great new employees, 
lustering


olleagues into 
ir
les on LinkedIn, (d) measuring do
ument similarity, extra
ting

frequent itemsets on Google+, (e) using natural language pro
essing to perform

sentiment analysis, mining subje
tive information from blog posts on the web, (f)

organizing an email inbox, 
ategorizing related emails together, dete
ting phishing

emails, tra
ing how fraudulent a
tivity di�uses within the Enron email 
orpus, (g)

�nding great software engineers, inspe
ting 
ollaborative software engineering pro
ess

on GitHub, (h) analyzing the emotional 
hara
teristi
s of the 
ontent of a video, de-

termining the video's virality on Youtube [Russell 2013℄, (i) maximizing the spread of

3



in�uen
e through a so
ial network, that is to �nd a small set of in�uential people (the

seed set) in the online 
ommunities (the 
rowd) su
h that if we market to them by

giving free samples of our produ
ts to them, the �nal adoption of the new produ
ts

will be maximized in the 
rowd through word-of-mouth networks given that there are

millions of users on Twitter and a 
ompany only has a limited number of free samples

(budget for the advertising 
ampaign) to distribute, or to �nd a small set of in�uential

blogs in the blogsphere su
h that reading them allows one to gain the most engaging

information and the most trending topi
s given that there are 
ountless posts on the

web and one only has limited attention.

1.2 Thesis Outline

The remaining of the thesis is organized as follows. The remaining of Chapter 1

provides a brief introdu
tion on data mining, dis
usses di�usion of innovations and

in�uen
e maximization problem, illustrates submodularity and their properties, and

states thesis problem and 
ontributions. Chapter 2 des
ribes related work on in-

�uen
e maximization in great details. Chapter 3 develops a solution framework by

introdu
ing the CGT model, proving its properties, and proposing an e�
ient greedy

mining algorithm based on its properties, 
gtMineA to solve In�uen
e Maximization

under CGT model. Chapter 4 presents our experimental results. Chapter 5 
on
ludes

our study and suggests future work.

1.3 Data Mining Algorithms Used in So
ial and In-

formation Networks Analysis

Data mining algorithms 
an be grouped into three general 
ategories based on the

obje
tives of the task, frequent pattern mining, 
lassi�
ation, and 
lustering. In

4



this se
tion, we introdu
e the de�nitions and basi
 
on
epts on these 3 
ategories,

algorithms from ea
h 
ategory that have been exploited by resear
hers for mining

so
ial and information networks.

1.3.1 Frequent Pattern Mining

Finding frequent patterns is one of the fundamental data mining problems. Frequent

patterns 
an be a set of items, for example:

• {grape,mango, salmon} whi
h is a set of items bought together in many trans-

a
tions in a transa
tion database of a gro
ery store, implying a frequent buying

pattern

• {′frequent′,′ pattern′,′ mining′} whi
h is a set of words appearing together in

many do
uments, implying a phrase with a parti
ular meaning

• {homework1, homework2} whi
h is a set of two homework assignments su
h

that many senten
es appear in both of them, implying plagiarism [Ullman et

al. 2011℄

In frequent pattern (or frequent itemset) mining problem, the input is a transa
-

tion database. For example, 
onsider the transa
tion database D in Table 1.1 whi
h


ontains 5 transa
tions. We say an itemset (or a pattern) is frequent if the num-

ber of transa
tions in whi
h the itemset (or the pattern) appears is no less than

a user-de�ned value (
alled the minimum support threshold). For example, if we

spe
ify the minimum support threshold at 3, then the itemset (2, 3, 5) is a frequent

itemset, sin
e it appears in 3 transa
tions, i.e., in transa
tion 200 (1, 2, 3, 5), in trans-

a
tion 300 (2, 3, 5), and in transa
tion 500 (2, 3, 4, 5). The output is the frequent

itemsets found in the transa
tion databse: the frequent 1−element itemsets L1 =

{(1), (2), (3), (4), (5)}, the frequent 2−element itemsets L2 = {(1, 2), (2, 3), (2, 4), (2, 5), (3, 5)},
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the frequent 3−element itemsets L3 = {(2, 3, 5)}, and the frequent itemsets of all size

L = L1 ∪ L2 ∪ L3 = {(1), (2), (3), (4), (5), (1, 2), (2, 3), (2, 4), (2, 5), (3, 5), (2, 3, 5)}.

TID Items

100 (1, 2, 3, 4)
200 (1, 2, 3, 5)
300 (2, 3, 5)
400 (1, 2, 4, 5)
500 (2, 3, 4, 5)

Table 1.1: Transa
tion database with 5 transa
tions

On
e frequent itemsets have been found, we want to �nd out the relationship be-

tween these frequent itemsets, i.e., the asso
iation rules generated from these frequent

itemsets. An asso
iation rule is a if-then 
lause. For example, a rule 
an be like "if a

basket 
ontains items 1, 2, 3, then it probably 
ontains items 4, 5". In order to de�ne

how likely the if-then 
lause is evaluated to be true, we need to introdu
e the de�ni-

tion of 
on�den
e. The 
on�den
e of an asso
iation rule is the probability that items

itemk+1,. . .,itemk+q are in the basket given a basket 
ontains items item1,. . .,itemk,

where the itemset itemk+1,. . .,itemk+q and the itemset item1,. . .,itemk are disjoint.

The Apriori algorithm, initially proposed by Agrawal et al. [1994℄, is one of the most

in�uential algorithms used to �nd frequent itemsets. Mumu and Ezeife [2014℄ exploit

the Apriori algorithm to infer 
ommunity preferen
es (positive or negative) for a given

produ
t (e.g., iPhone) as input to standard in�uen
e maximization algorithms. The

ExAminer algorithm, introdu
ed by Bon
hi et al. [2003℄, is used to �nd frequent

itemsets whose size is no less than a user-spe
i�ed value. Goyal et al [2008℄ exploit

the ExAminer algorithm to dis
over a
tion leaders from online 
ommunity, whi
h is

the �rst frequent pattern based algorithm for in�uen
e maximization mining.
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1.3.2 Classi�
ation Methods

Classi�
ation is to 
lassify obje
ts to their 
orresponding 
ategories. More pre
isely,


lassi�
ation is the task of learning a target fun
tion f from a training set that maps

ea
h sample x in the test set to one of the prede�ned 
lass labels y. The target

fun
tion is also known as a 
lassi�
ation model. (Sour
e: De�nition 4.1 on pages 146,

Pan et al. [2006℄.)

For example, given a training dataset in Table 1.2, and a test dataset in Table

1.3, 
lassi�
ation is to learn a 
lassi�
ation model from the training set, then apply

the learned model to the test set to 
lassify the non
oding RNA into two 
lasses:

pseudohairpin or pre-miRNA. The 
lassi�
ation results are illustrated in Table 1.4.

feature 1 feature 2 
lass label

69.07 1.04 pseudoHairpin

53.09 8.75 pseudoHairpin

55.45 0 pseudoHairpin

72.92 0 pseudoHairpin

43.02 12.94 pseudoHairpin

69.47 0 pre-miRNA

44.19 11.76 pre-miRNA

85.11 2.17 pre-miRNA

81.97 0 pre-miRNA

Table 1.2: The tiny non
oding RNA training dataset with 5 pseudoHairpin samples

and 4 pre-miRNA samples.

feature 1 feature 2 
lass label

56.38 2.70 unknown

42.68 12.35 unknown

Table 1.3: The tiny non
oding RNA test dataset with 2 unknown samples.

feature 1 feature 2 
lass label

56.38 2.70 pre-miRNA

42.68 12.35 pseudoHairpin

Table 1.4: The tiny non
oding RNA test dataset with 2 learned samples.
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Classi�
ation algorithms in
lude nearest neighbours (K-NN) whi
h was proposed

by Cover and Hart [1967℄, Naive Bayes 
lassi�er introdu
ed by M
Callum et al., [1998℄,

Support Ve
tor Ma
hine (SVM) proposed by Cortes and Vapnik [1995℄, de
ision trees

proposed by Quinlan [1986℄. In [Hu et al. 2014℄, the authors propose an algorithm

that exploits 
lassi�
ation algorithms to ta
kle the In�uen
e Maximization Problem

and uses the result of a greedy algorithm to train 
lassi�ers to dire
tly sele
t in�uential

nodes based on their features (Figure 1.2).

Figure 1.2: Classi�
ation in In�uen
e Maximization. Sour
e: Figure 1 on Page 1, Hu

et al. [2014℄
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1.3.3 Clustering Methods

Clustering is to 
luster obje
ts in groups su
h that obje
ts within a group are similar,

obje
ts between groups are di�erent. That is, 
lustering te
hniques are trying both to

maximize the similarity within a group and to maximize the di�eren
e between groups

[Tan et al. 2006℄. Clustering methods in
lude the K-Means algorithm proposed by

Ma
Queen et al., [1967℄ and Agglomerative Hierar
hi
al Clustering. We will brie�y

dis
uss them below.

K-Means. The input of K-means algorithm is a set of points. The K-Means algo-

rithm assumes there are k 
lusters in the point set (that is why it is 
alled K-means.)

K-means pi
ks k points that are likely to be in di�erent 
lusters as the 
entroid for

ea
h 
luster. Then it assigns ea
h remaining point p in the point set to a 
luster su
h

that the 
entroid of the 
luster to whi
h p is 
losest. After a point is added to a 
lus-

ter, the 
entroid of the 
luster is adjusted in order to take a

ount of the new point

[Ullman et al. 2011℄. In [Soni and Ezeife 2013℄, the authors improve the K-means al-

gorithm and propose a novel approa
h named Semanti
 non-parametri
 K-Means++

to automati
ally move emails from inbox to appropriate folders and sub-folders.

Hierar
hi
al Clustering. In general, agglomerative (bottom-up) hierar
hi
al 
lus-

tering starts with a set of points and ea
h point forms a 
luster. And there is a dis-

tan
e matrix storing the distan
es between all pairs of points (i.e., 
lusters). Based

on the distan
e matrix, the algorithm 
hooses two points (i.e., 
lusters) with the min-

imum distan
e in the matrix, 
ombines them into one 
luster, 
omputes the distan
es

between all pairs of the newly 
ombined 
luster and the old 
lusters, and use the

resulting distan
es to update the distan
e matrix (Sin
e we 
ombine two 
lusters into

one, so the distan
e matrix is redu
ed by one 
olumn and one row). The algorithm

repeats this pro
edure (i.e., 
hoosing two 
lusters with the minimum distan
e in the

distan
e matrix, 
ombining them into one 
luster, and updating the distan
e matrix)

until the minimum distan
e in the distan
e matrix is larger than a spe
i�ed threshold
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(whi
h means if the points in the 
luster are separated too far from ea
h other, the

algorithm would stop). In [Chen et al. 2014℄, the authors exploit the hierar
hi
al


lustering algorithm to improve the e�
ien
y of mining in�uen
e maximization by

dis
overing the 
ommunity stru
ture of the network to redu
e the sear
h spa
e for

in�uential nodes (Figure 1.3).

Figure 1.3: Classi�
ation in In�uen
e Maximization. Sour
e: Figure 2 on Page 3,

Chen et al. [2014℄

1.4 Di�usion of Innovations and In�uen
e

A

ording to Rogers [2010℄, one reason why the di�usion of innovations has been of

so mu
h interest to resear
hers is be
ause getting an innovation adopted is often very

di�
ult. Rogers [2010℄ de�nes that di�usion is the pro
ess by whi
h an innovation is


ommuni
ated through 
ertain 
hannels over time among the individuals of a so
ial

system. By innovation, he means a new idea or te
hnology su
h as Google's sear
h

10



engine, a new pra
ti
e su
h as water boiling in a Peruvian village, or a new produ
t

su
h as Apple's iPhone. By 
ommuni
ation 
hannels, he means the means by whi
h

messages get from one individual to another. He 
ompares two 
ommuni
ation 
han-

nels, mass media 
hannels and interpersonal 
hannels as follows. On one hand, mass

media 
hannels in
luding radio, television, newspapers, and so on, are e�
ient means

to inform an audien
e of potential adopters about the existen
e of an innovation. On

the other hand, interpersonal 
hannels like peer groups linking two or more individ-

uals who are near-peers are more powerful in persuading an individual to adopt an

innovation. By a so
ial system, he means a set of individuals or organization 
on-

ne
ted to one another through relationships and intera
tions su
h as all the users on

Twitter. Rogers [2010℄ points out that most individuals tend to be less dependent

on the obje
tive evaluations by s
ienti�
 studies. Rather they adopt an innovation

mainly be
ause individuals from peers have previously adopted the innovation and


onveyed a subje
tive evaluation of an innovation to them. Therefore, the di�usion of

innovations through so
ial networks is when individuals imitate their friends, friends

of friends, 
olleagues in the workpla
e or at s
hool, family members, a
quaintan
es

who have previously adopted an innovation by adopting the innovation as well, su
h

adoptions will subsequently in�uen
e others who have 
onne
tions with them. For

example, David wat
hes a new movie (here wat
hing a new movie indi
ates an inno-

vation.) He really likes it and blogs about the movie. David's friends Sean, Sibyl, and

Eva read his blog and go wat
h the movie as well. After that, the a
tion of wat
h-

ing the movie propagates re
ursively. Sean, Sibyl, and Eva in�uen
e their friends to

wat
h the movie, and so on, 
reating a 
as
ade of further wat
hing. The di�usion

pro
ess will 
arry on until no more adoptions are possible. Su
h 
hain rea
tion by

words-of-mouth e�e
t in a so
ial network is 
alled viral marketing (also known as

dire
t marketing) be
ause the adoption of the innovation will widely spread out like

the way an epidemi
 spreads.
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1.5 In�uen
e Di�usion Models

In this se
tion, we will introdu
e four main in�uen
e di�usion models. But before

we do that, we will brie�y introdu
e some terminology used in existing in�uen
e

maximization resear
h.

De�nition 1.5.1. Innovation. In this thesis, an "innovation" indi
ates a new

te
hnology, a new produ
t, a new idea, or a new behavior/a
tion. We use the term

innovation, te
hnology, produ
t, idea, behavior and a
tion inter
hangeably.

De�nition 1.5.2. In�uen
e Di�usion. Also known as in�uen
e propagation.

Here, "di�usion" means "propagation". In this thesis, "di�usion" is a pro
ess by

whi
h the adoption of an innovation propagates throughout a so
ial network from a

seed set (i.e., a small number of early adopters of the innovation) to the 
rowd. Infor-

mally, we 
an think of this as an in�uen
e (for performing 
ertain a
tions) propagating

from the seed set to the 
rowd [Goyal et al. 2008℄. Or di�usion is the out
ome of

in�uen
e [Ezeife 2014℄.

Two of the most basi
 and in�uential di�usion models are the Independent Cas-


ade model introdu
ed by Goldenberg et al. [2001℄ and the Linear Threshold model

introdu
ed by Granovetter [1978℄. Kempe et al. [2003℄ further formalized them to

what they are in present and proposed the General Threshold model and the General

Cas
ade model, whi
h are broad generalizations of the Linear Threshold model and

the Independent Cas
ade model respe
tively. The four di�usion models agree in the

following aspe
ts. The di�usion models represent a so
ial network as a weighted,

dire
ted graph G = (V,E). Ea
h node v ∈ V is an individual, ea
h edge (v, u) ∈ E is

an in�uen
e relationship from node v to node u indi
ating that node v exerts in�u-

en
e on node u. Ea
h edge (v, u) ∈ E is assigned a non-negative probability pv,u or a

non-negative weight bv,u indi
ating the amount of the in�uen
e that node v exerts on

node u to adopt an innovation. The di�usion pro
ess is dynami
 and progressive. By
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dynami
 we mean the di�usion pro
ess happens in dis
rete steps, i.e., t = 0, 1, ..., n−1

(where n = |V |, the size of V ). At any time t, ea
h node v ∈ V has two states, a
tive

(meaning it has adopted an innovation) or ina
tive (meaning it has not adopted the

innovation). By progressive we mean a node on
e be
omes a
tive at time t, it will

remain a
tive as time goes by and 
annot swit
h ba
k to ina
tive. If we use St to

denote the set of a
tive nodes at time t, then St−1 ⊆ St for t ≥ 1, that is, the set of

a
tive nodes is non-de
reasing as time moves in dis
rete steps, this is the progressive

aspe
t of the di�usion. At time 0, there is an initial a
tive set S0 whi
h represents

a small set of in�uential nodes that adopts an innovation. The propagation pro
ess

grows from there based on whi
h di�usion model we 
hoose. Sin
e the set of a
tive

nodes is non-de
reasing as time goes by in dis
rete steps, and the set V is �nite, the

pro
ess will stop on or before time n− 1 when no more a
tivations are possible. The

four di�usion models di�er in the way the in�uen
e of the neighborhood of a node v

exerts on it and in the way a de
ision is made by node v to adopt a new behavior.

They will be dis
ussed brie�y immediately and in details in Chapter 2.

Independent Cas
ade Model. The Independent Cas
ade model represents a so-


ial network as a weighted, dire
ted graph G = (V,E). Ea
h edge (v, u) ∈ E is

assigned a non-negative probability pv,u indi
ating the in�uen
e that node v exerts

on node u, that is if v is a
tive, it su

eeds in a
tivating u with the probability of

pv,u. The di�usion pro
ess happens in dis
rete steps, i.e., t = 0, 1, ..., n − 1 (where

n = |V |, the size of V ). At any time t, ea
h node v ∈ V is either a
tive or ina
tive.

On
e v is a
tivated, it remains a
tive and 
annot swit
h ba
k to ina
tive. At time 0,

there is an initial set S0 that adopts a new behavior and the di�usion pro
ess unfolds

as follows. If a node v is a
tive, it is given one single 
han
e to a
tivate ea
h of its

ina
tive neighbors u with probability of pv,u. The di�usion pro
ess will stop when no

more a
tivations are possible Kleinberg et al. [2007℄.
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Linear Threshold Model. The Linear Threshold model represents a so
ial net-

work as a weighted, dire
ted graph G = (V,E). Ea
h edge (v, u) ∈ E is assigned a

non-negative weight bv,u indi
ating the in�uen
e that v exerts on u su
h that the total

weight of u's neighbors is no greater than 1:
∑

v∈N(u) bv,u ≤ 1, where N(u) denotes

the set of neighbors of u. Ea
h node v ∈ V 
hooses uniformly at random a threshold

θv over the interval [0,1℄. A

ording to Granovetter [1978℄, in So
iology, the threshold

of a node v is de�ned as the minimum proportion of its neighbors who have already

adopted a behavior (su
h as joining a riot) that makes v adopt the behavior too. For

example, suppose v's threshold is 25%, v has 100 neighbors, and 26 of them have

joined a riot, sin
e 26/100 = 26% > 25%, v will join the riot too. A threshold of 0%

means v is so radi
al that he will join the riot even there is no one else doing so. A

threshold of 100% means v is so 
onservative that he will not join the riot even when

everyone else around him does so. In in�uen
e maximization problems, a threshold

of v, denoted as θv, intuitively indi
ates enough of its neighbors who have already

adopted a behavior in order for v to do so. The threshold of ea
h v ∈ V , denoted

as θv being 
hosen uniformly at random is intended to model our la
k of knowledge

of the exa
t values [Kempe et al. 2003℄. The di�usion pro
ess happens in dis
rete

steps, i.e., t = 0, 1, 2, ..., n − 1 (where n = |V |, the size of V ). At any time t, ea
h

node v ∈ V is either a
tive or ina
tive. On
e v is a
tivated, it remains a
tive and


annot swit
h ba
k to ina
tive. At time 0, there is an initial set S0 that adopts a new

behavior. At time t > 0, all nodes that were a
tive at time t− 1 remain a
tive, any

ina
tive node u is a
tivated if the total weight of its a
tive neighbors is no less than

its threshold:

∑

active v∈N(u) bv,u ≥ θu. The pro
ess will stop when no more a
tivations

are possible [Kleinberg et al. 2007℄.

General Threshold Model. The General Threshold model represents a so
ial net-

work as a weighted, dire
ted graph G = (V,E). Ea
h node v ∈ V is asso
iated with

14



a threshold fun
tion fv. The threshold fun
tion fv(S) measures the joint in�uen
e

of v's a
tive neighbors S exerted on v, with fv(∅) = 0. Ea
h node v ∈ V 
hooses

uniformly at random a threshold θv over the interval [0,1℄. The di�usion pro
ess hap-

pens in dis
rete steps, i.e., t = 0, 1, 2, ..., n− 1 (where n = |V |, the size of V ). At any

time t, ea
h node v ∈ V is either a
tive or ina
tive. On
e v is a
tivated, it remains

a
tive and 
annot swit
h ba
k to ina
tive. At time 0, there is an initial set S0 that

adopts a new behavior. At time t > 0, all nodes that were a
tive at time t−1 remain

a
tive, any ina
tive node v is a
tivated if the threshold fun
tion of v is no less than

the threshold of v: fv(S) ≥ θv. The pro
ess will stop when no more a
tivations are

possible. The Linear Threshold model dis
ussed above is a spe
ial 
ase of the General

Threshold model. In the Linear Threshold model, the threshold fun
tion of ea
h node

u ∈ V is de�ned as the total weight of its a
tive neighbors, fu(S) =
∑

v∈S bv,u, where

S denotes the set of a
tive neighbors of u, and bv,u is a non-negative weight on edge

(v, u) indi
ating the in�uen
e that v exerts on u su
h that

∑

v∈N(u) bv,u ≤ 1, where

N(u) denotes the set of neighbors of u [Kempe et al. 2003℄.

General Cas
ade Model. The General Cas
ade model represents a so
ial network

as a weighted, dire
ted graph G = (V,E). Ea
h node u ∈ V is asso
iated with an

in
remental fun
tion pu(v, S), where v is u's a
tive neighbor who has not tried to

in�uen
e u and S is the set of u's a
tive neighbors that have tried and failed in a
-

tivating u, pu(v, S) measures the in�uen
e of v on u given that the set of u's a
tive

neighbors that have tried and failed in in�uen
ing u. The di�usion pro
ess happens

in dis
rete steps, i.e., t = 0, 1, 2, ..., n− 1 (where n = |V |, the size of V ). At any time

t, ea
h node v ∈ V is either a
tive or ina
tive. On
e v is a
tivated, it remains a
tive

and 
annot swit
h ba
k to ina
tive. At time 0, there is an initial set S0 that adopts

a new behavior and the di�usion pro
ess unfolds as follows. If a node v is a
tive, it

a
tivates ea
h of its ina
tive neighbors u with probability of pu(v, S). The pro
ess
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will stop when no more a
tivations are possible. The Independent Cas
ade model

dis
ussed above is a spe
ial 
ase of the General Cas
ade model. In the Independent

Cas
ade model, the in
remental fun
tion of ea
h node u ∈ V is de�ned as the pairwise

in�uen
e probability from v to u, pv,u.

1.6 Submodular Fun
tions and Their Properties

The diminishing returns de�nition of submodular fun
tion is as follows: Given a set

of nodes V = {v1, ..., vn}, a fun
tion f : 2V → ℜ (where 2V is the power set of V )

is submodular if for any A ⊆ B ⊆ V and v ∈ V − B, (V − B means V ex
ept B

or V \B), we have that: f(A ∪ {v}) − f(A) ≥ f(B ∪ {v}) − f(B). The left hand

side of the inequality means the marginal gain (or 
ost) of adding a node v in A, the

right hand side of the inequality means the marginal gain (or 
ost) of adding a node

v in B, the entire inequality says the marginal gain (or 
ost) of adding a node v in a

larger set (i.e., B) is less than or equal to the marginal gain (or 
ost) of adding v in

a smaller set (i.e., A). This is the diminishing return aspe
t of submodularity.

Example 1.6.1. Submodularity. Consider s
enario one. We have a network as

shown in Figure 1.4 (a). We pla
e two sensors S1 and S2 in the network to obtain

a pla
ement A = {S1, S2} as shown in Figure 1.4 (b), we 
an see the 
overage of

A = {S1, S2} is 8. After that, we add a new sensor S to pla
ement A to obtain a

pla
ement A′ = {S1, S2, S} as shown in Figure 1.4 (
), we 
an see the additional (or

marginal) 
overage of the new sensor S is 8.

Now, 
onsider another s
enario. We have a network as shown in Figure 1.4

(a). We pla
e four sensors S1, S2, S3, and S4 in the network to obtain a pla
e-

ment B = {S1, S2, S3, S4} as shown in Figure 1.4 (d), we 
an see the 
overage of

B = {S1, S2, S3, S4} is 14. After that, we add a new sensor S to pla
ement B to
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obtain a pla
ement B′ = {S1, S2, S3, S4, S} as shown in Figure 1.4 (e), we 
an see the

additional (or marginal) 
overage of the new sensor S is 4.

Figure 1.4 is trying to say that the marginal gain of adding a new node S to

a smaller sett A = {S1, S2} is larger than the marginal gain of adding the same

node S to a larger set B = {S1, S2, S3, S4}. This is the diminishing return aspe
t of

submodularity.

S1 S111

S2 

Placement A={S1, S2} 

S’ 

New sensor: 

S2 

S1 

Placement A’={S1, S2, S} 

S 

S111

S222

S 

S1 S111

S2 

Placement B={S1, S2, S3, S4} 

S’ 

New sensor: S4 S3 

Placement B’={S1, S2, S3, S4, S} 

S 

S333
S444

S1 S1111

S2

S4 S3 S333
S4444

S 

(b) (c) 

(d) (e) 

(a) 

A network 

Figure 1.4: Diminishing Return of Submodular fun
tions. Adopted from Figure on

pages 8, Leskove
 [2007℄.

Submodular fun
tions have several properties. Of those properties, non-negative,

monotone submodular fun
tions are what we are interested in the 
ontext of in�uen
e

maximization. A non-negative, monotone submodular fun
tion is de�ned as follows:

A submodular fun
tion is monotone if it takes only non-negative values and it satis�es:

f(A ∪ {v}) ≥ f(A) for all elements v ∈ V and sets A ⊆ V . The left hand side of the

inequality means the gain (or 
ost) of adding a node v in A, the right hand side of
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the inequality means the gain (or 
ost) of A, the entire inequality says the gain (or


ost) of adding a node v in A ) would not de
rease the gain (or 
ost) of A.

Example 1.6.2. Monotoni
ity. From Figure 1.4, it is easy to see that the 
overage

of A′ = {S1, S2, S} whi
h is 16 (as shown in Figure 1.4 (
)) is no less than that of

A = {S1, S2} whi
h is 8 (as shown in Figure 1.4 (b)).

1.7 In�uen
e Maximization and Its Appli
ations

Having noti
ed the dynami
s of spread of innovation unfold through a so
ial network,

a natural question to ask is how to maximize the spread of di�usion of the innova-

tion, i.e., the in�uen
e maximization problem. Before further dis
ussing the in�uen
e

maximization problem, we will brie�y review some terminology used in this thesis.

De�nition 1.7.1. In�uen
e Spread. Given an initial a
tive set S0, the "in�uen
e

spread" (just "in�uen
e", or just "spread") of S0, denoted as σ(S0), is de�ned to be

the expe
ted number of �nal a
tive nodes at the end of the di�usion pro
ess when no

more adoptions are possible. Here, σ(·) is a fun
tion, de�ned as σ : 2V → ℜ, mapping

a set (the seed set S0) to a real number (the expe
ted number of �nal a
tive nodes at

the end of the di�usion pro
ess). On the other hand, the verb "in�uen
e" (as in node

v in�uen
es node u) means "v a
tivates node u".

De�nition 1.7.2. In�uen
e Maximization. Let S0 denote an initial a
tive seed

set. Let σ(S0) denote the in�uen
e spread of the seed set S0. Given a so
ial graph

G = (V,E), a di�usion model, and an integer k, the in�uen
e maximization problem

is to �nd a seed set S0 ⊆ V of size at most k su
h that σ(S0) is maximized under the

di�usion model.

Hardness of In�uen
e Maximization Problems. The in�uen
e Maximization

problem is proved to be NP-Complete, whi
h means no polynomial-time algorithm
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is known for it. If we 
an show the in�uen
e fun
tion σ(·) is a non-negative, mono-

tone submodular under a di�usion pro
ess, then in�uen
e maximization problem boils

down to a submodular fun
tion maximization problem. However submodular fun
tion

maximization is proven to be NP-hard, therefore there is no known polynomial-time

algorithm for this problem. But it 
an be solved approximately with guarantees in

polynomial time a

ording to Theorem 2.1 in [Kempe et al. 2003℄. A

ording to

Kempe et al. [2003℄, if the in�uen
e fun
tion σ(·) is a non-negative, monotone sub-

modular under a di�usion pro
ess, then we 
an exploit a greedy algorithm to �nd

an approximation set S0 of size k in polynomial time and σ(S0) ≥ (1 − 1/e)σ(S∗
0),

where S∗
0 is the optimal set that maximizes the value of σ over all k-element sets and

e = 2.713. In other words, the seed set S0 found by the greedy algorithm provides a

63%-approximation to the in�uen
e maximization problem in polynomial time.

Appli
ations of In�uen
e Maximization. The most motivating appli
ation of

in�uen
e maximization is viral marketing. Unlike mass marketing where all potential


ustomers are targeted, viral marketing (also known as dire
t marketing) exploits data

mining te
hniques to �nd out a handful of in�uential 
ustomers, by targeting them

(e.g., giving them free samples of the new produ
t), the rest of the viral marketing

would take 
are of itself through word-of-mouth e�e
t and the �nal adoption of the

new produ
t will rea
h a very large population of the network, like the spread of

an epidemi
 [Domingos and Ri
hardson 2001℄. Another appli
ations of in�uen
e

maximization is outbreak dete
tion. Suppose there are 
ontaminants spreading over

a water distribution network where nodes are pipe jun
tions and edges are pipes, we

want to �nd a few lo
ations (pipe jun
tions) to pla
e sensors su
h that 
ontaminants


an be dete
ted qui
kly and infe
t as few households as possible [Leskove
 2007℄.

Similarly, suppose an epidemi
 (e.g., Ebola) spreads through a so
ial network where

nodes are people and edges are the intera
tions between them, we want to �nd a small
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set of 
ontagious people to monitor su
h that the disease 
an be dete
ted early and

infe
ts as few people as possible (or save as many lives as possible) [Leskove
 2007℄.

In the domain of blogsphere, where nodes are blog posts and edges are referen
es, we

want to �nd a few well-written quality blogs to gain as mu
h information as possible

[Leskove
 2007℄. In the setting of 
ollaboration networks, where nodes are resear
hers

and edges are 
ollaboration relationships, we want to �nd a few experts on a 
ertain

topi
 (e.g., database) [Tang et al. 2009℄. In the setting of friendship networks, where

nodes are individuals and edges are relationships, we want to �nd a few authoritative

people on a 
ertain produ
t (e.g., iPhone) [Mumu and Ezeife 2013℄.

1.8 Learning Pairwise In�uen
e Probabilities

In the studies of in�uen
e propagation in so
ial networks, resear
hers represent a

so
ial network as a dire
ted weighted so
ial graph G = (V,E) in whi
h individuals

are represented by nodes and there is a dire
ted edge (v, u) ∈ E from node v to

node u indi
ating the propagation of in�uen
e from v to u. A

ording to Goyal et al.

[2010℄, real so
ial networks do not have edge weights indi
ating the in�uen
e proba-

bility pv,u with whi
h v in�uen
es u. Therefore, most of the resear
hers in this area

assume the edge weights indi
ating the in�uen
e probabilities are given as input. In

their experiments, resear
hers adopt primarily four models of assigning pairwise in�u-

en
e probabilities, i.e., the uniform model, the trivalen
y model, the random 
as
ade

model, and the weighted 
as
ade model.

Uniform Model. In the uniform model, a uniform probability pv,u (e.g., 1%) is

assigned to ea
h edge (v, u) ∈ E in the so
ial graph. The uniform aspe
t means that

all nodes exert the same amount of in�uen
e to their neighbors.

Trivalen
y Model. To di�erentiate the in�uen
e that ea
h node v ∈ V exerts on
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their neighbors, the trivalen
y model assigns ea
h edge (v, u) ∈ E a probability pv,u


hosen uniformly at random from the set {0.1, 0.01, 0.001}.

Random Cas
ade Model. Similar to the trivalen
y model, the random 
as
ade

model assigns ea
h edge (v, u) ∈ E a probability pv,u 
hosen uniformly at random

from the interval [0,1℄ (rather than from a trilogy set).

Weighted Cas
ade Model. Di�erent from the previous three models, the weighted


as
ade model takes the network stru
ture into 
onsideration. In the weighted 
as
ade

model, ea
h edge (v, u) ∈ E is assigned an in�uen
e probability pv,u = 1/du where du

is the in-degree of u, i.e., the number of edges with u as their terminal vertex.

To 
ompute the in�uen
e probabilities in a more involved way, Goyal et al. [2010℄

study both the network stru
ture and user a
tion logs. Goyal et al. [2010℄ ta
kle the

problem of learning pairwise in�uen
e probabilities in so
ial networks and de�ne it

formally as follows: Given a graph G = (V,E, T ) derived from a so
ial network where

v ∈ V represents a user, an undire
ted edge (u, v) ∈ E represents a so
ial tie between

user u and user v, T : E → N is a fun
tion mapping an edge to a timestamp at

whi
h the so
ial tie is 
reated, along with an a
tion log Actions(User, Action, T ime),

whi
h is a relation 
ontaining tuples in the form of (u, a, tu) indi
ating user u ∈ V

performs a
tion a ∈ A (where A denotes the universe of a
tions) at time tu (for

example, David wat
hed the movie The Long Ranger at time 5) we want to learn

a fun
tion p : E → [0, 1] × [0, 1] su
h that ea
h edge (v, u) ∈ E is mapped to two

in�uen
e probabilities pv,u (indi
ating the probability with whi
h v in�uen
es u) and

pu,v (indi
ating the probability with whi
h u in�uen
es v). Goyal et al. [2010℄ use

Fli
kr so
ial network to 
onstru
t the a
tions log and 
onsider joining a group as the

a
tion. For example, to 
ompute the pairwise in�uen
e probability pv,u, �rst user

u and user v need to be
ome friends before the in�uen
e propagates from v to u,

then the probability that v 
an in�uen
e u to adopt an a
tion (i.e., joining a group)

pv,u = #groups that u joins after v joins

#groups that v joins
. Based on their resear
h, Ahmed and Ezeife [2013℄
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propose a new te
hnique whi
h mines the a
tion log to �nd frequent patterns of a
tion

performed by both trusted and distrusted users and use the positive/negative patterns

to learn both positive and negative in�uen
e probability under Bernoulli distribution.

1.9 Fundamental Twitter Terminology

In our solution framework, we learn in�uen
e probabilities from Twitter. Therefore,

we would like to introdu
e fundamental twitter terminologies for the readers to better

understand how we 
rawl Twitter to load data and perform data analysis. As a

blogger, we 
an publish blog posts on blog platforms, to name a few, WordPress,

Blogger or Tumblr. Likewise, a Twitter user 
an post mi
roblogs 
alled tweets on

Twitter under their a

ounts. By mi
ro, it means that ea
h tweet 
onsists of at

most 140 
hara
ters. In addition to the 140-
hara
ter text 
ontent, ea
h tweet may


onsist of one or more of the following entities: mention, reply, retweet, hashtag, or

URL. For example, the following tweet mentions �saradewitt, in
ludes the hash tag

#SXSWedu, and provides the URL pbskids.org/lab.

Figure 1.5: A tweet in
ludes mention, hash tag and URL.

Figure 1.6: A reply.

Given a tweet, you 
an

• Reply it by 
li
king the Reply button on the tweet. And your reply will be
ome

a tweet whi
h 
ontains "�username" at the beginning of the tweet as shown in
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Figure 1.7: A reply.

Figure 1.8: A mention.

Figure 1.9: A retweet.
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Figure 1.6. When you 
li
k on the tweet, you 
an �nd out to whi
h tweet you

replied as shown in Figure 1.7.

• Retweet it by 
li
king the Retweet button on the tweet to propagate the orig-

inal tweet to all of your followers (whi
h is an o�
ial way to quote another

user's tweet). Your retweet will be
ome a tweet whi
h looks like the one shown

in Figure 1.9.

• Favorite it by 
li
king the Favorite button on the tweet, indi
ating you like or

are interested in the tweet.

Given a twitter a

ount, you 
an

• Follow her/him, indi
ating you know, admire, or want to be friends with

her/him. Intuitively, following or admiring, as a binary relation R over a uni-

versal set of Twitter users is transitive if whenever user a admires user b, and b

in turn admires user 
, then a also admires 
. Twitter uses this transitivity to

re
ommend Twitter users followed by those whom you are following for you to

follow. Another thing to know about "follow" on Twitter is its asymmetry, i.e.,

you 
an follow anyone you like on Twitter without invitation or a

eptan
e, but

your followings do not have to follow you ba
k, and most of the time they do

not even know you exist.

• Mention her/him by 
ontaining "�username" anywhere in the body of your

tweet, indi
ating you like their tweets. A tweet in
luding mention is shown in

Figure 1.8.

Remark 1.9.1. Sin
e a reply 
ontains "�username" at the beginning of the tweet, a

mention 
ontains "�username" anywhere in the tweet, therefore a reply is a spe
ial

instan
e of a mention.
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1.10 Thesis Contribution

Re
ent resear
h in in�uen
e di�usion models has primarily fo
used on di�usion of

single innovation 
as
ade. However in the real world, there usually are multiple

innovations 
ompeting within a so
ial network [Zhang et al. 2014℄, for example, the

laun
h of Apple's iPhone 6 to a market where Google's Nexus 5, Samsung's Galaxy

S5, Bla
kberry's Q10, and so on already exist. In the setting of single in�uen
e

di�usion models, there is only one te
hnology (say te
hnology A standing for Apple)

in the network. We represent the underlying so
ial network (the medium for the

propagation of te
hnology A) as G = (V,E), where V represents individuals, E

represents intera
tions between them. Initially (at time 0), there is only one seed set

S0 (i.e., a small number of early adopters of te
hnology A). The adoption of te
hnology

A propagates throughout the so
ial network from the seed set S0 to the 
rowd. In the

thesis, we extend the existing single in�uen
e di�usion to two in�uen
e di�usions. In

the setting of two in�uen
e di�usions models, there are two te
hnologies (te
hnology

A standing for Apple and te
hnology B standing for Bla
kberry) in the network.

We suppose te
hnology B 
omes in the network �rst. There are two aspe
ts to this

extension. (1) We are studying in�uen
e maximization in the setting of two in�uen
e

di�usions, the di�erent setting determines a di�erent input for the algorithm. The

input for the thesis problem (to �nd an in�uential seed set SA
0 of size k in the network

where the seed set SB
0 already exists) is the so
ial network G = (V,E), a seed set

for te
hnology B SB
0 , and a budget k for the size of a seed set for te
hnology A

SA
0 , while the input for in�uen
e maximization under single in�uen
e di�usion is the

so
ial network G = (V,E) and a budget k for the size of a seed set for te
hnology

A SA
0 . (2) In the setting of two in�uen
e di�usions, the two in�uen
es propagate in

a 
ompetitive way. Ea
h node has four states in the two in�uen
e di�usion models,

A meaning adopting te
hnology A, B meaning adopting te
hnology B, AB meaning

adopting both A and B, 0 meaning adopting neither te
hnology A nor te
hnology B.
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During the two in�uen
e di�usions pro
ess, on
e an ina
tive node v be
omes a
tive,

say A-a
tive (meaning adopting te
hnology A), it 
annot swit
h to other states (i.e.,

B, AB, or 0). This is the 
ompetitive aspe
t of the two in�uen
e difussions. This is

be
ause on
e a node v be
omes, say A-a
tive, it 
annot swit
h to B, whi
h means it

blo
ks the in�uen
e propagation of te
hnology B. The reason why existing algorithms

like CELF whi
h run in the single in�uen
e di�usion model 
annot be dire
tly applied

under the two in�uen
e di�usion model is that the two in�uen
e di�usions unfold in

a 
ompeting and random way. If the two di�usions unfold in a non-
ompeting way,

i.e., a B-node 
an swit
h to A, then we 
an simply apply CELF to �nd A-nodes in

the graph using the parameters for in�uen
e A (su
h as pA(v, u), θA, whi
h will be

explained in Chapter 3). However, the di�usions unfold in a 
ompeting way, e.g.,

on
e a node be
omes B-a
tive, it 
annot swit
h to A. If the two di�usions unfold in a

deterministi
 way, then we 
an simply apply CELF to �nd A-nodes in the sub-graph

that does not in
lude B-nodes. However, the two di�usions unfold in a random way

(be
ause ea
h node 
hooses uniformly at random two thresholds over [0,1℄), there is

no way to know whi
h nodes would be
ome B-nodes.

Se
ond, in the studies of in�uen
e propagation in so
ial networks, resear
hers

represent a so
ial network as a dire
ted weighted so
ial graph in whi
h individuals

are represented by nodes and there is a dire
ted edge from node v to node u if v 
an

in�uen
e u with the probability indi
ated as the edge weight. Goyal et al. [2010℄

point out that most of the resear
hers in this area assume the in�uen
e probabilities

as the edge weights are given as input and ignore how the probabilities 
an be derived

from so
ial network data, i.e., user a
tion logs. Goyal et al. [2010℄ use Fli
kr so
ial

network to 
onstru
t the a
tions log and 
onsider joining a group as the a
tion.

For example, Goyal et al. [2012℄ 
ompute the probability that v 
an in�uen
e u as

pv,u = #groups that u joins after v joins

#groups that v joins
. Based on their resear
h, Ahmed and Ezeife [2013℄

propose a new te
hnique whi
h mines the a
tion log to �nd frequent patterns of
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a
tion performed by both trusted and distrusted users and use the positive/negative

patterns to learn both positive and negative in�uen
e probability under Bernoulli

distribution. Ahmed and Ezeife [2013℄ use Epinions to 
onstru
t the a
tions log and


onsider rating a user's produ
t review as the a
tion. They learn the pairwise in�uen
e

probability from Epinions and 
onsider rating a user's review as an a
tion. They

de�ne the probability that v in�uen
es u as p+v, u = #reviews u rates the same as v

#reviews v rates
, and

the probability that u is not in�uen
ed by v as p−v, u = #reviews u rates not the same as v

#reviews v rates
.

In this thesis, the underlying so
ial network we are studying is Twitter. We use

MLE under Bernoulli distribution (as done in [Goyal et al. 2010℄ and [Ahmed and

Ezeife, 2013℄) to estimate the probability that u retweets v, the probability that u

replies v, and the probability that u mentions v. We assume the probability that u

retweets/replies/mentions v's tweets is the probability that v in�uen
es u to perform

an a
tion.

Contributions. Motivated by these limitations, the formal problem de�nition we

propose to ta
kle is as follows:

Thesis Problem De�nition 1.10.1. Let SA
0 be the seed set for te
hnology A, SB

0

the seed set for te
hnology B. The in�uen
e spread for te
hnology A of two seed sets

SA
0 and SB

0 under the CGT model, denoted as σA(SA
0 , S

B
0 ), is de�ned as the expe
ted

number of A-nodes at the end of the di�usion pro
ess.

Given a dire
ted so
ial network G = (V,E), a non-negative budget k, a seed set of B-

nodes SB
0 , and CGT model, the problem of �nding in�uential A-nodes when te
hnology

B already exists in the network is to �nd a seed set SA
0 as early adopters of te
hnology

A of size at most k su
h that σA(SA
0 , S

B
0 ) is maximum.

The main 
ontributions of thesis are as follows:

1. We propose a new well-de�ned di�usion model named Competing General

Threshold (CGT) model whi
h allows more than one 
ompeting innovation

27



(e.g. Apple as A when Bla
kberry as B is already in the market) to propagate

in so
ial networks under the CGT model, whi
h makes it more general and

natural

2. In order to 
ompute the pairwise in�uen
e probabilities, we use Bernoulli Maximum-

Likelihood Estimation for Twitter so
ial network to 
onstru
t the formula of the

pairwise in�uen
e probabilities, then we use relational algebra operators left-join

and proje
tion on Twitter datasets to retrieve the parameters in the in�uen
e

probabilities formula

3. We extend the existing threshold fun
tion [Goyal et al. 2010℄ under the single

in�uen
e di�usion to de�ne both A and B threshold fun
tions under the CGT

model

4. We 
laim that the in�uen
e spread fun
tion for A under our CGT model is a

monotone, non-submodular fun
tion

5. We propose a new algorithm, 
gtMineA, based on the greedy algorithm [Kempe

et al. 2003℄ and the lo
al sear
h algorithm [Ahmed and Ezeife 2013℄ to �nd

in�uential A-nodes in 
ompetitive so
ial networks under the CGT model in

polynomial time

6. We perform in depth analysis of our proposed solution using real life dataset


olle
ted from Twitter. In terms of the quality of seeds sele
ted, our experiments

show that 
gtMineA outperforms CELF by 15%
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Chapter 2

Related Works

In�uen
e maximization was �rst introdu
ed by Domingos and Ri
hardson [2001℄.

Domingos and Ri
hardson [2001℄ state that unlike mass marketing where all potential


ustomers are targeted, dire
t marketing exploits data mining te
hniques to �nd

out a handful of in�uential 
ustomers and targeting them, the rest of the dire
t

marketing would take 
are of itself through word-of-mouth network, like the spread

of an epidemi
. To do that, they propose a general framework by modeling markets

as so
ial networks, and modeling so
ial networks as Markov random �elds where

the probability that ea
h 
ustomer adopts a new produ
t is a fun
tion of both how

mu
h a 
ustomer feels desire for the produ
t and the in�uen
e exerted by other


ustomers. In addition, they make an important point that in�uen
e maximization

depends not only on the in�uential individuals but also on the stru
ture and 
ontext

of the entire network. The problem of maximizing the spread of in�uen
e through a

so
ial network was then formalized by Kempe et al. [2003℄. They �rst dis
uss two

basi
 di�usion models, i.e., the Linear Threshold model and the Independent Cas
ade

model. They then de�ne the in�uen
e (spread) of a seed set S0, denoted as σ(S0), to

be the expe
ted number of nodes who adopt the innovation at the end of the di�usion

pro
ess. They next de�ne the in�uen
e maximization problem as follows: Given a
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graph G = (V,E) derived from a so
ial network, a budget k, the task is to �nd a k-

element seed set S0 over all k-element set ⊆ V su
h that σ(S0) is maximized, that is S0

yields the maximum in�uen
e on all nodes ∈ V −S0 by getting the maximum expe
ted

number of a
tive nodes at the end of the di�usion pro
ess. They adopt a hill-
limbing

algorithm and propose an e�
ient approximation solution whi
h runs in polynomial

time under both the Linear Threshold Model and the Independent Cas
ade Model.

Based on the greedy algorithm proposed by Kempe et al. [2003℄, Leskove
 et al. [2007℄

propose an e�
ient greedy algorithm named CELF working under both the Linear

Threshold model and the Independent Cas
ade model, speeding up the original greedy

algorithm by 700 times. The highlight of CELF is that the authors exploit the ni
e

properties of submodular fun
tions to signi�
antly prune the number of iterations

needed for in�uen
e estimation of a new 
andidate. In the setting of blogshpere,

Agarwal et al. [2008℄ propose a novel approa
h to dis
overing in�uential bloggers

by de�ning in�uen
e s
ore for ea
h blogger using the number of their blogs' inlinks,

the number of 
omments their blogs re
eive, the number of their blogs' outlinks,

and the length of the blog post. Goyal et al. [2011℄ develop an algorithm 
alled

SIMPATH for in�uen
e maximization under the Linear Threshold model. SIMPATH

is an iterative method, building on the CELF [Leskove
 et al. 2007℄, i.e., it exploits

the lazy forward optimization proposed by CELF to sele
t seeds iteratively. Unlike

CELF, SIMPATH optimizes the spread estimation pro
ess in three key novel ways.

In addition, it enhan
es the quality of the sele
tion of seed set where they measure the

quality of seed set on the basis of the spread of in�uen
e, i.e., the wider its spread, the

better its quality. However, neither Linear Threshold model nor Independent Cas
ade

model ta
kles in�uen
e maximization problem in signed so
ial networks. To �ll the

gap, Ahmed and Ezeife [2013℄ propose a general framework named TGT where both

positive relationships and negative relationships are 
onsidered and propose a new

algorithm named MineSeedLS (as CELF-like algorithms 
annot be applied to TGT
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model) to dis
over in�uential nodes under the TGT. In [Mumu and Ezeife 2014℄, the

authors propose a model named OBIN, whi
h takes as input a so
ial network graph

G = (V,E) and a produ
t z and outputs an in�uen
e graph Gz(V,E) for a produ
t

z from 
omputed 
ommunity preferen
e where V is a sub-graph of the entire so
ial

network G 
ontaining only the relevant nodes to a 
ertain produ
t. The authors then

perform in�uen
e maximization algorithms in the sub-graph 
ontaining only relevant

nodes to a 
ertain produ
t. A

ording to Goyal et al. [2010℄, real so
ial networks do

not have edge weights indi
ating the in�uen
e probability pv,u with whi
h v in�uen
es

u. Therefore, most of the resear
hers in this area assume the edge weights indi
ating

the in�uen
e probabilities are given as input. Goyal et al. [2010℄ point out that

although the real so
ial network do not have the pairwise in�uen
e probability pv,u

expli
itly as the edge weight on (v, u) ∈ E, the probabilities 
an be derived from

so
ial network data, i.e., user a
tion logs. We will dis
uss ea
h of these papers in this


hapter.

2.1 In�uen
e Maximization

2.1.1 Maximizing the Spread of In�uen
e through a So
ial

Network

In [Kempe et al. 2003℄, the authors state that the motivation for resear
hers to study

in�uen
e maximization 
omes from viral marketing, a marketing te
hnique su
h that

if a 
ompany wants to market a new produ
t in the population, instead of targeting all

possible 
ustomers, they would like to target a small set of in�uential people who have

the ability of spreading the adoption of the new produ
t to the 
rowd. Here, "target"

means giving free samples of their new produ
t to an individual. The question is who

should they target in order to trigger the maximum �nal adoptions, i.e., the in�uen
e

maximization problem?
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The authors propose several di�usion models whi
h des
ribe how the dynami
s of

adoptions propagate throughout the so
ial network, in
luding the Linear Threshold

model, the Independent Cas
ade model, and the General Threshold model as follows:

Linear Threshold Model. The Linear Threshold model represents a so
ial net-

work as a weighted, dire
ted graph G = (V,E). Ea
h edge (v, u) ∈ E is assigned

a non-negative weight bv,u indi
ating the in�uen
e that v exerts on u su
h that

∑

v∈N(u) bv,u ≤ 1, where N(u) denotes the set of neighbors of u. Ea
h node v ∈ V


hooses uniformly at random a threshold θv over the interval [0,1℄. The di�usion pro-


ess happens in dis
rete steps, i.e., t = 0, 1, 2, ..., n−1. At any time t, ea
h node v ∈ V

is either a
tive or ina
tive. On
e v is a
tivated, it remains a
tive and 
annot swit
h

ba
k to ina
tive. At time 0, there is an initial set S0 that adopts a new behavior. At

time t > 0, all nodes that were a
tive at time t− 1 remain a
tive, any ina
tive node

u is a
tivated if the total weight of its a
tive neighbors is no less than its threshold:

∑

active v∈N(u) bv,u ≥ θu. The pro
ess will stop when no more a
tivations are possible

[Kleinberg et al. 2007℄.

Example 2.1.1. Linear Threshold Model. We use Figure 2.1 to illustrate how

the Linear Threshold Model works.

Let St denote the set of a
tive nodes at time t, t = 0, 1, 2, ..., n−1. Then V −St−1

denotes the set of ina
tive nodes at time t. At time 0 (Figure 2.1 (a)), there is a

so
ial network G = (V,E), along with an initial set of a
tive node(s), i.e., S0 = {1}.

At time 1, node 1 a
tivates node 2 sin
e p1,2 = 1.0 and θ2 = 0.5, but fails to a
tivate

node 3 sin
e p1,3 = 0.1 and θ3 = 0.5 (Figure 2.1 (b)). At time 2, nodes 1 and 2 jointly

a
tivate node 3 sin
e p1,3 + p2,3 = 0.1 + 0.4 = 0.5, and θ3 = 0.5 (Figure 2.1 (
)).

At this point, the di�usion stops sin
e no more a
tivations are possible. From Figure

Figure 2.1 (
), we 
an see the in�uen
e spread of {1} is 3, the number of a
tive nodes

at the end of the di�usion.

Independent Cas
ade Models. The Independent Cas
ade model represents a
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Figure 2.1: Linear Threshold Model

so
ial network as a weighted, dire
ted graph G = (V,E). Ea
h edge (v, u) ∈ E is

assigned a non-negative probability pv,u indi
ating the in�uen
e that node v exerts

on node u, that is if v is a
tive, it su

eeds in a
tivating u with the probability of

pv,u. The di�usion pro
ess happens in dis
rete steps, i.e., t = 0, 1, ..., n− 1. At any

time t, ea
h node v ∈ V is either a
tive or ina
tive. On
e v is a
tivated, it remains

a
tive and 
annot swit
h ba
k to ina
tive. At time 0, there is an initial set S0 that

adopts a new behavior and the di�usion pro
ess unfolds as follows. If a node v is

a
tive, it is given one single 
han
e to a
tivate ea
h of its ina
tive neighbors u with

probability of pv,u. By only one 
han
e, we mean that if v, one of u
′s a
tive neighbors,

attempts to a
tive u at time t, regardless of whether v su

eeds or not, v will not be

granted another attempt to a
tivate u in the following steps, i.e., v is not 
ontagious

to u anymore. If u has more than one a
tive neighbors, ea
h of its a
tive neighbors

will be given only one 
han
e to a
tivate u, one at a time and in an arbitrary order.

The di�usion pro
ess will stop when no more a
tivations are possible [Kleinberg et

al. 2007℄.

Example 2.1.2. Independent Cas
ade Models. We use Figure 2.2 to illustrate
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how the Independent Cas
ade model works.

1

2 3

1.0

0.9

0.4

t = 0

1

2 3

1.0

0.9

0.4

t = 1

1

2 3

1.0

0.9

0.4

t = 2

(a) (b) (c)

Figure 2.2: Independent Cas
ade Model.

Let St denote the set of a
tive nodes at time t, t = 0, 1, 2, ..., n− 1, with S−1 = 0.

Then V − St−1 denotes the set of ina
tive nodes at time t. At time 0 (Figure 2.2

(a)), there is a so
ial network G = (V,E), along with an initial set of a
tive node(s),

i.e., S0 = {1}. At time 1, node 1 a
tivates node 2 sin
e we �ip a biased 
oin with

the probability p1,2 = 1.0 to get a head for the in�uen
e propagation from node 1 to

node 2, and we get a head, but fails to a
tivate node 3 sin
e we �ip a biased 
oin with

the probability p1,3 = 0.9 to get a head for the in�uen
e propagation from node 1 to

node 3, and we get a tail (Figure 2.2 (b)). At time 2, nodes 2 a
tivates node 3 sin
e

we �ip a biased 
oin with the probability p2,3 = 0.4 to get a head for the in�uen
e

propagation from node 2 to node 3, and we get a head (Figure 2.2 (
)). At this point,

the di�usion stops sin
e no more a
tivations are possible. From Figure Figure 2.2

(
), we 
an see the in�uen
e spread of {1} is 3, the number of a
tive nodes at the end

of the di�usion.

General Threshold Model. The General Threshold model represents a so
ial

network as a weighted, dire
ted graph G = (V,E). Ea
h node v ∈ V is asso
iated
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with a threshold fun
tion fv. fv(S)measures the joint in�uen
e of v's a
tive neighbors

S exerted on v, with fv(∅) = 0. Ea
h node v ∈ V 
hooses uniformly at random a

threshold θv over the interval [0,1℄. The di�usion pro
ess happens in dis
rete steps,

i.e., t = 0, 1, 2, ..., n− 1. At any time t, ea
h node v ∈ V is either a
tive or ina
tive.

On
e v is a
tivated, it remains a
tive and 
annot swit
h ba
k to ina
tive. At time 0,

there is an initial set S0 that adopts a new behavior. At time t > 0, all nodes that

were a
tive at time t−1 remain a
tive, any ina
tive node v is a
tivated if fv(S) ≥ θv.

The pro
ess will stop when no more a
tivations are possible. The Linear Threshold

model dis
ussed above is a spe
ial 
ase of the General Threshold model. In the Linear

Threshold model, the threshold fun
tion of ea
h node u ∈ V is de�ned as the total

weight of its a
tive neighbors, fu(S) =
∑

v∈S bv,u, where S denotes the set of a
tive

neighbors of u, and bv,u is a non-negative weight on edge (v, u) indi
ating the in�uen
e

that v exerts on u su
h that
∑

v∈N(u) bv,u ≤ 1, where N(u) denotes the set of neighbors

of u [Kempe et al. 2003℄.

Example 2.1.3. General Threshold Model. We use Figure 2.3 to illustrate how

the General Threshold model works.
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Figure 2.3: General Threshold Model
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Let St denote the set of a
tive nodes at time t, t = 0, 1, 2, ..., n−1. Then V −St−1

denotes the set of ina
tive nodes at time t. There are various ways to de�ne the

threshold fun
tion of node u, fu. In this example, we de�ne the threshold fun
tion of

node u as fu = 1 −
∏

v∈N(u)∩St−1
(1 − pv,u), where N(u) denotes the set of neighbors

of node u, and N(u) ∩ St−1 denotes the set of a
tive neighbors of node u at time

t. At time 0 (Figure 2.3 (a)), there is a so
ial network G = (V,E), along with

an initial set of a
tive node(s), i.e., S0 = {1}. At time 1, node 1 a
tivates node

2 sin
e p1,2 = 1.0 and θ2 = 0.5, but fails to a
tivate node 3 sin
e p1,3 = 0.1 and

θ3 = 0.5 (Figure 2.3 (b)). At time 2, nodes 1 and 2 jointly a
tivate node 3 sin
e

f3({1, 2}) = 1− (1− 0.15)(1− 0.35) = 0.4475, and θ3 = 0.4 (Figure 2.3 (
)). At this

point, the di�usion stops sin
e no more a
tivations are possible. From Figure Figure

2.3 (
), we 
an see the in�uen
e spread of {1} is 3, the number of a
tive nodes at the

end of the di�usion.

Then the authors de�ne the problem of maximizing the in�uen
e spread through

a so
ial network formally as follows:

Given a graph G = (V,E) derived from a so
ial network and a budget k. Let

S0 ⊆ V denote the initial seed set of a
tive nodes. Let σ(S0) denote the in�uen
e

spread of a seed set of nodes S0, i.e., the expe
ted number of a
tive nodes at the end

of the di�usion pro
ess with S0 be the initial seed set at the beginning of the di�usion

pro
ess, with σ(∅) = 0. We would like to �nd a k-element set S0 over all k-element

set ⊆ V su
h that σ(S0) is maximum.

The authors show that the in�uen
e maximization problem is NP-hard under

both the Linear Threshold model and the Independent Cas
ade model. But it 
an be

solved approximately with guarantees in polynomial time a

ording to Theorem 2.1 in

[Kempe et al. 2003℄. A

ording to Kempe et al. [2003℄, if the in�uen
e spread fun
tion

σ(·) is a non-negative, monotone submodular under a di�usion pro
ess, then we 
an

exploit a greedy algorithm to �nd an approximation set S0 of size k in polynomial
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time and σ(S0) ≥ (1−1/e)σ(S∗
0), where S

∗
0 is the optimal set that maximizes the value

of σ over all k-element sets and e = 2.713. In other words, S0 found by the greedy

algorithm provides a 63%-approximation to the in�uen
e maximization problem in

polynomial time.

The authors show that the resulting in�uen
e spread fun
tion σ(·) is submodular

under both the Linear Threshold Model and the Independent Cas
ade Model and

present a Greedy Clibming Hill algorithm.

Example 2.1.4. Climbing Hill Algorithm. We illustrate how the Greedy Climbing

Hill algorithm works under the LT model through an example shown in Figure 2.4.
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Thresholde θv: θ1 = θ2 = θ3 = θ4 = θ5 = θ6 = 0.1

Figure 2.4: A So
ial Network

In the so
ial network G = (V,E) shown in Figure 2.4, there are 6 nodes and 12

edges 
onne
ting them. Ea
h node v is asso
iated as a threshold θv, ea
h edge (v, u)

is assigned an edge weight pv,u. We set our budge k = 2, meaning we are looking for

2 in�uential nodes from this network. Greedy algorithm works as follows. Initially,

it sets the seed set S to ∅. In the �rst pass, it evaluates the marginal gain of adding
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Node Marginal Gain

1 σ({1} ∪ ∅)− σ(∅) = 4
2 σ({2} ∪ ∅)− σ(∅) = 1
3 σ({3} ∪ ∅)− σ(∅) = 1
4 σ({4} ∪ ∅)− σ(∅) = 2
5 σ({5} ∪ ∅)− σ(∅) = 2
6 σ({6} ∪ ∅)− σ(∅) = 2

Table 2.1: Iteration One of Greedy

Node Marginal Gain

2 σ({1} ∪ {2})− σ({1}) = 0
3 σ({1} ∪ {3})− σ({1}) = 0
4 σ({1} ∪ {4})− σ({1}) = 1
5 σ({1} ∪ {5})− σ({1}) = 1
6 σ({1} ∪ {6})− σ({1}) = 0

Table 2.2: Iteration Two of Greedy

node 1 to S0 = ∅, the marginal gain of adding node 2 to S0 = ∅,..., the marginal gain

of adding node 6 to S0 = ∅, with σ(∅) = 0, the results are shown in Table 2.1. It

pi
ks the node with the maximum marginal gain, whi
h is node 1, and adds it to the

seed set. At this moment, S0 = {1} In the se
ond pass, it evaluates the marginal gain

of adding node 2 to S0 = {1}, the marginal gain of adding node 3 to S0 = {1},...,

the marginal gain of adding node 6 to S0 = {1}, the results are shown in Table 2.2.

It pi
ks the node with the maximum marginal gain, whi
h is node 4 (or node 5), and

adds it to the seed set. Now, S0 = {1, 4}. Sin
e k = 2, and we have found two

in�uential nodes 1 and 4, we are done.

2.1.2 CELF

In [Leskove
 et al. 2007℄, the authors proposed an e�
ient algorithm named CELF

whi
h a
hieves the same results but runs 700 times faster than the original greedy

algorithm proposed by [Kempe et al. 2003℄. We use the exa
t so
ial network used in

illustrating the Greedy algorithm in se
tion 2.2, to show how CELF works under the

LT model. In the so
ial network G = (V,E) shown in Figure 2.4, there are 6 nodes

and 12 edges 
onne
ting them. Ea
h node v is asso
iated as a threshold θv, ea
h

edge (v, u) is assigned an edge weight pv,u. We set our budge k = 2, meaning we are

looking for 2 in�uential nodes from this network. CELF works as follows. Initially, it

sets the seed set to ∅. In the �rst pass, CELF works in the same way as the Greedy

algorithm. It evaluates the marginal gain of adding node 1 to ∅, the marginal gain
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of adding node 2 to ∅,..., the marginal gain of adding node 6 to ∅, with σ(∅) = 0, the

results are shown in Table 2.3. It pi
ks the node with the maximum marginal gain,

whi
h is node 1, and adds it to the seed set. In the se
ond passes, it does something

di�erent from the Greedy algorithm. Instead of evaluating the in�uen
e spread of all

the 
ombinations (i.e., {1, 2}, {1, 3},{1, 4},{1, 5},{1, 6}), CELF sorts the nodes 2, 3,

4, 5, 6 by the marginal gain of adding them to ∅, pi
ks the node with the maximum

marginal gain whi
h is node 4 and evaluates the marginal gain of adding node 4 to

{1}, whi
h is 1. Then it pi
ks the node with the se
ond maximum spread whi
h is

node 5, and evaluates the marginal gain of adding node 5 to {1}, whi
h is 1. Then

it pi
ks the node with the third maximum spread whi
h is node 6, and evaluates the

marginal gain of adding node 6 to {1}, whi
h is 0. At this moment, we 
an stop

without 
ontinuing evaluating the marginal gain of adding node 2 to {1} and the

marginal gain of adding node 3 to {1}. The reason why we 
an stop from there is

that the in�uen
e spread fun
tion σ(·) is submodular under the Linear Threshold

Model. A

ording to the diminishing return of submodularity, we know

σ({2} ∪ ∅)− σ(∅) = 1

≥ σ({2} ∪ {1})− σ({1})

σ({3} ∪ ∅)− σ(∅) = 1

≥ σ({3} ∪ {1})− σ({1})

Therefore, neither σ({2}∪{1})−σ({1}) nor σ({3}∪{1})−σ({1}) is greater than

1, whi
h is the 
urrent maximum marginal gain of adding node 4 to {1}.
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Node Marginal Gain

1 σ({1} ∪ ∅)− σ(∅) = 4
4 σ({4} ∪ ∅)− σ(∅) = 2
5 σ({5} ∪ ∅)− σ(∅) = 2
6 σ({6} ∪ ∅)− σ(∅) = 2
2 σ({2} ∪ ∅)− σ(∅) = 1
3 σ({3} ∪ ∅)− σ(∅) = 1

Table 2.3: Iteration One of CELF

Node Marginal Gain

4 σ({1} ∪ {4})− σ({1}) = 1
5 σ({1} ∪ {5})− σ({1}) = 1
6 σ({1} ∪ {6})− σ({1}) = 0

Table 2.4: Iteration Two of CELF

2.1.3 SIMPATH

In [Goyal et al. 2011℄, the authors state that in�uen
e maximization is one of the

fundamental problems in the area of in�uen
e propagation in so
ial networks. The

authors state that the motivation for resear
hers to study in�uen
e maximization


omes from viral marketing, a marketing te
hnique of giving free samples of a new

produ
t to a handful of in�uential people who spread the adoption of the new produ
t

to the 
rowd. A

ording to the authors, the problem of in�uen
e maximization is

to sele
t k nodes su
h that by a
tivating them, the expe
ted spread of in�uen
e is

maximized. The input of in�uen
e maximization algorithms is a so
ial graph with

in�uen
e probabilities of edges, the output of in�uen
e maximization algorithms is a

k-node seed set [Goyal et al. 2011℄.

Under the Linear Threshold model, the authors establish a fundamental result

whi
h serves as the basis of the SIMPATH algorithm. The result says that the spread

of a set of nodes 
an be derived from the sum of spreads of ea
h node in the set on

appropriate indu
ed subgraph. In order to estimate the spread of a seed set, the au-

thors 
ompute the spread by making a list of the simple paths starting from the seed

nodes, rather than using the 
omputationally expensive Monte Carlo simulations. In

order to redu
e the number of spread estimation 
alls in the �rst iteration, the authors

propose a novel optimization 
alled VERTEX COVER OPTIMIZATION, whi
h ad-

dresses a key short
oming of the simple greedy algorithm that CELF [Leskove
 et al.

2007℄ does not address. In order to redu
e the running time of the spread estimation
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pro
ess in the subsequent iterations, the authors propose another novel optimization


alled LOOK AHEAD OPTIMIZATION. More pre
isely, at the beginning of ea
h it-

eration, the optimization generates top− l most promising seed 
andidates and shares

the marginal gain of those 
andidate seeds.

The authors develop an algorithm 
alled SIMPATH for in�uen
e maximization

under the linear threshold model. SIMPATH is an iterative method, building on the

CELF [Leskove
 et al. 2007℄, i.e., it exploits the lazy forward optimization proposed

by CELF to sele
t seeds iteratively. Unlike CELF, SIMPATH optimizes the spread

estimation pro
ess in three key novel ways. In addition, it enhan
es the quality of

the sele
tion of seed set where they measure the quality of seed set on the basis of

the spread of in�uen
e, i.e., the wider its spread, the better its quality.

The authors �rst introdu
e the properties of Linear Threshold model, whi
h serves

as the basis of SIMPATH. Re
all that in the Linear Threshold model a node v pi
ks at

most one of its in
oming edge with a probability of bv,w. Then the sele
ted edge is 
on-

sidered live, the unsele
ted edges are 
onsidered blo
ked. Let X denote one possible

set of out
omes on the edges (for example, {edge1 : live, edge2 : live, edge3 : blocked...})

and σX(S) denote the number of nodes that 
an be rea
hed from S via live paths (a

live path 
onsists of only live edges) in X . Then, by the de�nition of the spread of S,

σ(S) =
∑

X

Pr[X ] · σX(S) (2.1)

σX(S) =
∑

v∈V

I(S, v,X) (2.2)

I(S, v,X) =











1 if there is a live path in X from any node in S to v

0 otherwise

(2.3)
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Substitute equations 2.2 and 2.3 to 2.1, we obtain

σ(S) =
∑

v∈V

∑

X

Pr[X ] · I(S, v,X) =
∑

v∈V

ΥS,v (2.4)
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Figure 2.5: A weighted, dire
ted graph G = (V,E) derived from a so
ial network.

Sour
e: Figure 2 on Page 213, Goyal et al. [2011℄.

Theorem 2.1.1. In the LT model, the spread of a set S is the sum of the spread of

ea
h node u ∈ S on subgraphs indu
ed by V − S + u. That is,

σ(S) =
∑

u∈S σ
V−S+u(u)

(Sour
e: Theorem 1 on pages 213, Goyal et al. [2011℄.)

Example 2.1.5. The In�uen
e Spread of a Seed Set S using SIMPATH. In

Figure 2.5, the in�uen
e of a node x on node z 
an be 
omputed by enumerating all

simple paths starting from x and ending in z.

Υx,x = 1

Υx,y = 0.3 + 0.4 · 0.5 = 0.5

Υx,z = 0.4 + 0.3 · 0.2 = 0.46

Thus, the spread of a node 
an be 
omputed by enumerating simple paths starting

from the node.

σ{x} = Υx,x +Υx,y +Υx,z = 1 + 0.5 + 0.46 = 1.96
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The spread of a seed set S = {x, y}, a

roding to therom 2.1.1, is

σ(S) = σV−y(x) + σV−x(y) = 1 + 0.4 + 1 + 0.2 = 2.6

2.1.4 Dis
overing In�uential Nodes from So
ial Trust Network

In [Ahmed and Ezeife 2013℄, the authors state that existing in�uen
e di�usion models

su
h as the Linear Threshold model and the Independent Cas
ade model [Kempe et al.

2003℄ 
onsider only positive in�uen
e propagation in a so
ial network. However, two

opposite relationships (su
h as like vs. dislike, love vs. hate, trust vs. distrust, friend

vs. foe, and so on) may 
oexist in a so
ial network. For example, users on Wikipedia


an vote for or against the nomination of others to be Wikipedia administrator,

users on Epinions 
an express trust or distrust of other people's produ
t reviews

by rating, and parti
ipants on Slashdot 
an de
lare others to be either "friends" or

"foes", users on Youtube 
an express like or dislike of other people's 
omments. The

authors 
laim that we need to 
onsider both positive in�uen
e exerted by people

we trust or like and negative in�uen
e exerted by people we do not trust or dislike

while studying in�uen
e di�usion pro
ess. Existing di�usion models for In�uen
e

Maximization are modeled su
h that a node's probability of performing an a
tion

(or adopting a produ
t) will in
rease as the number of his/her friends performing

the same a
tion in
reases. However, the authors argue that, a node's probability of

performing an a
tion (e.g., buy an iPhobe 4S) should also de
rease if its distrusted

users, also buy an iPhone 4S.

The authors propose a new di�usion model named Trust-General Threshold (TGT)

model whi
h in
orporates both positive and negative in�uen
e probabilities based on

trust relationship among users in trust network. In a trust so
ial network (Figure

2.6 (a)), a node u trusts node v but distrusts node w. In the 
orresponding in�uen
e

graph (Figure 2.6 (b)), if node u trusts node v, then node v positively in�uen
es node

u with the probability of p+v, u with p−v, u = 0. If node u distrusts node w, then
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node w negatively in�uen
es node u with the probability of p+w, u with p+w, u = 0.

u

v

w

+

-

u

v

w

p
+
v, u

p
−
w, u

(a) Trust Graph (b) Influence Graph

Figure 2.6: Trust Graph vs In�uen
e Graph

The authors de�ne the positive in�uen
e probability p+v, u = Av,u

Av
where Av

denotes the number of a
tions performed by node v and Av,u denotes the number

of a
tions propagated from node v to node u (i.e., the number of v's a
tions imitated

by node u). For example, the a
tion log shows that node v (trusted by node u, in

Figure 2.6 (a)) performs 3 a
tions in total. Among v's 3 a
tions, 2 a
tions are imitated

by u. Hen
e, the probability of node u performing a task after node v performs the

same a
tion is 2/3 = 0.66, whi
h is the positive in�uen
e probability of node v on node

u. Then the authors de�ne the negative in�uen
e probability p−v, u =
A′

v,u

Av
where Av

denotes the number of a
tions performed by node v and A′
v,u denotes the number of

a
tions not propagated from node v to node u (i.e., the number of v's a
tions not

imitated by node u). For example, the a
tion log shows node w (distrusted by node

u, in Figure 2.6 (a)) performs 4 a
tions in total. Among w's 4 a
tions, only 1 a
tion

is imitated by node u, the remaining 3 a
tions are not imitated by node u. That is u

does not perform 3 out of 4 tasks performed by w. Hen
e, the probability of node u

not performing a task after node w performs the same a
tion is 3/4 = 0.75, whi
h is

the negative in�uen
e probability of node w on node u.

The authors propose an e�e
tive algorithm named MineSeedLS to dis
over in�u-

ential nodes from trust network. T-IM takes a so
ial network graph G(V,E) and a

budget k meaning to �nd at most k in�uential nodes. The algorithm returns a set

of in�uential nodes of size at most k, also known as seed set, S ⊆ V . The algorithm
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starts by initializing seed set S to ∅. Then the algorithm 
omputes in�uen
e spread

of ea
h node v ∈ V . The node with highest in�uen
e spread is pi
ked and added to

S. MineSeedLS then performs the following lo
al sear
h operations: (1) Delete, if by

removing any node v in S in
reases the in�uen
e spread under the T-IM model, then

the node v is removed from S. (2) Add, if by adding any node v in V − S in
reases

the in�uen
e spread under tje T-IM model, then the node v is added to the set S.

(3) Swap, if by swapping any node v in S with any node u in V − S in
reases the

spread under T-IM model the node v is removed from S and node u is added to S.

Example 2.1.6. How MineSeedLS Works. We illustrate how MineSeedLS works

through an example. Given a so
ial network G = (V,E) in Figure 2.7 (where ea
h

edge is assigned either positive in�uen
e probability or negative probability and for

the purpose of demonstration, for ea
h node, the positive threshold is set to 0.3 and

the negative threshold is set to 0.6), and a budget k = 2 meaning we will dis
over

two in�uential nodes. MineSeedLS will 
ompute the in�uen
e spread for ea
h node.

The in�uen
e spread of ea
h node is summarized in Table 2.5. The algorithm pi
ks

the node with maximum spread whi
h is node u1 yielding an in�uen
e spread of 3,

and adds u1 to the seed set S. On
e we have sele
ted one node in the seed set,

MineSeedLS performs the following lo
al sear
h operations, delete, add and swap on

the graph. Sin
e at this moment there is only one node in the seed set S, the delete

operation is skipped. Sin
e the budget is 2 > |S| = 1, the algorithm performs the add

operation, i.e., it adds any node in V − S, say u2 to S, and 
omputes the in�uen
e

spread of S + {u2}, denoted as σTGT (S + {u2}). Sin
e σTGT (S + {u2}) = 4 >

σTGT (S) = 3 whi
h is an improvement, node u2 is added to S. At this moment,

the seed set S = {u1, u2} with the in�uen
e spread of 4. MineSeedLS 
ontinues to


he
k if swapping (or ex
hanging) any node in S and any node in V − S yields any

improvement in in�uen
e spread. It swaps node u2 and node u3 by removing u2 from

and adding u3 to the seed set. Sin
e σTGT (S − {u2} + {u3}) = 5 > σTGT (S) = 4
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whi
h is an improvement, node u2 is removed from and node u3 is added to the seed

set S. At this moment, the seed set S = {u1, u3} with the in�uen
e spread of 5. The

algorithm will repeat the delete-add-swap pro
edure for any further improvement. It


he
ks if removing any node from the seed set S improves the in�uen
e spread or not.

It removes node u1 from S. Sin
e σTGT (S − {u1}) = 3 < σTGT (S) = 5 whi
h is not

an improvement, it adds node u1 ba
k to S. It then tries to remove u3 from S. Sin
e

σTGT (S − {u3}) = 2 < σTGT (S) = 5 whi
h is not an improvement, it adds node u3

ba
k to S. Sin
e the budget is 2 = |S|, the add operation is skipped. It will further


he
k if swapping any node in S with any node in V − S yields any improvement

in spread. Sin
e no swapping yields any improvement, the algorithm stops at this

point and returns the seed set S = {u1, u3} with the in�uen
e spread of 5 (This is a

summary from [Ahmed and Ezeife 2013℄ on pages 126).

Figure 2.7: So
ial network graph where ea
h edge is labeled with positive or negative

in�uen
e probabilities. Sour
e: Figure 2 on page 126 of [Ahmed and Ezeife 2013℄.

Node v u1 u2 u3 u4 u5
σTGT ({v}) 3 2 2 1 1

Table 2.5: In�uen
e spread of ea
h node. Sour
e: Table 6 on page 126 of [Ahmed

and Ezeife 2013℄.
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2.1.5 So
ial Network Opinion and Posts Mining for Commu-

nity Preferen
e Dis
overy

In [Mumu and Ezeife 2014℄, the authors state that the existing in�uen
e maximization

te
hniques su
h as CELF [Leskove
 et al. 2007℄, take as input the whole so
ial network

in order to �nd in�uential nodes as seed set for a spe
i�
 produ
t (e.g., iPhone) for

viral marketing. A

ording to the authors, general in�uen
e maximization te
hniques

like CELF do not 
onsider multiple posts on multiple produ
ts on Fa
ebook. Also

they ignore the relationships between users. Hen
e the seed set found by CELF-like

approa
hes may not be in�uential for that spe
i�
 produ
t (e.g., iPhone). Hen
e, the

quality of the seed set will be redu
ed and the e�
ien
y of the algorithm is slow sin
e

the sear
h spa
e is the entire network.

Motivated by the limitation, the authors propose a model named OBIN, whi
h

takes as input a so
ial network graph G = (V,E) and a produ
t z and outputs an

in�uen
e graph Gz(V,E) for produ
t z from 
omputed 
ommunity preferen
e where V

is a sub-graph of the entire so
ial network G 
ontaining only the relevant nodes to the

query. OBIN model 
onsists of three main fun
tions, TPD (Topi
-Post Distribution),

PCP-Miner (Post-Comment Polarity Miner), and in�uen
e network generator. (1)

The �rst fun
tion named TPD �rst applies SQL queries to �nd all nodes, posts, and


omments in the so
ial network (i.e., Fa
ebook) for a given produ
t z, then separates

relevant nodes from irrelevant nodes in the resulting datasets. TPD determines the

relevan
e of a node u' on a produ
t (e.g., iPhone) by the number of nodes linked

to node u, the number of likes on u's posts, the number of shares and 
omments on

u's posts, and if the posts of u 
ontains the produ
t information (e.g., iPhone s
reen

resolution). (2) The se
ond fun
tion named PCP-Miner identi�es opinion 
omments

among all the 
omments on u's posts, identi�es sentiment (positive, neutral, negative,

or irrelevant attitude) toward the 
omments, and measures the polarity s
ore (θz) of

the posts. The algorithm then uses the polarity s
ore to rank relevant nodes v, and
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generate a table in
luding v's posts w, 
omments c on posts w, and the set of nodes

who post 
omments on the posts w of v (whi
h are 
onsidered in�uen
ed nodes by

v.) (3) PoPGen (popularity graph generator) uses the list of ranked relevant nodes,

along with their posts, the 
omments on their posts, the authors of the 
omments

to 
ompute the in�uen
e s
ore, i.e., the extend to whi
h the relevant nodes exert on

the in�uen
ed nodes who 
omment their posts. PoPGen measures the in�uen
e by

the number of responses. Then PoPGen generates an in�uen
e graph Gz(V,E) on

produ
t z where nodes are those relevant nodes and there is an edge between two

nodes if they are friends on Fa
ebook.

Example 2.1.7. How OBIN Works. We illustrate how OBIN model works through

an example. OBIN �rst 
alls TPD to extra
t relevant nodes on a produ
t z from

Fa
ebook network. It is done by exe
uting SQL query

SELECT id, name, 
ategory, likes, link

FROM sear
h

WHERE q=iphone AND (type=page OR type = group)

and generating a nodes matrix as shown in Table 2.6. The �rst row of Table 2.6

shows that a node id is "140389060322069", the produ
t is "iPhone", the node has

3, 116, 728 friends and the pro�le of the node 
an be viewed via the "iphone.page" link.

On
e having obtained relevant nodes on a produ
t z, TPD exe
utes SQL query

SELECT post_id, message, likes.
ount AS A, share_
ount,


reated_time, 
omments.
ount, (
omments.
ount+share_
ount) AS SR

FROM stream

WHERE sour
e_id = 1 AND message != " "

ORDER BY likes.
ount LIMIT 100

in order to generate a set of posts on z of a node, say "140389060322069" as

shown in Table 2.7 and Table 2.8. For example, the �rst row in Table 2.7 shows
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that a post id is "469219579782347" posted by node "140389060322069", the post

title is "Bla
k or white", there are 61, 153 likes on the post, and the total number of

re-shares and unique 
omments are 11, 325. The �rst row in Table 2.8 shows that a

post id is "469219579782347", a node "108936862354990" leaves a 
omment on the

post at time "2013-01-06", the 
ontent of the 
omment is "this is really 
ool".

Node ID V Term A Link

140389060322069 iPhone 3116728 iphone.page

110018862354999 iPhone4 1435239 iPhone-4

214456561919831 iPhone

Fans

261210 theapple
lan

Table 2.6: Example of relevant nodes and data for z = iPhone. Sour
e: Table 1 on

page 141 of [Mumu and Ezeife 2014℄.

POST ID W Term A SR

469219579782347 bla
k or white 61153 11325

468646856506286 pretty amazing 33899 2213

469758623061776 Apple 5th Avenues 33041 2198

Table 2.7: Example of post data. Sour
e: Table 2 on page 141 of [Mumu and Ezeife

2014℄.

POST ID W User ID V Time Comment C

469219579782347 108936862354990 2013-01-06 this is really 
ool

Table 2.8: Example of post data. Sour
e: Table 3 on page 141 of [Mumu and Ezeife

2014℄.

To determine how in�uential a node v is on a 
ertain produ
t z, OBIN 
alls PCP-

Miner to 
ompute the polarity s
ore θz for ea
h post of node v. For example, Table

2.9 is the popularity matirix for post W "469219579782347". PCP-Miner 
omputes
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the polarity s
ore θz for post W "469219579782347" as follows:

θz = (
∑

posrepsonses−
∑

negresponses)× 100%

= 5− 0

= 5

The polarity s
ore θz is used to obtain a list of relevant nodes V, their posts W,


omments C on posts, and the nodes who leave 
omments on the posts W and are

therefore 
onsidered "in�uen
ed by the author of post" as shown in Table 2.10. OBIN

uses post-user relationship (Table 2.10) and user-user relationship Table (2.11) to

generate an in�uen
e matrix (Table 2.12) su
h that the element of the in�uen
e matrix

is 1 if there exists a relationship in either the post-user relationship or the user-user

relationship, 0 otherwise. OBIN 
alls PoPGen to generate an in�uen
e graph based

on in�uen
e matrix (IMAT) by adding all nodes in the IMAT to the in�uen
e graph,

and adding an edge between u and v if the the element IMATu,v = 1.

POST ID W User ID V Polarity Time Comment C

469219579782347 108936862354990 positive 2013-01-06 this is really 
ool

469219579782347 100002395810151 positive 2013-01-06 i want it

469219579782347 100003290108936 positive 2013-01-06 
ool

469219579782347 100004582655605 null 2013-01-06 hi sakuntla

469219579782347 1850908608 positive 2013-01-06 wow

469219579782347 100002090841333 positive 2013-01-06 
razy aoubt it

469219579782347 100003365201901 null 2013-01-06 admin

Table 2.9: Example of post data. Sour
e: Table 3 on page 141 of [Mumu and Ezeife

2014℄.

Node ID u Post ID W Node ID v

1 49823667 4

2 11250901 6

Table 2.10: Post-user relationship. Sour
e: Table 6 on page 143 of [Mumu and Ezeife

2014℄.
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User ID u User ID

3 1

Table 2.11: User-user relationship. Sour
e: Table 6 on page 143 of [Mumu and Ezeife

2014℄.

1 2 3 4 5 6 7

1 0 0 1 1 0 0 0

2 0 0 0 0 0 1 0

Table 2.12: In�uen
e Matrix (IMAT). Sour
e: Table 7 on page 143 of [Mumu and

Ezeife 2014℄.

2.2 Outbreak Dete
tion

2.2.1 Identifying the In�uential Bloggers in a Community

In [Agarwal et al. 2008℄, the authors �rst 
onsider the de�nition of an in�uential

blogger as follows:

De�nition 2.2.1. In�uential Blogger. A blogger is 
onsidered in�uential if s/he

has more than one in�uential blog post.

Then the authors present the de�nition of an in�uential blog post as follows:

De�nition 2.2.2. In�uential Blog Post. A blog post pi is 
onsidered in�uential if

its in�uen
e s
ore I(pi) is greater than an in�uen
e threshold iIndex(bjk), where the

in�uen
e threshold is de�ned as: Given a set of U of m bloggers,

More pre
isely, let {bk|1 ≤ k ≤ m} or {b1, b2, ..., bm} denote a universe set U of m

bloggers, let {pi|1 ≤ i ≤ l} or {p1, p2, ..., pl} denote a set L of all the blog posts by

all m bloggers, let {pj|1 ≤ j ≤ n} or {p1, p2, ..., pn} denote a set N of n blog posts

by a blogger bk. For ea
h post pj ∈ Nwhere1 ≤ j ≤ n by a blogger bk, there

is an in�uen
e s
ore I(pj) asso
iated with it. Let max(I(pi)) = max1≤j≤n(I(pj))

denote the maximum in�uen
e s
ore among blogger bk's blog posts 1 through n, let

iIndex(bk) denote the in�uen
e index of blogger bk, then iIndex(bk) = max(I(pi)).
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That is, the in�uen
e of a blogger is identi�ed by the in�uen
e of their blogs. Let

V denote the set of top-k bloggers a

ording to their in�uen
e index iIndex, let

min(iIndex(bi)) = min1≤i≤k(iIndex(bi)) denote the minimum in�uen
e index among

k-in�uential bloggers 1 through k, then min(iIndex(bi)) is de�ned as the threshold of

in�uential blog posts. That is, for all the blog posts {p1, p2, ..., pl} by all m bloggers,

blog posts are 
onsidered in�uential if their in�uen
e s
ore I(pj) ≥ min(iIndex(bi))

for 1 ≤ j ≤ l, 1 ≤ i ≤ k. Bloggers are 
onsidered in�uential if they posted more than

one in�uential blog post.

A

ording to the authors, a blog post is 
onsidered in�uential if (a) it is known

by many people, whi
h is measured using the number of its inlinks ι, (b) it generates

follow-up a
tivities, whi
h is quanti�ed by the number of 
omments it re
eives γ, (
)

the ideas in the blog post are original, whi
h is indi
ated by the number of its outlinks

θ, (d) the 
ontent of the blog post has quality, whi
h is measured by the length of

the blog post λ. To quantify the in�uen
e of a blog post p I(p), the authors exploit

the four parameters jointly as follows.

InfluenceF low(p) = win

|ι|
∑

m=1

I(pm)− wout

|θ|
∑

n=1

I(pn) (2.5)

where win and wout are the weights that 
an be used to 
hange the ratio of in
oming

and outgoing in�uen
e in the model, respe
tively. pm denotes all the blog posts that

refer to blog post p, for 1 ≤ m ≤ |ι|. pn denotes all the blog posts that blog post p

refers to, for 1 ≤ n ≤ |θ|. Re
all that |ι| is the total numbers of inlinks of blog post

p, |θ| is the total numbers of outlinks of blog post p. InfluenceF low(p) measures

the re
ognition and the novelty simultaneously sin
e (1) the more in�uential inlinks

p has, the more in�uential p is, (2) the more in�uential outlinks p has, the less novel

p is.

I(p) ∝ wcomγp + InfluenceF low(p) (2.6)
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where wcom is the weight 
an be exploited to 
hange the ratio of the number of


omments in the model, γp denotes the number of 
omments re
eived by blog post p.

I(p) is proportional to the joint 
ontribution by the number of 
omments it re
eives

and InfluenceF low(p) sin
e (1) the more in�uential 
omments p re
eives, the more

in�uential p is, (2) the larger InfluenceF low(p) is, the more in�uential p is.

I(p) = w(λ)× (wcomγp + InfluenceF low(p)) (2.7)

where w(λ) is a weight fun
tion to measure the quality of the blog post p a

ording

to its length λ.

iIndex(B) = max(I(pi)) (2.8)

where iIndex(B) is the in�uen
e index of blogger B, max(I(pi)) for 1 ≤ i ≤ n is

the maximum in�uen
e s
ore among blogger B's blog posts 1 through n. That is,

the in�uen
e of a blogger B is measured by their blog posts. We 
an sort bloggers in

des
ending order a

ording to their in�uen
e index, then 
hoose top k bloggers as k

most in�uential bloggers.

2.3 Probabilisti
 Models of Information Flow

2.3.1 Learning In�uen
e Probabilities in So
ial Networks

In [Goyal et al. 2010℄, the authors state that real so
ial networks do not have edge

weights indi
ating the in�uen
e probability pv,u with whi
h v in�uen
es u. Therefore,

most of the resear
hers in this area assume the edge weights indi
ating the in�uen
e

probabilities are given as input. In their experiments, resear
hers adopt primarily

four models of assigning pairwise in�uen
e probabilities, i.e., the uniform model, the

trivalen
y model, the random 
as
ade model, and the weighted 
as
ade model (se
tion

1.9). Goyal et al. [2010℄ point out that although the real so
ial network do not have
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the pairwise in�uen
e probability pv,u expli
itly as the edge weight on (v, u) ∈ E,

the probabilities 
an be derived from so
ial network data, i.e., user a
tion logs. The

problem of learning probabilities in so
ial networks is de�ned formally as follows:

De�nition 2.3.1. Problem De�nition Given a graph G = (V,E, T ) derived from

a so
ial network where v ∈ V represents a user, an undire
ted edge (u, v) ∈ E rep-

resents a so
ial tie between user u and user v, T : E → N is a fun
tion mapping

an edge to a timestamp at whi
h the so
ial tie is 
reated, along with an a
tion log

Actions(User, Action, T ime), whi
h is a relation 
ontaining tuples in the form of

(u, a, tu) indi
ating user u ∈ V performs a
tion a ∈ A (where A denotes the universe

of a
tions) at time tu, we want to learn a fun
tion p : E → [0, 1]× [0, 1] su
h that ea
h

edge (v, u) ∈ E is mapped to two in�uen
e probabilities pv,u (indi
ating the probability

with whi
h v in�uen
es u) and pu,v (indi
ating the probability with whi
h u in�uen
es

v).

Input. The input of the algorithms in
ludes an undire
ted so
ial graph, an a
tion log,

and an in�uen
e model. The so
ial graph 
onsists of nodes representing individuals,

edges indi
ating so
ial ties between these individuals, and edge weights indi
ating

when the so
ial tie was 
reated. For example, in the so
ial graph shown in Figure

2.8 (a), there are 3 individuals, P, Q, and R, P and Q be
ome friends at time 4, P

and R be
ome friends at time 2, Q and R be
ome friends at time 11. The a
tion log


onsists of tuples in the form of (user, action, time) indi
ating user u performs a
tion

a at time t, and sorted by a
tion and then by time in in
reasing order. For example,

in the a
tion log shown in Figure 2.8 (b), there are 7 tuples, indi
ating P performs

a
tion a1 at time 5, Q performs a
tion a1 at time 10, and so on. The in�uen
e model

in
ludes stati
 models, 
ontinuous time models, and dis
rete time models.

A
tion Propagation. We say an a
tion a propagates from v to u if the so
ial tie

between u and v was 
reated before both u and v perform a
tion a, and v performs

a
tion a before u performs a
tion a. For example, in Figure 2.8 (a), Q and R be
ome
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Figure 2.8: A framework proposed by Goyal et al. for learning in�uen
e probabilities

for all edges. Sour
e: Figure 2 on Page 6, Goyal et al. [2010℄.
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friends at time 11, Q performs a
tion a2 at time 12, and R performs a
tion a2 at

time 14, therefore we say a
tion a2 propagates from Q to R. On the other hand, Q

and R be
ome friends at time 11, Q performs a
tion a1 at 10, and R performs a
tion

a1 at 15, however Q performs a
tion a1 at 10 whi
h is earlier than Q and R be
ome

friends, hen
e we say a
tion a1 does not propagate from Q to R.

Propagation Graph. For ea
h a
tion a ∈ A, we have a propagation graph for it.

A propagation graph for an a
tion a is a weighted, dire
ted graph G(V,E), where a

node v ∈ V represents a user, a dire
ted edge (v, u) ∈ E from v to u indi
ating the

propagation of the a
tion a from v to u, the edge weight represents the time delay

between v performing the a
tion a and u performing the same a
tion a. If we denote

the time that u performs a
tion a as tu(a), then the time delay on the edge is denoted

as tu(a) − tv(a). For example, Figure 2.8 (
) is the propagation graph for a
tion a1,

the edge (P,Q) says P propagates a1 to Q. A

ording to the a
tion log (shown in

Figure 2.8 (b)), tP (a1) = 5, tQ(a1) = 10, hen
e the time delay on the edge (P,Q) is

tQ(a1)− tP (a1) = 5.

Output. The output is an in�uen
e matrix M (shown in Figure 2.8 (f)) where

M [v, u] = pv,u, whi
h is the pairwise in�uen
e probability of v on u. That is, we have

learned pv,u for all edges.

The authors �rst introdu
e their solution framework whi
h is an instan
e of the

General Threshold Model. Re
all from se
tion 1.5, the General Threshold Model

represents a so
ial network as a weighted, dire
ted graph G = (V,E). Ea
h node

v ∈ V is asso
iated with a threshold fun
tion fv(S), where S is the set of v's a
tive

neighbors. fv(S) measures the joint in�uen
e probability of v's a
tive neighbors S

exerted on v, with fv(∅) = 0. Ea
h node v ∈ V 
hooses uniformly at random a

threshold θv over the interval [0,1℄. The di�usion pro
ess happens in dis
rete steps,

i.e., t = 0, 1, 2, ..., n− 1. At any time t, ea
h node v ∈ V is either a
tive or ina
tive.

On
e v is a
tivated, it remains a
tive and 
annot swit
h ba
k to ina
tive. At time
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0, there is an initial set S0 that adopts a new behavior. At time t > 0, all nodes

that were a
tive at time t − 1 remain a
tive, furthermore, among all the ina
tive

nodes, any node v is a
tivated if fv(S) ≥ θv. The pro
ess will stop when no more

a
tivations are possible. Goyal et al. [2010℄ assume that the in�uen
e that ea
h of

the a
tive neighbors of an ina
tive node u exerts on u is independent of ea
h other

and de�ne the threshold fun
tion (also known as the joint in�uen
e probability of u's

a
tive neighbors exerted on u) as follows,

pu(S) = 1−
∏

v∈S

(1− p(v,u)) (2.9)

where u is an ina
tive user, S is the set of its a
tivated neighbors, pu(S) is the joint

in�uen
e probability of S exerted on u (also known as the threshold fun
tion of u),

and pv,u is the pairwise in�uen
e probability of v ∈ S exerted on u. If pu(S) ≥ θu,

where θu is the a
tivation threshold of user u, then u is a
tivated.

The authors then show how to estimate the pairwise in�uen
e probability p(v,u)

in equation 2.9 in stati
 models, 
ontinuous time models, and dis
rete time models

respe
tively. We will introdu
e the stati
 models on whi
h our proposed algorithm


omputeIn�uen
eProb based (Algorithm 3 in Chapter 3). Continuous time models,

and dis
rete time models are omitted for la
k of spa
e.

Stati
 Model. Stati
 models assume that the in�uen
e probabilities are stati
 and do

not 
hange as time goes on. Three instan
es of stati
 models are presented: Bernoulli

distribution, Ja

ard index, and partial 
redits.

Stati
 Model - Bernoulli Distribution. Bernoulli distribution estimates the in-

�uen
e probability of v on u, pv,u using Maximum-Likehood Estimator (MLE) as

follows:

pv,u =
Av2u

Av

(2.10)

where Av2u denotes the number of a
tions propagated from v to u, Av denotes the
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number of a
tions performed by v.

Example 2.3.1. In Figure 2.8, the pairwise in�uen
e probability pP,Q under stati


model estimated by Bernoulli distribution is

pP,Q =
AP2Q

AP

=
1

2

= 0.5

AP2Q = 1 be
ause a

ording to the propagation graphs (shown in Figure 2.8 (
), (d),

and (e)), there is only 1 a
tion (i.e., a1) propagated from P to Q. AP = 2 be
ause P

performs 2 a
tions a1 and a3.

Stati
 Model - Ja

ard Index. Ja

ard index estimates the in�uen
e probability

of v on u pv,u by adopting Ja

ard similarity (The Ja

ard similarity of two sets S and

T is de�ned as |S ∩ T |/|S ∪ T |, i.e., the ratio of the 
ardinality of the interse
tion of

S and T to the 
ardinality of the union of S and T [Leskove
 et al. 2011℄) as follows:

pv,u =
Av2u

Au|v

(2.11)

where Av2u denotes the number of a
tions propagated from v to u, Au|v denotes the

number of a
tions either performed by u or performed by v.

Example 2.3.2. In Figure 2.8, the pairwise in�uen
e probability pP,Q under stati


model estimated by Ja

ard index is

pP,Q =
AP2Q

AP |Q

=
1

3

= 0.33

58



AP2Q = 1 be
ause a

ording to the propagation graphs (shown in Figure 2.8 (
), (d),

and (e)), there is only 1 a
tion (i.e., a1) propagated from P to Q. AP |Q = 3 be
ause

P performs 2 a
tions a1 and a3, Q performs 3 a
tions a1, a2, and a3. {a1, a3} ∪

{a1, a2, a3} = {a1, a2, a3}, and | {a1, a2, a3} | = 3.

Stati
 Model - Partial Credits. Partial 
redits �rst estimates the 
redit given

to ea
h a
tivated neighbors v ∈ S of u who performed an a
tion a ∈ A before u as

follows:

creditv,u(a) =
1

∑

w∈S I(tw(a) < tu(a))
(2.12)

where tu(a) denotes the time at whi
h user u performs an a
tion a ∈ A, tw(a) denotes

the time at whi
h user w performs the a
tion a ∈ A, S denotes the set of a
tivated

neighbors of u, I is an indi
ator fun
tion returning 1 if an a
tivated neighbor w ∈ S

performs a
tion a ∈ A before u, returning 0 otherwise.

∑

w∈S I(tw(a) < tu(a)) in

equation 2.4 means the number of a
tive neighbors of u who perform the a
tion a

before user u. That is, in the partial 
redits model if u is in�uen
ed to adopt an

a
tion a, ea
h of u's a
tive neighbors who have performed the a
tion a before u does

so is given an equal 
redit 1/d for the a
tion a, where d is the number of a
tive

neighbors of u who perform the a
tion a before user u does so, or d is the number of


ontributors who propagate the a
tion a to u.

Then the Bernoulli model with partial 
redit estimates the pairwise in�uen
e

probability of v on u, pv,u by plugging equation 2.4 into equation 2.2 as follows:

pv,u =

∑

a∈A creditv,u(a)

Av

(2.13)

where

∑

a∈A creditv,u(a) is the total 
redits given to v for propagating a
tions to u,

and Av denotes the number of a
tions performed by v.

Example 2.3.3. In Figure 2.8, the pairwise in�uen
e probability pP,Q under stati
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model estimated by partial 
redit Bernoulli distribution is

pP,Q =

∑

a∈A creditP,Q(a)

AP

=
creditP,Q(a1)

AP

=
1
1

2

= 0.5

∑

a∈A creditP,Q(a) = 1 be
ause a

ording to the propagation graphs (shown in Figure

2.8 (
), (d), and (e)), there is only 1 a
tion (i.e., a1) propagated from P to Q and P

is the only 
ontributor propagating a
tion a1 to Q, hen
e user P gets the full 
redit for

in�uen
ing user Q for performing a
tion a1. AP = 2 be
ause P performs 2 a
tions

a1 and a3.

And Ja

ard index model with partial 
redit estimates the pairwise in�uen
e prob-

ability of v on u, pv,u by plugging equation 2.4 into equation 2.3 as follows:

pv,u =

∑

a∈A creditv,u(a)

Au|v

(2.14)

Example 2.3.4. In Figure 2.8, the pairwise in�uen
e probability pP,Q under stati


model estimated by partial 
redit Ja

ard index is

pP,Q =

∑

a∈A creditP,Q(a)

AP |Q

=
creditP,Q(a1)

AP |Q

=
1
1

3

=
1

3

= 0.33
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∑

a∈A creditP,Q(a) = 1 be
ause there is 1 a
tion (a1) propagated from P to Q and

P is the only 
ontributor propagating a
tion a1 to Q, user P gets the full 
redit for

in�uen
ing user Q for performing a
tion a1. AP |Q = 3 be
ause P performs 2 a
tions

a1 and a3, Q performs 3 a
tions a1, a2, and a3. {a1, a3} ∪ {a1, a2, a3} = {a1, a2, a3},

and | {a1, a2, a3} | = 3.
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Chapter 3

Proposed Algorithm for Mining

In�uential Nodes From Competitive

So
ial Networks

The setting of the thesis problem is the laun
h of te
hnology A into a market where a


ompeting te
hnology B already exists along with a set of early adopters of te
hnology

B. The problem we ta
kle is to �nd k most in�uential nodes and 
onvin
e them to

adopt Te
hnology A (e.g., giving ea
h a free sample of Te
hnology A) su
h that the

�nal adoptions of Te
hnology A in the 
rowd is maximized in the setting. Here, k

is our budget for the advertising 
ampaign meaning we have at most k free samples

to distribute. If we represent the underlying so
ial network (the medium for the

propagations of two te
hnologies) as G = (V,E), where V represents individuals, E

represents intera
tions between them, then there are two aspe
ts related to the thesis

problem. The �rst aspe
t of our problem is to study how the dynami
s of adoptions

of Te
hnology A and Te
hnology B simultaneously spread out through the network,

i.e., we need a di�usion model to des
ribe the two simultaneous in�uen
e di�usions

and their resulting 
as
ading behaviors (se
tion 3.1), in
luding the task of learning
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the pairwise in�uen
e probabilities as the edge weights (se
tion 3.2.2). The se
ond

aspe
t of our problem is to study an e�
ient yet e�e
tive algorithm whi
h allows us to

�nd the spe
ial k nodes for Te
hnology A under the proposed di�usion model (se
tion

3.2.4). We in
lude analysis of the running times of all our algorithms in se
tion 3.3.

3.1 Competing General Threshold Model

In this se
tion, we will address the �rst aspe
t of the thesis problem, i.e., the proposed

Competing General Threshold model whi
h is an extension to the General Threshold

model [Kempe et al. 2003℄. Unlike the original General Threshold model whi
h

models one single in�uen
e di�usion in the network, the proposed Competing General

Threshold (CGT) model is aiming to model two interfering in�uen
e di�usions in the

network.

But before we do that, we will brie�y review some terminology used in existing

in�uen
e maximization resear
h. In the next se
tion, we will extend the de�nitions of

them to our thesis problem setting. In the following de�nitions, the underlying so
ial

network is represented by G = (V,E), where V represents individuals, E represents

intera
tions between them, and |V | = n (i.e., the 
ardinality of V is n).

De�nition 3.1.1. Pairwise In�uen
e Probability, denoted as pv,u, is the weight

on edge (v, u) ∈ E indi
ating the extent to whi
h node v in�uen
es node u. That is,

if v is a
tive, it su

eeds in a
tivating u with the probability of pv,u.

De�nition 3.1.2. Threshold Fun
tion, also known as joint in�uen
e probability

or a
tivation fun
tion, de�ned as fv : 2V → [0, 1], where 2V denotes the power set

of V . Under the threshold model, ea
h node v ∈ V is asso
iated with a threshold

fun
tion fv(·), fv(S) measures the joint in�uen
e of v's a
tive neighbors S exerted on

v, with fv(∅) = 0.
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De�nition 3.1.3. Threshold, or a
tivation threshold, denoted as θv, is 
hosen uni-

formly at random over the interval [0,1℄ for ea
h node v ∈ V under the threshold

di�usion model. Here, "uniformly" means the probability of 
hoosing any point over

[0,1℄ is the same, or ea
h point is being equally likely to be 
hosen. Intuitively, it

indi
ates enough (or the minimum number) of its neighbors who have already adopted

a behavior in order for v to do so. θv being 
hosen uniformly at random for ea
h

v ∈ V is intended to model our la
k of knowledge of the exa
t values [Kempe et al.

2003℄.

Competing In�uen
e Di�usions. In this thesis, we 
onsider the setting in whi
h

there are two 
ompeting te
hnologies, e.g., Apple iPhone (A) vs. Bla
kberry (B)


oexisting in the network. When there are two 
ompeting te
hnologies, A and B 
o-

existing in the network, there are two seed sets, the seed set that adopts innovation A,

i.e., the early adopters of innovation A (denoted as SA
0 ), and the seed set that adopts

innovation B, i.e., the early adopters of innovation B (denoted as SB
0 ). Competing

in�uen
e di�usions refer to a s
enario where the adoptions of two innovations prop-

agate simultaneously throughout the network from ea
h seed set to the 
rowd su
h

that one di�usion (the propagation of one te
hnology from its seed set to the 
rowd)

interposes in a way that hinders or impedes the other di�usion (the propagation of

the other te
hnology from its seed set to the 
rowd).

Competing In�uen
e Di�usions Model is the model used to des
ribe the 
om-

peting in�uen
e di�usions. In this thesis, we extend the existing General Threshold

model whi
h deals with a single in�uen
e di�usion (the propagation of a single te
h-

nology) in the network (se
tion 1.5) to the Competing General Threshold model whi
h

deals with two 
ompeting in�uen
e di�usions (two te
hnologies propagating and 
om-

peting with ea
h other).
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The So
ial Network under the CGT Model. The CGT model represents a

so
ial network as a weighted, dire
ted graph G = (V,E). Ea
h node u ∈ V is as-

so
iated with two threshold fun
tions fA
u (·) and fB

u (·). Let NA
denote u's a
tive

neighbors who adopt te
hnology A, then fA
u (N

A) measures the joint A-in�uen
e of

u's a
tive neighbors who adopt te
hnology A exerted on u, with fA
u (∅) = 0. Let

NB
denote u's a
tive neighbors who adopt te
hnology B, then fB

u (NB) measures the

joint B-in�uen
e of u's a
tive neighbors who adopt te
hnology B exerted on u, with

fB
u (∅) = 0. Ea
h node u ∈ V 
hooses uniformly at random over the interval [0,1℄ two

thresholds, θAu (indi
ates the minimum number of its A-neighbors who have already

adopted te
hnology A in order for u to do so) and θBu (indi
ates the minimum num-

ber of its B-neighbors who have already adopted te
hnology B in order for u to do

so). That ea
h node u ∈ V 
hooses uniformly at random over the interval [0,1℄ two

thresholds, is the random aspe
t of the CGT model.

The In�uen
e Di�usions under the CGT Model. The in�uen
e di�usions

happen in dis
rete steps, i.e., t = 0, 1, 2, ..., n − 1. At any time t, ea
h node v ∈

V has one of the four states, A indi
ating adopting te
hnology A or A-a
tive, B

indi
ating adopting te
hnology B or B-a
tive, AB indi
ating adopting te
hnology A

and te
hnology B simultaneously or AB-a
tive, and 0 indi
ating adopting neither of

them or ina
tive. (We 
all A-a
tive nodes A-nodes, B-a
tive nodes B-nodes, and

AB-a
tive nodes AB-nodes in the rest of this thesis.) On
e a node be
omes a
tive

(A-a
tive, B-a
tive, or AB-a
tive), it 
annot 
hange its state anymore, i.e., it 
annot


hange ba
k to ina
tive or swit
h to another a
tive state. This is the 
ompetitive

aspe
t of the two in�uen
e difussions. This is be
ause on
e a node v be
omes, say

A-a
tive, it 
annot swit
h to B, whi
h means it blo
ks the in�uen
e propagation of

te
hnology B [Chen et al. 2013℄. At time 0, there are two seed sets, SA
0 that adopts

te
hnology A and SB
0 that adopts te
hnology B, and SA

0 ∩ SB
0 = ∅. At time t > 0,
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all nodes that were a
tive at time t − 1 remain a
tive, for ea
h ina
tive node u, let

NA
denote the set of u's a
tive neighbors who adopt te
hnology A, NB

the set of u's

a
tive neighbors who adopt te
hnology B, then the state (whether A, B, AB, or 0) of

node u is de�ned as follows:

De�nition 3.1.4. The A
tive State of AB. If fA
u (N

A) ≥ θAu and fB
u (NB) ≥ θBu ,

then u's state be
omes AB meaning a
tive in both A and B.

De�nition 3.1.5. The A
tive State of A. If fA
u (N

A) ≥ θAu and fB
u (NB) < θBu ,

then u's state be
omes A meaning a
tive in A but ina
tive in B.

De�nition 3.1.6. The A
tive State of B. If fA
u (N

A) < θAu and fB
u (NB) ≥ θBu ,

then u's state be
omes B meaning a
tive in B but ina
tive in A.

De�nition 3.1.7. The A
tive State of Ina
tive. If fA
u (N

A) < θAu and fB
u (NB) <

θBu , then u's state be
omes 0 meaning ina
tive in both A and B.

The pro
ess will stop before or at time n− 1 (where n is the number of nodes in

V ) when no more a
tivations are possible.

We will illustrate how two 
ompeting in�uen
e di�usions propagate under the

Competing General Threshold model through an example. But before we do that,

we need to de�ne the pairwise in�uen
e probabilities pAv,u and pBv,u for ea
h edge

(v, u) ∈ E under the CGT model and the threshold fun
tions fA
u (·) and fB

u (·) for

ea
h node u ∈ V under the CGT model respe
tively below.

Pairwise In�uen
e Probabilities under the CGT Model. In the so
ial network

G = (V,E) under the Competing General Threshold (CGT) model, ea
h edge (v, u) ∈

E is assigned two pairwise in�uen
e probabilities, pAv,u and pBv,u. pAv,u indi
ates the

extent to whi
h node v in�uen
es node u for te
hnology A. That is, if v is A-a
tive

or AB-a
tive, it su

eeds in a
tivating u to adopt te
hnology A with the probability

of pAv,u. p
B
v,u indi
ates the extent to whi
h node v in�uen
es node u for te
hnology B.

That is, if v is B-a
tive or AB-a
tive, it su

eeds in a
tivating u to adopt te
hnology B
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with the probability of pBv,u. In this thesis, we assume that a Twitter user v's in�uen
e

on another Twitter user u holds a
ross di�erent a
tions, i.e.,

pv,u = pAv,u = pBv,u (3.1)

That is, we assume the in�uen
e probability is person-based, not produ
t-based.

If we want the in�uen
e probability to be produ
t-based, we 
an assign di�erent

weights (whi
h 
an be learned from past a
tion logs) to pv,u to vary pAv,u and pBv,u. We

learn the pairwise in�uen
e probabilities pv,u from Twitter datasets (se
tion 3.2.2) to

obtain pAv,u and pBv,u. Having obtained the pairwise in�uen
e probabilities pAv,u and

pBv,u, we 
ompute the joint in�uen
e probabilities f
A
u (·) (for u's a
tive A-neighbors to

jointly a�e
t u to adopt te
hnology A) and fB
u (·) (for u's a
tive B-neighbors to jointly

a�e
t u to adopt te
hnology B). The joint in�uen
e probabilities fA
u (·) and fB

u (·) are

also known as u's threshold fun
tions (explained next).

Threshold Fun
tions under the CGT Model. In the so
ial network G = (V,E)

under the Competing General Threshold (CGT) model, ea
h node u ∈ V is asso
iated

with two threshold fun
tions fA
u (·) and fB

u (·). Let NA
denote u's a
tive neighbors

who adopt te
hnology A (in
luding those who adopt both A and B), then fA
u (N

A)

measures the joint A-in�uen
e of u's a
tive neighbors who adopt te
hnology A exerted

on u, with fA
u (∅) = 0. Let NB

denote u's a
tive neighbors who adopt te
hnology

B (in
luding those who adopt both B and A), then fB
u (NB) measures the joint B-

in�uen
e of u's a
tive neighbors who adopt te
hnology B exerted on u, with fB
u (∅) = 0.

We adopt the threshold fun
tion proposed in [Goyal et al. 2010℄ for the General

Threshold model, and de�ne the threshold fun
tions fA
u (·) and fB

u (·) under the CGT

model as follows:
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fA
u (N

A) = 1−
∏

v∈NA

(1− pAv,u) (3.2)

where u is an ina
tive node, NA
is the set of its a
tive neighbors for te
hnology A,

fA
u (N

A) is the threshold fun
tion that measures the joint A-in�uen
e probability of

NA
exerted on u, and pAv,u is the pairwise A-in�uen
e probability of v ∈ NA

exerted

on u.

fB
u (NB) = 1−

∏

v∈NB

(1− pBv,u) (3.3)

where u is an ina
tive node, NB
is the set of its a
tive neighbors for te
hnology B,

fB
u (NB) is the threshold fun
tion that measures the joint B-in�uen
e probability of

NB
exerted on u, and pBv,u is the pairwise B-in�uen
e probability of v ∈ NB

exerted

on u.

Example 3.1.1. Threshold Fun
tions Evaluation. Let us illustrate how to eval-

uate the threshold fun
tions fA
u (N

A) (equation 3.2) and fB
u (NB) (equation 3.3) for

node u through an example. In the so
ial network shown in Figure 3.1, there are 5

nodes. Of whi
h, nodes x, y, z, v are a
tive nodes and node u is ina
tive. The state

of node x is AB, the state of node y is A, the state of node z is B, the state of

v is B, and the state of u is 0 meaning ina
tive. Node u has two a
tive neighbors

who adopt te
hnology A, i.e., the set of u's a
tive A-neighbors NA = {x, y}, and

three a
tive neighbors who adopt te
hnology B, i.e., the set of u's a
tive B-neighbors

NB = {x, z, v}. Also node u 
hooses uniformly at random two thresholds θAu = 0.5

and θBu = 0.8 over the interval [0,1℄. Here, we assume that pv,u = pAv,u = pBv,u.

The threshold fun
tion fA
u (N

A) whi
h measures the joint in�uen
e probability of NA
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A,B
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B
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θA
u
= 0.5 θB

u
= 0.8

p
A
x,u = 0.5

p
B
x,u = 0.5

p
A
z,u = 0.3

p
B
z,u = 0.3

p
A
y,u = 0.6

p
B
y,u = 0.6

p
A
v,u = 0.4

p
B
v,u = 0.4

Figure 3.1: An ina
tive node u in the Competing General Threshold Model where

the state of node x is AB, the state of node y is A, the state of node z is B, and the

state of v is B.

on u is 
omputed as follows

fA
u (N

A) = fA
u ({x, y})

= 1−
∏

v∈{x,y}

(1− pAv,u)

= 1− (1− pAx,u)(1− pAy,u)

= 1− (1− 0.5)(̇1− 0.6)

= 0.8

The threshold fun
tion fB
u (BA) whi
h measures the joint in�uen
e probability of NB

on u is 
omputed as follows

fB
u (NB) = fB

u ({x, z, v})

= 1−
∏

v∈{x,z,v}

(1− pBv,u)

= 1− (1− pBx,u)(1− pBz,u)(1− pBv,u)

= 1− (1− 0.5)(̇1− 0.3)(̇1− 0.4)

= 0.79

Sin
e fA
u (N

A) = 0.8 > θAu = 0.5 and fB
u (NB) = 0.79 < θBu = 0.8, then u′s state

be
omes A based on De�nition 3.1.5.
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Having de�ned the pairwise in�uen
e probabilities pAv,u and pBv,u for ea
h edge

(v, u) ∈ E under the CGT model and the threshold fun
tions fA
u (·) and fB

u (·) for

ea
h node u ∈ V under the CGT model, we now use Figure 3.2 to illustrate how the

CGT model works.

Example 3.1.2. Two Competing In�uen
e Di�usions under the CGT Model.

At time 0 (Figure 3.2 (a)), there is a so
ial network G = (V,E) (where ea
h node is

asso
iated with two thresholds θa and θb, ea
h edge is asso
iated with two in�uen
e

probabilities pa and pb), along with two seed sets, i.e., SA
0 = {5} and SB

0 = {1}. At

time 1, node 1 a
tivates node 2 sin
e fB
2 = 1 − (1 − pB1,2) = pB1,2 = 0.5 > θB2 = 0.3,

node 5 a
tivates node 2 sin
e fA
2 = 1 − (1 − pA5,2) = pA5,2 = 0.4 = θA2 = 0.4, the

state of node 2 be
omes AB based on De�nition 3.1.4 (Figure 3.2 (b)). At time

2, nodes 2 and 5 jointly a
tivate node 3 sin
e fA
3 = 1 − (1 − pA2,3)(1 − pA5,3) =

1 − (1 − 0.3)(1 − 0.3) = 0.51 > θA3 = 0.5, the state of node 3 be
omes A (Figure

3.2 (
)) based on De�nition 3.1.5. At time 3, nodes 3 and 5 try to jointly a
tivate

node 4, but fA
4 = 1− (1− pA3,4)(1− pA5,4) = 1− (1− 0.5)(1− 0.2) = 0.6 < θA4 = 0.7, the

state of node 4 be
omes 0 (Figure 3.2 (
)) based on De�nition 3.1.7. At this point,

the di�usion stops sin
e no more a
tivations are possible.

1

2

3

4

5

pA
1,2 = 1

pB
1,2 = 1

pA
2,3 = 0.4

pB
2,3 = 0.4

pA
4,3 = 0.6

pB
4,3 = 0.6

pA
5,4 = 1

pB
5,4 = 1

θAv = θBv = 0.4 for all v

1

2

3

4

5

t=0 t=1

1

2 4

5

t=2

3

(a) (b) (c)

Figure 3.2: Example of Two Competing In�uen
e Di�usions under the CGT Model

In�uen
e Spread under the CGT Model. Let SA
0 be the seed set for te
hnology

A, SB
0 the seed set for te
hnology B. The in�uen
e spread for te
hnology A of two
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seed sets SA
0 and SB

0 under the CGT model, denoted as σA(SA
0 , S

B
0 ), is de�ned as

the expe
ted number of A-nodes at the end of the di�usion pro
ess. The in�uen
e

spread σA(·) under the CGT model is monotone and non-submodular with respe
t to

te
hnology A.

Statement 3.1.8. For an arbitrary instan
e of the Competing General Threshold

model, the resulting in�uen
e fun
tion σA(·) is monotone with respe
t to te
hnology

A.

Statement 3.1.9. For an arbitrary instan
e of the Competing General Threshold

model, the resulting in�uen
e fun
tion σA(·) is non-submodular with respe
t to te
h-

nology A.

We give a 
ounter example [Chen et al. 2013℄ to show CGT is non-submodular.

From Figure 3.3 (a), we 
an see σA({1} ∪ ∅, {6})− σA(∅, {6}) = 3. From Figure 3.3

(b), we 
an see

σA({1} ∪ {5} , {6}) − σA({5} , {6}) = 4, whi
h means the marginal gain of adding

node 1 to ∅ ∪ {6} (a small 
ontext) is smaller than the marginal gain of adding node

1 to {5} ∪ {6} (a large 
ontext).

1

2

3

4

5

6

(a)

pA
1,2 = 1

pB
1,2 = 1

pA
2,3 = 1

pB
2,3 = 1

pA
3,4 = 0.4

pB
3,4 = 0.4

pA
5,4 = 0.6

pB
5,4 = 0.6

pA
6,5 = 1

pB
6,5 = 1

1

2

3

4

5

6

(b)

pA
1,2 = 1

pB
1,2 = 1

pA
2,3 = 1

pB
2,3 = 1

pA
3,4 = 0.4

pB
3,4 = 0.4

pA
5,4 = 0.6

pB
5,4 = 0.6

pA
6,5 = 1

pB
6,5 = 1

θAv = θBv = 0.7 for all v θAv = θBv = 0.7 for all v

Figure 3.3: Counter example to show CGT is non-submodular

The CGT model is based on the separated-threshold model proposed by Ahmed

and Ezeife [2013℄ where the di�usion pro
ess under the trust model is non-monotone
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but submodular. It also bears resemblan
e to the separated-threshold model pro-

posed by the Borodin et al. [2010℄ where the di�usion pro
ess is monotone but not

submodular.

Thesis Problem De�nition 3.1.10. Let SA
0 be the seed set for te
hnology A, SB

0

the seed set for te
hnology B. The in�uen
e spread for te
hnology A of two seed sets

SA
0 and SB

0 under the CGT model, denoted as σA(SA
0 , S

B
0 ), is de�ned as the expe
ted

number of A-nodes at the end of the di�usion pro
ess.

Given a dire
ted so
ial network G = (V,E), a non-negative budget k, a seed set of B-

nodes SB
0 , and CGT model, the problem of �nding in�uential A-seeds when te
hnology

B already exists in the network is to �nd a seed set SA
0 as early adopters of te
hnology

A of size at most k su
h that σA(SA
0 , S

B
0 ) is maximum.

3.2 The Main CIAM System and Algorithm

The solution framework named Competing In�uential A-Nodes Miner (CIAM), whi
h

is an instan
e of the General Competing Threshold model, is aiming to �nd the

in�uential A-nodes from a so
ial network where B-nodes already exist. The input of

the overall framework is as follows:

1. Twitter Datasets - 
onsists of 5 Twitter networks as follows,

1.1 Twitter follow network - 
ontains a list of edges in the form of (u, v) indi-


ating node u follows node v (e.g., Table 3.1).

1.2 Twitter mention network - 
ontains a list of tuples in the form of (u,v,w)

indi
ating node u mentions node v w times (e.g., Table 3.2)

1.3 Twitter reply network - 
ontains a list of tuples in the form of (u,v,w)

indi
ating node u replies node v w times (e.g., Table 3.3)
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u v

1 4

1 5

2 1

3 2

4 3

4 5

5 6

Table 3.1: Twitter follow network

u v w

2 1 30

3 2 30

4 3 10

Table 3.2: Twitter mention network

u v w

2 1 30

3 2 30

1 4 30

1 5 15

5 6 60

Table 3.3: Twitter reply network

u v w

2 1 10

3 2 10

1 5 15

4 5 10

Table 3.4: Twitter retweet network

v t

1 100

2 100

3 100

4 100

5 100

6 100

Table 3.5: Twitter tweets network

1.4 Twitter retweet network - 
ontains a list of tuples in the form of (u,v,w)

indi
ating node u retweets node v w times (e.g., Table 3.4)

1.5 Twitter tweets network - 
ontains a list of tuples in the form of (u,t) indi-


ating node u posts t tweets (e.g., Table 3.5)

2. B-seeds (denoted as SB
0 ) - a list of m B-nodes in the form of [u1,u2,...,um℄, where

ui is the node id, (e.g., [26339, 191214, ..., 503050℄).

3. Budget k - an integer indi
ating the 
ardinality of seed set of A-nodes

The four main 
omponents of this system and 
omplete �ow in the CIAM frame-

work are shown in Figure 3.4.
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Generate Influence Graph 

Compute Influence Prob. 

Twitter 

Networks 

CGT Model, B-

Seeds, Budget 
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Mine A-Seeds 
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+ Mention 
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Influence Graph 

Influence Prob . Table 

Augmented Influence 

Graph 

Figure 3.4: CIAM Framework
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The four main steps involved in the CIAM are presented below, before the formal

presentation of the algorithm.

Step 1. (line 1 of CIAM (Algorithm 1)) CIAM 
alls 
onvertFollowToInf (Al-

gorithm 2) to 
onstru
t an in�uen
e graph G = (V,E) from Twitter follow network,

as done by existing algorithms [Kempe et al. 2003℄ and [Ahmed and Ezeife 2013℄.

Initially, the in�uen
e graph G = (V,E) is empty. For ea
h tuple (u, v) in the Twit-

ter follow network, 
onvertFollowToInf adds nodes u and v to the in�uen
e graph

G = (V,E) if nodes u and v have not been added to the graph yet, and adds a dire
ted

edge from v to u. Details of step 1 are presented in Se
tion 3.2.1.

Step 2. (line 2 of CIAM (Algorithm 1)) CIAM uses Maximum-Likelihood Estima-

tion [Fisher 1922℄ to 
onstru
t the formula of the pairwise in�uen
e probabilities un-

der multinomial distribution. CIAM 
alls 
omputeIn�uen
eProb (Algorithm 3)

whi
h uses relational algebra operators left-join and proje
tion on 5 Twitter datasets

(i.e., Twitter follow network, Twitter mention network, Twitter reply network, Twit-

ter retweet network, and Twitter tweets network) to retrieve the values of parameters

in the pairwise in�uen
e probabilities formula and plug the values into the formula

in order to 
ompute the pairwise in�uen
e probabilities pv,u for ea
h edge (v, u) in

the in�uen
e graph whi
h is generated from Step 1. Details of step 2 are presented

in Se
tion 3.2.2.

Step 3. (line 3 of CIAM (Algorithm 1)) CIAM 
alls augmentG (Algorithm 4)

to augment the in�uen
e graph G = (V,E) (generated from Step 1) as follows. For

ea
h edge (v, u) ∈ E, augmentG looks up the in�uen
e probability table to �nd the

pairwise in�uen
e probability pv,u. It assigns the edge (v, u) two pairwise in�uen
e

probabilities, pAv,u = pv,u (the probability that v in�uen
es u to adopt te
hnology

A) and pBv,u = pv,u (the probability that v in�uen
es u to adopt te
hnology B). It

stops when all the edges (v, u) ∈ E have been visited. When it stops, it outputs

the augmented in�uen
e graph G = (V,E, P ) where V represents Twitter users, E
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represents the in�uen
e intera
tions between Twitter users, P represents the pairwise

in�uen
e probabilities between two Twitter users (Figure 3.6), as done by [Kempe et

al. 2003℄ and [Ahmed and Ezeife 2013℄. Details of step 3 are presented in Se
tion

3.2.3.

Step 4. (line 4 of CIAM (Algorithm 1)) CIAM 
alls 
gtMineA (Algorithm 6)

to �nds the k most in�uential A-nodes in a network where there exists a seed set

of B-nodes. 
gtMineA 
onsists of two phases. The �rst phase exploits the greedy

algorithm [Kempe et al. 2003℄ su
h that for ea
h node v that is not in the two seed

sets (i.e., SA
0 and SB

0 ), the algorithm 
omputes the marginal gain of adding v to

SA
0 and SB

0 , pi
ks the node whi
h yields the maximum marginal gain, and repeats

this pro
ess k times to �nd k A-seeds. The se
ond phase exploits the lo
al sear
h

algorithm [Ahmed and Ezeife, 2013℄ su
h that if swapping any A-seed in SA
0 (found

in the �rst phase) and any node not in the two seed sets (i.e., SA
0 and SB

0 ) yields more

A-nodes at the end of the di�usion, the algorithm will swap them. The algorithm

will repeat the swapping operation until no more improvements are possible. Details

of Step 4 are presented in Se
tion 3.2.4.

The formal algorithm for the CIAM framework is shown in Algorithm 1.

3.2.1 Crawling So
ial Networks to Constru
t the So
ial Graph

The algorithm 
onvertFollowToInf (Algorithm 2) presented in this se
tion is the

�rst step of our proposed framework CIAM. The input of the algorithm is Twitter

follow network (Table 3.1). The Twitter follow network 
onsists of tuples in the form

of (u, v) meaning u follows v. Initially, the in�uen
e graph G = (V,E) (where V is

the nodes and E is the in�uen
e relationships between nodes) is set to ∅ (line 1). For

ea
h tuple (u, v) in the Twitter follow network, 
onvertFollowToInf adds nodes u

and v to the in�uen
e graph G if they have not been added to the G (line 2.1), then it

adds a dire
ted edge from nodes v to u (lines 2.2). After all the tuples are pro
essed,
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Algorithm 1 CIAM(TwitterData,SB
0 ,k) - The main algorithm for �nding k in�uential

A-nodes in so
ial network with existing B-nodes

Input: Twitter networks, B-seeds, budget k
Output: A-seeds of size at most k
1: 
onvert Twitter follow network (e.g., Table 3.1) to an in�uen
e graph G = (V,E)

(e.g., Figure 3.5) where V represents Twitter users and E represents in�uen
e

relationships between them using algorithm 
onvertFollowToInf (presented in

Algorithm 2)

2: learn pairwise in�uen
e probabilities from Twitter networks and output an in�u-

en
e probability table (e.g., Table 3.10) using algorithm 
omputeIn�uen
eProb

(presented in Algorithm 3)

3: look for the in�uen
e probability table (e.g., Table 3.10), augment the in�uen
e

graph G = (V,E) by assigning the pairwise in�uen
e probabilities to ea
h edge

(v, u) ∈ E, and output an augmented graph G = (V,E, P ) (e.g. Figure 3.6) where
V represents Twitter users, E represents in�uen
e relationships between them,

and P represents the in�uen
e probabilities as the edge weights using algorithm

augmentG (presented in Algorithm 4)

4: �nd A-seeds in the augmented graph G = (V,E, P ) using algorithm 
gtMineA

(presented in Algorithm 6)

it outputs an in�uen
e graph G = (V,E) (Figure 3.5), as done by existing algorithms

proposed in [Kempe et al. 2003℄ and [Ahmed and Ezeife 2013℄.

Algorithm 2 
onvertFollowToInf(Twitter Follow Network) - Constru
t an in�uen
e

graph from Twitter follow network

Input: Twitter follow network with tuple (u,v) meaning u follows v

Output: an in�uen
e graph G = (V,E)

1. Set G to ∅

2. For ea
h tuple (u, v) in Twitter follow network

2.1 add nodes u and v to the in�uen
e graph G

2.2 add a dire
ted edge (v, u) to the in�uen
e graph G

3. return G
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1
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3
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6

Figure 3.5: In�uen
e Graph

3.2.2 Learning In�uen
e Probabilities as Edge Weights from

Twitter

The underlying so
ial network we use to study in�uen
e maximization in the CGT

model is Twitter network. Twitter uses retweet, reply and mention to say I like your

tweets. Twitter's retweet measures how far an original tweet propagates throughout

the network. Users who have a higher number of retweeted tweets 
an be 
onsidered

more in�uential than users who have a few number of retweeted tweets [Russell 2013℄.

Twitter's reply measures how mu
h your tweets make me feel engaged su
h that I want

to talk something ba
k to you [Wu et al. 2011℄. Users who have a higher number of

replied tweets 
an be 
onsidered more in�uential than users who have a few number

of replied tweets. Twitter's mention measures the name value of the mentioned user

[Cha et al. 2010℄. Users who are mentioned more frequently in other users' tweets


an be 
onsidered more in�uential than users who are mentioned infrequently in other

users' tweets.

In this thesis, we assume that for ea
h tweet of user v, there is at most one mention,

one reply, or one retweet from user u. The rea
tion of user u to ea
h tweet of user

v 
an be viewed as a Bernoulli trial, responding (i.e., retweet, reply or mention)

or not responding. Further, we assume that the probability that u responds (i.e.,

retweets, replies, or mentions) v's tweets is the pairwise in�uen
e probability pv,u
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(i.e., the probability that v in�uen
es u to perform an a
tion on
e v be
omes a
tive).

We use Maximum-Likelihood Estimation under Bernoulli distribution [Ahmed and

Ezeife 2013℄ to estimate pv,u as follows,

pv,u =
# retweets of u on v +# replies of u on v +#mentions of u on v

# tweets of v
(3.4)

Having 
onstru
ted the formula of the pairwise in�uen
e probability pv,u (equation

3.4), we now present the algorithm 
omputeIn�uen
eProb whi
h uses relational

algebra operators left-join and proje
tion on Twitter datasets to retrieve the numera-

tor and denominator in equation 3.4, and 
ompute the pairwise in�uen
e probability

pv,u. The algorithm 
omputeIn�uen
eProb (Algorithm 3) presented in this se
-

tion is the se
ond step of our proposed framework CIAM. It takes as input 5 Twitter

datasets, i.e., Twitter follow network (Table 3.1) whi
h 
onsists of tuples in the form

of (u, v) meaning u follows v, Twitter tweets network (Table 3.5) whi
h 
onsists of

tuples in the form of (v, t) meaning v posts t tweets in total, Twitter mention network

(Table 3.2) whi
h 
onsists of tuples in the form of (u, v, w) meaning u mentions v

w times, Twitter reply network (Table 3.3) whi
h 
onsists of tuples in the form of

(u, v, w) meaning u replies v w times, and Twitter retweet network (Table 3.3) whi
h


onsists of tuples in the form of (u, v, w) meaning u retweets v w times. 
omputeIn-

�uen
eProb outputs the pairwise in�uen
e probabilities pv,u for ea
h edge (v, u) ∈ E

(Table 3.10). There are 5 main steps in 
omputeIn�uen
eProb.

Step 1. (line 1 of 
omputeIn�uen
eProb (Algorithm 3)), 
omputeIn�uen-


eProb �rst 
on
atenates Twitter mention network (Table 3.2), Twitter reply net-

work (Table 3.3), and Twitter retweet network (Table 3.3) into one table named Tri,

and then groups Tri by 
olumns u and v su
h that ea
h group in Tri represents node

u mentions, replies, or retweets node v w times (Table 3.6).
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Step 2. (line 2 of 
omputeIn�uen
eProb (Algorithm 3)), 
omputeIn�uen-


eProb pro
esses the grouped Tri (Table 3.6), sums up the value of w per group to

obtain a summed-up Tri table (Table 3.7). Ea
h tuple in the summed-up Tri table

is in the form of (u, v, w) where w is # retweets of u on v + # replies of u on v +

#mentions of u on v, i.e., the numerator in equation (3.9).

Step 3. (line 3 of 
omputeIn�uen
eProb (Algorithm 3)) 
omputeIn�uen-


eProb left-joins the summed-up Tri (Table 3.7) and TwitterTweets (Table 3.5) into

one table named TriTweets (Table 3.8). Ea
h tuple in TriTweets is in the form of

(u, v, w, t) where w is #retweetsof uonv +#repliesof uonv +#mentionsof uonv,

the numerator in equation (3.9), t is # tweets of v, i.e., the denominator in equation

(3.9).

Step 4. (line 4 of 
omputeIn�uen
eProb (Algorithm 3)) 
omputeIn�uen-


eProb adds to TriTweets (Table 3.8) a new 
olumn named pv,u whose value is

w/t to obtain an expended TriTweets (Table 3.9). The expended TriTweets table has

tuples in the form of (u, v, w, t, p) where w is #retweetsof uonv+#repliesof uonv+

#mentions of u on v, the numerator in equation 3.4, t is # tweets of v, the denomi-

nator in equation 3.4, and p = w/t is the pairwise in�uen
e probability pv,u based on

equation 3.4.

Step 5. (line 5 of 
omputeIn�uen
eProb (Algorithm 3)) 
omputeIn�uen-


eProb drops unwanted 
olumns w and t from Table 3.9 to obtain a pruned Tritweets

table (with only three 
olumns, i.e., u, v, pv,u), and left-joins Twitter follow network

(Table 3.1) and the pruned Tritweets table to obtain the �nal in�uen
e probability

table named In�uen
eProbTable (Table 3.10) where ea
h tuple is in the form of (u,

v, pv,u) indi
ating the in�uen
e that node v exerts on node u, that is if v is a
tive, it

su

eeds in a
tivating u with the probability of pv,u.
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u v w

2 1 30

2 1 30

2 1 10

3 2 30

3 2 30

3 2 10

4 3 10

1 4 30

1 5 15

1 5 15

4 5 10

5 6 60

Table 3.6: Con
atenate Twitter men-

tion network, Twitter reply network,

and Twitter retweet network into one

table named Tri and group Tri by


olumns u and v

u v w

2 1 70

3 2 70

4 3 10

1 4 30

1 5 30

4 5 10

5 6 60

Table 3.7: The summed-up Tri by


omputing the sum of w for ea
h group

u v w t

2 1 70 100

3 2 70 100

4 3 10 100

1 4 30 100

1 5 30 100

4 5 10 100

5 6 60 100

Table 3.8: Left-join Tri and Twitter-

Tweets on 
olumn v to obtain a new

table named TriTweets

u v w t p

2 1 70 100 0.7

3 2 70 100 0.7

4 3 10 100 0.1

1 4 30 100 0.3

1 5 30 100 0.3

4 5 10 100 0.1

5 6 60 100 0.6

Table 3.9: Add a new 
olumn named

p to TriTweets, where p = w/t

u v p

2 1 0.7

3 2 0.7

4 3 0.1

1 4 0.3

1 5 0.3

4 5 0.1

5 6 0.6

Table 3.10: Drop 
olumns w and t

from TriTweets, and left-join Twitter

follow network and TriTweets to ob-

tain the in�uen
e probability table,

where ea
h tuple (u, v, p) means the

probability that node v in�uen
es on

node u is p.
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Algorithm 3 
omputeIn�uen
eProb(TwitterData) - Compute pairwise in�uen
e

probabilities for ea
h edge in the in�uen
e graph

Input: Twitter follow network (e.g., Table 3.1), Twitter tweets network (e.g., Table

3.5), Twitter mention network (e.g., Table 3.2), Twitter reply network (e.g., Table

3.3, Twitter retweet network (e.g., Table 3.4))

Output: an in�uen
e probability table (e.g., Table 3.10)

1: Con
atenate Twitter mention network, Twitter reply network, and Twitter

retweet network into one table named Tri and group Tri by 
olumns u and v
as shown in Table 3.6

2: Pro
ess the grouped Tri and get the sum of 
olumn w for ea
h group as shown in

Table 3.7

3: Left-join the summed-up Tri and Twitter tweets network on 
olumn v to obtain

a joined table named TriTweets as shown in Table 3.8

4: Add a new 
olumn named p to the joined TriTweets, where p = w/t as shown in

Table 3.9

5: Drop 
olumns w and t from TriTweets, left-join Twitter follow network and

TriTweets to obtain the in�uen
e probability table named In�uen
eProbTable

as shown in Table 3.10

6: return In�uen
eProbTable

3.2.3 Augment the In�uen
e Graph with Learned Pairwise In-

�uen
e Probabilities

The algorithm augmentG (Algorithm 4) presented in this se
tion is the third step of

our proposed framework CIAM. augmentG takes as input the in�uen
e graph G =

(V,E) (Figure 3.5) generated by 
onvertFollowToInf (Algorithm 2), the in�uen
e

probability table (Table 3.10) derived from 
omputeIn�uen
eProb (Algorithm 3).

For ea
h edge (v, u) ∈ E, augmentG looks up the in�uen
e probability table to

�nd the pairwise in�uen
e probability pv,u (line 1.1). It assigns the edge (v, u) two

pairwise in�uen
e probabilities, pAv,u = pv,u (the probability that v in�uen
es u to

adopt te
hnology A) (line 1.2) and pBv,u = pv,u (the probability that v in�uen
es u

to adopt te
hnology B) (line 1.3). It stops when all the edges (v, u) ∈ E have been

visited. When it stops, it outputs the augmented in�uen
e graph G = (V,E, P )

where V represents Twitter users, E represents the in�uen
e intera
tions between

Twitter users, P represents the pairwise in�uen
e probabilities between two Twitter
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users (Figure 3.6), as done by [Kempe et al. 2003℄ and [Ahmed and Ezeife 2013℄.

Algorithm 4 augmentG(G,In�uen
eProbTable) - Assign in�uen
e probabilities to

ea
h edge in the in�uen
e graph

Input: the in�uen
e graph G = (V,E) without edge weights, in�uen
e probability
table (i.e., In�uen
eProbTable) with tuple (v,u,pv,u)

Output: an augmented in�uen
e graph G = (V,E, P ) with in�uen
e probabilities

as edge weights

1. For ea
h edge (v, u) ∈ E

1.1 Look up the in�uen
e probability table (Table 3.10) for pv,u

1.2 pAv,u = pv,u

1.3 pBv,u = pv,u

2. return G
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1,2 = 0.7

p
A
2,3 = 0.7

p
B
2,3 = 0.7

p
A
3,4 = 0.1

p
B
3,4 = 0.1

p
A
5,4 = 0.1

p
B
5,4 = 0.1

p
A
4,1 = 0.3

p
B
4,1 = 0.3

p
A
5,1 = 0.3

p
B
5,1 = 0.3

p
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p
B
6,5 = 0.6

Figure 3.6: In�uen
e graph augmented with pairwise in�uen
e probabilities for all

edges

3.2.4 Dis
overing In�uential Nodes for a Competing A
tion

The algorithm 
gtMineA (Algorithm 6) presented in this se
tion is the fourth step

of our proposed framework CIAM. 
gtMineA �nds the k most in�uential A-nodes

in a network where there exists a seed set of B-nodes. The algorithm takes as input

the augmented in�uen
e graph G = (V,E, P ) (where V represents Twitter users, E

represents the in�uen
e intera
tions between Twitter users, P represents the pairwise

in�uen
e probabilities between two Twitter users) generated by augmentG (Algo-

rithm 4), the seed set for B (denoted as SB
0 ), and a non-negative integer k meaning
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the number of in�uential A-nodes to be dis
overed. 
gtMineA outputs a seed set

for A (denoted as SA
0 ) with size at most k that maximizes the expe
ted number of

�nal adoptions of te
hnology A. 
gtMineA 
onsists of two phases. The �rst phase

exploits the greedy algorithm [Kempe et al. 2003℄ su
h that for ea
h node v that is

not in the two seed sets (i.e., SA
0 and SB

0 ), the algorithm 
omputes the marginal gain

of adding v to SA
0 and SB

0 , pi
ks the node whi
h yields the maximum marginal gain,

and repeats this pro
ess k times to �nd k A-seeds. The se
ond phase exploits the

lo
al sear
h algorithm [Ahmed and Ezeife, 2013℄ su
h that if swapping any A-seed

in SA
0 (found in the �rst phase) and any node not in the two seed sets (i.e., SA

0 and

SB
0 ) yields more A-nodes at the end of the di�usion, the algorithm will swap them.

The algorithm will repeat the swapping operation until no more improvements are

possible.

Before we present algorithm 
gtMineA, we introdu
e an algorithm named 
gt-

InfA that is 
alled by 
gtMineA for 
omputing the A-in�uen
e spread of SA
0 and

SB
0 (denoted as σA(SA

0 , S
B
0 )).


gtInfA (Algorithm 5) takes as input

1. the augmented in�uen
e graphG = (V,E, P ) (where V represents Twitter users,

E represents the in�uen
e intera
tions between Twitter users, P represents

the pairwise in�uen
e probabilities between two Twitter users) generated by

augmentG (Algorithm 4)

2. two seed sets SA
0 and SB

0

Ea
h node u ∈ V is asso
iated with the following node parameters

1. �oat fA
u - the threshold fun
tion of node u ∈ V for te
hnology A

2. �oat fB
u - the threshold fun
tion of node u ∈ V for te
hnology B

3. �oat θAu - the threshold for te
hnology A, randomly 
hosen
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4. �oat θBu - the threshold for te
hnology B, randomly 
hosen

5. string state - A, B, AB, or 0


gtInfA uses the following variables

1. TA
to store the set of A-nodes a
tivated during last step, initially TA

is set to

SA
0

2. TB
to store the set of B-nodes a
tivated during last step, initially TB

is set to

SB
0

3. newA
to store the set of A-nodes a
tivated during 
urrent step, newA

is set to

∅ at the beginning of the 
urrent step

4. newB
to store the set of B-nodes a
tivated during 
urrent step, newB

is set to

∅ at the beginning of the 
urrent step

5. infA
to store A-in�uen
e spread of SA

0 and SB
0 , initially it is set to the number

of nodes in the seed set for A


gtInfA outputs the A-in�uen
e spread of SA
0 and SB

0 (denoted as σA(SA
0 , S

B
0 )),

i.e., the expe
ted number of A-nodes at the end of CGT di�usion pro
ess with the

seed sets SA
0 and SB

0 . There are 5 main steps in 
gtInfA (Algorithm 5).

Step 1. (line 1 of 
gtInfA (Algorithm 5)) 
gtInfA uses variable TA
to store the

set of A-nodes a
tivated during last step, initially TA
is set to SA

0 .

Step 2. (line 2 of 
gtInfA (Algorithm 5)) 
gtInfA uses variable TB
to store the

set of B-nodes a
tivated during last step, initially TB
is set to SB

0 .

Step 3. (line 3 of 
gtInfA (Algorithm 5)) 
gtInfA uses variable infA
to store the

A-in�uen
e spread of SA
0 and SB

0 , initially it is set to the number of nodes in the seed

set for A.

Step 4. (line 4 of 
gtInfA (Algorithm 5)) As long as there are nodes a
tivated during

last time step, those a
tivated nodes would propagate in�uen
e during 
urrent step
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through the network (line 4). 
gtInfA uses variable newA
to store the set of A-nodes

a
tivated during 
urrent step, newA
is set to ∅ at the beginning of the 
urrent step

(line 4.1), and newB
to store the set of B-nodes a
tivated during 
urrent step, newB

is set to ∅ at the beginning of the 
urrent step (line 4.2). For ea
h A-node v a
tivated

from last step in TA
, the algorithm will loop through ea
h ina
tive out-neighbor u of

v (line 4.3), 
ompute the threshold fun
tion fA
u for node u using equation 3.2 (line

4.3.1.1). If the threshold fun
tion fA
u is no less than its threshold θAu , the algorithm

adds node u to newA
whi
h is the set of A-nodes newly a
tivated in 
urrent step

(line 4.3.1.2), and in
reases A-in�uen
e spread by 1 (line 4.3.1.3). Similarly, for ea
h

B-node v a
tivated from last step in TB
(line 4.4), the algorithm will loop through

ea
h ina
tive out-neighbor u of v, 
ompute the threshold fun
tion fB
u for node u using

equation 3.3 (line 4.4.1.1). If the threshold fun
tion fB
u is no less than its threshold

θBu , it adds node u to newB
whi
h is the set of B-nodes newly a
tivated in 
urrent

step (line 4.4.1.2). After it pro
esses all nodes in TA
(the set of A-nodes a
tivated

during last step) and TB
(the set of B-nodes a
tivated during last step), the 
urrent

di�usion step is done. At this moment, the set of A-nodes a
tivated during 
urrent

step be
omes the set of A-nodes a
tivated from last step (line 4.5), and the set of

B-nodes a
tivated during 
urrent step be
omes the set of B-nodes a
tivated from last

step (line 4.6).

Step 5. (line 5 of 
gtInfA (Algorithm 5)) When both TA
(the set of A-nodes

a
tivated during last step) and TB
(the set of B-nodes a
tivated during last step)

are empty meaning no more a
tivations, it stops and returns the expe
ted number

A-nodes at the end of the di�usion, i.e., the A-in�uen
e spread of SA
0 and SB

0 .

Example 3.2.1. How 
gtInfA Works. In the so
ial network shown in Figure 3.7

(b), at time 0, there are two seed sets, SA
0 = {4, 5} and SB

0 = {6}. We will show

how 
gtInfA (Algorithm 5) 
omputes the in�uen
e spread for te
hnology A given the

two seed set SA
0 and SB

0 , denoted as σA(SA
0 , S

B
0 ). At time 1, nodes 4 and 5 jointly
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Algorithm 5 
gtInfA(G = (V,E, P ),SA
0 ,S

B
0 ) - 
ompute the number of A-nodes at

the end of the di�usion when the two seed sets are SA
0 and SB

0

Input: The augmented in�uen
e graph G = (V,E, P ) with in�uen
e probability as

edge weights, two seed sets SA
0 and SB

0

Output: infA
- the A-in�uen
e spread of SA

0 and SB
0

1. Set TA
, the set of A-nodes a
tivated during last time step, to SA

0

2. Set TB
, the set of B-nodes a
tivated during last time step, to SB

0

3. Set infA
, the A-in�uen
e spread of SA

0 and SB
0 to the number of nodes in

SA
0

4. While we have either A-nodes or B-nodes a
tivated from last step to propa-

gate in�uen
es

4.1 Set newA
, the set of A-nodes newly a
tivated in 
urrent step, to ∅

4.2 Set newB
, the set of B-nodes newly a
tivated in 
urrent step, to ∅

4.3 For ea
h A-node v a
tivated from last step

4.3.1 For ea
h ina
tive node u in the out-neighbors of v

4.3.1.1 
ompute the threshold fun
tion fA
u for node u using equation 3.2

4.3.1.2 Add u to newA
, the set of A-nodes newly a
tivated in 
urrent step

if the threshold fun
tion 
rosses the threshold

4.3.1.3 In
rease the number of A-nodes by 1

4.4 For ea
h B-node v a
tivated from last step

4.4.1 For ea
h ina
tive node u in the out-neighbors of v

4.4.1.1 
ompute the threshold fun
tion fB
u for node u using equation 3.3

4.4.1.2 Add u to newB
, the set of B-nodes newly a
tivated in 
urrent step

if the threshold fun
tion 
rosses the threshold

4.5 At the end of the 
urrent step, set newA
, the set of A-nodes a
tivated

during 
urrent step to TA
, the set of A-nodes a
tivated from last step

4.6 At the end of the 
urrent step, set newB
, the set of B-nodes a
tivated

during 
urrent step to TB
, the set of B-nodes a
tivated from last step

5. Return infA
, the number A-nodes at the end of the di�usion
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a
tivate node 1 sin
e fA
1 = 1 − (1− pA4,1)(1 − pA5,1) = 1 − (1− 0.3)(1− 0.3) = 0.51 >

θA1 = 0.5, the state of node 1 be
omes A. At time 2, node 1 a
tivates node 2 sin
e

fA
2 = 1− (1−pA1,2) = pA1,2 = 0.7 > θA2 = 0.6, the state of node 2 be
omes A. At time 3,

node 2 a
tivates node 3, sin
e fA
3 = 1− (1 − pA2,3) = pA2,3 = 0.7 > θA3 = 0.6, the state

of node 3 be
omes A. At this point, the di�usion stops sin
e no more a
tivations are

possible. The set of A-nodes at this point is {1, 2, 3, 4, 5}, and the number of A-nodes

at this moment is 5. Algorithm 5 returns 5 whi
h is the A-in�uen
e spread of SA
0 and

SB
0 .

1

2

3

4

5

6

pA1,2 = 0.7

pB1,2 = 0.7

pA2,3 = 0.7

pB2,3 = 0.7

pA3,4 = 0.1

pB3,4 = 0.1

pA5,4 = 0.1

pB5,4 = 0.1pA4,1 = 0.3

pB4,1 = 0.3

pA5,1 = 0.3

pB5,1 = 0.3

pA6,5 = 0.6

pB6,5 = 0.6

θA6 = 0.5
θB6 = 0.5

θA5 = 0.5
θB5 = 0.5

θA4 = 0.5
θB4 = 0.5

θA3 = 0.6
θB3 = 0.6

θA2 = 0.6
θB2 = 0.6

θA1 = 0.5
θB1 = 0.5

(a) Input Graph

Figure 3.7: Example of 
gtInfA(SA
0 , S

B
0 )

Having introdu
ed algorithm 
gtInfA, we 
an now present the algorithm 
gt-

MineA (Algorithm 6) whi
h �nds the k most in�uential A-nodes in a network where

there exists a seed set of B-nodes. The algorithm takes as input the augmented in-

�uen
e graph G = (V,E, P ) whi
h generated by augmentG (Algorithm 4), the seed

set for B (denoted as SB
0 ), and a non-negative integer k meaning the number of in-

�uential nodes to be dis
overed, and outputs a seed set for A (denoted as SA
0 ) with

size at most k that maximizes the expe
ted number of �nal adoptions of te
hnology

A. There are 5 main steps in 
gtMineA (Algorithm 6).
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Step 1. (line 1 of 
gtMineA (Algorithm 6)) 
gtMineA uses variable SA
0 to store

A-seeds. Initially, SA
0 is set to ∅ (line 1).

Step 2. (line 2 of 
gtMineA (Algorithm 6)) 
gtMineA 
onsists of two phases. The

�rst phase adopts the existing greedy algorithm [Kempe et al. 2003℄ su
h that for

ea
h node v that is not in the two seed sets (i.e., SA
0 and SB

0 ), the algorithm 
omputes

the marginal gain of adding v to two seed sets (i.e., SA
0 and SB

0 ), pi
ks the node whi
h

yields the max and adds it to SA
0 (lines 3-4).

Step 3. (line 3 of 
gtMineA (Algorithm 6)) 
gtMineA repeats step 2 k times to

�nd k seeds.

Step 4. (line 4 of 
gtMineA (Algorithm 6)) The se
ond phase of 
gtMineA

exploits the lo
al sear
h algorithm [Ahmed and Ezeife, 2013℄ su
h that if swapping

any A-seed in SA
0 (found in the �rst phase) and any node not in the two seed sets

yields larger A-in�uen
e spread (line 3.1), the algorithm will swap them.

Step 5. (line 5 of 
gtMineA (Algorithm 6)) 
gtMineA repeats step 4 until no

more improvements in A-in�uen
e spread are possible.

Algorithm 6 
gtMineA(G = (V,E, P ), SB
0 , k)- Find k in�uential A-nodes under

CGT

Input: an augmented in�uen
e graph G = (V,E, P ) with in�uen
e probabilities as

edge weights, a seed set for B (denoted as SB
0 ), and a non-negative integer k

Output: a seed set for A (denoted as SA
0 ) with size at most k that maximizes the

expe
ted number of �nal adoptions of te
hnology A

1. Set SA
0 to ∅

2. Compute the marginal gain of adding ea
h node u ∈ V − SA
0 − SB

0 to SA
0

and SB
0 , pi
k the node u whi
h yields the maximum marginal gain, and add

node u to A-seed set SA
0

3. Repeat Step 2 k times to �nd k A-seeds

4. Lo
al Sear
h on SA
0 to improve the sele
tion by swapping node u ∈ SA

0 and

node v ∈ V − SA
0 − SB

0 if σCGT (S
A
0 + {v} − {u}, SB

0 ) > σCGT (S
A
0 , S

B
0 )

5. Repeat step 4 until no more improvements in A-in�uen
e spread are possible

6. Return A-seed set SA
0
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Remark 3.2.1. The marginal gain of adding a A-node u to two seed sets SA
0 and SB

0

is de�ned as σ(SA
0 ∪ {u}, SB

0 )− σ(SA
0 , S

B
0 ).

Now, we will show how 
gtMineA works through example 3.2.2

Example 3.2.2. Initially, SA
0 = ∅ and SB

0 = {6}. To �nd the �rst in�uential A

seed, the algorithm 
omputes the marginal gain of adding ea
h node v not in the

two seed sets (i.e., v ∈ V − SA
0 − SB

0 ) to SA
0 and SB

0 . The marginal gain of adding

ea
h node v into SA
0 and SB

0 is summarized in Table 3.11. The algorithm pi
ks the

node with the maximum marginal gain, whi
h is node 1 and adds it to SA
0 . At this

moment, SA
0 = {1} and SB

0 = {6}. To �nd the se
ond in�uential A seed, the algorithm


omputes the marginal gain of adding ea
h node v ∈ V −SA
0 −SB

0 to SA
0 and SB

0 . The

marginal gain of adding ea
h node v into SA
0 and SB

0 is summarized in Table 3.12.

The algorithm pi
ks the node with the maximum marginal gain, whi
h is node 4 and

adds it to SA
0 . So, S

A
0 = {1, 4}. Sin
e budget k = 2, and we have 2 nodes 1 and 4 in

SA
0 , the greedy part of the algorithm is done.

Now, the algorithm will swap any node in SA
0 with any node not in the two seed sets SA

0

and SB
0 to see if there is any improvement with the spread. At this point, SA

0 = {1, 4},

SB
0 = {6}, the set of nodes not in the two seed sets V − SA

0 − SB
0 = {2, 3, 5}, the

spread σA(SA
0 , S

B
0 ) = 4. The algorithm 
omputes the spread after swapping nodes

1 and 2, and obtains σA(SA
0 − {1} + {2}, SB

0 ) = 3 < σA(SA
0 , S

B
0 ) = 4, meaning

no improvements. Then, the algorithm 
omputes the spread after swapping nodes 1

and 3, and obtains σA(SA
0 − {1} + {3}, SB

0 ) = 2 < σA(SA
0 , S

B
0 ) = 4, meaning no

improvements. Next, the algorithm 
omputes the spread after swapping nodes 1 and

5, and obtains σA(SA
0 − {1} + {5}, SB

0 ) = 5 > σA(SA
0 , S

B
0 ) = 4, meaning there is an

improvement. Hen
e, the algorithm will keep the swap. At this point, SA
0 = {5, 4},

SB
0 = {6}, the set of nodes not in the two seed sets V −SA

0 −SB
0 = {1, 2, 3}, the spread

σA(SA
0 , S

B
0 ) = 5. The algorithm swaps any node in SA

0 with any node not in the two

seed sets SA
0 and SB

0 to see if there is any improvement with the spread. Sin
e none
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Node Marginal

Gain

1 3
2 2
3 1
4 1
5 1

Table 3.11: Marginal Gain: First Pass

of 
gtMineA's Greedy Phase

Node Marginal

Gain

2 0
3 0
4 1
5 1

Table 3.12: Marginal Gain: Se
ond

Pass of 
gtMineA's Greedy Phase

of the swapping operations yield any improvements, the algorithm stops and returns

SA
0 = {5, 4}.

3.3 Complexity Analysis

The 
gtInfA algorithm (Algorithm 5), whi
h is a sub-pro
edure of 
gtMineA (Algo-

rithm 6), runs in time O(m∗E), where m is the number of round for MC simulations,

E is the number of edges in G, sin
e for ea
h round of MC simulation, 
gtInfA s
ans

the out-neighbors of ea
h a
tive node, and the total number of out-neighbors of all

a
tive nodes is O(E).

The 
gtMineA algorithm (Algorithm 6) runs in time O(k ∗ V ∗ m ∗ E), where

k is the budget, i.e., the number of A-nodes to be dis
overed as early adopters of

te
hnology A, V is the number of nodes in G, m is the number of round for MC

simulations, and E is the number of edges in G. 
gtMineA 
onsists of two phases.

The �rst phase is greedy algorithm whi
h runs in time O(k∗V ∗m∗E), where k is the

budget, i.e., the number of A-nodes to be dis
overed as early adopters of te
hnology

A, V is the number of nodes in G, m is the number of round for MC simulations, and

E is the number of edges in G, sin
e for ea
h pass of the greedy phase, 
gtInfA 
alls


gtInfA algorithm (Algorithm 5) O(V ) times, and there are k passes. The se
ond

phase is the lo
al sear
h based algorithm whi
h 
ould run for an exponential amount
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of time (O(2n)) until it �nds an improvement in the in�uen
e spread [Ahmed and

Ezeife, 2013℄. To ensure the algorithm runs in polynomial time, we break the swap

operation when the number of loops 
rosses k ∗ V ∗m ∗E, whi
h ensures the se
ond

phase runs in O(k∗V ∗m∗E) time. Therefore, the overall running time of 
gtMineA

algorithm (Algorithm 6) is in O(k ∗ V ∗m ∗ E).
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Chapter 4

Experiments and Analysis

4.1 Dataset

On 4th July 2012, two international experiments involved in sear
hing for the elusive

Higgs boson, the ATLAS and CMS 
ollaborations announ
ed the dis
overy of a Higgs

boson-like parti
al. Domeni
o et al [2013℄ have tra
ked and monitored user a
tivities

on Twitter (i.e., posting tweets, retweets, mentions and replies about the dis
overy)

before, during and after the announ
ement (i.e., between 00 : 00AM , 1st July 2012

and 11 : 59PM , 7th July 2012). In this resear
h, we use their Higgs Twitter Datasets

to study information di�usion under the CGT model.

The Higgs Twitter Dataset 
onsists of four datasets, Twitter follow network, Twit-

ter mention network, Twitter reply network, and Twitter retweet network. Twitter

follow network 
onsists of 456, 631 nodes and 14, 855, 875 edges. Ea
h line in the

follower dataset is in the form of (u, v) meaning node u follows node v. Twitter men-

tion network 
onsists of 302, 975 nodes and 449, 827 edges. Ea
h line in the mention

dataset is in the form of (u, v, w) meaning node u mentions node v w times. Twit-

ter reply network 
onsists of 37, 366 nodes and 30, 836 edges. Ea
h line in the reply

dataset is in the form of (u, v, w) meaning node u replies node v w times. Twitter
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retweet network 
onsists of 425, 008 nodes and 733, 647 edges. Ea
h line in the retweet

network is in the form of (u, v, w) meaning node u retweets node v w times.

However, there are two issues with the Higgs Twitter Dataset. The �rst issue with

the Higgs Twitter Dataset is that the follow network 
onsists of 456, 631 nodes and

14, 855, 875 edges, whi
h is too big. Another issue with the Higgs Twitter Dataset

is that it does not 
ontain the Twitter tweets dataset. Sin
e our main goal of this

resear
h is to show the quality of the seeds 
hosen by our proposed 
gtMineA is

better than that of CELF-like algorithms under the CGT model, to ta
kle the �rst

issue, we extra
t a sub-graph from Twitter follow network for experiments. The sub-

graph 
onsists of 1, 001 nodes and 3, 201 edges. The extra
tion is done by randomly


hoosing a root node and performing breadth �rst sear
h from the root, stopping

when the number of nodes in the sub-graph is desired, as done by [He et al. 2012℄.

To ta
kle the se
ond issue, we assign tweets 
ount to ea
h Twitter user by uniformly

at random 
hoosing a number over the interval [1, 100] and adding the number to the

total number of the user's retweets, mentions, and replies.

4.2 Algorithms Compared

In our experiments, we 
ompare the quality of the seeds whi
h is measured by the

in�uen
e spread a
hieved by the following algorithms.


gtMineA. Our proposed algorithm.

CELF. Greedy algorithm with lazy evaluation [Leskove
 et al. 2007℄ under the CGT

model that 
hooses k A-nodes with the largest marginal gain from the in�uen
e graph.

TGT. Lo
al-sear
h algorithm [Ahmed and Ezeife 2013℄ under the CGT model that


hooses k A-nodes by two lo
al sear
h operations, add and swap.
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4.3 Comparing In�uen
e Spread

Figure 4.1 shows the in�uen
e spreads a
hieved by TGT, CELF, and our proposed


gtMineA respe
tively. The 
omparison is performed on the 1000-node sub-graph of

Twitter follow network with 50 randomly 
hosen B-seeds. From Figure 4.1, we 
an

see our proposed 
gtMineA outperforms CELF for all A-seed set size as expe
ted.

TGT outperforms 
gtMineA and CELF for all A-seed set size as expe
ted at the 
ost

of running time.
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Figure 4.1: In�uen
e spread of various algorithms in Twitter datasets

4.4 Comparing Running Time

Figure 4.2 shows the running time taken by TGT, CELF, and our proposed 
gtMineA

respe
tively. The 
omparison is performed on the 1000-node sub-graph of Twitter

follow network with 50 randomly 
hosen B-seeds. From Figure 4.1, we 
an see that

CELF performs almost in 
onstant time when the size of A-seed set is≤ 50. 
gtMineA

performs 
lose to CELF when the size of the A-seed set is ≤ 15, takes more time than

CELF as the size of the A-seed set in
reases but runs faster then TGT. This shows

the room for improvement of 
gtMineA in terms of s
alability. As mentioned earlier,
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s
alability was not fo
us of this work; however there are several ways to make the

approa
h more s
alable. We dis
uss some of these approa
hes in the next se
tion.
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Figure 4.2: Running Time of various algorithms in Twitter datasets

From the experiments on the quality of A-in�uen
e spread and running time


omparison, we 
an that see 
gtMineA is a tradeo� solution between running time and

the quality of the A-seed set be
ause TGT under CGT model may run in exponential

time.
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Chapter 5

Con
lusions and Future Works

Maximizing the spread of in�uen
e through a so
ial network is to �nd a small set

of in�uential people (the seed set) in the online 
ommunities (the 
rowd) su
h that

if we market to them, the spread of in�uen
e will be maximized. The most moti-

vating appli
ation of in�uen
e maximization is viral marketing. In this resear
h, we

have ta
kled the in�uen
e maximization problem in a network where there exist two


ompeting in�uen
e di�usions.

First, we propose a di�usion model named Competing General Threshold (CGT)

model to model how the two 
ompeting in�uen
es propagate from node to node and

how a node de
ides to a

ept whi
h in�uen
e. We show that the di�usion pro
ess

under the CGT model is monotone and non-submodular, therefore the in�uen
e maxi-

mization problem under the CGT model boils down to monotone and non-submodular

maximization whi
h is proven to be NP-hard. Then, We exploit Maximum-Likelihood

Estimation (MLE) to learn the two in�uen
e probabilities that v in�uen
es u to adopt

ea
h te
hnology respe
tively from Twitter datasets. Based on the monotone and non-

submodular property of CGT model, we propose an algorithm named 
gtmineA to

mine A-seeds as early adopters of te
hnology A under the CGT model in a so
ial

network where early adopters of te
hnology B already exist, based on the greedy al-
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gorithm [Kempe et al. 2003℄ for the monotone property of CGT and the lo
al sear
h

algorithm [Ahmed and Ezeife 2013℄ for the non-submodular property of CGT. We

perform experiments on the real-world datasets from Twitter to show our proposed


gtMineA outperforms existing heuristi
s su
h as CELF by at most 15%.

In the future, to ta
kle the s
alability of 
gtMineA, we should 
onsider the strength

of weak ties [Granovetter et al. 1973℄ and 
ommunity stru
ture in networks [Fortunat

and Santo 2009℄. Another possible solution is to redu
e the sear
h spa
e by ranking

the nodes in terms of relevan
e as done in [Mumu and Ezeife 2014℄. Also, we want

to extend the Competing General Threshold network from two players to more than

two players, look for more involved threshold fun
tions, and quantify the threshold

value per te
hnology for ea
h player. In order to design a more natural di�usion

model, we should study game theory and in
lude the idea to the model when dealing

with more than one player. Other future dire
tions in
lude (1) to 
onsider dynami


networks where new nodes 
ome in, existing nodes leave, or the in�uen
e probability

per edge 
hanges as time goes on (i.e., it is not independent to time any more), (2)

to 
onsider multi-dimension network whi
h in
orporates Fa
ebook network, Twitter

network, LinkedIn, and so on.

98



Bibliography

Agarwal, N., Liu, H., Tang, L., and Yu, P. S. (2008). Identifying the in�uential

bloggers in a 
ommunity. In Pro
eedings of the 2008 International Conferen
e on

Web Sear
h and Data Mining, pages 207�218. ACM.

Agrawal, R., Srikant, R., et al. (1994). Fast algorithms for mining asso
iation rules.

In Pro
. 20th int. 
onf. very large data bases, VLDB, volume 1215, pages 487�499.

Ahmed, S. and Ezeife, C. (2013). Dis
overing in�uential nodes from trust network.

In Pro
eedings of the 28th Annual ACM Symposium on Applied Computing, pages

121�128. ACM.

Aral, S., Mu
hnik, L., and Sundararajan, A. (2009). Distinguishing in�uen
e-based


ontagion from homophily-driven di�usion in dynami
 networks. Pro
eedings of the

National A
ademy of S
ien
es, 106(51):21544�21549.

Bakshy, E., Hofman, J. M., Mason, W. A., and Watts, D. J. (2011). Everyone's

an in�uen
er: quantifying in�uen
e on twitter. In Pro
eedings of the fourth ACM

international 
onferen
e on Web sear
h and data mining, pages 65�74. ACM.

Bishop, C. M. et al. (2006). Pattern re
ognition and ma
hine learning, volume 4.

springer New York.

Bon
hi, F., Giannotti, F., Mazzanti, A., and Pedres
hi, D. (2003). Examiner: Op-

timized level-wise frequent pattern mining with monotone 
onstraints. In Data

99



Mining, 2003. ICDM 2003. Third IEEE International Conferen
e on, pages 11�18.

IEEE.

Borodin, A., Filmus, Y., and Oren, J. (2010). Threshold models for 
ompetitive

in�uen
e in so
ial networks. In Internet and network e
onomi
s, pages 539�550.

Springer.

Carnes, T., Nagarajan, C., Wild, S. M., and Van Zuylen, A. (2007). Maximizing

in�uen
e in a 
ompetitive so
ial network: a follower's perspe
tive. In Pro
eedings

of the ninth international 
onferen
e on Ele
troni
 
ommer
e, pages 351�360. ACM.

Cha, M., Haddadi, H., Benevenuto, F., and Gummadi, P. K. (2010). Measuring user

in�uen
e in twitter: The million follower falla
y. ICWSM, 10:10�17.

Chen, W., Lakshmanan, L. V., and Castillo, C. (2013). Information and in�uen
e

propagation in so
ial networks. Synthesis Le
tures on Data Management, 5(4):1�

177.

Chen, W., Wang, Y., and Yang, S. (2009). E�
ient in�uen
e maximization in so
ial

networks. In Pro
eedings of the 15th ACM SIGKDD international 
onferen
e on

Knowledge dis
overy and data mining, pages 199�208. ACM.

Chen, W., Yuan, Y., and Zhang, L. (2010). S
alable in�uen
e maximization in so
ial

networks under the linear threshold model. In Data Mining (ICDM), 2010 IEEE

10th International Conferen
e on, pages 88�97. IEEE.

Chen, Y.-C., Zhu, W.-Y., Peng, W.-C., Lee, W.-C., and Lee, S.-Y. (2014). Cim:


ommunity-based in�uen
e maximization in so
ial networks. ACM Transa
tions

on Intelligent Systems and Te
hnology (TIST), 5(2):25.

Cortes, C. and Vapnik, V. (1995). Support-ve
tor networks. Ma
hine learning,

20(3):273�297.

100



Cover, T. and Hart, P. (1967). Nearest neighbor pattern 
lassi�
ation. Information

Theory, IEEE Transa
tions on, 13(1):21�27.

De Domeni
o, M., Lima, A., Mougel, P., and Musolesi, M. (2013). The anatomy of a

s
ienti�
 rumor. S
ienti�
 reports, 3.

Domingos, P. and Ri
hardson, M. (2001). Mining the network value of 
ustomers. In

Pro
eedings of the seventh ACM SIGKDD international 
onferen
e on Knowledge

dis
overy and data mining, pages 57�66. ACM.

Fortunato, S. (2010). Community dete
tion in graphs. Physi
s Reports, 486(3):75�

174.

Gionis, A., Terzi, E., and Tsaparas, P. (2013). Opinion maximization in so
ial net-

works. In SDM, pages 387�395. SIAM.

Goyal, A., Bon
hi, F., and Lakshmanan, L. V. (2008). Dis
overing leaders from


ommunity a
tions. In Pro
eedings of the 17th ACM 
onferen
e on Information

and knowledge management, pages 499�508. ACM.

Goyal, A., Bon
hi, F., and Lakshmanan, L. V. (2010). Learning in�uen
e probabilities

in so
ial networks. In Pro
eedings of the third ACM international 
onferen
e on

Web sear
h and data mining, pages 241�250. ACM.

Goyal, A., Lu, W., and Lakshmanan, L. V. (2011a). Celf++: optimizing the greedy

algorithm for in�uen
e maximization in so
ial networks. In Pro
eedings of the 20th

international 
onferen
e 
ompanion on World wide web, pages 47�48. ACM.

Goyal, A., Lu, W., and Lakshmanan, L. V. (2011b). Simpath: An e�
ient algo-

rithm for in�uen
e maximization under the linear threshold model. In Data Mining

(ICDM), 2011 IEEE 11th International Conferen
e on, pages 211�220. IEEE.

101



Granovetter, M. S. (1973). The strength of weak ties. Ameri
an journal of so
iology,

pages 1360�1380.

Han, J., Pei, J., and Yin, Y. (2000). Mining frequent patterns without 
andidate

generation. In ACM SIGMOD Re
ord, volume 29, pages 1�12. ACM.

He, X., Song, G., Chen, W., and Jiang, Q. (2012). In�uen
e blo
king maximization

in so
ial networks under the 
ompetitive linear threshold model. In SDM, pages

463�474. SIAM.

Hill, S., Provost, F., and Volinsky, C. (2006). Network-based marketing: Identifying

likely adopters via 
onsumer networks. Statisti
al S
ien
e, pages 256�276.

Hu, Q., Wang, G., and Yu, P. S. (2014). Transferring in�uen
e: Supervised learning

for e�
ient in�uen
e maximization a
ross networks. In Collaborative Computing:

Networking, Appli
ations and Worksharing (CollaborateCom), 2014 International

Conferen
e on, pages 45�54. IEEE.

Kempe, D., Kleinberg, J., and Tardos, É. (2003). Maximizing the spread of in�uen
e

through a so
ial network. In Pro
eedings of the ninth ACM SIGKDD international


onferen
e on Knowledge dis
overy and data mining, pages 137�146. ACM.

Kleinberg, J. (2007). Cas
ading behavior in networks: Algorithmi
 and e
onomi


issues. Algorithmi
 game theory, 24:613�632.

Krause, A. and Guestrin, C. (2005). A note on the budgeted maximization of sub-

modular fun
tions.

Krause, A., Leskove
, J., Guestrin, C., VanBriesen, J., and Faloutsos, C. (2008). E�-


ient sensor pla
ement optimization for se
uring large water distribution networks.

Journal of Water Resour
es Planning and Management, 134(6):516�526.

102



Lappas, T., Terzi, E., Gunopulos, D., and Mannila, H. (2010). Finding e�e
tors in

so
ial networks. In Pro
eedings of the 16th ACM SIGKDD international 
onferen
e

on Knowledge dis
overy and data mining, pages 1059�1068. ACM.

Lee, J., Mirrokni, V. S., Nagarajan, V., and Sviridenko, M. (2009). Non-monotone

submodular maximization under matroid and knapsa
k 
onstraints. In Pro
eedings

of the forty-�rst annual ACM symposium on Theory of 
omputing, pages 323�332.

ACM.

Lerman, K. and Ghosh, R. (2010). Information 
ontagion: An empiri
al study of the

spread of news on digg and twitter so
ial networks. ICWSM, 10:90�97.

Leskove
, J., Adami
, L. A., and Huberman, B. A. (2007a). The dynami
s of viral

marketing. ACM Transa
tions on the Web (TWEB), 1(1):5.

Leskove
, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., and Glan
e, N.

(2007b). Cost-e�e
tive outbreak dete
tion in networks. In Pro
eedings of the 13th

ACM SIGKDD international 
onferen
e on Knowledge dis
overy and data mining,

pages 420�429. ACM.

Ma
Queen, J. et al. (1967). Some methods for 
lassi�
ation and analysis of multivari-

ate observations. In Pro
eedings of the �fth Berkeley symposium on mathemati
al

statisti
s and probability, volume 1, pages 281�297. Oakland, CA, USA.

M
Callum, A., Nigam, K., et al. (1998). A 
omparison of event models for naive

bayes text 
lassi�
ation. In AAAI-98 workshop on for text 
ategorization, volume

752, pages 41�48. Citeseer.

Mossel, E. and Ro
h, S. (2007). On the submodularity of in�uen
e in so
ial networks.

In Pro
eedings of the thirty-ninth annual ACM symposium on Theory of 
omputing,

pages 128�134. ACM.

103



Mumu, T. S. and Ezeife, C. I. (2014). Dis
overing 
ommunity preferen
e in�uen
e

network by so
ial network opinion posts mining. In Data Warehousing and Knowl-

edge Dis
overy, pages 136�145. Springer.

Ostfeld, A., Uber, J. G., Salomons, E., Berry, J. W., Hart, W. E., Phillips, C. A.,

Watson, J.-P., Dorini, G., Jonkergouw, P., Kapelan, Z., et al. (2008). The battle of

the water sensor networks (bwsn): A design 
hallenge for engineers and algorithms.

Journal of Water Resour
es Planning and Management, 134(6):556�568.

Pang-Ning, T., Steinba
h, M., Kumar, V., et al. (2006). Introdu
tion to data mining.

In Library of Congress.

Park, J. S., Chen, M.-S., and Yu, P. S. (1995). An e�e
tive hash-based algorithm for

mining asso
iation rules, volume 24. ACM.

Pastor-Satorras, R. and Vespignani, A. (2002). Immunization of 
omplex networks.

Physi
al Review E, 65(3):036104.

Quinlan, J. R. (1986). Indu
tion of de
ision trees. Ma
hine learning, 1(1):81�106.

Ri
hardson, M. and Domingos, P. (2002). Mining knowledge-sharing sites for viral

marketing. In Pro
eedings of the eighth ACM SIGKDD international 
onferen
e on

Knowledge dis
overy and data mining, pages 61�70. ACM.

Rogers, E. M. (2010). Di�usion of innovations. Simon and S
huster.

Rosen, K. (2011). Dis
rete Mathemati
s and Its Appli
ations 7th edition. M
Graw-

Hill S
ien
e.

Russell, M. A. (2013). Mining the So
ial Web: Data Mining Fa
ebook, Twitter,

LinkedIn, Google+, GitHub, and More. " O'Reilly Media, In
.".

104



Singer, Y. (2012). How to win friends and in�uen
e people, truthfully: in�uen
e

maximization me
hanisms for so
ial networks. In Pro
eedings of the �fth ACM

international 
onferen
e on Web sear
h and data mining, pages 733�742. ACM.

Soni, G. and Ezeife, C. (2013). An automati
 email management approa
h using data

mining te
hniques. In Data Warehousing and Knowledge Dis
overy, pages 260�267.

Springer.

Tang, J., Sun, J., Wang, C., and Yang, Z. (2009). So
ial in�uen
e analysis in large-

s
ale networks. In Pro
eedings of the 15th ACM SIGKDD international 
onferen
e

on Knowledge dis
overy and data mining, pages 807�816. ACM.

Ullman, J. D., Leskove
, J., and Rajaraman, A. (2011). Mining of Massive Datasets.

Cambridge University Press.

Wu, Y. and Ren, F. (2011). Learning sentimental in�uen
e in twitter. In Future

Computer S
ien
es and Appli
ation (ICFCSA), 2011 International Conferen
e on,

pages 119�122. IEEE.

Zhang, H., Mishra, S., and Thai, M. T. (2014a). Re
ent advan
es in information

di�usion and in�uen
e maximization of 
omplex so
ial networks. Opportunisti


Mobile So
ial Networks, page 37.

Zhang, P., Chen, W., Sun, X., Wang, Y., and Zhang, J. (2014b). Minimizing seed set

sele
tion with probabilisti
 
overage guarantee in a so
ial network. arXiv preprint

arXiv:1402.5516.

105



VITA AUCTORIS

Xiao Ni Cao was born in Beijing, China. She re
eived her Ba
helor of S
ien
e

in Computer S
ien
e from the University of British Columbia in May, 2012. She is


urrently a 
andidate for the Masters of S
ien
e in Computer S
ien
e at the University

of Windsor, Ontario and hopes to graduate by April 2015.

106


	University of Windsor
	Scholarship at UWindsor
	7-11-2015

	Influence Maximization Mining for Competitive Social Networks
	Xiaoni Cao
	Recommended Citation


	Joyce_Thesis.dvi

