University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations

7-11-2015

Influence Maximization Mining for Competitive
Social Networks

Xiaoni Cao
University of Windsor

Follow this and additional works at: https://scholaruwindsor.ca/etd

Recommended Citation

Cao, Xiaoni, "Influence Maximization Mining for Competitive Social Networks" (2015). Electronic Theses and Dissertations. 5294.
https://scholaruwindsor.ca/etd/5294

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at $19-253-3000ext. 3208.

https://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F5294&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5294&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5294&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/5294?utm_source=scholar.uwindsor.ca%2Fetd%2F5294&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Influence Maximization Mining for Competitive Social Networks

by

Xiao Ni Cao

A Thesis
Submitted to the Faculty of Graduate Studies
through the School of Computer Science
in Partial Fulfillment of the Requirements for
the Degree of Master of Science at the
University of Windsor
Windsor, Ontario, Canada

2015

© 2015, Xiao Ni Cao

Influence Maximization Mining for Competitive Social Networks

by
Xiao Ni Cao

APPROVED BY:

Dr. Animesh Sarker

Department of Mathematics and Statistics

Dr. Dan Wu

School of Computer Science

Dr. Christie Ezeife, Advisor

School of Computer Science

April 20, 2015

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this
thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon
anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,
quotations, or any other material from the work of other people included in my
thesis, published or otherwise, are fully acknowledged in accordance with the standard
referencing practices. Furthermore, to the extent that I have included copyrighted
material that surpasses the bounds of fair dealing within the meaning of the Canada
Copyright Act, I certify that I have obtained a written permission from the copyright
owner(s) to include such material(s) in my thesis and have included copies of such
copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as
approved by my thesis committee and the Graduate Studies office, and that this thesis

has not been submitted for a higher degree to any other University or Institution.

il

ABSTRACT

Influence maximization (IM) is one of the fundamental problems in the area of influ-
ence propagation in social networks. Recent studies in influence maximization have
primarily focused on the diffusion of single influence. In this thesis, we study the
problem under a new diffusion model named Competing General Threshold (CGT)
model, which discovers k most influential nodes as early adopters of technology A
(e.g., Apple) in a market where a competing technology B (e.g., Blackberry) already
exists along with a set of early adopters of technology B. To solve IM under the diffu-
sion of two influences, we first define the CGT diffusion model, then estimate both A
and B influence probabilities by using Maximum-Likelihood Estimation from Twitter
networks. Next, we propose a new algorithm named cgtMineA to find k influential
A-seeds under the CGT model. Experimental results on Twitter networks show that

our approach outperforms CELF by 15%.

Keywords. Competing Ideas, General Threshold Model, Influence Maximization,

Social Networks.

v

DEDICATION

To my parents.

-Best parents in the business.

ACKNOWLEDGEMENTS

[would like to express the deepest appreciation to my advisor Dr. Christie Ezeife.
Without her supervision and constant help this thesis would not have been possible.
Thanks also for the research assistantship supports through FedDev and NSERC

grants.

I would like to thank very much my committee members, Dr. Dan Wu, Dr. Animesh

Sarker, and Dr. Tsin for their time, patience, objectivity, and observations.

Last but not least, I would like to thank very much my predecessor colleagues, Mumu
and Sabbir at University of Windsor for their valuable work and experiences which

are the inspiration of this research.

Xiao Ni Cao

vi

Contents

DECLARATION OF ORIGINALITY o .. iii
ABSTRACT o iv
DEDICATION 4
ACKNOWLEDGEMENTS vi
LIST OF TABLES e xi
LIST OF FIGURES xiii
1 Introduction 1
1.1 Social and Information Network Analysis 1
1.2 Thesis Outline 4
1.3 Data Mining Algorithms Used in Social and Information Networks
Analysis L 4
1.3.1 Frequent Pattern Mining 5)
1.3.2 Classification Methods 7
1.3.3 Clustering Methods 9
1.4 Diffusion of Innovations and Influence 10
1.5 Influence Diffusion Models, 12
1.6 Submodular Functions and Their Properties 16
1.7 Influence Maximization and Its Applications 18
1.8 Learning Pairwise Influence Probabilities 20
1.9 Fundamental Twitter Terminology 22

Vil

1.10 Thesis Contribution 25

2 Related Works 29
2.1 Influence Maximization o o 31

2.1.1 Maximizing the Spread of Influence through a Social Network 31

21.2 CELF 38
2.1.3 SIMPATH 40
2.1.4 Discovering Influential Nodes from Social Trust Network . . . 43

2.1.5 Social Network Opinion and Posts Mining for Community Pref-

erence Discovery oo 47

2.2 Outbreak Detection 51
2.2.1 Identifying the Influential Bloggers in a Community 5l

2.3 Probabilistic Models of Information Flow 53
2.3.1 Learning Influence Probabilities in Social Networks 53

3 Proposed Algorithm for Mining Influential Nodes From Competitive

Social Networks 62
3.1 Competing General Threshold Model 63
3.2 The Main CIAM System and Algorithm 72

3.2.1 Crawling Social Networks to Construct the Social Graph . . . 76

3.2.2 Learning Influence Probabilities as Edge Weights from Twitter 78

3.2.3 Augment the Influence Graph with Learned Pairwise Influence

Probabilities L 82

3.2.4 Discovering Influential Nodes for a Competing Action 83

3.3 Complexity Analysis L oo 91

4 Experiments and Analysis 93
4.1 Dataset 93
4.2 Algorithms Compared 94

4.3 Comparing Influence Spread 95

4.4 Comparing Running Time 95
5 Conclusions and Future Works 97
Bibliography 99
VITA AUCTORIS e 106

X

List of Tables

1.1
1.2

1.3
14

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

Transaction database with 5 transactions
The tiny noncoding RNA training dataset with 5 pseudoHairpin sam-
ples and 4 pre-miRNA samples.
The tiny noncoding RNA test dataset with 2 unknown samples.

The tiny noncoding RNA test dataset with 2 learned samples.

Iteration One of Greedy
Iteration Two of Greedy
Iteration One of CELF
Iteration Two of CELF
Influence spread of each node. Source: Table 6 on page 126 of [Ahmed
and Ezeife 2013].o
Example of relevant nodes and data for z = iPhone. Source: Table 1
on page 141 of [Mumu and Ezeife 2014].
Example of post data. Source: Table 2 on page 141 of [Mumu and
Ezeife 2014]. o
Example of post data. Source: Table 3 on page 141 of [Mumu and
Ezeife 2014].
Example of post data. Source: Table 3 on page 141 of [Mumu and
Ezeife 2014].

2.10

211

2.12

3.1
3.2
3.3
3.4
3.5
3.6

3.7

3.8

3.9
3.10

3.11
3.12

Post-user relationship. Source: Table 6 on page 143 of [Mumu and
Ezeife 2014]. o
User-user relationship. Source: Table 6 on page 143 of [Mumu and
Ezeife 2014]. o
Influence Matrix (IMAT). Source: Table 7 on page 143 of [Mumu and
Ezeife 2014].

Twitter follow network,
Twitter mention network L.
Twitter reply network
Twitter retweet networko oL
Twitter tweets network
Concatenate Twitter mention network, Twitter reply network, and
Twitter retweet network into one table named Tri and group Tri by
columnswand v
The summed-up Tri by computing the sum of w for each group

Left-join Tri and Twitter'Tweets on column v to obtain a new table
named TriTweets
Add a new column named p to TriTweets, where p=w/t
Drop columns w and t from TriTweets, and left-join Twitter follow
network and TriTweets to obtain the influence probability table, where

each tuple (u, v, p) means the probability that node v influences on node

Marginal Gain: First Pass of cgtMineA’s Greedy Phase

Marginal Gain: Second Pass of cgtMineA’s Greedy Phase

xi

List of Figures

1.1
1.2

1.3

1.4

1.5
1.6
1.7
1.8
1.9

2.1
2.2
2.3
2.4
2.5

2.6

Following Graph on Twitter. Source: Figure on Page 12, Greene [2011] 2
Classification in Influence Maximization. Source: Figure 1 on Page 1,
Huetal. [2014] 8
Classification in Influence Maximization. Source: Figure 2 on Page 3,
Chen et al. [2014] 10

Diminishing Return of Submodular functions. Adopted from Figure

on pages 8, Leskovec [2007]. 17
A tweet includes mention, hash tag and URL. 22
Areply. . . o o 22
Avreply. . . . 23
A mention. 23
Aretweet. L 23
Linear Threshold Model 33
Independent Cascade Model. 34
General Threshold Model 35
A Social Network oo 37

A weighted, directed graph G = (V,E) derived from a social network.
Source: Figure 2 on Page 213, Goyal et al. [2011]. 42

Trust Graph vs Influence Graph 44

xil

2.7

2.8

3.1

3.2
3.3
3.4
3.5
3.6

3.7

4.1
4.2

Social network graph where each edge is labeled with positive or neg-
ative influence probabilities. Source: Figure 2 on page 126 of [Ahmed
and Ezeife 2013].o L 46
A framework proposed by Goyal et al. for learning influence probabil-

ities for all edges. Source: Figure 2 on Page 6, Goyal et al. [2010]. . . 55

An inactive node u in the Competing General Threshold Model where
the state of node z is AB, the state of node y is A, the state of node z
is B, and the stateof visB., 69

Example of Two Competing Influence Diffusions under the CGT Model 70

Counter example to show CGT is non-submodular 71
CIAM Framework 74
Influence Grapho 78

Influence graph augmented with pairwise influence probabilities for all

edges 83
Example of cgtInfA(Ss, SB)o 88
Influence spread of various algorithms in Twitter datasets 95
Running Time of various algorithms in Twitter datasets 96

xlil

Chapter 1

Introduction

1.1 Social and Information Network Analysis

Social networks such as Facebook, Twitter, Google+, and so on can be modeled
as directed graphs (also known as social network graphs) where the nodes represent
individuals (e.g., human being or entities such as The New York Times) and the edges
represent social ties, relationships or interactions between individuals. In information
networks such as arXiv.org, wordpress, and so on, vertices are information items
(e.g., research papers, software engineering projects, or blog posts), edges represent
interactions between items. Some main types of large-scale networks that researchers
have used for social and information network analysis are listed below.

Friendship Networks. Examples of friendship networks include Facebook which
has 1,280,000, 000 users as of June 2014, and Twitter which has 645,750,000 users
as of 31 August, 2014. Friendship networks can be modeled using a directed graph
where vertices represent people, and there is an directed edge (v, u) from v to u if v
knows and likes u. For example, on Twitter, there are two people, Peter (whose user
id is 318064061) and Mark (whose user id is 317756843). Peter follows Mark on July

7, 2011 (Twitter uses "follow" to say "I want to be friends with you"). In Figure 1.1,

we represent their social relationship using a Twitter follow graph where nodes are
Peter and Mark respectively, a directed edge between them means that Peter follows

Mark, a value "20110707" associated to the edge (Peter, Mark) indicates the follow

date.
’ FOLLOWS
@ 318064061 /} '#\31 7756843 ,‘l
— | rottow_date 2011-07-07 | -

screen_name peter78 screen_name mark763
location Galway location London
time_zone GMT time_zone GMT
verified FALSE verified FALSE

Figure 1.1: Following Graph on Twitter. Source: Figure on Page 12, Greene [2011]

Signed Networks. When two opposite relationships (such as like vs. dislike, love
vs. hate, trust vs. distrust, friend vs. foe, and so on) coexist in a social network,
we model this kind of social network using a weighted graph G = (V, E, s), where
individuals are represented by nodes, relationships between each other are represented
by edges, and the sign (positive or negative) of relationships is represented by the edge
weight s € {—1,1}:

1 if the relationship is like, trust, friend, etc.

—1 if the relationship is dislike, distrust, foe, etc.

For example, users on Wikipedia can vote for or against the nomination of others
to be Wikipedia administrator, users on Epinions can express trust or distrust of
other people’s product reviews by rating, participants on Slashdot can declare others
to be either "friends" or "foes" [Ahmed and Ezeife 2013|, and users on Youtube can
express like or dislike of other people’s comments.

Citation Networks. Citation networks can be modeled using a citation graph where

vertices represent research papers, and there is an directed edge from paper A to paper

B if A cites B. Examples of citation networks include arXiv.org.

Collaboration Networks. Collaboration networks (for example, Hollywood col-
laboration network or academic collaboration networks) can be modeled using a col-
laboration graph where vertices represent people, and there is an undirected edges
between two people if they work together on at least one movie or one research project.
Examples of collaboration networks include arXiv.org, Github, and DBLP.
Communication Networks. Communication networks model the "who-talks-to-

"who-emails-whom" structure of social networks. Such networks can be

whom", or
constructed from the logs of emails or from phone call records [Mumu and Ezeife
2013]. Examples of communication networks include email communication network
from Enron (as in the Enron Scandal). The Enron email network consists of 1, 148, 072
emails sent between employees of Enron between 1999 and 2003 [KONECT 2014].
A number of algorithmic problems in online social and information networks anal-
ysis that researchers have been working on include (a) discovering the sentiment
(positive, neutral, negative, or irrelevant attitude) toward celebrities (e.g., Obama),
products (e.g., iPhone6), or topic (e.g., Super Bowl), exploring how news, opinions,
or marketing information spread, predicting the trends and opinions on Twitter (b)
making recommendations based on user profiles, examining friendships on Facebook,
(c) processing resumes automatically and finding great new employees, clustering
colleagues into circles on LinkedIn, (d) measuring document similarity, extracting
frequent itemsets on Google+, (e) using natural language processing to perform
sentiment analysis, mining subjective information from blog posts on the web, (f)
organizing an email inbox, categorizing related emails together, detecting phishing
emails, tracing how fraudulent activity diffuses within the Enron email corpus, (g)
finding great software engineers, inspecting collaborative software engineering process
on GitHub, (h) analyzing the emotional characteristics of the content of a video, de-

termining the video’s virality on Youtube |[Russell 2013, (i) maximizing the spread of

influence through a social network, that is to find a small set of influential people (the
seed set) in the online communities (the crowd) such that if we market to them by
giving free samples of our products to them, the final adoption of the new products
will be maximized in the crowd through word-of-mouth networks given that there are
millions of users on Twitter and a company only has a limited number of free samples
(budget for the advertising campaign) to distribute, or to find a small set of influential
blogs in the blogsphere such that reading them allows one to gain the most engaging
information and the most trending topics given that there are countless posts on the

web and one only has limited attention.

1.2 Thesis Outline

The remaining of the thesis is organized as follows. The remaining of Chapter 1
provides a brief introduction on data mining, discusses diffusion of innovations and
influence maximization problem, illustrates submodularity and their properties, and
states thesis problem and contributions. Chapter 2 describes related work on in-
fluence maximization in great details. Chapter 3 develops a solution framework by
introducing the CGT model, proving its properties, and proposing an efficient greedy
mining algorithm based on its properties, cgtMineA to solve Influence Maximization
under CGT model. Chapter 4 presents our experimental results. Chapter 5 concludes

our study and suggests future work.

1.3 Data Mining Algorithms Used in Social and In-
formation Networks Analysis

Data mining algorithms can be grouped into three general categories based on the

objectives of the task, frequent pattern mining, classification, and clustering. In

this section, we introduce the definitions and basic concepts on these 3 categories,
algorithms from each category that have been exploited by researchers for mining

social and information networks.

1.3.1 Frequent Pattern Mining

Finding frequent patterns is one of the fundamental data mining problems. Frequent

patterns can be a set of items, for example:

e {grape, mango, salmon} which is a set of items bought together in many trans-
actions in a transaction database of a grocery store, implying a frequent buying

pattern

o {'frequent' pattern’ mining’} which is a set of words appearing together in

many documents, implying a phrase with a particular meaning

o {homeworkl, homework2} which is a set of two homework assignments such

that many sentences appear in both of them, implying plagiarism [Ullman et

al. 2011]

In frequent pattern (or frequent itemset) mining problem, the input is a transac-
tion database. For example, consider the transaction database D in Table 1.1 which
contains b transactions. We say an itemset (or a pattern) is frequent if the num-
ber of transactions in which the itemset (or the pattern) appears is no less than
a user-defined value (called the minimum support threshold). For example, if we
specify the minimum support threshold at 3, then the itemset (2,3,5) is a frequent
itemset, since it appears in 3 transactions, i.e., in transaction 200 (1,2,3,5), in trans-
action 300 (2,3,5), and in transaction 500 (2,3,4,5). The output is the frequent
itemsets found in the transaction databse: the frequent 1—element itemsets L; =

{(1),(2),(3),(4),(5)}, the frequent 2—element itemsets Ly = {(1,2), (2, 3), (2,4), (2,5),(3,5)},

the frequent 3—element itemsets L3 = {(2,3,5)}, and the frequent itemsets of all size

L=L1ULULs= {(1>7 (2)7 (3)7 (4)7 (5)7 (17 2>7 (27 3>7 (274>7 (275)7 (37 5>7 (27375)}

TID Items
100 (1,2,3,4)
200 (1, 2 3,5)
300 (2,3,5)
400 (1, 2 4,5)
500 (2,3,4,5)

Table 1.1: Transaction database with 5 transactions

Once frequent itemsets have been found, we want to find out the relationship be-
tween these frequent itemsets, i.e., the association rules generated from these frequent
itemsets. An association rule is a if-then clause. For example, a rule can be like "if a
basket contains items 1, 2, 3, then it probably contains items 4, 5". In order to define
how likely the if-then clause is evaluated to be true, we need to introduce the defini-
tion of confidence. The confidence of an association rule is the probability that items
ttemy1,. . .,itemy1, are in the basket given a basket contains items itemy,. . .,itemy,
where the itemset itemy,q,. .. itemy, and the itemset item,,. .. item;, are disjoint.
The Apriori algorithm, initially proposed by Agrawal et al. [1994], is one of the most
influential algorithms used to find frequent itemsets. Mumu and Ezeife [2014] exploit
the Apriori algorithm to infer community preferences (positive or negative) for a given
product (e.g., iPhone) as input to standard influence maximization algorithms. The
ExAminer algorithm, introduced by Bonchi et al. [2003], is used to find frequent
itemsets whose size is no less than a user-specified value. Goyal et al [2008| exploit
the ExAminer algorithm to discover action leaders from online community, which is

the first frequent pattern based algorithm for influence maximization mining.

1.3.2 Classification Methods

Classification is to classify objects to their corresponding categories. More precisely,
classification is the task of learning a target function f from a training set that maps
each sample x in the test set to one of the predefined class labels y. The target
function is also known as a classification model. (Source: Definition 4.1 on pages 146,
Pan et al. [2006].)

For example, given a training dataset in Table 1.2, and a test dataset in Table
1.3, classification is to learn a classification model from the training set, then apply
the learned model to the test set to classify the noncoding RNA into two classes:

pseudohairpin or pre-miRNA. The classification results are illustrated in Table 1.4.

feature 1 feature 2 class label
69.07 1.04 pseudoHairpin
53.09 8.75 pseudoHairpin
55.45 0 pseudoHairpin
72.92 0 pseudoHairpin
43.02 12.94 pseudoHairpin
69.47 0 pre-miRNA
44.19 11.76 pre-miRNA
85.11 2.17 pre-miRNA
81.97 0 pre-miRNA

Table 1.2: The tiny noncoding RNA training dataset with 5 pseudoHairpin samples
and 4 pre-miRNA samples.

feature 1 feature 2 class label
56.38 2.70 unknown
42.68 12.35 unknown

Table 1.3: The tiny noncoding RNA test dataset with 2 unknown samples.

feature 1 feature 2 class label
56.38 2.70 pre-miRNA
42.68 12.35 pseudoHairpin

Table 1.4: The tiny noncoding RNA test dataset with 2 learned samples.

Classification algorithms include nearest neighbours (K-NN) which was proposed
by Cover and Hart [1967], Naive Bayes classifier introduced by McCallum et al., [1998],
Support Vector Machine (SVM) proposed by Cortes and Vapnik [1995|, decision trees
proposed by Quinlan [1986]. In [Hu et al. 2014|, the authors propose an algorithm
that exploits classification algorithms to tackle the Influence Maximization Problem
and uses the result of a greedy algorithm to train classifiers to directly select influential

nodes based on their features (Figure 1.2).

©
“ w
a & 3, A & & :ireedg' = 8 8
- Algorithm
- “
. ¢ &
Network 1 Seeds

8 8 8 a 8 Classification
8 a 8 8 8 Algorithm

Seeds Non-Seeds

Classifier

ser e

Figure 1.2: Classification in Influence Maximization. Source: Figure 1 on Page 1, Hu
et al. [2014]

1.3.3 Clustering Methods

Clustering is to cluster objects in groups such that objects within a group are similar,
objects between groups are different. That is, clustering techniques are trying both to
maximize the similarity within a group and to maximize the difference between groups
[Tan et al. 2006|. Clustering methods include the K-Means algorithm proposed by
MacQueen et al., [1967] and Agglomerative Hierarchical Clustering. We will briefly
discuss them below.

K-Means. The input of K-means algorithm is a set of points. The K-Means algo-
rithm assumes there are k clusters in the point set (that is why it is called K-means.)
K-means picks k£ points that are likely to be in different clusters as the centroid for
each cluster. Then it assigns each remaining point p in the point set to a cluster such
that the centroid of the cluster to which p is closest. After a point is added to a clus-
ter, the centroid of the cluster is adjusted in order to take account of the new point
|[Ullman et al. 2011]. In [Soni and Ezeife 2013|, the authors improve the K-means al-
gorithm and propose a novel approach named Semantic non-parametric K-Means++
to automatically move emails from inbox to appropriate folders and sub-folders.
Hierarchical Clustering. In general, agglomerative (bottom-up) hierarchical clus-
tering starts with a set of points and each point forms a cluster. And there is a dis-
tance matrix storing the distances between all pairs of points (i.e., clusters). Based
on the distance matrix, the algorithm chooses two points (i.e., clusters) with the min-
imum distance in the matrix, combines them into one cluster, computes the distances
between all pairs of the newly combined cluster and the old clusters, and use the
resulting distances to update the distance matrix (Since we combine two clusters into
one, so the distance matrix is reduced by one column and one row). The algorithm
repeats this procedure (i.e., choosing two clusters with the minimum distance in the
distance matrix, combining them into one cluster, and updating the distance matrix)

until the minimum distance in the distance matrix is larger than a specified threshold

(which means if the points in the cluster are separated too far from each other, the
algorithm would stop). In [Chen et al. 2014], the authors exploit the hierarchical
clustering algorithm to improve the efficiency of mining influence maximization by
discovering the community structure of the network to reduce the search space for

influential nodes (Figure 1.3).

~ y 22 - ——
input: a network community 2 P ~
K

community
detection
- communiiy 3
® Il candidate
output: sced nodes generation
m e . o an -
selection o
: f . N £ candidate secds\
@ \ "4 ine ommunity 2
\ f N /
@ . ” - - o

e -

Fig. 2. Owerview of the CIM framework approach.

Figure 1.3: Classification in Influence Maximization. Source: Figure 2 on Page 3,
Chen et al. [2014]

1.4 Diffusion of Innovations and Influence

According to Rogers [2010], one reason why the diffusion of innovations has been of
so much interest to researchers is because getting an innovation adopted is often very
difficult. Rogers [2010] defines that diffusion is the process by which an innovation is
communicated through certain channels over time among the individuals of a social

system. By innovation, he means a new idea or technology such as Google’s search

10

engine, a new practice such as water boiling in a Peruvian village, or a new product
such as Apple’s iPhone. By communication channels, he means the means by which
messages get from one individual to another. He compares two communication chan-
nels, mass media channels and interpersonal channels as follows. On one hand, mass
media channels including radio, television, newspapers, and so on, are efficient means
to inform an audience of potential adopters about the existence of an innovation. On
the other hand, interpersonal channels like peer groups linking two or more individ-
uals who are near-peers are more powerful in persuading an individual to adopt an
innovation. By a social system, he means a set of individuals or organization con-
nected to one another through relationships and interactions such as all the users on
Twitter. Rogers [2010] points out that most individuals tend to be less dependent
on the objective evaluations by scientific studies. Rather they adopt an innovation
mainly because individuals from peers have previously adopted the innovation and
conveyed a subjective evaluation of an innovation to them. Therefore, the diffusion of
innovations through social networks is when individuals imitate their friends, friends
of friends, colleagues in the workplace or at school, family members, acquaintances
who have previously adopted an innovation by adopting the innovation as well, such
adoptions will subsequently influence others who have connections with them. For
example, David watches a new movie (here watching a new movie indicates an inno-
vation.) He really likes it and blogs about the movie. David’s friends Sean, Sibyl, and
Eva read his blog and go watch the movie as well. After that, the action of watch-
ing the movie propagates recursively. Sean, Sibyl, and Eva influence their friends to
watch the movie, and so on, creating a cascade of further watching. The diffusion
process will carry on until no more adoptions are possible. Such chain reaction by
words-of-mouth effect in a social network is called viral marketing (also known as
direct marketing) because the adoption of the innovation will widely spread out like

the way an epidemic spreads.

11

1.5 Influence Diffusion Models

In this section, we will introduce four main influence diffusion models. But before
we do that, we will briefly introduce some terminology used in existing influence

maximization research.

Definition 1.5.1. Innowvation. In this thesis, an "innovation” indicates a new
technology, a new product, a new idea, or a new behavior/action. We use the term

innovation, technology, product, idea, behavior and action interchangeably.

Definition 1.5.2. Influence Diffusion. Also known as influence propagation.
Here, "diffusion” means "propagation"”. In this thesis, "diffusion"” is a process by
which the adoption of an innovation propagates throughout a social network from a
seed set (i.e., a small number of early adopters of the innovation) to the crowd. Infor-
mally, we can think of this as an influence (for performing certain actions) propagating
from the seed set to the crowd [Goyal et al. 2008]. Or diffusion is the outcome of
influence [Ezeife 2014].

Two of the most basic and influential diffusion models are the Independent Cas-
cade model introduced by Goldenberg et al. [2001] and the Linear Threshold model
introduced by Granovetter [1978|. Kempe et al. [2003] further formalized them to
what they are in present and proposed the General Threshold model and the General
Cascade model, which are broad generalizations of the Linear Threshold model and
the Independent Cascade model respectively. The four diffusion models agree in the
following aspects. The diffusion models represent a social network as a weighted,
directed graph G = (V, E). Each node v € V' is an individual, each edge (v, u) € E is
an influence relationship from node v to node u indicating that node v exerts influ-
ence on node u. Each edge (v, u) € E is assigned a non-negative probability p,, or a
non-negative weight b, ,, indicating the amount of the influence that node v exerts on

node u to adopt an innovation. The diffusion process is dynamic and progressive. By

12

dynamic we mean the diffusion process happens in discrete steps, i.e., t =0,1,....,n—1
(where n = |V, the size of V'). At any time ¢, each node v € V has two states, active
(meaning it has adopted an innovation) or inactive (meaning it has not adopted the
innovation). By progressive we mean a node once becomes active at time ¢, it will
remain active as time goes by and cannot switch back to inactive. If we use S; to
denote the set of active nodes at time ¢, then S;_; C S; for t > 1, that is, the set of
active nodes is non-decreasing as time moves in discrete steps, this is the progressive
aspect of the diffusion. At time 0, there is an initial active set Sy which represents
a small set of influential nodes that adopts an innovation. The propagation process
grows from there based on which diffusion model we choose. Since the set of active
nodes is non-decreasing as time goes by in discrete steps, and the set V' is finite, the
process will stop on or before time n — 1 when no more activations are possible. The
four diffusion models differ in the way the influence of the neighborhood of a node v
exerts on it and in the way a decision is made by node v to adopt a new behavior.
They will be discussed briefly immediately and in details in Chapter 2.

Independent Cascade Model. The Independent Cascade model represents a so-
cial network as a weighted, directed graph G = (V, E). Each edge (v,u) € E is
assigned a non-negative probability p,, indicating the influence that node v exerts
on node u, that is if v is active, it succeeds in activating v with the probability of
Pou- The diffusion process happens in discrete steps, i.e., t = 0,1,...,n — 1 (where
n = |V, the size of V). At any time ¢, each node v € V is either active or inactive.
Once v is activated, it remains active and cannot switch back to inactive. At time 0,
there is an initial set Sy that adopts a new behavior and the diffusion process unfolds
as follows. If a node v is active, it is given one single chance to activate each of its
inactive neighbors u with probability of p,,. The diffusion process will stop when no

more activations are possible Kleinberg et al. |2007].

13

Linear Threshold Model. The Linear Threshold model represents a social net-
work as a weighted, directed graph G = (V, E). Each edge (v,u) € E is assigned a
non-negative weight b, ,, indicating the influence that v exerts on u such that the total
weight of u’s neighbors is no greater than 1: 37 v, bou < 1, where N(u) denotes
the set of neighbors of u. Each node v € V' chooses uniformly at random a threshold
6, over the interval |0,1]. According to Granovetter [1978], in Sociology, the threshold
of a node v is defined as the minimum proportion of its neighbors who have already
adopted a behavior (such as joining a riot) that makes v adopt the behavior too. For
example, suppose v’s threshold is 25%, v has 100 neighbors, and 26 of them have
joined a riot, since 26/100 = 26% > 25%, v will join the riot too. A threshold of 0%
means v is so radical that he will join the riot even there is no one else doing so. A
threshold of 100% means v is so conservative that he will not join the riot even when
everyone else around him does so. In influence maximization problems, a threshold
of v, denoted as 6, intuitively indicates enough of its neighbors who have already
adopted a behavior in order for v to do so. The threshold of each v € V, denoted
as 0, being chosen uniformly at random is intended to model our lack of knowledge
of the exact values [Kempe et al. 2003]. The diffusion process happens in discrete
steps, i.e., t = 0,1,2,...,n — 1 (where n = |V, the size of V). At any time ¢, each
node v € V is either active or inactive. Once v is activated, it remains active and
cannot switch back to inactive. At time 0, there is an initial set Sy that adopts a new
behavior. At time ¢ > 0, all nodes that were active at time ¢ — 1 remain active, any
inactive node w is activated if the total weight of its active neighbors is no less than

its threshold: 3) by > 6,. The process will stop when no more activations

active vEN (u

are possible |[Kleinberg et al. 2007].

General Threshold Model. The General Threshold model represents a social net-

work as a weighted, directed graph G = (V| E). Each node v € V is associated with

14

a threshold function f,. The threshold function f,(S) measures the joint influence
of v’s active neighbors S exerted on v, with f,(#) = 0. Each node v € V chooses
uniformly at random a threshold 6, over the interval [0,1|. The diffusion process hap-
pens in discrete steps, i.e., t =0,1,2,...,n— 1 (where n = |V|, the size of V). At any
time ¢, each node v € V is either active or inactive. Once v is activated, it remains
active and cannot switch back to inactive. At time 0, there is an initial set Sy that
adopts a new behavior. At time ¢ > 0, all nodes that were active at time ¢ — 1 remain
active, any inactive node v is activated if the threshold function of v is no less than
the threshold of v: f,(S) > 6,. The process will stop when no more activations are
possible. The Linear Threshold model discussed above is a special case of the General
Threshold model. In the Linear Threshold model, the threshold function of each node

u € V is defined as the total weight of its active neighbors, f.,(S) =Y ¢ by, Where

veES
S denotes the set of active neighbors of u, and b, is a non-negative weight on edge
(v,u) indicating the influence that v exerts on u such that ZveN(u) by, < 1, where

N(u) denotes the set of neighbors of u [Kempe et al. 2003].

General Cascade Model. The General Cascade model represents a social network
as a weighted, directed graph G = (V, E). Each node u € V is associated with an
incremental function p,(v,S), where v is u’s active neighbor who has not tried to
influence u and S is the set of u’s active neighbors that have tried and failed in ac-
tivating u, p,(v,S) measures the influence of v on u given that the set of u’s active
neighbors that have tried and failed in influencing w. The diffusion process happens
in discrete steps, i.e., t =0,1,2,...,n— 1 (where n = |V, the size of V). At any time
t, each node v € V is either active or inactive. Once v is activated, it remains active
and cannot switch back to inactive. At time 0, there is an initial set Sy that adopts
a new behavior and the diffusion process unfolds as follows. If a node v is active, it

activates each of its inactive neighbors u with probability of p,(v,S). The process

15

will stop when no more activations are possible. The Independent Cascade model
discussed above is a special case of the General Cascade model. In the Independent
Cascade model, the incremental function of each node v € V' is defined as the pairwise

influence probability from v to u, py .-

1.6 Submodular Functions and Their Properties

The diminishing returns definition of submodular function is as follows: Given a set
of nodes V = {vy,...,v,}, a function f : 2V — R (where 2" is the power set of V)
is submodular if for any A C B C V and v € V — B, (V — B means V except B
or V\B), we have that: f(AU {v}) — f(A) > f(BU{v}) — f(B). The left hand
side of the inequality means the marginal gain (or cost) of adding a node v in A, the
right hand side of the inequality means the marginal gain (or cost) of adding a node
v in B, the entire inequality says the marginal gain (or cost) of adding a node v in a
larger set (i.e., B) is less than or equal to the marginal gain (or cost) of adding v in

a smaller set (i.e., A). This is the diminishing return aspect of submodularity.

Example 1.6.1. Submodularity. Consider scenario one. We have a network as
shown in Figure 1.4 (a). We place two sensors S1 and Sy in the network to obtain
a placement A = {S1, 52} as shown in Figure 1.4 (b), we can see the coverage of
A = {851, S5} is 8. After that, we add a new sensor S to placement A to obtain a
placement A’ = {51, S2,S} as shown in Figure 1.4 (c), we can see the additional (or
marginal) coverage of the new sensor S is 8.

Now, consider another scenario. We have a network as shown in Figure 1.4
(a). We place four sensors Sy, Sa, Ss, and Sy in the network to obtain a place-
ment B = {S1,5,, 53,54} as shown in Figure 1.4 (d), we can see the coverage of

B = {51, 5, 53,S4} is 14. After that, we add a new sensor S to placement B to

16

obtain a placement B' = {S}, So, S5, S4, S} as shown in Figure 1.4 (e), we can see the
additional (or marginal) coverage of the new sensor S is 4.

Figure 1.4 is trying to say that the marginal gain of adding a new node S to
a smaller sett A = {51,532} is larger than the marginal gain of adding the same

node S to a larger set B = {S1,52,53,S4}. This is the diminishing return aspect of

submodularity.
New sensor:
®
A network Placement A={S,, S,} Placement A={S,, S,, S}
(a) (b) (c)
New sensor:
®
Placement B(S,, Sy, S5, Sy} Placement B'={S,, S,, S5, S, S}

(d) (e)

Figure 1.4: Diminishing Return of Submodular functions. Adopted from Figure on
pages 8, Leskovec [2007].

Submodular functions have several properties. Of those properties, non-negative,
monotone submodular functions are what we are interested in the context of influence
maximization. A non-negative, monotone submodular function is defined as follows:
A submodular function is monotone if it takes only non-negative values and it satisfies:
f(AU{v}) > f(A) for all elements v € V' and sets A C V. The left hand side of the

inequality means the gain (or cost) of adding a node v in A, the right hand side of

17

the inequality means the gain (or cost) of A, the entire inequality says the gain (or

cost) of adding a node v in A) would not decrease the gain (or cost) of A.

Example 1.6.2. Monotonicity. From Figure 1.4, it is easy to see that the coverage
of A = {51, S, S} which is 16 (as shown in Figure 1.4 (c)) is no less than that of
A = {51, 52} which is 8 (as shown in Figure 1.4 (b)).

1.7 Influence Maximization and Its Applications

Having noticed the dynamics of spread of innovation unfold through a social network,
a natural question to ask is how to maximize the spread of diffusion of the innova-
tion, i.e., the influence maximization problem. Before further discussing the influence

maximization problem, we will briefly review some terminology used in this thesis.

Definition 1.7.1. Influence Spread. Given an initial active set Sy, the "influence
spread" (just "influence", or just "spread") of Sy, denoted as o(Sy), is defined to be
the expected number of final active nodes at the end of the diffusion process when no
more adoptions are possible. Here, o(+) is a function, defined as o : 2V — R, mapping
a set (the seed set Sp) to a real number (the expected number of final active nodes at
the end of the diffusion process). On the other hand, the verb "influence” (as in node

v influences node u) means "v activates node u".

Definition 1.7.2. Influence Mazximization. Let Sy denote an initial active seed
set. Let o(Sy) denote the influence spread of the seed set Sy. Given a social graph
G = (V, E), a diffusion model, and an integer k, the influence maximization problem
is to find a seed set Sy C V' of size at most k such that o(Sy) is mazimized under the

diffuston model.

Hardness of Influence Maximization Problems. The influence Maximization

problem is proved to be NP-Complete, which means no polynomial-time algorithm

18

is known for it. If we can show the influence function o(+) is a non-negative, mono-
tone submodular under a diffusion process, then influence maximization problem boils
down to a submodular function maximization problem. However submodular function
maximization is proven to be NP-hard, therefore there is no known polynomial-time
algorithm for this problem. But it can be solved approximately with guarantees in
polynomial time according to Theorem 2.1 in [Kempe et al. 2003|. According to
Kempe et al. [2003], if the influence function o(-) is a non-negative, monotone sub-
modular under a diffusion process, then we can exploit a greedy algorithm to find
an approximation set Sp of size k in polynomial time and o(Sp) > (1 — 1/e)a(S5),
where 5§ is the optimal set that maximizes the value of o over all k-element sets and
e = 2.713. In other words, the seed set Sy found by the greedy algorithm provides a

63%-approximation to the influence maximization problem in polynomial time.

Applications of Influence Maximization. The most motivating application of
influence maximization is viral marketing. Unlike mass marketing where all potential
customers are targeted, viral marketing (also known as direct marketing) exploits data
mining techniques to find out a handful of influential customers, by targeting them
(e.g., giving them free samples of the new product), the rest of the viral marketing
would take care of itself through word-of-mouth effect and the final adoption of the
new product will reach a very large population of the network, like the spread of
an epidemic [Domingos and Richardson 2001]. Another applications of influence
maximization is outbreak detection. Suppose there are contaminants spreading over
a water distribution network where nodes are pipe junctions and edges are pipes, we
want to find a few locations (pipe junctions) to place sensors such that contaminants
can be detected quickly and infect as few households as possible [Leskovec 2007].
Similarly, suppose an epidemic (e.g., Ebola) spreads through a social network where

nodes are people and edges are the interactions between them, we want to find a small

19

set of contagious people to monitor such that the disease can be detected early and
infects as few people as possible (or save as many lives as possible) [Leskovec 2007].
In the domain of blogsphere, where nodes are blog posts and edges are references, we
want to find a few well-written quality blogs to gain as much information as possible
[Leskovec 2007]. In the setting of collaboration networks, where nodes are researchers
and edges are collaboration relationships, we want to find a few experts on a certain
topic (e.g., database) [Tang et al. 2009]. In the setting of friendship networks, where
nodes are individuals and edges are relationships, we want to find a few authoritative

people on a certain product (e.g., iPhone) [Mumu and Ezeife 2013].

1.8 Learning Pairwise Influence Probabilities

In the studies of influence propagation in social networks, researchers represent a
social network as a directed weighted social graph G = (V, E) in which individuals
are represented by nodes and there is a directed edge (v,u) € E from node v to
node u indicating the propagation of influence from v to u. According to Goyal et al.
[2010], real social networks do not have edge weights indicating the influence proba-
bility p,, with which v influences w. Therefore, most of the researchers in this area
assume the edge weights indicating the influence probabilities are given as input. In
their experiments, researchers adopt primarily four models of assigning pairwise influ-
ence probabilities, i.e., the uniform model, the trivalency model, the random cascade

model, and the weighted cascade model.

Uniform Model. In the uniform model, a uniform probability p,, (e.g., 1%) is
assigned to each edge (v,u) € E in the social graph. The uniform aspect means that
all nodes exert the same amount of influence to their neighbors.

Trivalency Model. To differentiate the influence that each node v € V' exerts on

20

their neighbors, the trivalency model assigns each edge (v,u) € E a probability p,,
chosen uniformly at random from the set {0.1,0.01,0.001}.

Random Cascade Model. Similar to the trivalency model, the random cascade
model assigns each edge (v,u) € E a probability p,, chosen uniformly at random
from the interval [0,1] (rather than from a trilogy set).

Weighted Cascade Model. Different from the previous three models, the weighted
cascade model takes the network structure into consideration. In the weighted cascade
model, each edge (v,u) € E is assigned an influence probability p,, = 1/d, where d,
is the in-degree of u, i.e., the number of edges with u as their terminal vertex.

To compute the influence probabilities in a more involved way, Goyal et al. [2010]
study both the network structure and user action logs. Goyal et al. [2010] tackle the
problem of learning pairwise influence probabilities in social networks and define it
formally as follows: Given a graph G = (V, E,T') derived from a social network where
v € V represents a user, an undirected edge (u,v) € E represents a social tie between
user u and user v, T' : ¥ — N is a function mapping an edge to a timestamp at
which the social tie is created, along with an action log Actions(User, Action, T'ime),
which is a relation containing tuples in the form of (u,a,t,) indicating user u € V
performs action a € A (where A denotes the universe of actions) at time ¢, (for
example, David watched the movie The Long Ranger at time 5) we want to learn
a function p : £ — [0,1] x [0, 1] such that each edge (v,u) € E is mapped to two
influence probabilities p,, (indicating the probability with which v influences u) and
Puw (indicating the probability with which w influences v). Goyal et al. [2010] use
Flickr social network to construct the actions log and consider joining a group as the
action. For example, to compute the pairwise influence probability p,,,, first user
u and user v need to become friends before the influence propagates from v to u,

then the probability that v can influence u to adopt an action (i.e., joining a group)

Doy = FErOupsthat ujoinsaficr v joins - Buged on their research, Ahmed and Ezeife [2013]
) #groups that v joins)

21

propose a new technique which mines the action log to find frequent patterns of action
performed by both trusted and distrusted users and use the positive/negative patterns

to learn both positive and negative influence probability under Bernoulli distribution.

1.9 Fundamental Twitter Terminology

In our solution framework, we learn influence probabilities from Twitter. Therefore,
we would like to introduce fundamental twitter terminologies for the readers to better
understand how we crawl Twitter to load data and perform data analysis. As a
blogger, we can publish blog posts on blog platforms, to name a few, WordPress,
Blogger or Tumblr. Likewise, a Twitter user can post microblogs called tweets on
Twitter under their accounts. By micro, it means that each tweet consists of at
most 140 characters. In addition to the 140-character text content, each tweet may
consist of one or more of the following entities: mention, reply, retweet, hashtag, or
URL. For example, the following tweet mentions @saradewitt, includes the hash tag

#SXSWedu, and provides the URL pbskids.org/lab.

a Andrew Ng @AndrewYNg - 6 Mar 2(
Great #SXSWedu by @saradewitt on PBS research on edu games.
pbskids.org/lab

Figure 1.5: A tweet includes mention, hash tag and URL.

Chris @cdubhland - Oct 11
3 @wesmckinn yes, yes, and we all have our slides done and ready to
) go...definitely not working on them as we tweet...no, no

1

Figure 1.6: A reply.

Given a tweet, you can

e Reply it by clicking the Reply button on the tweet. And your reply will become

a tweet which contains "@username" at the beginning of the tweet as shown in

22

C-level #Python types using #JuliaLang github.com/stevengj/PyCal...

View summary

Jake Vanderplas @ jakevdp - May 2
Today's craziness: reading through stevengj's PyCall module, which defines
1

= Wes McKinney L m
8

wesmckinn

.@jakevdp this is an amazing read for
getting to know the C FFI in #JuliaLang.

Figure 1.7: A reply.

“' Wes McKinney @wesmckinn - Jul 29
Congrats @corbett (the first person to pitch me on Python ages ago) et al
on the launch of Signal whispersystems.org/blog/signal/

5 17 View summary

Figure 1.8: A mention.

& Wes McKinney retweeted
Elizabeth Meager @lizziemeager - Oct 31

Goodbye financiers, hello geeks: the start-up that's shaking up the hedge
fund industry theneweconomy.com/home/goodbye-f... #hedgefunds
#quantopian

8 10

Figure 1.9: A retweet.

23

Figure 1.6. When you click on the tweet, you can find out to which tweet you

replied as shown in Figure 1.7.

e Retweet it by clicking the Retweet button on the tweet to propagate the orig-
inal tweet to all of your followers (which is an official way to quote another
user’s tweet). Your retweet will become a tweet which looks like the one shown

in Figure 1.9.

e Favorite it by clicking the Favorite button on the tweet, indicating you like or

are interested in the tweet.
Given a twitter account, you can

e Follow her/him, indicating you know, admire, or want to be friends with
her/him. Intuitively, following or admiring, as a binary relation R over a uni-
versal set of Twitter users is transitive if whenever user a admires user b, and b
in turn admires user c, then a also admires c¢. Twitter uses this transitivity to
recommend Twitter users followed by those whom you are following for you to
follow. Another thing to know about "follow" on Twitter is its asymmetry, i.e.,
you can follow anyone you like on Twitter without invitation or acceptance, but
your followings do not have to follow you back, and most of the time they do

not even know you exist.

e Mention her/him by containing "@username" anywhere in the body of your
tweet, indicating you like their tweets. A tweet including mention is shown in

Figure 1.8.

Remark 1.9.1. Since a reply contains "@username” at the beginning of the tweet, a
mention contains "Qusername” anywhere in the tweet, therefore a reply is a special

instance of a mention.

24

1.10 Thesis Contribution

Recent research in influence diffusion models has primarily focused on diffusion of
single innovation cascade. However in the real world, there usually are multiple
innovations competing within a social network |Zhang et al. 2014|, for example, the
launch of Apple’s iPhone 6 to a market where Google’s Nexus 5, Samsung’s Galaxy
S5, Blackberry’s Q10, and so on already exist. In the setting of single influence
diffusion models, there is only one technology (say technology A standing for Apple)
in the network. We represent the underlying social network (the medium for the
propagation of technology A) as G = (V, E), where V represents individuals,
represents interactions between them. Initially (at time 0), there is only one seed set
So (i-e., a small number of early adopters of technology A). The adoption of technology
A propagates throughout the social network from the seed set Sy to the crowd. In the
thesis, we extend the existing single influence diffusion to two influence diffusions. In
the setting of two influence diffusions models, there are two technologies (technology
A standing for Apple and technology B standing for Blackberry) in the network.
We suppose technology B comes in the network first. There are two aspects to this
extension. (1) We are studying influence maximization in the setting of two influence
diffusions, the different setting determines a different input for the algorithm. The
input for the thesis problem (to find an influential seed set S3' of size k in the network
where the seed set SP already exists) is the social network G = (V, E), a seed set
for technology B SP, and a budget k for the size of a seed set for technology A
S#, while the input for influence maximization under single influence diffusion is the
social network G = (V, E) and a budget k for the size of a seed set for technology
A St (2) In the setting of two influence diffusions, the two influences propagate in
a competitive way. Each node has four states in the two influence diffusion models,
A meaning adopting technology A, B meaning adopting technology B, AB meaning

adopting both A and B, 0 meaning adopting neither technology A nor technology B.

25

During the two influence diffusions process, once an inactive node v becomes active,
say A-active (meaning adopting technology A), it cannot switch to other states (i.e.,
B, AB, or 0). This is the competitive aspect of the two influence difussions. This is
because once a node v becomes, say A-active, it cannot switch to B, which means it
blocks the influence propagation of technology B. The reason why existing algorithms
like CELF which run in the single influence diffusion model cannot be directly applied
under the two influence diffusion model is that the two influence diffusions unfold in
a competing and random way. If the two diffusions unfold in a non-competing way,
i.e., a B-node can switch to A, then we can simply apply CELF to find A-nodes in
the graph using the parameters for influence A (such as p*(v,u), 84, which will be
explained in Chapter 3). However, the diffusions unfold in a competing way, e.g.,
once a node becomes B-active, it cannot switch to A. If the two diffusions unfold in a
deterministic way, then we can simply apply CELF to find A-nodes in the sub-graph
that does not include B-nodes. However, the two diffusions unfold in a random way
(because each node chooses uniformly at random two thresholds over [0,1]), there is
no way to know which nodes would become B-nodes.

Second, in the studies of influence propagation in social networks, researchers
represent a social network as a directed weighted social graph in which individuals
are represented by nodes and there is a directed edge from node v to node w if v can
influence u with the probability indicated as the edge weight. Goyal et al. [2010]
point out that most of the researchers in this area assume the influence probabilities
as the edge weights are given as input and ignore how the probabilities can be derived
from social network data, i.e., user action logs. Goyal et al. [2010] use Flickr social
network to construct the actions log and consider joining a group as the action.

For example, Goyal et al. [2012] compute the probability that v can influence u as

Doy = #grou’;f;foailiﬁ;fvajﬁisv]‘""5. Based on their research, Ahmed and Ezeife [2013]

propose a new technique which mines the action log to find frequent patterns of

26

action performed by both trusted and distrusted users and use the positive/negative
patterns to learn both positive and negative influence probability under Bernoulli
distribution. Ahmed and Ezeife [2013| use Epinions to construct the actions log and
consider rating a user’s product review as the action. They learn the pairwise influence

probability from Epinions and consider rating a user’s review as an action. They

__ #reviews u rates the same as v
#reviews v rates

define the probability that v influences u as p*v,u , and

__ #reviews u rates not the same as v
#reviews v rates .

the probability that u is not influenced by v as p~v,u
In this thesis, the underlying social network we are studying is Twitter. We use
MLE under Bernoulli distribution (as done in [Goyal et al. 2010] and [Ahmed and
Ezeife, 2013|) to estimate the probability that u retweets v, the probability that u
replies v, and the probability that © mentions v. We assume the probability that «
retweets/replies/mentions v’s tweets is the probability that v influences u to perform
an action.

Contributions. Motivated by these limitations, the formal problem definition we

propose to tackle is as follows:

Thesis Problem Definition 1.10.1. Let S3' be the seed set for technology A, SP
the seed set for technology B. The influence spread for technology A of two seed sets
Sat and SB under the CGT model, denoted as o(S3', SP), is defined as the expected
number of A-nodes at the end of the diffusion process.

Given a directed social network G = (V, E), a non-negative budget k, a seed set of B-
nodes SE, and CGT model, the problem of finding influential A-nodes when technology
B already exists in the network is to find a seed set S§* as early adopters of technology

A of size at most k such that (S, SB) is mazimum.
The main contributions of thesis are as follows:

1. We propose a new well-defined diffusion model named Competing General

Threshold (CGT) model which allows more than one competing innovation

27

(e.g. Apple as A when Blackberry as B is already in the market) to propagate
in social networks under the CGT model, which makes it more general and

natural

. In order to compute the pairwise influence probabilities, we use Bernoulli Maximum-
Likelihood Estimation for Twitter social network to construct the formula of the
pairwise influence probabilities, then we use relational algebra operators left-join
and projection on Twitter datasets to retrieve the parameters in the influence

probabilities formula

. We extend the existing threshold function [Goyal et al. 2010] under the single
influence diffusion to define both A and B threshold functions under the CGT

model

. We claim that the influence spread function for A under our CGT model is a

monotone, non-submodular function

. We propose a new algorithm, cgtMineA, based on the greedy algorithm |Kempe
et al. 2003] and the local search algorithm [Ahmed and Ezeife 2013| to find
influential A-nodes in competitive social networks under the CGT model in

polynomial time

. We perform in depth analysis of our proposed solution using real life dataset
collected from Twitter. In terms of the quality of seeds selected, our experiments

show that cgtMineA outperforms CELF by 15%

28

Chapter 2

Related Works

Influence maximization was first introduced by Domingos and Richardson [2001].
Domingos and Richardson [2001] state that unlike mass marketing where all potential
customers are targeted, direct marketing exploits data mining techniques to find
out a handful of influential customers and targeting them, the rest of the direct
marketing would take care of itself through word-of-mouth network, like the spread
of an epidemic. To do that, they propose a general framework by modeling markets
as social networks, and modeling social networks as Markov random fields where
the probability that each customer adopts a new product is a function of both how
much a customer feels desire for the product and the influence exerted by other
customers. In addition, they make an important point that influence maximization
depends not only on the influential individuals but also on the structure and context
of the entire network. The problem of maximizing the spread of influence through a
social network was then formalized by Kempe et al. [2003]. They first discuss two
basic diffusion models, i.e., the Linear Threshold model and the Independent Cascade
model. They then define the influence (spread) of a seed set Sy, denoted as (Sp), to
be the expected number of nodes who adopt the innovation at the end of the diffusion

process. They next define the influence maximization problem as follows: Given a

29

graph G = (V| E) derived from a social network, a budget k, the task is to find a k-
element seed set Sy over all k-element set C V' such that o(Sp) is maximized, that is Sy
yields the maximum influence on all nodes € V —.5; by getting the maximum expected
number of active nodes at the end of the diffusion process. They adopt a hill-climbing
algorithm and propose an efficient approximation solution which runs in polynomial
time under both the Linear Threshold Model and the Independent Cascade Model.
Based on the greedy algorithm proposed by Kempe et al. [2003], Leskovec et al. [2007]
propose an efficient greedy algorithm named CELF working under both the Linear
Threshold model and the Independent Cascade model, speeding up the original greedy
algorithm by 700 times. The highlight of CELF is that the authors exploit the nice
properties of submodular functions to significantly prune the number of iterations
needed for influence estimation of a new candidate. In the setting of blogshpere,
Agarwal et al. [2008] propose a novel approach to discovering influential bloggers
by defining influence score for each blogger using the number of their blogs’ inlinks,
the number of comments their blogs receive, the number of their blogs’ outlinks,
and the length of the blog post. Goyal et al. [2011] develop an algorithm called
SIMPATH for influence maximization under the Linear Threshold model. SIMPATH
is an iterative method, building on the CELF [Leskovec et al. 2007], i.e., it exploits
the lazy forward optimization proposed by CELF to select seeds iteratively. Unlike
CELF, SIMPATH optimizes the spread estimation process in three key novel ways.
In addition, it enhances the quality of the selection of seed set where they measure the
quality of seed set on the basis of the spread of influence, i.e., the wider its spread, the
better its quality. However, neither Linear Threshold model nor Independent Cascade
model tackles influence maximization problem in signed social networks. To fill the
gap, Ahmed and Ezeife [2013] propose a general framework named TGT where both
positive relationships and negative relationships are considered and propose a new

algorithm named MineSeedLS (as CELF-like algorithms cannot be applied to TGT

30

model) to discover influential nodes under the TGT. In [Mumu and Ezeife 2014|, the
authors propose a model named OBIN, which takes as input a social network graph
G = (V, E) and a product z and outputs an influence graph G,(V, E) for a product
z from computed community preference where V' is a sub-graph of the entire social
network G containing only the relevant nodes to a certain product. The authors then
perform influence maximization algorithms in the sub-graph containing only relevant
nodes to a certain product. According to Goyal et al. [2010], real social networks do
not have edge weights indicating the influence probability p, ,, with which v influences
u. Therefore, most of the researchers in this area assume the edge weights indicating
the influence probabilities are given as input. Goyal et al. [2010] point out that
although the real social network do not have the pairwise influence probability p, ,,
explicitly as the edge weight on (v,u) € E, the probabilities can be derived from
social network data, i.e., user action logs. We will discuss each of these papers in this

chapter.

2.1 Influence Maximization

2.1.1 Maximizing the Spread of Influence through a Social

Network

In [Kempe et al. 2003], the authors state that the motivation for researchers to study
influence maximization comes from viral marketing, a marketing technique such that
if a company wants to market a new product in the population, instead of targeting all
possible customers, they would like to target a small set of influential people who have
the ability of spreading the adoption of the new product to the crowd. Here, "target"
means giving free samples of their new product to an individual. The question is who
should they target in order to trigger the maximum final adoptions, i.e., the influence

maximization problem?

31

The authors propose several diffusion models which describe how the dynamics of
adoptions propagate throughout the social network, including the Linear Threshold
model, the Independent Cascade model, and the General Threshold model as follows:
Linear Threshold Model. The Linear Threshold model represents a social net-
work as a weighted, directed graph G = (V, E). Each edge (v,u) € E is assigned
a non-negative weight b,, indicating the influence that v exerts on w such that
> ven(u) bou < 1, where N(u) denotes the set of neighbors of u. Each node v € V
chooses uniformly at random a threshold 6, over the interval |0,1]. The diffusion pro-
cess happens in discrete steps, i.e.,t =0,1,2,....,n—1. At any time ¢, each node v € V'
is either active or inactive. Once v is activated, it remains active and cannot switch
back to inactive. At time 0, there is an initial set Sy that adopts a new behavior. At
time t > 0, all nodes that were active at time ¢ — 1 remain active, any inactive node
u is activated if the total weight of its active neighbors is no less than its threshold:
Y ctive ve N(u) by > 0,. The process will stop when no more activations are possible

[Kleinberg et al. 2007].

Example 2.1.1. Linear Threshold Model. We use Figure 2.1 to illustrate how
the Linear Threshold Model works.

Let S; denote the set of active nodes at timet, t =0,1,2,....n—1. ThenV —S;_4
denotes the set of inactive nodes at time t. At time 0 (Figure 2.1 (a)), there is a
social network G = (V, E), along with an initial set of active node(s), i.e., So = {1}.
At time 1, node 1 activates node 2 since p1o = 1.0 and 05 = 0.5, but fails to activate
node 3 since p13 = 0.1 and 65 = 0.5 (Figure 2.1 (b)). At time 2, nodes 1 and 2 jointly
activate node 3 since p1 3+ pes = 0.1 4+ 0.4 = 0.5, and 05 = 0.5 (Figure 2.1 (c)).
At this point, the diffusion stops since no more activations are possible. From Figure
Figure 2.1 (¢), we can see the influence spread of {1} is 3, the number of active nodes

at the end of the diffusion.

Independent Cascade Models. The Independent Cascade model represents a

32

0.5 0.5 0.5

1 1 1
10 V V \
0.1 0.1 0.1
2 2 . 3
0.5 0.4 0.4 0.4
0.5 0.5 0.5 0.5 0.5
t=0 t=1 t=2

(a) (b) (c)

Figure 2.1: Linear Threshold Model

social network as a weighted, directed graph G = (V, E). Each edge (v,u) € E is
assigned a non-negative probability p,, indicating the influence that node v exerts
on node u, that is if v is active, it succeeds in activating u with the probability of
Pou- The diffusion process happens in discrete steps, i.e., ¢ = 0,1,...,n — 1. At any
time ¢, each node v € V is either active or inactive. Once v is activated, it remains
active and cannot switch back to inactive. At time 0, there is an initial set Sy that
adopts a new behavior and the diffusion process unfolds as follows. If a node v is
active, it is given one single chance to activate each of its inactive neighbors u with
probability of p,,. By only one chance, we mean that if v, one of u's active neighbors,
attempts to active u at time ¢, regardless of whether v succeeds or not, v will not be
granted another attempt to activate u in the following steps, i.e., v is not contagious
to u anymore. If u has more than one active neighbors, each of its active neighbors
will be given only one chance to activate u, one at a time and in an arbitrary order.
The diffusion process will stop when no more activations are possible |[Kleinberg et

al. 2007].

Example 2.1.2. Independent Cascade Models. We use Figure 2.2 to illustrate

33

how the Independent Cascade model works.

1 1 1
10 V iy \
0.9 0.9 0.9
2 2 . 3
0.4 0.4 0.4
t=0 t=1 £ =2

(a) (b) ()

Figure 2.2: Independent Cascade Model.

Let Sy denote the set of active nodes at timet, t =0,1,2,....n— 1, with S_; = 0.
Then V — S;_1 denotes the set of inactive nodes at time t. At time 0 (Figure 2.2
(a)), there is a social network G = (V, E), along with an initial set of active node(s),
i.e., So = {1}. At time 1, node 1 activates node 2 since we flip a biased coin with
the probability p12 = 1.0 to get a head for the influence propagation from node 1 to
node 2, and we get a head, but fails to activate node 3 since we flip a biased coin with
the probability p1 3 = 0.9 to get a head for the influence propagation from node 1 to
node 3, and we get a tail (Figure 2.2 (b)). At time 2, nodes 2 activates node 3 since
we flip a biased coin with the probability pss = 0.4 to get a head for the influence
propagation from node 2 to node 3, and we get a head (Figure 2.2 (c)). At this point,
the diffusion stops since no more activations are possible. From Figure Figure 2.2
(¢), we can see the influence spread of {1} is 3, the number of active nodes at the end

of the diffusion.

General Threshold Model. The General Threshold model represents a social

network as a weighted, directed graph G = (V, E). Each node v € V is associated

34

with a threshold function f,. f,(S) measures the joint influence of v’s active neighbors
S exerted on v, with f,(f) = 0. Each node v € V chooses uniformly at random a
threshold 6, over the interval |0,1]. The diffusion process happens in discrete steps,
ie.,t=0,1,2,....,n— 1. At any time t, each node v € V is either active or inactive.
Once v is activated, it remains active and cannot switch back to inactive. At time 0,
there is an initial set Sy that adopts a new behavior. At time ¢ > 0, all nodes that
were active at time ¢t — 1 remain active, any inactive node v is activated if f,(S) > 6,.
The process will stop when no more activations are possible. The Linear Threshold
model discussed above is a special case of the General Threshold model. In the Linear
Threshold model, the threshold function of each node v € V is defined as the total
weight of its active neighbors, f,(S) = >, g bvu, where S denotes the set of active
neighbors of u, and b, , is a non-negative weight on edge (v, u) indicating the influence
that v exerts on u such that } v, buu < 1, where N(u) denotes the set of neighbors

of u |Kempe et al. 2003|.

Example 2.1.3. General Threshold Model. We use Figure 2.3 to illustrate how

the General Threshold model works.

0.5 0.5 0.5

(a) (b) ()

Figure 2.3: General Threshold Model

35

Let Sy denote the set of active nodes at timet, t =0,1,2,....n—1. Then V —5;_4
denotes the set of inactive nodes at time t. There are various ways to define the
threshold function of node u, f,. In this example, we define the threshold function of
node u as fu =1 —[[enwns, (1 — Pou), where N(u) denotes the set of neighbors
of node u, and N(u) N S;_1 denotes the set of active neighbors of node u at time
t. At time 0 (Figure 2.3 (a)), there is a social network G = (V, E), along with
an initial set of active node(s), i.e., So = {1}. At time 1, node 1 activates node
2 since p1o = 1.0 and 0y = 0.5, but fails to activate node 3 since p13 = 0.1 and
05 = 0.5 (Figure 2.3 (b)). At time 2, nodes 1 and 2 jointly activate node 3 since
f3({1,2}) =1—(1—-0.15)(1 — 0.35) = 0.4475, and 05 = 0.4 (Figure 2.3 (c)). At this
point, the diffusion stops since no more activations are possible. From Figure Figure
2.3 (c), we can see the influence spread of {1} is 3, the number of active nodes at the

end of the diffusion.

Then the authors define the problem of maximizing the influence spread through
a social network formally as follows:

Given a graph G = (V| E) derived from a social network and a budget k. Let
So € V denote the initial seed set of active nodes. Let o(Sy) denote the influence
spread of a seed set of nodes Sy, i.e., the expected number of active nodes at the end
of the diffusion process with Sy be the initial seed set at the beginning of the diffusion
process, with o(f)) = 0. We would like to find a k-element set Sy over all k-element
set C V such that o(Sp) is maximum.

The authors show that the influence maximization problem is NP-hard under
both the Linear Threshold model and the Independent Cascade model. But it can be
solved approximately with guarantees in polynomial time according to Theorem 2.1 in
|[Kempe et al. 2003|. According to Kempe et al. [2003], if the influence spread function
o(+) is a non-negative, monotone submodular under a diffusion process, then we can

exploit a greedy algorithm to find an approximation set Sy of size k in polynomial

36

time and 0(Sp) > (1—1/e)o(S), where Sg is the optimal set that maximizes the value
of o over all k-element sets and e = 2.713. In other words, Sy found by the greedy
algorithm provides a 63%-approximation to the influence maximization problem in
polynomial time.

The authors show that the resulting influence spread function o(-) is submodular
under both the Linear Threshold Model and the Independent Cascade Model and

present a Greedy Clibming Hill algorithm.

Example 2.1.4. Climbing Hill Algorithm. We illustrate how the Greedy Climbing

Hill algorithm works under the LT model through an example shown in Figure 2.4.

Edge Weights p, .,

p12 = 0.05
p1e=0.1
P21 = 0.05
P26 = 0.05
p32 = 0.05
pa1 = 0.05
paz = 0.1
pas = 0.05
ps2 = 0.1
P53 = 0.05
psa = 0.05
pe3 = 0.1

Thresholde HU: 91 = 82 = 93 = 04 = 95 = 96 = 0.1
Figure 2.4: A Social Network

In the social network G = (V, E) shown in Figure 2.4, there are 6 nodes and 12
edges connecting them. Each node v is associated as a threshold 0,,, each edge (v,u)
is assigned an edge weight p,,. We set our budge k = 2, meaning we are looking for
2 influential nodes from this network. Greedy algorithm works as follows. Initially,

it sets the seed set S to (). In the first pass, it evaluates the marginal gain of adding

37

Node | Marginal Gain Node | Marginal Gain

a2 [o(]uf) -] =0
3 o({3YU0) —o(0) = 1 3 c({1}U{3}) —oc({1}) =0
1 c({4YU0) — o(D) = 2 4 c({1}uf4h) —o({1}) =1
5 O’({5} U @) — O’(@) —9 5 U({l} U {5}) — U({l}) =1
6 O’({6} U @) — O’(@) —9 6 U({l} U {6}) — U({l}) =0

Table 2.1: Iteration One of Greedy Table 2.2: Tteration Two of Greedy

node 1 to So = 0, the marginal gain of adding node 2 to S = 0,..., the marginal gain
of adding node 6 to Sy = 0, with o(0) = 0, the results are shown in Table 2.1. It
picks the node with the mazimum marginal gain, which is node 1, and adds it to the
seed set. At this moment, So = {1} In the second pass, it evaluates the marginal gain
of adding node 2 to Sy = {1}, the marginal gain of adding node 3 to Sy = {1},...,
the marginal gain of adding node 6 to Sy = {1}, the results are shown in Table 2.2.
It picks the node with the mazimum marginal gain, which is node 4 (or node 5), and
adds it to the seed set. Now, Sy = {1,4}. Since k = 2, and we have found two

influential nodes 1 and 4, we are done.

2.1.2 CELF

In |Leskovec et al. 2007, the authors proposed an efficient algorithm named CELF
which achieves the same results but runs 700 times faster than the original greedy
algorithm proposed by [Kempe et al. 2003]. We use the exact social network used in
illustrating the Greedy algorithm in section 2.2, to show how CELF works under the
LT model. In the social network G' = (V, E') shown in Figure 2.4, there are 6 nodes
and 12 edges connecting them. FEach node v is associated as a threshold 6,, each
edge (v, u) is assigned an edge weight p,,,. We set our budge k = 2, meaning we are
looking for 2 influential nodes from this network. CELF works as follows. Initially, it
sets the seed set to (). In the first pass, CELF works in the same way as the Greedy

algorithm. It evaluates the marginal gain of adding node 1 to), the marginal gain

38

of adding node 2 to ..., the marginal gain of adding node 6 to (), with o(0)) = 0, the
results are shown in Table 2.3. It picks the node with the maximum marginal gain,
which is node 1, and adds it to the seed set. In the second passes, it does something
different from the Greedy algorithm. Instead of evaluating the influence spread of all
the combinations (i.e., {1,2}, {1,3},{1,4},{1,5},{1,6}), CELF sorts the nodes 2, 3,
4, 5, 6 by the marginal gain of adding them to), picks the node with the maximum
marginal gain which is node 4 and evaluates the marginal gain of adding node 4 to
{1}, which is 1. Then it picks the node with the second maximum spread which is
node 5, and evaluates the marginal gain of adding node 5 to {1}, which is 1. Then
it picks the node with the third maximum spread which is node 6, and evaluates the
marginal gain of adding node 6 to {1}, which is 0. At this moment, we can stop
without continuing evaluating the marginal gain of adding node 2 to {1} and the
marginal gain of adding node 3 to {1}. The reason why we can stop from there is
that the influence spread function o(-) is submodular under the Linear Threshold

Model. According to the diminishing return of submodularity, we know

o({2yU0) — o(0) =1
>o({2tU{l}) —o({1})

o({3YU0) — o(0) = 1
>o({3tUu{l}) —o({1})

Therefore, neither o({2} U{1}) —o({1}) nor o({3}U{1}) —o({1}) is greater than

1, which is the current maximum marginal gain of adding node 4 to {1}.

39

Node | Marginal Gain

1 o({1YU0) — o(P) = 4 . .

T [o({Ul) o) =2 | [oode | arsia tan _

5 ({5} UD) —a(D) =2 o({1tuf{4}) —o({1}) =1
6 ({6} U D) — o (0) = 2 D c({1}u{s}) —o({1h =1
2 c({2YU0) —o(0) =1 6 o({13u{6}) —o({1}) =0
3 o({3tul) —o(®) =1 Table 2.4: Iteration Two of CELF

Table 2.3: Iteration One of CELF

2.1.3 SIMPATH

In |Goyal et al. 2011|, the authors state that influence maximization is one of the
fundamental problems in the area of influence propagation in social networks. The
authors state that the motivation for researchers to study influence maximization
comes from viral marketing, a marketing technique of giving free samples of a new
product to a handful of influential people who spread the adoption of the new product
to the crowd. According to the authors, the problem of influence maximization is
to select k nodes such that by activating them, the expected spread of influence is
maximized. The input of influence maximization algorithms is a social graph with
influence probabilities of edges, the output of influence maximization algorithms is a
k-node seed set [Goyal et al. 2011].

Under the Linear Threshold model, the authors establish a fundamental result
which serves as the basis of the SIMPATH algorithm. The result says that the spread
of a set of nodes can be derived from the sum of spreads of each node in the set on
appropriate induced subgraph. In order to estimate the spread of a seed set, the au-
thors compute the spread by making a list of the simple paths starting from the seed
nodes, rather than using the computationally expensive Monte Carlo simulations. In
order to reduce the number of spread estimation calls in the first iteration, the authors
propose a novel optimization called VERTEX COVER OPTIMIZATION, which ad-
dresses a key shortcoming of the simple greedy algorithm that CELF |Leskovec et al.

2007] does not address. In order to reduce the running time of the spread estimation

40

process in the subsequent iterations, the authors propose another novel optimization
called LOOK AHEAD OPTIMIZATION. More precisely, at the beginning of each it-
eration, the optimization generates top — [most promising seed candidates and shares
the marginal gain of those candidate seeds.

The authors develop an algorithm called SIMPATH for influence maximization
under the linear threshold model. SIMPATH is an iterative method, building on the
CELF [Leskovec et al. 2007], i.e., it exploits the lazy forward optimization proposed
by CELF to select seeds iteratively. Unlike CELF, SIMPATH optimizes the spread
estimation process in three key novel ways. In addition, it enhances the quality of
the selection of seed set where they measure the quality of seed set on the basis of
the spread of influence, i.e., the wider its spread, the better its quality.

The authors first introduce the properties of Linear Threshold model, which serves
as the basis of SIMPATH. Recall that in the Linear Threshold model a node v picks at
most one of its incoming edge with a probability of b, ,,. Then the selected edge is con-
sidered live, the unselected edges are considered blocked. Let X denote one possible
set of outcomes on the edges (for example, {edgel : live, edge2 : live, edge3 : blocked...})
and ox (S5) denote the number of nodes that can be reached from S via live paths (a

live path consists of only live edges) in X. Then, by the definition of the spread of S,

a(S) =) Pr(X]-ox(S) (2.1)

ox(S) =Y I(S.v,X) (2.2)

veV

1 if there is a live path in X from any node in S to v
I(S,v,X) = (2.3)
0 otherwise

41

Substitute equations 2.2 and 2.3 to 2.1, we obtain

o(S) =Y PriX] - I(S,v,X) =) Tg, (2.4)

veV X veV

Figure 2.5: A weighted, directed graph G = (V,E) derived from a social network.
Source: Figure 2 on Page 213, Goyal et al. |2011].

Theorem 2.1.1. In the LT model, the spread of a set S is the sum of the spread of

each node uw € S on subgraphs induced by V — S 4+ u. That 1s,

0(8) = ues 0" " (u)
(Source: Theorem 1 on pages 213, Goyal et al. [2011].)

Example 2.1.5. The Influence Spread of a Seed Set S using SIMPATH. In
Figure 2.5, the influence of a node x on node z can be computed by enumerating all

stmple paths starting from z and ending in z.

Yoo =1
Yoy=03+04-05=05
Y,.=04+03-0.2=046

Thus, the spread of a node can be computed by enumerating simple paths starting

from the node.

Oy = Yap+ Yoy + Lo, =1+0.5+0.46 =1.96

42

The spread of a seed set S = {x,y}, accroding to therom 2.1.1, is

o(S)=0c"Ya)+o"2(y) =14+04+1+02=26

2.1.4 Discovering Influential Nodes from Social Trust Network

In [Ahmed and Ezeife 2013, the authors state that existing influence diffusion models
such as the Linear Threshold model and the Independent Cascade model [Kempe et al.
2003] consider only positive influence propagation in a social network. However, two
opposite relationships (such as like vs. dislike, love vs. hate, trust vs. distrust, friend
vs. foe, and so on) may coexist in a social network. For example, users on Wikipedia
can vote for or against the nomination of others to be Wikipedia administrator,
users on Epinions can express trust or distrust of other people’s product reviews
by rating, and participants on Slashdot can declare others to be either "friends" or
"foes", users on Youtube can express like or dislike of other people’s comments. The
authors claim that we need to consider both positive influence exerted by people
we trust or like and negative influence exerted by people we do not trust or dislike
while studying influence diffusion process. Existing diffusion models for Influence
Maximization are modeled such that a node’s probability of performing an action
(or adopting a product) will increase as the number of his/her friends performing
the same action increases. However, the authors argue that, a node’s probability of
performing an action (e.g., buy an iPhobe 4S) should also decrease if its distrusted
users, also buy an iPhone 4S.

The authors propose a new diffusion model named Trust-General Threshold (TGT)
model which incorporates both positive and negative influence probabilities based on
trust relationship among users in trust network. In a trust social network (Figure
2.6 (a)), a node u trusts node v but distrusts node w. In the corresponding influence
graph (Figure 2.6 (b)), if node u trusts node v, then node v positively influences node

u with the probability of pTv,u with p~v,u = 0. If node u distrusts node w, then

43

node w negatively influences node u with the probability of pTw, u with pTw,u = 0.

+ pTU,u

P w,u
(a) Trust Graph (b) Influence Graph

Figure 2.6: Trust Graph vs Influence Graph

The authors define the positive influence probability ptv,u = AAL:‘ where A,
denotes the number of actions performed by node v and A,, denotes the number
of actions propagated from node v to node u (i.e., the number of v’s actions imitated
by node u). For example, the action log shows that node v (trusted by node u, in
Figure 2.6 (a)) performs 3 actions in total. Among v’s 3 actions, 2 actions are imitated

by u. Hence, the probability of node u performing a task after node v performs the

same action is 2/3 = 0.66, which is the positive influence probability of node v on node

’
v,

Ay

u. Then the authors define the negative influence probability p~v,u = where A,
denotes the number of actions performed by node v and A; , denotes the number of
actions not propagated from node v to node u (i.e., the number of v’s actions not
imitated by node u). For example, the action log shows node w (distrusted by node
u, in Figure 2.6 (a)) performs 4 actions in total. Among w’s 4 actions, only 1 action
is imitated by node u, the remaining 3 actions are not imitated by node u. That is u
does not perform 3 out of 4 tasks performed by w. Hence, the probability of node u
not performing a task after node w performs the same action is 3/4 = 0.75, which is
the negative influence probability of node w on node w.

The authors propose an effective algorithm named MineSeedLS to discover influ-
ential nodes from trust network. T-IM takes a social network graph G(V, E) and a

budget k£ meaning to find at most k£ influential nodes. The algorithm returns a set

of influential nodes of size at most k, also known as seed set, S C V. The algorithm

44

starts by initializing seed set S to (). Then the algorithm computes influence spread
of each node v € V. The node with highest influence spread is picked and added to
S. MineSeedLS then performs the following local search operations: (1) Delete, if by
removing any node v in .S increases the influence spread under the T-IM model, then
the node v is removed from S. (2) Add, if by adding any node v in V' — S increases
the influence spread under tje T-IM model, then the node v is added to the set S.
(3) Swap, if by swapping any node v in S with any node u in V' — S increases the

spread under T-IM model the node v is removed from S and node u is added to S.

Example 2.1.6. How MineSeedLS Works. We illustrate how MineSeedLS works
through an example. Given a social network G = (V, E) in Figure 2.7 (where each
edge s assigned either positive influence probability or negative probability and for
the purpose of demonstration, for each node, the positive threshold is set to 0.3 and
the negative threshold is set to 0.6), and a budget k = 2 meaning we will discover
two influential nodes. MineSeedLS will compute the influence spread for each node.
The influence spread of each node is summarized in Table 2.5. The algorithm picks
the node with maximum spread which is node ul yielding an influence spread of 3,
and adds ul to the seed set S. Once we have selected one node in the seed set,
MineSeedLS performs the following local search operations, delete, add and swap on
the graph. Since at this moment there is only one node in the seed set S, the delete
operation is skipped. Since the budget is 2 > |S| = 1, the algorithm performs the add
operation, i.e., it adds any node in V — S, say u2 to S, and computes the influence
spread of S + {u2}, denoted as orgr(S + {u2}). Since orar(S + {u2}) = 4 >
orar(S) = 3 which is an improvement, node u2 is added to S. At this moment,
the seed set S = {ul,u2} with the influence spread of 4. MineSeedLS continues to
check if swapping (or exchanging) any node in S and any node in V — S yields any
improvement in influence spread. It swaps node u2 and node u3 by removing u2 from

and adding u3 to the seed set. Since orgr(S — {u2} + {u3}) = 5 > orgr(S) = 4

45

which s an improvement, node u2 is removed from and node u3 is added to the seed
set S. At this moment, the seed set S = {ul,u3} with the influence spread of 5. The
algorithm will repeat the delete-add-swap procedure for any further improvement. It
checks if removing any node from the seed set S improves the influence spread or not.
It removes node ul from S. Since orar(S — {ul}) = 3 < orgr(S) = 5 which is not
an improvement, it adds node ul back to S. It then tries to remove u3 from S. Since
orer(S —{u3}) = 2 < opar(S) = 5 which is not an improvement, it adds node u3
back to S. Since the budget is 2 = |S|, the add operation is skipped. It will further
check if swapping any node in S with any node in V — S yields any improvement
i spread. Since no swapping yields any improvement, the algorithm stops at this
point and returns the seed set S = {ul,u3} with the influence spread of 5 (This is a
summary from [Ahmed and Ezeife 2013] on pages 126).

C 0

05 [+l"’/77‘ W
. b
ul\.‘ 054 / 0.67[-] //1/“5\

1 v
| /, w 0330 //
| s QY 10 //

‘ 0.67[+]

N

1[]
\\ 7//&

Figure 2.7: Social network graph where each edge is labeled with positive or negative
influence probabilities. Source: Figure 2 on page 126 of [Ahmed and Ezeife 2013|.

Node v ul u2 u3 u4 ub
OTGT ({U}) 3 2 2 1 1

Table 2.5: Influence spread of each node. Source: Table 6 on page 126 of [Ahmed
and Ezeife 2013|.

46

2.1.5 Social Network Opinion and Posts Mining for Commu-

nity Preference Discovery

In [Mumu and Ezeife 2014|, the authors state that the existing influence maximization
techniques such as CELF |Leskovec et al. 2007|, take as input the whole social network
in order to find influential nodes as seed set for a specific product (e.g., iPhone) for
viral marketing. According to the authors, general influence maximization techniques
like CELF do not consider multiple posts on multiple products on Facebook. Also
they ignore the relationships between users. Hence the seed set found by CELF-like
approaches may not be influential for that specific product (e.g., iPhone). Hence, the
quality of the seed set will be reduced and the efficiency of the algorithm is slow since
the search space is the entire network.

Motivated by the limitation, the authors propose a model named OBIN, which
takes as input a social network graph G = (V, E) and a product z and outputs an
influence graph G, (V, E) for product z from computed community preference where V'
is a sub-graph of the entire social network GG containing only the relevant nodes to the
query. OBIN model consists of three main functions, TPD (Topic-Post Distribution),
PCP-Miner (Post-Comment Polarity Miner), and influence network generator. (1)
The first function named TPD first applies SQL queries to find all nodes, posts, and
comments in the social network (i.e., Facebook) for a given product z, then separates
relevant nodes from irrelevant nodes in the resulting datasets. TPD determines the
relevance of a node u’ on a product (e.g., iPhone) by the number of nodes linked
to node u, the number of likes on u’s posts, the number of shares and comments on
u’s posts, and if the posts of u contains the product information (e.g., iPhone screen
resolution). (2) The second function named PCP-Miner identifies opinion comments
among all the comments on u’s posts, identifies sentiment (positive, neutral, negative,
or irrelevant attitude) toward the comments, and measures the polarity score (6,) of

the posts. The algorithm then uses the polarity score to rank relevant nodes v, and

47

generate a table including v’s posts w, comments ¢ on posts w, and the set of nodes
who post comments on the posts w of v (which are considered influenced nodes by
v.) (3) PoPGen (popularity graph generator) uses the list of ranked relevant nodes,
along with their posts, the comments on their posts, the authors of the comments
to compute the influence score, i.e., the extend to which the relevant nodes exert on
the influenced nodes who comment their posts. PoPGen measures the influence by
the number of responses. Then PoPGen generates an influence graph G,(V, E) on
product z where nodes are those relevant nodes and there is an edge between two

nodes if they are friends on Facebook.

Example 2.1.7. How OBIN Works. We illustrate how OBIN model works through
an example. OBIN first calls TPD to extract relevant nodes on a product z from

Facebook network. It is done by executing SQL query

SELECT id, name, category, likes, link
FROM search

WHERE g=iphone AND (type=page OR type = group)

and generating a nodes matriz as shown in Table 2.6. The first row of Table 2.6
shows that a node id s "140389060322069", the product is "iPhone", the node has
3,116, 728 friends and the profile of the node can be viewed via the "iphone.page” link.

Once having obtained relevant nodes on a product z, TPD executes SQL query

SELECT post_id, message, likes.count AS A, share_count,

created_time, comments.count, (comments.count+share_count) AS SR
FROM stream
WHERE source_id = 1 AND message != " "

ORDER BY likes.count LIMIT 100

in order to generate a set of posts on z of a node, say "140389060322069" as

shown in Table 2.7 and Table 2.8. For example, the first row in Table 2.7 shows

48

that a post id is "469219579782347" posted by node "14/0389060322069", the post
title is "Black or white", there are 61,153 likes on the post, and the total number of
re-shares and unique comments are 11,325. The first row in Table 2.8 shows that a
post id s "469219579782347", a node "108936862354990" leaves a comment on the

post at time "2013-01-06", the content of the comment is "this is really cool”.

Node ID V Term A Link

140389060322069 | iPhone 3116728 iphone.page

110018862354999 | iPhone4 1435239 iPhone-4

214456561919831 | iPhone 261210 theappleclan
Fans

Table 2.6: Example of relevant nodes and data for z = iPhone. Source: Table 1 on
page 141 of [Mumu and Ezeife 2014].

POST ID W Term A SR
469219579782347 | black or white 61153 11325
468646856506286 | pretty amazing 33899 2213
469758623061776| Apple 5th Avenues 33041 2198

Table 2.7: Example of post data. Source: Table 2 on page 141 of [Mumu and Ezeife
2014].

POST ID W User ID V Time Comment C
469219579782347| 108936862354990| 2013-01-06 | this is really cool

Table 2.8: Example of post data. Source: Table 3 on page 141 of [Mumu and Ezeife
2014).

To determine how influential a node v is on a certain product z, OBIN calls PCP-

Miner to compute the polarity score 0, for each post of node v. For example, Table

2.9 s the popularity matiriz for post W "/69219579782347". PCP-Miner computes

49

the polarity score 0, for post W "/69219579782347" as follows:

0, = (Z posrepsonses — Z negresponses) x 100%

=5-0

=95

The polarity score 0, is used to obtain a list of relevant nodes V, their posts W,

comments C on posts, and the nodes who leave comments on the posts W and are

therefore considered "influenced by the author of post” as shown in Table 2.10. OBIN

uses post-user relationship (Table 2.10) and user-user relationship Table (2.11) to

generate an influence matriz (Table 2.12) such that the element of the influence matriz

1s 1 if there exists a relationship in either the post-user relationship or the user-user

relationship, 0 otherwise. OBIN calls PoPGen to generate an influence graph based

on influence matriz (IMAT) by adding all nodes in the IMAT to the influence graph,

and adding an edge between u and v if the the element IM AT, , = 1.

POST ID W User ID V Polarity Time Comment C
469219579782347 | 108936862354990 | positive 2013-01-06 | this is really cool
469219579782347 | 100002395810151 | positive 2013-01-06 | i want it
469219579782347 | 100003290108936 | positive 2013-01-06 | cool
469219579782347 | 100004582655605 | null 2013-01-06 | hi sakuntla
469219579782347 | 1850908608 positive 2013-01-06 | wow
469219579782347 | 100002090841333| positive 2013-01-06 | crazy aoubt it
469219579782347 | 100003365201901 | null 2013-01-06 | admin

Table 2.9: Example of post data. Source: Table 3 on page 141 of [Mumu and Ezeife

2014].

Node ID u | Post ID W | Node ID v
1 49823667 4
2 11250901 6

Table 2.10: Post-user relationship. Source: Table 6 on page 143 of [Mumu and Ezeife

2014].

20

User ID u | User ID
3 1

Table 2.11: User-user relationship. Source: Table 6 on page 143 of [Mumu and Ezeife
2014.

1 2 3 4 5 6 7
1 0 0 1 1 0 0 0
2 0 0 0 0 0 1 0

Table 2.12: Influence Matrix (IMAT). Source: Table 7 on page 143 of [Mumu and
Ezeife 2014)].

2.2 Outbreak Detection

2.2.1 Identifying the Influential Bloggers in a Community

In [Agarwal et al. 2008|, the authors first consider the definition of an influential

blogger as follows:

Definition 2.2.1. Influential Blogger. A blogger is considered influential if s/he

has more than one influential blog post.
Then the authors present the definition of an influential blog post as follows:

Definition 2.2.2. Influential Blog Post. A blog post p; is considered influential if
its influence score 1(p;) is greater than an influence threshold ilndex(b;), where the

influence threshold is defined as: Given a set of U of m bloggers,

More precisely, let {bx|1 < k < m} or {by,ba, ..., by} denote a universe set U of m
bloggers, let {p;|1 <i <1} or {p1,pa, ..., } denote a set L of all the blog posts by
all m bloggers, let {p;|1 <j <n} or {p1,ps,...,pn} denote a set N of n blog posts
by a blogger b;. For each post p; € Nwherel < j < n by a blogger b, there
is an influence score I(p;) associated with it. Let maz(I(p;)) = maxi<j<n(I(p;))
denote the maximum influence score among blogger b;’s blog posts 1 through n, let

iIndex(by,) denote the influence index of blogger by, then ilndex(by) = max(I(p;)).

ol

That is, the influence of a blogger is identified by the influence of their blogs. Let
V' denote the set of top-k bloggers according to their influence index i/ndex, let
min(ilndex(b;)) = mini<i<k(iIndex(b;)) denote the minimum influence index among
k-influential bloggers 1 through k, then min(iIndex(b;)) is defined as the threshold of
influential blog posts. That is, for all the blog posts {p1,p2, ..., i} by all m bloggers,
blog posts are considered influential if their influence score I(p;) > min(iIndex(b;))
for 1 <5 <1,1 <14 < k. Bloggers are considered influential if they posted more than
one influential blog post.

According to the authors, a blog post is considered influential if (a) it is known
by many people, which is measured using the number of its inlinks ¢, (b) it generates
follow-up activities, which is quantified by the number of comments it receives v, (c)
the ideas in the blog post are original, which is indicated by the number of its outlinks
6, (d) the content of the blog post has quality, which is measured by the length of
the blog post A. To quantify the influence of a blog post p I(p), the authors exploit

the four parameters jointly as follows.

¢l 16|
Influence Flow(p) = Wi, Y 1(Pm) — Wout Z I(pn) (2.5)
n=1

m=1

where w;, and w,,; are the weights that can be used to change the ratio of incoming
and outgoing influence in the model, respectively. p,, denotes all the blog posts that
refer to blog post p, for 1 < m < [i|. p, denotes all the blog posts that blog post p
refers to, for 1 < n < |0|. Recall that |¢| is the total numbers of inlinks of blog post
p, 0| is the total numbers of outlinks of blog post p. InfluenceFlow(p) measures
the recognition and the novelty simultaneously since (1) the more influential inlinks
p has, the more influential p is, (2) the more influential outlinks p has, the less novel
p is.

I(p) X WeomYp + InfluenceFlow(p) (2.6)

o2

where we,, is the weight can be exploited to change the ratio of the number of
comments in the model, 7, denotes the number of comments received by blog post p.
I(p) is proportional to the joint contribution by the number of comments it receives
and InfluenceFlow(p) since (1) the more influential comments p receives, the more

influential p is, (2) the larger I'nfluenceFlow(p) is, the more influential p is.

I(p) = w(A) X (Weomp + InfluenceFlow(p)) (2.7)

where w(A) is a weight function to measure the quality of the blog post p according
to its length .
ilndex(B) = max(I(p;)) (2.8)

where iIndex(B) is the influence index of blogger B, max(I(p;)) for 1 < i < n is
the maximum influence score among blogger B’s blog posts 1 through n. That is,
the influence of a blogger B is measured by their blog posts. We can sort bloggers in
descending order according to their influence index, then choose top k bloggers as k

most influential bloggers.

2.3 Probabilistic Models of Information Flow

2.3.1 Learning Influence Probabilities in Social Networks

In [Goyal et al. 2010], the authors state that real social networks do not have edge
weights indicating the influence probability p, , with which v influences u. Therefore,
most of the researchers in this area assume the edge weights indicating the influence
probabilities are given as input. In their experiments, researchers adopt primarily
four models of assigning pairwise influence probabilities, i.e., the uniform model, the
trivalency model, the random cascade model, and the weighted cascade model (section

1.9). Goyal et al. |2010] point out that although the real social network do not have

93

the pairwise influence probability p,, explicitly as the edge weight on (v,u) € E,
the probabilities can be derived from social network data, i.e., user action logs. The

problem of learning probabilities in social networks is defined formally as follows:

Definition 2.3.1. Problem Definition Given a graph G = (V, E,T) derived from
a social network where v € V' represents a user, an undirected edge (u,v) € E rep-
resents a social tie between user u and user v, T : E — N is a function mapping
an edge to a timestamp at which the social tie is created, along with an action log
Actions(User, Action, Time), which is a relation containing tuples in the form of
(u,a,t,) indicating user u € V performs action a € A (where A denotes the universe
of actions) at time t,,, we want to learn a function p : E — [0,1] x [0, 1] such that each
edge (v,u) € E is mapped to two influence probabilities p,,, (indicating the probability
with which v influences u) and p, ., (indicating the probability with which u influences

v).

Input. The input of the algorithms includes an undirected social graph, an action log,
and an influence model. The social graph consists of nodes representing individuals,
edges indicating social ties between these individuals, and edge weights indicating
when the social tie was created. For example, in the social graph shown in Figure
2.8 (a), there are 3 individuals, P, Q, and R, P and Q become friends at time 4, P
and R become friends at time 2, Q and R become friends at time 11. The action log
consists of tuples in the form of (user, action, time) indicating user u performs action
a at time t, and sorted by action and then by time in increasing order. For example,
in the action log shown in Figure 2.8 (b), there are 7 tuples, indicating P performs
action al at time 5, Q performs action al at time 10, and so on. The influence model
includes static models, continuous time models, and discrete time models.

Action Propagation. We say an action a propagates from v to u if the social tie
between u and v was created before both u and v perform action a, and v performs

action a before u performs action a. For example, in Figure 2.8 (a), Q and R become

o4

SO s
= o] =

(a) Social Graph _ » Influence Models |
P 0.5 0.5
User | Action Time
P al 5 Q 0 0.5
Q al 10
R al 15 R 0.33 0
Q a2 12
R a2 | 14 (f) Influence Matirx
R a3l 6
P al 14

(b) Action Log

oy H e (Y
d) Propagation Graph of as (e) Propagation Graph of a3

(c) Propagation Graph of a;

Figure 2.8: A framework proposed by Goyal et al. for learning influence probabilities
for all edges. Source: Figure 2 on Page 6, Goyal et al. [2010].

95

friends at time 11, Q performs action a2 at time 12, and R performs action a2 at
time 14, therefore we say action a2 propagates from Q to R. On the other hand, Q
and R become friends at time 11, Q performs action al at 10, and R performs action
al at 15, however Q performs action al at 10 which is earlier than Q and R become
friends, hence we say action al does not propagate from Q to R.

Propagation Graph. For each action a € A, we have a propagation graph for it.
A propagation graph for an action a is a weighted, directed graph G(V, E), where a
node v € V represents a user, a directed edge (v,u) € E from v to u indicating the
propagation of the action a from v to u, the edge weight represents the time delay
between v performing the action a and u performing the same action a. If we denote
the time that u performs action a as t,(a), then the time delay on the edge is denoted
as t,(a) — t,(a). For example, Figure 2.8 (c) is the propagation graph for action a,
the edge (P, Q) says P propagates a; to). According to the action log (shown in
Figure 2.8 (b)), tp(a1) = 5, tg(ai) = 10, hence the time delay on the edge (P, Q) is
to(ar) —tp(ar) = 5.

Output. The output is an influence matrix M (shown in Figure 2.8 (f)) where
M{v,u] = py., which is the pairwise influence probability of v on u. That is, we have
learned p,,, for all edges.

The authors first introduce their solution framework which is an instance of the
General Threshold Model. Recall from section 1.5, the General Threshold Model
represents a social network as a weighted, directed graph G = (V, F). Each node
v € V is associated with a threshold function f,(S), where S is the set of v’s active
neighbors. f,(S) measures the joint influence probability of v’s active neighbors S
exerted on v, with f,()) = 0. Each node v € V chooses uniformly at random a
threshold 6, over the interval [0,1]. The diffusion process happens in discrete steps,
ie,t=0,1,2,....,n— 1. At any time ¢, each node v € V is either active or inactive.

Once v is activated, it remains active and cannot switch back to inactive. At time

o6

0, there is an initial set Sy that adopts a new behavior. At time ¢ > 0, all nodes
that were active at time ¢t — 1 remain active, furthermore, among all the inactive
nodes, any node v is activated if f,(S) > 6,. The process will stop when no more
activations are possible. Goyal et al. [2010] assume that the influence that each of
the active neighbors of an inactive node u exerts on wu is independent of each other
and define the threshold function (also known as the joint influence probability of u’s

active neighbors exerted on u) as follows,

veS

where w is an inactive user, S is the set of its activated neighbors, p,(.S) is the joint
influence probability of S exerted on u (also known as the threshold function of u),
and p,, is the pairwise influence probability of v € S exerted on w. If p,(S) > 6,
where 6, is the activation threshold of user u, then u is activated.

The authors then show how to estimate the pairwise influence probability p(, .
in equation 2.9 in static models, continuous time models, and discrete time models
respectively. We will introduce the static models on which our proposed algorithm
computelnfluenceProb based (Algorithm 3 in Chapter 3). Continuous time models,
and discrete time models are omitted for lack of space.

Static Model. Static models assume that the influence probabilities are static and do
not change as time goes on. Three instances of static models are presented: Bernoulli
distribution, Jaccard index, and partial credits.

Static Model - Bernoulli Distribution. Bernoulli distribution estimates the in-
fluence probability of v on u, p,, using Maximum-Likehood Estimator (MLE) as

follows:
Av2u
A,

Pou = (2.10)

where Ao, denotes the number of actions propagated from v to u, A, denotes the

57

number of actions performed by v.

Example 2.3.1. In Figure 2.8, the pairwise influence probability ppg under static

model estimated by Bernoulli distribution is

Apy
pra =4

I
S Nl

Apsg = 1 because according to the propagation graphs (shown in Figure 2.8 (c), (d),
and (e)), there is only 1 action (i.e., a;) propagated from P to Q. Ap = 2 because P

performs 2 actions a; and as.

Static Model - Jaccard Index. Jaccard index estimates the influence probability
of v on u p,, by adopting Jaccard similarity (The Jaccard similarity of two sets S and
T is defined as |SNT|/|SUT], i.e., the ratio of the cardinality of the intersection of

S and T to the cardinality of the union of S and T" [Leskovec et al. 2011]) as follows:

Av2u
Au|v

Doy = (2.11)

where Ay, denotes the number of actions propagated from v to u, A, denotes the
number of actions either performed by u or performed by v.

Example 2.3.2. In Figure 2.8, the pairwise influence probability ppg under static

model estimated by Jaccard index is

Apog = 1 because according to the propagation graphs (shown in Figure 2.8 (c), (d),
and (e)), there is only 1 action (i.e., ai) propagated from P to Q. Apg = 3 because
P performs 2 actions a; and az, @ performs 3 actions a1, ay, and az. {ai,as} U

{ai, as, a3} = {a1, a2, a3}, and | {a1,as,a3} | = 3.

Static Model - Partial Credits. Partial credits first estimates the credit given
to each activated neighbors v € S of u who performed an action a € A before u as

follows:
1

2wes [(tw(a) < tu(a))

where t,(a) denotes the time at which user u performs an action a € A, t,,(a) denotes

credit, ,(a) = (2.12)

the time at which user w performs the action a € A, S denotes the set of activated
neighbors of u, I is an indicator function returning 1 if an activated neighbor w € S
performs action a € A before u, returning 0 otherwise. > _<I(t,(a) < tu(a)) in
equation 2.4 means the number of active neighbors of u who perform the action a
before user u. That is, in the partial credits model if u is influenced to adopt an
action a, each of u’s active neighbors who have performed the action a before u does
so is given an equal credit 1/d for the action a, where d is the number of active
neighbors of « who perform the action a before user v does so, or d is the number of
contributors who propagate the action a to w.

Then the Bernoulli model with partial credit estimates the pairwise influence

probability of v on u, p,, by plugging equation 2.4 into equation 2.2 as follows:

Y aca credity,(a)
A,

Pou = (2.13)

where) _, credit,,(a) is the total credits given to v for propagating actions to u,

and A, denotes the number of actions performed by v.

Example 2.3.3. In Figure 2.8, the pairwise influence probability ppg under static

29

model estimated by partial credit Bernoulli distribution is

Y aea creditpo(a)
pPro = 1
P

creditpg(ay)
Ap

L

Y oaeacreditpo(a) =1 because according to the propagation graphs (shown in Figure
2.8 (¢), (d), and (e)), there is only 1 action (i.e., a;) propagated from P to Q) and P
s the only contributor propagating action aq to @), hence user P gets the full credit for

influencing user @ for performing action ay. Ap = 2 because P performs 2 actions

a, and as.

And Jaccard index model with partial credit estimates the pairwise influence prob-

ability of v on u, p,, by plugging equation 2.4 into equation 2.3 as follows:

Y wea Credity,(a)
Au|v

Do = (2.14)

Example 2.3.4. In Figure 2.8, the pairwise influence probability ppq under static

model estimated by partial credit Jaccard index s

Y aca creditpg(a)
Apjq
creditpg(ay)

brq =

Apg

Q W — Wi

60

Y weacreditpo(a) = 1 because there is 1 action (ay) propagated from P to @ and
P is the only contributor propagating action a; to @, user P gets the full credit for
influencing user Q) for performing action a,. Apjg = 3 because P performs 2 actions
a; and az, Q performs 8 actions ay, as, and az. {ay, a3} U{aq,as,a3} = {ay,as,as},

and | {al,a2,a3} | = 3.

61

Chapter 3

Proposed Algorithm for Mining
Influential Nodes From Competitive

Social Networks

The setting of the thesis problem is the launch of technology A into a market where a
competing technology B already exists along with a set of early adopters of technology
B. The problem we tackle is to find k£ most influential nodes and convince them to
adopt Technology A (e.g., giving each a free sample of Technology A) such that the
final adoptions of Technology A in the crowd is maximized in the setting. Here, k
is our budget for the advertising campaign meaning we have at most k£ free samples
to distribute. If we represent the underlying social network (the medium for the
propagations of two technologies) as G = (V, E), where V represents individuals, £
represents interactions between them, then there are two aspects related to the thesis
problem. The first aspect of our problem is to study how the dynamics of adoptions
of Technology A and Technology B simultaneously spread out through the network,
i.e., we need a diffusion model to describe the two simultaneous influence diffusions

and their resulting cascading behaviors (section 3.1), including the task of learning

62

the pairwise influence probabilities as the edge weights (section 3.2.2). The second
aspect of our problem is to study an efficient yet effective algorithm which allows us to
find the special k nodes for Technology A under the proposed diffusion model (section

3.2.4). We include analysis of the running times of all our algorithms in section 3.3.

3.1 Competing General Threshold Model

In this section, we will address the first aspect of the thesis problem, i.e., the proposed
Competing General Threshold model which is an extension to the General Threshold
model |[Kempe et al. 2003]. Unlike the original General Threshold model which
models one single influence diffusion in the network, the proposed Competing General
Threshold (CGT) model is aiming to model two interfering influence diffusions in the
network.

But before we do that, we will briefly review some terminology used in existing
influence maximization research. In the next section, we will extend the definitions of
them to our thesis problem setting. In the following definitions, the underlying social
network is represented by G = (V| E), where V represents individuals, E represents

interactions between them, and |V| = n (i.e., the cardinality of V' is n).

Definition 3.1.1. Pairwise Influence Probability, denoted as p, ., is the weight
on edge (v,u) € E indicating the extent to which node v influences node u. That is,

if v 1s active, it succeeds in activating u with the probability of p, .

Definition 3.1.2. Threshold Function, also known as joint influence probability
or activation function, defined as f, : 2V — [0,1], where 2V denotes the power set
of V.. Under the threshold model, each node v € V s associated with a threshold
function f,(+), f.(S) measures the joint influence of v’s active neighbors S exerted on

v, with f,(0) = 0.

63

Definition 3.1.3. Threshold, or activation threshold, denoted as 0, is chosen uni-
formly at random over the interval [0,1] for each node v € V under the threshold
diffuston model. Here, "uniformly” means the probability of choosing any point over
[0,1] is the same, or each point is being equally likely to be chosen. Intuitively, it
indicates enough (or the minimum number) of its neighbors who have already adopted
a behavior in order for v to do so. 0, being chosen uniformly at random for each

v € V is intended to model our lack of knowledge of the exact values [Kempe et al.

2003].

Competing Influence Diffusions. In this thesis, we consider the setting in which
there are two competing technologies, e.g., Apple iPhone (A) vs. Blackberry (B)
coexisting in the network. When there are two competing technologies, A and B co-
existing in the network, there are two seed sets, the seed set that adopts innovation A,
i.e., the early adopters of innovation A (denoted as S3'), and the seed set that adopts
innovation B, i.e., the early adopters of innovation B (denoted as S¥¥). Competing
influence diffusions refer to a scenario where the adoptions of two innovations prop-
agate simultaneously throughout the network from each seed set to the crowd such
that one diffusion (the propagation of one technology from its seed set to the crowd)
interposes in a way that hinders or impedes the other diffusion (the propagation of

the other technology from its seed set to the crowd).

Competing Influence Diffusions Model is the model used to describe the com-
peting influence diffusions. In this thesis, we extend the existing General Threshold
model which deals with a single influence diffusion (the propagation of a single tech-
nology) in the network (section 1.5) to the Competing General Threshold model which
deals with two competing influence diffusions (two technologies propagating and com-

peting with each other).

64

The Social Network under the CGT Model. The CGT model represents a
social network as a weighted, directed graph G = (V, E). Each node u € V is as-
sociated with two threshold functions fA(-) and fZ(-). Let N4 denote u’s active
neighbors who adopt technology A, then f/(N“) measures the joint A-influence of
u’s active neighbors who adopt technology A exerted on u, with fA(()) = 0. Let
N denote u’s active neighbors who adopt technology B, then fZ(N?) measures the
joint B-influence of u’s active neighbors who adopt technology B exerted on u, with
fB(0) = 0. Each node u € V chooses uniformly at random over the interval |0,1] two
thresholds, #4 (indicates the minimum number of its A-neighbors who have already
adopted technology A in order for u to do so) and 62 (indicates the minimum num-
ber of its B-neighbors who have already adopted technology B in order for u to do
so). That each node u € V' chooses uniformly at random over the interval [0,1] two

thresholds, is the random aspect of the CGT model.

The Influence Diffusions under the CGT Model. The influence diffusions
happen in discrete steps, i.e., t = 0,1,2,....n — 1. At any time ¢, each node v €
V' has one of the four states, A indicating adopting technology A or A-active, B
indicating adopting technology B or B-active, AB indicating adopting technology A
and technology B simultaneously or AB-active, and 0 indicating adopting neither of
them or inactive. (We call A-active nodes A-nodes, B-active nodes B-nodes, and
AB-active nodes AB-nodes in the rest of this thesis.) Once a node becomes active
(A-active, B-active, or AB-active), it cannot change its state anymore, i.e., it cannot
change back to inactive or switch to another active state. This is the competitive
aspect of the two influence difussions. This is because once a node v becomes, say
A-active, it cannot switch to B, which means it blocks the influence propagation of
technology B [Chen et al. 2013]. At time 0, there are two seed sets, S3' that adopts

technology A and S that adopts technology B, and Sit NSZ = . At time ¢t > 0,

65

all nodes that were active at time ¢t — 1 remain active, for each inactive node u, let
N4 denote the set of u’s active neighbors who adopt technology A, N2 the set of u’s
active neighbors who adopt technology B, then the state (whether A, B, AB, or 0) of

node w is defined as follows:

Definition 3.1.4. The Active State of AB. If f{(N4) > 62 and f3(N?) > 03,

then u’s state becomes AB meaning active in both A and B.

Definition 3.1.5. The Active State of A. If f(N4) > 0} and fE(NP) < 0B,

then u’s state becomes A meaning active in A but inactive in B.

Definition 3.1.6. The Active State of B. If fA(N4) < 64 and fE(NB) > 05,

then u’s state becomes B meaning active in B but inactive in A.

Definition 3.1.7. The Active State of Inactive. If f{(N4) < 02 and fP(NP) <

08, then u’s state becomes 0 meaning inactive in both A and B.

The process will stop before or at time n — 1 (where n is the number of nodes in
V') when no more activations are possible.

We will illustrate how two competing influence diffusions propagate under the
Competing General Threshold model through an example. But before we do that,
we need to define the pairwise influence probabilities p;ﬁu and pgu for each edge
(v,u) € E under the CGT model and the threshold functions fA(-) and fZ(.) for
each node u € V under the CGT model respectively below.

Pairwise Influence Probabilities under the CGT Model. In the social network
G = (V, E) under the Competing General Threshold (CGT) model, each edge (v, u) €
E is assigned two pairwise influence probabilities, p;ﬁu and pffu. pUA,u indicates the
extent to which node v influences node u for technology A. That is, if v is A-active
or AB-active, it succeeds in activating u to adopt technology A with the probability
of p;ﬁu. pgu indicates the extent to which node v influences node w for technology B.

That is, if v is B-active or AB-active, it succeeds in activating u to adopt technology B

66

with the probability of pffu. In this thesis, we assume that a Twitter user v’s influence

on another Twitter user u holds across different actions, i.e.,

That is, we assume the influence probability is person-based, not product-based.
If we want the influence probability to be product-based, we can assign different
weights (which can be learned from past action logs) to p,., to vary pﬁu and pgu. We
learn the pairwise influence probabilities p,, from Twitter datasets (section 3.2.2) to
obtain p;“,u and pgu. Having obtained the pairwise influence probabilities pﬁu and
pﬁu, we compute the joint influence probabilities f(-) (for u’s active A-neighbors to
jointly affect u to adopt technology A) and f5(-) (for u’s active B-neighbors to jointly
affect u to adopt technology B). The joint influence probabilities f(-) and fZ(-) are

also known as u’s threshold functions (explained next).

Threshold Functions under the CGT Model. In the social network G = (V| F)
under the Competing General Threshold (CGT) model, each node u € V' is associated
with two threshold functions fA(:) and fZ(-). Let N4 denote u’s active neighbors
who adopt technology A (including those who adopt both A and B), then f#(N4)
measures the joint A-influence of u’s active neighbors who adopt technology A exerted
on u, with f(0)) = 0. Let NP denote u’s active neighbors who adopt technology
B (including those who adopt both B and A), then fZ(N?) measures the joint B-
influence of u’s active neighbors who adopt technology B exerted on u, with fZ(0) = 0.
We adopt the threshold function proposed in |Goyal et al. 2010| for the General
Threshold model, and define the threshold functions fA(-) and fZ(-) under the CGT

model as follows:

67

AN =1- T 0 -pl) (3.2)

vENA
where u is an inactive node, N4 is the set of its active neighbors for technology A,
fA(N4) is the threshold function that measures the joint A-influence probability of
N4 exerted on u, and pUA,u is the pairwise A-influence probability of v € N4 exerted

on u.

FENEy=1-] a1 -pL) (3.3)

veENB
where u is an inactive node, N? is the set of its active neighbors for technology B,
fB(NP) is the threshold function that measures the joint B-influence probability of
NP exerted on u, and pf, is the pairwise B-influence probability of v € N” exerted

on u.

Example 3.1.1. Threshold Functions Evaluation. Let us illustrate how to eval-
uate the threshold functions f2(N4) (equation 3.2) and fP(NP) (equation 3.3) for
node w through an example. In the social network shown in Figure 3.1, there are 5
nodes. Of which, nodes x,y, z,v are active nodes and node u is inactive. The state
of node x is AB, the state of node y is A, the state of node z is B, the state of
v 1s B, and the state of u s 0 meaning inactive. Node u has two active neighbors
who adopt technology A, i.e., the set of u’s active A-neighbors N4 = {x,y}, and
three active neighbors who adopt technology B, i.e., the set of u’s active B-neighbors
NB = {x,z,v}. Also node u chooses uniformly at random two thresholds 62 = 0.5
and 0F = 0.8 over the interval [0,1]. Here, we assume that p,. = pj, = po.,.

The threshold function f2A(N4) which measures the joint influence probability of N4

68

Figure 3.1: An inactive node u in the Competing General Threshold Model where
the state of node x is AB, the state of node y is A, the state of node z is B, and the
state of v is B.

on u is computed as follows

FHNY) = [{z,y})
=1- [a-pi)

vE{z,y}

—1-(1-05){1—-06)

=0.8

The threshold function f2(BA) which measures the joint influence probability of NP

on u is computed as follows

fuB(NB) = fuB({I’ Z>'U})
=1- J] a-»2)

ve{x,z,v}

=1—(1-05)(1—0.3)(1—-0.4)

=0.79

Since fANA) =0.8 > 04 =05 and fB(NB) = 0.79 < 08 = 0.8, then u's state

becomes A based on Definition 3.1.5.

69

Having defined the pairwise influence probabilities pﬁu and pffu for each edge
(v,u) € E under the CGT model and the threshold functions fA(-) and fZ(-) for
each node u € V under the CGT model, we now use Figure 3.2 to illustrate how the

CGT model works.

Example 3.1.2. Two Competing Influence Diffusions under the CGT Model.
At time 0 (Figure 3.2 (a)), there is a social network G = (V, E) (where each node is
associated with two thresholds 0, and 6, each edge is associated with two influence
probabilities p, and py), along with two seed sets, i.e., S{ = {5} and SE = {1}. At
time 1, node 1 activates node 2 since fy =1 — (1 —pPy) = pfy = 0.5 > 0F = 0.3,
node 5 activates node 2 since f3 = 1 — (1 —piy) = pily = 04 = 05 = 0.4, the
state of node 2 becomes AB based on Definition 3.1.4 (Figure 3.2 (b)). At time
2, nodes 2 and 5 jointly activate node 3 since f38 = 1 — (1 — pis)(1 — pily) =
1—(1-03)(1-0.3) =051 > 04 = 0.5, the state of node 3 becomes A (Figure
3.2 (c)) based on Definition 3.1.5. At time 3, nodes 3 and 5 try to jointly activate
node 4, but f =1—(1—pf)(1—pd,) =1—(1—05)(1—0.2) = 0.6 < 62 = 0.7, the
state of node 4 becomes 0 (Figure 3.2 (c)) based on Definition 3.1.7. At this point,

the diffusion stops since no more activations are possible.
04 = 08 = 0.4 for all v

1) 1) 1)

v & \eo &

t=1 t=2

t=0
(a) b) (c)

Figure 3.2: Example of Two Competing Influence Diffusions under the CGT Model

Influence Spread under the CGT Model. Let S§' be the seed set for technology

A, SP the seed set for technology B. The influence spread for technology A of two

70

seed sets S5t and SP under the CGT model, denoted as o4(S§', SP), is defined as
the expected number of A-nodes at the end of the diffusion process. The influence
spread o (+) under the CGT model is monotone and non-submodular with respect to

technology A.

Statement 3.1.8. For an arbitrary instance of the Competing General Threshold

model, the resulting influence function o (-) is monotone with respect to technology

A.

Statement 3.1.9. For an arbitrary instance of the Competing General Threshold
model, the resulting influence function o(-) is non-submodular with respect to tech-

nology A.

We give a counter example |Chen et al. 2013] to show CGT is non-submodular.
From Figure 3.3 (a), we can see o2 ({1} U, {6}) — (0, {6}) = 3. From Figure 3.3
(b), we can see
cA({1} U {5},{6}) — c2({5},{6}) = 4, which means the marginal gain of adding
node 1 to U {6} (a small context) is smaller than the marginal gain of adding node
1to {5} U {6} (a large context).

04 =08 = 0.7 for all v 04 =08 = 0.7 for all v

Figure 3.3: Counter example to show CGT is non-submodular

The CGT model is based on the separated-threshold model proposed by Ahmed

and Ezeife [2013] where the diffusion process under the trust model is non-monotone

71

but submodular. It also bears resemblance to the separated-threshold model pro-
posed by the Borodin et al. [2010] where the diffusion process is monotone but not

submodular.

Thesis Problem Definition 3.1.10. Let St be the seed set for technology A, SP
the seed set for technology B. The influence spread for technology A of two seed sets
Sat and SB under the CGT model, denoted as o(S3', SP), is defined as the expected
number of A-nodes at the end of the diffusion process.

Given a directed social network G = (V, E), a non-negative budget k, a seed set of B-
nodes S, and CGT model, the problem of finding influential A-seeds when technology
B already exists in the network is to find a seed set St as early adopters of technology

A of size at most k such that (S, SP) is mazimum.

3.2 The Main CIAM System and Algorithm

The solution framework named Competing Influential A-Nodes Miner (CIAM), which
is an instance of the General Competing Threshold model, is aiming to find the
influential A-nodes from a social network where B-nodes already exist. The input of

the overall framework is as follows:
1. Twitter Datasets - consists of 5 Twitter networks as follows,
1.1 Twitter follow network - contains a list of edges in the form of (u,v) indi-

cating node u follows node v (e.g., Table 3.1).

1.2 Twitter mention network - contains a list of tuples in the form of (u,v,w)

indicating node u mentions node v w times (e.g., Table 3.2)

1.3 Twitter reply network - contains a list of tuples in the form of (u,v,w)

indicating node u replies node v w times (e.g., Table 3.3)

72

u v w
2 1 30
3 2 30
4 3 10

QY| | W=
DO W N O <

Table 3.2: Twitter mention network

Table 3.1: Twitter follow network

u A% W%
2 1 30 4 v W

2 1 10
3 2 30

3 2 10
1 1 30

1 5 15
1 0 15 1 5 10
5 6 60

Table 3.3: Twitter reply network Table 3.4: Twitter retweet network

t

100
100
100
100
100
100

DU | W N«

Table 3.5: Twitter tweets network

1.4 Twitter retweet network - contains a list of tuples in the form of (u,v,w)

indicating node u retweets node v w times (e.g., Table 3.4)

1.5 Twitter tweets network - contains a list of tuples in the form of (u,t) indi-

cating node u posts ¢ tweets (e.g., Table 3.5)

2. B-seeds (denoted as S¥¥) - a list of m B-nodes in the form of |uy,us,...,u,,|, where

u; is the node id, (e.g., [26339, 191214, ..., 503050]).
3. Budget k - an integer indicating the cardinality of seed set of A-nodes

The four main components of this system and complete flow in the CIAM frame-

work are shown in Figure 3.4.

73

Follow

1 1
1 5 ™ =~
N Twitter CGT Model, B- © C/\/j
E Networks (Seeds, Budget N
1 5 _— | &2\/ Y
5 6 3
Reply CIAM ‘L I O
" - - : Influence Graph
2 1 30 f) | v v
3 2 30 > Generate Influence Graph [--t-' R EA
4 3 10 \ y 1 3 01
+ Retweet [1 é ;::
+ Mention : 1 5 0.1
— e N\ ! 5 6 0.6
1
+>» Compute Influence Prob. [=--' Influence Prob . Table
Augmented Influence \.
Graph
/_(3\]J;;‘-}:U_(i
X Py =06
vy =03
T\, =03
ﬁ‘l:;}i/ R <4--1 Augment Influence Graph
pla= ; L s hﬂé‘: =01
‘\\) [)'({L:UB P, i
o ,$~<§7 -01
iy =07 pPi=01
1
LIS > Mine A-Seeds

Figure 3.4: CIAM Framework

74

The four main steps involved in the CIAM are presented below, before the formal
presentation of the algorithm.
Step 1. (line 1 of CIAM (Algorithm 1)) CIAM calls convertFollowToInf (Al-
gorithm 2) to construct an influence graph G = (V, E') from Twitter follow network,
as done by existing algorithms [Kempe et al. 2003] and [Ahmed and Ezeife 2013].
Initially, the influence graph G = (V, E) is empty. For each tuple (u,v) in the Twit-
ter follow network, convertFollowTolnf adds nodes u and v to the influence graph
G = (V, E) if nodes u and v have not been added to the graph yet, and adds a directed
edge from v to u. Details of step 1 are presented in Section 3.2.1.
Step 2. (line 2 of CIAM (Algorithm 1)) CIAM uses Maximum-Likelihood Estima-
tion |Fisher 1922] to construct the formula of the pairwise influence probabilities un-
der multinomial distribution. CIAM calls computeInfluenceProb (Algorithm 3)
which uses relational algebra operators left-join and projection on 5 Twitter datasets
(i.e., Twitter follow network, Twitter mention network, Twitter reply network, Twit-
ter retweet network, and Twitter tweets network) to retrieve the values of parameters
in the pairwise influence probabilities formula and plug the values into the formula
in order to compute the pairwise influence probabilities p,, for each edge (v, u) in
the influence graph which is generated from Step 1. Details of step 2 are presented
in Section 3.2.2.
Step 3. (line 3 of CIAM (Algorithm 1)) CIAM calls augmentG (Algorithm 4)
to augment the influence graph G = (V, E) (generated from Step 1) as follows. For
each edge (v,u) € E, augmentG looks up the influence probability table to find the
pairwise influence probability p, .. It assigns the edge (v, u) two pairwise influence
probabilities, pﬁu = Py (the probability that v influences u to adopt technology
A) and pf}, = pyu (the probability that v influences u to adopt technology B). It
stops when all the edges (v,u) € E have been visited. When it stops, it outputs

the augmented influence graph G = (V, E, P) where V represents Twitter users, F

)

represents the influence interactions between Twitter users, P represents the pairwise
influence probabilities between two Twitter users (Figure 3.6), as done by [Kempe et
al. 2003] and |[Ahmed and Ezeife 2013]. Details of step 3 are presented in Section
3.2.3.

Step 4. (line 4 of CIAM (Algorithm 1)) CIAM calls cgtMineA (Algorithm 6)
to finds the k£ most influential A-nodes in a network where there exists a seed set
of B-nodes. cgtMineA consists of two phases. The first phase exploits the greedy
algorithm |[Kempe et al. 2003| such that for each node v that is not in the two seed
sets (i.e., Si' and S¥), the algorithm computes the marginal gain of adding v to
Sgt and SP, picks the node which yields the maximum marginal gain, and repeats
this process k times to find k£ A-seeds. The second phase exploits the local search
algorithm [Ahmed and Ezeife, 2013] such that if swapping any A-seed in S§' (found
in the first phase) and any node not in the two seed sets (i.e., S5t and SP) yields more
A-nodes at the end of the diffusion, the algorithm will swap them. The algorithm
will repeat the swapping operation until no more improvements are possible. Details
of Step 4 are presented in Section 3.2.4.

The formal algorithm for the CIAM framework is shown in Algorithm 1.

3.2.1 Crawling Social Networks to Construct the Social Graph

The algorithm convertFollowTolInf (Algorithm 2) presented in this section is the
first step of our proposed framework CIAM. The input of the algorithm is Twitter
follow network (Table 3.1). The Twitter follow network consists of tuples in the form
of (u,v) meaning u follows v. Initially, the influence graph G = (V, E) (where V is
the nodes and FE is the influence relationships between nodes) is set to () (line 1). For
each tuple (u,v) in the Twitter follow network, convertFollowTolInf adds nodes u
and v to the influence graph G if they have not been added to the G (line 2.1), then it

adds a directed edge from nodes v to u (lines 2.2). After all the tuples are processed,

76

Algorithm 1 CIAM(TwitterData,SZ k) - The main algorithm for finding k influential
A-nodes in social network with existing B-nodes

Input: Twitter networks, B-seeds, budget k
Output: A-seeds of size at most k

1: convert Twitter follow network (e.g., Table 3.1) to an influence graph G = (V, E)
(e.g., Figure 3.5) where V represents Twitter users and FE represents influence
relationships between them using algorithm convertFollowTolInf (presented in
Algorithm 2)

2: learn pairwise influence probabilities from Twitter networks and output an influ-
ence probability table (e.g., Table 3.10) using algorithm computeInfluenceProb
(presented in Algorithm 3)

3: look for the influence probability table (e.g., Table 3.10), augment the influence
graph G = (V, E) by assigning the pairwise influence probabilities to each edge
(v,u) € E, and output an augmented graph G = (V, E, P) (e.g. Figure 3.6) where
V' represents Twitter users, F represents influence relationships between them,
and P represents the influence probabilities as the edge weights using algorithm
augmentG (presented in Algorithm 4)

4: find A-seeds in the augmented graph G = (V, E, P) using algorithm cgtMineA
(presented in Algorithm 6)

it outputs an influence graph G = (V, E) (Figure 3.5), as done by existing algorithms

proposed in [Kempe et al. 2003] and [Ahmed and Ezeife 2013].

Algorithm 2 convertFollowTolnf(Twitter Follow Network) - Construct an influence
graph from Twitter follow network

Input: Twitter follow network with tuple (u,v) meaning u follows v
Output: an influence graph G = (V, E)

1. Set G to 0)
2. For each tuple (u,v) in Twitter follow network

2.1 add nodes u and v to the influence graph G
2.2 add a directed edge (v, u) to the influence graph GG

3. return G

77

Figure 3.5: Influence Graph

3.2.2 Learning Influence Probabilities as Edge Weights from

Twitter

The underlying social network we use to study influence maximization in the CGT
model is Twitter network. Twitter uses retweet, reply and mention to say I like your
tweets. Twitter’s retweet measures how far an original tweet propagates throughout
the network. Users who have a higher number of retweeted tweets can be considered
more influential than users who have a few number of retweeted tweets [Russell 2013].
Twitter’s reply measures how much your tweets make me feel engaged such that I want
to talk something back to you [Wu et al. 2011]. Users who have a higher number of
replied tweets can be considered more influential than users who have a few number
of replied tweets. Twitter’s mention measures the name value of the mentioned user
[Cha et al. 2010]. Users who are mentioned more frequently in other users’ tweets
can be considered more influential than users who are mentioned infrequently in other
users’ tweets.

In this thesis, we assume that for each tweet of user v, there is at most one mention,
one reply, or one retweet from user u. The reaction of user u to each tweet of user
v can be viewed as a Bernoulli trial, responding (i.e., retweet, reply or mention)
or not responding. Further, we assume that the probability that u responds (i.e.,

retweets, replies, or mentions) v’s tweets is the pairwise influence probability p, .,

78

(i.e., the probability that v influences u to perform an action once v becomes active).
We use Maximum-Likelihood Estimation under Bernoulli distribution [Ahmed and

Ezeife 2013] to estimate p,, as follows,

_ Fretweetsof uonv + # repliesof uonv + # mentions of uon v

tweets of v (34)

Pou

Having constructed the formula of the pairwise influence probability p, ., (equation
3.4), we now present the algorithm computeInfluenceProb which uses relational
algebra operators left-join and projection on Twitter datasets to retrieve the numera-
tor and denominator in equation 3.4, and compute the pairwise influence probability
Puu- The algorithm computeInfluenceProb (Algorithm 3) presented in this sec-
tion is the second step of our proposed framework CIAM. It takes as input 5 Twitter
datasets, i.e., Twitter follow network (Table 3.1) which consists of tuples in the form
of (u,v) meaning u follows v, Twitter tweets network (Table 3.5) which consists of
tuples in the form of (v,?) meaning v posts ¢ tweets in total, Twitter mention network
(Table 3.2) which consists of tuples in the form of (u,v,w) meaning v mentions v
w times, Twitter reply network (Table 3.3) which consists of tuples in the form of
(u, v, w) meaning u replies v w times, and Twitter retweet network (Table 3.3) which
consists of tuples in the form of (u, v, w) meaning u retweets v w times. computeln-
fluenceProb outputs the pairwise influence probabilities p, ,, for each edge (v,u) € E
(Table 3.10). There are 5 main steps in computeInfluenceProb.

Step 1. (line 1 of computeInfluenceProb (Algorithm 3)), computeInfluen-
ceProb first concatenates Twitter mention network (Table 3.2), Twitter reply net-
work (Table 3.3), and Twitter retweet network (Table 3.3) into one table named Tri,
and then groups Tri by columns u and v such that each group in Tri represents node

u mentions, replies, or retweets node v w times (Table 3.6).

79

Step 2. (line 2 of computeInfluenceProb (Algorithm 3)), computeInfluen-
ceProb processes the grouped Tri (Table 3.6), sums up the value of w per group to
obtain a summed-up Tri table (Table 3.7). Each tuple in the summed-up Tri table
is in the form of (u,v,w) where w is # retweets of uwonv + # replies of uonv +
mentions of uon v, i.e., the numerator in equation (3.9).

Step 3. (line 3 of computeInfluenceProb (Algorithm 3)) computeInfluen-
ceProb left-joins the summed-up Tri (Table 3.7) and TwitterTweets (Table 3.5) into
one table named TriTweets (Table 3.8). Each tuple in TriTweets is in the form of
(u,v,w,t) where w is #retweetsof uonv +#repliesof uonv +# mentionsof uonwv,
the numerator in equation (3.9), t is # tweets of v, i.e., the denominator in equation
(3.9).

Step 4. (line 4 of computelnfluenceProb (Algorithm 3)) computeInfluen-
ceProb adds to TriTweets (Table 3.8) a new column named p,, whose value is
w/t to obtain an expended TriTweets (Table 3.9). The expended TriTweets table has
tuples in the form of (u,v,w, t, p) where w is #retweetsofuonv +#repliesofuonv +
mentions of uwon v, the numerator in equation 3.4, t is # tweets of v, the denomi-
nator in equation 3.4, and p = w/t is the pairwise influence probability p, , based on
equation 3.4.

Step 5. (line 5 of computeInfluenceProb (Algorithm 3)) computeInfluen-
ceProb drops unwanted columns w and ¢ from Table 3.9 to obtain a pruned Tritweets
table (with only three columns, i.e., u, v, p,), and left-joins Twitter follow network
(Table 3.1) and the pruned Tritweets table to obtain the final influence probability
table named InfluenceProbTable (Table 3.10) where each tuple is in the form of (u,
V, Pyu) indicating the influence that node v exerts on node u, that is if v is active, it

succeeds in activating u with the probability of p, ,.

80

w
30
30
10
30
30
10
10
30
15
15
10
60

QY| R R W W W NN NS

OO O = | W N| NN =<

Table 3.6: Concatenate Twitter men-
tion network, Twitter reply network,
and Twitter retweet network into one
table named Tri and group Tri by
columns v and v

u v w t

2 1 70 100
3 2 70 100
4 3 10 100
1 4 30 100
1) 30 100
4 5) 10 100
5) 6 60 100

Table 3.8: Left-join Tri and Twitter-
Tweets on column v to obtain a new
table named TriTweets

u 4 p
2 1 0.7
3 2 0.7
4 3 0.1
1 4 0.3
1 5 0.3
4 5 0.1
5 6 0.6

Table 3.10: Drop columns w and t
from TriTweets, and left-join Twitter
follow network and TriTweets to ob-
tain the influence probability table,
where each tuple (u,v,p) means the
probability that node v influences on
node wu is p.

81

w
70
70
10
30
30
10
60

QU | = =R WwiNn e

DO O =W N =<

Table 3.7: The summed-up Tri by
computing the sum of w for each group

w t P

70 100 0.7

70 100 0.7

10 100 0.1

30 100 0.3

30 100 0.3

10 100 0.1

Y| H Wi a
OO = W<

60 100 0.6

Table 3.9: Add a new column named
p to TriTweets, where p = w/t

Algorithm 3 computelnfluenceProb(TwitterData) - Compute pairwise influence
probabilities for each edge in the influence graph

Input: Twitter follow network (e.g., Table 3.1), Twitter tweets network (e.g., Table
3.5), Twitter mention network (e.g., Table 3.2), Twitter reply network (e.g., Table
3.3, Twitter retweet network (e.g., Table 3.4))

Output: an influence probability table (e.g., Table 3.10)

1: Concatenate Twitter mention network, Twitter reply network, and Twitter
retweet network into one table named Tri and group Tri by columns v and v
as shown in Table 3.6

2: Process the grouped Tri and get the sum of column w for each group as shown in
Table 3.7

3: Left-join the summed-up Tri and Twitter tweets network on column v to obtain
a joined table named TriTweets as shown in Table 3.8

4: Add a new column named p to the joined TriTweets, where p = w/t as shown in
Table 3.9

5: Drop columns w and ¢ from TriTweets, left-join Twitter follow network and
TriTweets to obtain the influence probability table named InfluenceProbTable
as shown in Table 3.10

6: return InfluenceProbTable

3.2.3 Augment the Influence Graph with Learned Pairwise In-

fluence Probabilities

The algorithm augmentG (Algorithm 4) presented in this section is the third step of
our proposed framework CIAM. augmentG takes as input the influence graph G =
(V, E) (Figure 3.5) generated by convertFollowToInf (Algorithm 2), the influence
probability table (Table 3.10) derived from computeInfluenceProb (Algorithm 3).
For each edge (v,u) € E, augmentG looks up the influence probability table to
find the pairwise influence probability p,, (line 1.1). It assigns the edge (v,u) two
pairwise influence probabilities, pf},u = pyu (the probability that v influences u to
adopt technology A) (line 1.2) and pJ, = p,, (the probability that v influences u
to adopt technology B) (line 1.3). It stops when all the edges (v,u) € E have been
visited. When it stops, it outputs the augmented influence graph G = (V, E, P)
where V' represents Twitter users, E represents the influence interactions between

Twitter users, P represents the pairwise influence probabilities between two Twitter

82

users (Figure 3.6), as done by |[Kempe et al. 2003] and [Ahmed and Ezeife 2013|.

Algorithm 4 augmentG(G,InfluenceProbTable) - Assign influence probabilities to
each edge in the influence graph

Input: the influence graph G = (V, E') without edge weights, influence probability
table (i.e., InfluenceProbTable) with tuple (v,u,p,)

Output: an augmented influence graph G = (V| E, P) with influence probabilities
as edge weights

1. For each edge (v,u) € E
1.1 Look up the influence probability table (Table 3.10) for p,,,
1.2 pj, = Pou
1.3 pf%u = Pou

2. return G

Figure 3.6: Influence graph augmented with pairwise influence probabilities for all
edges

3.2.4 Discovering Influential Nodes for a Competing Action

The algorithm cgtMineA (Algorithm 6) presented in this section is the fourth step
of our proposed framework CIAM. cgtMineA finds the k£ most influential A-nodes
in a network where there exists a seed set of B-nodes. The algorithm takes as input
the augmented influence graph G = (V, E, P) (where V represents Twitter users, F
represents the influence interactions between Twitter users, P represents the pairwise
influence probabilities between two Twitter users) generated by augmentG (Algo-

rithm 4), the seed set for B (denoted as S), and a non-negative integer k¥ meaning

83

the number of influential A-nodes to be discovered. cgtMineA outputs a seed set
for A (denoted as S§') with size at most k that maximizes the expected number of
final adoptions of technology A. cgtMineA consists of two phases. The first phase
exploits the greedy algorithm [Kempe et al. 2003] such that for each node v that is
not in the two seed sets (i.e., S5t and SP), the algorithm computes the marginal gain
of adding v to S§' and S#, picks the node which yields the maximum marginal gain,
and repeats this process k times to find & A-seeds. The second phase exploits the
local search algorithm [Ahmed and Ezeife, 2013| such that if swapping any A-seed
in S§' (found in the first phase) and any node not in the two seed sets (i.e., S5t and
SB) yields more A-nodes at the end of the diffusion, the algorithm will swap them.
The algorithm will repeat the swapping operation until no more improvements are
possible.

Before we present algorithm cgtMineA, we introduce an algorithm named cgt-
InfA that is called by cgtMineA for computing the A-influence spread of S3' and
SB (denoted as o (S5, SP)).

cgtInfA (Algorithm 5) takes as input

1. the augmented influence graph G = (V, E, P) (where V represents Twitter users,
E represents the influence interactions between Twitter users, P represents
the pairwise influence probabilities between two Twitter users) generated by

augmentG (Algorithm 4)
2. two seed sets Sat and SP
Each node v € V' is associated with the following node parameters
1. float f2 - the threshold function of node u € V for technology A
2. float fP - the threshold function of node u € V for technology B

3. float 67 - the threshold for technology A, randomly chosen

84

4. float 65 - the threshold for technology B, randomly chosen
5. string state - A, B, AB, or 0
cgtInfA uses the following variables

1. T4 to store the set of A-nodes activated during last step, initially T4 is set to

Sg'

2. TB to store the set of B-nodes activated during last step, initially 77 is set to
S

A

3. new? to store the set of A-nodes activated during current step, new is set to

() at the beginning of the current step

B

4. new? to store the set of B-nodes activated during current step, new?® is set to

() at the beginning of the current step

5. infA to store A-influence spread of Sg' and S£, initially it is set to the number

of nodes in the seed set for A

cgtInfA outputs the A-influence spread of S3' and S¥ (denoted as o(S¢, S&)),
i.e., the expected number of A-nodes at the end of CGT diffusion process with the
seed sets Si' and SP. There are 5 main steps in cgtInfA (Algorithm 5).

Step 1. (line 1 of cgtInfA (Algorithm 5)) cgtInfA uses variable T4 to store the
set of A-nodes activated during last step, initially 74 is set to Sg'.

Step 2. (line 2 of cgtInfA (Algorithm 5)) cgtInfA uses variable T'Z to store the
set of B-nodes activated during last step, initially 77 is set to SZ.

Step 3. (line 3 of cgtInfA (Algorithm 5)) cgtInfA uses variable inf* to store the
A-influence spread of S§' and S¥, initially it is set to the number of nodes in the seed
set for A.

Step 4. (line 4 of cgtInfA (Algorithm 5)) As long as there are nodes activated during

last time step, those activated nodes would propagate influence during current step

85

through the network (line 4). cgtInfA uses variable new” to store the set of A-nodes
activated during current step, new? is set to () at the beginning of the current step
(line 4.1), and new® to store the set of B-nodes activated during current step, new®
is set to () at the beginning of the current step (line 4.2). For each A-node v activated
from last step in 74, the algorithm will loop through each inactive out-neighbor u of
v (line 4.3), compute the threshold function f7 for node u using equation 3.2 (line
4.3.1.1). If the threshold function fZ' is no less than its threshold 64, the algorithm
adds node u to new? which is the set of A-nodes newly activated in current step
(line 4.3.1.2), and increases A-influence spread by 1 (line 4.3.1.3). Similarly, for each
B-node v activated from last step in TP (line 4.4), the algorithm will loop through
each inactive out-neighbor u of v, compute the threshold function fZ for node u using
equation 3.3 (line 4.4.1.1). If the threshold function fZ is no less than its threshold
02 it adds node u to new® which is the set of B-nodes newly activated in current
step (line 4.4.1.2). After it processes all nodes in 7% (the set of A-nodes activated
during last step) and TP (the set of B-nodes activated during last step), the current
diffusion step is done. At this moment, the set of A-nodes activated during current
step becomes the set of A-nodes activated from last step (line 4.5), and the set of
B-nodes activated during current step becomes the set of B-nodes activated from last
step (line 4.6).

Step 5. (line 5 of cgtInfA (Algorithm 5)) When both 74 (the set of A-nodes
activated during last step) and 77 (the set of B-nodes activated during last step)

are empty meaning no more activations, it stops and returns the expected number

A-nodes at the end of the diffusion, i.e., the A-influence spread of S§' and SZ.

Example 3.2.1. How cgtInfA Works. In the social network shown in Figure 3.7
(b), at time 0, there are two seed sets, S3t = {4,5} and SE = {6}. We will show
how egtInfA (Algorithm 5) computes the influence spread for technology A given the

two seed set S§' and SP, denoted as o(SE', SP). At time 1, nodes 4 and 5 jointly

86

Algorithm 5 cgtInfA(G = (V, E, P),S3',S8) - compute the number of A-nodes at
the end of the diffusion when the two seed sets are Sg' and SZ

Input: The augmented influence graph G = (V, E, P) with influence probability as
edge weights, two seed sets St and SP
Output: inf” - the A-influence spread of S§' and SP

1. Set T4, the set of A-nodes activated during last time step, to Sg'
2. Set T'B, the set of B-nodes activated during last time step, to SP
3. Set inf#, the A-influence spread of S3' and SZ to the number of nodes in
S5
4. While we have either A-nodes or B-nodes activated from last step to propa-
gate influences
4.1 Set new?, the set of A-nodes newly activated in current step, to ()
4.2 Set new?”, the set of B-nodes newly activated in current step, to ()
4.3 For each A-node v activated from last step
4.3.1 For each inactive node u in the out-neighbors of v
4.3.1.1 compute the threshold function f/' for node u using equation 3.2

4.3.1.2 Add u to new?, the set of A-nodes newly activated in current step
if the threshold function crosses the threshold

4.3.1.3 Increase the number of A-nodes by 1
4.4 For each B-node v activated from last step
4.4.1 For each inactive node u in the out-neighbors of v
4.4.1.1 compute the threshold function fZ for node u using equation 3.3

4.4.1.2 Add u to new®, the set of B-nodes newly activated in current step
if the threshold function crosses the threshold

4.5 At the end of the current step, set new?, the set of A-nodes activated
during current step to 74, the set of A-nodes activated from last step

4.6 At the end of the current step, set new®, the set of B-nodes activated
during current step to T2, the set of B-nodes activated from last step

5. Return inf4, the number A-nodes at the end of the diffusion

87

activate node 1 since f{* =1 — (1 —ps)(1—psy) =1—(1—0.3)(1 —0.3) = 0.51 >
0 = 0.5, the state of node 1 becomes A. At time 2, node 1 activates node 2 since
fit =1—=(1—piy) =piy = 0.7 > 05 = 0.6, the state of node 2 becomes A. At time 3,
node 2 activates node 3, since f5t =1 — (1 — p‘;’g) = péq,g = 0.7 > 04 = 0.6, the state
of node 3 becomes A. At this point, the diffusion stops since no more activations are
possible. The set of A-nodes at this point is {1,2,3,4,5}, and the number of A-nodes

at this moment is 5. Algorithm 5 returns 5 which is the A-influence spread of Si' and

Sp.

(a) Input Graph

Figure 3.7: Example of cgtInfA (S, SP)

Having introduced algorithm cgtInfA, we can now present the algorithm cgt-
MineA (Algorithm 6) which finds the & most influential A-nodes in a network where
there exists a seed set of B-nodes. The algorithm takes as input the augmented in-
fluence graph G = (V, E, P) which generated by augmentG (Algorithm 4), the seed
set for B (denoted as SP), and a non-negative integer k meaning the number of in-
fluential nodes to be discovered, and outputs a seed set for A (denoted as S3') with
size at most k that maximizes the expected number of final adoptions of technology

A. There are 5 main steps in cgtMineA (Algorithm 6).

88

Step 1. (line 1 of cgtMineA (Algorithm 6)) cgtMineA uses variable Sg' to store
A-seeds. Initially, SZ' is set to) (line 1).

Step 2. (line 2 of cgtMineA (Algorithm 6)) cgtMineA consists of two phases. The
first phase adopts the existing greedy algorithm [Kempe et al. 2003] such that for
each node v that is not in the two seed sets (i.e., Si' and SP), the algorithm computes
the marginal gain of adding v to two seed sets (i.e., Sg' and S), picks the node which
yields the max and adds it to S3' (lines 3-4).

Step 3. (line 3 of cgtMineA (Algorithm 6)) cgtMineA repeats step 2 k times to
find £ seeds.

Step 4. (line 4 of cgtMineA (Algorithm 6)) The second phase of cgtMineA
exploits the local search algorithm [Ahmed and Ezeife, 2013| such that if swapping
any A-seed in S§' (found in the first phase) and any node not in the two seed sets
yields larger A-influence spread (line 3.1), the algorithm will swap them.

Step 5. (line 5 of cgtMineA (Algorithm 6)) cgtMineA repeats step 4 until no

more improvements in A-influence spread are possible.

Algorithm 6 cgtMineA(G = (V, E, P), SP, k)- Find k influential A-nodes under

CGT

Input: an augmented influence graph G = (V, E, P) with influence probabilities as
edge weights, a seed set for B (denoted as S#), and a non-negative integer k

Output: a seed set for A (denoted as S3') with size at most k that maximizes the
expected number of final adoptions of technology A

1. Set S to 0

2. Compute the marginal gain of adding each node u € V — S5t — SE to S4
and S¥, pick the node u which yields the maximum marginal gain, and add
node u to A-seed set S5t

3. Repeat Step 2 k times to find k£ A-seeds

4. Local Search on S3' to improve the selection by swapping node u € S3' and
node v € V — S84t — SE if ocar (S8 + {v} — {u}, S) > ocar(SE, SP)

5. Repeat step 4 until no more improvements in A-influence spread are possible
6. Return A-seed set S3'

89

Remark 3.2.1. The marginal gain of adding a A-node u to two seed sets S and SP

is defined as o(Sgt U {u}, SP) — a(Sg, SP).
Now, we will show how cgtMineA works through example 3.2.2

Example 3.2.2. Initially, S' = 0 and SE = {6}. To find the first influential A
seed, the algorithm computes the marginal gain of adding each node v not in the
two seed sets (i.e., v € V — St — SE) to S§ and SB. The marginal gain of adding
each node v into S5 and S is summarized in Table 3.11. The algorithm picks the
node with the mazimum marginal gain, which is node 1 and adds it to S§'. At this
moment, Sit = {1} and SE = {6}. To find the second influential A seed, the algorithm
computes the marginal gain of adding each node v € V — Sg' — SF to Sg' and SP. The
marginal gain of adding each node v into S3 and SP is summarized in Table 3.12.
The algorithm picks the node with the maximum marginal gain, which s node 4 and
adds it to S§'. So, S§' = {1,4}. Since budget k = 2, and we have 2 nodes 1 and 4 in
S&, the greedy part of the algorithm is done.

Now, the algorithm will swap any node in Si' with any node not in the two seed sets S3*
and SB to see if there is any improvement with the spread. At this point, S§ = {1,4},
SB = {6}, the set of nodes not in the two seed sets V — Sit — SE = {2,3,5}, the
spread o(S§', SB) = 4. The algorithm computes the spread after swapping nodes
1 and 2, and obtains o*(S5t — {1} + {2},58) = 3 < o4(S8, SP) = 4, meaning
no improvements. Then, the algorithm computes the spread after swapping nodes 1
and 3, and obtains o (S5t — {1} + {3}, S8) = 2 < o(S3', SP) = 4, meaning no
improvements. Next, the algorithm computes the spread after swapping nodes 1 and
5, and obtains o (S§ — {1} + {5}, SP) = 5 > a(S§, SB) = 4, meaning there is an
improvement. Hence, the algorithm will keep the swap. At this point, Sit = {5,4},
SB = {6}, the set of nodes not in the two seed sets V —Sit —SP = {1,2, 3}, the spread
oA(Sg, SB) = 5. The algorithm swaps any node in Si' with any node not in the two

seed sets S3t and SE to see if there is any improvement with the spread. Since none

90

N Marginal -
ode argina Node | Marginal
Gain :
Gain
1 3
2 0
2 2
3 0
3 1
4 1
4 1 5 1
5 1

Table 3.12: Marginal Gain: Second

Table 3.11: Marginal Gain: First Pass Pass of cgtMineA’s Greedy Phase

of cgtMineA’s Greedy Phase

of the swapping operations yield any improvements, the algorithm stops and returns

Sat = {5,4}.

3.3 Complexity Analysis

The cgtInfA algorithm (Algorithm 5), which is a sub-procedure of cgtMineA (Algo-
rithm 6), runs in time O(m* E), where m is the number of round for MC simulations,
E' is the number of edges in G, since for each round of MC simulation, cgtInfA scans
the out-neighbors of each active node, and the total number of out-neighbors of all
active nodes is O(E).

The cgtMineA algorithm (Algorithm 6) runs in time O(k % V % m x E), where
k is the budget, i.e., the number of A-nodes to be discovered as early adopters of
technology A, V' is the number of nodes in GG, m is the number of round for MC
simulations, and E is the number of edges in G. cgtMineA consists of two phases.
The first phase is greedy algorithm which runs in time O(k*V xmx E), where k is the
budget, i.e., the number of A-nodes to be discovered as early adopters of technology
A, V is the number of nodes in G, m is the number of round for MC simulations, and
E is the number of edges in G, since for each pass of the greedy phase, cgtInfA calls
cgtInfA algorithm (Algorithm 5) O(V) times, and there are k passes. The second

phase is the local search based algorithm which could run for an exponential amount

91

of time (O(2")) until it finds an improvement in the influence spread |[Ahmed and
Ezeife, 2013]. To ensure the algorithm runs in polynomial time, we break the swap
operation when the number of loops crosses k * V' x m x E, which ensures the second
phase runs in O(k*V x«mx*E) time. Therefore, the overall running time of cgtMineA

algorithm (Algorithm 6) is in O(k % V * m x E).

92

Chapter 4

Experiments and Analysis

4.1 Dataset

On 4 July 2012, two international experiments involved in searching for the elusive
Higgs boson, the ATLAS and CMS collaborations announced the discovery of a Higgs
boson-like partical. Domenico et al [2013] have tracked and monitored user activities
on Twitter (i.e., posting tweets, retweets, mentions and replies about the discovery)
before, during and after the announcement (i.e., between 00 : 00AM, 15 July 2012
and 11 : 59PM, 7™ July 2012). In this research, we use their Higgs Twitter Datasets
to study information diffusion under the CGT model.

The Higgs Twitter Dataset consists of four datasets, Twitter follow network, Twit-
ter mention network, Twitter reply network, and Twitter retweet network. Twitter
follow network consists of 456,631 nodes and 14,855,875 edges. Each line in the
follower dataset is in the form of (u,v) meaning node u follows node v. Twitter men-
tion network consists of 302,975 nodes and 449, 827 edges. Each line in the mention
dataset is in the form of (u,v,w) meaning node u mentions node v w times. Twit-
ter reply network consists of 37,366 nodes and 30,836 edges. Each line in the reply

dataset is in the form of (u,v,w) meaning node u replies node v w times. Twitter

93

retweet network consists of 425, 008 nodes and 733, 647 edges. Each line in the retweet
network is in the form of (u, v, w) meaning node u retweets node v w times.
However, there are two issues with the Higgs Twitter Dataset. The first issue with
the Higgs Twitter Dataset is that the follow network consists of 456,631 nodes and
14,855,875 edges, which is too big. Another issue with the Higgs Twitter Dataset
is that it does not contain the Twitter tweets dataset. Since our main goal of this
research is to show the quality of the seeds chosen by our proposed cgtMineA is
better than that of CELF-like algorithms under the CGT model, to tackle the first
issue, we extract a sub-graph from Twitter follow network for experiments. The sub-
graph consists of 1,001 nodes and 3,201 edges. The extraction is done by randomly
choosing a root node and performing breadth first search from the root, stopping
when the number of nodes in the sub-graph is desired, as done by [He et al. 2012].
To tackle the second issue, we assign tweets count to each Twitter user by uniformly
at random choosing a number over the interval [1, 100] and adding the number to the

total number of the user’s retweets, mentions, and replies.

4.2 Algorithms Compared

In our experiments, we compare the quality of the seeds which is measured by the
influence spread achieved by the following algorithms.

cgtMineA. Our proposed algorithm.

CELF. Greedy algorithm with lazy evaluation [Leskovec et al. 2007] under the CGT
model that chooses & A-nodes with the largest marginal gain from the influence graph.
TGT. Local-search algorithm [Ahmed and Ezeife 2013| under the CGT model that

chooses & A-nodes by two local search operations, add and swap.

94

4.3 Comparing Influence Spread

Figure 4.1 shows the influence spreads achieved by TG'T, CELF, and our proposed
cgtMineA respectively. The comparison is performed on the 1000-node sub-graph of
Twitter follow network with 50 randomly chosen B-seeds. From Figure 4.1, we can
see our proposed cgtMineA outperforms CELF for all A-seed set size as expected.
TGT outperforms cgtMineA and CELF for all A-seed set size as expected at the cost

of running time.

520
-l CELF
500 A=A cgtMineA

¢ GT

480

I
o
o

Influence Spread
N
N
o

0 5 10 15 20 25
Number of A-Seeds

Figure 4.1: Influence spread of various algorithms in Twitter datasets

4.4 Comparing Running Time

Figure 4.2 shows the running time taken by TGT, CELF, and our proposed cgtMineA
respectively. The comparison is performed on the 1000-node sub-graph of Twitter
follow network with 50 randomly chosen B-seeds. From Figure 4.1, we can see that
CELF performs almost in constant time when the size of A-seed set is < 50. cgtMineA
performs close to CELF when the size of the A-seed set is < 15, takes more time than
CELF as the size of the A-seed set increases but runs faster then TGT. This shows

the room for improvement of cgtMineA in terms of scalability. As mentioned earlier,

95

scalability was not focus of this work; however there are several ways to make the

approach more scalable. We discuss some of these approaches in the next section.

1200
-l CELF
A=A cgtMineA

1000 =@ TGT

800

600

Running Time (Min)

200

0 5 10 15 20 25
Number of A-Seeds

Figure 4.2: Running Time of various algorithms in Twitter datasets

From the experiments on the quality of A-influence spread and running time
comparison, we can that see cgtMineA is a tradeoff solution between running time and
the quality of the A-seed set because TG'T under CGT model may run in exponential

time.

96

Chapter 5

Conclusions and Future Works

Maximizing the spread of influence through a social network is to find a small set
of influential people (the seed set) in the online communities (the crowd) such that
if we market to them, the spread of influence will be maximized. The most moti-
vating application of influence maximization is viral marketing. In this research, we
have tackled the influence maximization problem in a network where there exist two
competing influence diffusions.

First, we propose a diffusion model named Competing General Threshold (CGT)
model to model how the two competing influences propagate from node to node and
how a node decides to accept which influence. We show that the diffusion process
under the CGT model is monotone and non-submodular, therefore the influence maxi-
mization problem under the CGT model boils down to monotone and non-submodular
maximization which is proven to be NP-hard. Then, We exploit Maximum-Likelihood
Estimation (MLE) to learn the two influence probabilities that v influences u to adopt
each technology respectively from Twitter datasets. Based on the monotone and non-
submodular property of CGT model, we propose an algorithm named cgtmineA to
mine A-seeds as early adopters of technology A under the CGT model in a social

network where early adopters of technology B already exist, based on the greedy al-

97

gorithm [Kempe et al. 2003] for the monotone property of CGT and the local search
algorithm [Ahmed and Ezeife 2013| for the non-submodular property of CGT. We
perform experiments on the real-world datasets from Twitter to show our proposed
cgtMineA outperforms existing heuristics such as CELF by at most 15%.

In the future, to tackle the scalability of cgtMineA, we should consider the strength
of weak ties |Granovetter et al. 1973] and community structure in networks |Fortunat
and Santo 2009]. Another possible solution is to reduce the search space by ranking
the nodes in terms of relevance as done in [Mumu and Ezeife 2014|. Also, we want
to extend the Competing General Threshold network from two players to more than
two players, look for more involved threshold functions, and quantify the threshold
value per technology for each player. In order to design a more natural diffusion
model, we should study game theory and include the idea to the model when dealing
with more than one player. Other future directions include (1) to consider dynamic
networks where new nodes come in, existing nodes leave, or the influence probability
per edge changes as time goes on (i.e., it is not independent to time any more), (2)
to consider multi-dimension network which incorporates Facebook network, Twitter

network, LinkedIn, and so on.

98

Bibliography

Agarwal, N., Liu, H., Tang, L., and Yu, P. S. (2008). Identifying the influential
bloggers in a community. In Proceedings of the 2008 International Conference on

Web Search and Data Mining, pages 207-218. ACM.

Agrawal, R., Srikant, R., et al. (1994). Fast algorithms for mining association rules.

In Proc. 20th int. conf. very large data bases, VLDB, volume 1215, pages 487-499.

Ahmed, S. and Ezeife, C. (2013). Discovering influential nodes from trust network.
In Proceedings of the 28th Annual ACM Symposium on Applied Computing, pages
121-128. ACM.

Aral, S., Muchnik, L., and Sundararajan, A. (2009). Distinguishing influence-based
contagion from homophily-driven diffusion in dynamic networks. Proceedings of the

National Academy of Sciences, 106(51):21544-21549.

Bakshy, E., Hofman, J. M., Mason, W. A., and Watts, D. J. (2011). Everyone’s
an influencer: quantifying influence on twitter. In Proceedings of the fourth ACM

international conference on Web search and data mining, pages 65-74. ACM.

Bishop, C. M. et al. (2006). Pattern recognition and machine learning, volume 4.

springer New York.

Bonchi, F., Giannotti, F., Mazzanti, A., and Pedreschi, D. (2003). Examiner: Op-

timized level-wise frequent pattern mining with monotone constraints. In Data

99

Mining, 2003. ICDM 2003. Third IEEE International Conference on, pages 11-18.
IEEE.

Borodin, A., Filmus, Y., and Oren, J. (2010). Threshold models for competitive
influence in social networks. In Internet and network economics, pages 539-550.

Springer.

Carnes, T., Nagarajan, C., Wild, S. M., and Van Zuylen, A. (2007). Maximizing
influence in a competitive social network: a follower’s perspective. In Proceedings

of the ninth international conference on Electronic commerce, pages 351-360. ACM.

Cha, M., Haddadi, H., Benevenuto, F., and Gummadi, P. K. (2010). Measuring user

influence in twitter: The million follower fallacy. ICWSM, 10:10-17.

Chen, W., Lakshmanan, L. V., and Castillo, C. (2013). Information and influence
propagation in social networks. Synthesis Lectures on Data Management, 5(4):1-

177.

Chen, W., Wang, Y., and Yang, S. (2009). Efficient influence maximization in social
networks. In Proceedings of the 15th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 199-208. ACM.

Chen, W., Yuan, Y., and Zhang, L. (2010). Scalable influence maximization in social
networks under the linear threshold model. In Data Mining (ICDM), 2010 IEEE

10th International Conference on, pages 88-97. IEEE.

Chen, Y.-C., Zhu, W.-Y., Peng, W.-C., Lee, W.-C., and Lee, S.-Y. (2014). Cim:
community-based influence maximization in social networks. ACM Transactions

on Intelligent Systems and Technology (TIST), 5(2):25.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning,
20(3):273-297.

100

Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification. Information
Theory, IEEE Transactions on, 13(1):21-27.

De Domenico, M., Lima, A., Mougel, P., and Musolesi, M. (2013). The anatomy of a

scientific rumor. Scientific reports, 3.

Domingos, P. and Richardson, M. (2001). Mining the network value of customers. In
Proceedings of the seventh ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 57-66. ACM.

Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3):75—

174.

Gionis, A., Terzi, E., and Tsaparas, P. (2013). Opinion maximization in social net-

works. In SDM, pages 387-395. STAM.

Goyal, A., Bonchi, F., and Lakshmanan, L. V. (2008). Discovering leaders from
community actions. In Proceedings of the 17th ACM conference on Information

and knowledge management, pages 499-508. ACM.

Goyal, A., Bonchi, F., and Lakshmanan, L. V. (2010). Learning influence probabilities
in social networks. In Proceedings of the third ACM international conference on

Web search and data mining, pages 241-250. ACM.

Goyal, A., Lu, W., and Lakshmanan, L. V. (2011a). Celf++: optimizing the greedy
algorithm for influence maximization in social networks. In Proceedings of the 20th

international conference companion on World wide web, pages 47-48. ACM.

Goyal, A., Lu, W., and Lakshmanan, L. V. (2011b). Simpath: An efficient algo-
rithm for influence maximization under the linear threshold model. In Data Mining

(ICDM), 2011 IEEE 11th International Conference on, pages 211-220. IEEE.

101

Granovetter, M. S. (1973). The strength of weak ties. American journal of sociology,
pages 1360-1380.

Han, J., Pei, J., and Yin, Y. (2000). Mining frequent patterns without candidate

generation. In ACM SIGMOD Record, volume 29, pages 1-12. ACM.

He, X., Song, G., Chen, W., and Jiang, Q. (2012). Influence blocking maximization
in social networks under the competitive linear threshold model. In SDM, pages

463-474. SIAM.

Hill, S., Provost, F., and Volinsky, C. (2006). Network-based marketing: Identifying

likely adopters via consumer networks. Statistical Science, pages 256-276.

Hu, Q., Wang, G., and Yu, P. S. (2014). Transferring influence: Supervised learning
for efficient influence maximization across networks. In Collaborative Computing:
Networking, Applications and Worksharing (CollaborateCom), 201/ International
Conference on, pages 45-54. IEEE.

Kempe, D., Kleinberg, J., and Tardos, E. (2003). Maximizing the spread of influence
through a social network. In Proceedings of the ninth ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 137-146. ACM.

Kleinberg, J. (2007). Cascading behavior in networks: Algorithmic and economic

issues. Algorithmic game theory, 24:613-632.

Krause, A. and Guestrin, C. (2005). A note on the budgeted maximization of sub-

modular functions.

Krause, A., Leskovec, J., Guestrin, C., VanBriesen, J., and Faloutsos, C. (2008). Effi-
cient sensor placement optimization for securing large water distribution networks.

Journal of Water Resources Planning and Management, 134(6):516-526.

102

Lappas, T., Terzi, E., Gunopulos, D., and Mannila, H. (2010). Finding effectors in
social networks. In Proceedings of the 16th ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 1059-1068. ACM.

Lee, J., Mirrokni, V. S., Nagarajan, V., and Sviridenko, M. (2009). Non-monotone
submodular maximization under matroid and knapsack constraints. In Proceedings

of the forty-first annual ACM symposium on Theory of computing, pages 323-332.
ACM.

Lerman, K. and Ghosh, R. (2010). Information contagion: An empirical study of the

spread of news on digg and twitter social networks. ICWSM, 10:90-97.

Leskovec, J., Adamic, L. A., and Huberman, B. A. (2007a). The dynamics of viral
marketing. ACM Transactions on the Web (TWEB), 1(1):5.

Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., and Glance, N.
(2007b). Cost-effective outbreak detection in networks. In Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 420-429. ACM.

MacQueen, J. et al. (1967). Some methods for classification and analysis of multivari-
ate observations. In Proceedings of the fifth Berkeley symposium on mathematical

statistics and probability, volume 1, pages 281-297. Oakland, CA, USA.

McCallum, A., Nigam, K., et al. (1998). A comparison of event models for naive
bayes text classification. In AAAI-98 workshop on for text categorization, volume

752, pages 41-48. Citeseer.

Mossel, E. and Roch, S. (2007). On the submodularity of influence in social networks.
In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing,
pages 128-134. ACM.

103

Mumu, T. S. and Ezeife, C. I. (2014). Discovering community preference influence
network by social network opinion posts mining. In Data Warehousing and Knowl-

edge Discovery, pages 136-145. Springer.

Ostfeld, A., Uber, J. G., Salomons, E., Berry, J. W., Hart, W. E., Phillips, C. A,
Watson, J.-P., Dorini, G., Jonkergouw, P., Kapelan, Z., et al. (2008). The battle of
the water sensor networks (bwsn): A design challenge for engineers and algorithms.

Journal of Water Resources Planning and Management, 134(6):556-568.

Pang-Ning, T., Steinbach, M., Kumar, V., et al. (2006). Introduction to data mining.

In Library of Congress.

Park, J. S., Chen, M.-S., and Yu, P. S. (1995). An effective hash-based algorithm for

mining association rules, volume 24. ACM.

Pastor-Satorras, R. and Vespignani, A. (2002). Immunization of complex networks.

Physical Review E, 65(3):036104.
Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1):81-106.

Richardson, M. and Domingos, P. (2002). Mining knowledge-sharing sites for viral
marketing. In Proceedings of the eighth ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 61-70. ACM.
Rogers, E. M. (2010). Diffusion of innovations. Simon and Schuster.

Rosen, K. (2011). Discrete Mathematics and Its Applications 7th edition. McGraw-

Hill Science.

Russell, M. A. (2013). Mining the Social Web: Data Mining Facebook, Tuwitter,
LinkedIn, Google+, GitHub, and More. " O’Reilly Media, Inc.".

104

Singer, Y. (2012). How to win friends and influence people, truthfully: influence
maximization mechanisms for social networks. In Proceedings of the fifth ACM

international conference on Web search and data mining, pages 733-742. ACM.

Soni, G. and Ezeife, C. (2013). An automatic email management approach using data
mining techniques. In Data Warehousing and Knowledge Discovery, pages 260-267.

Springer.

Tang, J., Sun, J., Wang, C., and Yang, Z. (2009). Social influence analysis in large-
scale networks. In Proceedings of the 15th ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 807-816. ACM.

Ullman, J. D., Leskovec, J., and Rajaraman, A. (2011). Mining of Massive Datasets.

Cambridge University Press.

Wu, Y. and Ren, F. (2011). Learning sentimental influence in twitter. In Future
Computer Sciences and Application (ICFCSA), 2011 International Conference on,
pages 119-122. IEEE.

Zhang, H., Mishra, S., and Thai, M. T. (2014a). Recent advances in information
diffusion and influence maximization of complex social networks. Opportunistic

Mobile Social Networks, page 37.

Zhang, P., Chen, W., Sun, X., Wang, Y., and Zhang, J. (2014b). Minimizing seed set
selection with probabilistic coverage guarantee in a social network. arXiv preprint

arXiw:1402.5516.

105

VITA AUCTORIS

Xiao Ni Cao was born in Beijing, China. She received her Bachelor of Science
in Computer Science from the University of British Columbia in May, 2012. She is
currently a candidate for the Masters of Science in Computer Science at the University

of Windsor, Ontario and hopes to graduate by April 2015.

106

	University of Windsor
	Scholarship at UWindsor
	7-11-2015

	Influence Maximization Mining for Competitive Social Networks
	Xiaoni Cao
	Recommended Citation

	Joyce_Thesis.dvi

