
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2014

An Interactive Approach to Software Visualization
for Customization
Manpreet Singh Kaler
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Kaler, Manpreet Singh, "An Interactive Approach to Software Visualization for Customization" (2014). Electronic Theses and
Dissertations. 5161.
https://scholar.uwindsor.ca/etd/5161

https://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F5161&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5161&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5161&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/5161?utm_source=scholar.uwindsor.ca%2Fetd%2F5161&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

An Interactive Approach to Software Visualization for Customization

By

Manpreet Singh Kaler

A Thesis

Submitted to the Faculty of Graduate Studies

through the School of Computer Science

in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the

University of Windsor

Windsor, ON, Canada

2014

© 2014 Manpreet Singh Kaler

An Interactive Approach to Software Visualization for Customization

by

Manpreet Singh Kaler

APPROVED BY:

__

A. Azab

Dept. of Industrial and Manufacturing Systems Engineering

__

L. Rueda

School of Computer Science

__

X. Yuan

School of Computer Science

17 April 2014

iii

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this thesis has

been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone’s

copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or

any other material from the work of other people included in my thesis, published or

otherwise, are fully acknowledged in accordance with the standard referencing practices.

Furthermore, to the extent that I have included copyrighted material that surpasses the

bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that I

have obtained a written permission from the copyright owner(s) to include such

material(s) in my thesis and have included copies of such copyright clearances to my

appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved

by my thesis committee and the Graduate Studies office, and that this thesis has not been

submitted for a higher degree to any other University or Institution.

iv

ABSTRACT

The Software Product Line (SPL) provides software customization by composing several

different web services together. When further supported by Service-Oriented Architecture

(SOA), SPL offers unprecedented advantages for reusing software artifacts in mass

customization of software applications, leading to radically reduced time, cost, and effort

of software development. A Petri-Net based visualization system for the software

customization has been developed in our research group.

This thesis works on enhancement of the prior work by introducing an interactive

approach of software visualization for software customization. The proposed approach

segregates the users based on their interaction with the system and the best suited

visualizations are selected and displayed for the users. In this thesis an interactive

framework based on Contextual Control Model has been proposed. A usability study has

been conducted to validate the improvements in the usability of the proposed system

compared to the existing system.

v

DEDICATION

To my beloved mother who taught me the most important lessons of life.

vi

ACKNOWLEDGEMENTS

I would like to thank and express my sincere gratitude to my supervisor Dr. Xiaobu

Yuan, for his support, guidance and encouragement. His valuable hints and stimulating

suggestions has always helped me proceed with this thesis. Without his support and

guidance, this work would be impossible.

I would also like to thank Dr. Ahmed Azab and Dr. Luis Rueda, for being in the thesis

committee and spending their valuable time in providing me with encouraging feedback.

My special thanks goes to my parents and my sister for their patience and love they

provided to me during all times. Finally I would like to thank my friends Akansha,

Arshdeep, Harsh, Pawan, Ravinder, Ranjeet and Sahil for their encouragement and moral

support.

I would like to thank University of Windsor students who participated in the study of my

thesis. I am deeply grateful for the time and effort they spent on the test.

vii

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY .. iii

ABSTRACT ... iv

DEDICATION ...v

ACKNOWLEDGEMENTS ... vi

LIST OF TABLES ...x

LIST OF FIGURES ... xi

Chapter 1 Introduction and Motivation ..1

 1.1 Introduction 1

 1.2 Motivation 2

 1.3 Problem Statement 3

 1.4 Contributions 4

 1.5 Structure of the Thesis 6

Chapter 2 Software Customization ..7

 2.1. Traditional Software Engineering Methodology 7

 2.2. Software Product Line 9

 2.2. Service Oriented Architecture 11

 2.3 Integrating SOA and SPL 14

 2.4. Requirement Engineering 16

 2.5. Requirement Elicitation 17

Chapter 3 Software Visualization ..24

 3.1. Software Visualization 24

viii

 3.2. Visual Representations 26

 3.3. Software Visualization Techniques 28

 3.4. Different Types of Visualizations 31

3.4.1. Petri Net Based Visualization ...31

3.4.2. Directed Graph Based Visualization ...32

3.4.3. Requirement Model Based Visualization ..33

3.4.4. Block Based Visualization ..34

Chapter 4 Proposed Interactive Approach of Visualization ..35

 4.1. Introduction 35

 4.3. The Structure of the Proposed Method 36

 4.4. Contextual Control Model 37

 4.5. Different Types of Users 40

 4.6. Proposed Algorithm 43

Chapter 5 Implementation And Usability Study ..46

 5.1. Implementation 46

 5.2. Usability Study 55

 5.3. Proposed Usability Testing Method 58

Chapter 6 Usability Study Results ...60

 6.1. Introduction 60

 6.2. Task Description 61

 6.3. Requested Task 62

 6.4. Questionnaire 63

ix

6.4.1 Learnability ..64

6.4.2. Efficiency ..66

6.4.3. Error Rate ..67

6.4.4. User Satisfaction ...68

6.4.5. Necessity ...69

6.4.6. Problems ..71

6.4.7. Overall Opinion ...72

Chapter 7 Conclusion and Future Work ..75

7.1. Conclusion ...75

7.2. Future Work ...76

APPENDICES ...77

Appendix A. Questionnaire for Interactive Visualization Interface77

Appendix B. Questionnaire for Existing Interface ...78

Appendix C. Task Sheet for Existing System...79

Appendix D. Task Sheet for Interactive System...80

Appendix E. System Class Diagram ...81

REFERENCES ..82

VITA AUCTORIS ...89

x

LIST OF TABLES

3.1. Comparison of different visualization techniques ..30

6.1. Distribution of participants in the test according to their academic level60

6.2. Average results for all the students ...73

xi

LIST OF FIGURES

2.1. The Waterfall Model ...8

2.2. Basic Components of SOA ...13

2.3. Requirement model instantiated with book locating service22

3.1.An example of Petri Net ..31

3.2.An example of Directed Graph ..33

4.1.Structure of Proposed Method ...37

4.2.Internal Structure of Contextual Control Model ..39

4.3.Proposed System Architecture ...43

4.4.Pseudo Code of the System..44

5.1.DialogueInterface.java Class ...47

5.2.XMLModifier.java Class ...48

5.3.Dialogue Manager Interface ..49

5.4.Petri Net Based Visualization ..51

5.5.Directed Graph Based Visualization ..52

5.6.Requirement Model Based Visualization ..53

5.7.Block Based Visualization ...54

6.1.Comparison of Easiness and Score ..65

6.2.Comparison of Easiness and Understandability ..66

6.3.Comparison of Efficiency ..67

6.4.Error Rate Comparison ..68

xii

6.5.Comparison of Satisfaction ..69

6.6.Necessity Comparison ...71

6.7.Improvement Comparison ...73

1

Chapter 1

Introduction and Motivation

1.1 Introduction

During the initial stages of the evolution of software development there was not much

emphasis on the reusability of the software artefacts. The cost of the software for a

computer system was negligible compared to the cost of the hardware used. But with the

evolution of the more and more complex software systems the reusability of the software

artefacts has become much more important consideration.

The software has become much more critical part of any computer system. The reason for

that is the flexibility of software in modifying the system and also software’s strength in

adding a new functionality to the system, which perhaps it would be difficult to be

performed without it and only by means of modifying the hardware. Due to this increase

in the size and complexity of the software system there is a need to cut down the cost and

effort involved in deepening and customizing these systems. Therefore, in order to make

the system production’s process much more efficient, the concept of Software Product

Line Engineering is used [22].

Using the Software Product Line different software applications and other software

products can be developed by building reusable software artefacts and reusing these

software artefacts. By using SPL, some advantages can be gained such as reduction of

development cost and time, enhancement of quality, coping with evolution and

complexity and etc [23].

2

There is also a need to make this development process less complex and more user

friendly. The users using these systems have varying levels of knowledge and can be

from different domains. Software Visualizations can be used to improve the

understanding of the system and thus improving the overall usability of the system.

Recently so many software visualization techniques and tools are available but it is

critical to choose the most suitable one for a suitable activity in software development

process to do the most effective visualization for a specific software system [21].

1.2 Motivation

In last few decades the software development process has changed radically. The

software development process has come long way from the software systems with a few

lines of code to the software systems with millions of lines of codes. Although the

software systems have grown bigger and bigger and are now gigantic but as we can see

in most cases there are a lot of software systems that are not so different from others

when we see them at lower levels. These similarities at smaller level can be used to

develop the reusable software components or artefacts which can be used to combine and

develop a more complex software system. Software product line (SPL) engineering is a

paradigm to develop software applications with reusable software assets, which are

tailored to individual customers' needs [18]. This approach helps in reducing the

development costs of the software systems as we do not have to reinvent the wheel every

time.

By reusing services, and adopting SOA-based methods in SPL engineering, especially the

Semantic Web Service techniques (e.g. automatic service discovery and composition)

3

[22], the goal of automating software development could be achieved. A system based

on this approach has been developed in our research group which uses Software

Visualizations to help the user interact better with the system. But this does not help all

users as all the users can never have same level of understanding of the system they are

trying to develop. This motivates me to conduct a research on this particular technology

and solve the challenges associated with an interactive human computer interaction.

1.3 Problem Statement

In software industry due to the increased complexity and the large size of the software

systems now a day, the emphasis is on the reusability of the code. The code written for

one software system or an application is reused for a similar application and code is not

completely written from scratch.

SOA concept is used in Software Product Line; it will make a mass customization of

software application by reusing software artefacts which can be very beneficial, specially

time-wise and effort-wise. In Software Product Line the concept of Service Oriented

Architecture is used to develop automated software system for selection and matching of

reusable services to create new applications. The services are loosely coupled in order to

allow them to communicate with each other. The services can be composed based on the

selection, so that the best possible services.

Based on this fact, beforehand, Petri-Net based interface has been developed in our

research group [17], which interacts with the user who wants to do software

customization, in natural language and does the requirement elicitation process

automatically based on the ontology behind it. The visualization system uses Petri-Net to

4

provide the user with the visualizations. The ontology represents the knowledge of the

product features as well as their business logic. It represents the commonalities and

variabilities among a group of related artefacts and in this way it directs the dialogue

system to perform requirement elicitation [17].

The problem here is that the system can be used by a wide variety of users and amount of

knowledge of these users vary widely. The visualization system based solely on Petri-Net

is not very helpful for the users with lesser technical knowledge or the users who are

more interested in the business aspect of the software. The level of expertise, knowledge

and domain of interest vary widely across these users. But Software visualization for all

these users are same and reveal same sort of information. Therefore different types of

users should be studied and as per the needs of these users different visualization methods

best suited to their level and domain knowledge should be chosen. This research

identifies the need to study different types of users and the best suited visualization

methods for these users.

In the end a usability study of the system should be conducted to study the usefulness and

efficiency of the system and to justify the use of new method. The system should be

investigated to check if it improves the learnability, efficiency, and user satisfaction of

the system and reduces the error rate.

1.4 Contributions

This thesis presents an interactive approach of software visualization for software

customization. The purpose of this method is to enhance the usability of the system, and

improve the performance of the system by reducing time, cost and effort spent on

5

developing the software systems using the traditional development techniques. The

introduction of the interactive approach will reduce the effort spent on working with the

system which further leads to reducing the time and cost spent. The interactive software

visualization will be implemented in the graphical interface of the system, thus improving

the usability of the system.

The users are segregated into four groups based of their level of knowledge about the

software development and software customization process. The Contextual Control

Model (COCOM) is used for the classification of the users based on their actions. These

users will be provided different types of visualization interfaces as per their knowledge.

The software customization based on Software Product Line is still in initial stages and

the effort involved in the process is huge. The interactive user based approach of software

visualization for the software customization will decrease the effort, time and cost of the

process of software customization. It will allow the users with lesser knowledge of

software development process to customize software for them or to understand the flow

of the software being developed.

The Interactive approach of software visualization improves the human computer

interaction by providing different visualizations to different users for the better

understanding. It provides users a framework which is more friendly and interactive in

nature, thus improving the overall user experience.

A usability study will be conducted on real users to compare the existing system and the

proposed system, and to check whether the proposed system enhances the user

learnability for the real users.

6

1.5 Structure of the Thesis

The aim of this study is to outline the interactive approach of software visualization for

software customization. In chapter 2, a literature review and survey is presented on

software customization. Traditional Software engineering methodology, Software

Product Line, Service Oriented Architecture, integration of SOA and SPL along with

Requirement Engineering and Requirement Elicitation is discussed.

Chapter 3 discusses the central elements of Software Visualization. Visual

Representations, Software Visualizations Techniques and Different Methods of

Visualizations are described in detail. Chapter 4 describes the proposed Interactive

Approach of Software Visualization for Software Customization. The structure of the

approach is also discussed. Contextual Control Model and segregation of users on the

basis of this model is described in detail along with the algorithm for the interactive

approach.

In Chapter 5 implementation and proposed usability study for the verification of the

system is discussed. Chapter 6 details the results and analysis of the usability study

conducted in order to check the usability of the interactive visualization system. Chapter

7 conclude the thesis and proposes some avenues of future work.

7

Chapter 2

Software Customization

2.1. Traditional Software Engineering Methodology

No matter how software development is performed or what approach is taken the

essential task involved is problem solving. The way developers solve problems is

generally the same no matter what the problem is or the approach taken. Problem solving

involves four essential activities: requirements - gathering and documenting details about

the problem; analysis - understanding the problem in enough detail to ensure a correct

solution; design - finding and specifying an optimal solution to the problem; and

implementation (if needed) - implementing the solution in whatever form it takes [57].

The essential problem in software development is how to implement, using certain

technologies and within certain constraints, a particular information processing system.

Although there are associated problems of understanding the domain these are generally

non-software related. It can be argued that no matter what paradigm or approach is taken

to software development each of the problem solving activities has to be undertaken to

some extent. In essence, every developer goes through the requirements, analysis, design,

and implementation cycle, be it over an extended period, a week, a day, an hour or

minutes, and whether or not they document the results, discuss them with others on a

whiteboard, or just consider them informally within their head. There is no escaping these

activities [57].

A software development lifecycle (SDLC) gives a high level perspective of how the

different problem-solving activities may be worked through in phases by an individual or

8

team doing software development [57]. The most popular traditional model used is

Waterfall Model. The Waterfall SDLC was presented by Dr. Winston W. Royce as a

method for software development. It involves sequentially completing each phase in full

and then moving on to the next phase. In case of this Waterfall Model the progress is

often seen as flowing steadily downwards and hence it is named waterfall method.

The waterfall model is the most commonly used traditional model for the software

development and software customization. The figure 2.1 shows the waterfall model

structure:

Figure 2.1. The Waterfall Model

Requirements

Design

Implementation

Verification

Maintenance

9

The sequential phases in Waterfall model are [57]:

• Requirement Gathering and analysis: All possible requirements of the system to

be developed are captured in this phase and documented in a requirement specification

doc.

• System Design: The requirement specifications from first phase are studied in this

phase and system design is prepared. System Design helps in specifying hardware and

system requirements and also helps in defining overall system architecture.

• Implementation: With inputs from system design, the system is first developed in

small programs called units, which are integrated in the next phase. Each unit is

developed and tested for its functionality which is referred to as Unit Testing.

• Integration and Testing: All the units developed in the implementation phase are

integrated into a system after testing of each unit. After the integration the entire system

is tested for any faults and failures.

• Maintenance: There are some issues which come up in the client environment. To

fix those issues patches are released. Also to enhance the product some better versions

are released. Maintenance is done to deliver these changes in the customer environment.

2.2. Software Product Line

During the initial stages of the evolution of software development there was not much

emphasis on the reusability of the software artifacts. The cost of the software for a

computer system was negligible compared to the cost of the hardware used. But with the

evolution of the more and more complex software systems the reusability of the software

artefacts became more and more important consideration.

10

Traditionally, the software used to be applied on products was very small and simple. In

order to modify and produce a new product, it used to be much easier and cheaper to

copy, transport or replace the software than the hardware. The main focus of generating a

product was on the hardware and software did not used to play a key role in product

generation [26].

However, now, software plays a very critical role in any system. The reason for that is the

flexibility of software in modifying the system and also software’s strength in adding a

new functionality to the system, which perhaps it would be difficult to be performed

without it and only by means of modifying the hardware. Therefore, in order to make the

system production’s process much more efficient, the concept of Software Product Line

Engineering will be addressed [25].

Software Product line is a paradigm to develop software applications and software

products, by building reusable parts and reusing them. For this purpose mass

customization is being used which means large production of goods with taking into

account the customer’s individual requirements. For this purpose, we should focus on

commonalities and differences in the applications (in terms of requirements, architecture,

components and test artifacts) of the product line to be modeled in a common way [25].

By using SPL, some advantages can be gained such as reduction of development cost and

time, enhancement of quality, coping with evolution and complexity and etc [25].

Software Product Line Engineering Paradigm consists of two processes: Domain

Engineering and Application Engineering. Domain Engineering establishes a platform

and defines commonalities and variabilities of the product line. Our main focus in this

thesis is on domain engineering process Domain engineering is the process of software

11

product line engineering in which the commonality and the variability of the product line

are defined and realized. [25].

Application Engineering derives the application from the platform, which is built by

domain engineering. Application engineering is the process of software product line

engineering in which the applications of the product line are built by reusing domain

artefacts and exploiting the product line variability [25].

Although lots of research has been conducted on benefits of using Software Product

Lines for software development and how to scope and define and develop product lines

but only few approaches and tools are available for product derivation and the way utilize

the product line [26].

Compared to the effort spending on developing and modeling the software product lines,

little support is available for enhancing their utilization in practice,. Without effective

approaches to utilize the product lines, particularly the automated approaches, SPL could

not be widely accepted in industry. In other words, they will be of more academic value

than practical value [23].

2.2. Service Oriented Architecture

Service Oriented Architecture is a software architectural model used for automation of

service composition. Service Oriented Architecture separates single business software

automation logic into several smaller units of logic. These smaller units are simpler,

distinct and distributed in nature. Loose coupling, abstraction and reusability of business

functionalities are the major advantages of the Service Oriented Architecture.

12

“Service Oriented Architecture is an information technology architectural approach that

supports the creation of business processes from functional units defined as services.”

[27].

In Service Oriented Architecture the reusability of code is considered of great importance

and thus all the smaller individual units of logic can be reused in several different

applications. A single or a group of these smaller units of logic which can work

independently are termed as Services. Service Oriented Architecture provides several

techniques for composing these services to build a complete business process. Service

Composition is the process of combining services based on the service selection.

Services are modules of business or application functionality. Service Oriented

Architecture consists of services, which are shared and reusable on an IT network and

they communicate with each other. This communication can either be held by data

passing between services or by coordination of two or more services for doing a common

activity [28].

In Service Oriented Architecture the reusability of code is considered of great importance

and thus all the smaller individual units of logic can be reused in several different

applications. A single or a group of these smaller units of logic which can work

independently are termed as Services. Service Oriented Architecture provides several

techniques for composing these services to build a complete business process. Service

Composition is the process of combining services based on the service selection.

Generally most of the approaches use SOAP.

The Service Oriented Architecture consists of three types of agents. These are:-

13

1. Service Provider

The Service Provider is the component responsible for creating and publishing a service

to a registry. It also makes the service available to the other components through the

internet.

2. Service Requestor

The Service Requestor performs service discovery on the service registry to find the

needed service and then access that service.

3. Service Broker

The Service Broker component aides service providers and service requestors to find

each other by acting as the registry of services.

Figure 2.2 Basic Components of SOA

Service
Broker

Service
Requestor

Service
Provider

Locate Publish

Bind

14

These SOA agents perform find, bind and publish operations. Service provider develops

and publishes services’ descriptions and their access information in service registry.

Service requester tries to find the most suitable service in the service registry and by

means of available access information in service registry, will bind the required service to

the service provider to invoke required services [30]. Service Oriented Architecture helps

in achieving loose coupling between the services, abstraction and reusability of business

functionalities [30].

2.3 Integrating SOA and SPL

One of the major benefits claimed for SOA is the flexible building of IT solutions that

can react to changing business requirements quickly and economically. SOA promises a

vision where service providers offer their services and service requesters search and

discover these services based on their business needs. In SOA, service providers are

usually decoupled from service requesters, thus requesters and providers can change

independently of each other. In addition, application development is usually done by

assembling services rather than developing components and code. Further, inter-

organization collaboration can occur in a decentralized and highly distributed manner. As

a result, variability in SOA has different challenges to deal with than in non-SOA

systems [24].

Although, there are many differences between typical software product lines and service-

oriented architectures, SPL concepts can be used to model SOA variability. Since

services in SOA could be used by different clients with varying functionality, SOA

variability modeling can benefit from SPL variability modeling techniques. Service

15

oriented systems can be modeled as service families, similar to the concept of SPL. The

main goal of SPL is the reuse-driven development of SPL member applications by using

reusable assets from all phases of the development life cycle. This goal is similar to the

goal of SOA where flexible application development is a common theme [26].

However, SOA lacks in supporting high customization and systematic planned reuse. It

means that it is possible to use certain services for software development but if any

changes happen to the order or participants of service composition services, which are not

designed to be highly customizable and reusable, would not support variability. Thus SPL

engineering, which basically has the principle of variability, customization and

systematic planned reuse, can be used to aid SOA for better functionality and achieve

these benefits [18]. Furthermore, the integration of SPL and SOA concepts give the

ability of reusing existing services instead of continuously developing them from scratch

[27].

Combining Service Oriented Architecture and Software Product Line improves the

practical implementations of the Software Product Line. It makes the software

development process more efficient and improves the quality of the final software

product. It decreases development costs and effort, improve time to market, application

customized to specific customers or market segment needs and competitive advantages

[18]. The integration of SPL and SOA concepts give the ability of reusing existing

services instead of continuously developing them from scratch [27].

As a conclusion for this part the concepts of SPL and SOA are in no way mutually

exclusive and where they differ they act as each other’s complement [19].

16

2.4. Requirement Engineering

Requirement engineering is recognized as the most critical part of the entire software

development process [32]. Typically, over 40% of errors in a software project are from

requirement, while they need 10 more times of costs to repair than other errors.

“Requirements Engineering (RE) is the systematic process of developing requirements

through an iterative cooperative process of analyzing a problem, documenting the

resulting observations in a variety of representation formats, and checking the accuracy

of the understanding gained.” [31].

Traditional process-based or scenario-based requirement engineering methods predefine a

group of processes and corresponding guidelines. And the requirement engineering

activities and deliverables are carried out following the guidelines [31]. However, it is

very often that when the processes are ongoing, some important information is not

available yet. So, engineers have to repeat the processes, which results in project delay

and additional cost [32].

The process based requirement engineering methods predefine a group of processes and

corresponding guidelines, and the requirement engineering activities and deliverables are

carried out following these guidelines. But in most of the cases the requirements cannot

be frozen before the initiation of the development phase. Moreover very often during

these processes some important information is not available. In these cases the process is

required to repeat when this information is available, this increases the cost of

development and also delays the project.

Distinguished from traditional process-driven requirement engineering, knowledge-

driven requirement engineering, as a novel requirement engineering paradigm, is

17

performed under the direction of domain knowledge. As a result, hidden information can

be retrieved and used to direct the requirement engineering process. The outcome is

expected to be more mature and complete, and rework can be dramatically reduced [32].

Ontology based requirement engineering is a knowledge-driven requirement engineering

method which has following major advantages:

1. It provides formal representation for both requirement documents and

knowledge

2. It describes the problem domain with varying degrees of formalization and

expressiveness

3. It is well suited as an evolutionary approach

4. It is used to support requirements management and improve requirement

artefacts’ traceability [33].

The previous thesis from the same research group, which has been conducted by Zhang

[15], is titled as “An Interactive Approach of Ontology-Based Requirement Elicitation”.

In that project a requirement elicitation approach has been proposed for SOA-based SPL

engineering as a programming model for realizing the interactive requirement

engineering [15].

2.5. Requirement Elicitation

One of the essential tasks of Requirement Engineering during software engineering is

Requirement Elicitation. Researches show that a major cause of problems in software

projects is inadequate requirement engineering [26]. Consequently, the basic prerequisite

18

of software product line, which is a software developments paradigm, is requirement

elicitation process, which shows the commonalities and differences of the requirements

[26].

There are different techniques that can be used for requirement elicitation. These

techniques are either conversational which is mainly conducted by interviews with two or

more people, observational which can be done by observing people when they are

carrying out their routine job, analytic which means exploring existing documentation or

knowledge gained from either conversation or observation and synthetic which is

combining conversation, observation and analytic methods into a single method. In

practice these techniques are not adequately applicable [32].

In [33] it is mentioned that useful, useable and desirable software products are created

using interaction design. Software developers do not benefit from interaction design

though. The tools that software developers use for developing are insufficient and not

appealing for them. Although the importance of using Human-Computer Interaction

(HCI) concept in Software Development Process (SDP) is not very clear for many

software developers, HCI experts have been tried to show that the integration between

these two, can cause better user satisfaction derived from a user-centered SDP [34].

However, conducting an interactive software engineering paradigm is still an issue.

One possible idea is to take advantage of both SOA and SPL concepts. SOA can be used

in order to make it easier for the software engineers by introducing services as loosely

coupled software functionalities eliminating the lower-level complexity. On the other

hand SPL is useful for managing the variable software engineering. In interactive

software engineering, machines can be used to guide the users to select reusable software

19

assets and implementing the candidate application by composing the ordered services

[15].

The previous thesis from the same research group, which has been conducted by Zhang

[15], is titled as “An Interactive Approach of Ontology-Based Requirement Elicitation”.

In that project a requirement elicitation approach has been proposed for SOA-based SPL

engineering as a programming model for realizing the interactive requirement

engineering [15].

The proposed interactive model is a dialogue-based system, which interacts with users in

a natural language. The way dialogue system works is, it extracts and analyses the

expressions produce by human-beings users in order to accomplish a task and generates

an expression in a natural language for the user accordingly. Therefore, dialogue system

can be a convenient way for human-machine interaction.

In the previous proposed dialogue system, slot-filling tasks is considered for the

requirement elicitation process, in which the user knows about the goals and has the

information about doing the task. These tasks will be done based on knowledge base of

the dialogue system. Ontology represents the common knowledge within a domain. It

means that it provides shared vocabulary to construct the concepts, objects and their

properties and relations of a domain or a task, which can cause common understanding of

the structure of information between people or software agents. By using ontology, the

common concepts of a domain can be defined by experts and the knowledge can be used

by people with any background and without professional training [15].

To develop ontology, the concepts in the domain should be defined, and a hierarchical

order should be arranged between them. The slots and the allowed clauses for those slots

20

also should be defined. At the end the instances and the values for slots of instances

should be filled [41].

The model developed in the previous project, integrates the requirement engineering

knowledge with service-oriented knowledge. Since SOA encapsulates application

functionalities into loosely coupled services, software applications can be implemented

by discovering, composing and invoking services in SOA. The ontology of services

makes automatic service discovery and composition possible [50]. In ontology there

exists a class called ServiceProfile, which contains the characteristics of services and is

used to match with the client’s requests. It happens in this way that for the reason of

discovering services, the ServiceProfile of the requestor automatically will be matched

with the provider’s ServiceProfile through semantic capability matching [50] and if the

matching succeeds the desired services are found.

In the domain of requirement elicitation the requirements can be classified into three

categories of function, quality and softgoal. Each of these categories have different roles

in the system and also for all of them another factor called rank is defined which is

needed to direct the requirement elicitation process and is expressed in the ontology

model. Functions are the functionalities in the system that the user can order. Quality is a

non-functional constraint that imposed on a function. Softgoals are non-functional

constraints impose on the whole system environment. In between each of these three

types of requirements, some relationships exist such as generalize, decompose, rely,

contradict, associate, hasRank and invalid. These relationships will be discussed briefly

as follows [15]:

21

 Generalize relationship is defined to show that an instance of function, quality and

Softgoal is also an instance of requirement.

 When requirement 𝑥 decomposes to y, y is a less complex requirement of the

same type as x.

 Requirement x relies on requirement y it means that realization x relies on

implementation of y.

 When requirement x and requirement y contradict it means they are not supposed

to be realized with each other in the product software at the same time.

 Function x associates with quality y.

 HasRank relationship shows that requirement x has a unique rank r.

 Invalid relation ship shows that there is an invalid relationship between

requirements x and y.

For instantiating the ontology model, first all these relationships should be established

between the available requirements and the following procedure will show the

instantiation of the ontology [15]:

1. The main functions which are the roots of the decomposition tree will be

identified

2. If any children of the root contribute to the composition with their parent, they

should be decomposed by the Decompose relationship and if the children of

children are also decomposable the same story should be repeated on them till

there is no composition between parents and children.

3. All the quality constraints should be found and the associate relationship

between children and the corresponding function should be established

22

4. Sofgoals should be identified and decomposed.

5. Rely and contradict relationships should be established

6. A rank should be assigned to each of the requirements based on their

importance.

Based on what has been discussed a graph as Figure 2.1 will be produced.

Figure 2.3. Requirement model instantiated with book locating service [19]

The requirements will be offered to the user one by one based on the rank assigned to

them and the user should choose from them. If the requirement is essential it will be

picked automatically and regardless user’s opinion. The functions will be evaluated first

and after that all the qualities and evaluation of softgoals will be followed. All the

requirements will be met by the dialogue system. If the user decides to drop a

23

requirement ‘A’, the requirement ‘B’ which has the rely relationship with the requirement

‘A’ will be dropped as well. If a requirement ‘C’ is decided to be picked by the user and

another requirement ‘D’ has the contradict relationship with the requirement ‘C’ will be

dropped and the requirement with the rely relationship will be picked [15].

24

Chapter 3

Software Visualization

3.1. Software Visualization

Card et al. define visualization as “the use of computer supported, interactive, visual

representations of data to amplify cognition” [5]. In simple words Visualization is the

graphical/visual representation of any knowledge to make the understanding easier.

Visualization aids in simplifying the complex ideas for better understanding.

Software Visualization is the process of producing the visual image of a software system

for the better understanding. There are different aspects of a software system which can

be visualized, generally the structure of the software, major algorithm, simpler

components of the software or the runtime behavior are visualized.

Software Visualization can be defined as “a representation of computer programs,

associated documentation and data that enhances, simplifies and clarifies the mental

representation the software engineer has of the operation of a computer system” [36]. The

use of software visualization helps in the easier understanding of the software system and

thus it reduces the effort and time spent on different phases of the software development

and software customization. By means of visualization, developers and stakeholders can

obtain an overall point of view of the software structure, software logic or explain and

communicate with the development process [39]. Generally, software visualization is

mainly used for program behavior exhibition, logical debugging and performance

debugging but it is fundamentally concerned with software comprehension [37]. By

providing a good graphical representation in order to visualize the software, a better user

25

understanding of the system can be more promising than textual representation of the

software [39].

Software visualization needs not be attractive or impressive but it should evoke visual

understanding for better software comprehension. Software Visualization facilitates the

human understanding and effective use of computer programs by relying on the crafts of

typography, graphic design, animation, cinematography, and interactive computer

graphics [36]. In overall graphical visualization can provide so many other benefits faster

learning, faster use and problem solving, more charming etc. [37].

The major problem in the implementation of the software visualization a wide variety of

applications is the lack of scalability and flexibility. Most of the visualizations

implemented these days are specific to the needs of that particular project or software.

The software visualizations implemented for a specific scenario are not easily

transferrable to another scenario.

The visualization of a software deals with the representation of the software component

in some visual form. For a different application the visualization needs to be changed

according to the needs of the new systems. To solve this problem a few generalized

software visualizations have been created so that they can be used across different areas.

But in case of these generalized software visualizations, generally the visualization is too

general to be practically implemented in a certain area of application. In order to use

these generalized visualizations a lot changes are required to use these in a specific area.

The efforts needed to be put into this are generally way too much compared to the

efficiency of these visualizations

26

Software is an intangible object which cannot be physically seen or felt. Software

Visualization deals with the representation of the intangible software entities in the form

of something tangible [10]. In software system we have a large amount of information,

and it is hard to decide what information software visualization needs to represent in

order to make the software comprehension easier.

The Software Visualization should be designed in such a way that it can provide all the

required information in such a visual format which makes the information easy to

understand. The level of detail should be decided such that the information provided

through the visualization should neither be too general nor too specific.

3.2. Visual Representations

Software is an intangible object which cannot be physically seen or felt. Software

Visualization deals with the representation of the intangible software entities in the form

of something tangible [10]. In software system there is large amount of information, and

it is hard to decide which information software visualization needs to represent in order to

make the software comprehension easier.

The Software Visualization should be designed in such a way that it can provide all the

required information in such a visual format which makes the information easier to be

understood. The level of detail should be decided such that the information provided

through the visualization should neither be too general nor too specific. Generally a

single visualization is used for different users, but this provides information which is too

general for a few and very specific for a few.

27

There are number of visualization techniques available for implementing software

visualization. Different types of visual elements like points, lines, shapes, trees, graphs,

texts, textures can be used to represent different entities and attributes. In some cases

more than one visualization technique can be applied for a system [9].

There are different perspectives of the visual representations on the basis of which we can

categorize different software visualization techniques. The visualizations can be static or

dynamic based on the nature of the visual technique used. The static visualization do not

comprehend the changes on runtime. An example of static visualization is view of the

source code with colors [9]. Dynamic visualization changes over every time based on

information from the analysis of execution of a program [10] and the data generated at

the runtime such as data flow or control flow [7].

On the basis of the number of dimensions most commonly visualizations are Two

Dimensional or Three Dimensional. Two-dimensional software visualization tools mainly

involve graph or treelike representations, which may contain many nodes and arcs. In

some cases there can be too much information which cannot be easily represented in two

dimensions, in these cases the need of extra spatial dimension is required, which makes

the visual representation of the information much easier [56].

The best suited visualization technique should be chosen keeping mind the target users

for the visualization, the complexity of the visualization, and goal of the visualization.

The level of knowledge and experience of the users should be considered while using a

particular type of visual representation. The usages and limitations of the existing system,

which is going to be visualized, should also be investigated [56]. The technique that

mostly meets the requirements of the system should be implemented.

28

3.3. Software Visualization Techniques

The main purpose of using visualization in a system is to make it more comprehensible

and easy to use for the users. The visualizations help users to have a more clear and

precise point of view of the system while spending lesser time on the system. It will

happen in this way that instead of reading the comments and memorizing the structure of

the system, users will see the flow of the system dynamically while working with the

text-based system. With the use of the visualizations users have an overview of the

system in front of them. Different visualizations can provide different information about

the users or they can provide the same information in different ways. These different

visualizations can be used for different types of users to provide them the information

they need and which helps them using the system more efficiently and effectively while

decreasing the number of errors or mistakes made by the users while using the system.

The dialogue-based software is used in requirement elicitation phase of software

development process. In a dialogue-based software system the user interacts with the

software by responding to the software with the best possible inputs. The system is SOA

–based and so in order to make the requirement elicitation process easier for the user with

the help of visualization, the visualization should be selected keeping in mind that it

should be well suited for the SOA-based systems. Service Oriented Architecture (SOA)

has a layered architecture so in many papers [18, 27, 28, 29] it is discussed that the

appropriate approach for SOA visualization is a layered approach. It is one of the SOA’s

advantages that multiple perspectives within an organization can be taken into account

[30] since basically SOA consists of both technical and functional aspects. In the first

29

layer, the flow of the activities, which are being processed in the system, can be shown.

The next layer can visualize the services and the relationships between them. Even more

layers such as application layer which shows the implementation of the functionalities

provided by services in the service layer in more details, can be used depending on the

level of abstraction and the type of users [9].

The required visualization methods should be dynamic in order to show the flow of the

system. Also, because in some parts of the system some services have the same rank to be

evaluated the chosen visualization technique should be able to show the concurrency and

parallelism. Because SOA is used in this system, then it should provide a layered design

for visualization. For choosing the number of dimensions for the system, both two and

three-dimensional can be chosen depending on the level of details needed to be

illustrated. The main objects, which should be visualized, are few tasks such as

Evaluation, Pre-Evaluation, Picking (Yes) and Abandoning (No), that are repeatedly

being performed in the system. There is a flow in the system, which shows the order of

firing of the tasks in the system. This flow should be clearly presented to the users. Also

existing services, which are the very requirements that are going to be elicited, should be

depicted.

Complexity is another major factor while choosing a suitable visualization technique. The

complexity of the used visualization should be such that the visualization should be self-

explanatory and the process of understanding the visualization should not be time

consuming or should not require too much effort on the part of the user. But the

complexity can be relative in case of human computer interactions. Different users with

varying levels of knowledge can regard a visualization as very simple or very complex

30

based on their expertise. So the visualizations should be chosen in such a way that they

are suitable for a large group of users.

Many graphical visualization techniques exist that can depict the concept and the

workflow of the interactive requirement elicitation system. A list of the most suitable

techniques, which can be used to visualize the workflow of software systems along with

their advantages and limitations, is shown in Table 3.1.

Description Advantages Drawbacks

Petri nets

Based

A graphical tool for

description and

analysis of

concurrent

processes

Represents process features

such as parallelism,

synchronisation and

conflicts / Allow arcs to

flow from any number of

states

The model is very

flexible but its

flexibility results in

loss of focus for users

who are less

interested in formal

analysis

Directed

Graphs

Based

Shows overall flow

of the system

Less complicated than Petri

Nets, helpful in retaining

user interest due to

simplicity, Provides the

required details for analysis

Although it is simpler

than Petri Nets still it

can be very

complicated for users

with lesser knowledge

Requirement

Model Based

Describes the

requirement model

of the system

Based on requirement

model of the system, thus

helping in the correct

requirement elicitation

Does not provide the

flexibility, concurrent

processes are harder

to analyse

Block Based

Visualization

Simple

representations of

the requirements

Useful for users with

almost no knowledge of the

system as it provides a very

general overview

Provides no detail

about the flow among

different

requirements.

Table 3.1 Comparison of different visualization techniques

31

3.4. Different Types of Visualizations

3.4.1. Petri Net based Visualization

Petri net is a type of visual communication tool same as flow chart or other software

development diagrams but the main advantage of Petri net is, it can be used to analyze

and simulate the concurrent and dynamic activities of systems” [24]. Petri nets are a very

well-known formalism technique for demonstrating the workflow behavior of the system.

Petri-net for the first time was presented by C.A.Petri in 1962 and since then lots of

researches focused on petri nets. The ability to clearly represent the concurrency related

concerns like parallelism, synchronization and etc. in a graphical way is one of the best

advantages of petri nets [25].

Figure 3.1. An example of a Petri net [26]

Petri-net has initial marking 𝑀0 and two types of nodes called places and transition,

which are illustrated by circles and rectangles respectively. An arc will connect each

place to a transition and each transition to a place. A marking is assigned to each place

demonstrates the number of tokens existing in that place. If marking of a place is zero, it

means that place is empty.

There are some rules, which are known as firing rules and are applicable to a petri-net

and change the marking of the petri-net. These rules are as follows:

32

1. A transition t is called enabled when there is at least one token in each input

place p of t.

2. An enabled transition t will be fired when its associated event occurs.

3. The firing of enabled transition t removes one token from each input place p

of t and adds one token to each output place p of t [24].

A petri net is a 3-tuple <P, T, W> where:

 𝑃 = {𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑚} is a finite set of places

 𝑇 = {𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑚} is a finite set of transitions

 𝐹 ⊆ (𝑃 × 𝑇) ∪ (𝑇 × 𝑃) is a set of arcs from a place to a transition or from

a transition to a place (flow relationship) [24].

3.4.2. Directed Graph Based Visualization

A graph is defined as a representation of a set of objects where some pairs of these

objects are connected to each other. The interconnected objects are known as vertices and

the connections between these vertices are called edges. A graph in which each graph

edge is replaced by a directed graph edge is called directed graph. The directed graphs do

not have multiple edges or loops.

An arc e = (x,y) is considered to be directed from x to y; y is called the head and x is

called the tail of the arc; y is said to be a direct successor of x, and x is said to be a direct

predecessor of y. If a path made up of one or more successive arcs leads from x to y,

then y is said to be a successor of x, and x is said to be a predecessor of y. The arc (y,x) is

called the arc (x,y) inverted.

33

Figure 3.2. An example of a Directed Graph

3.4.3. Requirement Model Based Visualization

The requirement model provides the overview and structure of the requirement elicitation

process in this system. The requirement model can be used for explaining the requirement

elicitation process graphically. So a requirement based visualization method can used to

provide the overview of the requirements and their relationships with each other.

The Requirement Model Based Visualization provides an effective method for the

graphical visualization of the system. This visualization very helpful for the users to

understand the requirements of the system and they can easily keep track of all the

requirements and their relationships (which requirement is dependent upon other

requirement or which requirement is essential or which requirements have to be selected

in tandem). It gives an easier overview of the requirements and makes it easier for the

user to know which requirements have been selected and which requirements have been

dropped.

34

3.4.4. Block Based Visualization

Simple visualization methods can provide the user with the basic information about the

system while hiding the complexity of the system from the user. A visualization can be

regarded as simple if it is self-explanatory to most of the users. The visualization should

fundamentally provide a user an overview of the system and the current status or progress

that has been made at that point of time.

The Block based visualization can be used for this purpose. In case of the Block Based

visualization the basic operations or actions are represented as simple blocks. In case of

the requirement elicitation system, a block based visualization method can be used such

that the requirements are represented by these simple blocks. The block based

visualization provides an overview of all the requirements and does not deal with the

connection and links between these requirements. The user is given an overview of which

requirement has been selected and which requirement has been dropped.

35

Chapter 4

Proposed Interactive Approach of Visualization

4.1. Introduction

In any Software Development Life Cycle or Software Product Line Engineering there are

many users working on a single software system. These users work in different groups or

teams, each team has an assigned work, and members of a team have similar work. These

users work on different aspects of the software systems. In the Software Product Line

System based on SOA the mass software customization is made easier by using the

smaller software artefacts as the building blocks for the software system.

In the previous research conducted by Vida Sadri Petri Net Based Visualization is used in

the system to help the users interact with the dialogue-based system. As mentioned in the

[16] the main group of people who are going to take advantage of this visualization

should be software developers. However, it is a good idea to make it also easy for people

with business background to use this software in order to develop their required systems

by themselves. In this thesis, the main focus is to limit the visualization to the people with

computer background specially software developers. It is a difficult job to keep both

groups with diverse expectations from the system satisfied.

The system has been tried to be designed in a way that, working with it, be as easy as

possible even for people with no specific experience in working with computers.” So in

the Petri-Net Based Visualization system the main emphasis is on the users who have

knowledge about the software systems as well as some experience with the development

of software. It was evident from the usability study conducted for the above mentioned

36

research that the system was not as useful for the people with lesser knowledge about the

software development process.

4.3. The Structure of the Proposed Method

The interactive visualization approach has to be included as the part of the previously

developed system. The Petri Net based system based system designed previously by Vida

Sadri [17] consists of five components: Dialogue Interface, Graphical Visualization, I/O

Controller, Dialogue Manager and Knowledge Base. The Interactive Visualization

component will be added to the system between Graphical Visualization and I/O

Controller components.

In the previous system the answers were passed from the Graphical Visualization

component to the I/O Controller. But in the new system the answer will be passed

through the Interactive Visualization component. The Interactive Visualization

component decides the best suitable visualization for the user. The graphical visualization

component will provide the user with that particular visualization. The answer form the

Interactive visualization will be passed to the I/O controller. The user’s answer is

accepted and passed to Dialogue Manager if it matches with the saved answer options, if

not user is asked to enter correct answer. The user’s answer will be converted to the

format that can be processed by the machine and will be passed to the dialogue manager.

The dialogue manager will consult the ontology knowledge base and will generate an

answer subsequently. This answer will be passed to the I/O controller and visualization

components and the user can read the answer in the dialogue interface and also observes

37

the changes occur in the system on the graphical interface. These changes will be shown

by token moves and color changes in the visualizations and background services.

Figure 4.1. Structure of Proposed Method

4.4. Contextual Control Model

Contextual Control Model was developed by Hollanagel to control and analyze team

behavior based on cognitive modes. In this model the system decides what action to take

next according to the context of the situation. The behavior is analyzed at macro level

instead of the micro level [56].

Interactive Visualization

Graphical Visualization

Dialogue Interface

Ontology Knowledge Base

I/O Controller

Dialogue Manager

38

A contextual control model implies that actions are determined by the context rather than

by any inherent relations between them. The focus of a contextual control model is

therefore on how the choice of next action is controlled rather than on whether certain

sequences are more proper or likely than others.

There are four different modes for the control. These are:-

1. Scrambled

The choice of next action is completely unpredictable or haphazard. Scrambled

control characterizes a situation where there is little or no thinking involved in

choosing what to do.

2. Opportunistic

The next action is chosen from the current contest alone based on the salient

features rather than on more durable intentions or goals. The person does very

little planning or anticipation, perhaps because the contest is not clearly

understood.

3. Tactical

Performance is based on some kind of planning, hence more or less it follows a

known procedure or rule. Planning is however of limited scope and the needs

taken into account may sometimes be ad hoc.

39

4. Strategic

The person considers the global context, thus uses a wider time horizon and looks

ahead at higher level goals. The strategic level should provide a more efficient

and robust performance, and therefore be the ideal to strive for.

Figure 4.2: Internal structure of Contextual Control Model [56]

In the dynamic system, the individual’s transition between COCOM controls modes to

maintain the control over the dynamic condition, which in turn depends on the current

context of the situation. It provides a useful framework to view the changes in cognitive

work in response to contextual features such as time limit and information availability.

Control in this model is conceptualized as planning what to do in the short-term and

within the time horizon of the system with which the human is interacting.

Strategic

Tactical

Opportunistic

Scrambled

40

4.5. Different Types of Users

As discussed in previous chapters’ for a software system there are users with different

level of understanding and knowledge. These users have different domains of expertise

and even in case of users from same domain the level or expertise varies widely. Based

on the four contextual control modes users can be divided into four categories

considering their level of knowledge and expertise. These users directly relate to the

different contextual control modes discussed above. The categorization of the user is

discussed below:

1. Experts

The Expert user is the one who has highest level knowledge about the software

development and software customization. These users are well versed with

software concept like classes, objects, class relations, functions and function calls

and other programming related stuff. They are more concerned about the details

of stuff and how it works.

Expert Users favors the more detailed information in the visualization and is able

to understand more complicated and technical types of visualizations. The

decision making in case of these expert users relates to the Strategic contextual

control mode [56]. When these users are working on customization of a software

system they have long term goals related to the selection and rejection of the

required services. The interaction with the dialogue manager for these users

usually takes lesser and more consistent time. The error rate of their responses is

far less than other types of users with lesser knowledge.

41

2. Professionals

These users are those people who have the knowledge about the target system,

system needs and requirements, but they may or may not have any programming

experience or not. These users are very clear about what the system should do but

they have lesser knowledge about how it should be done. The planning for these

users is of limited scope and the needs taken into account may sometimes be ad

hoc.

The decision making in case of these users is tactical in nature when referenced

with the contextual control model [56]. These users will interact swiftly with the

dialogue manger or the software system and more often than not the responses

will be relevant and correct with context of the end goals or final requirements.

3. Amateurs

The Amateur Users have almost no knowledge about the software customization

or software development. They know what to expect from the customized

software system but they don’t have any idea about the working of the system.

These users know about certain procedures or rules but they lack the in-depth

knowledge about the system.

The decision making in case of these users relates to the Opportunistic contextual

control mode [56]. There is very little planning to execute the required tasks and

very little anticipation regarding the future requirements. The context of the

problem is not very clearly understood and the decisions are made after analyzing

42

each and every requirement at that particular time. These users take longer in

responding to certain requirement needs and the results are not consistent.

4. Novice

These are the users who lack technical knowledge as well as the business

knowledge of the software system. The human computer interaction for these

kinds of users is completely unpredictable or haphazard. There is little or no

knowledge about the visualization about the technical aspects of the system.

These types of users relate to Scrambled contextual control mode which

characterizes a situation where there is little or no thinking involved in choosing

what to do [56]. This type of users make random guesses and they are much more

prone to make mistakes during the requirement elicitation process.

43

4.6. Proposed Algorithm

Figure 4.3 provides an overview of the architecture of the proposed system. The

Visualization platform is responsible for displaying the visualizations to the user. The

Requirement elicitation processor processes the responses and keep track of elicitation

process. COCOM mode selector chooses the contextual control model as per the user

response history and then the visualization selector selects the visualizations based on the

COCOM mode, and then these are displayed by visualization platform. Response History

Store and Visualization History Store keeps track of response history and visualization

history respectively.

Figure 4.3. Proposed System Architecture

44

1. FOR each user response RESP

2. Process_User_Response(RESP)

3. Response_History = Get_Response_History()

4. Visualization_History = Get_Visualization_History()

5. COCOM_Mode = Check_COCOM_Mode(Response_History, RESP)

6. IF COCOM_Mode = strategic

7. Updated_Pref_Visualization = Select_Visualization(Policy_Strategic,

Visualization_History)

8. ELSE IF COCOM_Mode =tactical

9. Updated_Pref_Visualization = Select_Visualization(Policy_Tactical,

Visualization_History)

10. ELSE IF COCOM_Mode =opportunistic

11. Updated_Pref_Visualization =

Select_Visualization(Policy_Opportunistic, Visualization_History)

12. ELSE IF COCOM_Mode =scrambled

13. Updated_Pref_Visualization = Select_Visualization(Policy_Scrambled,

Visualization_History)

14. IF Current_Visualization == Updated_Pref_Visualization

15. Update_Visualization(Current_Visualization)

16. Display_Visualization(Current_Visualization)

17. ELSE

18. Pass_token(Current_Visualization, Updated_Pref_Visualization)

19. Update_Visualization(Updated_Pref_Visualization)

20. Display_Visualiation(Updated_Pref_Visualization)

21. Set_Current_Visualization(Updated_Pref_Visualization)

22. Append_To_Visualization_History(Current_Visualization)

Figure 4.4. Pseudo Code of the System

45

The pseudo code executes for each and every response entered by the user.

Process_User_Respnse is called to process the user response in context to the

requirement being considered. If the response is valid then the requirement can be

evaluated, pre-evaluated, picked, or dropped. In case the response is not valid user is

asked for a valid response. User’s response history and visualization history are retrieved

by the system. The contextual control mode is computed based on the user’s response

history and the last response. Based on this Contextual Control mode most preferred

visualization is selected for the user.

If the preferred visualization is same as the current visualization being displayed then the

visualization is updated. In case the preferred visualization is different from the current

visualization being displayed a token is passed from the current visualization to preferred

visualization. This preferred visualization is updated as per the user response and then it

is displayed to the user. Visualization history is updated with the latest preferred

visualization.

46

Chapter 5

Implementation and Usability Study

The main objective of this thesis research is to provide a visualization system which can

cater to the needs of different types of users based on their interaction with the software

customization system. In this chapter, the implementation of the interactive visualization

system in a software customization system will be discussed. This system has been

implemented to improve the human computer interaction and to make the software

customization process easier and understandable to users with lesser knowledge about the

software systems and software development. This chapter will also discuss a usability

study to verify whether the proposed interactive system is actually helpful to the real

users.

5.1. Implementation

In this thesis interactive graphical interface implementation is done by Java 7.0 on

Windows 8.1 operating system. For coding and debugging Eclipse IDE (3.6) is being

used. A GUI simulator called “Rakiura JFern” which is a Java-based framework used to

design the visualizations used in the implementation.

The interactive visualizations systems works along with the text based system. The user

should work on the software customization by interacting with the dialogue-based system

and checks the flow of the process in the interactive graphical interface. All the

requirements are shown in some rectangles in the background of the visualized system.

47

The interactive approach has been implemented in the system by creating some new

methods and by modifying some existing methods being used for the requirement

elicitation, text based dialogue interface and Petri Net based dialogue interface. The

DialogueInterface.java class is responsible for the main interface of the system. Most of

the work related to the implementation of the interactive system has been carried out in

this class. The figure below shows the list of methods in DialogueInterface.java class.

Figure 5.1. DialoguedInterface.java Class

Following new methods have been created:

void interactiveVisualEval(String) : This method is used to perform the visualization for

all evaluation actions in the requirement elicitation process.

48

void interactiveVisualPicked(String) : This method is used to update the visualizations

when a requirement is picked by the user.

void interactiveVisualDropped(String) : This method updates all the visualizations when

any requirement is dropped by the user.

void interactiveVisualPreevaluate(String) : This method updates the visualizations when

a requirement is pre-evaluated.

void interactiveVisualFlow(String) : This method controls the flow of control in the

visualizations.

void selectInitLevel(String) : This method is used initialize the preferred visualization

method for a user.

int checkPrefVisual() : This method checks the preferred visualization method for a

particular user and returns a value based on that.

Figure 5.2. XMLModifier.java Class

In XMLModifier.java Class all the methods were updated to include the logic for

interactive visualization approach. The methods were updated so that they can be used for

49

creating four different visualizations and in such a way that all the four visualizations are

updated at the same time when a user responds to the dialogue interface.

There are changes made to the other classes such as Requirement.java,

InteractiveRE.java, BookShoppingNet.java. All these classes are modified and updated to

accommodate the new interactive approach.

There are four different visualizations used in the interactive system, but one time only

one of these is displayed on the screen to the user. The best suited visualization for any

particular user is deduced by system based on the algorithm discussed earlier in this

thesis. The interactive graphical interface helps the user in knowing and understanding

the ongoing software customization process. The best suitable visualization is shown to

the user based on the user’s responses and interaction with the system. The graphical user

interface provides the users with an option to choose another visualization or to view

other visualization and revert to their preferred visualization method.

Figure 5.3. Dialogue Manager Interface

50

The user interacts with the system to for achieve the software customization goals. This

interaction can take place is few different ways based on the input methods used by the

user. User can input his/her responses in the textbox field, and then can view computer’s

response in the panel itself. The dialogue manager for the requirement elicitation process

has been developed in such a way that the answers consist of, “Yes”, “No” or “OK”. On

the other hand the user can just use the buttons provided in the graphical user interface to

respond to the dialogue manager, system’s responses will be displayed in the panel. For

this purpose three different buttons are provided in the interactive system, these buttons

are “Yes”, “No” and “OK”. There is another button embedded in the user interface

“Next”, this button is used to change the current visualization displayed to the user. In the

interactive system we have four different visualizations, sometimes a user may want to

check some other visualization, and this can be done by clicking “Next” button.

The interactive framework proposed in this thesis segregates the users into four groups

based on the contextual control model. The user responses are studied and then the best

possible visualization for a particular user is displayed. For this purpose four different

visualizations has been implemented. These are:

1. Petri Nets Based Visualization

2. Directed Graph Based Visualization

3. Requirement Model Based Visualization

4. Block Based Visualization

Figure 5.4 shows Petri Net Based Visualization. . As it is illustrated, all the requirements

are in some rectangles in the background of the visualized system and the petri-net is on

51

top of it. As it is mentioned before, because this visualization is in the category of two-

dimensional visualization, then it seems that these two layers overlay.

Figure 5.4. The Petri Net Based Visualization

The basic actions are done in the ontology of the text-based system are evaluating, pre-

evaluating, picking and selecting or abandoning the services. Actions are represented by

transitions. Whenever each of these actions takes place, the transition related to that task

will be fired and the color of that transition and its input arc and place and its output arc

will turn to blue. In this way the flow of the system will be presented by color changing.

Each picked requirement in the system will turn to green and each abandoned one will

turn to red as soon as the dialogue-based system announces that respectively it has picked

or abandoned that service.

52

Figure 5.5. The Direct Graph Based Visualization

Figure 5.5 shows Directed Graph Based Visualization. In case of Directed Graph Based

Visualization all the requirements are shown as rectangles in the background of the

visualized system and the directed graph is on top of it. Due to the two dimensional

nature of the visualization it seems that two layers overlay.

Actions are represented by vertices of the directed graph. Whenever each of these actions

takes place, the transition related to that task will be fired and the color of that transition

will turn to blue and the flow of the system will be presented by color changing. The

requirements are visualized in the exactly same manner as in the Petri Net Based

visualization, the selected requirements are marked by green whereas dropped ones are

colored red.

53

Figure 5.6. Requirement Model Based Visualization

The Requirement Model Based visualization does not visualize the actions taken at each

step. This reduces the complexity of the visualization and helps the users concentrate on

the requirements. The requirement model depicts requirements and their relationships

between each other. When a requirement is selected the block representing that particular

requirement turns green, whereas when a requirement is dropped the block turns red.

54

Figure 5.7. Block Based Visualization

The Block Based Visualization is the simplest among all the visualizations implemented

and it only visualizes the requirements of the requirement elicitation process. In case of

this visualization even the relationships among the requirements is not considered. The

block representing a particular requirement turns green when the requirement is picked or

it turns red when the requirement is dropped.

55

5.2. Usability Study

Usability can be defined as the ease with which a user can learn to operate, prepare inputs

for, interprets outputs of a system or component [46]. The usability of an interface is a

measure of the effectiveness, efficiency and satisfaction with which specified users can

achieve specified goals in a particular environment with that interface [47].

Usability concerns how easy computer systems are to use. Usability is often distinguished

from utility, which more concerns functionality. As the definitions above make clear,

usability covers many aspects of the use of a system. For example, we must consider ease

of learning, ease of regular use, memorability, error handling, and even subjective

satisfaction. We must also consider the kinds of users who are likely to use the system,

and what kind of goals they will be trying to achieve. Once we determine the aspects of

usability and users that are most of interest, we can then conduct usability studies

accordingly [47].

The usability study is conducted to study the usability of a system. The usability is a

quality characteristic of the system which deals with the system`s interaction with

humans. It helps in knowing the practical efficiency of the system from the usability

point of view. Usability is very abstract concept and the usability study helps in studying

the abstract concept of usability with the help of some usability attributes which are

accurate and measurable in nature. Following are the usability attributes used in the

usability study:

 Learnability - How quickly and easily users can perform a productive work

with a new system and how easily they can remember the way the system

operates after not using the system for a while.

56

 Efficiency – The number of tasks can be done by the user in a specific time

interval.

 Reliability – The error rate using the system and time it takes to recover from

the errors.

 Satisfaction – The level of user satisfaction after working with the system.

[46]

These attributes can be measured by observing the users when they are working on the

system. An interview can also be conducted with the participants to get feedback from

them after they have completed a task using a particular system. An interview also

provides us a way to get feedback from the user, what they feel about the system and

their reaction after using a new system.

In issues that human interacts with technology, the analytical research paradigm is not

sufficient. Therefore, empirical studies in software engineering are getting more

acceptable continuously [46]. Usability is about how the system interacts with the user

[47]. Usability engineering defines the final usability level and ensures that the software

under usability testing reaches that level [47].

The usability attributes can be measured by observing the users when they are working

with the system or by having interviews and questionnaires after they used the system.

The interview and questionnaires should have the questions related to the interaction

between the user and the machine. In [47] Gould and Lewis has proposed “Famous

Rules” for a usability engineering. These famous rules are:

 Early focus on the users

 User participation in the design

57

 Coordination of the different parts of the interface

 Empirical user testing and iterative revision of designs

In [46] nine heuristics are proposed: simple and natural dialogue, speak the user’s

language, minimize user memory load, be consistent; provide feedback; provide clearly

marked exits; provide short cuts; good error messages, and prevent errors.

There is another method cognitive walkthroughs uses more explicit, detailed procedure

and conducts a more work-based usability analysis by testing real users when faced with

the system. In order to analyze the quality of the interface in directing the user to

accomplish a specific task following three simple questions are asked:

 Will the correct action be made sufficiently evident to users?

 Will users connect the correct action’s description with what they are trying to

achieve?

 Will users interpret the system’s response to the chosen action correctly?

The answer to all these questions should be a “yes”, in case there is a “no” answer

to any of these questions, problems may occur [46].

The usability engineering life cycle has three stages:

 Predesign Stage

During the predesign stage of the usability engineering life cycle the emphasis is

on the target user and the tasks that the end user will perform. In this stage the

focus should be on the user, the nature and needs of the users’ needs to be

understood. There can be several different criteria which can provide us with

useful information about the user. For example user’s experience with similar

58

systems can be a very important factor in most cases. Usability goals should be

set during this stage.

 Design Stage

In the design stage the emphasis is on the proper implementation. The released

system should be useable and useful for the user. Usually a prototype is designed

based of the usability principles and the needs of the users. This prototype is

tested with the real users, and feedback from these users is used to analyze if the

design will meet required goals.

 Post design Stage

The post design stage is the study of the product to be used in the field. The

testing is conducted on the real system with the real users. In this stage the design

can be revised and retested for the future versions of the product.

5.3. Proposed Usability Testing Method

In this research for the purpose of the usability testing of the system, both the analytical

as well as empirical testing was conducted. During the different stages of the system

development usability inspection and the cognitive walkthrough methods were used. The

famous rules were used wherever they were applicable and feasible in the system. The

main purpose was to improve the usability of the system by enhancing the usability

attributes.

59

To improve the usability of the system, the interactive software visualization approach

has been implemented. It is expected to improve the usability of the system by

introducing different types of visualizations for different types of users based on the

knowledge and understanding of these users. The existing system has been improved and

enhanced. The user can change visualization being shown to him/her. The system tries to

check the level and preferences of the user and provide the user with the best suitable

visualization based on the responses of the user. In order to check if the proposed

approach produced the expected level of results a usability study was conducted.

The visualized interface provides feedback for the user by changing the color of the

nodes and keeps the user informed about what is happening in the system. Different

visualizations has been designed in a way such that they are consistent with the overall

design of the system. The error messages and the instructions to the users has been

changed and more self-explanatory in the proposed system.

For the empirical testing of the usability of the system, both the modified and the original

system will be tested by users with different level of knowledge from computer science

and other departments. A questionnaire will be prepared to understand the user`s

interaction with the system. It will contain questions related to comparison between the

systems. The questionnaire will include questions for providing new ideas and

suggestions for improving the usability of the system.

60

Chapter 6

Usability Study Results

6.1. Introduction

In order to check the usability of the system, both existing and proposed system were

subjected to usability evaluation by users with varying levels of software development

experience. It was assumed that in general, computer science students have a higher

experience in software development compared to the students from other departments.

Moreover the level of expertise and knowledge of the software development among the

computer science varies based on the level of study. Graduate students from the computer

science department are assumed to have the highest level of expertise.

Table 6.1 – Distribution of participants according to their academic level

 Computer Students Other Departments

Existing Proposed Existing Proposed

Undergrad (1st yr) 1 0 4 1

Undergrad (2nd yr) 1 2 2 3

Undergrad (3rd yr) 7 5 3 4

Undergrad (4th yr) 2 6 2 1

Graduate Students 7 5 10 12

61

6.2. Task Description

The participants had to follow few steps and guidelines while working with the system.

The purpose of the study is explained to the user. Also the general functionality of the

computer software for online book shopping and the the concept of software

requirements and the process of requirement elicitation. Classic software development

process (SDP) and software product line (SPL) were explained with a very well-known

and simple concept of Lego.

The participants were asked to compare the way a city can be built by basic, cubic Lego

pieces to make the city by pre-made Lego accessories such as doors, windows, characters

and vehicles. In the second way, instead of making each unit of the city by putting basic

building blocks one by one together, a city can be made using pre-made pieces. This

concept can be generalized to the concept of classic Software Development Process

versus Software Product Line. The users were explained that SDP is like building a city

with basic Lego pieces because in this process the code should be written from scratch.

On the other hand SPL can be the same as the process of constructing the city with

putting pre-made pieces of accessories together. Because SDP is based on customization

and reusing of existing software components [1], this exemplification can be illustrative

for participant with any level of knowledge about computers and specifically software

development.

62

6.3. Requested Task

After explaining the few major concepts related to the system, the users were provided a

task sheet. This task sheet described the task they were requested to complete. There were

two different task sheets, one each for the existing and the proposed system. The

functioning of the systems was explained in these task sheets.

The task for the participants was to choose only three requirements from 7 optional

requirements that the system offers to them. In both systems, the requirements, “Get

detailed info of a book”, “Sort books in a list”, “Advanced search”, “Exact match”,

“Broad match”, “Get publication info” and “Get contents” are the optional requirements.

Any user can choose to pick or not to include these requirements in the system.

In the task sheet [Appendices B1, B2], the participants were asked to pick only three of

the services, which give the online book shopping service the following abilities:

1. To sort the search results

2. To search for a book based on the exact word that is entered to the system.

3. To show the user the information about the contents of the book he has

searched for.

These three descriptions are corresponding to three requirements “Sort books in a list”,

“Exact match” and “Get contents of a book” respectively.

So the task requires the participants to pick only these three requirements and abandon

other four other optional requirements. Considering all the requirements that a participant

can choose to include in the system, it was decided to score each participant’s work out

of 7. So it one point was allocated to each correct picking and similarly one point for

abandoning a requested requirement. The variance between the maximum and minimum

63

score will be 7. In case a participant picks only the required 3 requirements, 3 points will

be added to the base score 0, and another 4 points will be added for abandoning all the

requirements that are not needed to be picked. In this case the participant will score

maximum 7 points. On the other hand if the participant picks all the not required

requirements and abandon all the required ones, the score will be 0.

The time taken by the participants were also recorded. The start time being the time when

the participant actually started using the system and the end time being when the

participant was done with selecting all the requirements. The duration of the time the

participant spent to finish the tasks with the system was calculated in order to investigate,

on average, how long it takes for the participants to finish the task. This time is used to

calculate the efficiency of the system.

Thus the efficiency of both the existing and the proposed systems can be calculated from

the time results found during the study. Similarly the scores can be used to calculate the

error rate of the system. Participants were asked to fill questionnaire, the responses to the

questions in the questionnaire were used to calculate the other important factors such as

learnability, efficiency and user satisfaction.

6.4. Questionnaire

The purpose of the questionnaire was to get feedback from the participants so that we can

analyze the usability of the system. The questions of the questionnaire were designed in a

way that they provide information about the efficiency, error rate, satisfaction and issues

related to the system. The questionnaire had 7 questions in all. The results gained from

the participants’ opinion about the system are used to analyze the usability.

64

6.4.1 Learnability

Learnability is how fast and easily new users can work with a new system for the first

time. The learnability of the system is analyzed with the users’ opinions about easiness to

use the new system and user’s understanding of the system. The first two questions in the

questionnaire are used to check the learnability of the system. These questions were:

1. From 1 to 10, how easy it was for you to work with the system and customize an

online book shopping service? (1 hardest, 10 easiest)

2. From 1 to 10, how many points are you going to give to your overall

understanding of the system? (1 minimum, 10 maximum)

6.4.1.1. Easiness

The first question in the questionnaire asked the participants to rank the level of easiness

of working with the system. The participants provide a rank based on their experience

with the system. They were asked to rank it on the scale of 10, 10 being the easiest and 1

being the hardest.

In Figure 6.1, average easiness points and average scores have been categorized for the

computer science students and the students from the departments groups. The average of

both the score and the easiness rank are higher in case of the proposed system.

65

Figure 6.1 Comparison of Easiness and Score

6.4.1.2 Understandability

The second question on the questionnaire dealt with the understandability of the system.

The participants were asked for their opinion about their understanding of the system.

Similar to the first question the participant had to rank on a scale of 10, 10 being the

highest and 1 being lowest.

As the feedback to the question only tells us about the participant’s opinion about his

understanding of the system it does not provide a complete picture. In order to make this

more rank more meaningful we need to modify this rank based on how successful they

had done the tasks and how fast they finished the tasks. Therefore, the following formula,

which satisfies these needs, is suggested. [VS]

𝑈𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔 =
𝑈𝑠𝑒𝑟_𝑟𝑎𝑛𝑘 × 𝑆𝑐𝑜𝑟𝑒

𝑇𝑖𝑚𝑒

0

1

2

3

4

5

6

7

8

9

Existing System
Computer Students

Proposed System
Computer Students

Existing System
Other Faculties

Proposed System
Other Faculties

Easiness & Score

Easiness Score

66

Understanding will be greater if a participant makes correct decisions working on the

system and achieves the goals in lesser time. The ‘Score’ represents how successful a

participant was in achieving the required goals. Similarly ‘Time’ is the time taken by the

participant to finish the task.

Figure 6.2 highlights the comparison between Understandability and Easiness values for

both the systems. The Understandability value in the interactive system is greater than in

existing system for both the groups. Since both easiness and understandability for the

proposed system is greater than the existing system, it can be logically concluded that the

learnability of proposed system is higher.

Figure 6.2 Comparison of Easiness and Understandability

6.4.2. Efficiency

The next factor in the usability study is efficiency. Efficiency can be defined as the

number of tasks successfully completed by the user in a specific time interval. In our

study every participant was asked to do perform the same tasks to achieve same goals.

0

1

2

3

4

5

6

7

8

9

Existing System
Computer Students

Proposed System
Computer Students

Existing System
Other Faculties

Proposed System
Other Faculties

Easiness & Understandability

Easiness Understandability

67

The number of successfully completed tasks in this case is same as the score of the

participant. So the efficiency is calculated by the using the score of the participant and the

time taken by the participant to complete the required tasks.

Figure 6.3 provides the comparison between efficiency scores for all the users for the

existing system as well as the interactive system. The efficiency of the users who used the

interactive method irrespective of their level of knowledge was higher than the users who

used the Petri Net based visualization system. So it can be concluded that the proposed

system helps users become more efficient, more accurate and faster.

Figure 6.3 – Comparison of Efficiency between different groups

6.4.3. Error rate

The next usability factor that should be examined is error-rate. For evaluating the error-

rate of each system, the score of each participant should be considered. Since the score

was calculated out of seven, the error each user makes is the complement of the score he

got. Error rate is the percentage of errors a user make while working with the system.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Existing System
Computer Students

Proposed System
Computer Students

Existing System
Other Faculties

Proposed System
Other Faculties

Efficiency

68

The average error rate for the computer students using the existing system is 13.44%, it

comes down to 5.88% for the computer students using the proposed system. Similarly the

average error rate for the students from other departments is 29.46% when using existing

system. Whereas while using interactive system the average error rate for students from

other departments comes down to 15.18%.

Figure 6.4 Error Rate Comparison

6.4.4. User Satisfaction

Another major factor in the usability study is the user satisfaction. As the name suggests

it tells us how satisfied a participant was after working with the system. The third

question in the questionnaire deals with the user satisfaction. The participant needs to rate

the satisfaction level with the system on a scale of 10, where is 10 is completely satisfied

and 1 not at all satisfied.

0

5

10

15

20

25

30

35

Existing System
Computer Students

Proposed System
Computer Students

Existing System
Other Faculties

Proposed System
Other Faculties

Error Rate

Error Rate

69

The average score given by computer science students to the existing system is 7.22, this

increases to 8.11 for the interactive system. Similarly average satisfaction score for the

existing petri net based visualization system for the students from other departments is

7.43, and this increases to 8.37 out of 10 in case of the interactive visualization system.

When we compare the satisfaction levels of both the systems, the satisfaction is higher

for the proposed interactive method.

Figure 6.5 Comparison of Satisfaction

6.4.5. Necessity

There was one particular question which was just asked to the users who used the

interactive system. This question was related to the users’ opinion about the necessity of

the interactive visualization. The question was:

Do you think the interactive visualization was necessary for the system?

a. Necessary b. No difference c. Not Necessary

6.6

6.8

7

7.2

7.4

7.6

7.8

8

8.2

8.4

8.6

Existing System
Computer Students

Proposed System
Computer Students

Existing System
Other Faculties

Proposed System
Other Faculties

Satisfaction

70

The answer options for this question were “necessary” for the users who thought that it

was helpful, “no difference” for the students that do not look at the graphical interface

and prefer to read the comments of the dialogue interface and “not necessary” for the

students that think that it can be confusing and distracting.

83% of the computer students, 81% of the students from other departments, and on the

whole 82% of all students believed that the interactive approach of visualization is

necessary for the system. 11% of computer students and 14.2% of the students from other

departments and on the whole 12.8% of all the students found that the interactive

approach of visualization is not useful enough and there was no difference for them for it

to exist.

The percentage of computer students who found the interactive approach of visualization

not necessary and probably more confusing for working with the system was 5.5% and

this number for students from other departments was 4.7% and the overall figure was

5.1%. Therefore, a vast majority of the students preferred using the interactive system

and believe it helps in better understanding of the system.

71

Figure 6.6 Necessity Comparison

6.4.6. Problems

In the questionnaire for the existing Petri Net based system there was a question related

to the problems with the system. The users were asked about their opinion regarding what

they consider as a problem with the system. The three options which were very

noticeable based on the usability standards for designing user interface were given as

options to the users and they were also asked to add their own opinion if they find more

problems in the system. The three options were given to them were as follows:

a. Comments are long and not self-explanatory.

b. Petri Net Visualization is complicated

c. Lack of alternative visualizations

Some participants added their own idea about the system. Some of the added comments

were as follows:

Existing System, Computer Students:

0

10

20

30

40

50

60

70

80

90

Necessary No Difference Not Necessary

Necessity

Computer Students Other Students All the participants

72

1. Lacks in control.

2. System is complicated.

Interactive interface, Computer:

1. Drag/Drop will make system even better.

2. Direct Interaction with the visualization elements.

3. Exciting

6.4.7. Overall Opinion

There are two questions in both questionnaires that ask about the whole idea of ontology-

based interactive requirement elicitation. The purpose of this question is to find out

whether participants are content in overall with the idea of software customization using

software product line.

For this reason users are asked that based on the descriptions that has been given to them

before working with the systems, and also based on their experience with the system and

their previous experiences do they have any preference on choosing the classical software

development process or choosing the software product line. Also, they are asked that how

much they think that software product line can improve the software development

process. Overall 78.2% of the users believed that the SPL could be beneficial to the

software development and customization.

The last question in both the questionnaire asked the users their overall opinion about the

system. The users were asked to give a score from 1 to 10 to their assumption of the level

of improvement made by software product line to the software development process.

Average improvement point for interactive system is higher than the improvement score

for the existing system.

73

Figure 6.7 Improvement Comparison

In Table 6.2, average results for users have been divided and shown based on their

academic background, which is either computer science or business field.

 Computer Students Others

Existing Proposed Existing Proposed

AVG STDV AVG STDV AVG STDV AVG STDV

Easiness 6.83 1.12 8.44 0.83 6.13 1.29 8.50 1.05

Understandable 6.54 2.20 8.01 1.58 4.36 1.23 6.40 1.90

Satisfaction 7.22 1.27 8.11 1.33 7.44 1.18 8.38 1.05

Improvement 7.65 1.06 8.18 1.23 7.06 1.04 8.25 1.05

Time 8.33 1.94 7.89 1.76 9.19 1.91 8.13 1.13

Score 6.06 0.97 6.59 0.59 4.94 1.26 5.94 0.99

Error Rate 0.94 0.97 0.41 0.59 2.06 1.26 1.06 0.99

Table 6.2 Average results for all the students

0

1

2

3

4

5

6

7

8

9

Existing System
Computer Students

Proposed System
Computer Students

Existing System
Other Faculties

Proposed System
Other Faculties

Improvement

Improvement

74

To sum up all the results collected from participants for both interactive system and Petri

Net based system:

Time spent on the interactive system is less as compared to the Petri Net based system for

both the groups. There has been a rise in the easiness and understandability score both

groups. The understandability score for non-computer science users is 4.36 for the Petri

Net based system where as for the Interactive system it is 6.40. Satisfaction score for

non-computer science students is higher than computer science users for both the

systems. This can be due to different levels of expectations in case of two different

groups, or it can be said that students with computer experience can have more realistic

exceptions of a user interface than people with no computer background. The satisfaction

score for both groups of users were higher for the Interactive system. Both the groups

considered that SPL has improved software development and software customization

process. The error rate for both computer science students and non-computer science

students was reduced by to almost halves. Thus it can be concluded that the Interactive

system has been successful in improving the user experience with the help of different

visualizations and by choosing the best suitable visualization for a user.

On the whole, based on the collected results from both computer science and non–

computer science students, it can be concluded that the interactive system improves the

efficiency of the software customization process. Also it makes the system much more

attractive for the users with lesser knowledge about the software development process.

.

75

CHAPTER 7

Conclusion and Future Work

7.1. Conclusion

In this research, a study has been carried out to conclude that when Interactive Approach

of Software Visualization is applied on the previously developed requirement elicitation

system, it gives better understanding to users of the system and reduces the time and

effort they need to spend on eliciting desired requirements.

This research was conducted in a number of steps. Initially the existing text based

requirement elicitation system and the Petri Net based Visualization systems were

studied. The usability study conducted by Vida Sadri for these systems was studied which

motivated to develop an interactive approach of visualization for the system. A usability

study was conducted on a group of students from different departments and diverse

academic backgrounds to justify that the proposed design can improve the usability of the

system.

The results of the study shows that overall users had a positive opinion about using both

Interactive system and Petri Net based visualization system. However, based on users

opinions on average all usability parameters, which are Learnability, Efficiency, Error-

rate and User satisfaction have been improved compared to Petri Net Based Visualization

interface system. Besides, on average users of interactive interface had accomplished the

same tasks faster and more accurately than the users of the text-based system. On the

whole the majority of the users of both systems prefer Software Automation concept,

which is the basis of both systems over the classical Software Development Process.

76

7.2. Future Work

Despite the fact that the interactive approach has improved the usability and quality of

the software customization system, the results of the usability study show that there is

still a lot of scope for improvement. In fact, the proposed framework can be considered

as an early attempt of interactive interfaces exclusively in the field of software

customization, future work will need to implement this approach in different research

areas. Currently there are four types of visualizations used for different users, further

work should be done to look for more visualizations which can further enhance the

usability of the system. Morphing can also be implemented in future versions of this

system, where a visualization gradually changes to produce other visualization.

During the usability study it was found out that the users are interested in using an

interface in which they can have a direct interaction with the graphical interface instead

of indirect dialogue-based communication. So a drag and drop kind of system can be

researched where the user can interact and choose the required services by simply

dragging and dropping them.

77

APPENDICES

Appendix A

Questionnaire for Interactive Visualization Interface

78

Appendix B

Questionnaire for Existing Interface

79

Appendix C

Task sheet for Existing System

The following figure illustrates the task sheet, which was required to be read by the

participants before working existing system for the purpose of usability investigation.

80

Appendix D

Task sheet for Interactive System

The following figure illustrates the task sheet, which was required to be read by the

participants before working existing system for the purpose of usability investigation.

81

Appendix E

System Class Diagram

The following figure illustrates the class diagram for the implementation.

82

REFERENCES

[1] S. Eicker, T. Spies, C. Kahl. “A Virtual Reality Application for Software

Visualization,” in Proc. 4th IEEE International Workshop on Visualizing

Software for Understanding and Analysis, 2007, pp 108-111.

[2] M. J. Pacione. “Software visualization for object-oriented program

comprehension,” in Proc. 26th International Conference on Software Engineering,

2004, pp. 63-65.

[3] Chao Ma, Yanxiang He. “An Approach for Visualization and Formalization of

Web Service Composition,” in Proc. International Conference on Web

Information Systems and Mining, 2009, pp 342-346.

[4] A.R. Teyseyre, M.R. Campo. (2008, Jul.). “An Overview of 3D Software

Visualization,” IEEE Transactions on Visualization and Computer Graphics.

2005, pp 64-69.

[5] Rick Rabiser, Paul Grünbacher, Deepak Dhungana. (2009, Nov.). “Requirements

for product derivation support: Results from a systematic literature review and an

expert survey.” Information and Software Technology. [Online]. 52(8), pp. 324-

346. Available: http://www.sciencedirect.com/science [Feb. 14, 2011].

[6] Bowen Hui. “Automatic Software Customization: A Methodology for Learning

Individual Preferences.” Internet:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.159.1955, [Feb. 14

,2010].

[7] H.M. Kienle, H.A. Muller. “In Proc. 4th IEEE International Workshop on

Visualizing Software for Understanding and Analysis, 2007, pp 2.

[8] Michael P. O’Brien. “Software Comprehension – A Review & Research

Direction.” Internet: www.st.cs.uni-saarland.de/edu/empirical-

se/2006/PDFs/brien03.pdf, Nov, 2003 [Apr. 14, 2011].

[9] Denis Gracanin, Kresimir Matkovic, Mohamed Eltoweissy. (2005, Sept.).

“Software Visualization.” Innovations in Systems and Software Engineering, A

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Eicker,%20S..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.%20Spies,%20T..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.%20Kahl,%20C..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4290687
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4290687
http://www.sciencedirect.com/science
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.159.1955
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4290687
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4290687

83

NASA Journal. [On-line]. 1(2), pp. 221-230. Available:

www.cg.tuwien.ac.at/research/publications/2005/gracanin-2005-soft/gracanin-

2005-soft-PDF.pdf [Feb, 2011].

[10] Alfredo R. Teyseyre, Marcelo R. Campo. “An Overview of 3D Software

Visualization.” IEEE Transactions on Visualization and Computer Graphics, vol.

15, pp. 87-105, July. 2008.

[11] Juergen Rilling, S.P. Mudur. “3D visualization techniques to support slicing-

based program comprehension.” Computers & Graphics 29, vol. 29, pp. 311-329,

June. 2005.

[12] B.A. Price, I.S. Small, R.M. Baecker. “A Taxonomy of Software Visualization.”

Proceedings of the Twenty-Fifth Hawaii International Conference on System

Sciences, 1992, pp 597-606.

[13] Jiming Liu, Chi Kuen Wong, Ka Keung Hui. “An Adaptive User Interface Based

On Personalized Learning.” IEEE Intelligent Systems. 2003, pp 52-57.

[14] Rolland, C., Kirsch-Pinheiro, M., Souveyet, C., “An Intentional Approach to

Service Engineering”, IEEE Transactions on Service Computing, Vol. 3, pp.

292—305, 2010.

[15] Xieshen Zhang, “An Interactive Approach of Ontology-based Requirement

Elicitation for Software Customization”, M.S. thesis, CS. Dept., UWindsor,

Windsor, ON, 2011.

[16] Rajaprabhu Dhanapal, “An Approach for Contextual Control in Dialogue

Management with Belief State Trend Analysis and Prediction”, M.S. thesis, CS.

Dept., UWindsor, Windsor, ON, 2012.

[17] Vida Sadri, “A Petri-Net Based Approach of Software Visualization for Software

Customization”, M.S. thesis, CS. Dept., UWindsor, Windsor, ON, 2012.

[18] F. M. Medeiros, E. S. de Almeida, and S. R. de Lemos Meira, “Towards an

approach for service-oriented product line architectures”, In Proc. of the 3rd

international workshop on Service-Oriented Architectures and Software Product

Lines, 2009.

http://ieeexplore.ieee.org.ezproxy.uwindsor.ca/xpl/RecentIssue.jsp?punumber=9670

84

[19] Altintas, N. Ilker and Cetin, Semih and Dogru, Ali H., “Industrializing software

development: the "factory automation" way”, Springer-Verlag, pp 54-68, 2007.

[20] Kang, Dongsu and Baik, Doo-Kweon, “Bridging Software Product Lines and

Service-Oriented Architectures for Service Identification Using BPM and FM”,

IEEE Computer Society, pp. 755-759, 2010.

[21] S. Bassil and R. K. Keller., “Software visualization tools: Survey and analysis”, In

Proceedings IWPC 2001, pp. 7 – 17, 2001.

[22] J. Lee, D. Muthig, and M. Naab, “An approach for developing service oriented

product lines,” inSPLC ’08: 12th International Software Product Line Conference,

pp. 275–284, IEEE Computer Society, 2008.

[23] D. Kang, C. yang Song, and D.-K. Baik, “A method of service identification for

product line,” in ICCIT ’08: 3rd International Conference on Convergence and

Hybrid Information Technology, vol. 2, pp. 1040– 1045, 2008.

[24] S. Trujillo, C. Kastner, and S. Apel, “Product Lines that Supply Other Product

Lines: A Service-Oriented Approach,” in SPLC Workshop: Service-Oriented

Architectures and Product Lines - What is the Connection?, Sep. 2007.

[25] K. Pohl, G. Böckle, and F. van der Linden, “Software Product Line

Engineering:Foundations, Principles, and Techniques”. Berlin: Springer, 2005.

[26] R. Rabiser, P. Grunbacher, and D. Dhungana. “Requirements for product

derivation support: Results from a systematic literature review and an expert

survey”, Information and Software Technology, 52(3), 2010.

[27] Zhang, N. Zhou, Y. Chee, A. Jalaldeen, K. Ponnalagu, R. Sindhgatta, A.

Arsanjani, F. Bernardini, “SOMA-ME: A platform for the model-driven design of

SOA solutions”, IBM Systems Journal, Vol. 47, pp 397 – 413, 2008.

[28] Eric A. Marks, Michael Bell, “Service Oriented Architecture (SOA): A Planning

and Implementation Guide for Business and Technology”, Willey, 2006.

[29] C. Rolland, Kirsch-Pinheiro, C. Souveyet, “An Intentional Approach to Service

Engineering”, IEEE Transactions on Service Computing, Vol. 3 , pp. 292—305,

85

2010.

[30] Erl, T., “Service-oriented Architecture: Concepts, Technology, and Design”,

Prentice Hall PTR, Upper Saddle River, New Jersey, Munich, 2005.

[31] Goguen, J. & Linde, C., Techniques for Requirements Elicitation, 1st IEEE

International Symposium on Requirements Engineering, San Diego, pp. 152-

164, 1993.

[32] Paech B and Kohler K, “Usability Engineering integrated with Requirements

Engineering”, in Bridging the Gaps between Software Engineering and Human-

Computer Interaction, IEEE CS Press, 2003.

[33] Diaper, D., “Integrating HCI and Software Engineering Requirements Analysis”,

SIGCHI Bulletin 29, 1, 41-50, 1997.

[34] C. Y. Knaus, ''Feature - Interaction design for software engineering: Boost into

programming future,'' Interactions, 15(4), 71-74, 2008.

[35] Sousa, K., Furtado, E., “RUPi—A unified process that integrates human-computer

interaction and software engineering”, In: Proceedings of the International

Conference on Software Engineering (ICSE), pp. 41– 48, 2003.

[36] Petre, M., and de Quincey, E., “A gentle overview of software visualization”, The

Computer Society of India Communications (CSIC) ,PPIG newsletter, 2006.

[37] Gracanin, D., Matkovic, K., and Eltoweissy, M., “Software visualization’,

Innovations in Systems and Software Engineering”, A NASA Journal, Volume 1,

pp 221-230, 2005.

[38] Li, X., and Mugridge, R. 1994, “Petri net based graphical user interface

specification tool”, In Software Education Conference, 1994.

[39] Palanque Ph., Bastide R., “Petri net based Design of User-driven Interfaces

Using Interactive Cooperative Object Formalism”, In proceedings of 1st

Eurographics Workshop on Design, Specification and Verification of

Interactive Systems - F. Paterno (Ed.) - Carrara, Italy - 8-10 June.1994.

[40] C. Lin, S. Lu, Z. Lai, A. Chebotko, X. Fei, J. Hua, F. Fotouhi, “Service-oriented

86

Architecture for VIEW: A Visual Scientific Workflow Management System”,

Proc. of the International Conference on Services Computing (SCC), pp. 335–

342, 2008.

[41] E. Folmer, J. v. Gurp, and J. Bosch., “Scenario-Based Assessment of

SoftwarenArchitecture Usability”, In the Proceedings of Workshop on Bridging

the Gapsn Between Software Engineering and Human-Computer Interaction,

ICSE, 2003.

[42] P. Runeson and M. Host., “Guidelines for conducting and reporting case study

research in software engineering”, Empirical Software Engineering, 14(2), pp

131–164, 2009.

[43] X. Ferre, N. Juristo, H. Windl, L. Constantine, “Usability Basics for Software

Developers”, IEEE software, pp. 22–30, 2001.

[44] J. C. Campos and M. D. Harrison, “From HCI to Software Engineering and back”.

ICSE ',pp 49-56, 2003.

[45] Gould, J. D., C. Lewis, “Designing for usability: Key principles and what

designers think”, Comm. ACM, Vol.28(3), pp 300–311, 1985.

[46] Nielsen, J. , “The usability engineering life cycle”, IEEE Computer, Vol. 25(3),

pp12–22, 1992.

[47] N. F. Noy and D. L. McGuinness, ''Ontology Development 101: A Guide to

Creating Your First Ontology,'' Stanford Knowledge Systems Laboratory, Tech.

Rep. KSL-01-05, 2001.

[48] D. Martin, et al., ''OWL-S: Semantic Markup for Web Services,'' 2004. [Online].

Available: http://www.w3.org/Submission/OWL-S.

[49] D. Martin, et al., ''Bringing Semantics to Web Services: The OWL-S Approach,''

in Proceedings of the 1st International Workshop on Semantic Web Services and

Web Process Composition, 2004, pp. 26-42.

[50] R. Bastos, D. Dubugras and A. Ruiz, B., “Extending UML Activity Diagram for

Workflow Modeling in Production Systems”, in 35th Annual Hawaii International

http://www.w3.org/Submission/OWL-S

87

Conference on System Sciences, IEEE, 2002.

[51] J. Helldahl, U. Ashraf, “Use Case Explorer-A Use Case Tool”, M.S. thesis, CS

and Engineering Dept, Chalmers Univ. , Göteborg, Sweden, 2009.

[52] Sun, P., Wang, J., Li, X., Jiang, C., “Performance analysis of workflow model

with resource constraints”, In: Proceedings of the First International Multi

Symposiums on Computer and Computational Sciences, vol. 1, pp. 397–401,

2006.

[53] Marcus, A., Comorski, D., and Sergeyev, A., "Supporting the Evolution of a

Software Visualization Tool through Usability Studies", in Proceedings

International Workshop on Program Comprehension, St. Louis, MO, pp. 307-316,

2005.

[54] Abdinnour-Helm, S.F., Chaparro, B.S. & Farmer, S.M., “Using the end-user

computing satisfaction (EUCS) instrument to measure satisfaction with a web

site”, Decision Sciences, Vol. 36, 341–364, 2005.

[55] Teyseyre, A and Campo, R. M., “An overview of 3d software visualization”,

IEEE TVCG, Vol.15, pp. 87–105, 2009.

[56] N A Stanton, M J Ashleigh, A D Roberts, F Xu, “Testing Hollnagel's Contextual

Control Model: Assessing team behavior in a human Supervisory control task”,

International Journal of Cognitive Ergonomics, 2001.

[57] R. Dąbrowski, K. Stencel and G. Timoszuk and I. Crnkovic, V. Gruhn, M. Book

and Eds. “Software is a directed multigraph” ECSA, ser. Lecture Notes in

Computer Science, vol. 6903, pp. 360-369, 2011, Springer

[58] Ashley Aitken, Vishnu & Ilango,”A Comparative Analysis of Traditional

Software Engineering and Agile Software Development”, 46th Hawaii

International Conference on System Sciences (HICSS), 2013.

[59] G. Timoszuk, R. Dabrowski, K. Stencel, C. Bartoszuk, “Magnify - A new tool for

software visualization”, Federated Conference on Computer Science and

Information Systems, pp. 1485-1488, 2013.

88

[60] A. Barbar, A. Ismail, “A framework for autonomic software customization”,

International Conference on Electronics, Computer and Computation, pp. 334-

338, 2013.

[61] X. Yuan, X. Zhang, “An Interactive Approach of Online Software Customization

via Conversational Web Agents”, IEEE International Conference on Green

Computing and Communications and IEEE Internet of Things and IEEE Cyber,

Physical and Social Computing, pp. 327-334, 2013.

[62] A .Assila, Houcine Ezzedine & M.S. Bouhlel, “A web questionnaire generating

tool to aid for interactive systems quality subjective assessment”, International

Conference on Control, Decision and Information Technologies, pp. 815-821,

2013.

http://ieeexplore.ieee.org.ezproxy.uwindsor.ca/search/searchresult.jsp?searchWithin=p_Authors:.QT.Bouhlel,%20M.S..QT.&newsearch=true

88

VITA AUCTORIS

Name Manpreet Singh Kaler

Place of Birth Amritsar, India

Year of Birth 1986

Education Bachelor of Technology,

 Computer Science & Engineering,

Guru Nanak Dev University, India.

Master of Science,

Computer Science,

University of Windsor, Canada.

	University of Windsor
	Scholarship at UWindsor
	2014

	An Interactive Approach to Software Visualization for Customization
	Manpreet Singh Kaler
	Recommended Citation

	Master thesis

