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ABSTRACT 

A job scheduler determines the order and duration of the allocation of 

resources, e.g. CPU, to the tasks waiting to run on a computer. Round-Robin and First-

Come-First-Serve are examples of algorithms for making such resource allocation 

decisions. Parallel job schedulers make resource allocation decisions for applications 

that need multiple CPU cores, on computers consisting of many CPU cores connected by 

different interconnects. An adaptive parallel scheduler is a parallel scheduler that is 

capable of adjusting its resource allocation decisions based on the current resource 

usage and demand. Adaptive parallel schedulers that decide the numbers of CPU cores 

to allocate to a parallel job provide more flexibility and potentially improve performance 

significantly for both local and grid job scheduling compared to non-adaptive 

schedulers. A major reason why adaptive schedulers are not yet used practically is due 

to lack of knowledge of the scalability curves of the applications, and high cost of 

existing white-box approaches for scalability prediction. We show that a runtime and 

scalability prediction tool can be developed with 3 requirements: accuracy comparable 

to white-box methods, applicability, and robustness. Applicability depends only on 

knowledge feasible to gain in a production environment. Robustness addresses 

anomalous behaviour and unreliable predictions. We present ADEPT, a speedup and 

runtime prediction tool that satisfies all criteria for both single problem size and across 

different problem sizes of a parallel application. ADEPT is also capable of handling 

anomalies and judging reliability of its predictions.  We demonstrate these using 
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experiments with MPI and OpenMP implementations of NAS benchmarks and seven real 

applications.  
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NOMENCLATURE 

ADEPT: Automatic Downey-based Envelope-constrained Prediction Tool 

 

Adaptive Resource Allocation: Allocation of resources to different applications 

based on the current system load, which allows a job scheduler to adapt its decisions to 

the current status of the system.  

Black-box prediction: a category of prediction methods that depend only on 

external observation of application’s behavior, e.g. its runtime.  

White-Box prediction methods: a category of prediction methods that depend 

on internal knowledge of the target application, e.g. the number of iterations in the 

main loop.  

Gray-box prediction methods: a category of prediction methods that combine 

black-box and white-box observations.  
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CHAPTER 1 

Introduction 

A job scheduler determines the order and duration of the allocation of 

resources, e.g. CPU, to the tasks waiting to run on a computer. Round-Robin and First-

Come-First-Serve are examples of algorithms for making such decisions. Parallel job 

schedulers need to make such resource allocation decisions for applications that need 

multiple CPU cores, on computers consisting of many CPU cores connected by different 

interconnects. An adaptive parallel scheduler is a scheduler capable of adjusting its 

resource allocation decisions based on the current resource usage and demand. This 

resource allocation method is referred to as adaptive resource allocation. Adaptive 

parallel schedulers that decide the numbers of CPU cores to allocate to a parallel job 

provides more  flexibility and potentially improve performance significantly for both 

local job and grid job scheduling compared to non-adaptive schedulers. Adaptive CPU 

resource allocation is a widely researched topic in job and grid scheduling with potential 

to improve response times significantly (up to 70%) by reducing fragmentation and 

considering the current machine load [V.K.Naik 1997][W. Cirne 2003] [A.C.Sodan 

2006][L.Barsanti 2006]. Taking the current machine load into account contributes most 

to the improvement of response times. These improvements are achieved by running 

applications with more resources if the current machine load is light, and with fewer 

resources if the load is heavy [V.K.Naik 1997] [A.C.Sodan 2009]. This is due to the typical 

shape of efficiency curves which describe how well the processor cores allocated to a 

parallel application are utilized in terms of serial runtime divided by allocated numbers 

of cores and the corresponding runtime, i.e. diminishing efficiency beyond an 

application-specific numbers of cores. 

Adaptive resource allocation is a practically promising approach, considering that 

a study found that 98% of the users said their applications could adjust to different 
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resource allocation at start-time [W.Cirne 2003]. Adaptive resource allocation depends 

on efficiency curves per problem size (strong scaling) since efficiency-based allocation 

was found superior to uninformed approaches like equal resource partitioning 

[S.H.Chiang 1996]. However, scalability and efficiency curves, which show the the 

obtained speedup (serial runtime divided by runtime for a specific number of cores) and 

utilization of cores for different numbers of allocated cores, are not generally available; 

this is a major reason why adaptive resource allocation is not yet incorporated in 

practical schedulers. Thus, providing scalability prediction in an easy-to-use manner 

would open new possibilities for better practical scheduling. Users may also select job 

sizes “tactically” under considerations of trading shorter waiting times for increased 

runtimes.  

Scalability prediction is also relevant for determining the maximum meaningful 

CPU resource allocation to a parallel job (and therefore an often-tackled problem, e.g. 

[X.H.Sun 1999]) as feedback to users and system administrators. Though so far applied 

mostly on clusters, with the emergence of parallel computing in every-day life on multi-

core systems, adaptive schedulers will likely increase in practical relevance. This is 

especially true if the resources allocated to a virtual-machine running parallel jobs can 

vary [A.C.Sodan 2009]. Fortunately, OpenMP applications on multi-core SMP servers 

were found to exhibit similar shapes of speedup/runtime curves as MPI applications on 

clusters [M.Curtis-Maury 2005]. This opens the possibility of applying the same 

scalability prediction approach. 

Accurate predictions can be obtained via either black-box or white-box 

approaches. The latter are based on application-internal and machine information, 

require code instrumentation, compiler/OS support, analysis of memory-access 

behavior, simulation, etc. [L.Carrington 2003][B.Lafreniere 2005][G.Marin 2004] 

[X.H.Sun 1999]. Thus, white-box approaches are complex and computationally 

expensive, making them unsuitable for large-scale use in supercomputing centers 
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though indispensable for cross-site prediction or projection of performance on not yet 

practically available platforms. Black-box approaches predict scalability (speedup and 

runtime) using only runtime observations on different numbers of nodes, by assuming 

conformity to a simple descriptive model which can be fitted to the observations to 

derive a specific model instance. The required observations can easily be obtained from 

data routinely collected in historical databases by supercomputer centers or from 

explicit test series. This makes black-box approaches much easier and much cheaper to 

apply. However, to be practical, the number of required observations needs to be small.  

We have performed a survey on the existing methods for performance 

prediction, the result of which is a taxonomy of these methods, as well as details on 

their strengths, weaknesses, and an analysis of open problems. This survey forms a key 

contribution of our work, as well as a basis on which we build our hypothesis.  

Based on our survey and taxonomy of performance prediction methods, our 

overall goal is scalability prediction (in the sense of strong scaling), on both multi-core 

SMP servers and clusters, which is practically feasible for production environments. To 

enable production use, we apply a black-box approach based on the Downey model 

shown to capture simplified behavior of parallel applications very well [A.Downey 1997 

Model]. The Downey model has been around for a long time but has not been widely 

used due to many real applications not fully conforming to the model, e.g. by showing 

super linear speedups, and due to reliability of a specific prediction being hard to judge. 

As described in [A.Deshmeh 2010], with the development of ADEPT (Automatic 

Downey-based Envelope-constrained Prediction Tool), we pursued the following 

detailed goals: 

• Achieve high prediction accuracy, while requiring only few observations (typically 

3 to 4). 
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• Provide a computationally efficient approach for deriving the model instance. 

• Identify cases where the application does not fully conform to the Downey model 

as anomalies, with automatic correction and multi-phase modeling for individual 

irregular points and typical patterns. 

• Perform reliability judgment which recognizes unsuitable observation layout and 

proposes placement ranges of additional observations.  

We decomposed the problem of performance prediction in a production 

environment into the sub-problems as outlined according to the above requirements. 

First, we developed a black-box performance prediction tool capable to fitting Downey 

model instances to observations assumed to conform closely to the model. This 

provided the basic functionality in ADEPT. We next addressed the challenge of 

anomalous behavior in parallel applications, by studying different and typical scalability 

patterns. This resulted in development of a metric for measuring how well-behaved a 

particular parallel application is, by calculating a magnitude of deviation from the 

expected behavior. The developed metric was extended to cover applications for which 

serial runtime is not known. We then studied reliability problems when making 

performance predictions, and compiled a list of reliability problems and their symptoms. 

This allowed us to develop responses to each of these challenges for our prediction tool. 

As result of these steps, ADEPT employs a special envelope-derivation technique which 

constrains the search for the best-fitting model instance, a special metric for detection 

of anomalies, and special pattern handling for cases like super-linear speedup. To 

validate our prediction tool, we studied the evaluation methods used in the literature 

for performance prediction methods, the results of which are presented in Chapter 2. 

The result of this study was the selection of one of the most widely used target 

benchmark set, as well as several real world applications to further ensure applicability 

of our prediction tool.  
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Experiments with the NAS benchmarks [D.H.Bailey 1995] and seven real 

applications show the efficiency and prediction quality of ADEPT in handling normal 

cases and anomalies. We obtained generally above 80% prediction accuracy, even in 

cases with anomalies and for predictions which extrapolate for more than twice the 

number of nodes that were used in the closest observation. The experiments also 

demonstrate the effectiveness of reliability judgment.  

Having achieved highly accurate predictions for a single problem size, we next 

focus on the performance prediction across problem sizes for a parallel application. The 

main motivations for this move are: 1) there are potentially significant benefits for a 

scheduler if such predictions are available; it makes possible adaptive scheduling as 

users move to larger problem sizes of the same application, and 2) there are not any 

existing black-box prediction tools that address this issue. We propose an extension to 

ADEPT which makes it capable of addressing cross problem size performance prediction 

with the addition of one extra input: the problem size for which the observations are 

made.  

To summarize, the contributions of this dissertation are as follows: 

• An extensive survey on the state of the art of performance prediction 

methods 

• A novel performance prediction method, which can be utilized by users 

and parallel application schedulers to obtain runtime and scalability 

curves of parallel applications. For schedulers, this can result in significant 

improvement of performance metrics, as previously described.  

• The proposed prediction method is highly applicable, in terms of its 

requirements, i.e. 3 or 4 observations of runtime on different numbers of 

cores, and its computational complexity. This makes it feasible for an 
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adaptive parallel application scheduler to obtain predictions of parallel 

applications’ runtime and scalability despite the constraints of a 

production environment and the need for predictions on many parallel 

applications. As described by our survey in the next chapter, this 

possibility is not offered by other prediction methods.  

• The high accuracy of the prediction method, which is comparable to 

expensive, white-box performance prediction methods.  

• The capability of the prediction method to make predictions without 

assistance from the user or OS-level support 

• The capability of the prediction method to handle anomalous behavior by 

parallel applications, which makes the method robust, further increasing 

its applicability in a production environment. 

• The capability of the presented prediction method to identify unreliable 

predictions, correct them when possible and generate warnings 

otherwise, in order to avoid misleading the user of the tool (whether the 

user is a human or an adaptive parallel application scheduler). 

• The capability of the method to make predictions across different 

problem sizes of a parallel application, thus increasing its applicability.  

The rest of this dissertation is organized as follows. In chapter 2, we present the 

background on performance prediction, as well as our survey which provides a 

taxonomy of the existing performance prediction methods. In chapter 3 we describe the 

structure of ADEPT, its contributions, and the experimental results. Chapter 4 draws 

conclusions and outlines directions for future work.  
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CHAPTER 2 

Background and Literature Review and Analysis 

2.1. Performance Prediction 

Performance prediction is the task of providing an estimation of the 

performance of an instance of an application on a specific platform, where the 

application of interest may be serial, parallel, or distributed, and an instance of the 

application of interest is identified as the combination of input parameters that 

determine the problem that is being solved as well as the properties of the solution. The 

platform may be a single CPU, a multi-core desktop machine, a cluster with tens to 

thousands of cores connected by interconnects, or a distributed grid environment.  

Backfilling schedulers, a common type of production scheduler for local 

scheduling on clusters, depend on performance prediction in terms of jobs’ runtime 

estimations to perform backfilling. Usually the user is asked to provide an estimate of 

the runtime of the job he/she is submitting, and underestimation is punished by killing 

the job once it runs past the estimation. Studies have shown that user runtime estimate 

are generally inaccurate [A.W.Mu’alem 2001]. There have also been several papers in 

the literature claiming, counter-intuitively, that inaccuracy in runtime estimation 

actually improves the performance of the scheduler, suggesting better performance of 

the scheduler if the runtime estimates are doubled [A.W.Mu’alem 2001], [D.Zotkin 

1999], or even for randomized runtime estimates [D.Perkovic 2001]. However, these 

claims were negated by more recent research work. In a keynote speech, [D.Tsafrir, 

2010] emphasizes that, despite some previous claims, inaccuracy in runtime estimation 

does not lead to better scheduler performance. In [D.Tsafrir 2007], authors demonstrate 

that doubling the runtime estimation improves the performance of the backfilling 

scheduler, but does so to an even higher degree if the original estimate is accurate, 

thereby reestablishing the need and motivation for accurate performance predictions. 
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[S.H. Chiang 2002] emphasizes the importance of accurate runtime prediction by 

evaluating the performance of a backfilling scheduler on heavy loads and a leading edge 

production platform, and concluding that accurate estimations can improve the 

performance of the scheduler much more significantly than was assumed before. 

Moreover, authors conclude that users who provide accurate runtime estimations will 

observe performance improvements even if other users do not provide accurate 

estimates. The improvements are so large that authors suggest the use of test runs to 

obtain accurate estimations.  

[D. Tsafrir 2007] paves the way even further for incorporating performance 

prediction into production schedulers by separating its two historical roles of providing 

backfilling information and providing killing times for jobs, i.e. the system does not kill 

jobs if they are longer than the system generated predictions. Instead, predictions are 

corrected adaptively if they are proved wrong. [D.Talby, 2006] describe another 

important application of performance prediction in job schedulers, which is assisting in 

scheduling of moldable jobs: the scheduler must decide whether it is best to wait and 

start the job later with more processors, or start the job immediately. This decision has 

to be based on prior knowledge of jobs’ runtimes. [D.Talby, 2006] also proposes a 

standard interface for all predictors, to increase the applicability to production 

schedulers. A similar application is proposed by [W.Smith 1999], which uses runtime 

predictions to estimate queue wait times.  

A detailed discussion on the role of performance prediction in various aspects of 

high-performance computing is presented in [K.J.Barker 2009]. These roles include the 

design of new machines which uses performance prediction to explore the extremely 

large design space, the decision of which new platforms to acquire which uses 

performance prediction to do a cost-benefit analysis, and the installation of new 

systems which uses performance prediction to verify the installation. [J.Zhai 2010] 

emphasizes on the role of performance prediction in the studies for acquisition of new 
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systems and proposes a method that accordingly assumes the availability of a single 

node of the new platform for performance prediction. [D.J.Kerbyson 2002] uses 

performance modeling and prediction for exploring platform architectures. Similarly, 

[E.Ipek 2006] discuss the use of performance prediction for making design decisions for 

new parallel systems. [L.T.Yang 2005] suggests that scientists can choose a parallel 

system for their application based on prediction of application’s performance on 

available platforms. [K.Davis 2009] accurately predicts the performance of two 

petascale applications on an HPC platform before and after an upgrade, emphasizing a 

potential key role for performance prediction in HPC platform upgrade decisions. 

Performance prediction has also been used for performance tuning of parallel 

applications [A.Tiwari 2009], [K.Singh, 2010], and for performance tuning and identifying 

performance bottlenecks [G.Marin, 2007]. According to [R.Sarikaya 2010] performance 

prediction can be used for the improvement of power-performance decisions in 

dynamic power management. 

A case for the importance of scalability prediction is made in [W.Cirne 2003], by 

specifying that 98% of the users think their jobs can adapt to different numbers of 

processors at start-time. A speedup model can assist scientists in deciding whether to 

make a request for the allocation of a larger numbers of cores on a cluster, e.g. 

SHARCNET [SHARCNET] holds regular rounds of applications for large numbers of cores 

on its clusters. Considering the costs associated with making and processing such 

applications makes a case for a speedup model. [A.Duran 2008] uses speedup prediction 

to dynamically determine the number of OpenMP threads to create for an application. 

[Z.Wang 2009] predicts scalability on multicore machines for OpenMP programs.  

[K.Singh 2010] proposes a method for dynamic concurrency throttling, which is reducing 

the number of threads of an application for particular phases which are expected to 

have a low scalability e.g. due to collective communication. This is done to achieve 
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power efficiency (reducing power usage when it is not beneficial for scalability), while 

improving performance. 

Performance prediction is also needed in grid computing. [W.Smith 2010] 

describes the implementation of a queue wait time prediction service on TeraGrid 

[TeraGrid], based on runtime prediction. [F.Guim 2008] proposes a grid scheduler that 

depends on runtime predictions implemented as a service. [K.Kurowski 2005] mentions 

that grid resource brokers need estimations of job start time and job execution time to 

make decisions, rather than depending on simpler parameters like load. Similarly, 

[S.H.Jang, 2005] shows that selecting a site in a grid for execution based on performance 

prediction rather than using load information (i.e. assuming that the site with the lowest 

load will provide the shortest execution time), results in performance improvement. 

[U.Farooq 2009] presents a middleware framework for grids, which is capable of 

handling incorrect estimations of application runtimes, thus implying the potential 

benefits from accurate runtime estimations.  [J.Zhai 2010] specifies that grid schedulers 

need estimations of individual workflow activities execution time to map workflow 

activities to different grid sites. [N.K.Kapoor 2010] describes matching resources to jobs 

using classes assigned to them according to their service demands; the proposed 

method is compared to one that requires a priori knowledge of jobs resource usage 

characteristics. [S.A.Jarvis 2006] presents two prediction-based middleware services and 

their usage to support the execution of a workload on a set of resources on grid. 

[F.Nadeem 2009] specifies the prediction of workflow execution time as having critical 

importance for optimization of workflow executions, and advance reservations of 

resources. [Nirav 1999] emphasizes the importance of runtime prediction in grid 

computing for resource management. [C.Glasnerlow 2011] specifies runtime prediction 

as a supporting service for schedulers used in grid computing. 

The preceding discussion establishes a key role for performance prediction in 

various aspects of computing in general, and high performance and grid computing in 
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particular. The rest of this chapter is organized as follows. Our taxonomy of different 

approaches and a survey of the state-of-the-art in performance prediction are 

presented in Section 2.1. Sections 2.2 through 2.5 provide details on each category of 

methods. We provide a list of key insights relevant to performance prediction in Section 

2.6. Finally, our list of open problems and their importance is delivered in Section 2.7.  

 

2.2. A Taxonomy of Performance Prediction  

We consider the main aspect of distinction among performance prediction 

methods to be the level of abstraction at which they operate. In the literature, three 

different terms have been specified for these levels, which we will use as well 

throughout this report: black-box, white-box, and gray-box methods, as shown in Figure 

1. We will describe each of the categories shown in Figure 1 in its own section, with 

subcategories shown in the figure described in the corresponding subsections. These 

differ in accuracy, cost and ease of use. The terms used in Figure 1 have been previously 

introduced by the literature, and organized by our taxonomy. At the lowest level of 

abstraction, white-box methods use information that is either only known by developers 

of the application or can be obtained through modification of application’s source code 

or binary. These techniques consist of subcategories working at differing levels of 

abstraction. The main advantages of white-box approaches are their accuracy and the 

ability to answer what-if questions regarding performance. Their main disadvantage is 

the support they need in terms of developer/expert time, compiler/OS/tool support, 

etc, which makes them unsuitable for production environments. Black-box methods are 

on the other extreme, assuming only external knowledge regarding the application or 

platform, e.g. runtime and number of processes, usually obtained from logs of user 

activity across time/platform. The main advantage of this category is the potential for 

use in production environments, although some roadblocks, mainly the killing of jobs by 
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schedulers due to underestimation of runtime, need to be resolved to actualize the wide 

applicability [D.Tsafrir 2007]. Gray-box methods operate at the middle abstraction level, 

attempting to maintain the applicability of black-box methods, while utilizing a subset of 

low-level information used by white-box methods, which is mainly problem size 

specified as a combination of input parameters.  

  

2.3. Black-Box Methods  

Black-box methods provide predictions without any “inside” information, i.e. 

only the external behavior of application is available, using two general approaches: 1) 

relating to behavior of “similar” applications/benchmarks, and 2) assuming a general 

behavior model, fine-tuned via model-fitting.  

Performance Prediction 

White-box 
Black-box Gray-box 

Similarity-based Model-based 

Applications 

Skeletons 

Benchmarks 

Statistical 

Mechanical 

Simulation  

Events Replay 

Partial Execution 

Analytic Models 

Source Code Analysis  

Complexity Analysis 

Object Code Analysis  

Figure 1. A taxonomy of performance prediction methods 
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2.3.1. Similarity to Other Applications 

The main idea here is that “similar” applications have reasonably close 

performances; hence if a set is formed of applications similar to the target, predictions 

can be made using observations on applications in this set [R.Gibbons 1997], [A.Downey 

1997], and [W.Smith 1998]. The identification of similar applications requires the 

existence of historical information; these may be gathered in supercomputing centers, 

and there exists an archive of multiple centers logs [Parallel Workload Archive]. Most 

methods identify similarity on a per-site basis even if multiple logs are examined, 

probably because each center has its own unique set of applications and users. To 

identify similar jobs, [H.Li 2005], [W.Smith 2007], and [T.N.Minh 2010] use instance-

based learning on jobs’ attributes and [F.Guim 2008] constructs decision trees. In 

[W.Smith 1998] and [W.Smith 2004], sets of jobs’ attributes, called similarity templates, 

are used to form groups of similar jobs. For example, the template (Username, N) places 

jobs with the same username and numbers of nodes in the same similarity group. 

Templates are determined using greedy and genetic algorithm search on a workload. 

The effectiveness of a template is related to measured mean error of the predictor fed 

the sets formed by applying the template to the workload. [K.Kurowski 2005] propose 

the GPRES expert system which also uses similarity templates but stores the extracted 

job-category-determination rules in a knowledge base. [F.Nadeem 2009] constructs 

similarity templates using supervised exhaustive search on grid workflow-level 

attributes, e.g. set of activities, application-level attributes, e.g. problem size, execution-

level attributes, e.g. set of grid sites, and resource-level attributes, e.g. jobs in the 

queue.  [C.Glasnerlow 2011] uses a set of similarity rules (e.g. jobs submitted between 

8am to 4pm are similar) and the resulting clusters of a single user’s jobs, which are 

assigned relevance for a particular job type based on accuracies in previous predictions. 

[S.Krishnaswamy 2004] Identifies similar jobs using rough set theory, where job 
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characteristics and performance are condition and decision attributes, respectively, 

forming the similarity templates based on dependence degree of decision attribute on 

each condition attribute. [R.Duan 2009] Uses specially-structured Bayesian networks 

where factors are job attributes and correlation coefficients is used to discard irrelevant 

factors. The probability distributions between factors are calculated from the 

observations dataset. 

The next step is to derive a prediction from observations on the set of similar 

applications. [D.Tsafrir 2007] reports improved scheduler performance when taking the 

average of the similar jobs from the user’s history, with higher accuracy from more 

recent and less similar jobs than otherwise. [D.Talby, 2006] introduces a session-based 

history (SBH) predictor, sessions being sets of an individual user’s jobs with at most 20 

minutes between termination of one and submission of next, which uses the median of 

similar jobs across multiple sessions. This is compared to recent user history (RUH) 

predictor, which uses the median runtime of the last 3 terminated jobs of the user, 

showing slightly higher accuracy for the former. As a result of experimenting with 

different configurations of SBH, authors report improved results from using exact but 

farther in the past (up to 30 sessions) matches versus using partial but more recent 

ones, i.e. exact similarity is more important than proximity in time. In the extreme, 

considering only the most recent session and ignoring similarity performed even worse 

than RUH. [F.Nadeem 2009] uses the average of similar jobs, with the possibility of 

shifting the prediction toward more recent items versus using all available observations. 

[S.Krishnaswamy 2004] and [T.N.Minh 2010] use the mean runtime of the set of similar 

jobs. However, considering the context of the predictor in [T.N.Minh 2010], i.e. 

backfilling scheduler, the number of underestimations is reduced by adding a fraction of 

the standard deviation of K neighbors’ runtime to the estimation, and using the user-

provided runtime as the upper-bound for the estimate. In [R.Gibbons 1997], author 

proposes a method that uses averages and provides confidence intervals; however, 
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formation of sets of jobs for average calculation is not specified. In [W.Smith 1998] and 

[W.Smith 2004], runtime prediction and its associated confidence interval are obtained 

from multiple sets of similar jobs (called categories) by either calculating the mean of 

runtimes or using linear regression with the number of nodes as the regression variable. 

There is also a maximum on the number of jobs in each set, and the oldest job in the set 

is discarded if that maximum is passed due to addition of a new job. If the target job 

falls into several sets, a prediction is made per set and the prediction with the smallest 

confidence interval is selected. In [W.Smith 2007], a prediction and a confidence interval 

are obtained using a kernel regression method applied to the N observations that are 

most similar to the target application, called query.  

Genetic algorithm is used to search for optimum configuration of the regression 

method, e.g. kernel function width, feature weights. ADAPS, proposed by [C.Glasnerlow 

2011], uses multiple prediction methods applied to multiple sets of jobs formed based 

on similarity. To make a prediction, job sets (active clusters) to be included are selected 

and weighted average is taken among the predictions made per pair of job set and 

method, where both the selection of job sets and weight assignments use accuracy 

feedbacks. [F.Guim 2008] uses the C4.5 decision tree algorithm, which results in 

prediction of ranges of runtime rather than point values. In [R.Duan 2009], authors use 

an RBF-NN (radial basis function neural network), fed by a Bayesian network. The 

Bayesian network provides the RBF-NN with a reduced number of dimensions and 

probability tables (e.g. the probability that runtime is between 980s and 1080s when the 

preparation time job attribute is between 0s and 215s). In [K.Kurowski 2005], authors 

propose a method based on similarity rules from a knowledge base, which uses the 

arithmetic mean of the result variables of two target application-matching rules: the 

one with highest specificity and the one with highest number of matching jobs. In [H.Li 

2005], authors use instance-based learning, either 1-NN or N-weighted averaging, fine-
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tuning the parameters of the predictor using a genetic algorithm search, where fitness is 

based on prediction accuracy on training dataset,  

 

2.3.2. Similarity in Terms of Benchmarks and Hardware Metrics  

Another group of black-box methods attempt to predict by relating the 

performance of target to that of benchmarks, usually based on hardware-level metrics 

as these maintain the black-box constraint.  [S.Sharkawi 2009] proposes a method for 

predicting cross-platform, node-level performance, i.e. communication ignored, of 

constant working-set size HPC applications by relating to SPEC CFP2006 benchmarks. 

The overall approach is to use a genetic algorithm tool to derive a performance model 

for the application as a weighted combination of similar benchmarks (called surrogates), 

via examining relative contributions of 6 groups of hardware counter metrics, obtained 

on a base machine, at both inter and intra group levels. Performance is predicted by 

combining the model with the published performance data of benchmarks on the target 

platform via solving the set of linear equations resulting from the latter, yielding the 

platform-specific function H which relates runtime to benchmarks using 6 coefficients.  

In [W.Pfeiffer 2008], Pfeiffer et. al. model the application runtime as the 

weighted sum of published machine characteristics and measurements made by HPC 

challenge micro-kernels (e.g. Peak flop, interconnect latency, memory bandwidth), with 

weights being platform-independent application coefficients calculated by model fitting 

on its runtimes across different platforms and numbers of cores. To make predictions 

for a platform, the model is combined with the measurements made by HPCC 

benchmarks on that platform. The method addresses robustness and goodness of the fit 

by checking for outliers and influential measurements, i.e. single measurements the 

elimination of which significantly changes the fit. Backward elimination is employed to 

allow only statistically significant predictors in the model. Communication time and 
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fractions are gathered and a larger dataset for the fits is obtained by separately 

specifying communication time as a function of related predictors. Authors suggest 15 

to 20 measurements to fit three or four parameters for a given benchmark. In [F.Freitag 

2001], Freitag et. al. propose a low-overhead speedup prediction method for a hybrid 

application, i.e. one that uses a combination of MPI and OpenMP, via dynamic detection 

of its iterative structure and parallel loops through monitoring the changing CPU usage.   

Thomas et. al. introduce a profiling and performance analysis tool for MPI 

applications, which does not require re-compiling or re-linking the target application to 

obtain communication traces [D.Thomas 2010]. The tool can identify wait times due to 

both collective operations and delay between send and receive operations. The tool is 

then combined with hardware counter information to provide runtime estimates for 

parallel applications. 

 

2.3.3. Similarity: The Concept of Skeletons  

In [S.Sodhi, 2008], Sodhi et. al. propose a similarity-based approach that 

constructs a performance “skeleton” of the application: a synthetic, orders of 

magnitude shorter program with a runtime that is a fixed portion of that of the 

application, under any scenario/platform. The proposed method automatically 

constructs skeletons via identifying and summarizing repeated patterns, i.e. segments of 

similar system activity, in the application’s execution trace, leading to an execution 

signature that is transformed into the skeleton. To obtain the signature, similar MPI calls 

are identified and represented with the same symbols, transforming the trace into a 

string, which is compressed into a loop structure by recognition of repeated patterns. A 

synthetic program that is representative of the signature, i.e. has similar execution 

trace, is then constructed, using the identified loop structure to scale down the runtime. 

Execution trace is identified by using the standard PMPI interface to link the application 
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with a profiling library. The computation time is calculated as the time between the call 

and return of MPI routines, i.e. suffers the same problem as most other work in terms of 

specifying the end of communication as the return time of the MPI call. The method is 

currently more suitable for performance prediction under load sharing and not across 

different platforms, i.e. different CPU and interconnects architectures. Computation is 

only briefly specified, and memory subsystem behavior and its role in prediction is 

skipped.  

In [A.Toomula 2004] (mostly by the same group), a method is proposed for 

constructing a skeleton program which has the same cache behavior, in terms of 

number of cache misses, as its target application, on any platform. Because the 

collection of all memory references of the target application is impractical, samples of 

memory references are collected, using Valgrind tool [Valgrind], each sample being a 

sequence of memory references long enough to capture temporal locality. The 

references are stored as the number of the cache line they access, are clustered and 

used to generate the skeleton’s synthetic C program. In [Q.Xu 2008] (from mostly the 

same group), a method is proposed that constructs skeletons by combining traces from 

multiple processes into a logical trace. In addition, authors specify the use of synthetic 

computation code which is the same in duration, but does not entail the memory 

behavior of the target application. 

 

2.3.4. Black-Box Methods Using Mathematical and Statistical Models  

A subcategory of black-box methods assumes general conformity of target 

applications to an underlying model with coefficients determined for each application 

based on observations of its behavior.  
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In [H.A.Sanjay, 2008], application runtime is specified as an equation that 

depends on functions of communication and computation complexity, amount of 

parallelism in computation and communication, and CPU and network loads. Linear 

regression is used to make predictions, and different functions are selected based on 

the current load of CPU and network. A set of at most 20 candidate complexity functions 

are determined by running the target application for different problem sizes on a single 

non-dedicated CPU (for computation complexity), and on  two non-dedicated CPUs (for 

communication complexity), fitting the set of all potentially relevant complexity 

functions to the observations, and choosing the functions with smallest fitting errors. 

Scalability is modeled through functions specifying amount of parallelism in 

computation and communication, via running the application on 2, 4, and 8 processors. 

The overall obtained model is used to predict runtime under various values of loads, 

number of CPUs, etc. In [R.Wu 2008], a pure mathematical approach specifies the 

runtime of a parallel application as the maximum runtime of its processes and 

individually models each process as a Johnson distribution. Tudor and Teo provide an 

analytical model for speedup for shared-memory programs on multi-core systems, 

which uses hardware counters and operating system run-queue [B.M.Tudor 2011]. The 

model measures the number of cycles lost to memory contention and data dependency, 

and calculates an estimated speedup loss due to these cycles. The proposed model is 

evaluated on 6 OpenMP HPC dwarfs from the NAS benchmark suite. 

 

2.3.5. Black-Box Methods Using Mechanical Models  

Black-box models may use non-statistical models, which are based on certain 

characteristics of parallel applications, and have been called mechanical models in the 

literature. In [S.Shimizu 2009], Shimizu et. al. model resource consumption statistics, in 

particular the runtime, of a specific problem size of the application as products of 
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resource-specific terms including contention, e.g. ������� = �	

 +		
 ∗
��������	
 + 	 ∗ �������, with the coefficients obtained by applying regression 

analysis to observations of application across platforms. The model is claimed to 

improve in accuracy as the number and variety of platforms are increased. In 

[S.Venkataramaiah 2003], authors model the performance of a specific problem size of 

the application as a function of application’s behavior and level of contention over CPU 

and interconnect. The parallel application is run on a dedicated platform, and 

measurements of CPU usage and network usage are combined with reassembly of 

application’s messages and platform benchmarking results to determine the time each 

CPU spends on computation, synchronization (wait), and communication, used to 

predict the performance under different contention levels. CPU usage is monitored via 

CPU probing, and tcpdump provides network traffic logs. In [A.Deshmeh 2010], the 

ADEPT predictor is proposed which uses the Downey model [A.Downey 1997_2] as the 

underlying model that explains the behavior of parallel applications. Observations of 

target application’s execution times for the same problem size over different numbers 

of processors are used for model fitting. A separate model fitting is done per prediction 

target, assigning weights to observations based on their distance from the target 

prediction point. ADEPT also handles individual anomalies in the observations by 

introducing a novel heuristic that is based on expected scalability of a parallel 

application. Anomalous behavioral patterns, e.g. major runtime improvements at 

processor counts which are powers to two, are also handled via introduction of multi-

phase modeling.  ADEPT is also capable of detecting unreliable predictions, e.g. when 

significantly distinct instances of the model can be fitted to the existing observations.  
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2.4. White-Box Methods  

We divide white-box methods into two general categories: a) analytic modeling 

which is composed of model-driven techniques; these are distinguished by the 

abstraction level(s) at which the required analysis is performed: complexity level, source 

code level, and object code level, and b) simulation, which covers techniques that base 

the prediction on some mimic of the application’s execution; these too are distinguished 

based on their abstraction level: overall structure-level abstraction leads to partial 

execution, while instruction-level abstraction defines event replay techniques. There is 

some degree of overlap among the two general categories, which we will point out.  

 

2.4.1. Analytical Modeling  

At the highest level of abstraction among analytical modeling techniques are 

those that derive a performance model by analyzing an algorithm rather than an 

application. In [K.J.Barker 2009], Barker et. al. construct a model of a generic five-point 

stencil application by analyzing the general algorithm that the application follows.  In 

[J.Schopf 1998], Schopf et. al. analyze the performance of a stencil application, but 

specify the parameters of the model as distributions rather than single values. In 

[M.M.Mathis 2005] Mathis et. al. use complexity analysis to construct a model of mesh 

particle transport computations. Such methods provide an overall expectation of the 

performance of a specific solution regardless of the implementation details; they, 

however, run the risk of ignoring factors that critically influence the performance, e.g. 

cache attributes of the target platform.  

The next level of abstraction entails methods that employ source code analysis. 

In [A.V.Germund 2003], Germund et. al. separately model application and platform and 
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combine the two to obtain a symbolic model for performance prediction. Authors 

provide mechanisms for translating specific parallelism patterns into models. They also 

provide detailed methods and discussions for transforming different programming 

constructs, e.g. pipelining, and phenomena, e.g. memory and network contention, into 

the proposed modeling language. The PACE toolkit [G.R.Nudd 2000] separately models 

the application and the platform, and combines the models to obtain performance 

predictions. The toolkit is able to predict performance for different numbers of 

processors. In [M.M.Mathis 2006], Mathis et. al. also separately model the application 

and platform, using a modified version of the CHIPS performance specification language 

[G.R.Nudd 2000]. A CHIPS model has a hardware specification component and a task 

graph representation of the parallel application based on detailed knowledge of source 

code. The proposed method predicts the time required per cell, processing unit of the 

application, for different cells per processor.  

In [S.R.Alam 2006], Alam et. al. propose a method for predicting workload and 

memory requirements based on an API for MPI programs in FORTRAN and C, which 

generates trace files that contain key events e.g. communication events, loop start/end, 

floating point operations start/end. The constructed model is based on computation, 

communication, and key input parameters of the application. In [L. Adhianto 2006], 

Adhianto et. al. propose a prediction method that addresses hybrid applications (MPI + 

OpenMP), which uses the compiler to obtain an application signature consisting mainly 

of memory access patterns and floating-point operations. The method uses benchmarks 

to obtain platform characteristics, e.g. cache size, cache line size, clock speed, and the 

parallelism overhead of MPI and OpenMP. [M.Nakazawa 2005] uses performance 

prediction to find the best data distribution for a parallel application. It addresses I/O 

cost as well as computation and communication cost for building a model of parallel 

programs in terms of a set of equations. Micro-benchmarks are used to identify the 

initialization cost, send and receive overheads, etc. The method assumes that parallel 
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applications are iterative, and measures the time for instrumented run of one iteration 

of the main loop to obtain computation, communication, and I/O cost. Manual analysis 

of the source code is required to identify parallel sections, which are then instrumented 

to obtain their computation time and I/O time. The computation times for different 

amounts of work are obtained using these measurements.  

In [Z.Wang 2009], authors propose a machine learning-based method to 

determine the best number of threads for an OpenMP program on multicore machines, 

based on prediction of the scalability curve of the program. A neural network and a 

support vector machine are trained off-line on features extracted from a set of 

programs, and are fed the features of new programs to output the optimum number of 

threads and scheduling policy. The features that are to be provided on both training set 

programs and the new program are extracted from both the source code, e.g. 

load/store, branch count, and dynamically using source code instrumentation, e.g. L1 

data cache miss rate. [T.Fahringer 2000] proposes a performance prediction framework 

which uses the source code written in HPF and instrumentation to obtain a model of the 

parallel application based on work distribution, communication parameters, cache 

misses, and computation time. To predict computation time, it uses the runtime of 

kernels executed on the target architecture. [J.Li 2009] introduce a method that uses 

neural networks for predicting execution time of functions (tasks) of an application 

using its source code; the input to the neural network is the previous runtimes and input 

parameters. The neural network then predicts execution time and size of output (since 

it affects cost of communication between tasks) for the function. The application needs 

to be written in a language called R script to be processed by the predictor. 

There exist varying levels of abstraction among methods that depend on source 

code analysis. Methods at higher levels of abstraction specify the application’s runtime 

as a function of problem size, data distribution, etc. This usually allows only the implicit 

inclusion of platform characteristics and effects. Methods at lower levels of abstraction, 
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e.g. [G.Marin, 2007] specify the control flow graph of the application and identifies the 

basic blocks and the set of operations they perform. These allow the explicit 

consideration of platform capabilities, e.g. specifying how much time each basic block 

needs on a particular platform based on the block’s needs and platform’s resources, at 

the cost of more expert time and potentially the added requirement of instrumenting 

the runs to obtain some of the required metrics, e.g. number of floating-point 

operations of a basic block.  

Methods in the final group of analytical modeling analyze the object 

code/executable of the target application, via instrumentation. A typical example of 

using instrumentation is obtaining communication characteristics of applications, e.g. 

how many bytes are sent on average per process, what is the average message length, 

what percent of the communication operations are collective and thus may involve long 

waits, etc. As in code analysis, the resulting application model may need to be combined 

with a platform description to provide performance predictions. Instrumentation of 

applications’ binary or source code attempts to automate at least some parts of the 

code analysis to reduce the time required of a performance specialist or the developer 

or to replace them; the latter may result in some sacrifice in terms of accuracy of the 

constructed model.  

In the Prophesy project, [V.Taylor 2003] specify the main innovation to be the 

automatic modeling component. The main measure is the coupling parameter that 

specifies the interaction among kernels that make up an application. A kernel is a logical 

unit of work; it may be a loop, a file or a procedure. The coupling value between two 

kernels is the result of the division of their consecutive execution by the sum of their 

individual execution (measurements for each of these terms is done in the form of a 

loop execution either an individual kernel or a chain of 2 or more kernels) [X.Wu 2004]. 

The data collection component of the Prophesy framework collects data using 

automatic instrumentation at the basic blocks, procedures, or loops level. The modeling 
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component provides three methods: curve-fitting, parameterization, and kernel 

coupling. In curve-fitting, the user selects the data and the method to use, and models 

the application runtime, communication performance, etc. as a function of some or all 

of the input parameters of the application. The parameterization method involves hand-

counting the number of different operations in the code, and grouping them to 

construct formulas which contain coefficient that can be determined from the database 

using hand-written scripts. The Valerie Taylor group has used the Prophesy project for 

runtime prediction on different HPC applications [X.Wu 2006_1], [X.Wu 2006_2]. The 

kernel coupling measures the interaction between kernels by dividing the combined 

runtime of kernels (runtime of kernels when they are run in sequence) by the sum of 

their individual runtimes. These runtimes are measured by placing one or more kernels 

into a loop such that the loop dominates the runtime, measuring the new runtime, and 

subtracting the time required for execution of the rest of the application from the 

obtained runtime. The application runtime is then modeled as the summation of kernel 

models (kernel models seem to be developed using the parameterization method, 

multiplied by the number of times it is executed in the application), each multiplied by a 

coefficient which is calculated as a linear function of kernel coupling values. 

[V.Taylor 2001] proposes a method to automate the development of analytical 

models of parallel and distributed applications. Data about an application are gathered 

via instrumentation and stored in an application performance database (also the 

compilers, libraries, and the control flow). There is also a model template database, and 

a systems characteristics database. The goal is to use the three databases to make 

predictions on performance of an application on different system configurations. 

Specifies three modeling methods: curve-fitting, parameterization (these two are also 

specified in other Prophesy papers), and composition. The argument for 

parameterization which is manual is that parallel applications are composed of a few 

key kernels and it would suffice to focus on these kernels. The composition method 
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seems to be the same as kernel coupling method specified in later relevant papers. 

Runtime prediction is done for an example application (matrix multiplication), and an 

FFT benchmark from NPB suite. According to [V.Taylor 2002] kernel coupling values are 

weighted based on the fraction of the runtime attributed to the corresponding kernels. 

It should be noted that kernel coupling values can be generated in a pair-wise manner 

(i.e. for pairs of kernels) or for chains of 3 or more kernels. The exploration of which 

number of kernels in the chains leads to better results is left for future work.  

He, et. al., propose a method for identification of data flow patterns in parallel 

programs, e.g. reduction, which can be used for performance prediction [J.He 2011]. 

The source code of the application is used in static analysis to classify the data flow as 

one of the 5 defined patterns. The loop nest structure is extracted from the 

intermediate presentation of the code prepared by the compiler, and all the 

assignments are examined to construct a graph relating the result to the program 

variables. A reduced form of this graph is then compared against the predefined graphs 

for recognition of data flow pattern. Authors then relate the performance of several 

synthetic benchmarks to those of NAS benchmarks, by matching the data flow patterns.  

[L.Carrington 2003] independently models both computation and 

communication operations of parallel applications (called application signature) and 

machines (called machine profiles), and convolves the two models (separately for 

computation in terms of a single processor model: memory and floating-point operation 

needs / corresponding machine rates, and communication) to predict application 

runtime on a specific machine. The machine profile is composed of machine’s capability 

to perform certain operations, e.g. peak floating point rate, obtained via low level 

benchmarks called probes. Performance of 3 scientific applications is modeled, with 

generally below 20% runtime prediction errors. The paper also provides a discussion on 

using the model for sensitivity study (e.g. what would be the performance of the 

application if network bandwidth was doubled, etc.).  
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Cornea et. al. demonstrate the use of a performance prediction tool called dPerf 

on applications in P2PDC environment for high performance P2P computing [B.F.Cornea 

2011]. The dPerf tool combines static and dynamic analysis with simulation of the 

obtained traces for prediction. The source code of the program is used in the static 

analysis to obtain basic blocks, and instrumentation provides the runtime of each block. 

This data is then fed to a trace-based network simulator to obtain an estimation of the 

runtime of the parallel application.  

 

2.4.2. White-Box Methods Using Simulation  

Simulation-based methods provide performance prediction of a target 

application by mimicking its behavior on a platform. The input to simulation is a 

representation of target application’s behavior, which can include a full event trace of 

the application covering categorization of different operations, e.g. floating-point, 

obtained using instrumentation [M.Tikir 2009], [L.Carrington 2005], [G.Marin 2007], or 

only the communication events obtained via linking the application with a profiling 

library and recording all the communication calls made by the application [G.Rodriguez 

2004], [M.Casas 2008]. It should be noted that there is some overlap between 

simulation and analytic modeling approaches, in terms of the constructed analytical 

model being used by a simulator, of e.g. the target platform, to provide performance 

predictions.  

The first subcategory of simulation-based methods entails techniques that 

record events occurring during the execution of the target application, and replay these 

for performance prediction. [M.Tikir 2009] Collects events during an application’s run, 

and is able to replay and simulate these traces (to model current and future HPC 

systems). The tracer is built on MPI’s profiling interface. The time between 

communication calls, called CPU bursts, are also recorded. The simulator takes as input 
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the event trace for an application, and a set of configuration parameters for a target 

system (parameters of the global system, each compute node, and the task-to-

processor mapping; CPU speed is specified as the ratio of target to base system), and 

simulates the execution of the application on target system. Computation time is 

estimated by multiplying CPU bursts by the ratio of CPU speed between target and base 

systems. In simulation, each event is labeled with its earliest ready time. Communication 

models are separated from the simulator, and use the configuration files and the 

current state of the system to calculate the sustained latency and bandwidth, and 

decide when a particular event will be executed, e.g. depending on the availability of the 

resources in the communication system. 

In [L.Carrington 2005], Carrington et. al. support the idea of relating HPC 

applications’ performance to simple benchmarks via a runtime modeling and prediction 

framework, which captures the applications memory and communication characteristics 

via traces. Examines the accuracy of a simple prediction method, T’(x,y)= ( R(x) / R(x0) ) 

* T(x0, y); x0 is the base system, R(x): simple benchmark on system x, T(x,y) : runtime of 

application y on machine x, to conclude its insufficient accuracy. Proposes a predictive 

framework in which applications’ operations are divided into categories, and 

instrumentation is used to gather the count for each operation for an application (e.g. 

number of floating point operations). The MetaSim Convolver [A.Snavely 2003] is used 

to combine operating counts and operation rates, which are obtained via simple 

benchmarks. The time of these categories of operations are then summed up to predict 

the applications runtime, taking into account the overlap between operations. 

In [G.Marin, 2007], Marin et. al. use static (to obtain control flow graph) and 

dynamic (memory usage patterns, etc.) analysis of object code to develop a model of 

the parallel application. The application model is combined with the machine model 

(architecture description) to predict runtime, using a module instruction scheduler that 

maps application operations on resources of the target machine. Addresses cross-
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platform and different input parameters (using models parameterized by input 

parameters). A machine description language is provided for describing different 

platforms.  

[M.Casas 2008] Instrumentation is used to obtain data on MPI calls of the 

application. A set of parameters: communication efficiency, load balance, average IPC, 

and number of instructions, are defined and measured for different numbers of 

processors. The values of these parameters are then related to number of processors 

using log-linear fitting, and an analytical model based on these parameters is then used 

to predict runtime for larger numbers of processors. For performance prediction on 

different interconnects, the bandwidth and latency, as well as network topology are 

taken into account using the Dimemas simulator [Dimemas 1997].  

[G.Rodriguez 2004] proposes a linear model of parallel applications, which is 

based on critical path length, number of exchanged bytes, and number of non-

overlapped latencies. The method uses dynamic instrumentation to obtain 

communication requests and CPU demands for different numbers of processors, and 

feeds these to Dimemas [Dimemas 1997] simulator. Regression is used on simulation 

results to fit the model to the application. Validation has only been done for simulations 

by Dimemas and not actual runs. [S.Pllana 2005] Uses source code of a parallel program 

to group the statements into categories like computation, loop, send, receive, and 

barrier. Also uses a simple model of machine: number of nodes and number of cores per 

node, etc. The execution of the modeled program on the modeled machine is then 

simulated to obtain a performance prediction. The program is first modeled using UML, 

and the UML model is automatically translated into a performance model. [J.Zhai 2010] 

Clusters processes of a parallel program into groups with similar behavior, runs one 

representative from each group on a single node to model the computation time, and 

combines the real sequential computation time measurements with a trace-driven 
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network simulator. Deterministic replay is used to allow the execution of a single 

process of an application on a single node. 

In [S.Achour 2011], Achour et. al. present a framework for prediction of parallel 

application’s performance, which uses regression to profile the computation kernel and 

communication of the parallel application. The framework feeds the models obtained 

on computation and communication of the target application to a simulator to obtain 

runtime predictions. The modeling assumes availability of the source code of target 

application in C language, and collects traces of both computation and communication 

to be provided to the simulator. The simulator constructs the task graph of the target 

application and predicts the execution time of each task, and calculates a runtime 

estimation by addressing wait times in addition to tasks runtime.   

It should be noted that there is some degree of overlap between analytical 

modeling methods and event replay methods as a subcategory of simulation-based 

methods; e.g. [M.Casas 2008] uses a model that is based on several metrics, and 

[G.Rodriguez 2004] employs a linear model.  

A final group of white-box methods use partial execution for performance 

prediction. The argument for this approach is the intrinsic repetitiveness of parallel 

applications, which means that after an initial startup period, the parallel application 

goes through a loop and each of the iterations of the loop demonstrates similar 

characteristic, including runtime, to others. This category of methods thus attempts to 

extract, as the model of the target application, the set of operations which are done 

repeatedly. This model can then be used to measure the performance on the target 

platform, at a cost which can be orders of magnitude less than the cost of running the 

target application itself.  

[L.T.Yang 2005] argues that parallel applications are iterative after a startup 

period, and thus partial execution can be used for performance prediction. The 
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performance of a parallel application on a target platform is predicted based on its 

performance on a base platform, and the relative performance of the two platforms 

obtained via partial execution. For the approach to work the introduced API needs to be 

used by the source code, i.e. source code modifications are required. Either the number 

of time steps or a full execution of application on base platform needs to be known. 

Communication is ignored. The limitations of the model are specified as not addressing 

different input parameters or different numbers of processors (i.e. no scalability 

prediction). [J.Corbalan 2005] mentions a runtime library called SelfAnalyzer, which 

measures speedup and predicts runtime of parallel applications. The tool depends on 

internal structure of parallel applications, in particular the main loop. It runs several 

iterations of the main loop on a small number of processors, called baseline, and from 

then on runs the iterations of the main loop on the requested number of processors. 

This runtime is used to calculate the speedup versus baseline. If the source code is not 

available, instrumentation is used to inject SelfAnalyzer code into the target application. 

The tool currently runs on OpenMP jobs which are malleable, and not MPI jobs. The 

analyzer is mostly focused on speedup, not runtime prediction. 

 

2.5. Gray-Box Methods  

Gray-box methods are a more recent approach to performance prediction: the 

term was introduced by [B.Barnes 2010], although older examples of the approach do 

exist: [E.Ipek 2005], [B.Lafreniere 2005]. The general idea is to employ elements from 

white-box methods thus approaching their accuracy, while minimizing such usage so as 

to maintain a cost and applicability close to that of black-box methods. These methods 

generally perform model fitting on the problem sizes as points in the input parameters’ 

space; thus, our analysis differentiates them based on the properties of the fitting.  
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In [B.Barnes 2010], Barnes et. al. propose a method that uses similarity in the 

parameter space to predict parameter values that would result in time-constrained 

scaling, i.e. increasing problem size to maintain constant performance on increasing 

numbers of processors. Performance for a problem size is predicted using “focal 

regions” of the parameter space, which represent smaller problem sizes but have similar 

ratios of input parameters (e.g. for the problem size specified using the parameter 

triplet (1,32,32), focal region includes (1, 16, 16), (1, 8, 8), but not (1, 8, 32) or (1,4,32)). 

Fitting of a log-based model relates the execution time, and separately communication 

time if it is significant, to computation time and number of processors. Training data is 

the performance observations at different points in the parameters space, assuming 

knowledge of time-step loop to minimize the cost of obtaining observations and using at 

most half the target number of processors. [B.Barnes 2008] provides scalability 

prediction for strong scaling, in which increasing number of processors reduces runtime 

for a constant problem size, via extrapolation in the parameters space: points in the 

parameter space with small numbers of processors are used to predict runtime on a 

large number of processors. The method separately relates computation and 

communication time, assumed as non-overlapping, to parameters and a function of the 

number of processors through log-based regression. Communication time is measured 

using PMPI profiling interface; one variation of the approach uses global critical path to 

exclude blocking time.  

In [B.C.Lee 2007], Lee et. al. propose performance prediction using parameter-

based models using either piecewise polynomial regression or neural networks. The 

selection of predictors (characteristics of application or processor grid) to include in the 

models is guided using statistical methods. Hierarchical clustering is used to classify 

predictors into highly correlated groups, and the significance of predictors is quantified 

using correlation analysis. Either uniform random or regional sampling, the latter based 

on similarity to the query, is used compose the training set of data points in the 
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parameters space. In [E.Ipek 2005], Ipek et. al. train neural networks on the space of 

input parameters and the resulting performance values. The parameter space is 

sampled using regularly spread points (runtime for these points is actually measured). In 

[B.Lafreniere 2005], Lafreniere et. al. propose a method that depends on user-specified 

“rough” linear formula to relate performance to application’s characteristics and input 

parameters. Model’s coefficients are determines using regression over a dataset of 

performance versus independent variables. In [A.Matsunaga 2010], Matsunaga et. al. 

construct a decision tree in the space of input parameters and platform characteristics, 

e.g. CPU architecture and memory size and speed, to predict resource usage, runtime in 

particular. At the leaf level, regression is used with finer granularity, i.e. the leaf 

determines the performance range and the regression method makes a prediction 

within this range. The idea is to select, from a pool of methods, the best regression 

method for each set of data. The proposed method is evaluated on two bioinformatics 

applications on different platforms, concluding that different machine learning 

techniques may be appropriate at different situations, hence a need for adaptive 

methods. In [Nirav 1999], authors relate the runtime to the input parameters using K 

nearest neighbors, K nearest neighbors with weighted averaging (weights are the 

reverse of distance of the neighbor from the target point), and locally weighted 

polynomial regression. A knowledge base and caching of results are used to reduce the 

overhead of the prediction scheme. [F.Nadeem 2006] introduces G-Prophet, a system 

for cross-platform performance prediction, which employs linear regression and uses a 

performance-translation mechanism to provide a larger training dataset at a lower cost. 

The mechanism assumes that the performance ratio for a base problem size to that of 

any other problem size is constant across all grid sites. Thus, results from running one 

base problem size on selected grid sites are combined with those of running all problem 

sizes on the fastest site to provide the training dataset. To further reduce training cost, 

the method forms sets of similar grid sites, i.e. same number and architecture of 
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processors, memory size and characteristics, and OS, and uses one site from each set as 

a representative. 

 

2.6. Evaluation Methods and Applications of Performance Prediction 

Comparing predicted and actual performance for one or more target 

applications is the most typical method in evaluating a performance prediction method. 

[A.Matsunaga 2010] experiments with Basic Local Alignment Search Tool (BLAST) and 

Randomized Axelerated Maximum Likelihood (RAxML). [S.Sodhi, 2008] uses class B of 

NAS benchmarks for the experiments. [S.Venkataramaiah 2003] also uses NAS 

benchmarks. In [M.Casas 2008], NAS benchmarks BT, SP, and MG have been used for 

the experiments, but the class of benchmarks is not specified. [G.Rodriguez 2004] 

evaluates the proposed method on NAS BT, Sweep3D, RNAfold and POP [POP 

Application] application. [M.Nakazawa 2005] uses CG NAS benchmark, Jacobi Iteration, 

RNA pseudoknots [L.Cai 2003], and Lanzcos iterative method. In [M.Tikir 2009], 

experiments are performed on three scientific applications, ranging from 0.5 to 2.5 

hours in runtime. [L.Carrington 2005] uses 5 real-world HPC applications. [H.A.Sanjay, 

2008] experiments on several parallel applications, e.g. ScaLAPACK eigen value solver 

and integer sort (IS, but not part of NPB). [R.Duan 2009] uses execution traces of real 

grid workflow applications. [S.Pllana 2005] experiments on a single program: LAPW0. 

[H.Li 2005] uses logs of NIKHEF cluster as the testing dataset. [B.C.Lee 2007] targets 2 

applications: SMG2000 and HPL [A.Petitet]. [E.Ipek 2005] uses SMG2000 code. 

[S.Krishnaswamy 2004] uses the some data mining applications to evaluate the 

performance of the proposed method. Although our list is not exhaustive, it 

demonstrates the variety of target applications and a lack of a generally accepted set of 

“representative” applications which has complicated the comparison of performance 

prediction methods. 
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Another common approach for evaluating a performance prediction method is 

to use the logs of jobs executed in a supercomputer center, or, similarly, evaluate the 

changes in the performance of a scheduler that employs the proposed prediction 

method over such logs. [W.Smith 2007] uses machine logs from two months as the 

training dataset, and machine logs of a different month as the testing dataset, thus 

ignoring potential locality in the logs. [S.Krishnaswamy 2004] additionally uses the San 

Diego supercomputer center 1995 log [SDSC95] and the San Diego supercomputer 

center 1996 log [SDSC96]. [F.Guim 2008] evaluates the benefits of runtime prediction 

using simulation of the scheduler, but does not compare the effect of using other 

prediction methods on the same metrics. [F.Guim 2007] presents experiments showing 

the effect, on scheduler performance, of varying levels of errors in different categories 

of jobs, for both quantitative and qualitative errors (e.g. predicting a long job as short, 

etc.). Regarding the former, it is concluded that highly accurate prediction of runtime for 

short jobs is crucial to performance of scheduler, whereas a higher prediction error is 

acceptable for long jobs. As for qualitative errors, a high impact on scheduler 

performance is reported (exponential tendency on the average bounded slowdown) if 

qualitative errors are made by the predictor, particularly if it can happen in both 

directions of predicting short jobs as long and vice a versa.  It is thus advised that any 

prediction method should attempt to avoid such errors, recommending the provision of 

confidence intervals as a possible solution. However, the only methods that provide 

confidence intervals are [W.Smith 1998], [W.Smith 2004], [W.Smith 2007].  

[E.Shmueli 2009] specifies that dependence on a predetermined workload for 

examining the performance of a scheduler is unrealistic. Instead, authors propose user 

models to simulate the behavior of users in submitting jobs, taking into account that the 

behavior of the user is influenced by the scheduler. More specifically, user actions can 

be grouped into sessions, which are sets of job submissions separated by short “think 

times”. Authors claim that a “better” scheduler is one that encourages users to 
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continuously submit more jobs, by addressing criticality of jobs from the users’ 

perspective and not arrival order alone. Also in [E.Shmueli 2006], authors propose a 

detailed model of users’ behavior which is claimed to be more realistic due to 

addressing the impact of scheduler’s decisions, and thus more suitable to evaluate 

performance prediction methods. Through experiments, it is demonstrated that 

evaluating the performance of one scheduler using trace data obtained as the response 

of users to another scheduler can result in significant underestimation or 

overestimation of performance metrics. 

The existence of anomalies in the test set can significantly affect the judgment of 

the effectiveness of a prediction method, particularly if the evaluation is done in the 

context of a scheduler. [D.Tsafrir, 2006] proposes a method for detecting and 

eliminating anomalies in the workloads, used later by [F.Guim 2008]. [D.G.Feitelson, 

2008] also emphasizes the need to clean platform logs from abnormal activity: an 

example is shown in which cleaning the abnormal activities of one user from a machine 

log leads to significant change of the calculated correlation between runtimes and job 

sizes. [C.Glasnerlow 2011] uses an outlier detection mechanism that considers the last 

completed job an outlier if it does not conform to previous ones. [A.Deshmeh 2010], as 

explained in black-box methods section, uses a fluctuation metric which is based on 

expected scalability of the target application to identify both individual anomalies and 

those that are part of a specific scalability pattern, e.g. an application that runs well only 

on processor counts that are powers of two.  

In addition to using a variety of target applications to evaluate performance 

prediction methods, reporting of the achieved accuracies is also done in various 

methods, further complicating the comparison of performance prediction methods. In 

[W.Smith 1998], results are compared to other methods, showing smaller average mean 

error for the proposed method, measured in minutes. The mean error, also measured as 

the fraction of mean runtime, is reported to be between 42% and 70%. [W.Smith 1998] 
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and [W.Smith 2004] report mean prediction errors between 29 and 59 percent of mean 

application run times. In [W.Smith 2007], runtime prediction errors are reported as 72% 

of the mean execution time and compared to user runtime estimates errors of 246%. 

The overhead of making predictions for a particular platform is also specified.  In 

[S.Krishnaswamy 2004],   Krishnaswamy et. al. report mean errors as percentages of 

mean runtime. A major part of the experiments are performed on the SDSC data, with 

test cases obtained randomly from the log. In [F.Guim 2008], due to predictions being 

ranges of runtime rather than point values, it is not easy to compare to other methods 

as the mean error in terms of runtime is not specified (only 160% average error and -

1.7% median error are mentioned, but calculation base is missing, which is probably 

categories of runtimes rather than actual runtimes). In [M.Tikir 2009], prediction of 

communication time based on simulation is reported to have an error of around 14%. 

Highly accurate predictions are also reported for runtime prediction using simulation, 

with generally less than 20% errors. 

 

2.7. Key Insights Provided by the Literature 

Next we describe a set of insights, provided by the literature either in direct 

association with performance prediction or otherwise, which we consider to have 

significant implications for performance prediction.  

 

2.7.1. Job’s Size, Runtime, and Potential Correlations  

There have been studies attempting to establish relationships, e.g. correlations, 

between job sizes and other job attributes, mainly runtimes, through examination of 

logs from supercomputer centers. A key implication of a strong relationship, as noted by 

[D.G.Feitelson, 2008], would be that scheduling decisions are implicitly based on 
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runtime, due to dependence on job sizes. [D.G.Feitelson, 2008] shows the different 

percentages of the jobs with different sizes across several supercomputing centers, 

demonstrating a strong preference for powers of two sizes. The experiments do not 

show a strong or even uniform-across-all-logs correlation between job size and runtime, 

although categorizing jobs into small and large categories showed a stronger but still 

inconclusive, i.e. not uniform across logs, correlation. [E.Shmueli 2009] also performs a 

similar study using the CDF of job runtimes and sizes, specifying the consideration of the 

correlation between size and runtime as a means to gain further accuracy in simulating 

user behavior. [U.Liblin 2003] models runtime and size as a combination using the 

correlation between the two, reported as the observation of two gamma distributions 

for the runtime of each of the 3 size-based categories of jobs. A hyper-gamma 

distribution models the runtime per category, with a size-based parameter p specifying 

the distribution to sample. The paper also reports a much higher correlation between 

runtime and job size for batch jobs than for interactive jobs, and the peak of runtime 

distribution of batch jobs being 5 times as much as the interactive jobs.  

 

2.7.2. User Behavior: Sessions, Locality, Cycles, and Estimates  

 

2.7.2.1.  Sessions  

The idea of sessions was proposed first by [Zilber 2005] which demonstrates that 

CDF (cumulative distribution function) of think times, defined as the time between 

completion of a job and submission of next by the same user, has a steep climb at 20 

minutes, thus assuming the jobs with 20 minutes or less think time between them to be 

in the same user session. In abstract terms, users tend to subsequently submit jobs in a 

session. [M.F.Arlitt 2000] proposes a similar idea, but in the context of web server logs. 

The idea is further pursued by [E.Shmueli, 2007] claiming that user behavior is more 
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influenced by the response time than by slowdown, the former being the time from 

submission of job to its completion, and the latter being the response time divided by 

actual execution time. Reported CDFs for think time on several different workloads 

associate higher response times with lower percentages of jobs with a think time of 20 

minutes or less, i.e. higher response time results in higher probability of user ending the 

session. In [E.Shmueli 2009], Shmueli et. al. make a similar conclusion by demonstrating 

a strong linear correlation between response time and think time. [D.G.Feitelson, 2008] 

also studies the relationship between users’ think time and the response time, 

concluding that response time is a better predictor of users’ reaction than slowdown.  

 

2.7.2.2. Locality and Cycles of Activity 

[D.G.Feitelson, 2008] demonstrates the locality of user behavior by presenting 

the difference between CDF of runtimes when taken across the whole log vs. across 

specific months or weeks, i.e. users tend to submit jobs with similar runtimes over 

smaller time scales. [E.Shmueli 2009] also claims temporal locality in the workload, i.e. 

users submit the same jobs over and over again, thus a similarity tendency by successive 

jobs of each user. Similarly, [D.G.Feitelson 2007] specifies more repetitiveness and 

regularity in the workload at smaller time slices, and references [R.Gibbons 1997], 

[D.Ferrari 1984] to claim workload data as non-stationary and changing as users learn to 

use a new system or as change the dominant application type, as opposed to the 

assumption made by workload generation methods. Two additional locality-related 

phenomena are specified as: 1) the humans daily cycle of work, and 2) autocorrelation 

of jobs, i.e. a correlation between runtimes of the same job, reversely proportional to 

the number of jobs separating the repetitions. A two-level workload generation method 

is proposed, where the top level picks the locality area to focus on, and the bottom level 

picks random jobs from that part of the distribution or population. [H.Li 2005] Argues 

based on [D.G.Feitelson 2002] that “workload traces are distributed with heavy tails and 
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show a high level of self-similarity”, thus runtimes are not similar across different time 

scales, probably leading to poor performance of global learning methods, e.g. neural 

networks. Authors thus use an instance-based learner to predict job runtimes of a 

month, trained on logs of the two preceding months. 

In [E.Shmueli 2009], Shmueli et. al. simulate the behavior of users in submitting 

jobs by integrating 3 models: 1) session dynamics model, 2) job submission model, and 

3) cycles of activity model. The first model incorporates the concept of sessions in the 

simulation of user behavior. The job submission model uses a two-level sampling 

process, with the top level generating the attributes for the jobs, and the bottom level 

repeating them to generate effects of locality. Repetition of job sizes, the base of the job 

submission model, is claimed using the corresponding CDF; however, the majority of job 

sizes are repeated only once: from 55% to 70% in all the traces. The last model divides 

trace data into day/night and weekday/weekend and uses the current day/time in the 

simulation to determine whether the model representing a user should be submitting 

jobs. ADAPS, proposed by [C.Glasnerlow 2011], is a prediction system which adapts to 

changes in the user behavior, via a) allowing or denying the use of sets of similar jobs 

(called clusters) in the runtime prediction, and b) assigning weights to sets of similar 

jobs and prediction methods when calculating the overall runtime prediction as a 

weighted average of predictions made by all possible pairs of predictor/similar-jobs.  

In [E.Shmueli 2006], authors specify that the workload observed by the 

scheduler at any given time during the simulation is the combination of workload 

generated by all active user sessions. Each user session is composed of two parts: 1) a 

job submission behavior model, which specifies when the user submits more jobs and 

when he waits for jobs to complete, and 2) a work pool model that specifies the 

characteristics of the jobs. Authors claim that the users’ job submission behavior is 

largely independent of the characteristics of the jobs that are submitted. Each session is 

associated with its own job submission and work pool model. The work pool model is 
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composed of two distributions: the runtime model and the job size model. The work 

pools are modeled using empirical data drawn from trace data. Both job sizes and job 

runtimes are generated from the distributions of trace data. The distribution data on 

repetitions of jobs are also used: generated jobs are repeated according to this 

distribution.  

 

2.7.2.3. Runtime Estimates by Users 

Estimates of job runtimes provided by the users have been studied to uncover 

potential benefits, and to make possible their simulation. In [A.W.Mu’alem 2001], 

Mu’alem et. al. show that user runtime estimates are rather inaccurate. [Cirne 2001] 

claims that in four different traces, 50 to 60% of jobs used less than 20% of their 

requested runtime. Similar observations were made by [S.H.Chiang 2002]. [C.B.Lee 

2004] specifies that users are quite confident of their estimations, and will likely not be 

able to provide better estimates. [C.B. Lee, 2006] studies whether the users can improve 

their estimate of runtime if there is reward for accuracy, and concludes that about half 

of the users do improve their estimates under these conditions, but there is not much 

improvement to the overall accuracy. The paper mentions the “padding hypothesis” as: 

users know their jobs’ runtime, but pad their estimates to avoid the risk of jobs getting 

killed if they pass the estimation. To evaluate this hypothesis, the study asks users of a 

supercomputer  center to provide non-kill estimates, with awards for accurate 

predictions; with result that seem to be the negation of the hypothesis as users still tend 

to overestimate. The study also conducted a survey to check whether users can provide 

a more expressive function of the importance of their jobs, or the utility function (user’s 

satisfaction), and concludes that users are able to better express themselves.  

In [D.Tsafrir 2005], Tsafrir et. al. build a model of parallel jobs and their 

associated user estimates through the study of several workload traces. The study 
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shows all accuracy levels to be almost equally probable for the estimates, through 

demonstrating the flatness of histograms of the number of jobs vs. estimates’ accuracy 

for successfully completed jobs across several workload traces (similar observations by 

[D.Tsafrir 2007]). Comparison of CDFs of actual and user-estimated runtimes further 

emphasizes this inaccuracy, which is only in the form of overestimation, as the job 

would otherwise be killed by the scheduler upon surpassing its estimated runtime. The 

study also reviews the existing models of user runtime estimates. The f-model 

introduces a “badness” f factor and assumes the users’ runtime estimates fall between 

the actual runtime R and (f+1)R. The major flaw of the f-model is identified as the 

implicit provision of the relative order of jobs to the scheduler, i.e. short jobs are always 

reported shorter than long jobs, potentially improving the performance of backfilling. 

The φ-model, which generates estimates that result in histograms similar to those of 

actual estimates, is criticized for ignoring the cap that most platforms put on the 

runtime of a job, i.e. generating longer-than-cap estimates that never happen in 

practice. Existing models are also found to ignore the repetitiveness observed in the 

work of users of parallel machines, i.e. sessions, and the fact that user estimates 

compose a highly modal distribution: about 90% of the jobs in the examined traces use 

only 20 distinct values as user estimates. In a keynote speech [D.Tsafrir, 2010] Tsafrir 

adds to the above the ignoring of the use of the maximum allowed runtime as a favorite 

estimate. It can be concluded that not all existing models of user estimates can be used 

as components of a performance prediction method, particularly for its evaluation.  

 

2.8. Challenges and Open Problems 

Depending on the need the performance prediction aims to satisfy and the 

resulting situation, there are various challenges that need to be addressed. In this 
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section, we describe a list of these challenges, and the set of techniques and 

approaches, if any, that are used to address them. 

 

2.8.1. Cross-Platform Performance Prediction  

A major challenge in performance prediction is the ability to make predictions 

for various platforms. This includes platforms which are not even available yet. The main 

motivation for cross-platform performance prediction is that it allows the scientists to 

decide which of the many available platforms to choose for running their application. It 

may also allow a cost-benefit analysis regarding the installation of a new platform or 

upgrading an existing one. The problem also relates to grid computing, as [F.Guim 2008] 

mentions that user estimates are only valid for homogeneous systems in a grid. Also, 

[K.Kurowski 2005] specifies as a major challenge the heterogeneity of systems on a grid 

and proposes modeling prediction errors to address these issues. The problems 

proposed by cross-platform performance prediction are: a) there may be no 

observations of the target application’s behavior on the target platform, b) the target 

platform may be substantially different from the observed platforms, in terms of CPUs 

(speed, or even worse, architecture), the interconnect (bandwidth, latency, or even 

architecture), c) it may not be possible to obtain e.g. benchmark results or other 

dynamic-nature information for the target platform, due to e.g. not having access to it 

or it have not been built yet. This challenge can occur in many cases, examples are: 

acquiring a new machine, deciding where to run a particular set of applications on a 

grid, or making design decisions for an application or a platform. The methods proposed 

by the literature so far for dealing with the cross-platform performance prediction are 

described below. It should be noted that not all the methods listed here are designed to 

deal with the challenge; some of the methods partially achieve this goal as a beneficial 

side-effect of the innovative idea.  
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One category of approaches separately model the platform, rather than making 

it an implicit component of the application model, and thus are able to provide varying 

levels of accuracy and complexity in the platform model. However a mechanism needs 

to be provided for combining the two models, i.e. application and platform, in order to 

make performance predictions. Examples of the methods using this approach are 

[V.Taylor 2001], [L.Carrington 2003], and [G.R.Nudd 2000]. 

Another set of methods define a performance ratio between a base platform 

and the target platforms. The base machine is usually accessible easily, i.e. almost all 

observations have been obtained from it. The target machines on the other hand, are 

either not available at all, or are available for a limited set of observations, as in [J.Zhai 

2010] which assumes the availability of one node of the not-yet-available new platform, 

or [M.Casas 2008] in which simulators are used on event traces of parallel applications 

obtained via instrumentation. These simulators are capable of simulating different 

interconnects and their corresponding parameters like bandwidth and latency 

[Dimemas 1997]. The performance, either actual or predicted, of the application on the 

target machine is then related to the performance on the base machine. The 

establishing of this relationship and the sophistication of the ratio itself varies greatly. In 

[W.Pfeiffer 2008] the proposed model provides the possibility of cross-platform runtime 

prediction (examined in the paper’s experiments) as it formulates the coefficients partly 

on the basis of the ratio of the value of the predictor on a base and a target machine. 

[F.Nadeem 2006] translates performance of the application across grid sites using the 

assumption that the ratio of performance of the base problem size (the one executed 

on all sites) to that of any other problem size is constant across all grid sites. The 

performance translation is used for both creating a training dataset and for making 

predictions for platforms on which a specific problem size has not been executed. 

[J.Delgado 2010] Cross-platform prediction: specifies a “platform contribution” constant 

to model the CPU, which is identified via benchmarking. The resulting term is used as 
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one of the factors that are multiplied to obtain the execution time. [M.Casas 2008] 

assumes that the ratio of application’s average IPC (instructions per cycle) to the 

vendor-declared peak IPC, is uniform across all platforms (results suggest that this is a 

reasonable assumption if the two architectures are “close”). 

A final category of methods separate (or at least try to separate) the 

computation and communication of a target application, and model or simulate the 

target platforms’ interconnects to obtain an estimation of the performance of the 

application on those platforms. The computation part is usually assumed to scale 

linearly depending on the base and target platforms. A major shortcoming of such 

methods is the assumption of a lack of overlap between computation and 

communication, which can have significant implications for the accuracy of predictions. 

[H.A.Sanjay 2008] addresses cross-platform performance modeling via scaling 

coefficients of different complexity functions which are components of the application 

model and are obtained on a reference platform as appropriate for a target platform, 

e.g. the computation complexity is scaled by a factor that is the ratio of applications 

runtime, for a “moderate” problem size, on reference vs. target platform. [L.Carrington 

2003] falls under this category too; note that it also falls under the category of methods 

that separately model the application and the platform.   

To summarize, although cross-platform performance prediction has been 

addressed extensively in white-box methods, very few black-box and gray-box methods 

have attempted this challenge, and none have actually addressed this challenge through 

a robust mechanism.  
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2.8.2. Problem Sizes and Input Parameters 

The utilization of the increasing processing capability, available through clusters 

and grids, can be categorized into strong-scaling and weak-scaling. In strong scaling, the 

additional processing power is utilized to solve a larger instance of the same problem. In 

this category of usage, the total execution time of the application does not decrease 

significantly and may even increase, but the benefit is the solution of the target problem 

at a size which may not have been possible with fewer resources, e.g. due to insufficient 

memory per processing node. Weak-scaling, on the other hand, uses the additional 

processing power to solve the same problem size as with fewer resources, in a smaller 

amount of time; this reduction in the amount of processing time is the main benefit. 

Each of these categories of usage creates its own challenges for performance prediction. 

With strong-scaling, the main challenge is the prediction of the application’s behavior, 

under a new platform, i.e. cross-platform performance prediction, and under a new the 

problem size. Weak-scaling faces the challenge of prediction under a different platform, 

as well as predicting the target application’s scalability, since it may not be linear at all.  

[D.J.Kerbyson 2005] uses expert knowledge of code and the problem it solves to 

model a scientific application’s runtime as a function of different computation tasks 

based on the input parameters (problem size). [V.Taylor 2002] assumes that the 

different runs needed to generate all coupling values have the same input. The paper 

also explores how the coupling values change with a) the problem size and b) the 

number of processors. It is claimed that the changes with numbers of processors are 

finite, and correspond to different levels of memory hierarchy. Only the results 

corresponding to the length of kernel chains that produced the best predictions are 

shown. The kernels are not used to generalize to problem sizes and/or number of 

processors for which there are no data to calculate kernel coupling values, i.e. actual 

predictions. [J.Schopf 1998] and [A.Matsunaga 2010] assume detailed knowledge of 

applications’ input parameters, e.g. in terms of knowing which ones have the most 



 

47 

 

influence on the runtime. [X.Wu, 2004] examines the possibility of reusing kernel values, 

which are basically the mutual impact of different kernels that make up a parallel 

application, over different problem sizes and conclude that the kernel coupling values 

obtained for some problem classes (sizes) can be reused for others; more specifically, 

class B values can be used to predict performance for class A. This claim is made for the 

NAS benchmark suite, and SP benchmark is shown as a representative of SP, BT, and LU. 

However, this is a white-box method that assumes an understanding of the kernels of 

which a parallel application is composed. The method is also not general, i.e. works only 

when there is a limited set of problem sizes, not for various combinations of input 

parameters.   

To summarize, the issue of input parameters and the resulting problem size 

seems to be requiring a lot further investigation, since the current literature does not 

seem to have answered several key questions, and also considering its high applicability 

to high-performance computing and grid computing. 

 

2.9. Summary 

In this chapter, we discussed performance prediction as a key research topic. We 

presented a detailed list of the areas in which performance prediction can provide 

important benefits. We provided a taxonomy of the state-of-the-art methods on 

performance prediction, and described in detail each category of existing research work. 

Next, we described a set of insights related to performance prediction, from both the 

research work that proposes novel prediction methods and from the research work that 

addresses an application area of performance prediction. Finally, we provided a list of 

challenges proposed by the application of performance prediction in different areas and 

under various constraints, and discussed the work done on each of these challenges and 

derived a list of open problems. 



 

48 

 

As a result of the survey presented in this chapter, we identified several open 

problems and gaps in the existing prediction methods. We next present these and 

subsequently describe how our performance prediction method addresses several key 

items of these challenges.  

• Current methods are either expensive or not sufficiently accurate 

• Current methods are not applicable in a production environment 

• Many of the current methods depend on user/admin intervention 

• Many of the current methods require too many input points 

• Prediction across problem sizes is not addressed well by current methods 

• Prediction across platforms is not addressed well by current methods 

Based on the above survey, our understanding is that the following are the most 

important aspects of a prediction tool, which are not collectively addressed by any 

single prediction method: a) high prediction accuracy, b) requiring small number of 

input points, c) applicability in a production environment, and d) predicting across 

different problem sizes of a parallel application. Our Prediction tool, presented in the 

next chapter, addresses all these 4 challenges by implementing a prediction method 

that is: 1) highly accurate while requiring very few input points,  2) requires no user or 

OS-level support and is computationally feasible to run in a real world scheduling 

environment, and 3) is capable of predicting runtime and speedup for different problem 

sizes of a parallel application.  
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CHAPTER 31 

ADEPT Runtime and Speedup Prediction 

3.1. ADEPT’s Goals 

Adaptive CPU resource allocation is a widely researched topic in job and grid 

scheduling with potential to improve response times significantly (up to 70%) by 

reducing fragmentation and considering the current machine load [V.K.Naik 

1997][W.Cirne 2003][A.C.Sodan 2006][L.Barsanti 2006]. Due to typical efficiency curves, 

the latter contributes most to the benefits and means running applications with more 

resources if the load is light and with less if the load is heavy [V.K.Naik 1997][A.C.Sodan 

2009]. Adaptive resource allocation is a practically promising approach, considering that 

a study found that 98% of the users said their applications could adjust to different 

resource allocation at start-time [W.Cirne 2003]. Adaptive resource allocation depends 

on efficiency curves per problem size (strong scaling) since efficiency-based allocation 

was found superior to uninformed approaches like equal resource partitioning 

[S.H.Chiang 1996]. However, efficiency/scalability curves are not generally available; this 

is a major reason why adaptive resource allocation is not yet incorporated in practical 

schedulers. Thus, providing scalability prediction in an easy-to-use manner would open 

new possibilities for better practical scheduling. Users may also select job sizes 

“tactically” under considerations of trading shorter waiting times for increased 

runtimes. Scalability prediction is also relevant for determining the maximum 

meaningful CPU resource allocation to a parallel job (and therefore an often-tackled 

problem, e.g. [X.H.Sun 1999]) as feedback to users and system administrators. Though 

so far mostly applied on clusters, with the emergence of parallel computing in every-day 

                                                           

1
 This chapter incorporates the outcome of a joint research undertaken in collaboration with Jacob Machina under the 

supervision of Dr. Angela Sodan. See the declaration of co-authorship for details.  
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life on multi-core systems, adaptive schedulers will likely increase in practical relevance. 

This is especially true if the resources allocated to a virtual-machine running parallel jobs 

can vary [A.C.Sodan 2009]. Luckily, OpenMP applications on multi-core SMP servers 

were found to exhibit similar shapes of speedup/runtime curves as MPI applications on 

clusters [M.Curtis-Maury 2005]. This opens the possibility of applying the same 

scalability prediction approach. 

Accurate predictions can be obtained via either black-box or white-box 

approaches. The latter are based on application-internal and machine information, 

require code instrumentation, compiler/OS support, analysis of memory-access 

behavior, simulation, etc. [L.Carrington 2003][B.Lafreniere 2005][G.Marin 2004] 

[X.H.Sun 1999]. Thus, white-box approaches are complex and computationally 

expensive, making them unsuitable for large-scale use in supercomputing centers 

though indispensable for cross-site prediction or projection of performance on not yet 

practically available platforms. Black-box approaches predict scalability (speedup and 

runtime) using only runtime observations on different numbers of nodes, by assuming 

conformity to a simple descriptive model which can be fitted to the observations to 

derive a specific model instance. The required observations can easily be obtained from 

data routinely collected in historical databases by supercomputer centers or from 

explicit test series. This makes black-box approaches much easier and much cheaper to 

apply, though, to be practical, the number of required observations needs to be small. 

Currently existing black-box models suffer from applications potentially deviating 

significantly from the models because of anomalies or because exhibiting specific 

scalability patterns which cannot be directly explained by the model.  

Our overall goal is scalability prediction (in the sense of strong scaling), on both 

multi-core SMP servers and clusters, which is practically feasible for production 

environments. To enable production use, we apply a black-box approach based on the 

Downey model shown to capture simplified behavior of parallel applications very well 
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[A.Downey 1997 Model]. The Downey model has been around for a long time but has not 

been widely used due to many real applications not fully conforming to the model, e.g. 

by showing super linear speedups, and due to reliability of a specific prediction being 

hard to judge. 

As described in [A.Deshmeh 2010], with the development of ADEPT (Automatic 

Downey-based Envelope-constrained Prediction Tool), we pursued the following 

detailed goals: 

• Achieve high prediction accuracy, while requiring only few observations (typically 

3 to 4). 

• Provide a computationally efficient approach for deriving the model instance. 

• Identify cases where the application does not fully conform to the Downey model 

as anomalies, with automatic correction and multi-phase modeling for individual 

irregular points and typical patterns. 

• Perform reliability judgment which recognizes unsuitable observation layout and 

proposes placement ranges of additional observations.  

To address these problems, ADEPT employs a special envelope-derivation 

technique which constrains the search for the best-fitting model instance, a special 

metric for detection of anomalies, and special pattern handling for cases like super-

linear speedup. Experiments with the NAS benchmarks [D.H.Bailey 1995] and seven real 

applications show the efficiency and prediction quality of ADEPT in handling normal 

cases and anomalies. We obtained generally above 80% prediction accuracy, even in 

cases with anomalies and for predictions which extrapolate for more than twice the 

number of nodes that were used in the closest observation. The experiments also 

demonstrate the effectiveness of reliability judgment. 
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3.2. Related Work 

We next provide a brief description of the literature most significantly related to 

ADEPT. Black-box approaches attempt to provide accurate predictions with low 

overhead by assuming conformity of parallel applications to an underlying model to 

which available data is fit. The approach in [R.Gibbons 1997] uses historical information 

of a parallel application, including number of nodes and user estimate, as input to a 

weighted least squares method for obtaining a quadratic runtime formula, which can 

then be used to make predictions. The method proposed in [W.Smith 2004] also 

employs historical information, but obtains the predictions from a job’s corresponding 

“group of similar jobs”, using linear regression, or in some cases averaging. Groups of 

similar jobs are determined using greedy and genetic algorithm search. The technique 

proposed in [B.Lafreniere 2005] applies multiple linear regressions to historical 

information to extract the value of parameters of the rough, user-provided complexity 

formula.  This quantizes the rough formula, which can be used to make predictions. 

Downey et al. propose a black-box model which uses only two parameters, called 

average parallelism and variance of parallelism [A.Downey 1997 Model]. To validate the 

proposed model, the NAS benchmark suite [D.H.Bailey 1995] was used to generate 

runtime data for model fitting. However, all observations were used to train the model; 

no predictions were made. Black-box approaches benefit from zero overhead for the 

target application at runtime and no need to access the source or binaries, but are faced 

with the challenge of determining the optimum model instance. An adaptive runtime 

method for determining the maximum number of tasks meaningful for execution by 

OpenMP [OpenMP 2008] threads is proposed in [A.Duran 2008].  The approach measures 

work per task and overhead to decide whether tasks should be created at a certain 

nesting level but does not provide any predictive model.  

Most white-box methods adopt one of two approaches: perform independent 

code and machine profiling then combine these to produce predictions, or use code-
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instrumentation on a specific code-machine combination to construct a model of 

application behavior. The approach proposed in [G.Marin 2004] extracts a target 

application’s key performance characteristics from its binary. This approach constructs 

models of memory access behavior and maps them on the target architecture to 

provide runtime predictions. The approach proposed in [A.Snavely 2001] also employs 

independent modeling of the application (memory access and communication behavior) 

and the target architecture (capability to perform load and store operations), and maps 

the former on the latter to provide predictions. Closely related is the technique 

described in [L.Carrington 2003], which models both the application and the architecture 

based on their “fundamental operations” capability. The SCALA system [X.H.Sun 1999] 

uses the concept of scalability of code-machine combinations to make inter-platform 

predictions, and reduces the time complexity of the modeling by determining key basic 

blocks. Another approach is proposed in [B.Barnes 2008], which employs regression to 

predict scalability. As indicated by [B.Barnes 2010], the capability to address different 

problem sizes when predicting runtime and speedup of parallel applications is highly 

beneficial to adaptive resource allocation, but is currently only addressed by white-box 

tools and not feasible in production environments.  

Gray-box methods aim for the best of both previous categories, i.e. high 

accuracy of white-box and low overhead of black-box methods. The term was 

introduced by [B.Barnes 2010], even though older examples of the approach can be 

found in the literature: [E.Ipek 2005], [B.Lafreniere 2005]. In [B.Barnes 2010], Barnes et. 

al. propose a method that uses similarity in the parameter space to predict parameter 

values that would result in time-constrained scaling, i.e. increasing problem size to 

maintain constant performance on increasing numbers of processors. In [B.Lafreniere 

2005], Lafreniere et. al. propose a method that depends on user-specified “rough” linear 

formula to relate performance to application’s characteristics and input parameters. 

Model’s coefficients are determines using regression over a dataset of performance 
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versus independent variables. In [Nirav 1999], authors relate the runtime to the input 

parameters using K nearest neighbors, K nearest neighbors with weighted averaging 

(weights are the reverse of distance of the neighbor from the target point), and locally 

weighted polynomial regression. To summarize, the existing work in this category is still 

not applicable in a production environment due to its requirement of internal 

knowledge on the target application and/or user intervention.  

 

3.3. The Downey Model 

 

3.3.1. Overview 

Downey proposed a black-box model which describes an application via two 

parameters: A as the average parallelism and σ which is the variance in parallelism, i.e. 

describes the shape of the curve [A.Downey 1997 Model]. The model thus has a semantic 

meaning related to typical application behavior. It provides piecewise functions for the 

application’s speedup and runtime, specified separately for low variance and high 

variance modes of the model. In Table 1, n represents the number of nodes, T(n) and 

S(n) represent the runtime and speedup on n nodes. To conform to Downey model, 

which states that T(∞)=1, we assume all runtime values are divided by this value. Figure 

2(a) and (b) show a set of speedup curves constructed using the Downey model with 

different A and σ values. A smaller σ means the parallel application reaches its 

maximum speedup at a smaller number of nodes. σ=0 corresponds to linear speedup. 
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3.3.2. Strengths and Weaknesses 

The Downey model benefits mainly from the fact that it uses only two 

parameters (namely, A and σ). This makes the model easier to store and understand, 

and reduces the number of observations necessary to learn the parameters for a 

 

 

Figure 2. Downey model speedup curves  

(top) Speedup curve: σ=2, varying A (1000, 300, 120, 50),  (middle) Speedup curve: A=220, varying σ 

(0, 0.5, 1, 1000), (bottom) Downey model’s lack of support for declining piece of the speedup curve. 
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specific application, i.e. to construct an application’s corresponding Downey model 

instance. 

A typical speedup curve has 4 pieces: approximately linear, transitional, flat, and 

declining. However, the Downey model does not include parallelism overheads such as 

communication cost, and therefore does not capture the declining section, the main 

drawback of the Downey model; see Figure 2(c). This is insignificant as the maximum 

meaningful number of nodes can be obtained as for low variance mode and as

for high variance mode, i.e. there is no need to allocate more cores to an 

application than these maximum values, and hence the behavior of the model beyond 

these maximums can be disregarded without loss of generality. Also, the processor 

working set—proposed as a metric to determine a balance between speedup and 

resource consumption [D.Ghosal  1991]—could be calculated using the fitted model, by 

finding the minimum n such that  is maximal, with . 
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3.4. The ADEPT Predictor 

ADEPT uses an instance of Downey model to make its predictions. Therefore, to 

obtain this instance, ADEPT needs to learn A and σ from a set of observations, each 

being a specific number of nodes paired with its corresponding runtime. Note that the 

serial runtime T(1) may not be available which makes predictions more difficult as the 

actual speedup values cannot be determined. Moreover, real applications may 

significantly deviate from the Downey model, either in terms of an individual anomalous 

point or of a specific scalability pattern which the model does not natively incorporate. 

Even for applications that closely conform to the model, input points may all be drawn 

from the linear section of the scalability curve, or be placed such that vastly different 

model instances still explain them. The latter happens when there exist several Downey 

model instances that happen to fit the observations equally well, while having 

substantially different values for the parameter A, due to the effects of the parameter σ. 

The Section on reliability judgment provides the details on how this is detected and 
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handled. To address these challenges and provide an efficient predictor which is 

applicable in production environments, ADEPT is composed of four major components 

(see Figure 3):  

1. Anomaly detection, which identifies individual anomalous points and specific 

scalability patterns typical in some HPC applications. 

2. Envelope derivation, which significantly constrains the search space. 

3. Curve fitting, which finds a model instance within the envelope for each 

prediction target. 

4. Reliability judgment, which performs post-processing to detect unreliable 

predictions. 

Envelope derivation and curve fitting constitute the core of the ADEPT tool and 

derive the predictive model. Envelope derivation reduces the search space of model 

instances to those which could explain observations, making fine-grained search 

feasible. Anomaly detection and reliability judgment enhance ADEPT with features 

necessary to handle real applications. The algorithm used by ADEPT is as follows. The 

more detailed algorithm corresponding to each step is presented in the 

corresponding section. 

1. Obtain the envelope, E, from I, the set of observations:  

E = EnvelopeDerivation(I) 

2. Obtain the list of Adjusted Weights, W, from I: 

W=AnomalyDetection(I) 

3.  Obtain the set of predictions, P, which is one prediction for each of the 

targets in the set T: 

P=CurveFitting(I, T, E, W) 
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4. Generate Reliability Warnings for the set of Predictions: 

WR=ReliabilityWarning(I, T, P) 

5. If more input is both required and available, add new input to the input set I, 

and Go to Step 1.  

 

 

First, we will discuss the core of the ADEPT predictor, and then show 

experiments which demonstrate its effectiveness for normal cases. We will later present 

ADEPT’s anomaly handling and reliability judgment and corresponding experiments. 

 

3.5. Obtaining the Predictive Model with ADEPT 

 

3.5.1. Envelope: Deriving Constraints from Observations 

As mentioned before, the goal of the envelope derivation step is to make 

exhaustive search feasible via reducing the search space. This goal is achieved by 

establishing an envelope, which is a set of constraints on the parameters of the model.  

The envelope is created using the following idea. For observations which 

perfectly match a model instance, a closed-form solution could calculate exact 

parameter values. For real applications which do not match perfectly, we assume each 

input point deviates from the underlying model by at most δ up or down. Then 

measured runtimes can be mapped into a range in which the runtime predicted by the 

underlying model must fall. These ranges can be used for pair wise calculation of closed-

form solutions for the lower and upper constraints. 
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Figure 4. Forming the envelope 

Range Pair 1 is redundant and discarded. Range Pairs 2 and 3 are combined to form the 

envelope, with absolute bounds shown via heavier lines. 
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Formally, we assume the existence of a model instance mi for a real application 

appi, with a maximum deviation δ (a fraction) from mi at any observation point: 

. Since mi is not known, δ must be 

guessed. To test the validity of this guess, runtime values provided by any model 

instance assumed as mi can be compared to actual observations as:

. If this test fails, our initial guess for δ was 

incorrect, and δ can be incremented until it passes.  

The envelope is defined as a set of range pairs whose first and second 

components specify constraints on A and σ values, respectively: 

.
 Each range pair thus represents a 

lower-bound model instance: , and an upper-bound model instance: 
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instances lying between the bounds. In the experiments, we only show lowest and 

highest bounds of all pairs. The envelope is not to be confused with a confidence 

interval; it only constrains the set of model instances.  

We have derived formulas and their extensions using δ for all possible pieces of 

the low and high variance modes of the Downey model. The complete set of ten 

formulas and their derivation are described in [A.Deshmeh 2009] and in Appendix A. The 

following equations give examples of closed-form formulas for the first piece of the low 

variance mode of the Downey model, and the corresponding formulas with the δ 

parameter included: 

  (1) 

  (2) 

 (3) 
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These formulas assume that both observations lie in the same piece. For any 
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• Use the set of observations, , to form all pairs of 

observations, & = '(���, ���, )�* , �*+, -∀/, 0 ∈ 11, … ,34, / < 06, where M is the 

number of observations. 

• For each observation pair p P, calculate all possible range pairs for the 

parameters, , where kp is 

the number of possible range pairs based on the pair of observation and the 

number of formulas we have derived to calculate range pairs, as detailed by 

Appendix A. For each observation pair p, a maximum of four range pairs are 

possible, two for each of the low and high variance modes. This gives the set

. 

• Discard redundant range pairs in . A range pair

 is redundant if there exists some 

, such that the following conditions 

hold:  and . 

In other words, all the model instances that fit into constraints of cl also fit into 

constraints specified by cj but the reverse does not necessarily hold. This means 

discarding cl while keeping cj would not modify the set of model instances that are 

examined, as shown in Figure 4. The result of discarding those range pairs which 

are redundant is the final set of range pairs .  
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Table 2. Comparison of runtime of ADEPT with three curve fitting methods 

Methods compared are exhaustive search, genetic algorithm, and Levenberg-Marquardt. 

Comparison is made for two sets of curve fitting experiments, one shown in each row. Runtimes 

shown in each row are averages over the experiments in that set. 

Experiment Attributes Runtime (sec) 

A range σ range Levenberg-Marquardt Exhaustive Search Genetic Algorithm ADEPT 

400 to 1000 0.0 to 1.0 0.08 5 14 0.46 

400 to 2000 1.1 to 12.0 0.07 5 14 0.48 

 

3.5.2. Curve Fitting: The Search for an Optimal Model Instance 

The curve fitting step finds an optimal Downey model instance for each 

prediction target. Rather than generating a single model instance, we can find one 

which is specifically biased towards a single prediction target. This is accomplished by 

assigning weight according to the relevance. For extrapolative speedup prediction, the 

closest observation typically best shows the trend. 

The input to curve fitting are the observation points, , 

the envelope to which the search is limited, , and the number of 

nodes on which a prediction is needed, . Multiple inputs per job size are handled by 

dropping obvious outliers and otherwise averaging inputs to avoid an overly high weight 

for the repeated job size. The output of curve fitting is the best fitting model instance 

found: )�7�8�� , !7�8��+ = 9:;<�=/��/�>)?, �, �@�AB�@+.  

Our optimality criterion for curve fitting is the Weighted Sum of Squared Relative 

Errors (WSSRE). The weight of a point is calculated as: 

( ){ }MitnI ii ,...,1, ==

{ }kicE i ,...,1==

targetn
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, where the factor q determines 

how sensitive the weights will be to prediction distance, with smaller values being more 

sensitive. The value of q can be selected by cross-validation, i.e. the value that results in 

the highest prediction accuracies is selected. In our experiments over different 

applications, we found that a value of 2 for this parameter resulted in the highest 

prediction accuracies.  

The exhaustive search is performed in two passes to further reduce the search 

space. The first pass is a one-dimensional search, and the second pass is a local two-

dimensional search. The one-dimensional search constrains the search space to only 

those model instances which pass directly through the input point closest to the 

prediction target, which we call the fixed point. ”Fixing” this point, i.e. only considering 

model instances that generate this point, allows us to calculate values for σ from any 

value of A corresponding to the model instances that fit the fixed point. Please note that 

we perform exhaustive search, and thus its first step, only on those values of A which 

fall within the envelope. The one-dimensional search finds a model instance that fits the 

observations well, in linear time. We then find the best fitting model instance 

byperforming two-dimensional exhaustive search, varying the A and σ values, obtained 

at the first pass, with fine-grain steps up to 15% within the envelope, to obtain the final 

model instance.  

 

3.6. Effectiveness of ADEPT’s Curve Fitting 

We have conducted experiments to demonstrate the superiority of the 

combination of curve fitting and envelope derivation components of ADEPT, over other 

curve fitting. We compared ADEPT with three methods: exhaustive search, genetic 

algorithms, and the Levenberg-Marquardt method [K.Levenberg 1944], a common 

{ } itargetjtargeti nnMjnnqW −−=−= ,...,1max*
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Figure 5. Speedup prediction of ADEPT, GA, exhaustive search, and Levenberg-Marquardt.  

The first three made perfect predictions (higher trend line), while the fourth was inaccurate 

(lower trend line). 

Speedup Prediction Using 4 Methods

0

50

100

150

200

0 100 200 300 400 500 N

S

Levmar ADEPT / Exhaustive / Genetic

optimization approach. We used its implementation levmar [M.I.A.Lourakis 2005], with 

default settings, and arbitrary initial guesses for the parameters. The genetic algorithm 

implementation used is GALib [M.Wall 2009]. Boundaries within which to search were 

set as A: 1 to 3,000, and σ: 0 to 3,000 for all three methods; 10 observations were 

generated from the Downey model (perfect match is possible), 4 of which were 

provided as input. Two sets of experiments were run to cover cases of low and high 

variance, with each set covering four different experiments.  

Figure 5 shows a representative prediction example (from the second set). 

ADEPT, the genetic algorithm, and the exhaustive search all made perfect predictions 

which hence overlap. The Levenberg-Marquardt method, however, made highly 

inaccurate predictions. We found the method to be highly sensitive to the initial guesses 

of A and σ for up to 2000 iterations. 

To compare the cost of running each of the methods, average runtimes are 

shown in Table 2. The Levenberg-Marquardt method and ADEPT were both very fast, 
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with less than 100 ms and less than 500 ms runtimes, respectively. Exhaustive search 

and genetic algorithm had average runtimes of 5 sec and 14 sec, i.e. were 10 and 30 

times slower than ADEPT.  

The presented experiments demonstrate that ADEPT combines the high accuracy 

of exhaustive search and genetic algorithms and the speed of the Levenberg-Marquardt 

method. 

 

3.7. Experimental Setup 

To validate the power of ADEPT, we use two groups of applications. The first 

group includes MPI and OpenMP implementations of BT, CG, FT, LU, and SP from the 

NAS benchmark suite, Class B [D.H.Bailey 1995]. We ran these benchmarks on clusters of 

SHARCNET [SHARCNET 2009], with three runs per benchmark and per number of nodes. 

OpenMP benchmarks were run with four threads per CPU on a node with 8 quad-core 

CPUs. NAS class B was used because we needed scalability curves with transitional 

(nonlinear) phases and we had only up to 256 cluster nodes available. 

The second group consists of seven real applications, which also were run in the 

same environment. The data originates from scalability tests, performed by system 

administrators to approve major resource requests by intensive users. The applications 

themselves were, however, kept anonymous, and we therefore call them App_A to 

App_G. However, it is known that users cover a broad range of domains such as physics, 

chemistry, and economics. 

As mentioned before, T(1) is key information which is not generally known for 

real parallel applications. This is the case for four of the real test applications, and we 

use estimated T(1) to draw speedup curves. When T(1) is available, we omit T(1) for 

some tests.  



 

67 

 

The tests include predictions for both interpolation (targets falling between at 

least two input observations) and extrapolation (targets not between any two input 

observations). The evaluation criteria used throughout the experiments are relative 

error percentage, E, and prediction accuracy percentage, PA, defined as

 and , respectively.  

For the one-dimensional phase of the curve fitting step, increments for A were 

determined by dividing the envelope into 5,000 evenly distributed values. For the two-

dimensional phase, A and σ assumed 500 evenly distributed values each, evaluating 

250,000 instances of the model. More fine-grained search did not generally increase 

prediction accuracies; the chosen search granularity was seen as a balance between 

speed and accuracy. For most tests, q was set to 2. The value of this parameter was 

selected using cross-validation, i.e. a value of 2 resulted in the highest prediction 

accuracy in our experiments.  

 

3.8. Experimental Results for Model Derivation 

 

3.8.1. Speedup Prediction 

We first demonstrate the performance of ADEPT in speedup prediction for 

normal cases. The results are shown in Figure 6 and Figure 7. We show predictions, 

measured values, and input points. The number of runtime measurements used as input 

is either 3 or 4 for all the experiments. For some applications, two graphics are shown; 

the first one does not include T(1) in the input, and the second does. T(1) is indeed 

unavailable for App_B, App_D, App_E, and App_F. 

( ) 100*/ actualactualpredictedE −= EPA −= 100
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The results show generally very good accuracies, with the exception of 27% error 

for CG at 2 nodes. Inclusion of T(1) as input did not result in significant improvement in 

prediction accuracy. Since the applications App_C, NAS_CG, and NAS_LU do not include 

T(1), the envelope (calculated on runtime) cannot show speedup properly. For NAS_FT, 

two curves are shown, one with uniform weighting of points, and one using a q value of 

1.01 which shows better extrapolative prediction, validating ADEPT’s biased curve-

fitting approach. 

Comparing accuracies of interpolations vs. extrapolations, BT extrapolations (2%, 

8%, 1%, 4% errors at 144, 169, 196, 225 nodes) were comparable to interpolations (5%, 

1%, 0%, 3%, 1% at 36, 49, 64, 81, 100 nodes). ADEPT showed more accurate 

interpolations (2% error at 8 nodes) than extrapolations (22% and 13% errors at 64 and 

128 nodes) for CG without T(1). FT had a 23% error for extrapolation at 128 nodes, and 

23% error for interpolation at 16 nodes, though its other interpolation errors were 

below 9%. The experiments for speedup prediction thus do not conclude generally 

higher accuracies for either interpolation or extrapolation.  

Regarding the distance of extrapolation, i.e. how far ADEPT can predict, errors of 

12% and 9% were measured at 196 and 225 nodes for BT, when a maximum of only 81 

nodes were used as input. For CG, using a maximum of 32 nodes as input resulted in a 

20% error at 128 nodes, while using a maximum of 64 nodes results in 9%, 11%, and 

14% errors over three experiments. FT shows an error of 47% at 128 nodes when a 

maximum of 32 nodes is used as input, and an error of 23% when using a maximum of 

64 nodes as input. The speedup curve of FT shows that for a maximum of 32 nodes as 

input, predicting the actual speedup value at 128 nodes is simply not possible using any 

black-box method. Highly accurate extrapolations were observed on generally more 

than twice the maximum number of nodes used as input.  
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Figure 6. Speedup prediction results for NAS benchmarks 

Results are for MPI implementation of NAS BT, CG, FT, and LU, and the OMP implementation of NAS BT 

and CG, both interpolation and extrapolation. Graphs show S over number of threads for OMP 

benchmarks, S over N otherwise. 
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Additional experiments investigated placement and using more (up to 6) 
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Figure 7. Speedup prediction results for the anonymous real world applications 

Both interpolation and extrapolation. Graphs show S over number of threads for OMP 

benchmarks, S over N otherwise. 
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observations.  Regardless of the layout of input points, generally very high prediction 

accuracy was obtained as exemplified by NAS_BT with T(1). This holds as long as not all 



 

71 

 

the points are in the linear section of the speedup curve (detectable by reliability 

judgment, discussed later in Section 3.10 ). More input points also did not generally 

result in any accuracy improvement. 

 

3.8.2. Runtime Prediction  

Next, we demonstrate the performance of ADEPT at runtime prediction. Results 

are shown in Figure 8. Results for App_A, App_C, and App_G are not shown. This is 

because, the speedup prediction accuracies for these benchmarks were generally above 

90%; the same applies to all runtime predictions for these applications, for both 

interpolation and extrapolation. The runtime predictions for these three applications 

are so accurate that measurements and predictions would overlap on the runtime 

curve, and hence we omit them from result presentation. The number of runtime 

measurements used as input was either three or four for all experiments. The runtime 

axis has logarithmic scale to better separate the points. We show a single graphic per 

application or benchmark, which corresponds to an experiment that does not use T(1) 

as input, since the provision of T(1) as input does not result in any major improvement 

in the runtime prediction accuracy. Accuracies obtained for runtime prediction, 

excluding T(1), were generally above 80%, with the exception being CG with 36% error 

at 2 nodes, FT with 36%, 34%, 45%, 28%, and 29% prediction errors at 2, 4, 8, 32, and 

128 nodes.  

Regarding the accuracies of interpolations vs. extrapolations, and influence of 

extremity of extrapolation, the same trend applies to runtime prediction accuracies as 

discussed for speedup predictions. We also performed tests to examine the effect of 

increasing input size from three points to four points on accuracy of runtime prediction. 

Results do not show any significant improvement in accuracy of predictions for any 

benchmark or real application. The only trend proven, as a byproduct of these 
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Figure 8. Runtime prediction results for NAS benchmarks and anonymous real applications 

Results are for both interpolation and extrapolation. Graphs show T over N. 
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experiments, is that the closer the observations are to the prediction target, the higher 

the accuracy. This, however, was our original assumption and the base for the curve 

fitting done by ADEPT. 

As a rough comparison to white-box approaches results in [A.Snavely 2001] 

obtained with both application and machine modeling, show 97% and 81% accuracies 

for the CG benchmark on 32 and 64 nodes. For the same benchmark and numbers of 

nodes, our proposed method achieves more than 90%, and 82%. The accuracies for the 
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very complex white-box approach presented in [G.Marin 2004] were about 90% for SP, 

about 90% for BT, and 80% to 90% for LU. For certain cases, the results show lower 

accuracy (e.g. 75% for LU). Our proposed method achieves accuracies of above 90% for 

SP, above 90% for BT, and above 80% for LU for the experiments shown (note that in 

our approach distance from observations matters), with the few exceptions mentioned 

above. Thus, our much cheaper and easier-to-apply approach provides almost the same 

accuracy and in some cases even better accuracy as the above white-box approaches. 

 

3.9. Anomaly Detection 

 

3.9.1. General Approach for Detecting and Handling Anomalies 

Though real applications deviate from the Downey model to at least some 

extent, larger deviations are considered as “anomalous” behavior and must be detected 

by ADEPT. ADEPT detects candidates of anomalous behavior with an approach 

described below and then applies one of the two options for resolving them: 

• Identification of anomalous individual points 

• Recognition of typical patterns of irregular behavior 

Anomaly candidate identification uses a fluctuation metric, defined as 

  for observation points i and i+1, 

which is applicable whether or not T(1) is provided. The expression  

expresses the ratio of projected runtime, assuming ideal relative speedup, vs. the 

measured runtime. This is how users may check scalability trends if T(1) is not available. 

However, ratios may fluctuate even for normal speedup curves if the distance between 

( )( ) ( )( )1111 /1*//* ++++ −+= iiiiiiii nnntnntR

( )( )11 //* ++ iiii tnnt
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node counts in the available measurements varies significantly. Adjusting the metric to 

reflect relative distance between observations using  removes such 

fluctuations. 

We introduce a sensitivity factor, ε, which specifies the percentage of increase in 

R that will be ignored, considering that small fluctuations are normal. For any three 

observation points i, i+1, and i+2, if C�D > �1 + F�C� , we flag  Observations  i+1 and  

i+2 as anomaly candidates. 

Should points from the declining phase of the application be among the input, 

they can be detected unless being a single final point. The latter case cannot be handled 

by any black-box approach, since the point may be a declining-phase point or an 

anomaly and this uncertainty can be reported by ADEPT. In Figure 9 (bottom row, left) 

the interpretation of a declining phase is chosen, and no predictions are made for this 

point. 

 

3.9.2. Individual Anomalous Points 

After flagging the anomaly candidates, anomaly detection attempts to identify 

individual anomalous points causing fluctuation in the R curve. The following actions are 

taken: 

• For each anomaly candidate, examine the overall R curve resulting from the 

removal of that point. Removing anomalous observations greatly decreases the 

fluctuation of the R curve, compared to removal of normal observations, thus 

identifying anomalous points. See Figure 9 for an example of an anomaly at 64 

nodes, the corresponding R curve, and the two R curves resulting from removing 

each of the anomaly candidates. A minimum number of four input points is 

required to attempt detection of individual anomalous points.  

( )( )11 /1 ++ −+ iii nnn
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• For anomalous point l, chosen from anomaly candidates i and i+1, calculate the 

magnitude of the deviation as ( )( )ε/,10min 1 iil RRD −= + . 

Individual anomalous points and their corresponding magnitude of deviation are 

reported to the curve fitting component described in 3.4, which adjusts their weights as: 

( )( )θθ /*,0max'

iii DWW −=  to reduce the impact of the anomalous point on curve 

fitting. The deviation tolerance threshold ϴ can be set to any value, where higher values 

meaning less sensitivity. The values for the two parameters Fand G were set to 0.1 and 

5, respectively, in our experiments. We found these values to be optimal in the 

detection of anomalies and setting of weights for anomalous points, for our 

experimental dataset. Based on the above description, the following is the algorithm 

used by the anomaly detection component: 

1. For each pair of consecutive observations, calculate the R metric. The set of R 

metric values is called R. 

2. Identify anomaly candidates: for each pair of consecutive values in R, mark 

observations i and i+1, if C�D > �1 + F�C�. 

3. Remove each anomaly candidate, and recalculate the R metric values. If there 

are no more candidates, set weights according to above formula and stop. 

4. If anomaly candidates still exist, apply one of the specific scalability patterns 

(as detailed in the next subsection). 
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Figure 9. Detection and handling of individual anomalous points. 

Top row shows a synthetic speedup curve with an anomalous point (boxed), and the associated R metric 

curve. Middle row shows the R metric curves resulting from removal of anomaly candidates. Middle row 

right and the bottom row show experiments integrating the anomaly detection step into ADEPT: Middle 

row right shows the speedup curve predicted by reducing the weight of anomalous point at 49 nodes. The 

bottom row shows the predicted speedup curve for NAS_OMP_SP by adjusting the weight of anomalous 

point at 16 nodes (left); and  speedup curve predicted in spite of  the anomalous input point at 80 nodes 

(right). Top row left, middle row right, and bottom row plot S over N, or S over number of threads for 

OMP. Top row right plots R metric over N. 
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During the testing of ADEPT for the NAS benchmarks, in several cases, 

anomalous points were identified and given reduced weight. See Figure 9 for two of the 

more easily distinguishable cases. For SP, the input point at 49 nodes was identified as 
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having too high speedup, resulting in a prediction 10% lower than the actual value, and 

testing with a synthetic graph demonstrates identifying anomalous points without using 

T(1), and how points which are too far off (measured speedup at 80 nodes being 20% 

too high) can be dropped, permitting good fits for other points. 

3.9.3. Specific Scalability Patterns 

Specific scalability patterns are detectable by the R metric curve. Different 

patterns can easily be defined. We currently detect and handle the following two 

important patterns: 

• Stepwise scalability: Smaller data partitions per node often lead to enhanced 

performance if data fits into the next level of the memory hierarchy, potentially 

producing super linear speedup. The resulting stepwise scalability can be 

identified as a sharp spike in the R metric curve which is not improved with the 

removal of anomaly candidates. See Figure 10 for an example. We address the 

problem by multi-phase modeling, with one model instance per phase. For a 

single prediction target, the curve fitting step sets weight to zero for points not 

belonging to the same phase as the closest observation. A minimum of five input 

points over two phases are required to capture this pattern; fewer input points 

will not demonstrate such behavior.  

• Specially optimized: Applications optimized, e.g. regarding communication, to run 

efficiently on certain numbers of nodes are recognized by having anomalous 

points with too high speedup at regular intervals. In this case, the regular 

anomalous points are considered as the most valid input and have their D value 

set back to zero, while all other points are discarded. Additionally, constraints are 

reported in regards to which are the feasible numbers of nodes to run the 

application on. Note that such application behavior is typically known by the user 

and could be specified as suggested for some adaptive job schedulers [W.Cirne 
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2003]. ADEPT permits automatic detection of behavior and constraints. A 

minimum number of nine input points is required for detection of this scalability 

pattern. 

To test ADEPT’s ability to handle specific scalability patterns, we constructed 

examples with synthetic data for each of the patterns mentioned above, see Figure 

10. For the first stepwise case (OMP_FT), ADEPT identifies the change of program 

phase between 5 and 6 CPUs, and chooses the appropriate subsets of input points for 

the targeted prediction, resulting in excellent prediction accuracy. Similarly, ADEPT is 

capable of handling three-phase stepwise behavior. As shown in Figure 10 (Bottom 

row left), the application changes phase at 81 nodes and once again at 196 nodes. 

ADEPT identifies both phase changes and selects the correct subset of input points for 

each prediction target, providing highly accurate predictions. 

 The test case for specially optimized applications demonstrates that ADEPT fits 

and predicts only for nodes which are powers of two. Extension to other typical node 

allocations is straightforward. 

 

3.10. Automated Reliability Judgment 

Reliability judgment takes into account the placement of observation points, the 

maximum fitting error, and the existence of significantly different model instances 

which explain the input nearly equally well. The list of reliability problems, their 

indicators, and corresponding actions are presented in Table 3. 
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Figure 10. Detection and handling of specific scalability patterns. 

Top row: Speedup curve for runtimes used as input (left), with step identified by a square symbol. R 

metric curve for all input points (right). Middle row: R metric curve with candidate points at 6 CPUs 

removed (stars) and at 7 CPUs removed (circles), (left); Resulting prediction from example in top row 

(right), Bottom row: additional example of stepwise speedup with three phases (left) and specially 

optimized application (right). Top row left and middle row right show S over number of threads, top 

row right and middle row left plot R over N, bottom row show S over N. 
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High fitting error is the simplest case. Input points are not identified as 

anomalous but experience large fitting errors (>10%). See LU in Figure 11 (top row left); 

the point at 32 nodes experiences 16% error in speedup (18% error in runtime). ADEPT 
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also detects if the model instances generated to perform prediction are of the low-

variance class, and checks that at least one input point lies on the nonlinear section of 

the model. See App_C in Figure 11 (top row right) for an example where the input points 

all lie in the linear section. In this case, ADEPT suggests running on 105 nodes to collect 

further meaningful data.  

The runner-up problem occurs when the data provided as input can be explained 

by at least two model instances with greatly different A. An example is shown in Figure 

11 (bottom row), where the fitted model instance for prediction target at 49 nodes has 

a value of 700 for A parameter, and there is a runner-up instance with a value of 320 for 

A. This occurs because, as shown in the graph, the runtime values for the two model 

instances converge near the input points. The difference between runtime values of the 

two instances is less than 5% at input points of 16, 25, 36, and 81 nodes. Providing an 

additional input point at 225 nodes, where the two instances suggest runtime values 

 

 

Figure 11. Reliability judgment 

Results show high fitting error, all linear inputs, and runner up instances. Top graphs show S over N. 

Bottom graph shows T over N in log scale. 
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that differ by 20%, resolves the problem by identifying the runner-up instance as the 

best fit. 

 

3.11. Performance Prediction: the Hypothesis 

We have presented a black-box approach for predicting speedup and runtime of 

parallel applications. Our ADEPT predictor is both accurate and efficient by introducing 

an envelope derivation technique which constrains the search during model fitting and 

outperforms other model-fitting approaches. In our experiments with data from 

selected MPI and OpenMP NAS benchmarks and seven real applications, ADEPT showed 

high accuracy for both interpolative and extrapolative speedup/runtime prediction, 

even if not knowing the serial runtime. ADEPT delivers similar performance to that 

reported in the literature for white-box models if predicting for the same machine (see 

Section 3.8.1 for details of the comparisons) and is cheaper and suitable for large-scale 

use. ADEPT only requires a few observations and addresses practical problems of real 

applications. These are effectively handled by ADEPT via anomaly detection, using a 

Table 3. The list of reliability problems, their indicators, and corresponding actions 

Problem Description Indicator Action 

Observation points all in linear 

section  

Low variance model:

AnItn iii <∈∀ :),(  

High variance model has no linear section 

Request additional observation 

on ≥A nodes 

High fitting error: application 

deviates greatly from Downey 

model 

δ>








 −

actual

predictedactual
max

 Report problem 

Multiple model instances with 

significantly different A values 

fit well (runner-up problem) 

For model instances i and j: WSSREi<WSSREj*1.1 

where Ai < Aj / 1.5 or  Ai > Aj * 1.5 

Request additional observation 

(outside current range) 
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fluctuation metric and automatic correction. Additionally, reliability judgment issues 

warnings if the prediction is uncertain and makes suggestions for further observations.  

As outlined in the related works section, a key problem in the HPC area is the 

prediction of the relation between problem sizes and runtime/speedup of parallel 

applications. Solving this problem would allow more accurate resource allocation 

requests (by parallel applications) and decisions (by schedulers), which will contribute to 

obtaining the significant benefits of adaptive resource allocation.  However, to the best 

of our knowledge, none of the black-box or gray-box prediction tools have the capability 

to predict runtime/speedup for both single problem size and across different problem 

sizes.  ADEPT provides the foundation for addressing this more challenging problem in 

HPC, and we will next outline our proposed plan for the extension of ADEPT in this 

direction as it is in high demand and importance in both the literature and production 

environments, thus making ADEPT a more applicable tool. We form the working 

hypothesis for addressing the above challenge as follows: it is possible to construct a 

gray-box runtime/speedup predictor with the following requirements: 

 

3.11.1. Accuracy 

The predictor’s accuracy is comparable to that of white-box methods, whenever 

such comparison is possible. The accuracy requirement applies to both cases of same 

problem size and different problem sizes. If using ADEPT as the foundation for the new 

predictor, the current capability in achieving white-box accuracy for the same problem 

size should not be negatively affected by the extension. 

3.11.2. Efficiency 

The predictor is applicable in a production environment, in the sense that 1) the 

requirements for using the predictor are close enough to black-box methods that the 
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applicability is the same, and 2) user oradministrator intervention is not required except 

for providing data that can be reasonably expected to be already known to them. 

 

3.11.3. Robustness 

As with any production environment, there are always applications with 

anomalous behavior. The predictor needs to detect, and correct when possible, such 

anomalies, whether they are single points or form a special pattern of behavior in terms 

of runtime/speedup. In addition, the predictor needs to identify situations where 

obtained predictions are unreliable, and provide mechanisms for resolving such cases.      

 

3.12. ADEPT Cross Problem Size Runtime and Speedup Prediction 

We next outline the details regarding the extension of ADEPT to handle different 

problem sizes according to the requirements set forth by the hypothesis. Problem size is 

a domain-specific combination of input values and data structures passed to the parallel 

application, e.g. nodes of a graph, through any means, at compile time, runtime, or a 

combination of both. Our proposed extension to ADEPT treats all these details as a 

black-box method, i.e. does not require any information on them. The only additional 

required input is  the association of a problem size identifier with each observation of 

runtime over a specific number of cores. Without loss of generality, we assume the 

following regarding prediction across problem sizes: 

• Prediction is from a smaller to a larger problem size; this matches the typical use 

case, i.e. moving on to a larger instance of a problem once the smaller instance 

has been solved. We call the smaller problem size the base problem size, and the 

larger problem size the target problem size.  
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• A minimum of 4 or more observation points exist on the base problem size. This is 

a valid assumption and does not affect the applicability of ADEPT, as the move to 

the target problem size is expected only after having a reasonable number of 

observations on the base problem size. 

• A minimum of 2 observation point exists on the target problem size.  

Based on the above assumptions, we first describe the general case, i.e. no 

anomaly in the data. Details regarding anomaly detection and reliability judgment are 

specified in the following subsections. The key idea in translating behavior across 

problem sizes, thus making prediction across problem sizes possible is assuming 

similarity in behavior regardless of the problem size. The main shortcoming of such 

an assumption is ignoring the flat section of the scalability curve, but as described 

previously, this is an inherent limitation of the Downey model, and we address it 

through anomaly detection and reliability judgment. We consider similarity in 

behavior to demonstrate itself as relatively constant ratios among runtime values of 

two problem sizes across different numbers of nodes/cores, i.e. over different 

numbers of cores there is little fluctuation in the ratio of the runtimes of the two 

problem sizes. Although such notion of similarity exists in the literature [F.Nadeem 

2006], ADEPT differentiates itself by going beyond simply taking such estimations as 

the actual runtime predictions. ADEPT uses these estimations as guiding points which 

are combined with actual observations of the target problem size runtime to provide 

both runtime and speedup predictions. It is important to note that existing work lack 

the latter capability, i.e. speedup prediction. More specifically, ADEPT uses the 

following algorithm in order to predict runtime and speedup across problem sizes: 

1. Find the smallest number of nodes for which observations of runtime exist for 

both base and target problem sizes. Calculate the ratio of runtimes as follows: 
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0,0,argarg, / nbasenettettbase TTR =  

Where n0 is the smallest number of nodes/cores for which runtime 

observations exist for both base and target problem sizes, Ttarget,n0 is the 

runtime of the target problem size at n0, and Tbase,n0 is the runtime of the base 

problem size at n0 nodes/cores.  

2. Add estimated runtime values as guiding points to the target problem size 

a. Form the set of number of nodes/cores for which there are observations 

on the base problem size but not the target problem size: 

}|{ argettibaseiiest TnTnnN ∉∧∈=  

b. Form the set of estimated runtimes for the target problem size, where 

�H�I�,�is the runtime of the base problem size at i cores.  

}*|),{( arg,, ettbaseibaseiestiiest RttNntinR =∧∈=  

3. Use the following set as input to the predictor component: 

estettett RTT ∪=′
argarg  

4. Perform model fitting on the the �@�AB�@J 	set of nodes and runtime values, as 

described in details in Section 3.5.   

We next provide experimental results using the proposed extension method.  
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Figure 12. Speedup prediction results across problem sizes, MPI implementations of NAS BT, FT, and SP. 

Results are for both interpolation and extrapolation. Graphs show S over N. 
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3.13. Experimental Results: Performance Prediction across Problem Sizes 

 

3.13.1. Speedup Prediction across Problem Sizes 

This section details the experimental results for the proposed extension method. 

NAS benchmarks BT, CG, FT, LU, and SP have been used for the experiments. We have 

run classes A, B, and C of each benchmark. As in previous experiments, we use the 

following accuracy metric: 
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Figure 13. Speedup prediction results across problem sizes for NAS CG and LU. 

Results are for the MPI implementation of NAS CG, and LU,  both interpolation and extrapolation. 

Graphs show S over N. 
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Figure 12 and Figure 13 show the experimental results for speedup prediction. 

Accuracy of the predictions is generally above 70%, with many predictions having 90% 

or more accuracy. These results are achieved using only the 2 smallest numbers of 

nodes on the target problem size as input, and 4 or 5 input points on the base problem 

size of the target benchmark. There are certain benchmarks, in particular CG, which 

show several points with inaccuracies. We will provide details in the following sections 

on how ADEPT handles such cases through anomaly detection and reliability judgment. 

To demonstrate the envelopes derived by ADEPT for each benchmark, we combine all 

the envelopes into one using the method described in Section 3. The drawn envelope is 

based on the predicted T(1), as ADEPT does not require T(1) to be available for a target 

application.  
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In summary, prediction accuracies are generally above 70% using the proposed 

method. There are a few exceptions; LU class C at 8 cores has low (~ 50%) prediction 

accuracy which we attribute to LU class B having several anomalous points at 4, 8, and 

16 cores, thus not providing useful input data to ADEPT for this prediction target. LU 

class B, when used as the prediction target, also shows approximately the same low 

prediction accuracy for 8 cores, which we attribute to both anomalous and dissimilar 

behavior at 4, 8, and 16 nodes for both classes A and B of LU. Benchmark CG shows 

approximately 52% prediction accuracy at 32 cores with classes B and C as base and 

target problem sizes, respectively, due to the anomaly at 32 nodes in class C.  

 

3.13.2. Experimental Results: Runtime Prediction across Problem Sizes 

Next, we demonstrate the performance of ADEPT at runtime prediction. Results 

are shown in Figure 14 and Figure 15. It should be noted that the runtime predictions 

for several of the benchmarks are so accurate that measurements and predictions 

overlap on the runtime curve. The number of runtime measurements used as input was 

either four or five on the base problem size and exactly two for the target problem size 

for all experiments. Since the runtimes span a long range of values, the runtime axis has 

logarithmic scale to better separate predictions and the observation points. We show a 

single graph per benchmark, which corresponds to an experiment that did not use T(1) 

as input, since the provision of T(1) as input did not result in any major improvement in 

the runtime prediction accuracy. Accuracies obtained for runtime prediction, excluding 

T(1), were generally above 70%, with the major exceptions being FT at 256 cores on 

both classes B and C, SP class C at 36 cores, SP class B at 225 cores, and LU class C at 128 

cores. Regarding the accuracies of interpolations vs. extrapolations, considering the only 

actual observations for the target problem size are the two smallest numbers of cores 

available, all predictions can be considered extrapolation for cross problem size 
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Figure 14. Runtime prediction across problem sizes, NAS BT, SP, and FT. 

Results are shown for both interpolation and extrapolation. Graphs show T over N. The title of each 

graph speicifes in order the benchmark, the base problem size, and the target problem size. 
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predictions. Using the base problem size observation points to distinguish between 

interpolative and extrapolative predictions shows no significant difference between 

accuracies. 
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Figure 15. Runtime prediction results across problem sizes, NAS CG and LU 

Results are shown for both interpolation and extrapolation. Graphs show T over N. The title of each 

graph speicifes in order the benchmark, the base problem size, and the target problem size. 
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3.14. General Approach for Detecting and Handling Anomalies over Different 

Problem Sizes  

As described earlier, ADEPT handles anomalies in target applications’ behavior, 

and corrects predictions accordingly when it is possible to do so considering the 

available information. 

Prediction across problem sizes introduces a new challenge for anomaly 

detection: there are not enough observations on the target problem size. Therefore, 

there are 2 possible directions ADEPT can take to handle anomalies: 1) assume 

anomalies at the same numbers of cores for the base and target problem sizes, and 2) 

assume individual anomalous points to be specific to a problem size. With the former 

assumption, ADEPT needs to assign a higher weight to points estimated based on the 

individual anomalous point of the base problem size, when making predictions for the 

same number of nodes in the target problem size. It will also mean a lower weight 

should be assigned to such estimated points when predicting for all other points of the 
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target problem size. The latter assumption would require ADEPT to reduce the effect of 

individual anomalous points of the base problem size on every prediction point of the 

target problem size. ADEPT corrects this assumption if new observations on the target 

problem size indicate it to be false, i.e. if a new observation for the target problem size 

shows an individual anomaly at the same number of nodes as the base problem size. 

Figure 16 (left) shows an example in which both problem sizes have anomalous points at 

the same number of nodes. For the second assumption, Figure 16 (right) shows problem 

sizes with anomalous points at different numbers of nodes.  

As with prediction for a single problem size, large deviations from the Downey 

model are considered as “anomalous” behavior and need to be detected by ADEPT. 

ADEPT detects candidates of anomalous behavior across problem sizes using the R 

metric described previously and then applies one of the two options for resolving them: 

• Identification of anomalous individual points 

• Recognition of typical patterns of irregular behavior 

We describe the former option next. Handling of typical patterns of irregular behavior is 

the same for single problem size and cross problem size predictions.  

 

3.14.1. Individual Anomalous Points 

ADEPT first performs anomaly detection on the observation points of the base 

problem size. It then attempts to identify individual anomalous points causing 

fluctuation in the R curve. The following actions are taken: 

• As with the case of a single problem size, ADEPT examines the overall R curve 

resulting from the removal of each anomaly candidate observation. Removing 
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Figure 16. Detection and handling of individual anomalous points across problem sizes.  

Shows experiments integrating the cross problem size anomaly detection step into ADEPT: 

speedup curve predicted by reducing the weight of anomalous point at 25 nodes of BT class A on 

prediction for BT class B(left); predicted speedup curve for NAS CG benchmark class C by adjusting the 

weight of anomalous point at 32 nodes of CG class B (right). Charts plot S over N.  
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anomalous observations greatly decreases the fluctuation of the R curve, 

compared to removal of normal observations, thus identifying anomalous points. 

• For each anomalous point l, chosen from anomaly candidates i and i+1 from the 

set of observation points of the base problem size, calculate the magnitude of the 

deviation as ( ) ε/1 jjl RRD −= + . 

Individual anomalous points and their corresponding magnitude of deviation are 

reported to the cross problem size prediction module. ADEPT then determines whether 

to use each of the estimated observation point based on the magnitude of deviation of 

the corresponding base problem size observation. There are two cases: 

• The anomalous point in the base problem size does not correspond to the current 

prediction target. ADEPT will use the estimated observation based on this point 

only if the magnitude of deviation is below a certain threshold called γ .  

• The anomalous point corresponds to the current prediction target. ADEPT will use 

the estimated observation based on this point as input for the current prediction 

target.  
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During the testing of ADEPT for predicting cross problem sizes for the NAS 

benchmarks, in several cases, anomalous points were identified and handled using the 

above method. In the experiments, we set γ to 5. We found this value to be optimal in 

detection of anomalies. See Figure 16 for two of the more easily distinguishable cases. 

For CG class C when the base problem size is CG class B, the input point at 32 nodes was 

identified as having too low a speedup, i.e. runtime was too high. Cross problem size 

anomaly detection and handling removes the estimated observation that is based on 

this point from the set of input points for class C, resulting in prediction accuracies of 

73% and higher for CG class C. When predicting for BT B using BT A as the base class, 

observations at 25 and 49 nodes are marked as having too low speedups, i.e. too high 

runtime. ADEPT handles these anomalous observation points by removing the 

corresponding estimated observation points, achieving generally above 70% prediction 

accuracy for BT class B when using A as the base class.  

 

3.15. Reliability Judgment across Problem Sizes 

Reliability judgment across problem sizes addresses all the 3 cases of unreliable 

predictions handled for a single problem, i.e. high fitting errors, existence of runner-up, 

and all linear-section observations. In addition, cross problem size reliability judgment 

detects and handles a scenario which is only applicable to multiple problem sizes: two 

problem sizes differing significantly enough in behavior to be considered 2 different 

applications.  

3.16. Summary 

In this chapter we described in detail our proposed performance prediction tool, 

ADEPT.  We used ADEPT to prove our hypothesis that a gray-box tool can provide 

accurate performance predictions for both a single problem size and across multiple 



 

94 

 

problem sizes of a parallel application, while staying applicable, robust, and efficient.  

Our overall goal was scalability prediction (in the sense of strong scaling), on both multi-

core SMP servers and clusters, which is practically feasible for production environments. 

The gray-box nature of ADEPT, which uses only a single string input as indication of 

problem size in addition to the black-box observation of the target application, enables 

production use. ADEPT is based on the Downey model, shown to capture simplified 

behavior of parallel applications very well. ADEPT introduced the use of Downey model 

as a predictive model by addressing challenges set by real parallel applications, i.e. not 

fully conforming to the model and/or reliability of the predictions. With the 

development of ADEPT prediction tool, we pursued the following detailed goals: 

• Achieve high prediction accuracy, while requiring only few observations (typically 

3 to 4). 

• Achieve accurate predictions for a) single problem size and b) multiple problem 

sizes of the target parallel application 

• Provide a computationally efficient approach for deriving the model instance. 

• Identify cases where the application does not fully conform to the Downey model 

as anomalies, with automatic correction and multi-phase modeling for individual 

irregular points and typical patterns. 

• Perform reliability judgment which recognizes unsuitable observation layout and 

proposes placement ranges of additional observations.  

Experiments with the NAS benchmarks and seven real applications 

demonstrated the efficiency and prediction quality of ADEPT in handling normal cases 

and anomalies. We obtained generally above 80% prediction accuracy for a single 

problem size and above 70% accuracy for cross problem size predictions using only the 

two smallest numbers of cores available on the target problem size, even in cases with 
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anomalies and for predictions which extrapolate for more than twice the number of 

nodes that were used in the closest observation. The experiments also demonstrate the 

effectiveness of reliability judgment. 
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CHAPTER 4 

Conclusion and Future Work 

4.1. Conclusions 

Performance prediction is the task of providing an estimation of the 

performance of an instance of an application. Having accurate predictions regarding the 

scalability and runtime of applications can potentially improve the performance of job 

schedulers significantly. However, such predictors have not become practical yet for a 

wide variety of reasons, among which are the requirements of existing tools including 

the need for user and/or administrator intervention and OS-level support.  

In this dissertation, we presented an inexpensive, highly applicable performance 

prediction tool called ADEPT (acronym for Automatic Downey-based Envelope-

constrained Prediction Tool). We set the following goals for ADEPT: 

• Achieve high prediction accuracy, while requiring only few observations (typically 

3 to 4). 

• Provide a computationally efficient approach for making predictions.  

• Identify cases where the application does not fully conform to the Downey model 

as anomalies, with automatic correction and multi-phase modeling for individual 

irregular points and typical patterns. 

• Perform reliability judgment which recognizes unsuitable observation layout and 

proposes placement ranges of additional observations.  

• Handle performance prediction across different problem sizes of an application 
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To address these challenges, ADEPT employs a novel approach that combines: 

envelope-derivation technique which constrains the search for the best-fitting model 

instance; a special metric for detection of anomalies; and special pattern handling for 

cases like super-linear speedup. 

Having completed the requirements regarding prediction accuracy, anomaly 

detection and correction, and handling of issues regarding reliability of predictions, we 

next hypothesized that ADEPT can be extended to address the last challenge from the 

above list, i.e. prediction across problem sizes. We extended ADEPT to perform highly 

accurate predictions for different problem sizes of the same application. In this 

extension, ADEPT maintained its applicability, i.e. we did not introduce requirements 

with a different nature but only expected a few observations on the previous problem 

sizes of the application, as we expect a user to move to larger problem sizes once the 

behavior of the application on a smaller problem size is available.  

Experiments using ADEPT on observations from both single problem size and 

multiple problem sizes of the NAS benchmarks and several practical applications used 

on SHARCNET clusters demonstrated highly accurate predictions made by ADEPT. 

Predictions for a single problem size, when compared to several complex and expensive 

white-box methods, are either higher or comparable in terms of accuracy. The following 

is the summary of the experiments: 

• For single problem size, prediction accuracies were generally above 70% using 

the proposed method, with a few exceptions which are specified in Sections 

3.8.1 and 3.8.2.  

• For prediction across problem sizes, accuracies were generally above 70% and 

many predictions having accuracies above 90%, and only a few exceptions which 

are specified in Sections 3.13.1 and 3.13.2. 
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• Cross-validation experiments done for both single problem size and across 

problem size predictions did not indicate high sensitivity to any single normal or 

anomalous observation in general.  

• ADEPT handles both individual anomalies and specific scalability patterns using 

the R-metric method presented in Section 3.9.  

• ADEPT correctly identifies unreliable predictions and recommends adding more 

observations if such observations could potentially result in reliable predictions, 

see Section 3.10 and 3.15 for details.  

 

4.2. Future Work 

ADEPT addresses several key challenges of performance prediction and this can 

potentially make it a highly applicable tool for both job schedulers and users of HPC 

applications. Requiring very few observations of the target application’s behavior, 

eliminating the need for OS-level support and interference from user and administrator 

to obtain white-box details on the application, e.g. interconnect usage, are among the 

key characteristics of ADEPT. 

However, in order for ADEPT to become an even more applicable tool, there are 

several directions which we intend to pursue. The main one is performance prediction 

across different hardware, including CPU, cache memory, and interconnects. As we 

mentioned in Section 2.8.1, despite the existence of several publications, there are still 

many challenges to be addressed in this area. Another potential direction is extending 

ADEPT to handle platforms different in terms of software, e.g. different operating 

systems and different implementations of MPI. Such an extension needs to be aware of 

and account for interactions between different software components, the hardware, 

and the target application. Predicting across different platforms is especially important 

as users may need to move their application to other platforms which differ in terms of 
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hardware and/or software and need an estimation of the performance of their 

application before arranging such a move which can be very costly in terms of both time 

and resources. A performance prediction tool will be potentially very valuable if it can 

address such scenarios while maintaining the applicability and low cost that ADEPT 

offers. Another potential extension for ADEPT is the capability to handle heterogeneous 

environments, e.g. grids. As chapter 2 presents in detail, many performance prediction 

methods operate in grid environments. However, to the best of our knowledge, there 

are no performance prediction tools with the same characteristics as ADEPT in such 

environments. To be applicable to grids, ADEPT needs to 1) be able to characterize a 

grid environment in terms of its effects on a parallel application, 2) be able to translate 

performance of a parallel application within a grid, i.e. when using different resources 

on the grid. These requirements need support from the grid, in terms of providing 

details on the runtime environment of each run of a target application, as well as some 

model of all the runtime environments offered by the grid. Applications relying on both 

CPUs and GPUs to run form another heterogeneous environment as a potential 

extension for ADEPT. One challenge in such environments is that the number of cores is 

potentially a multi-dimensional variable, as different numbers of CPU cores and GPU 

cores could affect the application differently.  
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APPENDICES  

Appendix A. Envelope Derivation via Closed-form Solution Formula1  

 

As specified in chapter 3, ADEPT depends on a closed-form solution to derive an 

envelope in order to constrain the search space. For the sake of clarity, we only briefly 

discussed the closed-form solution and provided a few examples of the formula in 

Section 3.5. This appendix provides the details on derivation of all the closed-form 

solution formulas, and on how these formulas are used by ADEPT to derive the 

envelope.  

 

Closed-form Solution Formulas 

The closed-form solution is derived for pairs of observations ><>< jjii tntn ,,,  

of an instance of the Downey model. The solution separately addresses high variance 

and low variance model instances. We make the following assumptions: 

1. Runtimes are greater than one second.  

2. There exist at least three observations. The third observation will be referred to 

as >< kk tn , .   

3. Not all three ti, tj, and tk values are equal. 

4. ni < nj. 

                                                           

1
 This Appendix was published as a technical report at the University of Windsor: [A.Deshmeh 2009] 
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We first discuss cases where observations are drawn from a high variance model 

instances.  

 

Case 1: Assuming the observations are both placed in the first piece of the 

runtime function results in the following equations: 
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Solving the above system of equations for A and σ results in the following 

equations:  
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Case 2: Assuming that observation >< ii tn ,  is placed in the first piece and 

observation >< jj tn , is placed in the second piece of runtime function results in the 

following equations. Note that due to Assumption 4 and definition of runtime function 

(see Section 3) the reverse order is not possible.   
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Solving the above equation system for A and σ results in the following equations: 

1−= jtσ
 (11)  
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σ iii tnn
A

 (12)  

Case 3: Assuming two observations are placed on the second piece of the 

runtime function will result in the following equations:  

 

1+= σit  (13)  

1+= σjt  (14)  

Here, the observations will only provide the value of σ. However, according to 

Assumption 2, there exists a third observation >< kk tn , . This observation has to be in 

the first piece of the runtime function, as otherwise all observations will have the same 

runtimes, contradicting Assumption 3. This means that Case 3 results in an equation 

system similar to Case 2, with observation >< kk tn , in the first piece of the runtime 

function, and observation >< jj tn ,  in the second piece.  A and σ therefore are 

calculated as: 

1−= jtσ
 (15) 

1

)1(

+

+−
=

σ

σ kkk tnn
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 (16)  

For observations drawn from a low variance instance of the Downey model, 

Assumptions 1, 2, and 3, combined with the definition of runtime function, will 

guarantee that either two of the observations are in the first piece, or two of the 
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observations are in the second piece of the runtime function. Therefore, for obtaining 

the underlying model instance it is sufficient to consider these two cases. 

Case 4: This case assumes that both observations are placed on the first piece of 

the runtime function, resulting in the following equations: 
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Solving the above equation system for A and σ results in the following equations 

(note that these were already shown in Section 4.5) 
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Case 5: Assuming that both observations are placed in the second piece of the 

runtime function results in the following equations: 
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Solving the above equation system for A and σ results in the following equations: 
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2

1)1( +
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= iii ntn

A
σ  (24) 

Although more than one instance might be obtained per observation pair, 

corresponding to low variance and high variance modes, these can be reduced to one 

either due to contradiction (e.g. σ > 1 for low variance), or by choosing instances that 

match all observation pairs. 

Note that (7), (8), (11), (12), (15), (16), (19), (20), (23), and (24) are the final 

formulas mentioned in Section 3.5.1. 

Envelope Derivation Formulas 

To derive envelope formulas, as noted in Section3.5.1, we assume that each 

observation >< ii tn , deviates from the underlying model by at most δ up or down. 

Thus, if the runtime value produced by the underlying model at ni nodes is
it ′ , the 

following results: 

[ ]δδ +−∈′ 1,1*ii tt  (25)  

Closed-form solutions should be calculated using runtime values produced by 

the underlying model. Since these values are not available, the range in which it falls has 

to be used instead, as obtained from Relation (27). For this purpose, the closed-form 

solution formulas are extended to envelope formulas, which calculate ranges instead of 

exact values for the underlying model’s parameters. All the five Cases 1, 2, 3, 4, and 5 

from the closed-form solution above are extended in the following to incorporate δ and 

produce ranges.  

For Case 1, Equations (7) and (8) can be extended to: 
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For Case 2, Equations (11) and (12) can be extended to: 
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For Case 3, Equations (15) and (16) can be extended to:  
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Note that (31) is essentially the same as (29), calculated using a different 

observation. 

For Case 4, Equations (19) and (20) can be extended to produce the following 

formulas (note that these were already shown in Section 4.5) 
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For Case 5, Equations (23) and (24) can be extended to: 
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It should be noted that for each observation pair, one of the five cases holds, and 

therefore the underlying model’s parameters are guaranteed to be in the ranges 

calculated using the corresponding formula. The formula for the other cases will then 

only add to the search space and will not affect the solution. Also, for σ ranges, parts of 

the range which fall below 0 for all cases or above one for Cases 4 and 5 are discarded 

as these values would be invalid for σ. The same applies to parts of A ranges that fall 

below 1.  
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