
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2013

ADEPT Runtime/Scalability Predictor in support
of Adaptive Scheduling
Gholamhossein Deshmeh
Universty of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Deshmeh, Gholamhossein, "ADEPT Runtime/Scalability Predictor in support of Adaptive Scheduling" (2013). Electronic Theses and
Dissertations. 4943.
https://scholar.uwindsor.ca/etd/4943

https://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F4943&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F4943&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F4943&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/4943?utm_source=scholar.uwindsor.ca%2Fetd%2F4943&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

ADEPT Runtime/Scalability Predictor in support of Adaptive Scheduling

By

Gholamhossein Deshmeh

A Dissertation

Submitted to the Faculty of Graduate Studies

through the School of Computer Science

in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy

at the University of Windsor

Windsor, Ontario, Canada

2013

© 2013 Gholamhossein Deshmeh

ADEPT Runtime/Scalability Predictor in support of Adaptive Scheduling

By

Gholamhossein Deshmeh

APPROVED BY:

__

Shikharesh Majumdar, External Examiner,

Dept. of Systems and Computer Engineering,

Carleton University

__

Majid Ahmadi,

Dept. of Electrical and Computer Engineering

__

Joan Morrissey,

School of Computer Science

__

Alioune Ngom,

School of Computer Science

__

Robert D. Kent, Advisor

School of Computer Science

September 4
th

, 2013

iii

Declaration of Co-Authorship / Previous Publication

I. Co-Authorship Declaration

I hereby declare that this thesis incorporates material that is result of joint

research, as follows:

This thesis incorporates the outcome of a joint research undertaken in

collaboration with Jacob Machina under the supervision of Dr. Angela Sodan. The

collaboration is covered in Chapter 3 of the thesis. In all cases, the key ideas, primary

contributions, experimental designs, data analysis and interpretation, were performed

by the author, and the contribution of co-authors was primarily through the provision of

a method for fast curve fitting and its implementation, the validation of the proposed R-

metric, re-factoring the ADEPT code to improve its speed and fix several bugs, and

experiments setup. Wai Ling Yee provided hints in regards to the closed-form solution to

the Downey model.

I am aware of the University of Windsor Senate Policy on Authorship and I certify

that I have properly acknowledged the contribution of other researchers to my thesis,

and have obtained written permission from each of the co-author(s) to include the

above material(s) in my thesis.

I certify that, with the above qualification, this thesis, and the research to which

it refers, is the product of my own work.

II. Declaration of Previous Publication

This thesis includes 1 original paper that has been previously published, as

follows:

iv

Thesis Chapter Publication title/full citation Publication status

Chapter 3 [A.Deshmeh 2010] Deshmeh, A. Machina, J.

Sodan, A., ADEPT scalability predictor in support of

adaptive resource allocation, In 2010 IEEE

International Symposium on Parallel & Distributed

Processing (IPDPS), April 2010, pp. 1-12.

Published

I certify that I have obtained a written permission from the copyright owner(s) to

include the above published material(s) in my thesis. I certify that the above material

describes work completed during my registration as graduate student at the University

of Windsor.

I declare that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my thesis,

published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis

has not been submitted for a higher degree to any other University or Institution.

v

ABSTRACT

A job scheduler determines the order and duration of the allocation of

resources, e.g. CPU, to the tasks waiting to run on a computer. Round-Robin and First-

Come-First-Serve are examples of algorithms for making such resource allocation

decisions. Parallel job schedulers make resource allocation decisions for applications

that need multiple CPU cores, on computers consisting of many CPU cores connected by

different interconnects. An adaptive parallel scheduler is a parallel scheduler that is

capable of adjusting its resource allocation decisions based on the current resource

usage and demand. Adaptive parallel schedulers that decide the numbers of CPU cores

to allocate to a parallel job provide more flexibility and potentially improve performance

significantly for both local and grid job scheduling compared to non-adaptive

schedulers. A major reason why adaptive schedulers are not yet used practically is due

to lack of knowledge of the scalability curves of the applications, and high cost of

existing white-box approaches for scalability prediction. We show that a runtime and

scalability prediction tool can be developed with 3 requirements: accuracy comparable

to white-box methods, applicability, and robustness. Applicability depends only on

knowledge feasible to gain in a production environment. Robustness addresses

anomalous behaviour and unreliable predictions. We present ADEPT, a speedup and

runtime prediction tool that satisfies all criteria for both single problem size and across

different problem sizes of a parallel application. ADEPT is also capable of handling

anomalies and judging reliability of its predictions. We demonstrate these using

vi

experiments with MPI and OpenMP implementations of NAS benchmarks and seven real

applications.

vii

DEDICATION

I dedicate this dissertation to my wife, Golriz Mirarab, who was with me every step of

this journey.

viii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my supervisor, Dr. Robert Kent, for his

outstanding and continuous support of my PhD studies, which made this dissertation

possible. His guidance and deep insights were invaluable to my studies. I also remain

indebted to him for his understanding and support during all the difficult times.

I would also like to thank all my committee members: Dr. Majid Ahmadi, Dr. Alioune

Ngom, Dr. Joan Morrissey, and the external examiner Dr. Shikharesh Majumdar. Thank

you for your great advice.

I would like to thank SHARCNET for partly funding this research. Input data for the

experiments was collected on CFI-funded SHARCNET resources. We thank John Morton

from SHARCNET for providing us with data on real applications.

I would like to thank my parents, Lotfali Deshmeh and Parvaneh Hashemi for their

support.

I would also like to especially thank my aunt Manijeh Deshmeh for all her love and

support at each step.

ix

TABLE OF CONTENTS

DECLARATION OF CO-AUTHORSHIP / PREVIOUS PUBLICATION III

ABSTRACT V

DEDICATION VII

ACKNOWLEDGEMENTS VIII

LIST OF TABLES XII

LIST OF FIGURES XIII

NOMENCLATURE XIV

CHAPTER 1 1

INTRODUCTION 1

CHAPTER 2 BACKGROUND AND LITERATURE REVIEW AND ANALYSIS 7

2.1. PERFORMANCE PREDICTION 7

2.2. A TAXONOMY OF PERFORMANCE PREDICTION 11

2.3. BLACK-BOX METHODS 12

2.3.1. SIMILARITY TO OTHER APPLICATIONS 13

2.3.2. SIMILARITY IN TERMS OF BENCHMARKS AND HARDWARE METRICS 16

2.3.3. SIMILARITY: THE CONCEPT OF SKELETONS 17

2.3.4. BLACK-BOX METHODS USING MATHEMATICAL AND STATISTICAL MODELS 18

2.3.5. BLACK-BOX METHODS USING MECHANICAL MODELS 19

x

2.4. WHITE-BOX METHODS 21

2.4.1. ANALYTICAL MODELING 21

2.4.2. WHITE-BOX METHODS USING SIMULATION 27

2.5. GRAY-BOX METHODS 31

2.6. EVALUATION METHODS AND APPLICATIONS OF PERFORMANCE PREDICTION 34

2.7. KEY INSIGHTS PROVIDED BY THE LITERATURE 37

2.7.1. JOB’S SIZE, RUNTIME, AND POTENTIAL CORRELATIONS 37

2.7.2. USER BEHAVIOR: SESSIONS, LOCALITY, CYCLES, AND ESTIMATES 38

2.8. CHALLENGES AND OPEN PROBLEMS 42

2.8.1. CROSS-PLATFORM PERFORMANCE PREDICTION 43

2.8.2. PROBLEM SIZES AND INPUT PARAMETERS 46

2.9. SUMMARY 47

CHAPTER 3 ADEPT RUNTIME AND SPEEDUP PREDICTION 49

3.1. ADEPT’S GOALS 49

3.2. RELATED WORK 52

3.3. THE DOWNEY MODEL 54

3.3.1. OVERVIEW 54

3.3.2. STRENGTHS AND WEAKNESSES 55

3.4. THE ADEPT PREDICTOR 57

3.5. OBTAINING THE PREDICTIVE MODEL WITH ADEPT 59

3.5.1. ENVELOPE: DERIVING CONSTRAINTS FROM OBSERVATIONS 59

3.5.2. CURVE FITTING: THE SEARCH FOR AN OPTIMAL MODEL INSTANCE 63

3.6. EFFECTIVENESS OF ADEPT’S CURVE FITTING 64

3.7. EXPERIMENTAL SETUP 66

3.8. EXPERIMENTAL RESULTS FOR MODEL DERIVATION 67

3.8.1. SPEEDUP PREDICTION 67

3.8.2. RUNTIME PREDICTION 71

3.9. ANOMALY DETECTION 73

3.9.1. GENERAL APPROACH FOR DETECTING AND HANDLING ANOMALIES 73

xi

3.9.2. INDIVIDUAL ANOMALOUS POINTS 74

3.9.3. SPECIFIC SCALABILITY PATTERNS 77

3.10. AUTOMATED RELIABILITY JUDGMENT 78

3.11. PERFORMANCE PREDICTION: THE HYPOTHESIS 81

3.11.1. ACCURACY 82

3.11.2. EFFICIENCY 82

3.11.3. ROBUSTNESS 83

3.12. ADEPT CROSS PROBLEM SIZE RUNTIME AND SPEEDUP PREDICTION 83

3.13. EXPERIMENTAL RESULTS: PERFORMANCE PREDICTION ACROSS PROBLEM SIZES 86

3.13.1. SPEEDUP PREDICTION ACROSS PROBLEM SIZES 86

3.13.2. EXPERIMENTAL RESULTS: RUNTIME PREDICTION ACROSS PROBLEM SIZES 88

3.14. GENERAL APPROACH FOR DETECTING AND HANDLING ANOMALIES OVER DIFFERENT PROBLEM SIZES 90

3.14.1. INDIVIDUAL ANOMALOUS POINTS 91

3.15. RELIABILITY JUDGMENT ACROSS PROBLEM SIZES 93

3.16. SUMMARY 93

CHAPTER 4 CONCLUSION AND FUTURE WORK 96

4.1. CONCLUSIONS 96

4.2. FUTURE WORK 98

REFERENCES/BIBLIOGRAPHY 100

APPENDICES 117

APPENDIX A. ENVELOPE DERIVATION VIA CLOSED-FORM SOLUTION FORMULA 117

CLOSED-FORM SOLUTION FORMULAS 117

ENVELOPE DERIVATION FORMULAS 121

APPENDIX B. PERMISSION LETTER TO INCLUDE PREVIOUS PUBLICATION 124

VITA AUCTORIS 126

xii

LIST OF TABLES

Table 1. S and T piecewise functions of Downey model. ... 56

Table 2. Comparison of runtime of ADEPT with three curve fitting methods .. 63

Table 3. The list of reliability problems, their indicators, and corresponding actions 81

xiii

LIST OF FIGURES

Figure 1. A taxonomy of performance prediction methods .. 12

Figure 2. Downey model speedup curves .. 55

Figure 3. ADEPT components; Arrows show information flow .. 57

Figure 4. Forming the envelope ... 60

Figure 5. Speedup prediction of ADEPT, GA, exhaustive search, and Levenberg-Marquardt. 65

Figure 6. Speedup prediction results for NAS benchmarks .. 69

Figure 7. Speedup prediction results for the anonymous real world applications 70

Figure 8. Runtime prediction results for NAS benchmarks and anonymous real applications 72

Figure 9. Detection and handling of individual anomalous points. ... 76

Figure 10. Detection and handling of specific scalability patterns. ... 79

Figure 11. Reliability judgment ... 80

Figure 12. Speedup prediction results across problem sizes, NAS BT, FT, and SP 86

Figure 13. Speedup prediction results across problem sizes for NAS CG and LU. 87

Figure 14. Runtime prediction across problem sizes, NAS BT, SP, and FT. 89

Figure 15. Runtime prediction results across problem sizes, NAS CG and LU 90

Figure 16. Detection and handling of individual anomalous points across problem sizes. 92

xiv

NOMENCLATURE

ADEPT: Automatic Downey-based Envelope-constrained Prediction Tool

Adaptive Resource Allocation: Allocation of resources to different applications

based on the current system load, which allows a job scheduler to adapt its decisions to

the current status of the system.

Black-box prediction: a category of prediction methods that depend only on

external observation of application’s behavior, e.g. its runtime.

White-Box prediction methods: a category of prediction methods that depend

on internal knowledge of the target application, e.g. the number of iterations in the

main loop.

Gray-box prediction methods: a category of prediction methods that combine

black-box and white-box observations.

1

CHAPTER 1

Introduction

A job scheduler determines the order and duration of the allocation of

resources, e.g. CPU, to the tasks waiting to run on a computer. Round-Robin and First-

Come-First-Serve are examples of algorithms for making such decisions. Parallel job

schedulers need to make such resource allocation decisions for applications that need

multiple CPU cores, on computers consisting of many CPU cores connected by different

interconnects. An adaptive parallel scheduler is a scheduler capable of adjusting its

resource allocation decisions based on the current resource usage and demand. This

resource allocation method is referred to as adaptive resource allocation. Adaptive

parallel schedulers that decide the numbers of CPU cores to allocate to a parallel job

provides more flexibility and potentially improve performance significantly for both

local job and grid job scheduling compared to non-adaptive schedulers. Adaptive CPU

resource allocation is a widely researched topic in job and grid scheduling with potential

to improve response times significantly (up to 70%) by reducing fragmentation and

considering the current machine load [V.K.Naik 1997][W. Cirne 2003] [A.C.Sodan

2006][L.Barsanti 2006]. Taking the current machine load into account contributes most

to the improvement of response times. These improvements are achieved by running

applications with more resources if the current machine load is light, and with fewer

resources if the load is heavy [V.K.Naik 1997] [A.C.Sodan 2009]. This is due to the typical

shape of efficiency curves which describe how well the processor cores allocated to a

parallel application are utilized in terms of serial runtime divided by allocated numbers

of cores and the corresponding runtime, i.e. diminishing efficiency beyond an

application-specific numbers of cores.

Adaptive resource allocation is a practically promising approach, considering that

a study found that 98% of the users said their applications could adjust to different

2

resource allocation at start-time [W.Cirne 2003]. Adaptive resource allocation depends

on efficiency curves per problem size (strong scaling) since efficiency-based allocation

was found superior to uninformed approaches like equal resource partitioning

[S.H.Chiang 1996]. However, scalability and efficiency curves, which show the the

obtained speedup (serial runtime divided by runtime for a specific number of cores) and

utilization of cores for different numbers of allocated cores, are not generally available;

this is a major reason why adaptive resource allocation is not yet incorporated in

practical schedulers. Thus, providing scalability prediction in an easy-to-use manner

would open new possibilities for better practical scheduling. Users may also select job

sizes “tactically” under considerations of trading shorter waiting times for increased

runtimes.

Scalability prediction is also relevant for determining the maximum meaningful

CPU resource allocation to a parallel job (and therefore an often-tackled problem, e.g.

[X.H.Sun 1999]) as feedback to users and system administrators. Though so far applied

mostly on clusters, with the emergence of parallel computing in every-day life on multi-

core systems, adaptive schedulers will likely increase in practical relevance. This is

especially true if the resources allocated to a virtual-machine running parallel jobs can

vary [A.C.Sodan 2009]. Fortunately, OpenMP applications on multi-core SMP servers

were found to exhibit similar shapes of speedup/runtime curves as MPI applications on

clusters [M.Curtis-Maury 2005]. This opens the possibility of applying the same

scalability prediction approach.

Accurate predictions can be obtained via either black-box or white-box

approaches. The latter are based on application-internal and machine information,

require code instrumentation, compiler/OS support, analysis of memory-access

behavior, simulation, etc. [L.Carrington 2003][B.Lafreniere 2005][G.Marin 2004]

[X.H.Sun 1999]. Thus, white-box approaches are complex and computationally

expensive, making them unsuitable for large-scale use in supercomputing centers

3

though indispensable for cross-site prediction or projection of performance on not yet

practically available platforms. Black-box approaches predict scalability (speedup and

runtime) using only runtime observations on different numbers of nodes, by assuming

conformity to a simple descriptive model which can be fitted to the observations to

derive a specific model instance. The required observations can easily be obtained from

data routinely collected in historical databases by supercomputer centers or from

explicit test series. This makes black-box approaches much easier and much cheaper to

apply. However, to be practical, the number of required observations needs to be small.

We have performed a survey on the existing methods for performance

prediction, the result of which is a taxonomy of these methods, as well as details on

their strengths, weaknesses, and an analysis of open problems. This survey forms a key

contribution of our work, as well as a basis on which we build our hypothesis.

Based on our survey and taxonomy of performance prediction methods, our

overall goal is scalability prediction (in the sense of strong scaling), on both multi-core

SMP servers and clusters, which is practically feasible for production environments. To

enable production use, we apply a black-box approach based on the Downey model

shown to capture simplified behavior of parallel applications very well [A.Downey 1997

Model]. The Downey model has been around for a long time but has not been widely

used due to many real applications not fully conforming to the model, e.g. by showing

super linear speedups, and due to reliability of a specific prediction being hard to judge.

As described in [A.Deshmeh 2010], with the development of ADEPT (Automatic

Downey-based Envelope-constrained Prediction Tool), we pursued the following

detailed goals:

• Achieve high prediction accuracy, while requiring only few observations (typically

3 to 4).

4

• Provide a computationally efficient approach for deriving the model instance.

• Identify cases where the application does not fully conform to the Downey model

as anomalies, with automatic correction and multi-phase modeling for individual

irregular points and typical patterns.

• Perform reliability judgment which recognizes unsuitable observation layout and

proposes placement ranges of additional observations.

We decomposed the problem of performance prediction in a production

environment into the sub-problems as outlined according to the above requirements.

First, we developed a black-box performance prediction tool capable to fitting Downey

model instances to observations assumed to conform closely to the model. This

provided the basic functionality in ADEPT. We next addressed the challenge of

anomalous behavior in parallel applications, by studying different and typical scalability

patterns. This resulted in development of a metric for measuring how well-behaved a

particular parallel application is, by calculating a magnitude of deviation from the

expected behavior. The developed metric was extended to cover applications for which

serial runtime is not known. We then studied reliability problems when making

performance predictions, and compiled a list of reliability problems and their symptoms.

This allowed us to develop responses to each of these challenges for our prediction tool.

As result of these steps, ADEPT employs a special envelope-derivation technique which

constrains the search for the best-fitting model instance, a special metric for detection

of anomalies, and special pattern handling for cases like super-linear speedup. To

validate our prediction tool, we studied the evaluation methods used in the literature

for performance prediction methods, the results of which are presented in Chapter 2.

The result of this study was the selection of one of the most widely used target

benchmark set, as well as several real world applications to further ensure applicability

of our prediction tool.

5

Experiments with the NAS benchmarks [D.H.Bailey 1995] and seven real

applications show the efficiency and prediction quality of ADEPT in handling normal

cases and anomalies. We obtained generally above 80% prediction accuracy, even in

cases with anomalies and for predictions which extrapolate for more than twice the

number of nodes that were used in the closest observation. The experiments also

demonstrate the effectiveness of reliability judgment.

Having achieved highly accurate predictions for a single problem size, we next

focus on the performance prediction across problem sizes for a parallel application. The

main motivations for this move are: 1) there are potentially significant benefits for a

scheduler if such predictions are available; it makes possible adaptive scheduling as

users move to larger problem sizes of the same application, and 2) there are not any

existing black-box prediction tools that address this issue. We propose an extension to

ADEPT which makes it capable of addressing cross problem size performance prediction

with the addition of one extra input: the problem size for which the observations are

made.

To summarize, the contributions of this dissertation are as follows:

• An extensive survey on the state of the art of performance prediction

methods

• A novel performance prediction method, which can be utilized by users

and parallel application schedulers to obtain runtime and scalability

curves of parallel applications. For schedulers, this can result in significant

improvement of performance metrics, as previously described.

• The proposed prediction method is highly applicable, in terms of its

requirements, i.e. 3 or 4 observations of runtime on different numbers of

cores, and its computational complexity. This makes it feasible for an

6

adaptive parallel application scheduler to obtain predictions of parallel

applications’ runtime and scalability despite the constraints of a

production environment and the need for predictions on many parallel

applications. As described by our survey in the next chapter, this

possibility is not offered by other prediction methods.

• The high accuracy of the prediction method, which is comparable to

expensive, white-box performance prediction methods.

• The capability of the prediction method to make predictions without

assistance from the user or OS-level support

• The capability of the prediction method to handle anomalous behavior by

parallel applications, which makes the method robust, further increasing

its applicability in a production environment.

• The capability of the presented prediction method to identify unreliable

predictions, correct them when possible and generate warnings

otherwise, in order to avoid misleading the user of the tool (whether the

user is a human or an adaptive parallel application scheduler).

• The capability of the method to make predictions across different

problem sizes of a parallel application, thus increasing its applicability.

The rest of this dissertation is organized as follows. In chapter 2, we present the

background on performance prediction, as well as our survey which provides a

taxonomy of the existing performance prediction methods. In chapter 3 we describe the

structure of ADEPT, its contributions, and the experimental results. Chapter 4 draws

conclusions and outlines directions for future work.

7

CHAPTER 2

Background and Literature Review and Analysis

2.1. Performance Prediction

Performance prediction is the task of providing an estimation of the

performance of an instance of an application on a specific platform, where the

application of interest may be serial, parallel, or distributed, and an instance of the

application of interest is identified as the combination of input parameters that

determine the problem that is being solved as well as the properties of the solution. The

platform may be a single CPU, a multi-core desktop machine, a cluster with tens to

thousands of cores connected by interconnects, or a distributed grid environment.

Backfilling schedulers, a common type of production scheduler for local

scheduling on clusters, depend on performance prediction in terms of jobs’ runtime

estimations to perform backfilling. Usually the user is asked to provide an estimate of

the runtime of the job he/she is submitting, and underestimation is punished by killing

the job once it runs past the estimation. Studies have shown that user runtime estimate

are generally inaccurate [A.W.Mu’alem 2001]. There have also been several papers in

the literature claiming, counter-intuitively, that inaccuracy in runtime estimation

actually improves the performance of the scheduler, suggesting better performance of

the scheduler if the runtime estimates are doubled [A.W.Mu’alem 2001], [D.Zotkin

1999], or even for randomized runtime estimates [D.Perkovic 2001]. However, these

claims were negated by more recent research work. In a keynote speech, [D.Tsafrir,

2010] emphasizes that, despite some previous claims, inaccuracy in runtime estimation

does not lead to better scheduler performance. In [D.Tsafrir 2007], authors demonstrate

that doubling the runtime estimation improves the performance of the backfilling

scheduler, but does so to an even higher degree if the original estimate is accurate,

thereby reestablishing the need and motivation for accurate performance predictions.

8

[S.H. Chiang 2002] emphasizes the importance of accurate runtime prediction by

evaluating the performance of a backfilling scheduler on heavy loads and a leading edge

production platform, and concluding that accurate estimations can improve the

performance of the scheduler much more significantly than was assumed before.

Moreover, authors conclude that users who provide accurate runtime estimations will

observe performance improvements even if other users do not provide accurate

estimates. The improvements are so large that authors suggest the use of test runs to

obtain accurate estimations.

[D. Tsafrir 2007] paves the way even further for incorporating performance

prediction into production schedulers by separating its two historical roles of providing

backfilling information and providing killing times for jobs, i.e. the system does not kill

jobs if they are longer than the system generated predictions. Instead, predictions are

corrected adaptively if they are proved wrong. [D.Talby, 2006] describe another

important application of performance prediction in job schedulers, which is assisting in

scheduling of moldable jobs: the scheduler must decide whether it is best to wait and

start the job later with more processors, or start the job immediately. This decision has

to be based on prior knowledge of jobs’ runtimes. [D.Talby, 2006] also proposes a

standard interface for all predictors, to increase the applicability to production

schedulers. A similar application is proposed by [W.Smith 1999], which uses runtime

predictions to estimate queue wait times.

A detailed discussion on the role of performance prediction in various aspects of

high-performance computing is presented in [K.J.Barker 2009]. These roles include the

design of new machines which uses performance prediction to explore the extremely

large design space, the decision of which new platforms to acquire which uses

performance prediction to do a cost-benefit analysis, and the installation of new

systems which uses performance prediction to verify the installation. [J.Zhai 2010]

emphasizes on the role of performance prediction in the studies for acquisition of new

9

systems and proposes a method that accordingly assumes the availability of a single

node of the new platform for performance prediction. [D.J.Kerbyson 2002] uses

performance modeling and prediction for exploring platform architectures. Similarly,

[E.Ipek 2006] discuss the use of performance prediction for making design decisions for

new parallel systems. [L.T.Yang 2005] suggests that scientists can choose a parallel

system for their application based on prediction of application’s performance on

available platforms. [K.Davis 2009] accurately predicts the performance of two

petascale applications on an HPC platform before and after an upgrade, emphasizing a

potential key role for performance prediction in HPC platform upgrade decisions.

Performance prediction has also been used for performance tuning of parallel

applications [A.Tiwari 2009], [K.Singh, 2010], and for performance tuning and identifying

performance bottlenecks [G.Marin, 2007]. According to [R.Sarikaya 2010] performance

prediction can be used for the improvement of power-performance decisions in

dynamic power management.

A case for the importance of scalability prediction is made in [W.Cirne 2003], by

specifying that 98% of the users think their jobs can adapt to different numbers of

processors at start-time. A speedup model can assist scientists in deciding whether to

make a request for the allocation of a larger numbers of cores on a cluster, e.g.

SHARCNET [SHARCNET] holds regular rounds of applications for large numbers of cores

on its clusters. Considering the costs associated with making and processing such

applications makes a case for a speedup model. [A.Duran 2008] uses speedup prediction

to dynamically determine the number of OpenMP threads to create for an application.

[Z.Wang 2009] predicts scalability on multicore machines for OpenMP programs.

[K.Singh 2010] proposes a method for dynamic concurrency throttling, which is reducing

the number of threads of an application for particular phases which are expected to

have a low scalability e.g. due to collective communication. This is done to achieve

10

power efficiency (reducing power usage when it is not beneficial for scalability), while

improving performance.

Performance prediction is also needed in grid computing. [W.Smith 2010]

describes the implementation of a queue wait time prediction service on TeraGrid

[TeraGrid], based on runtime prediction. [F.Guim 2008] proposes a grid scheduler that

depends on runtime predictions implemented as a service. [K.Kurowski 2005] mentions

that grid resource brokers need estimations of job start time and job execution time to

make decisions, rather than depending on simpler parameters like load. Similarly,

[S.H.Jang, 2005] shows that selecting a site in a grid for execution based on performance

prediction rather than using load information (i.e. assuming that the site with the lowest

load will provide the shortest execution time), results in performance improvement.

[U.Farooq 2009] presents a middleware framework for grids, which is capable of

handling incorrect estimations of application runtimes, thus implying the potential

benefits from accurate runtime estimations. [J.Zhai 2010] specifies that grid schedulers

need estimations of individual workflow activities execution time to map workflow

activities to different grid sites. [N.K.Kapoor 2010] describes matching resources to jobs

using classes assigned to them according to their service demands; the proposed

method is compared to one that requires a priori knowledge of jobs resource usage

characteristics. [S.A.Jarvis 2006] presents two prediction-based middleware services and

their usage to support the execution of a workload on a set of resources on grid.

[F.Nadeem 2009] specifies the prediction of workflow execution time as having critical

importance for optimization of workflow executions, and advance reservations of

resources. [Nirav 1999] emphasizes the importance of runtime prediction in grid

computing for resource management. [C.Glasnerlow 2011] specifies runtime prediction

as a supporting service for schedulers used in grid computing.

The preceding discussion establishes a key role for performance prediction in

various aspects of computing in general, and high performance and grid computing in

11

particular. The rest of this chapter is organized as follows. Our taxonomy of different

approaches and a survey of the state-of-the-art in performance prediction are

presented in Section 2.1. Sections 2.2 through 2.5 provide details on each category of

methods. We provide a list of key insights relevant to performance prediction in Section

2.6. Finally, our list of open problems and their importance is delivered in Section 2.7.

2.2. A Taxonomy of Performance Prediction

We consider the main aspect of distinction among performance prediction

methods to be the level of abstraction at which they operate. In the literature, three

different terms have been specified for these levels, which we will use as well

throughout this report: black-box, white-box, and gray-box methods, as shown in Figure

1. We will describe each of the categories shown in Figure 1 in its own section, with

subcategories shown in the figure described in the corresponding subsections. These

differ in accuracy, cost and ease of use. The terms used in Figure 1 have been previously

introduced by the literature, and organized by our taxonomy. At the lowest level of

abstraction, white-box methods use information that is either only known by developers

of the application or can be obtained through modification of application’s source code

or binary. These techniques consist of subcategories working at differing levels of

abstraction. The main advantages of white-box approaches are their accuracy and the

ability to answer what-if questions regarding performance. Their main disadvantage is

the support they need in terms of developer/expert time, compiler/OS/tool support,

etc, which makes them unsuitable for production environments. Black-box methods are

on the other extreme, assuming only external knowledge regarding the application or

platform, e.g. runtime and number of processes, usually obtained from logs of user

activity across time/platform. The main advantage of this category is the potential for

use in production environments, although some roadblocks, mainly the killing of jobs by

12

schedulers due to underestimation of runtime, need to be resolved to actualize the wide

applicability [D.Tsafrir 2007]. Gray-box methods operate at the middle abstraction level,

attempting to maintain the applicability of black-box methods, while utilizing a subset of

low-level information used by white-box methods, which is mainly problem size

specified as a combination of input parameters.

2.3. Black-Box Methods

Black-box methods provide predictions without any “inside” information, i.e.

only the external behavior of application is available, using two general approaches: 1)

relating to behavior of “similar” applications/benchmarks, and 2) assuming a general

behavior model, fine-tuned via model-fitting.

Performance Prediction

White-box
Black-box Gray-box

Similarity-based Model-based

Applications

Skeletons

Benchmarks

Statistical

Mechanical

Simulation

Events Replay

Partial Execution

Analytic Models

Source Code Analysis

Complexity Analysis

Object Code Analysis

Figure 1. A taxonomy of performance prediction methods

13

2.3.1. Similarity to Other Applications

The main idea here is that “similar” applications have reasonably close

performances; hence if a set is formed of applications similar to the target, predictions

can be made using observations on applications in this set [R.Gibbons 1997], [A.Downey

1997], and [W.Smith 1998]. The identification of similar applications requires the

existence of historical information; these may be gathered in supercomputing centers,

and there exists an archive of multiple centers logs [Parallel Workload Archive]. Most

methods identify similarity on a per-site basis even if multiple logs are examined,

probably because each center has its own unique set of applications and users. To

identify similar jobs, [H.Li 2005], [W.Smith 2007], and [T.N.Minh 2010] use instance-

based learning on jobs’ attributes and [F.Guim 2008] constructs decision trees. In

[W.Smith 1998] and [W.Smith 2004], sets of jobs’ attributes, called similarity templates,

are used to form groups of similar jobs. For example, the template (Username, N) places

jobs with the same username and numbers of nodes in the same similarity group.

Templates are determined using greedy and genetic algorithm search on a workload.

The effectiveness of a template is related to measured mean error of the predictor fed

the sets formed by applying the template to the workload. [K.Kurowski 2005] propose

the GPRES expert system which also uses similarity templates but stores the extracted

job-category-determination rules in a knowledge base. [F.Nadeem 2009] constructs

similarity templates using supervised exhaustive search on grid workflow-level

attributes, e.g. set of activities, application-level attributes, e.g. problem size, execution-

level attributes, e.g. set of grid sites, and resource-level attributes, e.g. jobs in the

queue. [C.Glasnerlow 2011] uses a set of similarity rules (e.g. jobs submitted between

8am to 4pm are similar) and the resulting clusters of a single user’s jobs, which are

assigned relevance for a particular job type based on accuracies in previous predictions.

[S.Krishnaswamy 2004] Identifies similar jobs using rough set theory, where job

14

characteristics and performance are condition and decision attributes, respectively,

forming the similarity templates based on dependence degree of decision attribute on

each condition attribute. [R.Duan 2009] Uses specially-structured Bayesian networks

where factors are job attributes and correlation coefficients is used to discard irrelevant

factors. The probability distributions between factors are calculated from the

observations dataset.

The next step is to derive a prediction from observations on the set of similar

applications. [D.Tsafrir 2007] reports improved scheduler performance when taking the

average of the similar jobs from the user’s history, with higher accuracy from more

recent and less similar jobs than otherwise. [D.Talby, 2006] introduces a session-based

history (SBH) predictor, sessions being sets of an individual user’s jobs with at most 20

minutes between termination of one and submission of next, which uses the median of

similar jobs across multiple sessions. This is compared to recent user history (RUH)

predictor, which uses the median runtime of the last 3 terminated jobs of the user,

showing slightly higher accuracy for the former. As a result of experimenting with

different configurations of SBH, authors report improved results from using exact but

farther in the past (up to 30 sessions) matches versus using partial but more recent

ones, i.e. exact similarity is more important than proximity in time. In the extreme,

considering only the most recent session and ignoring similarity performed even worse

than RUH. [F.Nadeem 2009] uses the average of similar jobs, with the possibility of

shifting the prediction toward more recent items versus using all available observations.

[S.Krishnaswamy 2004] and [T.N.Minh 2010] use the mean runtime of the set of similar

jobs. However, considering the context of the predictor in [T.N.Minh 2010], i.e.

backfilling scheduler, the number of underestimations is reduced by adding a fraction of

the standard deviation of K neighbors’ runtime to the estimation, and using the user-

provided runtime as the upper-bound for the estimate. In [R.Gibbons 1997], author

proposes a method that uses averages and provides confidence intervals; however,

15

formation of sets of jobs for average calculation is not specified. In [W.Smith 1998] and

[W.Smith 2004], runtime prediction and its associated confidence interval are obtained

from multiple sets of similar jobs (called categories) by either calculating the mean of

runtimes or using linear regression with the number of nodes as the regression variable.

There is also a maximum on the number of jobs in each set, and the oldest job in the set

is discarded if that maximum is passed due to addition of a new job. If the target job

falls into several sets, a prediction is made per set and the prediction with the smallest

confidence interval is selected. In [W.Smith 2007], a prediction and a confidence interval

are obtained using a kernel regression method applied to the N observations that are

most similar to the target application, called query.

Genetic algorithm is used to search for optimum configuration of the regression

method, e.g. kernel function width, feature weights. ADAPS, proposed by [C.Glasnerlow

2011], uses multiple prediction methods applied to multiple sets of jobs formed based

on similarity. To make a prediction, job sets (active clusters) to be included are selected

and weighted average is taken among the predictions made per pair of job set and

method, where both the selection of job sets and weight assignments use accuracy

feedbacks. [F.Guim 2008] uses the C4.5 decision tree algorithm, which results in

prediction of ranges of runtime rather than point values. In [R.Duan 2009], authors use

an RBF-NN (radial basis function neural network), fed by a Bayesian network. The

Bayesian network provides the RBF-NN with a reduced number of dimensions and

probability tables (e.g. the probability that runtime is between 980s and 1080s when the

preparation time job attribute is between 0s and 215s). In [K.Kurowski 2005], authors

propose a method based on similarity rules from a knowledge base, which uses the

arithmetic mean of the result variables of two target application-matching rules: the

one with highest specificity and the one with highest number of matching jobs. In [H.Li

2005], authors use instance-based learning, either 1-NN or N-weighted averaging, fine-

16

tuning the parameters of the predictor using a genetic algorithm search, where fitness is

based on prediction accuracy on training dataset,

2.3.2. Similarity in Terms of Benchmarks and Hardware Metrics

Another group of black-box methods attempt to predict by relating the

performance of target to that of benchmarks, usually based on hardware-level metrics

as these maintain the black-box constraint. [S.Sharkawi 2009] proposes a method for

predicting cross-platform, node-level performance, i.e. communication ignored, of

constant working-set size HPC applications by relating to SPEC CFP2006 benchmarks.

The overall approach is to use a genetic algorithm tool to derive a performance model

for the application as a weighted combination of similar benchmarks (called surrogates),

via examining relative contributions of 6 groups of hardware counter metrics, obtained

on a base machine, at both inter and intra group levels. Performance is predicted by

combining the model with the published performance data of benchmarks on the target

platform via solving the set of linear equations resulting from the latter, yielding the

platform-specific function H which relates runtime to benchmarks using 6 coefficients.

In [W.Pfeiffer 2008], Pfeiffer et. al. model the application runtime as the

weighted sum of published machine characteristics and measurements made by HPC

challenge micro-kernels (e.g. Peak flop, interconnect latency, memory bandwidth), with

weights being platform-independent application coefficients calculated by model fitting

on its runtimes across different platforms and numbers of cores. To make predictions

for a platform, the model is combined with the measurements made by HPCC

benchmarks on that platform. The method addresses robustness and goodness of the fit

by checking for outliers and influential measurements, i.e. single measurements the

elimination of which significantly changes the fit. Backward elimination is employed to

allow only statistically significant predictors in the model. Communication time and

17

fractions are gathered and a larger dataset for the fits is obtained by separately

specifying communication time as a function of related predictors. Authors suggest 15

to 20 measurements to fit three or four parameters for a given benchmark. In [F.Freitag

2001], Freitag et. al. propose a low-overhead speedup prediction method for a hybrid

application, i.e. one that uses a combination of MPI and OpenMP, via dynamic detection

of its iterative structure and parallel loops through monitoring the changing CPU usage.

Thomas et. al. introduce a profiling and performance analysis tool for MPI

applications, which does not require re-compiling or re-linking the target application to

obtain communication traces [D.Thomas 2010]. The tool can identify wait times due to

both collective operations and delay between send and receive operations. The tool is

then combined with hardware counter information to provide runtime estimates for

parallel applications.

2.3.3. Similarity: The Concept of Skeletons

In [S.Sodhi, 2008], Sodhi et. al. propose a similarity-based approach that

constructs a performance “skeleton” of the application: a synthetic, orders of

magnitude shorter program with a runtime that is a fixed portion of that of the

application, under any scenario/platform. The proposed method automatically

constructs skeletons via identifying and summarizing repeated patterns, i.e. segments of

similar system activity, in the application’s execution trace, leading to an execution

signature that is transformed into the skeleton. To obtain the signature, similar MPI calls

are identified and represented with the same symbols, transforming the trace into a

string, which is compressed into a loop structure by recognition of repeated patterns. A

synthetic program that is representative of the signature, i.e. has similar execution

trace, is then constructed, using the identified loop structure to scale down the runtime.

Execution trace is identified by using the standard PMPI interface to link the application

18

with a profiling library. The computation time is calculated as the time between the call

and return of MPI routines, i.e. suffers the same problem as most other work in terms of

specifying the end of communication as the return time of the MPI call. The method is

currently more suitable for performance prediction under load sharing and not across

different platforms, i.e. different CPU and interconnects architectures. Computation is

only briefly specified, and memory subsystem behavior and its role in prediction is

skipped.

In [A.Toomula 2004] (mostly by the same group), a method is proposed for

constructing a skeleton program which has the same cache behavior, in terms of

number of cache misses, as its target application, on any platform. Because the

collection of all memory references of the target application is impractical, samples of

memory references are collected, using Valgrind tool [Valgrind], each sample being a

sequence of memory references long enough to capture temporal locality. The

references are stored as the number of the cache line they access, are clustered and

used to generate the skeleton’s synthetic C program. In [Q.Xu 2008] (from mostly the

same group), a method is proposed that constructs skeletons by combining traces from

multiple processes into a logical trace. In addition, authors specify the use of synthetic

computation code which is the same in duration, but does not entail the memory

behavior of the target application.

2.3.4. Black-Box Methods Using Mathematical and Statistical Models

A subcategory of black-box methods assumes general conformity of target

applications to an underlying model with coefficients determined for each application

based on observations of its behavior.

19

In [H.A.Sanjay, 2008], application runtime is specified as an equation that

depends on functions of communication and computation complexity, amount of

parallelism in computation and communication, and CPU and network loads. Linear

regression is used to make predictions, and different functions are selected based on

the current load of CPU and network. A set of at most 20 candidate complexity functions

are determined by running the target application for different problem sizes on a single

non-dedicated CPU (for computation complexity), and on two non-dedicated CPUs (for

communication complexity), fitting the set of all potentially relevant complexity

functions to the observations, and choosing the functions with smallest fitting errors.

Scalability is modeled through functions specifying amount of parallelism in

computation and communication, via running the application on 2, 4, and 8 processors.

The overall obtained model is used to predict runtime under various values of loads,

number of CPUs, etc. In [R.Wu 2008], a pure mathematical approach specifies the

runtime of a parallel application as the maximum runtime of its processes and

individually models each process as a Johnson distribution. Tudor and Teo provide an

analytical model for speedup for shared-memory programs on multi-core systems,

which uses hardware counters and operating system run-queue [B.M.Tudor 2011]. The

model measures the number of cycles lost to memory contention and data dependency,

and calculates an estimated speedup loss due to these cycles. The proposed model is

evaluated on 6 OpenMP HPC dwarfs from the NAS benchmark suite.

2.3.5. Black-Box Methods Using Mechanical Models

Black-box models may use non-statistical models, which are based on certain

characteristics of parallel applications, and have been called mechanical models in the

literature. In [S.Shimizu 2009], Shimizu et. al. model resource consumption statistics, in

particular the runtime, of a specific problem size of the application as products of

20

resource-specific terms including contention, e.g. ������� = �	

 +		
 ∗
��������	
 + 	 ∗ �������, with the coefficients obtained by applying regression

analysis to observations of application across platforms. The model is claimed to

improve in accuracy as the number and variety of platforms are increased. In

[S.Venkataramaiah 2003], authors model the performance of a specific problem size of

the application as a function of application’s behavior and level of contention over CPU

and interconnect. The parallel application is run on a dedicated platform, and

measurements of CPU usage and network usage are combined with reassembly of

application’s messages and platform benchmarking results to determine the time each

CPU spends on computation, synchronization (wait), and communication, used to

predict the performance under different contention levels. CPU usage is monitored via

CPU probing, and tcpdump provides network traffic logs. In [A.Deshmeh 2010], the

ADEPT predictor is proposed which uses the Downey model [A.Downey 1997_2] as the

underlying model that explains the behavior of parallel applications. Observations of

target application’s execution times for the same problem size over different numbers

of processors are used for model fitting. A separate model fitting is done per prediction

target, assigning weights to observations based on their distance from the target

prediction point. ADEPT also handles individual anomalies in the observations by

introducing a novel heuristic that is based on expected scalability of a parallel

application. Anomalous behavioral patterns, e.g. major runtime improvements at

processor counts which are powers to two, are also handled via introduction of multi-

phase modeling. ADEPT is also capable of detecting unreliable predictions, e.g. when

significantly distinct instances of the model can be fitted to the existing observations.

21

2.4. White-Box Methods

We divide white-box methods into two general categories: a) analytic modeling

which is composed of model-driven techniques; these are distinguished by the

abstraction level(s) at which the required analysis is performed: complexity level, source

code level, and object code level, and b) simulation, which covers techniques that base

the prediction on some mimic of the application’s execution; these too are distinguished

based on their abstraction level: overall structure-level abstraction leads to partial

execution, while instruction-level abstraction defines event replay techniques. There is

some degree of overlap among the two general categories, which we will point out.

2.4.1. Analytical Modeling

At the highest level of abstraction among analytical modeling techniques are

those that derive a performance model by analyzing an algorithm rather than an

application. In [K.J.Barker 2009], Barker et. al. construct a model of a generic five-point

stencil application by analyzing the general algorithm that the application follows. In

[J.Schopf 1998], Schopf et. al. analyze the performance of a stencil application, but

specify the parameters of the model as distributions rather than single values. In

[M.M.Mathis 2005] Mathis et. al. use complexity analysis to construct a model of mesh

particle transport computations. Such methods provide an overall expectation of the

performance of a specific solution regardless of the implementation details; they,

however, run the risk of ignoring factors that critically influence the performance, e.g.

cache attributes of the target platform.

The next level of abstraction entails methods that employ source code analysis.

In [A.V.Germund 2003], Germund et. al. separately model application and platform and

22

combine the two to obtain a symbolic model for performance prediction. Authors

provide mechanisms for translating specific parallelism patterns into models. They also

provide detailed methods and discussions for transforming different programming

constructs, e.g. pipelining, and phenomena, e.g. memory and network contention, into

the proposed modeling language. The PACE toolkit [G.R.Nudd 2000] separately models

the application and the platform, and combines the models to obtain performance

predictions. The toolkit is able to predict performance for different numbers of

processors. In [M.M.Mathis 2006], Mathis et. al. also separately model the application

and platform, using a modified version of the CHIPS performance specification language

[G.R.Nudd 2000]. A CHIPS model has a hardware specification component and a task

graph representation of the parallel application based on detailed knowledge of source

code. The proposed method predicts the time required per cell, processing unit of the

application, for different cells per processor.

In [S.R.Alam 2006], Alam et. al. propose a method for predicting workload and

memory requirements based on an API for MPI programs in FORTRAN and C, which

generates trace files that contain key events e.g. communication events, loop start/end,

floating point operations start/end. The constructed model is based on computation,

communication, and key input parameters of the application. In [L. Adhianto 2006],

Adhianto et. al. propose a prediction method that addresses hybrid applications (MPI +

OpenMP), which uses the compiler to obtain an application signature consisting mainly

of memory access patterns and floating-point operations. The method uses benchmarks

to obtain platform characteristics, e.g. cache size, cache line size, clock speed, and the

parallelism overhead of MPI and OpenMP. [M.Nakazawa 2005] uses performance

prediction to find the best data distribution for a parallel application. It addresses I/O

cost as well as computation and communication cost for building a model of parallel

programs in terms of a set of equations. Micro-benchmarks are used to identify the

initialization cost, send and receive overheads, etc. The method assumes that parallel

23

applications are iterative, and measures the time for instrumented run of one iteration

of the main loop to obtain computation, communication, and I/O cost. Manual analysis

of the source code is required to identify parallel sections, which are then instrumented

to obtain their computation time and I/O time. The computation times for different

amounts of work are obtained using these measurements.

In [Z.Wang 2009], authors propose a machine learning-based method to

determine the best number of threads for an OpenMP program on multicore machines,

based on prediction of the scalability curve of the program. A neural network and a

support vector machine are trained off-line on features extracted from a set of

programs, and are fed the features of new programs to output the optimum number of

threads and scheduling policy. The features that are to be provided on both training set

programs and the new program are extracted from both the source code, e.g.

load/store, branch count, and dynamically using source code instrumentation, e.g. L1

data cache miss rate. [T.Fahringer 2000] proposes a performance prediction framework

which uses the source code written in HPF and instrumentation to obtain a model of the

parallel application based on work distribution, communication parameters, cache

misses, and computation time. To predict computation time, it uses the runtime of

kernels executed on the target architecture. [J.Li 2009] introduce a method that uses

neural networks for predicting execution time of functions (tasks) of an application

using its source code; the input to the neural network is the previous runtimes and input

parameters. The neural network then predicts execution time and size of output (since

it affects cost of communication between tasks) for the function. The application needs

to be written in a language called R script to be processed by the predictor.

There exist varying levels of abstraction among methods that depend on source

code analysis. Methods at higher levels of abstraction specify the application’s runtime

as a function of problem size, data distribution, etc. This usually allows only the implicit

inclusion of platform characteristics and effects. Methods at lower levels of abstraction,

24

e.g. [G.Marin, 2007] specify the control flow graph of the application and identifies the

basic blocks and the set of operations they perform. These allow the explicit

consideration of platform capabilities, e.g. specifying how much time each basic block

needs on a particular platform based on the block’s needs and platform’s resources, at

the cost of more expert time and potentially the added requirement of instrumenting

the runs to obtain some of the required metrics, e.g. number of floating-point

operations of a basic block.

Methods in the final group of analytical modeling analyze the object

code/executable of the target application, via instrumentation. A typical example of

using instrumentation is obtaining communication characteristics of applications, e.g.

how many bytes are sent on average per process, what is the average message length,

what percent of the communication operations are collective and thus may involve long

waits, etc. As in code analysis, the resulting application model may need to be combined

with a platform description to provide performance predictions. Instrumentation of

applications’ binary or source code attempts to automate at least some parts of the

code analysis to reduce the time required of a performance specialist or the developer

or to replace them; the latter may result in some sacrifice in terms of accuracy of the

constructed model.

In the Prophesy project, [V.Taylor 2003] specify the main innovation to be the

automatic modeling component. The main measure is the coupling parameter that

specifies the interaction among kernels that make up an application. A kernel is a logical

unit of work; it may be a loop, a file or a procedure. The coupling value between two

kernels is the result of the division of their consecutive execution by the sum of their

individual execution (measurements for each of these terms is done in the form of a

loop execution either an individual kernel or a chain of 2 or more kernels) [X.Wu 2004].

The data collection component of the Prophesy framework collects data using

automatic instrumentation at the basic blocks, procedures, or loops level. The modeling

25

component provides three methods: curve-fitting, parameterization, and kernel

coupling. In curve-fitting, the user selects the data and the method to use, and models

the application runtime, communication performance, etc. as a function of some or all

of the input parameters of the application. The parameterization method involves hand-

counting the number of different operations in the code, and grouping them to

construct formulas which contain coefficient that can be determined from the database

using hand-written scripts. The Valerie Taylor group has used the Prophesy project for

runtime prediction on different HPC applications [X.Wu 2006_1], [X.Wu 2006_2]. The

kernel coupling measures the interaction between kernels by dividing the combined

runtime of kernels (runtime of kernels when they are run in sequence) by the sum of

their individual runtimes. These runtimes are measured by placing one or more kernels

into a loop such that the loop dominates the runtime, measuring the new runtime, and

subtracting the time required for execution of the rest of the application from the

obtained runtime. The application runtime is then modeled as the summation of kernel

models (kernel models seem to be developed using the parameterization method,

multiplied by the number of times it is executed in the application), each multiplied by a

coefficient which is calculated as a linear function of kernel coupling values.

[V.Taylor 2001] proposes a method to automate the development of analytical

models of parallel and distributed applications. Data about an application are gathered

via instrumentation and stored in an application performance database (also the

compilers, libraries, and the control flow). There is also a model template database, and

a systems characteristics database. The goal is to use the three databases to make

predictions on performance of an application on different system configurations.

Specifies three modeling methods: curve-fitting, parameterization (these two are also

specified in other Prophesy papers), and composition. The argument for

parameterization which is manual is that parallel applications are composed of a few

key kernels and it would suffice to focus on these kernels. The composition method

26

seems to be the same as kernel coupling method specified in later relevant papers.

Runtime prediction is done for an example application (matrix multiplication), and an

FFT benchmark from NPB suite. According to [V.Taylor 2002] kernel coupling values are

weighted based on the fraction of the runtime attributed to the corresponding kernels.

It should be noted that kernel coupling values can be generated in a pair-wise manner

(i.e. for pairs of kernels) or for chains of 3 or more kernels. The exploration of which

number of kernels in the chains leads to better results is left for future work.

He, et. al., propose a method for identification of data flow patterns in parallel

programs, e.g. reduction, which can be used for performance prediction [J.He 2011].

The source code of the application is used in static analysis to classify the data flow as

one of the 5 defined patterns. The loop nest structure is extracted from the

intermediate presentation of the code prepared by the compiler, and all the

assignments are examined to construct a graph relating the result to the program

variables. A reduced form of this graph is then compared against the predefined graphs

for recognition of data flow pattern. Authors then relate the performance of several

synthetic benchmarks to those of NAS benchmarks, by matching the data flow patterns.

[L.Carrington 2003] independently models both computation and

communication operations of parallel applications (called application signature) and

machines (called machine profiles), and convolves the two models (separately for

computation in terms of a single processor model: memory and floating-point operation

needs / corresponding machine rates, and communication) to predict application

runtime on a specific machine. The machine profile is composed of machine’s capability

to perform certain operations, e.g. peak floating point rate, obtained via low level

benchmarks called probes. Performance of 3 scientific applications is modeled, with

generally below 20% runtime prediction errors. The paper also provides a discussion on

using the model for sensitivity study (e.g. what would be the performance of the

application if network bandwidth was doubled, etc.).

27

Cornea et. al. demonstrate the use of a performance prediction tool called dPerf

on applications in P2PDC environment for high performance P2P computing [B.F.Cornea

2011]. The dPerf tool combines static and dynamic analysis with simulation of the

obtained traces for prediction. The source code of the program is used in the static

analysis to obtain basic blocks, and instrumentation provides the runtime of each block.

This data is then fed to a trace-based network simulator to obtain an estimation of the

runtime of the parallel application.

2.4.2. White-Box Methods Using Simulation

Simulation-based methods provide performance prediction of a target

application by mimicking its behavior on a platform. The input to simulation is a

representation of target application’s behavior, which can include a full event trace of

the application covering categorization of different operations, e.g. floating-point,

obtained using instrumentation [M.Tikir 2009], [L.Carrington 2005], [G.Marin 2007], or

only the communication events obtained via linking the application with a profiling

library and recording all the communication calls made by the application [G.Rodriguez

2004], [M.Casas 2008]. It should be noted that there is some overlap between

simulation and analytic modeling approaches, in terms of the constructed analytical

model being used by a simulator, of e.g. the target platform, to provide performance

predictions.

The first subcategory of simulation-based methods entails techniques that

record events occurring during the execution of the target application, and replay these

for performance prediction. [M.Tikir 2009] Collects events during an application’s run,

and is able to replay and simulate these traces (to model current and future HPC

systems). The tracer is built on MPI’s profiling interface. The time between

communication calls, called CPU bursts, are also recorded. The simulator takes as input

28

the event trace for an application, and a set of configuration parameters for a target

system (parameters of the global system, each compute node, and the task-to-

processor mapping; CPU speed is specified as the ratio of target to base system), and

simulates the execution of the application on target system. Computation time is

estimated by multiplying CPU bursts by the ratio of CPU speed between target and base

systems. In simulation, each event is labeled with its earliest ready time. Communication

models are separated from the simulator, and use the configuration files and the

current state of the system to calculate the sustained latency and bandwidth, and

decide when a particular event will be executed, e.g. depending on the availability of the

resources in the communication system.

In [L.Carrington 2005], Carrington et. al. support the idea of relating HPC

applications’ performance to simple benchmarks via a runtime modeling and prediction

framework, which captures the applications memory and communication characteristics

via traces. Examines the accuracy of a simple prediction method, T’(x,y)= (R(x) / R(x0))

* T(x0, y); x0 is the base system, R(x): simple benchmark on system x, T(x,y) : runtime of

application y on machine x, to conclude its insufficient accuracy. Proposes a predictive

framework in which applications’ operations are divided into categories, and

instrumentation is used to gather the count for each operation for an application (e.g.

number of floating point operations). The MetaSim Convolver [A.Snavely 2003] is used

to combine operating counts and operation rates, which are obtained via simple

benchmarks. The time of these categories of operations are then summed up to predict

the applications runtime, taking into account the overlap between operations.

In [G.Marin, 2007], Marin et. al. use static (to obtain control flow graph) and

dynamic (memory usage patterns, etc.) analysis of object code to develop a model of

the parallel application. The application model is combined with the machine model

(architecture description) to predict runtime, using a module instruction scheduler that

maps application operations on resources of the target machine. Addresses cross-

29

platform and different input parameters (using models parameterized by input

parameters). A machine description language is provided for describing different

platforms.

[M.Casas 2008] Instrumentation is used to obtain data on MPI calls of the

application. A set of parameters: communication efficiency, load balance, average IPC,

and number of instructions, are defined and measured for different numbers of

processors. The values of these parameters are then related to number of processors

using log-linear fitting, and an analytical model based on these parameters is then used

to predict runtime for larger numbers of processors. For performance prediction on

different interconnects, the bandwidth and latency, as well as network topology are

taken into account using the Dimemas simulator [Dimemas 1997].

[G.Rodriguez 2004] proposes a linear model of parallel applications, which is

based on critical path length, number of exchanged bytes, and number of non-

overlapped latencies. The method uses dynamic instrumentation to obtain

communication requests and CPU demands for different numbers of processors, and

feeds these to Dimemas [Dimemas 1997] simulator. Regression is used on simulation

results to fit the model to the application. Validation has only been done for simulations

by Dimemas and not actual runs. [S.Pllana 2005] Uses source code of a parallel program

to group the statements into categories like computation, loop, send, receive, and

barrier. Also uses a simple model of machine: number of nodes and number of cores per

node, etc. The execution of the modeled program on the modeled machine is then

simulated to obtain a performance prediction. The program is first modeled using UML,

and the UML model is automatically translated into a performance model. [J.Zhai 2010]

Clusters processes of a parallel program into groups with similar behavior, runs one

representative from each group on a single node to model the computation time, and

combines the real sequential computation time measurements with a trace-driven

30

network simulator. Deterministic replay is used to allow the execution of a single

process of an application on a single node.

In [S.Achour 2011], Achour et. al. present a framework for prediction of parallel

application’s performance, which uses regression to profile the computation kernel and

communication of the parallel application. The framework feeds the models obtained

on computation and communication of the target application to a simulator to obtain

runtime predictions. The modeling assumes availability of the source code of target

application in C language, and collects traces of both computation and communication

to be provided to the simulator. The simulator constructs the task graph of the target

application and predicts the execution time of each task, and calculates a runtime

estimation by addressing wait times in addition to tasks runtime.

It should be noted that there is some degree of overlap between analytical

modeling methods and event replay methods as a subcategory of simulation-based

methods; e.g. [M.Casas 2008] uses a model that is based on several metrics, and

[G.Rodriguez 2004] employs a linear model.

A final group of white-box methods use partial execution for performance

prediction. The argument for this approach is the intrinsic repetitiveness of parallel

applications, which means that after an initial startup period, the parallel application

goes through a loop and each of the iterations of the loop demonstrates similar

characteristic, including runtime, to others. This category of methods thus attempts to

extract, as the model of the target application, the set of operations which are done

repeatedly. This model can then be used to measure the performance on the target

platform, at a cost which can be orders of magnitude less than the cost of running the

target application itself.

[L.T.Yang 2005] argues that parallel applications are iterative after a startup

period, and thus partial execution can be used for performance prediction. The

31

performance of a parallel application on a target platform is predicted based on its

performance on a base platform, and the relative performance of the two platforms

obtained via partial execution. For the approach to work the introduced API needs to be

used by the source code, i.e. source code modifications are required. Either the number

of time steps or a full execution of application on base platform needs to be known.

Communication is ignored. The limitations of the model are specified as not addressing

different input parameters or different numbers of processors (i.e. no scalability

prediction). [J.Corbalan 2005] mentions a runtime library called SelfAnalyzer, which

measures speedup and predicts runtime of parallel applications. The tool depends on

internal structure of parallel applications, in particular the main loop. It runs several

iterations of the main loop on a small number of processors, called baseline, and from

then on runs the iterations of the main loop on the requested number of processors.

This runtime is used to calculate the speedup versus baseline. If the source code is not

available, instrumentation is used to inject SelfAnalyzer code into the target application.

The tool currently runs on OpenMP jobs which are malleable, and not MPI jobs. The

analyzer is mostly focused on speedup, not runtime prediction.

2.5. Gray-Box Methods

Gray-box methods are a more recent approach to performance prediction: the

term was introduced by [B.Barnes 2010], although older examples of the approach do

exist: [E.Ipek 2005], [B.Lafreniere 2005]. The general idea is to employ elements from

white-box methods thus approaching their accuracy, while minimizing such usage so as

to maintain a cost and applicability close to that of black-box methods. These methods

generally perform model fitting on the problem sizes as points in the input parameters’

space; thus, our analysis differentiates them based on the properties of the fitting.

32

In [B.Barnes 2010], Barnes et. al. propose a method that uses similarity in the

parameter space to predict parameter values that would result in time-constrained

scaling, i.e. increasing problem size to maintain constant performance on increasing

numbers of processors. Performance for a problem size is predicted using “focal

regions” of the parameter space, which represent smaller problem sizes but have similar

ratios of input parameters (e.g. for the problem size specified using the parameter

triplet (1,32,32), focal region includes (1, 16, 16), (1, 8, 8), but not (1, 8, 32) or (1,4,32)).

Fitting of a log-based model relates the execution time, and separately communication

time if it is significant, to computation time and number of processors. Training data is

the performance observations at different points in the parameters space, assuming

knowledge of time-step loop to minimize the cost of obtaining observations and using at

most half the target number of processors. [B.Barnes 2008] provides scalability

prediction for strong scaling, in which increasing number of processors reduces runtime

for a constant problem size, via extrapolation in the parameters space: points in the

parameter space with small numbers of processors are used to predict runtime on a

large number of processors. The method separately relates computation and

communication time, assumed as non-overlapping, to parameters and a function of the

number of processors through log-based regression. Communication time is measured

using PMPI profiling interface; one variation of the approach uses global critical path to

exclude blocking time.

In [B.C.Lee 2007], Lee et. al. propose performance prediction using parameter-

based models using either piecewise polynomial regression or neural networks. The

selection of predictors (characteristics of application or processor grid) to include in the

models is guided using statistical methods. Hierarchical clustering is used to classify

predictors into highly correlated groups, and the significance of predictors is quantified

using correlation analysis. Either uniform random or regional sampling, the latter based

on similarity to the query, is used compose the training set of data points in the

33

parameters space. In [E.Ipek 2005], Ipek et. al. train neural networks on the space of

input parameters and the resulting performance values. The parameter space is

sampled using regularly spread points (runtime for these points is actually measured). In

[B.Lafreniere 2005], Lafreniere et. al. propose a method that depends on user-specified

“rough” linear formula to relate performance to application’s characteristics and input

parameters. Model’s coefficients are determines using regression over a dataset of

performance versus independent variables. In [A.Matsunaga 2010], Matsunaga et. al.

construct a decision tree in the space of input parameters and platform characteristics,

e.g. CPU architecture and memory size and speed, to predict resource usage, runtime in

particular. At the leaf level, regression is used with finer granularity, i.e. the leaf

determines the performance range and the regression method makes a prediction

within this range. The idea is to select, from a pool of methods, the best regression

method for each set of data. The proposed method is evaluated on two bioinformatics

applications on different platforms, concluding that different machine learning

techniques may be appropriate at different situations, hence a need for adaptive

methods. In [Nirav 1999], authors relate the runtime to the input parameters using K

nearest neighbors, K nearest neighbors with weighted averaging (weights are the

reverse of distance of the neighbor from the target point), and locally weighted

polynomial regression. A knowledge base and caching of results are used to reduce the

overhead of the prediction scheme. [F.Nadeem 2006] introduces G-Prophet, a system

for cross-platform performance prediction, which employs linear regression and uses a

performance-translation mechanism to provide a larger training dataset at a lower cost.

The mechanism assumes that the performance ratio for a base problem size to that of

any other problem size is constant across all grid sites. Thus, results from running one

base problem size on selected grid sites are combined with those of running all problem

sizes on the fastest site to provide the training dataset. To further reduce training cost,

the method forms sets of similar grid sites, i.e. same number and architecture of

34

processors, memory size and characteristics, and OS, and uses one site from each set as

a representative.

2.6. Evaluation Methods and Applications of Performance Prediction

Comparing predicted and actual performance for one or more target

applications is the most typical method in evaluating a performance prediction method.

[A.Matsunaga 2010] experiments with Basic Local Alignment Search Tool (BLAST) and

Randomized Axelerated Maximum Likelihood (RAxML). [S.Sodhi, 2008] uses class B of

NAS benchmarks for the experiments. [S.Venkataramaiah 2003] also uses NAS

benchmarks. In [M.Casas 2008], NAS benchmarks BT, SP, and MG have been used for

the experiments, but the class of benchmarks is not specified. [G.Rodriguez 2004]

evaluates the proposed method on NAS BT, Sweep3D, RNAfold and POP [POP

Application] application. [M.Nakazawa 2005] uses CG NAS benchmark, Jacobi Iteration,

RNA pseudoknots [L.Cai 2003], and Lanzcos iterative method. In [M.Tikir 2009],

experiments are performed on three scientific applications, ranging from 0.5 to 2.5

hours in runtime. [L.Carrington 2005] uses 5 real-world HPC applications. [H.A.Sanjay,

2008] experiments on several parallel applications, e.g. ScaLAPACK eigen value solver

and integer sort (IS, but not part of NPB). [R.Duan 2009] uses execution traces of real

grid workflow applications. [S.Pllana 2005] experiments on a single program: LAPW0.

[H.Li 2005] uses logs of NIKHEF cluster as the testing dataset. [B.C.Lee 2007] targets 2

applications: SMG2000 and HPL [A.Petitet]. [E.Ipek 2005] uses SMG2000 code.

[S.Krishnaswamy 2004] uses the some data mining applications to evaluate the

performance of the proposed method. Although our list is not exhaustive, it

demonstrates the variety of target applications and a lack of a generally accepted set of

“representative” applications which has complicated the comparison of performance

prediction methods.

35

Another common approach for evaluating a performance prediction method is

to use the logs of jobs executed in a supercomputer center, or, similarly, evaluate the

changes in the performance of a scheduler that employs the proposed prediction

method over such logs. [W.Smith 2007] uses machine logs from two months as the

training dataset, and machine logs of a different month as the testing dataset, thus

ignoring potential locality in the logs. [S.Krishnaswamy 2004] additionally uses the San

Diego supercomputer center 1995 log [SDSC95] and the San Diego supercomputer

center 1996 log [SDSC96]. [F.Guim 2008] evaluates the benefits of runtime prediction

using simulation of the scheduler, but does not compare the effect of using other

prediction methods on the same metrics. [F.Guim 2007] presents experiments showing

the effect, on scheduler performance, of varying levels of errors in different categories

of jobs, for both quantitative and qualitative errors (e.g. predicting a long job as short,

etc.). Regarding the former, it is concluded that highly accurate prediction of runtime for

short jobs is crucial to performance of scheduler, whereas a higher prediction error is

acceptable for long jobs. As for qualitative errors, a high impact on scheduler

performance is reported (exponential tendency on the average bounded slowdown) if

qualitative errors are made by the predictor, particularly if it can happen in both

directions of predicting short jobs as long and vice a versa. It is thus advised that any

prediction method should attempt to avoid such errors, recommending the provision of

confidence intervals as a possible solution. However, the only methods that provide

confidence intervals are [W.Smith 1998], [W.Smith 2004], [W.Smith 2007].

[E.Shmueli 2009] specifies that dependence on a predetermined workload for

examining the performance of a scheduler is unrealistic. Instead, authors propose user

models to simulate the behavior of users in submitting jobs, taking into account that the

behavior of the user is influenced by the scheduler. More specifically, user actions can

be grouped into sessions, which are sets of job submissions separated by short “think

times”. Authors claim that a “better” scheduler is one that encourages users to

36

continuously submit more jobs, by addressing criticality of jobs from the users’

perspective and not arrival order alone. Also in [E.Shmueli 2006], authors propose a

detailed model of users’ behavior which is claimed to be more realistic due to

addressing the impact of scheduler’s decisions, and thus more suitable to evaluate

performance prediction methods. Through experiments, it is demonstrated that

evaluating the performance of one scheduler using trace data obtained as the response

of users to another scheduler can result in significant underestimation or

overestimation of performance metrics.

The existence of anomalies in the test set can significantly affect the judgment of

the effectiveness of a prediction method, particularly if the evaluation is done in the

context of a scheduler. [D.Tsafrir, 2006] proposes a method for detecting and

eliminating anomalies in the workloads, used later by [F.Guim 2008]. [D.G.Feitelson,

2008] also emphasizes the need to clean platform logs from abnormal activity: an

example is shown in which cleaning the abnormal activities of one user from a machine

log leads to significant change of the calculated correlation between runtimes and job

sizes. [C.Glasnerlow 2011] uses an outlier detection mechanism that considers the last

completed job an outlier if it does not conform to previous ones. [A.Deshmeh 2010], as

explained in black-box methods section, uses a fluctuation metric which is based on

expected scalability of the target application to identify both individual anomalies and

those that are part of a specific scalability pattern, e.g. an application that runs well only

on processor counts that are powers of two.

In addition to using a variety of target applications to evaluate performance

prediction methods, reporting of the achieved accuracies is also done in various

methods, further complicating the comparison of performance prediction methods. In

[W.Smith 1998], results are compared to other methods, showing smaller average mean

error for the proposed method, measured in minutes. The mean error, also measured as

the fraction of mean runtime, is reported to be between 42% and 70%. [W.Smith 1998]

37

and [W.Smith 2004] report mean prediction errors between 29 and 59 percent of mean

application run times. In [W.Smith 2007], runtime prediction errors are reported as 72%

of the mean execution time and compared to user runtime estimates errors of 246%.

The overhead of making predictions for a particular platform is also specified. In

[S.Krishnaswamy 2004], Krishnaswamy et. al. report mean errors as percentages of

mean runtime. A major part of the experiments are performed on the SDSC data, with

test cases obtained randomly from the log. In [F.Guim 2008], due to predictions being

ranges of runtime rather than point values, it is not easy to compare to other methods

as the mean error in terms of runtime is not specified (only 160% average error and -

1.7% median error are mentioned, but calculation base is missing, which is probably

categories of runtimes rather than actual runtimes). In [M.Tikir 2009], prediction of

communication time based on simulation is reported to have an error of around 14%.

Highly accurate predictions are also reported for runtime prediction using simulation,

with generally less than 20% errors.

2.7. Key Insights Provided by the Literature

Next we describe a set of insights, provided by the literature either in direct

association with performance prediction or otherwise, which we consider to have

significant implications for performance prediction.

2.7.1. Job’s Size, Runtime, and Potential Correlations

There have been studies attempting to establish relationships, e.g. correlations,

between job sizes and other job attributes, mainly runtimes, through examination of

logs from supercomputer centers. A key implication of a strong relationship, as noted by

[D.G.Feitelson, 2008], would be that scheduling decisions are implicitly based on

38

runtime, due to dependence on job sizes. [D.G.Feitelson, 2008] shows the different

percentages of the jobs with different sizes across several supercomputing centers,

demonstrating a strong preference for powers of two sizes. The experiments do not

show a strong or even uniform-across-all-logs correlation between job size and runtime,

although categorizing jobs into small and large categories showed a stronger but still

inconclusive, i.e. not uniform across logs, correlation. [E.Shmueli 2009] also performs a

similar study using the CDF of job runtimes and sizes, specifying the consideration of the

correlation between size and runtime as a means to gain further accuracy in simulating

user behavior. [U.Liblin 2003] models runtime and size as a combination using the

correlation between the two, reported as the observation of two gamma distributions

for the runtime of each of the 3 size-based categories of jobs. A hyper-gamma

distribution models the runtime per category, with a size-based parameter p specifying

the distribution to sample. The paper also reports a much higher correlation between

runtime and job size for batch jobs than for interactive jobs, and the peak of runtime

distribution of batch jobs being 5 times as much as the interactive jobs.

2.7.2. User Behavior: Sessions, Locality, Cycles, and Estimates

2.7.2.1. Sessions

The idea of sessions was proposed first by [Zilber 2005] which demonstrates that

CDF (cumulative distribution function) of think times, defined as the time between

completion of a job and submission of next by the same user, has a steep climb at 20

minutes, thus assuming the jobs with 20 minutes or less think time between them to be

in the same user session. In abstract terms, users tend to subsequently submit jobs in a

session. [M.F.Arlitt 2000] proposes a similar idea, but in the context of web server logs.

The idea is further pursued by [E.Shmueli, 2007] claiming that user behavior is more

39

influenced by the response time than by slowdown, the former being the time from

submission of job to its completion, and the latter being the response time divided by

actual execution time. Reported CDFs for think time on several different workloads

associate higher response times with lower percentages of jobs with a think time of 20

minutes or less, i.e. higher response time results in higher probability of user ending the

session. In [E.Shmueli 2009], Shmueli et. al. make a similar conclusion by demonstrating

a strong linear correlation between response time and think time. [D.G.Feitelson, 2008]

also studies the relationship between users’ think time and the response time,

concluding that response time is a better predictor of users’ reaction than slowdown.

2.7.2.2. Locality and Cycles of Activity

[D.G.Feitelson, 2008] demonstrates the locality of user behavior by presenting

the difference between CDF of runtimes when taken across the whole log vs. across

specific months or weeks, i.e. users tend to submit jobs with similar runtimes over

smaller time scales. [E.Shmueli 2009] also claims temporal locality in the workload, i.e.

users submit the same jobs over and over again, thus a similarity tendency by successive

jobs of each user. Similarly, [D.G.Feitelson 2007] specifies more repetitiveness and

regularity in the workload at smaller time slices, and references [R.Gibbons 1997],

[D.Ferrari 1984] to claim workload data as non-stationary and changing as users learn to

use a new system or as change the dominant application type, as opposed to the

assumption made by workload generation methods. Two additional locality-related

phenomena are specified as: 1) the humans daily cycle of work, and 2) autocorrelation

of jobs, i.e. a correlation between runtimes of the same job, reversely proportional to

the number of jobs separating the repetitions. A two-level workload generation method

is proposed, where the top level picks the locality area to focus on, and the bottom level

picks random jobs from that part of the distribution or population. [H.Li 2005] Argues

based on [D.G.Feitelson 2002] that “workload traces are distributed with heavy tails and

40

show a high level of self-similarity”, thus runtimes are not similar across different time

scales, probably leading to poor performance of global learning methods, e.g. neural

networks. Authors thus use an instance-based learner to predict job runtimes of a

month, trained on logs of the two preceding months.

In [E.Shmueli 2009], Shmueli et. al. simulate the behavior of users in submitting

jobs by integrating 3 models: 1) session dynamics model, 2) job submission model, and

3) cycles of activity model. The first model incorporates the concept of sessions in the

simulation of user behavior. The job submission model uses a two-level sampling

process, with the top level generating the attributes for the jobs, and the bottom level

repeating them to generate effects of locality. Repetition of job sizes, the base of the job

submission model, is claimed using the corresponding CDF; however, the majority of job

sizes are repeated only once: from 55% to 70% in all the traces. The last model divides

trace data into day/night and weekday/weekend and uses the current day/time in the

simulation to determine whether the model representing a user should be submitting

jobs. ADAPS, proposed by [C.Glasnerlow 2011], is a prediction system which adapts to

changes in the user behavior, via a) allowing or denying the use of sets of similar jobs

(called clusters) in the runtime prediction, and b) assigning weights to sets of similar

jobs and prediction methods when calculating the overall runtime prediction as a

weighted average of predictions made by all possible pairs of predictor/similar-jobs.

In [E.Shmueli 2006], authors specify that the workload observed by the

scheduler at any given time during the simulation is the combination of workload

generated by all active user sessions. Each user session is composed of two parts: 1) a

job submission behavior model, which specifies when the user submits more jobs and

when he waits for jobs to complete, and 2) a work pool model that specifies the

characteristics of the jobs. Authors claim that the users’ job submission behavior is

largely independent of the characteristics of the jobs that are submitted. Each session is

associated with its own job submission and work pool model. The work pool model is

41

composed of two distributions: the runtime model and the job size model. The work

pools are modeled using empirical data drawn from trace data. Both job sizes and job

runtimes are generated from the distributions of trace data. The distribution data on

repetitions of jobs are also used: generated jobs are repeated according to this

distribution.

2.7.2.3. Runtime Estimates by Users

Estimates of job runtimes provided by the users have been studied to uncover

potential benefits, and to make possible their simulation. In [A.W.Mu’alem 2001],

Mu’alem et. al. show that user runtime estimates are rather inaccurate. [Cirne 2001]

claims that in four different traces, 50 to 60% of jobs used less than 20% of their

requested runtime. Similar observations were made by [S.H.Chiang 2002]. [C.B.Lee

2004] specifies that users are quite confident of their estimations, and will likely not be

able to provide better estimates. [C.B. Lee, 2006] studies whether the users can improve

their estimate of runtime if there is reward for accuracy, and concludes that about half

of the users do improve their estimates under these conditions, but there is not much

improvement to the overall accuracy. The paper mentions the “padding hypothesis” as:

users know their jobs’ runtime, but pad their estimates to avoid the risk of jobs getting

killed if they pass the estimation. To evaluate this hypothesis, the study asks users of a

supercomputer center to provide non-kill estimates, with awards for accurate

predictions; with result that seem to be the negation of the hypothesis as users still tend

to overestimate. The study also conducted a survey to check whether users can provide

a more expressive function of the importance of their jobs, or the utility function (user’s

satisfaction), and concludes that users are able to better express themselves.

In [D.Tsafrir 2005], Tsafrir et. al. build a model of parallel jobs and their

associated user estimates through the study of several workload traces. The study

42

shows all accuracy levels to be almost equally probable for the estimates, through

demonstrating the flatness of histograms of the number of jobs vs. estimates’ accuracy

for successfully completed jobs across several workload traces (similar observations by

[D.Tsafrir 2007]). Comparison of CDFs of actual and user-estimated runtimes further

emphasizes this inaccuracy, which is only in the form of overestimation, as the job

would otherwise be killed by the scheduler upon surpassing its estimated runtime. The

study also reviews the existing models of user runtime estimates. The f-model

introduces a “badness” f factor and assumes the users’ runtime estimates fall between

the actual runtime R and (f+1)R. The major flaw of the f-model is identified as the

implicit provision of the relative order of jobs to the scheduler, i.e. short jobs are always

reported shorter than long jobs, potentially improving the performance of backfilling.

The φ-model, which generates estimates that result in histograms similar to those of

actual estimates, is criticized for ignoring the cap that most platforms put on the

runtime of a job, i.e. generating longer-than-cap estimates that never happen in

practice. Existing models are also found to ignore the repetitiveness observed in the

work of users of parallel machines, i.e. sessions, and the fact that user estimates

compose a highly modal distribution: about 90% of the jobs in the examined traces use

only 20 distinct values as user estimates. In a keynote speech [D.Tsafrir, 2010] Tsafrir

adds to the above the ignoring of the use of the maximum allowed runtime as a favorite

estimate. It can be concluded that not all existing models of user estimates can be used

as components of a performance prediction method, particularly for its evaluation.

2.8. Challenges and Open Problems

Depending on the need the performance prediction aims to satisfy and the

resulting situation, there are various challenges that need to be addressed. In this

43

section, we describe a list of these challenges, and the set of techniques and

approaches, if any, that are used to address them.

2.8.1. Cross-Platform Performance Prediction

A major challenge in performance prediction is the ability to make predictions

for various platforms. This includes platforms which are not even available yet. The main

motivation for cross-platform performance prediction is that it allows the scientists to

decide which of the many available platforms to choose for running their application. It

may also allow a cost-benefit analysis regarding the installation of a new platform or

upgrading an existing one. The problem also relates to grid computing, as [F.Guim 2008]

mentions that user estimates are only valid for homogeneous systems in a grid. Also,

[K.Kurowski 2005] specifies as a major challenge the heterogeneity of systems on a grid

and proposes modeling prediction errors to address these issues. The problems

proposed by cross-platform performance prediction are: a) there may be no

observations of the target application’s behavior on the target platform, b) the target

platform may be substantially different from the observed platforms, in terms of CPUs

(speed, or even worse, architecture), the interconnect (bandwidth, latency, or even

architecture), c) it may not be possible to obtain e.g. benchmark results or other

dynamic-nature information for the target platform, due to e.g. not having access to it

or it have not been built yet. This challenge can occur in many cases, examples are:

acquiring a new machine, deciding where to run a particular set of applications on a

grid, or making design decisions for an application or a platform. The methods proposed

by the literature so far for dealing with the cross-platform performance prediction are

described below. It should be noted that not all the methods listed here are designed to

deal with the challenge; some of the methods partially achieve this goal as a beneficial

side-effect of the innovative idea.

44

One category of approaches separately model the platform, rather than making

it an implicit component of the application model, and thus are able to provide varying

levels of accuracy and complexity in the platform model. However a mechanism needs

to be provided for combining the two models, i.e. application and platform, in order to

make performance predictions. Examples of the methods using this approach are

[V.Taylor 2001], [L.Carrington 2003], and [G.R.Nudd 2000].

Another set of methods define a performance ratio between a base platform

and the target platforms. The base machine is usually accessible easily, i.e. almost all

observations have been obtained from it. The target machines on the other hand, are

either not available at all, or are available for a limited set of observations, as in [J.Zhai

2010] which assumes the availability of one node of the not-yet-available new platform,

or [M.Casas 2008] in which simulators are used on event traces of parallel applications

obtained via instrumentation. These simulators are capable of simulating different

interconnects and their corresponding parameters like bandwidth and latency

[Dimemas 1997]. The performance, either actual or predicted, of the application on the

target machine is then related to the performance on the base machine. The

establishing of this relationship and the sophistication of the ratio itself varies greatly. In

[W.Pfeiffer 2008] the proposed model provides the possibility of cross-platform runtime

prediction (examined in the paper’s experiments) as it formulates the coefficients partly

on the basis of the ratio of the value of the predictor on a base and a target machine.

[F.Nadeem 2006] translates performance of the application across grid sites using the

assumption that the ratio of performance of the base problem size (the one executed

on all sites) to that of any other problem size is constant across all grid sites. The

performance translation is used for both creating a training dataset and for making

predictions for platforms on which a specific problem size has not been executed.

[J.Delgado 2010] Cross-platform prediction: specifies a “platform contribution” constant

to model the CPU, which is identified via benchmarking. The resulting term is used as

45

one of the factors that are multiplied to obtain the execution time. [M.Casas 2008]

assumes that the ratio of application’s average IPC (instructions per cycle) to the

vendor-declared peak IPC, is uniform across all platforms (results suggest that this is a

reasonable assumption if the two architectures are “close”).

A final category of methods separate (or at least try to separate) the

computation and communication of a target application, and model or simulate the

target platforms’ interconnects to obtain an estimation of the performance of the

application on those platforms. The computation part is usually assumed to scale

linearly depending on the base and target platforms. A major shortcoming of such

methods is the assumption of a lack of overlap between computation and

communication, which can have significant implications for the accuracy of predictions.

[H.A.Sanjay 2008] addresses cross-platform performance modeling via scaling

coefficients of different complexity functions which are components of the application

model and are obtained on a reference platform as appropriate for a target platform,

e.g. the computation complexity is scaled by a factor that is the ratio of applications

runtime, for a “moderate” problem size, on reference vs. target platform. [L.Carrington

2003] falls under this category too; note that it also falls under the category of methods

that separately model the application and the platform.

To summarize, although cross-platform performance prediction has been

addressed extensively in white-box methods, very few black-box and gray-box methods

have attempted this challenge, and none have actually addressed this challenge through

a robust mechanism.

46

2.8.2. Problem Sizes and Input Parameters

The utilization of the increasing processing capability, available through clusters

and grids, can be categorized into strong-scaling and weak-scaling. In strong scaling, the

additional processing power is utilized to solve a larger instance of the same problem. In

this category of usage, the total execution time of the application does not decrease

significantly and may even increase, but the benefit is the solution of the target problem

at a size which may not have been possible with fewer resources, e.g. due to insufficient

memory per processing node. Weak-scaling, on the other hand, uses the additional

processing power to solve the same problem size as with fewer resources, in a smaller

amount of time; this reduction in the amount of processing time is the main benefit.

Each of these categories of usage creates its own challenges for performance prediction.

With strong-scaling, the main challenge is the prediction of the application’s behavior,

under a new platform, i.e. cross-platform performance prediction, and under a new the

problem size. Weak-scaling faces the challenge of prediction under a different platform,

as well as predicting the target application’s scalability, since it may not be linear at all.

[D.J.Kerbyson 2005] uses expert knowledge of code and the problem it solves to

model a scientific application’s runtime as a function of different computation tasks

based on the input parameters (problem size). [V.Taylor 2002] assumes that the

different runs needed to generate all coupling values have the same input. The paper

also explores how the coupling values change with a) the problem size and b) the

number of processors. It is claimed that the changes with numbers of processors are

finite, and correspond to different levels of memory hierarchy. Only the results

corresponding to the length of kernel chains that produced the best predictions are

shown. The kernels are not used to generalize to problem sizes and/or number of

processors for which there are no data to calculate kernel coupling values, i.e. actual

predictions. [J.Schopf 1998] and [A.Matsunaga 2010] assume detailed knowledge of

applications’ input parameters, e.g. in terms of knowing which ones have the most

47

influence on the runtime. [X.Wu, 2004] examines the possibility of reusing kernel values,

which are basically the mutual impact of different kernels that make up a parallel

application, over different problem sizes and conclude that the kernel coupling values

obtained for some problem classes (sizes) can be reused for others; more specifically,

class B values can be used to predict performance for class A. This claim is made for the

NAS benchmark suite, and SP benchmark is shown as a representative of SP, BT, and LU.

However, this is a white-box method that assumes an understanding of the kernels of

which a parallel application is composed. The method is also not general, i.e. works only

when there is a limited set of problem sizes, not for various combinations of input

parameters.

To summarize, the issue of input parameters and the resulting problem size

seems to be requiring a lot further investigation, since the current literature does not

seem to have answered several key questions, and also considering its high applicability

to high-performance computing and grid computing.

2.9. Summary

In this chapter, we discussed performance prediction as a key research topic. We

presented a detailed list of the areas in which performance prediction can provide

important benefits. We provided a taxonomy of the state-of-the-art methods on

performance prediction, and described in detail each category of existing research work.

Next, we described a set of insights related to performance prediction, from both the

research work that proposes novel prediction methods and from the research work that

addresses an application area of performance prediction. Finally, we provided a list of

challenges proposed by the application of performance prediction in different areas and

under various constraints, and discussed the work done on each of these challenges and

derived a list of open problems.

48

As a result of the survey presented in this chapter, we identified several open

problems and gaps in the existing prediction methods. We next present these and

subsequently describe how our performance prediction method addresses several key

items of these challenges.

• Current methods are either expensive or not sufficiently accurate

• Current methods are not applicable in a production environment

• Many of the current methods depend on user/admin intervention

• Many of the current methods require too many input points

• Prediction across problem sizes is not addressed well by current methods

• Prediction across platforms is not addressed well by current methods

Based on the above survey, our understanding is that the following are the most

important aspects of a prediction tool, which are not collectively addressed by any

single prediction method: a) high prediction accuracy, b) requiring small number of

input points, c) applicability in a production environment, and d) predicting across

different problem sizes of a parallel application. Our Prediction tool, presented in the

next chapter, addresses all these 4 challenges by implementing a prediction method

that is: 1) highly accurate while requiring very few input points, 2) requires no user or

OS-level support and is computationally feasible to run in a real world scheduling

environment, and 3) is capable of predicting runtime and speedup for different problem

sizes of a parallel application.

49

CHAPTER 31

ADEPT Runtime and Speedup Prediction

3.1. ADEPT’s Goals

Adaptive CPU resource allocation is a widely researched topic in job and grid

scheduling with potential to improve response times significantly (up to 70%) by

reducing fragmentation and considering the current machine load [V.K.Naik

1997][W.Cirne 2003][A.C.Sodan 2006][L.Barsanti 2006]. Due to typical efficiency curves,

the latter contributes most to the benefits and means running applications with more

resources if the load is light and with less if the load is heavy [V.K.Naik 1997][A.C.Sodan

2009]. Adaptive resource allocation is a practically promising approach, considering that

a study found that 98% of the users said their applications could adjust to different

resource allocation at start-time [W.Cirne 2003]. Adaptive resource allocation depends

on efficiency curves per problem size (strong scaling) since efficiency-based allocation

was found superior to uninformed approaches like equal resource partitioning

[S.H.Chiang 1996]. However, efficiency/scalability curves are not generally available; this

is a major reason why adaptive resource allocation is not yet incorporated in practical

schedulers. Thus, providing scalability prediction in an easy-to-use manner would open

new possibilities for better practical scheduling. Users may also select job sizes

“tactically” under considerations of trading shorter waiting times for increased

runtimes. Scalability prediction is also relevant for determining the maximum

meaningful CPU resource allocation to a parallel job (and therefore an often-tackled

problem, e.g. [X.H.Sun 1999]) as feedback to users and system administrators. Though

so far mostly applied on clusters, with the emergence of parallel computing in every-day

1
 This chapter incorporates the outcome of a joint research undertaken in collaboration with Jacob Machina under the

supervision of Dr. Angela Sodan. See the declaration of co-authorship for details.

50

life on multi-core systems, adaptive schedulers will likely increase in practical relevance.

This is especially true if the resources allocated to a virtual-machine running parallel jobs

can vary [A.C.Sodan 2009]. Luckily, OpenMP applications on multi-core SMP servers

were found to exhibit similar shapes of speedup/runtime curves as MPI applications on

clusters [M.Curtis-Maury 2005]. This opens the possibility of applying the same

scalability prediction approach.

Accurate predictions can be obtained via either black-box or white-box

approaches. The latter are based on application-internal and machine information,

require code instrumentation, compiler/OS support, analysis of memory-access

behavior, simulation, etc. [L.Carrington 2003][B.Lafreniere 2005][G.Marin 2004]

[X.H.Sun 1999]. Thus, white-box approaches are complex and computationally

expensive, making them unsuitable for large-scale use in supercomputing centers

though indispensable for cross-site prediction or projection of performance on not yet

practically available platforms. Black-box approaches predict scalability (speedup and

runtime) using only runtime observations on different numbers of nodes, by assuming

conformity to a simple descriptive model which can be fitted to the observations to

derive a specific model instance. The required observations can easily be obtained from

data routinely collected in historical databases by supercomputer centers or from

explicit test series. This makes black-box approaches much easier and much cheaper to

apply, though, to be practical, the number of required observations needs to be small.

Currently existing black-box models suffer from applications potentially deviating

significantly from the models because of anomalies or because exhibiting specific

scalability patterns which cannot be directly explained by the model.

Our overall goal is scalability prediction (in the sense of strong scaling), on both

multi-core SMP servers and clusters, which is practically feasible for production

environments. To enable production use, we apply a black-box approach based on the

Downey model shown to capture simplified behavior of parallel applications very well

51

[A.Downey 1997 Model]. The Downey model has been around for a long time but has not

been widely used due to many real applications not fully conforming to the model, e.g.

by showing super linear speedups, and due to reliability of a specific prediction being

hard to judge.

As described in [A.Deshmeh 2010], with the development of ADEPT (Automatic

Downey-based Envelope-constrained Prediction Tool), we pursued the following

detailed goals:

• Achieve high prediction accuracy, while requiring only few observations (typically

3 to 4).

• Provide a computationally efficient approach for deriving the model instance.

• Identify cases where the application does not fully conform to the Downey model

as anomalies, with automatic correction and multi-phase modeling for individual

irregular points and typical patterns.

• Perform reliability judgment which recognizes unsuitable observation layout and

proposes placement ranges of additional observations.

To address these problems, ADEPT employs a special envelope-derivation

technique which constrains the search for the best-fitting model instance, a special

metric for detection of anomalies, and special pattern handling for cases like super-

linear speedup. Experiments with the NAS benchmarks [D.H.Bailey 1995] and seven real

applications show the efficiency and prediction quality of ADEPT in handling normal

cases and anomalies. We obtained generally above 80% prediction accuracy, even in

cases with anomalies and for predictions which extrapolate for more than twice the

number of nodes that were used in the closest observation. The experiments also

demonstrate the effectiveness of reliability judgment.

52

3.2. Related Work

We next provide a brief description of the literature most significantly related to

ADEPT. Black-box approaches attempt to provide accurate predictions with low

overhead by assuming conformity of parallel applications to an underlying model to

which available data is fit. The approach in [R.Gibbons 1997] uses historical information

of a parallel application, including number of nodes and user estimate, as input to a

weighted least squares method for obtaining a quadratic runtime formula, which can

then be used to make predictions. The method proposed in [W.Smith 2004] also

employs historical information, but obtains the predictions from a job’s corresponding

“group of similar jobs”, using linear regression, or in some cases averaging. Groups of

similar jobs are determined using greedy and genetic algorithm search. The technique

proposed in [B.Lafreniere 2005] applies multiple linear regressions to historical

information to extract the value of parameters of the rough, user-provided complexity

formula. This quantizes the rough formula, which can be used to make predictions.

Downey et al. propose a black-box model which uses only two parameters, called

average parallelism and variance of parallelism [A.Downey 1997 Model]. To validate the

proposed model, the NAS benchmark suite [D.H.Bailey 1995] was used to generate

runtime data for model fitting. However, all observations were used to train the model;

no predictions were made. Black-box approaches benefit from zero overhead for the

target application at runtime and no need to access the source or binaries, but are faced

with the challenge of determining the optimum model instance. An adaptive runtime

method for determining the maximum number of tasks meaningful for execution by

OpenMP [OpenMP 2008] threads is proposed in [A.Duran 2008]. The approach measures

work per task and overhead to decide whether tasks should be created at a certain

nesting level but does not provide any predictive model.

Most white-box methods adopt one of two approaches: perform independent

code and machine profiling then combine these to produce predictions, or use code-

53

instrumentation on a specific code-machine combination to construct a model of

application behavior. The approach proposed in [G.Marin 2004] extracts a target

application’s key performance characteristics from its binary. This approach constructs

models of memory access behavior and maps them on the target architecture to

provide runtime predictions. The approach proposed in [A.Snavely 2001] also employs

independent modeling of the application (memory access and communication behavior)

and the target architecture (capability to perform load and store operations), and maps

the former on the latter to provide predictions. Closely related is the technique

described in [L.Carrington 2003], which models both the application and the architecture

based on their “fundamental operations” capability. The SCALA system [X.H.Sun 1999]

uses the concept of scalability of code-machine combinations to make inter-platform

predictions, and reduces the time complexity of the modeling by determining key basic

blocks. Another approach is proposed in [B.Barnes 2008], which employs regression to

predict scalability. As indicated by [B.Barnes 2010], the capability to address different

problem sizes when predicting runtime and speedup of parallel applications is highly

beneficial to adaptive resource allocation, but is currently only addressed by white-box

tools and not feasible in production environments.

Gray-box methods aim for the best of both previous categories, i.e. high

accuracy of white-box and low overhead of black-box methods. The term was

introduced by [B.Barnes 2010], even though older examples of the approach can be

found in the literature: [E.Ipek 2005], [B.Lafreniere 2005]. In [B.Barnes 2010], Barnes et.

al. propose a method that uses similarity in the parameter space to predict parameter

values that would result in time-constrained scaling, i.e. increasing problem size to

maintain constant performance on increasing numbers of processors. In [B.Lafreniere

2005], Lafreniere et. al. propose a method that depends on user-specified “rough” linear

formula to relate performance to application’s characteristics and input parameters.

Model’s coefficients are determines using regression over a dataset of performance

54

versus independent variables. In [Nirav 1999], authors relate the runtime to the input

parameters using K nearest neighbors, K nearest neighbors with weighted averaging

(weights are the reverse of distance of the neighbor from the target point), and locally

weighted polynomial regression. To summarize, the existing work in this category is still

not applicable in a production environment due to its requirement of internal

knowledge on the target application and/or user intervention.

3.3. The Downey Model

3.3.1. Overview

Downey proposed a black-box model which describes an application via two

parameters: A as the average parallelism and σ which is the variance in parallelism, i.e.

describes the shape of the curve [A.Downey 1997 Model]. The model thus has a semantic

meaning related to typical application behavior. It provides piecewise functions for the

application’s speedup and runtime, specified separately for low variance and high

variance modes of the model. In Table 1, n represents the number of nodes, T(n) and

S(n) represent the runtime and speedup on n nodes. To conform to Downey model,

which states that T(∞)=1, we assume all runtime values are divided by this value. Figure

2(a) and (b) show a set of speedup curves constructed using the Downey model with

different A and σ values. A smaller σ means the parallel application reaches its

maximum speedup at a smaller number of nodes. σ=0 corresponds to linear speedup.

55

3.3.2. Strengths and Weaknesses

The Downey model benefits mainly from the fact that it uses only two

parameters (namely, A and σ). This makes the model easier to store and understand,

and reduces the number of observations necessary to learn the parameters for a

Figure 2. Downey model speedup curves

(top) Speedup curve: σ=2, varying A (1000, 300, 120, 50), (middle) Speedup curve: A=220, varying σ

(0, 0.5, 1, 1000), (bottom) Downey model’s lack of support for declining piece of the speedup curve.

Graphs show S over N.

Speedup Curves, A varies

0

50

100

150

200

250

300

350

0 100 200 300 400

Speedup Curves, σ varies

0

50

100

150

200

250

300

0 100 200 300 400

Speedup curves for Downey model and a

typical application

0

20

40

60

80

100

120

140

160

0 100 200 300 400

Typical application

Downey model

56

specific application, i.e. to construct an application’s corresponding Downey model

instance.

A typical speedup curve has 4 pieces: approximately linear, transitional, flat, and

declining. However, the Downey model does not include parallelism overheads such as

communication cost, and therefore does not capture the declining section, the main

drawback of the Downey model; see Figure 2(c). This is insignificant as the maximum

meaningful number of nodes can be obtained as for low variance mode and as

for high variance mode, i.e. there is no need to allocate more cores to an

application than these maximum values, and hence the behavior of the model beyond

these maximums can be disregarded without loss of generality. Also, the processor

working set—proposed as a metric to determine a balance between speedup and

resource consumption [D.Ghosal 1991]—could be calculated using the fitted model, by

finding the minimum n such that is maximal, with .

12A −

σσ -AA +

)(nη nnSn /)()(2=η

Table 1. S and T piecewise functions of Downey model.

Mode n range S(n) T(n)

Low Variance An ≤≤1

)1)(2/(−+ nA

An

σ

2/

2/
σ

σ
+

−

n

A

12 −≤≤ AnA

)2/1()2/1(σσ −+− nA

An

2/1

/)2/1(

σ

σ

−+

− nA

nA ≤−12 A 1

High Variance σσ −+≤≤ AAn1

AAn

nA

+−+

+

)1(

)1(

σ

σ

n

AA σσ
σ

−+
+

nAA ≤−+ σσ A 1+σ

57

3.4. The ADEPT Predictor

ADEPT uses an instance of Downey model to make its predictions. Therefore, to

obtain this instance, ADEPT needs to learn A and σ from a set of observations, each

being a specific number of nodes paired with its corresponding runtime. Note that the

serial runtime T(1) may not be available which makes predictions more difficult as the

actual speedup values cannot be determined. Moreover, real applications may

significantly deviate from the Downey model, either in terms of an individual anomalous

point or of a specific scalability pattern which the model does not natively incorporate.

Even for applications that closely conform to the model, input points may all be drawn

from the linear section of the scalability curve, or be placed such that vastly different

model instances still explain them. The latter happens when there exist several Downey

model instances that happen to fit the observations equally well, while having

substantially different values for the parameter A, due to the effects of the parameter σ.

The Section on reliability judgment provides the details on how this is detected and

Predictions

R1/S1

Reliability Warnings

W1

W2

R2/S2

Prediction

Targets

nt,1

nt,2

n1

n2

t1

t2
Anomaly Detection Envelope Derivation

Curve Fitting

Reliability Judgment

Observations

Figure 3. ADEPT components; Arrows show information flow

58

handled. To address these challenges and provide an efficient predictor which is

applicable in production environments, ADEPT is composed of four major components

(see Figure 3):

1. Anomaly detection, which identifies individual anomalous points and specific

scalability patterns typical in some HPC applications.

2. Envelope derivation, which significantly constrains the search space.

3. Curve fitting, which finds a model instance within the envelope for each

prediction target.

4. Reliability judgment, which performs post-processing to detect unreliable

predictions.

Envelope derivation and curve fitting constitute the core of the ADEPT tool and

derive the predictive model. Envelope derivation reduces the search space of model

instances to those which could explain observations, making fine-grained search

feasible. Anomaly detection and reliability judgment enhance ADEPT with features

necessary to handle real applications. The algorithm used by ADEPT is as follows. The

more detailed algorithm corresponding to each step is presented in the

corresponding section.

1. Obtain the envelope, E, from I, the set of observations:

E = EnvelopeDerivation(I)

2. Obtain the list of Adjusted Weights, W, from I:

W=AnomalyDetection(I)

3. Obtain the set of predictions, P, which is one prediction for each of the

targets in the set T:

P=CurveFitting(I, T, E, W)

59

4. Generate Reliability Warnings for the set of Predictions:

WR=ReliabilityWarning(I, T, P)

5. If more input is both required and available, add new input to the input set I,

and Go to Step 1.

First, we will discuss the core of the ADEPT predictor, and then show

experiments which demonstrate its effectiveness for normal cases. We will later present

ADEPT’s anomaly handling and reliability judgment and corresponding experiments.

3.5. Obtaining the Predictive Model with ADEPT

3.5.1. Envelope: Deriving Constraints from Observations

As mentioned before, the goal of the envelope derivation step is to make

exhaustive search feasible via reducing the search space. This goal is achieved by

establishing an envelope, which is a set of constraints on the parameters of the model.

The envelope is created using the following idea. For observations which

perfectly match a model instance, a closed-form solution could calculate exact

parameter values. For real applications which do not match perfectly, we assume each

input point deviates from the underlying model by at most δ up or down. Then

measured runtimes can be mapped into a range in which the runtime predicted by the

underlying model must fall. These ranges can be used for pair wise calculation of closed-

form solutions for the lower and upper constraints.

60

Figure 4. Forming the envelope

Range Pair 1 is redundant and discarded. Range Pairs 2 and 3 are combined to form the

envelope, with absolute bounds shown via heavier lines.

Forming the Envelope

0

50

100

150

200

250

300

0 100 200 300 400 N

S

Range Pair 1

Range Pair 2

Range Pair 3

Formally, we assume the existence of a model instance mi for a real application

appi, with a maximum deviation δ (a fraction) from mi at any observation point:

. Since mi is not known, δ must be

guessed. To test the validity of this guess, runtime values provided by any model

instance assumed as mi can be compared to actual observations as:

. If this test fails, our initial guess for δ was

incorrect, and δ can be incremented until it passes.

The envelope is defined as a set of range pairs whose first and second

components specify constraints on A and σ values, respectively:

.
 Each range pair thus represents a

lower-bound model instance: , and an upper-bound model instance:

 as constraints (see Figure 4). The envelope consists of all model

[])1(*)(),1(*)()(δδ +−∈ nTnTnT
iii appappm

()actualpredictedactual
nsobservatio

TTT −≥ maxδ

[] [](){ }KiAAcE iiiii ,...,1,,, max,min,max,min, === σσ

()max,min, , iiA σ

()min,max, , iiA σ

61

instances lying between the bounds. In the experiments, we only show lowest and

highest bounds of all pairs. The envelope is not to be confused with a confidence

interval; it only constrains the set of model instances.

We have derived formulas and their extensions using δ for all possible pieces of

the low and high variance modes of the Downey model. The complete set of ten

formulas and their derivation are described in [A.Deshmeh 2009] and in Appendix A. The

following equations give examples of closed-form formulas for the first piece of the low

variance mode of the Downey model, and the corresponding formulas with the δ

parameter included:

 (1)

 (2)

 (3)

� ∈ ������1 − � − !��� − 1�/2,			�����1 + � − !��� − 1�/2% (4)

These formulas assume that both observations lie in the same piece. For any

three observations, at least one pair satisfies this assumption and holds the final model

instance, while other range pairs merely increase the search space.

Therefore, the algorithm for the envelope derivation step uses the following

actions to establish the envelope:

()
ij

iijj

nn

tntn

−

−
=

2
σ

2

1−
−= i

ii

n
tnA σ

]1,1[
)(2

δδσ +−
−

−
∈

ij

iijj

nn

tntn

62

• Use the set of observations, , to form all pairs of

observations, & = '(���, ���,)�* , �*+, -∀/, 0 ∈ 11, … ,34, / < 06, where M is the

number of observations.

• For each observation pair p P, calculate all possible range pairs for the

parameters, , where kp is

the number of possible range pairs based on the pair of observation and the

number of formulas we have derived to calculate range pairs, as detailed by

Appendix A. For each observation pair p, a maximum of four range pairs are

possible, two for each of the low and high variance modes. This gives the set

.

• Discard redundant range pairs in . A range pair

 is redundant if there exists some

, such that the following conditions

hold: and .

In other words, all the model instances that fit into constraints of cl also fit into

constraints specified by cj but the reverse does not necessarily hold. This means

discarding cl while keeping cj would not modify the set of model instances that are

examined, as shown in Figure 4. The result of discarding those range pairs which

are redundant is the final set of range pairs .

(){ }MitnI ii ,...,1, ==

∈

[] [](){ }
piiiip kiAAC ,...,1,,, max,min,max,min, == σσ

U pCC =′

C′

[] []()max,min,max,min, ,,, lllll AAc σσ=

[] []()
max,min,max,min, ,,, jjjjj AAc σσ=

[] []
max,min,max,min, ,, jjll AAAA ⊆ [] []

max,min,max,min, ,, jjll σσσσ ⊆

{ }CkkicE i
′≤== ,,...,1

63

Table 2. Comparison of runtime of ADEPT with three curve fitting methods

Methods compared are exhaustive search, genetic algorithm, and Levenberg-Marquardt.

Comparison is made for two sets of curve fitting experiments, one shown in each row. Runtimes

shown in each row are averages over the experiments in that set.

Experiment Attributes Runtime (sec)

A range σ range Levenberg-Marquardt Exhaustive Search Genetic Algorithm ADEPT

400 to 1000 0.0 to 1.0 0.08 5 14 0.46

400 to 2000 1.1 to 12.0 0.07 5 14 0.48

3.5.2. Curve Fitting: The Search for an Optimal Model Instance

The curve fitting step finds an optimal Downey model instance for each

prediction target. Rather than generating a single model instance, we can find one

which is specifically biased towards a single prediction target. This is accomplished by

assigning weight according to the relevance. For extrapolative speedup prediction, the

closest observation typically best shows the trend.

The input to curve fitting are the observation points, ,

the envelope to which the search is limited, , and the number of

nodes on which a prediction is needed, . Multiple inputs per job size are handled by

dropping obvious outliers and otherwise averaging inputs to avoid an overly high weight

for the repeated job size. The output of curve fitting is the best fitting model instance

found:)�7�8�� , !7�8��+ = 9:;<�=/��/�>)?, �, �@�AB�@+.

Our optimality criterion for curve fitting is the Weighted Sum of Squared Relative

Errors (WSSRE). The weight of a point is calculated as:

(){ }MitnI ii ,...,1, ==

{ }kicE i ,...,1==

targetn

64

, where the factor q determines

how sensitive the weights will be to prediction distance, with smaller values being more

sensitive. The value of q can be selected by cross-validation, i.e. the value that results in

the highest prediction accuracies is selected. In our experiments over different

applications, we found that a value of 2 for this parameter resulted in the highest

prediction accuracies.

The exhaustive search is performed in two passes to further reduce the search

space. The first pass is a one-dimensional search, and the second pass is a local two-

dimensional search. The one-dimensional search constrains the search space to only

those model instances which pass directly through the input point closest to the

prediction target, which we call the fixed point. ”Fixing” this point, i.e. only considering

model instances that generate this point, allows us to calculate values for σ from any

value of A corresponding to the model instances that fit the fixed point. Please note that

we perform exhaustive search, and thus its first step, only on those values of A which

fall within the envelope. The one-dimensional search finds a model instance that fits the

observations well, in linear time. We then find the best fitting model instance

byperforming two-dimensional exhaustive search, varying the A and σ values, obtained

at the first pass, with fine-grain steps up to 15% within the envelope, to obtain the final

model instance.

3.6. Effectiveness of ADEPT’s Curve Fitting

We have conducted experiments to demonstrate the superiority of the

combination of curve fitting and envelope derivation components of ADEPT, over other

curve fitting. We compared ADEPT with three methods: exhaustive search, genetic

algorithms, and the Levenberg-Marquardt method [K.Levenberg 1944], a common

{ } itargetjtargeti nnMjnnqW −−=−= ,...,1max*

65

Figure 5. Speedup prediction of ADEPT, GA, exhaustive search, and Levenberg-Marquardt.

The first three made perfect predictions (higher trend line), while the fourth was inaccurate

(lower trend line).

Speedup Prediction Using 4 Methods

0

50

100

150

200

0 100 200 300 400 500 N

S

Levmar ADEPT / Exhaustive / Genetic

optimization approach. We used its implementation levmar [M.I.A.Lourakis 2005], with

default settings, and arbitrary initial guesses for the parameters. The genetic algorithm

implementation used is GALib [M.Wall 2009]. Boundaries within which to search were

set as A: 1 to 3,000, and σ: 0 to 3,000 for all three methods; 10 observations were

generated from the Downey model (perfect match is possible), 4 of which were

provided as input. Two sets of experiments were run to cover cases of low and high

variance, with each set covering four different experiments.

Figure 5 shows a representative prediction example (from the second set).

ADEPT, the genetic algorithm, and the exhaustive search all made perfect predictions

which hence overlap. The Levenberg-Marquardt method, however, made highly

inaccurate predictions. We found the method to be highly sensitive to the initial guesses

of A and σ for up to 2000 iterations.

To compare the cost of running each of the methods, average runtimes are

shown in Table 2. The Levenberg-Marquardt method and ADEPT were both very fast,

66

with less than 100 ms and less than 500 ms runtimes, respectively. Exhaustive search

and genetic algorithm had average runtimes of 5 sec and 14 sec, i.e. were 10 and 30

times slower than ADEPT.

The presented experiments demonstrate that ADEPT combines the high accuracy

of exhaustive search and genetic algorithms and the speed of the Levenberg-Marquardt

method.

3.7. Experimental Setup

To validate the power of ADEPT, we use two groups of applications. The first

group includes MPI and OpenMP implementations of BT, CG, FT, LU, and SP from the

NAS benchmark suite, Class B [D.H.Bailey 1995]. We ran these benchmarks on clusters of

SHARCNET [SHARCNET 2009], with three runs per benchmark and per number of nodes.

OpenMP benchmarks were run with four threads per CPU on a node with 8 quad-core

CPUs. NAS class B was used because we needed scalability curves with transitional

(nonlinear) phases and we had only up to 256 cluster nodes available.

The second group consists of seven real applications, which also were run in the

same environment. The data originates from scalability tests, performed by system

administrators to approve major resource requests by intensive users. The applications

themselves were, however, kept anonymous, and we therefore call them App_A to

App_G. However, it is known that users cover a broad range of domains such as physics,

chemistry, and economics.

As mentioned before, T(1) is key information which is not generally known for

real parallel applications. This is the case for four of the real test applications, and we

use estimated T(1) to draw speedup curves. When T(1) is available, we omit T(1) for

some tests.

67

The tests include predictions for both interpolation (targets falling between at

least two input observations) and extrapolation (targets not between any two input

observations). The evaluation criteria used throughout the experiments are relative

error percentage, E, and prediction accuracy percentage, PA, defined as

 and , respectively.

For the one-dimensional phase of the curve fitting step, increments for A were

determined by dividing the envelope into 5,000 evenly distributed values. For the two-

dimensional phase, A and σ assumed 500 evenly distributed values each, evaluating

250,000 instances of the model. More fine-grained search did not generally increase

prediction accuracies; the chosen search granularity was seen as a balance between

speed and accuracy. For most tests, q was set to 2. The value of this parameter was

selected using cross-validation, i.e. a value of 2 resulted in the highest prediction

accuracy in our experiments.

3.8. Experimental Results for Model Derivation

3.8.1. Speedup Prediction

We first demonstrate the performance of ADEPT in speedup prediction for

normal cases. The results are shown in Figure 6 and Figure 7. We show predictions,

measured values, and input points. The number of runtime measurements used as input

is either 3 or 4 for all the experiments. For some applications, two graphics are shown;

the first one does not include T(1) in the input, and the second does. T(1) is indeed

unavailable for App_B, App_D, App_E, and App_F.

() 100*/ actualactualpredictedE −= EPA −= 100

68

The results show generally very good accuracies, with the exception of 27% error

for CG at 2 nodes. Inclusion of T(1) as input did not result in significant improvement in

prediction accuracy. Since the applications App_C, NAS_CG, and NAS_LU do not include

T(1), the envelope (calculated on runtime) cannot show speedup properly. For NAS_FT,

two curves are shown, one with uniform weighting of points, and one using a q value of

1.01 which shows better extrapolative prediction, validating ADEPT’s biased curve-

fitting approach.

Comparing accuracies of interpolations vs. extrapolations, BT extrapolations (2%,

8%, 1%, 4% errors at 144, 169, 196, 225 nodes) were comparable to interpolations (5%,

1%, 0%, 3%, 1% at 36, 49, 64, 81, 100 nodes). ADEPT showed more accurate

interpolations (2% error at 8 nodes) than extrapolations (22% and 13% errors at 64 and

128 nodes) for CG without T(1). FT had a 23% error for extrapolation at 128 nodes, and

23% error for interpolation at 16 nodes, though its other interpolation errors were

below 9%. The experiments for speedup prediction thus do not conclude generally

higher accuracies for either interpolation or extrapolation.

Regarding the distance of extrapolation, i.e. how far ADEPT can predict, errors of

12% and 9% were measured at 196 and 225 nodes for BT, when a maximum of only 81

nodes were used as input. For CG, using a maximum of 32 nodes as input resulted in a

20% error at 128 nodes, while using a maximum of 64 nodes results in 9%, 11%, and

14% errors over three experiments. FT shows an error of 47% at 128 nodes when a

maximum of 32 nodes is used as input, and an error of 23% when using a maximum of

64 nodes as input. The speedup curve of FT shows that for a maximum of 32 nodes as

input, predicting the actual speedup value at 128 nodes is simply not possible using any

black-box method. Highly accurate extrapolations were observed on generally more

than twice the maximum number of nodes used as input.

69

Figure 6. Speedup prediction results for NAS benchmarks

Results are for MPI implementation of NAS BT, CG, FT, and LU, and the OMP implementation of NAS BT

and CG, both interpolation and extrapolation. Graphs show S over number of threads for OMP

benchmarks, S over N otherwise.

NAS_FT

0

10

20

30

40

50

60

0 50 100 150

Standard Biased Weighting Predictions

Uniform Weighting Predictions

NAS_BT

0

20

40

60

80

100

120

140

160

0 50 100 150 200 250 300

NAS_BT

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300

NAS_CG

0

20

40

60

80

100

120

140

0 50 100 150

NAS_LU

0

50

100

150

200

250

0 50 100 150 200 250 300

NAS_OMP_BT

0

1

2

3

4

5

6

0 10 20 30 40

NAS_OMP_CG

0

1

2

3

4

5

6

7

8

0 10 20 30 40

Additional experiments investigated placement and using more (up to 6)

70

Figure 7. Speedup prediction results for the anonymous real world applications

Both interpolation and extrapolation. Graphs show S over number of threads for OMP

benchmarks, S over N otherwise.

App_A

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25

App_A

0

2

4

6

8

10

12

0 5 10 15 20 25

App_B

0

100

200

300

400

500

600

700

0 500 1000 1500 2000

App_C

0

5

10

15

20

25

0 10 20 30 40

App_D

0

20

40

60

80

100

120

140

0 50 100 150 200 250 300

App_E

0

20

40

60

80

100

120

0 50 100 150 200 250 300

App_F

0

10

20

30

40

50

60

70

80

0 50 100 150

App_G

0

2

4

6

8

10

12

0 5 10 15 20

observations. Regardless of the layout of input points, generally very high prediction

accuracy was obtained as exemplified by NAS_BT with T(1). This holds as long as not all

71

the points are in the linear section of the speedup curve (detectable by reliability

judgment, discussed later in Section 3.10). More input points also did not generally

result in any accuracy improvement.

3.8.2. Runtime Prediction

Next, we demonstrate the performance of ADEPT at runtime prediction. Results

are shown in Figure 8. Results for App_A, App_C, and App_G are not shown. This is

because, the speedup prediction accuracies for these benchmarks were generally above

90%; the same applies to all runtime predictions for these applications, for both

interpolation and extrapolation. The runtime predictions for these three applications

are so accurate that measurements and predictions would overlap on the runtime

curve, and hence we omit them from result presentation. The number of runtime

measurements used as input was either three or four for all experiments. The runtime

axis has logarithmic scale to better separate the points. We show a single graphic per

application or benchmark, which corresponds to an experiment that does not use T(1)

as input, since the provision of T(1) as input does not result in any major improvement

in the runtime prediction accuracy. Accuracies obtained for runtime prediction,

excluding T(1), were generally above 80%, with the exception being CG with 36% error

at 2 nodes, FT with 36%, 34%, 45%, 28%, and 29% prediction errors at 2, 4, 8, 32, and

128 nodes.

Regarding the accuracies of interpolations vs. extrapolations, and influence of

extremity of extrapolation, the same trend applies to runtime prediction accuracies as

discussed for speedup predictions. We also performed tests to examine the effect of

increasing input size from three points to four points on accuracy of runtime prediction.

Results do not show any significant improvement in accuracy of predictions for any

benchmark or real application. The only trend proven, as a byproduct of these

72

Figure 8. Runtime prediction results for NAS benchmarks and anonymous real applications

Results are for both interpolation and extrapolation. Graphs show T over N.

NAS_BT

1

10

100

1000

0 50 100 150 200 250 300

NAS_CG

1

10

100

1000

0 50 100 150

NAS_FT

1

10

100

1000

0 50 100 150

App_B

1

10

100

1000

10000

0 500 1000 1500 2000

App_D

1

10

100

1000

10000

100000

0 50 100 150 200 250 300

App_E

1

10

100

1000

10000

100000

0 50 100 150 200 250 300

experiments, is that the closer the observations are to the prediction target, the higher

the accuracy. This, however, was our original assumption and the base for the curve

fitting done by ADEPT.

As a rough comparison to white-box approaches results in [A.Snavely 2001]

obtained with both application and machine modeling, show 97% and 81% accuracies

for the CG benchmark on 32 and 64 nodes. For the same benchmark and numbers of

nodes, our proposed method achieves more than 90%, and 82%. The accuracies for the

73

very complex white-box approach presented in [G.Marin 2004] were about 90% for SP,

about 90% for BT, and 80% to 90% for LU. For certain cases, the results show lower

accuracy (e.g. 75% for LU). Our proposed method achieves accuracies of above 90% for

SP, above 90% for BT, and above 80% for LU for the experiments shown (note that in

our approach distance from observations matters), with the few exceptions mentioned

above. Thus, our much cheaper and easier-to-apply approach provides almost the same

accuracy and in some cases even better accuracy as the above white-box approaches.

3.9. Anomaly Detection

3.9.1. General Approach for Detecting and Handling Anomalies

Though real applications deviate from the Downey model to at least some

extent, larger deviations are considered as “anomalous” behavior and must be detected

by ADEPT. ADEPT detects candidates of anomalous behavior with an approach

described below and then applies one of the two options for resolving them:

• Identification of anomalous individual points

• Recognition of typical patterns of irregular behavior

Anomaly candidate identification uses a fluctuation metric, defined as

 for observation points i and i+1,

which is applicable whether or not T(1) is provided. The expression

expresses the ratio of projected runtime, assuming ideal relative speedup, vs. the

measured runtime. This is how users may check scalability trends if T(1) is not available.

However, ratios may fluctuate even for normal speedup curves if the distance between

()() ()()1111 /1*//* ++++ −+= iiiiiiii nnntnntR

()()11 //* ++ iiii tnnt

74

node counts in the available measurements varies significantly. Adjusting the metric to

reflect relative distance between observations using removes such

fluctuations.

We introduce a sensitivity factor, ε, which specifies the percentage of increase in

R that will be ignored, considering that small fluctuations are normal. For any three

observation points i, i+1, and i+2, if C�D > �1 + F�C� , we flag Observations i+1 and

i+2 as anomaly candidates.

Should points from the declining phase of the application be among the input,

they can be detected unless being a single final point. The latter case cannot be handled

by any black-box approach, since the point may be a declining-phase point or an

anomaly and this uncertainty can be reported by ADEPT. In Figure 9 (bottom row, left)

the interpretation of a declining phase is chosen, and no predictions are made for this

point.

3.9.2. Individual Anomalous Points

After flagging the anomaly candidates, anomaly detection attempts to identify

individual anomalous points causing fluctuation in the R curve. The following actions are

taken:

• For each anomaly candidate, examine the overall R curve resulting from the

removal of that point. Removing anomalous observations greatly decreases the

fluctuation of the R curve, compared to removal of normal observations, thus

identifying anomalous points. See Figure 9 for an example of an anomaly at 64

nodes, the corresponding R curve, and the two R curves resulting from removing

each of the anomaly candidates. A minimum number of four input points is

required to attempt detection of individual anomalous points.

()()11 /1 ++ −+ iii nnn

75

• For anomalous point l, chosen from anomaly candidates i and i+1, calculate the

magnitude of the deviation as ()()ε/,10min 1 iil RRD −= + .

Individual anomalous points and their corresponding magnitude of deviation are

reported to the curve fitting component described in 3.4, which adjusts their weights as:

()()θθ /*,0max'

iii DWW −= to reduce the impact of the anomalous point on curve

fitting. The deviation tolerance threshold ϴ can be set to any value, where higher values

meaning less sensitivity. The values for the two parameters Fand G were set to 0.1 and

5, respectively, in our experiments. We found these values to be optimal in the

detection of anomalies and setting of weights for anomalous points, for our

experimental dataset. Based on the above description, the following is the algorithm

used by the anomaly detection component:

1. For each pair of consecutive observations, calculate the R metric. The set of R

metric values is called R.

2. Identify anomaly candidates: for each pair of consecutive values in R, mark

observations i and i+1, if C�D > �1 + F�C�.

3. Remove each anomaly candidate, and recalculate the R metric values. If there

are no more candidates, set weights according to above formula and stop.

4. If anomaly candidates still exist, apply one of the specific scalability patterns

(as detailed in the next subsection).

76

Figure 9. Detection and handling of individual anomalous points.

Top row shows a synthetic speedup curve with an anomalous point (boxed), and the associated R metric

curve. Middle row shows the R metric curves resulting from removal of anomaly candidates. Middle row

right and the bottom row show experiments integrating the anomaly detection step into ADEPT: Middle

row right shows the speedup curve predicted by reducing the weight of anomalous point at 49 nodes. The

bottom row shows the predicted speedup curve for NAS_OMP_SP by adjusting the weight of anomalous

point at 16 nodes (left); and speedup curve predicted in spite of the anomalous input point at 80 nodes

(right). Top row left, middle row right, and bottom row plot S over N, or S over number of threads for

OMP. Top row right plots R metric over N.

Speedup curve, with anomalous point

0

20

40

60

80

100

120

0 50 100 150 200 250

R Metric Curve

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

0 50 100 150 200

R Metric Curves

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

0 50 100 150 200

Anomaly, NAS_SP

0

20

40

60

80

100

120

140

0 50 100 150 200 250 300

Anomaly, NAS_OMP_SP

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40

Anomaly, Synthetic

0

20

40

60

80

100

120

140

160

0 50 100 150 200 250

During the testing of ADEPT for the NAS benchmarks, in several cases,

anomalous points were identified and given reduced weight. See Figure 9 for two of the

more easily distinguishable cases. For SP, the input point at 49 nodes was identified as

77

having too high speedup, resulting in a prediction 10% lower than the actual value, and

testing with a synthetic graph demonstrates identifying anomalous points without using

T(1), and how points which are too far off (measured speedup at 80 nodes being 20%

too high) can be dropped, permitting good fits for other points.

3.9.3. Specific Scalability Patterns

Specific scalability patterns are detectable by the R metric curve. Different

patterns can easily be defined. We currently detect and handle the following two

important patterns:

• Stepwise scalability: Smaller data partitions per node often lead to enhanced

performance if data fits into the next level of the memory hierarchy, potentially

producing super linear speedup. The resulting stepwise scalability can be

identified as a sharp spike in the R metric curve which is not improved with the

removal of anomaly candidates. See Figure 10 for an example. We address the

problem by multi-phase modeling, with one model instance per phase. For a

single prediction target, the curve fitting step sets weight to zero for points not

belonging to the same phase as the closest observation. A minimum of five input

points over two phases are required to capture this pattern; fewer input points

will not demonstrate such behavior.

• Specially optimized: Applications optimized, e.g. regarding communication, to run

efficiently on certain numbers of nodes are recognized by having anomalous

points with too high speedup at regular intervals. In this case, the regular

anomalous points are considered as the most valid input and have their D value

set back to zero, while all other points are discarded. Additionally, constraints are

reported in regards to which are the feasible numbers of nodes to run the

application on. Note that such application behavior is typically known by the user

and could be specified as suggested for some adaptive job schedulers [W.Cirne

78

2003]. ADEPT permits automatic detection of behavior and constraints. A

minimum number of nine input points is required for detection of this scalability

pattern.

To test ADEPT’s ability to handle specific scalability patterns, we constructed

examples with synthetic data for each of the patterns mentioned above, see Figure

10. For the first stepwise case (OMP_FT), ADEPT identifies the change of program

phase between 5 and 6 CPUs, and chooses the appropriate subsets of input points for

the targeted prediction, resulting in excellent prediction accuracy. Similarly, ADEPT is

capable of handling three-phase stepwise behavior. As shown in Figure 10 (Bottom

row left), the application changes phase at 81 nodes and once again at 196 nodes.

ADEPT identifies both phase changes and selects the correct subset of input points for

each prediction target, providing highly accurate predictions.

 The test case for specially optimized applications demonstrates that ADEPT fits

and predicts only for nodes which are powers of two. Extension to other typical node

allocations is straightforward.

3.10. Automated Reliability Judgment

Reliability judgment takes into account the placement of observation points, the

maximum fitting error, and the existence of significantly different model instances

which explain the input nearly equally well. The list of reliability problems, their

indicators, and corresponding actions are presented in Table 3.

79

Figure 10. Detection and handling of specific scalability patterns.

Top row: Speedup curve for runtimes used as input (left), with step identified by a square symbol. R

metric curve for all input points (right). Middle row: R metric curve with candidate points at 6 CPUs

removed (stars) and at 7 CPUs removed (circles), (left); Resulting prediction from example in top row

(right), Bottom row: additional example of stepwise speedup with three phases (left) and specially

optimized application (right). Top row left and middle row right show S over number of threads, top

row right and middle row left plot R over N, bottom row show S over N.

Stepwise NAS_OMP_FT

0

1

2

3

4

5

6

7

0 10 20 30 40

R Metric Curve

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0 2 4 6 8 10

R Metric Curves,

anomaly candidates removed

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0 2 4 6 8 10

Stepwise NAS_OMP_FT, Fitted

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40

Stepwise Synthetic, Fitted

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350

Specially Optimized for 2^n Nodes, Fitted

0

10

20

30

40

50

60

0 50 100 150 200

High fitting error is the simplest case. Input points are not identified as

anomalous but experience large fitting errors (>10%). See LU in Figure 11 (top row left);

the point at 32 nodes experiences 16% error in speedup (18% error in runtime). ADEPT

80

also detects if the model instances generated to perform prediction are of the low-

variance class, and checks that at least one input point lies on the nonlinear section of

the model. See App_C in Figure 11 (top row right) for an example where the input points

all lie in the linear section. In this case, ADEPT suggests running on 105 nodes to collect

further meaningful data.

The runner-up problem occurs when the data provided as input can be explained

by at least two model instances with greatly different A. An example is shown in Figure

11 (bottom row), where the fitted model instance for prediction target at 49 nodes has

a value of 700 for A parameter, and there is a runner-up instance with a value of 320 for

A. This occurs because, as shown in the graph, the runtime values for the two model

instances converge near the input points. The difference between runtime values of the

two instances is less than 5% at input points of 16, 25, 36, and 81 nodes. Providing an

additional input point at 225 nodes, where the two instances suggest runtime values

Figure 11. Reliability judgment

Results show high fitting error, all linear inputs, and runner up instances. Top graphs show S over N.

Bottom graph shows T over N in log scale.

High Fitting Error, NAS_LU

0

50

100

150

200

250

0 50 100 150 200 250 300

All Linear Speedup, App_C

0

5

10

15

20

25

30

35

0 10 20 30 40

Runner-Up Model Instances, NAS_SP

1

10

100

1000

0 50 100 150 200 250

81

that differ by 20%, resolves the problem by identifying the runner-up instance as the

best fit.

3.11. Performance Prediction: the Hypothesis

We have presented a black-box approach for predicting speedup and runtime of

parallel applications. Our ADEPT predictor is both accurate and efficient by introducing

an envelope derivation technique which constrains the search during model fitting and

outperforms other model-fitting approaches. In our experiments with data from

selected MPI and OpenMP NAS benchmarks and seven real applications, ADEPT showed

high accuracy for both interpolative and extrapolative speedup/runtime prediction,

even if not knowing the serial runtime. ADEPT delivers similar performance to that

reported in the literature for white-box models if predicting for the same machine (see

Section 3.8.1 for details of the comparisons) and is cheaper and suitable for large-scale

use. ADEPT only requires a few observations and addresses practical problems of real

applications. These are effectively handled by ADEPT via anomaly detection, using a

Table 3. The list of reliability problems, their indicators, and corresponding actions

Problem Description Indicator Action

Observation points all in linear

section

Low variance model:

AnItn iii <∈∀ :),(

High variance model has no linear section

Request additional observation

on ≥A nodes

High fitting error: application

deviates greatly from Downey

model

δ>

 −

actual

predictedactual
max

 Report problem

Multiple model instances with

significantly different A values

fit well (runner-up problem)

For model instances i and j: WSSREi<WSSREj*1.1

where Ai < Aj / 1.5 or Ai > Aj * 1.5

Request additional observation

(outside current range)

82

fluctuation metric and automatic correction. Additionally, reliability judgment issues

warnings if the prediction is uncertain and makes suggestions for further observations.

As outlined in the related works section, a key problem in the HPC area is the

prediction of the relation between problem sizes and runtime/speedup of parallel

applications. Solving this problem would allow more accurate resource allocation

requests (by parallel applications) and decisions (by schedulers), which will contribute to

obtaining the significant benefits of adaptive resource allocation. However, to the best

of our knowledge, none of the black-box or gray-box prediction tools have the capability

to predict runtime/speedup for both single problem size and across different problem

sizes. ADEPT provides the foundation for addressing this more challenging problem in

HPC, and we will next outline our proposed plan for the extension of ADEPT in this

direction as it is in high demand and importance in both the literature and production

environments, thus making ADEPT a more applicable tool. We form the working

hypothesis for addressing the above challenge as follows: it is possible to construct a

gray-box runtime/speedup predictor with the following requirements:

3.11.1. Accuracy

The predictor’s accuracy is comparable to that of white-box methods, whenever

such comparison is possible. The accuracy requirement applies to both cases of same

problem size and different problem sizes. If using ADEPT as the foundation for the new

predictor, the current capability in achieving white-box accuracy for the same problem

size should not be negatively affected by the extension.

3.11.2. Efficiency

The predictor is applicable in a production environment, in the sense that 1) the

requirements for using the predictor are close enough to black-box methods that the

83

applicability is the same, and 2) user oradministrator intervention is not required except

for providing data that can be reasonably expected to be already known to them.

3.11.3. Robustness

As with any production environment, there are always applications with

anomalous behavior. The predictor needs to detect, and correct when possible, such

anomalies, whether they are single points or form a special pattern of behavior in terms

of runtime/speedup. In addition, the predictor needs to identify situations where

obtained predictions are unreliable, and provide mechanisms for resolving such cases.

3.12. ADEPT Cross Problem Size Runtime and Speedup Prediction

We next outline the details regarding the extension of ADEPT to handle different

problem sizes according to the requirements set forth by the hypothesis. Problem size is

a domain-specific combination of input values and data structures passed to the parallel

application, e.g. nodes of a graph, through any means, at compile time, runtime, or a

combination of both. Our proposed extension to ADEPT treats all these details as a

black-box method, i.e. does not require any information on them. The only additional

required input is the association of a problem size identifier with each observation of

runtime over a specific number of cores. Without loss of generality, we assume the

following regarding prediction across problem sizes:

• Prediction is from a smaller to a larger problem size; this matches the typical use

case, i.e. moving on to a larger instance of a problem once the smaller instance

has been solved. We call the smaller problem size the base problem size, and the

larger problem size the target problem size.

84

• A minimum of 4 or more observation points exist on the base problem size. This is

a valid assumption and does not affect the applicability of ADEPT, as the move to

the target problem size is expected only after having a reasonable number of

observations on the base problem size.

• A minimum of 2 observation point exists on the target problem size.

Based on the above assumptions, we first describe the general case, i.e. no

anomaly in the data. Details regarding anomaly detection and reliability judgment are

specified in the following subsections. The key idea in translating behavior across

problem sizes, thus making prediction across problem sizes possible is assuming

similarity in behavior regardless of the problem size. The main shortcoming of such

an assumption is ignoring the flat section of the scalability curve, but as described

previously, this is an inherent limitation of the Downey model, and we address it

through anomaly detection and reliability judgment. We consider similarity in

behavior to demonstrate itself as relatively constant ratios among runtime values of

two problem sizes across different numbers of nodes/cores, i.e. over different

numbers of cores there is little fluctuation in the ratio of the runtimes of the two

problem sizes. Although such notion of similarity exists in the literature [F.Nadeem

2006], ADEPT differentiates itself by going beyond simply taking such estimations as

the actual runtime predictions. ADEPT uses these estimations as guiding points which

are combined with actual observations of the target problem size runtime to provide

both runtime and speedup predictions. It is important to note that existing work lack

the latter capability, i.e. speedup prediction. More specifically, ADEPT uses the

following algorithm in order to predict runtime and speedup across problem sizes:

1. Find the smallest number of nodes for which observations of runtime exist for

both base and target problem sizes. Calculate the ratio of runtimes as follows:

85

0,0,argarg, / nbasenettettbase TTR =

Where n0 is the smallest number of nodes/cores for which runtime

observations exist for both base and target problem sizes, Ttarget,n0 is the

runtime of the target problem size at n0, and Tbase,n0 is the runtime of the base

problem size at n0 nodes/cores.

2. Add estimated runtime values as guiding points to the target problem size

a. Form the set of number of nodes/cores for which there are observations

on the base problem size but not the target problem size:

}|{ argettibaseiiest TnTnnN ∉∧∈=

b. Form the set of estimated runtimes for the target problem size, where

�H�I�,�is the runtime of the base problem size at i cores.

}*|),{(arg,, ettbaseibaseiestiiest RttNntinR =∧∈=

3. Use the following set as input to the predictor component:

estettett RTT ∪=′
argarg

4. Perform model fitting on the the �@�AB�@J 	set of nodes and runtime values, as

described in details in Section 3.5.

We next provide experimental results using the proposed extension method.

86

Figure 12. Speedup prediction results across problem sizes, MPI implementations of NAS BT, FT, and SP.

Results are for both interpolation and extrapolation. Graphs show S over N.

0

20

40

60

80

100

120

140

0 50 100 150 200 250

NAS_BT_A_B

0

20

40

60

80

100

120

140

160

0 50 100 150 200 250

NAS_BT_B_C

0

20

40

60

80

100

120

140

160

0 50 100 150 200 250

NAS_SP_A_B

0

20

40

60

80

100

120

140

160

0 50 100 150 200 250

NAS_SP_B_C

0

20

40

60

80

100

120

140

0 50 100 150 200 250 300

NAS_FT_A_B

0

50

100

150

200

250

300

0 50 100 150 200 250 300

NAS_FT_B_C

3.13. Experimental Results: Performance Prediction across Problem Sizes

3.13.1. Speedup Prediction across Problem Sizes

This section details the experimental results for the proposed extension method.

NAS benchmarks BT, CG, FT, LU, and SP have been used for the experiments. We have

run classes A, B, and C of each benchmark. As in previous experiments, we use the

following accuracy metric:

87

Figure 13. Speedup prediction results across problem sizes for NAS CG and LU.

Results are for the MPI implementation of NAS CG, and LU, both interpolation and extrapolation.

Graphs show S over N.

0

20

40

60

80

100

120

140

0 50 100 150 200 250 300

NAS_LU_A_B

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300

NAS_LU_B_C

0

20

40

60

80

100

120

140

0 50 100 150 200 250 300

NAS_CG_A_B

���:;	�K = 100 −	�100 ∗	 |���:	N − &;�O/���O|/���:	N�

Figure 12 and Figure 13 show the experimental results for speedup prediction.

Accuracy of the predictions is generally above 70%, with many predictions having 90%

or more accuracy. These results are achieved using only the 2 smallest numbers of

nodes on the target problem size as input, and 4 or 5 input points on the base problem

size of the target benchmark. There are certain benchmarks, in particular CG, which

show several points with inaccuracies. We will provide details in the following sections

on how ADEPT handles such cases through anomaly detection and reliability judgment.

To demonstrate the envelopes derived by ADEPT for each benchmark, we combine all

the envelopes into one using the method described in Section 3. The drawn envelope is

based on the predicted T(1), as ADEPT does not require T(1) to be available for a target

application.

88

In summary, prediction accuracies are generally above 70% using the proposed

method. There are a few exceptions; LU class C at 8 cores has low (~ 50%) prediction

accuracy which we attribute to LU class B having several anomalous points at 4, 8, and

16 cores, thus not providing useful input data to ADEPT for this prediction target. LU

class B, when used as the prediction target, also shows approximately the same low

prediction accuracy for 8 cores, which we attribute to both anomalous and dissimilar

behavior at 4, 8, and 16 nodes for both classes A and B of LU. Benchmark CG shows

approximately 52% prediction accuracy at 32 cores with classes B and C as base and

target problem sizes, respectively, due to the anomaly at 32 nodes in class C.

3.13.2. Experimental Results: Runtime Prediction across Problem Sizes

Next, we demonstrate the performance of ADEPT at runtime prediction. Results

are shown in Figure 14 and Figure 15. It should be noted that the runtime predictions

for several of the benchmarks are so accurate that measurements and predictions

overlap on the runtime curve. The number of runtime measurements used as input was

either four or five on the base problem size and exactly two for the target problem size

for all experiments. Since the runtimes span a long range of values, the runtime axis has

logarithmic scale to better separate predictions and the observation points. We show a

single graph per benchmark, which corresponds to an experiment that did not use T(1)

as input, since the provision of T(1) as input did not result in any major improvement in

the runtime prediction accuracy. Accuracies obtained for runtime prediction, excluding

T(1), were generally above 70%, with the major exceptions being FT at 256 cores on

both classes B and C, SP class C at 36 cores, SP class B at 225 cores, and LU class C at 128

cores. Regarding the accuracies of interpolations vs. extrapolations, considering the only

actual observations for the target problem size are the two smallest numbers of cores

available, all predictions can be considered extrapolation for cross problem size

89

Figure 14. Runtime prediction across problem sizes, NAS BT, SP, and FT.

Results are shown for both interpolation and extrapolation. Graphs show T over N. The title of each

graph speicifes in order the benchmark, the base problem size, and the target problem size.

1

10

100

1000

0 50 100 150 200 250

NAS_BT_A_B

1

10

100

1000

10000

0 50 100 150 200 250

NAS_BT_B_C

1

10

100

1000

0 50 100 150 200 250

NAS_SP_A_B

1

10

100

1000

10000

0 50 100 150 200 250

NAS_SP_B_C

1

10

100

1000

0 50 100 150 200 250 300

NAS_FT_A_B

1

10

100

1000

0 50 100 150 200 250 300

NAS_FT_B_C

predictions. Using the base problem size observation points to distinguish between

interpolative and extrapolative predictions shows no significant difference between

accuracies.

90

Figure 15. Runtime prediction results across problem sizes, NAS CG and LU

Results are shown for both interpolation and extrapolation. Graphs show T over N. The title of each

graph speicifes in order the benchmark, the base problem size, and the target problem size.

1

10

100

1000

0 50 100 150 200 250 300

NAS_LU_A_B

1

10

100

1000

10000

0 50 100 150 200 250 300

NAS_LU_B_C

1

10

100

0 50 100 150 200 250 300

NAS_CG_A_B

3.14. General Approach for Detecting and Handling Anomalies over Different

Problem Sizes

As described earlier, ADEPT handles anomalies in target applications’ behavior,

and corrects predictions accordingly when it is possible to do so considering the

available information.

Prediction across problem sizes introduces a new challenge for anomaly

detection: there are not enough observations on the target problem size. Therefore,

there are 2 possible directions ADEPT can take to handle anomalies: 1) assume

anomalies at the same numbers of cores for the base and target problem sizes, and 2)

assume individual anomalous points to be specific to a problem size. With the former

assumption, ADEPT needs to assign a higher weight to points estimated based on the

individual anomalous point of the base problem size, when making predictions for the

same number of nodes in the target problem size. It will also mean a lower weight

should be assigned to such estimated points when predicting for all other points of the

91

target problem size. The latter assumption would require ADEPT to reduce the effect of

individual anomalous points of the base problem size on every prediction point of the

target problem size. ADEPT corrects this assumption if new observations on the target

problem size indicate it to be false, i.e. if a new observation for the target problem size

shows an individual anomaly at the same number of nodes as the base problem size.

Figure 16 (left) shows an example in which both problem sizes have anomalous points at

the same number of nodes. For the second assumption, Figure 16 (right) shows problem

sizes with anomalous points at different numbers of nodes.

As with prediction for a single problem size, large deviations from the Downey

model are considered as “anomalous” behavior and need to be detected by ADEPT.

ADEPT detects candidates of anomalous behavior across problem sizes using the R

metric described previously and then applies one of the two options for resolving them:

• Identification of anomalous individual points

• Recognition of typical patterns of irregular behavior

We describe the former option next. Handling of typical patterns of irregular behavior is

the same for single problem size and cross problem size predictions.

3.14.1. Individual Anomalous Points

ADEPT first performs anomaly detection on the observation points of the base

problem size. It then attempts to identify individual anomalous points causing

fluctuation in the R curve. The following actions are taken:

• As with the case of a single problem size, ADEPT examines the overall R curve

resulting from the removal of each anomaly candidate observation. Removing

92

Figure 16. Detection and handling of individual anomalous points across problem sizes.

Shows experiments integrating the cross problem size anomaly detection step into ADEPT:

speedup curve predicted by reducing the weight of anomalous point at 25 nodes of BT class A on

prediction for BT class B(left); predicted speedup curve for NAS CG benchmark class C by adjusting the

weight of anomalous point at 32 nodes of CG class B (right). Charts plot S over N.

0

20

40

60

80

100

120

140

0 50 100 150 200 250

NAS_BT_A_B

0

20

40

60

80

100

120

140

0 50 100 150 200 250 300

NAS_CG_B_C

anomalous observations greatly decreases the fluctuation of the R curve,

compared to removal of normal observations, thus identifying anomalous points.

• For each anomalous point l, chosen from anomaly candidates i and i+1 from the

set of observation points of the base problem size, calculate the magnitude of the

deviation as () ε/1 jjl RRD −= + .

Individual anomalous points and their corresponding magnitude of deviation are

reported to the cross problem size prediction module. ADEPT then determines whether

to use each of the estimated observation point based on the magnitude of deviation of

the corresponding base problem size observation. There are two cases:

• The anomalous point in the base problem size does not correspond to the current

prediction target. ADEPT will use the estimated observation based on this point

only if the magnitude of deviation is below a certain threshold called γ .

• The anomalous point corresponds to the current prediction target. ADEPT will use

the estimated observation based on this point as input for the current prediction

target.

93

During the testing of ADEPT for predicting cross problem sizes for the NAS

benchmarks, in several cases, anomalous points were identified and handled using the

above method. In the experiments, we set γ to 5. We found this value to be optimal in

detection of anomalies. See Figure 16 for two of the more easily distinguishable cases.

For CG class C when the base problem size is CG class B, the input point at 32 nodes was

identified as having too low a speedup, i.e. runtime was too high. Cross problem size

anomaly detection and handling removes the estimated observation that is based on

this point from the set of input points for class C, resulting in prediction accuracies of

73% and higher for CG class C. When predicting for BT B using BT A as the base class,

observations at 25 and 49 nodes are marked as having too low speedups, i.e. too high

runtime. ADEPT handles these anomalous observation points by removing the

corresponding estimated observation points, achieving generally above 70% prediction

accuracy for BT class B when using A as the base class.

3.15. Reliability Judgment across Problem Sizes

Reliability judgment across problem sizes addresses all the 3 cases of unreliable

predictions handled for a single problem, i.e. high fitting errors, existence of runner-up,

and all linear-section observations. In addition, cross problem size reliability judgment

detects and handles a scenario which is only applicable to multiple problem sizes: two

problem sizes differing significantly enough in behavior to be considered 2 different

applications.

3.16. Summary

In this chapter we described in detail our proposed performance prediction tool,

ADEPT. We used ADEPT to prove our hypothesis that a gray-box tool can provide

accurate performance predictions for both a single problem size and across multiple

94

problem sizes of a parallel application, while staying applicable, robust, and efficient.

Our overall goal was scalability prediction (in the sense of strong scaling), on both multi-

core SMP servers and clusters, which is practically feasible for production environments.

The gray-box nature of ADEPT, which uses only a single string input as indication of

problem size in addition to the black-box observation of the target application, enables

production use. ADEPT is based on the Downey model, shown to capture simplified

behavior of parallel applications very well. ADEPT introduced the use of Downey model

as a predictive model by addressing challenges set by real parallel applications, i.e. not

fully conforming to the model and/or reliability of the predictions. With the

development of ADEPT prediction tool, we pursued the following detailed goals:

• Achieve high prediction accuracy, while requiring only few observations (typically

3 to 4).

• Achieve accurate predictions for a) single problem size and b) multiple problem

sizes of the target parallel application

• Provide a computationally efficient approach for deriving the model instance.

• Identify cases where the application does not fully conform to the Downey model

as anomalies, with automatic correction and multi-phase modeling for individual

irregular points and typical patterns.

• Perform reliability judgment which recognizes unsuitable observation layout and

proposes placement ranges of additional observations.

Experiments with the NAS benchmarks and seven real applications

demonstrated the efficiency and prediction quality of ADEPT in handling normal cases

and anomalies. We obtained generally above 80% prediction accuracy for a single

problem size and above 70% accuracy for cross problem size predictions using only the

two smallest numbers of cores available on the target problem size, even in cases with

95

anomalies and for predictions which extrapolate for more than twice the number of

nodes that were used in the closest observation. The experiments also demonstrate the

effectiveness of reliability judgment.

96

CHAPTER 4

Conclusion and Future Work

4.1. Conclusions

Performance prediction is the task of providing an estimation of the

performance of an instance of an application. Having accurate predictions regarding the

scalability and runtime of applications can potentially improve the performance of job

schedulers significantly. However, such predictors have not become practical yet for a

wide variety of reasons, among which are the requirements of existing tools including

the need for user and/or administrator intervention and OS-level support.

In this dissertation, we presented an inexpensive, highly applicable performance

prediction tool called ADEPT (acronym for Automatic Downey-based Envelope-

constrained Prediction Tool). We set the following goals for ADEPT:

• Achieve high prediction accuracy, while requiring only few observations (typically

3 to 4).

• Provide a computationally efficient approach for making predictions.

• Identify cases where the application does not fully conform to the Downey model

as anomalies, with automatic correction and multi-phase modeling for individual

irregular points and typical patterns.

• Perform reliability judgment which recognizes unsuitable observation layout and

proposes placement ranges of additional observations.

• Handle performance prediction across different problem sizes of an application

97

To address these challenges, ADEPT employs a novel approach that combines:

envelope-derivation technique which constrains the search for the best-fitting model

instance; a special metric for detection of anomalies; and special pattern handling for

cases like super-linear speedup.

Having completed the requirements regarding prediction accuracy, anomaly

detection and correction, and handling of issues regarding reliability of predictions, we

next hypothesized that ADEPT can be extended to address the last challenge from the

above list, i.e. prediction across problem sizes. We extended ADEPT to perform highly

accurate predictions for different problem sizes of the same application. In this

extension, ADEPT maintained its applicability, i.e. we did not introduce requirements

with a different nature but only expected a few observations on the previous problem

sizes of the application, as we expect a user to move to larger problem sizes once the

behavior of the application on a smaller problem size is available.

Experiments using ADEPT on observations from both single problem size and

multiple problem sizes of the NAS benchmarks and several practical applications used

on SHARCNET clusters demonstrated highly accurate predictions made by ADEPT.

Predictions for a single problem size, when compared to several complex and expensive

white-box methods, are either higher or comparable in terms of accuracy. The following

is the summary of the experiments:

• For single problem size, prediction accuracies were generally above 70% using

the proposed method, with a few exceptions which are specified in Sections

3.8.1 and 3.8.2.

• For prediction across problem sizes, accuracies were generally above 70% and

many predictions having accuracies above 90%, and only a few exceptions which

are specified in Sections 3.13.1 and 3.13.2.

98

• Cross-validation experiments done for both single problem size and across

problem size predictions did not indicate high sensitivity to any single normal or

anomalous observation in general.

• ADEPT handles both individual anomalies and specific scalability patterns using

the R-metric method presented in Section 3.9.

• ADEPT correctly identifies unreliable predictions and recommends adding more

observations if such observations could potentially result in reliable predictions,

see Section 3.10 and 3.15 for details.

4.2. Future Work

ADEPT addresses several key challenges of performance prediction and this can

potentially make it a highly applicable tool for both job schedulers and users of HPC

applications. Requiring very few observations of the target application’s behavior,

eliminating the need for OS-level support and interference from user and administrator

to obtain white-box details on the application, e.g. interconnect usage, are among the

key characteristics of ADEPT.

However, in order for ADEPT to become an even more applicable tool, there are

several directions which we intend to pursue. The main one is performance prediction

across different hardware, including CPU, cache memory, and interconnects. As we

mentioned in Section 2.8.1, despite the existence of several publications, there are still

many challenges to be addressed in this area. Another potential direction is extending

ADEPT to handle platforms different in terms of software, e.g. different operating

systems and different implementations of MPI. Such an extension needs to be aware of

and account for interactions between different software components, the hardware,

and the target application. Predicting across different platforms is especially important

as users may need to move their application to other platforms which differ in terms of

99

hardware and/or software and need an estimation of the performance of their

application before arranging such a move which can be very costly in terms of both time

and resources. A performance prediction tool will be potentially very valuable if it can

address such scenarios while maintaining the applicability and low cost that ADEPT

offers. Another potential extension for ADEPT is the capability to handle heterogeneous

environments, e.g. grids. As chapter 2 presents in detail, many performance prediction

methods operate in grid environments. However, to the best of our knowledge, there

are no performance prediction tools with the same characteristics as ADEPT in such

environments. To be applicable to grids, ADEPT needs to 1) be able to characterize a

grid environment in terms of its effects on a parallel application, 2) be able to translate

performance of a parallel application within a grid, i.e. when using different resources

on the grid. These requirements need support from the grid, in terms of providing

details on the runtime environment of each run of a target application, as well as some

model of all the runtime environments offered by the grid. Applications relying on both

CPUs and GPUs to run form another heterogeneous environment as a potential

extension for ADEPT. One challenge in such environments is that the number of cores is

potentially a multi-dimensional variable, as different numbers of CPU cores and GPU

cores could affect the application differently.

100

REFERENCES/BIBLIOGRAPHY

 [S. Achour 2011] S. Achour, M. Ammar, B. Khmili, and W. Nasri, MPI-PERF-SIM: Towards

an Automatic Performance Prediction Tool of MPI Programs on Hierarchical Clusters, 19th

International Euromicro Conference on Parallel, Distributed and Network-Based Processing,

2011, pp. 207-211.

[L. Adhianto 2006] Laksono Adhianto and Barbara Chapman. 2006. Performance

Modeling of Communication and Computation in Hybrid MPI and OpenMP Applications. In

Proceedings of the 12th International Conference on Parallel and Distributed Systems - Volume

2 (ICPADS '06), Vol. 2. IEEE Computer Society, Washington, DC, USA, pp. 3-8.

[S.R.Alam 2006] S. Alam, and J. Vetter, A Framework to Develop Symbolic Performance

Models of Parallel Applications, 5th International Workshop on Performance Modeling,

Evaluation, and Optimization of Parallel and Distributed Systems (PMEO-PDS 2006), held in

conjunction with IPDPS 2006, 8 pp.-

[M.F.Arlitt 2000] M.F. Arlitt, “Characterizing Web User Sessions,” ACM SIGMETRICS

Performance Evaluation Rev., vol. 28, no. 2, pp.50-63, 2000.

[D.H.Bailey 1995] D.H. Bailey, T. Harris, W.C. Saphir, R.F. Van der Wijngaart, A.C. Wood,

and M. Yarrow. The NAS Parallel Benchmarks 2.0, NAS Technical Report NAS-95-020,NASA Ames

Research Center, Moffett Field, CA, 1995.

[K.J.Barker 2009] Kevin J. Barker, Kei Davis, Adolfy Hoisie, Darren J. Kerbyson, Michael

Lang, Scott Pakin. Using Performance Modeling to Design Large-Scale Systems. In IEEE

Computer, 42 (11): November 2009, pp. 42-49.

[B.Barnes 2008] B. Barnes, B. Rountree, D. K. Lowenthal, J. Reeves, B. R. de Supinski, and

M. Schulz, “A Regression-Based Approach to Scalability Prediction,” in International Conference

on Supercomputing, Jun. 2008, pp. 368-377.

101

[B.Barnes 2010] Using Focused Regression for Accurate Time-Constrained Scaling of

Scientific Applications, Brad Barnes, Jeonifer Garren, David K. Lowenthal, Jaxk Reeves, Bronis R.

de Supinski§, Martin Schulz, and Barry Rountree.

[L.Barsanti 2006] L. Barsanti and A.C. Sodan, Adaptive Job Scheduling Strategies via

Predictive Job Resource Allocation, Workshop on Job Scheduling Strategies for Parallel

Processing (JSSPP), in conjunction with ACM SIGMETRICS, Saint-Malo / France, Springer, June

2006.

[L.Cai 2003] L. Cai, R. L. Malmberg, and Y. Wu. Stochastic modeling of rna

pseudoknotted structures: A grammatical approach. In Proceedings of ISMB’03 and

Bioinformatics 19(s1), pages i66–i73, 2003.

[L.Carrington 2005] L. Carrington, M. Laurenzano, A.Snavely, R. Campbell, L. Davis, How

Well Can Simple Metrics Represent the Performance of HPC Applications?, SC 05 , Seattle, WA,

November 2005

[L.Carrington 2003] L. Carrington, A. Snavely, X. Gao, and N. Wolter, A Performance

Prediction Framework for Scientific Applications, Proc. ICCS Workshop on Perf. Modeling &

Analysis (PMA), Melbourne, Australia, June 2003.

[M. Casas 2008] Marc Casas, Rosa M. Badia, Jesus Labarta, Prediction of Behavior of MPI

Applications, IEEE Cluster 2008, September 2008.

[S.H.Chiang 1996] S.-H. Chiang and M.K. Vernon. Dynamic vs. Static Quantum-Based

Parallel Processor Allocation. Proc. Workshop on Job Scheduling Strategies for Parallel

Processing (JSSPP), Springer, LNCS 1162, May 1996.

[Cirne 2001] Cirne, Walfredo and Fran Berman. "A comprehensive model of the

supercomputer workload." Proceedings of IEEE 4th Annual Workshop on Job Scheduling

Strategies for Parallel Processing. Cambridge, MA. 2001.

102

[W.Cirne 2003] W. Cirne and F. Berman. When the Herd is Smart: Aggregate Behavior in

the Selection of Job Request. IEEE Trans. on Parallel and Distributed Systems, 14(2), Feb. 2003,

pp. 181-192.

[J.Corbalan 2005] J.Corbalan, X.Martorell, J.Labrta. Performance-Driven Processor

Allocation .IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. ISSN: 10459219 Vol:

16 pp: 599-611 July 2005.

[B.F.Cornea 2011] B.F. Cornea, J. Bourgeois, T.T. Nguyen, D. El-Baz, Performance

Prediction in a Decentralized Environment for Peer-to-Peer Computing, in IEEE International

Parallel & Distributed Processing Symposium (IPDPS), 2011, pp. 1618-1626.

[M.Curtis-Maury 2005] M. Curtis-Maury, T. Wang, C. Antonopoulos, and D.

Nikolopoulos. Integrating Multiple Forms of Multithreaded Execution on mult-SMT System: A

Study with Scientific Applications. Proc. Internat. Conf. on Quantitative Evaluation of Systems

(QUEST), 2005.

[K.Davis 2009] Kei Davis, Kevin Barker, Darren J. Kerbyson. Performance Prediction via

Modeling: A Case Study of the ORNL Cray XT4 Upgrade. In Parallel Processing Letters, 19 (4):

December 2009.

[J.Delgado 2010] Javier Delgado, S. Masoud Sadjadi, Hector Duran, Marlon Bright, and

Malek Adjouadi. Performance prediction of weather forecasting software on multicore systems.

In Proceedings of the 24th IEEE International Parallel & Distributed Processing Symposium

(IPDPS-2010), 11th Parallel and Distributed Scientific and Engineering Computing (PDSEC)

workshop, Atlanta, Georgia, April 2010.

[A.Deshmeh 2009] A. Deshmeh, J. Machina, and A.C. Sodan, ADEPT Black-box Speedup

and Runtime Predictor, Technical Report 09-018, University of Windsor, 2009.

[A.Deshmeh 2010] Deshmeh, A. Machina, J. Sodan, A., ADEPT scalability predictor in

support of adaptive resource allocation, In 2010 IEEE International Symposium on Parallel &

Distributed Processing (IPDPS), April 2010, pp. 1-12.

103

[Dimemas 1997] J. Labarta, S. Girona, and T. Cortes, Analyzing scheduling policies using

Dimemas, Parallel Comput. 23, 1-2 (April 1997), pp. 23-34.

[A.Downey 1997] Allen Downey, Predicting Queue Times on Space Sharing Parallel

Computers, In Proceedings of the 11
th

 International Symposium on Parallel Processing (IPPS ’97),

1997, pp. 209-218.

[A.Downey 1997 Model] A.B. Downey. A Model for Speedup of Parallel Programs.

Technical Report CSD-97-933. UC Berkeley, 1997.

[R.Duan 2009] Rubing Duan, Farrukh Nadeem, Jie Wang, Yun Zhang, Radu Prodan, and

Thomas Fahringer. 2009. A Hybrid Intelligent Method for Performance Modeling and Prediction

of Workflow Activities in Grids. In Proceedings of the 2009 9th IEEE/ACM International

Symposium on Cluster Computing and the Grid (CCGRID '09). IEEE Computer Society,

Washington, DC, USA, 339-347.

[A.Duran 2008] A. Duran, J. Corbaln, and E. Ayguad, An adaptive cut-off for task

parallelism. In Proceedings of the 2008 ACM/IEEE conference on Supercomputing (SC '08). IEEE

Press, Piscataway, NJ, USA, 2008, Article 36 , 11 pages.

[T.Fahringer 2000] Thomas Fahringer, A. Pozgaj, Hans Moritsch, J. Luitz: Evaluation of

P3T+: A Performance Estimator for Distributed and Parallel Applications. IPDPS 2000: 229-234

[U.Farooq 2009] Farooq, U., Majumdar, S., Parsons, E., “Achieving Efficiency, Quality of

Service and Robustness in Multi-Organizational Grids”, Journal of Systems and Software (Special

Issue on Software Performance), Vol. 82, Issue: 1, January 2009, pp. 23-38.

[D.G.Feitelson 1996] D.G. Feitelson, “Packing Schemes for Gang Scheduling,” Proc. IPPS

Workshop Job Scheduling Strategies for Parallel Processing (JSSPP '96), D.G. Feitelson and L.

Rudolph, eds., pp. 89-110, 1996.

[D.G.Feitelson 2007] D.G. Feitelson, “Locality of Sampling and Diversity in Parallel

System Workloads,” Proc. 21st ACM Int'l Conf. Supercomputing (ICS '07), pp. 53-63, June 2007.

104

[D.G.Feitelson 2008] D. G. Feitelson, “Looking at data”. In 22nd Intl. Parallel and

Distributed Processing Symp., Apr 2008.

[D.Ferrari 1984] D. Ferrari, “On the foundation of artificial workload design”. In

SIGMETRICS Conf. Measurement & Modeling of Comput. Syst., pp. 8–14, Aug 1984.

[F.Freitag 2001] F.Freitag, J. Corbalán, J. Labarta. A Dynamic Periodicity Detector:

Application to Speedup Computation. 15th International Parallel and Distributed Processing

Symposium (IPDPS'2001). Proceedings of the 15th International Parallel and Distributed

Processing Symposium. ISBN 0-7695-0990-8. San Francisco, USA. April 2001.

[A.V.Germund 2003] A. van Gemund. Symbolic performance modeling of parallel

systems. IEEE Transactions on Parallel and Distributed Systems, 14(2), 2003.

[D.Ghosal 1991] D. Ghosal, G. Serazzi, and S.K. Tripathi, The Processor Working Set and

its Use in Scheduling Multiprocessor Systems, IEEE Trans. on Software Engineering, 17(5), May

1991, pp. 443-453.

[R.Gibbons 1997] Richard Gibbons, A Historical Application Profiler for Use by Parallel

Schedulers, Lecture Notes on Computer Science, 1997, pp. 58-75.

[C.Glasnerlow 2011] Christian Glasnerlow, and Jens Volkerta, Adaps – A three-phase

adaptive prediction system for the run-time of jobs based on user behaviour, Journal of

Computer and System Sciences, Volume 77, Issue 2, March 2011, Pages 244-261, Adaptivity in

Heterogeneous Environments.

[F.Guim 2005] F. Guim, A. Goyeneche, J. Corbalan, J. Labarta, G. Terstyansky. Grid

computing performance prediction based in historical information. First CoreGRID Integrated

Research in Grid Computing Workshop. November 2005.

 [F.Guim 2008] I. Rodero, F. Guim, J. Corbalan et al., "The Grid Backfilling: a Multi-Site

Scheduling Architecture with Data Mining Prediction Techniques," Grid Middleware and

Services, pp.137-152, 2008.

105

[S.D.Hammond 2009] S.D. Hammond, J.A. Smith, G.R. Mudalige, and S.A. Jarvis,

Predictive Simulation of HPC Applications, Proc. IEEE 23rd International Conference on

Advanced Information Networking and Applications (AINA-09), 2009, pp. 33-40.

[J.He 2011] J. He, A.E. Snavely, R.F. Van der Wijngaart, M.A. Frumkin, Automatic

Recognition of Performance Idioms in Scientific Applications, Parallel & Distributed Processing

Symposium (IPDPS), 2011, pp.118-127.

[E.Ipek 2005] E. Ipek, B. R. de Supinski, M. Schulz, and S. A. McKee, “An Approach to

Performance Prediction for Parallel Applications,” in Euro-Par, Aug 2005,pp. 196–205.

[E.Ipek 2006] E. `Ipek, S. McKee, B. de Supinski, M. Schulz, and R. Caruana. Efficiently

exploring architectural design spaces via predictive modeling. In Architectural Support for

Programming Languages and Operating Systems (ASPLOS XII), October 2006.

[S.H. Jang, 2005] Seung-Hye Jang, Valerie Taylor, Xingfu Wu, Mieke Prajugo, Ewa

Deelman, Gaurang Mehta, Karan Vahi, Performance Prediction-based versus Load-based Site

Selection: Quantifying the Difference, the 18th International Conference on Parallel and

Distributed Computing Systems (PDCS-2005), Las Vegas, Nevada, 12 -14 September 2005.

[S.A. Jarvis 2006] Stephen A. Jarvis, Daniel P. Spooner, Helene N. Lim Choi Keung, Junwei

Cao, Subhash Saini, and Graham R. Nudd. 2006. Performance prediction and its use in parallel

and distributed computing systems. Future Gener. Comput. Syst. 22, 7 (August 2006), 745-754.

[N.K.Kapoor 2010] Kapoor, N.K., Majumdar, S., Nandy, B., “Class Based Grid Resource

Management Strategies for On Demand Jobs”, Simulation: Transactions of the Society for

Modeling and Simulation International Vol. 86, No.: 11, November 2010, pp. 675-697.

[D.J. Kerbyson 2002] Darren J. Kerbyson, Harvey J. Wasserman, Adolfy Hoisie.

Performance Prediction - A tool for Advanced Architecture Exploration. In Proceedings of the

Int. Workshop on Innovative Architecture, Big Island, HI., January 2002.

106

[D.J.Kerbyson 2005] Darren J. Kerbyson, Philip W. Jones. A Performance Model of the

Parallel Ocean Program. In Int. J. High Performance Computing Applications, 19 (5): 261--276,

August 2005. LA-UR 04-8793

[S.Krishnaswamy 2004] Krishnaswamy, S.; Loke, S.W.; Zaslavsky, A.; Monash Univ.,

Clayton, Vic., Australia, Estimating computation times of data-intensive applications, Distributed

Systems Online, IEEE, Volume 5, Issue 4, April 2004.

[K. Kurowski 2005] Krzysztof Kurowski, Ariel Oleksiak, Jarek Nabrzyski, Agnieszka

Kwiecień, Marcin Wojtkiewicz, Maciej Dyczkowski, Francesc Guim, Julita Corbalan and Jesus

Labarta, Multicriteria Grid Resource Management Using Performance Prediction Techniques,

CoreGrid Integration Workshop, Pisa, Italy, November 2005, Springer CoreGRID Proceedings,

vol. 4.

[B.Lafreniere 2005] B. Lafreniere and A.C. Sodan. ScoPred—Scalable User-Directed

Performance Prediction Using Complexity Modeling and Historical Data. Proc. Workshop on Job

Scheduling Strategies for Parallel Processing (JSSPP), Cambridge, LNCS 3834, Springer, June

2005.

[C.B.Lee 2004] C. B. Lee, Y. Schwartzman, J. Hardy, and A. Snavely, “Are user runtime

estimates inherently inaccurate? ”. In 10th Workshop on Job Scheduling Strategies for Parallel

Processing (JSSPP), pp. 253–263, Springer-Verlag, Jun 2004. Lect. Notes Comput. Sci. vol. 3277.

[B.C. Lee 2007] B. C. Lee, D. M. Brooks, B. R. de Supinski, M. Schulz, K. Singh, and S. A.

McKee, “Methods of Inference and Learning for Performance Modeling of Parallel Applications,”

in PPOPP, 2007, pp. 249–258.

[J.L. Lerida, 2008] Joseph Ll. Lérida , F. Solsona , F. Giné , J. R. García , M. Hanzich , P.

Hernández, Enhancing Prediction on Non-dedicated Clusters, Proceedings of the 14th

international Euro-Par conference on Parallel Processing, August 26-29, 2008, Las Palmas de

Gran Canaria, Spain

107

[K.Levenberg 1944] K. Levenberg. A Method for the Solution of Certain Problems in

Least Squares. Quart. Appl. Math., Vol. 2, 1944, pp. 164–168.

[H.Li 2005] H. Li, D. Groep, and L.Wolters. Efficient response time prediction by

exploiting application and resource state similarities. In proceedings of 4th IEEE/ACM

International Workshop on Grid Computing (Grid’05), 2005.

[J.Li 2009] J. Li, Xiaosong Ma, K. Singh, M. Schulz, B.R. de Supinski, S.A. McKee, Machine

learning based online performance prediction for runtime parallelization and task scheduling, in

IEEE International Symposium on Performance Analysis of Systems and Software, 2009, pp. 89-

100.

[U.Liblin 2003] U. Lublin and D. G. Feitelson, “The workload on parallel supercomputers:

modeling the characteristics of rigid jobs”. J. Parallel & Distributed Comput. 63(11), pp. 1105-

1122, Nov 2003.

[M.I.A.Lourakis 2005] M.I.A. Lourakis. levmar: Levenberg-Marquardt nonlinear least

squares algorithms in C/C++. http://www.ics.forth.gr/~lourakis/levmar/, retrieved Jan 2005.

[G.Marin 2004] G. Marin and J. Mellor-Crummey. Cross-Architecture Predictions for

Scientific Applications Using Parameterized Models. Proc. SIGMETRICS, New York, NY, USA, June

2004.

[G.Marin 2007] G. Marin and J. Mellor-Crummey. Application insight through

performance modeling. In IEEE International Performance Computing and Communications

Conference, Apr 2007.

[M.M.Mathis 2005] Mark M. Mathis, Darren J. Kerbyson. A General Performance Model

of Structured and Unstructured Mesh Particle Transport Computations. In J. Supercomputing, 34

(2): 181--199, November 2005. LA-UR 04-8794

[M.M.Mathis 2006] Mark M. Mathis, Darren J. Kerbyson. Dynamic Performance

Prediction of an Adaptive Mesh Application. In Proceedings of the Workshop on System

108

Management Tools for Large-Scale Parallel Systems, IEEE/ACM Int. Parallel and Distibuted

Processing Symposium (IPDPS), Rhodes, Greece, April 2006.

[A.Matsunaga 2010] Andrea Matsunaga and Jose A. B. Fortes, 2010. On the Use of

Machine Learning to Predict the Time and Resources Consumed by Applications. In Proceedings

of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing

(CCGRID '10). IEEE Computer Society, Washington, DC, USA, 495-504.

[T.N.Minh 2010] T.N. Minh, and L. Wolters, Using Historical Data to Predict Application

Runtimes on Backfilling Parallel Systems, 18th Euromicro Conference on Parallel, Distributed and

Network-based Processing, 2010, pp. 246-252

[A.W.Mu’alem 2001] A. W. Mu'alem, and D. G. Feitelson, “Utilization, Predictability,

Workloads, and User Runtime Estimates in Scheduling the IBM SP2 with Backfilling,” IEEE Trans.

Parallel Distrib. Syst., vol. 12, no. 6, 2001, pp. 529-543.

[F.Nadeem 2006] Farrukh Nadeem, Muhammad Murtaza Yousaf, Radu Prodan, and

Thomas Fahringer. 2006. Soft Benchmarks-Based Application Performance Prediction Using a

Minimum Training Set. In Proceedings of the Second IEEE International Conference on e-Science

and Grid Computing (E-SCIENCE '06). IEEE Computer Society, Washington, DC, USA, pp. 71-.

[F.Nadeem 2009] Farrukh Nadeem and Thomas Fahringer. 2009. Using Templates to

Predict Execution Time of Scientific Workflow Applications in the Grid. In Proceedings of the

2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID '09).

IEEE Computer Society, Washington, DC, USA, 2009, pp. 316-323.

[V.K.Naik 1997] V.K. Naik, S.K. Setia, and M.S. Squillante. Processor Allocation in

Multiprogrammed Distributed-Memory Parallel Computer Systems. J. of Parallel and Distr.

Computing, 46(1), 1997, pp. 28-47.

[M.Nakazawa 2005] Mario Nakazawa, David K. Lowenthal, and Wendou Zhou. 2005. The

MHETA Execution Model for Heterogeneous Clusters. In Proceedings of the 2005 ACM/IEEE

conference on Supercomputing (SC '05). IEEE Computer Society, Washington, DC, USA, 7-.

109

[Nirav 1999] Nirav H. Kapadia, J.A.B. Fortes, and Carla E. Brodley. 1999. Predictive

Application-Performance Modeling in a Computational Grid Environment. In Proceedings of the

8th IEEE International Symposium on High Performance Distributed Computing (HPDC '99). IEEE

Computer Society, Washington, DC, USA, 6-.

[G.R.Nudd 2000] G.R. Nudd, D.J. Kerbyson, E.Papaefstathiou, J.S. Harper, S.C. Perry and

D.V. Wilcox. PACE: A Toolset for the Performance Prediction of Parallel and Distributed Systems.

The International Journal of High Performance Computing, 4:228–251, 2000.

[OpenMP 2008] OpenMP Official Web Site at http://openmp.org/wp/, retrieved June

2008.

[Parallel Workload Archive] Parallel Workload Archive,

http://www.cs.huji.ac.il/labs/parallel/workload/, Retrieved July 2011.

[E. Perelman 2006] Erez Perelman, Marzia Polito, Jean-Yves Bouguet, John Sampson,

Brad Calder, and Carole Dulong. 2006. Detecting phases in parallel applications on shared

memory architectures. In Proceedings of the 20th international conference on Parallel and

distributed processing (IPDPS'06). IEEE Computer Society, Washington, DC, USA, 88-88.

[D.Perkovic 2001] D. Perkovic and P.J. Keleher, “Randomization, Speculation, and

Adaptation in Batch Schedulers,” Supercomputing, p. 7, Sept. 2000.

[A.Petitet] A.Petitet, R.Whaley, J.Dongarra, and A.Cleary. HPL - A portable

implementation of the high-performance LINPACK benchmark for distributed-memory

computers. www.netlib.org/benchmark/hpl.

[W.Pfeiffer 2008] Wayne Pfeiffer and Nicholas J. Wright, Modeling and Predicting

Application Performance on Parallel Computers Using HPC Challenge Benchmarks, 22nd IEEE

International Parallel and Distributed Processing Symposium, April 2008

[S.Pllana 2005] Sabri Pllana, Thomas Fahringer: Performance Prophet: A Performance

Modeling and Prediction Tool for Parallel and Distributed Programs. ICPP Workshops 2005: 509-

516

110

[POP Application] “Parallel Ocean Program”: http://climate.lanl.gov/Models/POP/

[G.Rodriguez 2004] G. Rodr´ıguez, R. M. Badia, J. Labarta ”Generation of Simple

Analytical Models for Message Passing Applications” Proceedings of European Conference on

Parallel Processing Euro-Par 2004: p183-188

[J.C.Sancho 2006] Jose C Sancho, Kevin J Barker, Darren J Kerbyson, Kei Davis.

Quantifying the Potential Benefit of Overlapping Communication and Computation in Large-

Scale Scientific Applications. In Proceedings of the IEEE/ACM Conference on Supercomputing

(SC'06), Tampa, FL, November 2006. LA-UR 06-3109

[H.A.Sanjay 2008] H. A. Sanjay , Sathish Vadhiyar, Performance modeling of parallel

applications for grid scheduling, Journal of Parallel and Distributed Computing, v.68 n.8, p.1135-

1145, August, 2008

[R.Sarikaya 2010] Ruhi Sarikaya, Canturk Isci, and Alper Buyuktosunoglu. 2010. Program

behavior prediction using a statistical metric model. In Proceedings of the ACM SIGMETRICS

international conference on Measurement and modeling of computer systems (SIGMETRICS

'10). ACM, New York, NY, USA, 371-372.

[J. Schopf 1998] Jennifer Schopf and Francine Berman. Performance Prediction in

Production Environments. In 14th International Parallel Processing Symposium and the 9th

Symposium on Parallel and Distributed Processing, 1998.

[SDSC95] SDSC Par95 log files from the parallel workload archive,

http://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_par/index.html, retrieved July 2011.

[SDSC96] SDSC Par96 log files from the parallel workload archive,

http://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_par/index.html, retrieved July 2011.

[SHARCNET 2009] SHARCNET project. http://www.sharcnet.ca, retrieved June 2009.

[S.Sharkawi 2009] Sameh Sharkawi, Don DeSota, Raj Panda, Rajeev Indukuru, Stephen

Stevens, Valerie Taylor, and Xingfu Wu. 2009. Performance projection of HPC applications using

111

SPEC CFP2006 benchmarks. In Proceedings of the 2009 IEEE International Symposium on Parallel

&Distributed Processing (IPDPS '09). IEEE Computer Society, Washington, DC, USA, 1-12.

[S.Shimizu 2009] Shuichi Shimizu, Raju Rangaswami, Hector A. Duran-Limon, and

Manuel Corona-Perez. 2009. Platform-independent modeling and prediction of application

resource usage characteristics. J. Syst. Softw. 82, 12 (December 2009), 2117-2127.

[E.Shmueli 2006] E. Shmueli and D. G. Feitelson, “Using site-level modeling to evaluate

the performance of parallel system schedulers,” in MASCOTS ’06: Proceedings of the 14th IEEE

International Symposium on Modeling, Analysis, and Simulation. Washington, DC, USA: IEEE

Computer Society, 2006, pp. 167–178.

[E.Shmueli, 2007] E. Shmueli and D. G. Feitelson, “Uncovering the effect of system

performance on user behavior from traces of parallel systems”. In 15th Conf. Modeling,

Analysis, & Simulation of Comput. & Telecomm. Syst., pp. 274-280, Oct 2007.

[E.Shmueli 2009] Edi Shmueli and Dror G. Feitelson. 2009. On Simulation and Design of

Parallel-Systems Schedulers: Are We Doing the Right Thing?. IEEE Trans. Parallel Distrib. Syst. 20,

7 (July 2009), 983-996.

[K.Singh 2010] Karan Singh, Matthew Curtis-Maury, Sally A. McKee, Filip

Blagojevi\&\#263;, Dimitrios S. Nikolopoulos, Bronis R. de Supinski, and Martin Schulz. 2010.

Comparing scalability prediction strategies on an SMP of CMPs. In Proceedings of the 16th

international Euro-Par conference on Parallel processing: Part I (EuroPar'10), Pasqua D'Ambra,

Mario Guarracino, and Domenico Talia (Eds.). Springer-Verlag, Berlin, Heidelberg, 143-155.

[W.Smith 1998] W. Smith, I. Foster, and V. Taylor, Predicting Application Run Times

Using Historical Information, In Proceedings of the IPPS/SPDP ‘98Workshop on Job Scheduling

Strategies for Parallel Processing, 1998.

[W.Smith 1999] W. Smith, V. E. Taylor, and I. T. Foster. Using run-time predictions to

estimate queue wait times and improve scheduler performance. Proceedings of the Job

112

Scheduling Strategies for Parallel Processing, Lecture Notes In Computer Science; Vol. 1659:202

– 219, 1999.

[W.Smith 2004] W. Smith, I. Foster, and V. Taylor. Predicting Application Run Times With

Historical Information. Journal of Parallel and Distributed Computing, 64 (9), 2004, pp. 1007-

1016.

[W.Smith 2007] W. Smith. Prediction Services for Distributed Computing. In Proceedings

of the 22nd IEEE International Parallel and Distributed Processing Symposium, April 2007, pp. 1-

10.

[W.Smith 2010] W. Smith, A Service for Queue Prediction and Job Statistics, Gateway

Computing Environments Workshop (GCE), 2010, Issue 14-14 Nov. 2010, pp. 1-8. USA.]

[A.Snavely 2001] A. Snavely, L. Carrington, and N. Wolter. Modeling Application

Performance by Convolving Machine Signatures with Application Profiles. Proc. IEEE Ann.

Workshop on Workload Characterization, 2001.

[A.Snavely 2003] A. Snavely, X. Gao, C. Lee, N. Wolter, & J. Labarta, “Performance

modeling of HPC applications”, Parallel Computing, Dresden, 2003.

[A.C.Sodan 2009] A.C. Sodan. Adaptive Scheduling for QoS Virtual Machines under

Different Resource Availability - Performance Effects and Predictability. Workshop on Job

Scheduling Strategies for Parallel Processing (JSSPP) of IPDPS, Springer, May 2009.

[A.C.Sodan 2006] A.C. Sodan and X. Huang. Adaptive Time/Space Scheduling with

SCOJO. International Journal of High Performance Computing and Networking (IJHPCN), Vol. 4,

Nos. 5/6, 2006.

[S.Sodhi, 2008] Sukhdeep Sodhi, Jaspal Subhlok, and Qiang Xu. 2008. Performance

prediction with skeletons. Cluster Computing 11, 2 (June 2008), 151-165.

[X.H.Sun 1999] X.H. Sun, M. Pantano, T. Fahringer, and Z. Zhan. SCALA: A Framework for

Performance Evaluation of Scalable Computing. Proc. IPPS/SPDP Workshops, 1999.

113

[D. Talby, 2006] Session-based, estimation-less, and information-less runtime prediction

algorithms for parallel and grid job scheduling, David Talby, Dan Tsafrir, Zviki Goldberg, Dror G.

Feitelson, Technical Report 2006-77, School of Computer Science and Engineering, the Hebrew

University, August 2006.

[V. Taylor 2001] V. Taylor, X. Wu, J. Geisler, X. Li, z. Lan, M. Hereld, I. Judson, and R.

Stevens. Prophesy: Automating the modeling process. In Proc. Of the Third International

Workshop on Active Middleware Services, 2001.

[V. Taylor 2002] Valerie Taylor, Xingfu Wu, Jonathan Geisler, and Rick Stevens. 2002.

Using Kernel Couplings to Predict Parallel Application Performance. In Proceedings of the 11th

IEEE International Symposium on High Performance Distributed Computing (HPDC '02). IEEE

Computer Society, 125-.

[V. Taylor 2003] Valerie Taylor, Xingfu Wu, and Rick Stevens. 2003. Prophesy: an

infrastructure for performance analysis and modeling of parallel and grid applications.

SIGMETRICS Perform. Eval. Rev. 30, 4 (March 2003), 13-18.

[TeraGrid] The TeraGrid infrastructure, https://www.teragrid.org, retrieved January

2011.

[D.Thomas 2010] D. Thomas, J.P. Panziera, and J. Baron, MPInside: a performance

analysis and diagnostic tool for MPI applications, In Proceedings of the first joint WOSP/SIPEW

international conference on Performance engineering, 2010, pp. 79-86.

[M.Tikir 2009] Mustafa M. Tikir, Michael A. Laurenzano, Laura Carrington, and Allan

Snavely. 2009. PSINS: An Open Source Event Tracer and Execution Simulator for MPI

Applications. In Proceedings of the 15th International Euro-Par Conference on Parallel

Processing (Euro-Par '09), Henk Sips, Dick Epema, and Hai-Xiang Lin (Eds.). Springer-Verlag, 135-

148.

[A.Tiwari 2009] Ananta Tiwari, Vahid Tabatabaee, and Jeffrey K. Hollingsworth. 2009.

Tuning parallel applications in parallel. Parallel Comput. 35, 8-9 (August 2009), 475-492.

114

[A.Toomula 2004] Toomula, A., Subhlok, J.: Replication memory behavior for

performance prediction. In: LCR 2004: The 7th Workshop on Languages, Compilers, and Run-

time Support for Scalable Systems, Houston, TX, October 2004

[D.Tsafrir, 2006] D. Tsafrir, D.G. Feitelson, "Instability in parallel job scheduling

simulation: the role of workload flurries," Parallel and Distributed Processing Symposium,

International, p. 54, Proceedings 20th IEEE International Parallel & Distributed Processing

Symposium, 2006

[D.Tsafrir 2007] Dan Tsafrir, Yoav Etsion, and Dror G. Feitelson. 2007. Backfilling Using

System-Generated Predictions Rather than User Runtime Estimates. IEEE Trans. Parallel Distrib.

Syst. 18, 6 (June 2007), 789-803.

[D.Tsafrir, 2010] Dan Tsafrir. 2010. Using inaccurate estimates accurately. In

Proceedings of the 15th international conference on Job scheduling strategies for parallel

processing (JSSPP'10), Eitan Frachtenberg and Uwe Schwiegelshohn (Eds.). Springer-Verlag,

Berlin, Heidelberg, 208-221.

[B.M.Tudor 2011] B. Tudor and Y.M. Teo, A Practical Approach for Performance Analysis

of Shared Memory Programs, Proceedings of 25th IEEE International Parallel & Distributed

Processing Symposium (IPDPS), 2011, pp. 652-663.

[Valgrind] Valgrind debugging tool, http://valgrind.org/, retrieved on July 2011.

[S. Venkataramaiah 2003] Venkataramaiah, S., Subhlok, J.: Performance estimation for

scheduling on shared networks. In: 9thWorkshop on Job Scheduling Strategies for Parallel

Processing, Seattle, WA, June 2003.

[M.Wall 2009] M. Wall, GAlib: A C++ Library of Genetic Algorithm Components. MIT,

http://lancet.mit.edu/ga/, retrieved July 2009.

[Z.Wang 2009] Zheng Wang and Michael F.P. O'Boyle. 2009. Mapping parallelism to

multi-cores: a machine learning based approach. In Proceedings of the 14th ACM SIGPLAN

symposium on Principles and practice of parallel programming (PPoPP '09). ACM, 75-84.

115

[X.Wu 2004] Xingfu Wu, Valerie Taylor, Jonathan Geisler, and Rick Stevens, Isocoupling:

Reusing Coupling Values to Predict Parallel Application Performance, the 18th International

Parallel and Distributed Processing Symposium (IPDPS2004), Santa Fe, New Mexico, April 26-30,

2004.

[X. Wu 2006_1] Xingfu Wu, Valerie Taylor, and Joseph Paris, A Web-based Prophesy

Automated Performance Modeling System, the International Conference on Web Technologies,

Applications and Services (WTAS2006), July 17-19, 2006.

[X. Wu 2006_2] Xingfu Wu, Valerie Taylor, Shane Garrick, Dazhi Yu, and Jacques Richard,

Performance Analysis, Modeling and Prediction of a Parallel Multiblock Lattice Boltzmann

Application Using Prophesy System, IEEE International Conference on Cluster Computing,

September 25-28, 2006, Barcelona, Spain.

[X. Wu 2009] Wu, X., Taylor, V.: Using processor partitioning to evaluate the

performance of MPI, OpenMP and hybrid parallel applications on dual- and quad-core Cray XT4

systems. In: Cray User Group Conference, May 4-7 (2009).

[R.Wu 2008] Rongteng Wu , Jizhou Sun , Jinyan Chen, Parallel execution time prediction

of the multitask parallel programs, Performance Evaluation, v.65 n.10, p.701-713, October, 2008

[Q.Xu 2008] Qiang Xu and Jaspal Subhlok. 2008. Construction and evaluation of

coordinated performance skeletons. In Proceedings of the 15th international conference on

High performance computing (HiPC'08), Ponnuswamy Sadayappan, Manish Parashar,

Ramamurthy Badrinath, and Viktor K. Prasanna (Eds.). Springer-Verlag, Berlin, Heidelberg, 73-86.

 [L.T.Yang 2005] L. T. Yang, X. Ma, F. Mueller, ”Cross-Platform Performance Prediction of

Parallel Applications Using Partial Execution,” sc, p. 40, ACM/IEEE SC 2005 Conference (SC’05),

2005

 [J.Zhai 2010] Jidong Zhai, Wenguang Chen, and Weimin Zheng. 2010. PHANTOM:

predicting performance of parallel applications on large-scale parallel machines using a single

node. SIGPLAN Not. 45, 5 (January 2010), pp. 305-314.

116

[Zilber 2005] Zilber, O. Amit, and D. Talby. What is worth learning from parallel

workloads? a user and session based analysis. In Proc. 19th intl. conf. Supercomputing, pages

377–386, Jun 2005.

[D.Zotkin 1999] D. Zotkin and P.J. Keleher, “Job-Length Estimation and Performance in

Backfilling Schedulers,” Proc. IEEE Int’l Symp. High Performance Distributed Computing (HPDC),

p. 39, Aug. 1999.

117

APPENDICES

Appendix A. Envelope Derivation via Closed-form Solution Formula1

As specified in chapter 3, ADEPT depends on a closed-form solution to derive an

envelope in order to constrain the search space. For the sake of clarity, we only briefly

discussed the closed-form solution and provided a few examples of the formula in

Section 3.5. This appendix provides the details on derivation of all the closed-form

solution formulas, and on how these formulas are used by ADEPT to derive the

envelope.

Closed-form Solution Formulas

The closed-form solution is derived for pairs of observations ><>< jjii tntn ,,,

of an instance of the Downey model. The solution separately addresses high variance

and low variance model instances. We make the following assumptions:

1. Runtimes are greater than one second.

2. There exist at least three observations. The third observation will be referred to

as >< kk tn , .

3. Not all three ti, tj, and tk values are equal.

4. ni < nj.

1
 This Appendix was published as a technical report at the University of Windsor: [A.Deshmeh 2009]

118

We first discuss cases where observations are drawn from a high variance model

instances.

Case 1: Assuming the observations are both placed in the first piece of the

runtime function results in the following equations:

i

i
n

AA
t

σσ
σ

−+
+= (5)

j

j
n

AA
t

σσ
σ

−+
+= (6)

Solving the above system of equations for A and σ results in the following

equations:

ij

iijj

nn

tntn

−

−
=σ (7)

1

)1(

+

−−
=

σ

σ iii ntn
A

 (8)

Case 2: Assuming that observation >< ii tn , is placed in the first piece and

observation >< jj tn , is placed in the second piece of runtime function results in the

following equations. Note that due to Assumption 4 and definition of runtime function

(see Section 3) the reverse order is not possible.

i

i
n

AA
t

σσ
σ

−+
+= (9)

1+= σjt (10)

119

Solving the above equation system for A and σ results in the following equations:

1−= jtσ
 (11)

1

)1(

+

+−
=

σ

σ iii tnn
A

 (12)

Case 3: Assuming two observations are placed on the second piece of the

runtime function will result in the following equations:

1+= σit (13)

1+= σjt (14)

Here, the observations will only provide the value of σ. However, according to

Assumption 2, there exists a third observation >< kk tn , . This observation has to be in

the first piece of the runtime function, as otherwise all observations will have the same

runtimes, contradicting Assumption 3. This means that Case 3 results in an equation

system similar to Case 2, with observation >< kk tn , in the first piece of the runtime

function, and observation >< jj tn , in the second piece. A and σ therefore are

calculated as:

1−= jtσ
 (15)

1

)1(

+

+−
=

σ

σ kkk tnn
A

 (16)

For observations drawn from a low variance instance of the Downey model,

Assumptions 1, 2, and 3, combined with the definition of runtime function, will

guarantee that either two of the observations are in the first piece, or two of the

120

observations are in the second piece of the runtime function. Therefore, for obtaining

the underlying model instance it is sufficient to consider these two cases.

Case 4: This case assumes that both observations are placed on the first piece of

the runtime function, resulting in the following equations:

2/
2/

σ
σ

+
−

=
i

i
n

A
t (17)

2/
2/

σ
σ

+
−

=
j

j
n

A
t (18)

Solving the above equation system for A and σ results in the following equations

(note that these were already shown in Section 4.5)

ij

iijj

nn

tntn

−

−
=

)(2
σ (19)

2/)1(−−= iii ntnA σ
 (20)

Case 5: Assuming that both observations are placed in the second piece of the

runtime function results in the following equations:

2/1
2/1

σσ −+
−

=
i

i
n

A
t

 (21)

2/1
2/1

σσ −+
−

=
j

j
n

A
t

 (22)

Solving the above equation system for A and σ results in the following equations:

2
)(2

+
−

−
=

ij

jjii

nn

tntn
σ

 (23)

121

2

1)1(+
+

−
= iii ntn

A
σ (24)

Although more than one instance might be obtained per observation pair,

corresponding to low variance and high variance modes, these can be reduced to one

either due to contradiction (e.g. σ > 1 for low variance), or by choosing instances that

match all observation pairs.

Note that (7), (8), (11), (12), (15), (16), (19), (20), (23), and (24) are the final

formulas mentioned in Section 3.5.1.

Envelope Derivation Formulas

To derive envelope formulas, as noted in Section3.5.1, we assume that each

observation >< ii tn , deviates from the underlying model by at most δ up or down.

Thus, if the runtime value produced by the underlying model at ni nodes is
it ′ , the

following results:

[]δδ +−∈′ 1,1*ii tt (25)

Closed-form solutions should be calculated using runtime values produced by

the underlying model. Since these values are not available, the range in which it falls has

to be used instead, as obtained from Relation (27). For this purpose, the closed-form

solution formulas are extended to envelope formulas, which calculate ranges instead of

exact values for the underlying model’s parameters. All the five Cases 1, 2, 3, 4, and 5

from the closed-form solution above are extended in the following to incorporate δ and

produce ranges.

For Case 1, Equations (7) and (8) can be extended to:

[]δδσ +−
−

−
∈ 1,1

ij

iijj

nn

tntn
 (26)

122

[])1()1(,)1()1(
1

1
−−+−−−

+
∈ iiiiii ntnntnA σδσδ

σ
 (27)

For Case 2, Equations (11) and (12) can be extended to:

[]1)1(,1)1(−+−−∈ δδσ ii tt (28)

[])1()1(,)1()1(
1

1
iiiiii ntnntnA −++−+−

+
∈ σδσδ

σ
 (29)

For Case 3, Equations (15) and (16) can be extended to:

[]1)1(,1)1(−+−−∈ δδσ jj tt (30)

[])1()1(,)1()1(
1

1
kkkkkk ntnntnA −++−+−

+
∈ σδσδ

σ
 (31)

Note that (31) is essentially the same as (29), calculated using a different

observation.

For Case 4, Equations (19) and (20) can be extended to produce the following

formulas (note that these were already shown in Section 4.5)

[]δδσ +−
−

−
∈ 1,1

)(2

ij

iijj

nn

tntn
 (32)

[]2/)1()1)((,2/)1()1)((−−+−−−∈ iiiiii ntnntnA σδσδ (33)

For Case 5, Equations (23) and (24) can be extended to:

++

−

−
+−

−

−
∈ 2)1(

)(2
,2)1(

)(2
δδσ

ij

jjii

ij

jjii

nn

tntn

nn

tntn
 (34)

[]σδσσδσ /)1(/2/)1(,/)1(/2/)1(++−+−+−+∈ iiiiiiii tnnntnnnA (35)

123

It should be noted that for each observation pair, one of the five cases holds, and

therefore the underlying model’s parameters are guaranteed to be in the ranges

calculated using the corresponding formula. The formula for the other cases will then

only add to the search space and will not affect the solution. Also, for σ ranges, parts of

the range which fall below 0 for all cases or above one for Cases 4 and 5 are discarded

as these values would be invalid for σ. The same applies to parts of A ranges that fall

below 1.

Appendix B. Permission

124

Appendix B. Permission letter to include previous publication

125

126

VITA AUCTORIS

NAME: Gholamhossein Deshmeh

PLACE OF BIRTH:

Mashad

YEAR OF BIRTH:

1981

EDUCATION:

Alborz High School, Tehra, 1999

Tehran Polytechnic University, B.Sc., Tehran, 2004

Tehran Polytechnic University, M.Sc., Tehran, 2007

University of Windsor, Ph.D., Windsor, ON, 2013

	University of Windsor
	Scholarship at UWindsor
	2013

	ADEPT Runtime/Scalability Predictor in support of Adaptive Scheduling
	Gholamhossein Deshmeh
	Recommended Citation

	Microsoft Word - Arash_Draft_80_.docx

