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ABSTRACT

The point placement problem is to determine the position of n distinct points

on a line, up to translation and reflection by fewest possible pairwise adversarial

distance queries. This masters thesis focusses on two aspects of point placement

problem. In one part we focusses on an experimental study of a number of de-

terministic point placement algorithms and an incremental randomized algorithm,

with the goal of obtaining a greater insight into the behavior of these algorithms,

particularly of the randomize algorithm.

The pairwise distance queries in the point placement problem creates a type of

graph, called point placement graph. A point placement graph G is defined as line

rigid graph if and only if the vertices of G has unique placement on a line. The

other part of this thesis focusses on recognizing line rigid graph of certain class

based on structural property of an arbitrarily given graph. Layer graph drawing

and rectangular drawing are used as key idea in recognizing line rigid graphs.
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Chapter 1

Introduction

1.1 Introduction

Recently researchers from computer science showed a great interest in biological

problems. Researchers came up with a number of interesting problems from biol-

ogy that can be analyzed or solved theoretically. One of the interesting problem

is DNA mapping problem. In general the goal is the recover the whole DNA se-

quence for an organism. An approach is to use some known substrings which are

called markers or restriction site. Pairwise distances between the markers can be

measured with flourescent in situ hybridization (FISH) experiment. The problem

is to find relative position of the markers in the DNA sequence. The researchers

reduced the problem to a point placement problem and tried to solve it efficiently

using graph theories and distance geometry approach. In the point placement

problem the markers are represented as points(each of them are distinct) and the

distances between pair of marker represents the distance between pair of points.

The point placement problem is to find unique position of a set of distinct points

on a line with minimum number of distance queries between the points, where

relative distance between the points will remain the same if their positions is

transformed or reflected. The Point placement problem has two flavour: exact

1



Chapter 1. Introduction 2

model and inexact model. In exact model distance between all pair of points are

known whereas in inexact model distance between all pair of points are not known

and each distance is bounded by upper bound and lower bound. In the first part

of this thesis we are focussing on the exact model where distance between all pair

of points are known.

The distance queries in the point placement problem creates point placement

graph(ppg) which is the input to point placement algorithm. In the point placement

graph the each vertex corresponds to point, every edge corresponds to connection

between two points and edge length correspond to the distance between pairs of

points. If the vertices of point placement graph have unique placement on a line

then the graph is called line rigid graph or rigid point placement graph. Thus the

point placement problem reduces to construction of line rigid graph. Researchers

have studied the problem to construct rigid point placement graphs [1], [2], [3], [4].

In this thesis, we have formulated a new problem. The problem is to recognize line

rigid graphs based on structural charactarization. In another part of this thesis,

we focus on the recognition problem.

1.2 Problem Statement

1.2.1 Experimental Study of existing Point Placement Al-

gorithms

The point placement problem is to determine the position of n distinct points on a

line, up to translations and reflections by the fewest possible pairwise (adversarial)

distance queries. In this thesis we report on an experimental study of a number

2



Chapter 1. Introduction 3

of deterministic point placement algorithms and an incremental randomized al-

gorithm, with the goal of obtaining a greater insight into the behavior of these

algorithms, particularly of the randomized one.

1.2.2 Recognizing Line Rigid Graphs

A graph G is line rigid if it has an unique linear layout, up to translation and re-

flection. Every line rigid graph is associated with a function l that assigns positive

lengths to the edges and an assignment of edge length called valid if the graph

has unique linear layout. The problem is to verify whether an arbitrarily given

graph is line rigid or not. In this thesis we have presented a scheme to recognize

line rigid graphs with some properties. The given graph G must be planer, 2-

connected and maximum degree of the vertices are three. A graph is planar if it

can be embedded in the plane so that no two edges intersect geometrically except

at a vertex to which they are both incident. And in 2-connected graphs at least 2

vertices needed to remove to disconnect the graph.

1.3 Contributions

In this thesis we have worked on two aspects of point placement problem. In

first part of this thesis we have done an experimental study of the various point

placement algorithms in order to study the trade-off between query and time com-

plexities. We have specially focus on the randomized point placement algorithm

and compare with other deterministic point placement algorithm.

In the second part we have worked on a new problem, Line Rigid Graph

Recognition which is motivated from point placement problem. The problem is

to recognize line rigid graphs based on the structural characterization of a given

3



Chapter 1. Introduction 4

graph. We have established an connection between line rigidity and graph drawing

and proposed a scheme that recognizes line rigid graphs of a class, 2-3 planar graph.

1.4 Chapter Outline

The list bellow presents the organization of the chapters with summary of the

contents.

• Chapter 2 contains a detailed study of existing point placement algorithms

and measure performance of the algorithms by observing the experimental

results.

• Chapter 3 contains a proposed scheme to recognizes line rigid graphs with

some constraints.

• Chapter 4 contains overall conclusion and future work.

4



Chapter 2

Experimental Study on Point

Placement Algorithms

2.1 Introduction

The point placement problem: Let P = {p1, p2, ..., pn} be a set of n distinct

points on a line L. The point location problem is to determine the locations of the

points uniquely (up to translation and reflection) by making the fewest possible

pairwise distance queries of an adversary. The queries can be made in one or

more rounds and are modeled as a graph whose nodes represent the points and

there is an edge connecting two points if the distance between the corresponding

points is being queried. The distances between the pairs of points returned by the

adversary are exact.

A special version of this problem is when a query graph is presented with as-

signed edge lengths and all possible placements of its vertices are to be determined.

In , this problem was solved for weakly triangulated graphs.

5



Chapter 2. Experimental Study on Point Placement Algorithms 6

A classical version of this problem is the construction of the coordinates of

a set of n points, given exact distances between all pairs of points (see [5], [6]).

Algorithms exist that not only determine the coordinates but also the minimum

dimension in which the points can be embedded (see [7]).

2.2 Motivation

The motivation for studying this problem stems from the fact that it arises in

diverse areas of research, to wit computational biology, learning theory, computa-

tional geometry, etc.

In learning theory this problem is one of learning a set of points on a line non-

adaptively, when learning has to proceed based on a fixed set of given distances, or

adaptively when learning proceeds in rounds, with the edges queried in one round

depending on those queried in the previous rounds.

The version of this problem studied in Computational Geometry is known as

the turnpike problem. The description is as follows. On an expressway stretching

from town A to town B there are several gas exits; the distances between all pairs

of exits are known. The problem is to determine the geometric locations of these

exits. This problem was first studied by Skiena et al. [8] who proposed a practical

heuristic for the reconstruction. A polynomial time algorithm was given by Daurat

et al. [9].

In computational biology, it appears in the guise of the restriction site map-

ping problem. Biologists discovered that certain restriction enzymes cleave a DNA

sequence at specific sites known as restriction sites. For example, it was discov-

ered by Smith and Wilcox [10] that the restriction enzyme Hind II cleaves DNA

sequences at the restriction sites GTGCAC or GTTAAC. In lab experiments, by

6



Chapter 2. Experimental Study on Point Placement Algorithms 7

means of fluorescent in situ hybridization (FISH experiments) biologists are able to

measure the lengths of such cleaved DNA strings. Given the distances (measured

by the number of intervening nucleotides) between all pairs of restriction sites, the

task is to determine the exact locations of the restriction sites. The point loca-

tion problem also has close ties with the probe location problem in computational

biology (see [11])

The turnpike problem and the restriction mapping problem are identical, ex-

cept for the unit of distance involved; in both of these we seek to fit a set of points

to a given set of inter-point distances. As is well-known, the solution may not be

unique and the running time is polynomial in the number of points. While the

point placement problem, prima facie, bears a resemblance to these two problems

it is different in its formulation - we are allowed to make pairwise distance queries

among a distinct set of labeled points. It turns out that it is possible to determine

a unique placement of the points up to translation and reflection in time that is

linear in the number of points.

2.3 Overview of contents

In the next section we briefly review some of the well-known deterministic algo-

rithms and the only known incremental randomized algorithm. In the following

section we report on the experimental results obtained by careful implementations

of several deterministic algorithms and the incremental randomized algorithm.

This is followed by a detailed discussion of the results and we conclude in the next

section.

7



Chapter 2. Experimental Study on Point Placement Algorithms 8

2.4 Overview of some current point placement

algorithms

Several algorithms are extant that work in one or more rounds. The current state

of the art is summarized in Table 2.1.

Table 2.1: The current state of the art

Algorithm Rounds Query Complexity Time Complexity
Upper Bound Lower Bound

3-cycle 1 2n− 3 4n/3 O(n)
4-cycle 2 3n/2 9n/8 O(n)
5-cycle 2 4n/3 + O(

√
n) 9n/8 O(n)

5:5 jewel 2 10n/7 + O(1) 9n/8 O(n)
6:6 jewel 2 4n/3 + O(1) 9n/8 O(n)
3-path 2 9n/7 9n/8 O(n)

randomized 2 n + O(n/ log n) ? O(n2/ log n)

Comment: The 9n/8 lower bound on 2-round algorithms was proved in [4],

improving the lower bound of 30n/29 by Damaschke [12] and the subsequent im-

provement to 17n/16 by [1] and the further improvement to 12n/11 by [3]. As for

the lower bound on 1-round algorithms, the following result was proved in [12].

Theorem 2.1. The density of any line rigid graph is 4/3 with the exception of

the jewel, K2,3, K3 and K−4 (shown in Fig 2.1).

Jewel graph K2,3 graph K−
4 graph K3 graph

Figure 2.1: Graphs quoted in Theorem 2.1

The density, multiplied by n, gives the lower bound of 4n/3.

The simplest of all, the 3-cycle 1-round algorithm, has the query graph shown in

Fig. 2.2:

8



Chapter 2. Experimental Study on Point Placement Algorithms 9

p1 p2

p3

p4

pn

Figure 2.2: Query graph using triangles.

The query complexity of this algorithm is 2n − 3 self-evident as this is the

number of edges in the graph. The 4-cycle 2-round algorithm is typical of the

other 2-round algorithms listed in Table 2.1 and thus merits a brief description.

If G = (V,E) is a query graph, an assignment l of lengths to the edges of

G is said to be valid if there is a placement of the nodes V on a line such that

the distances between adjacent nodes are consistent with l. We express this by

the notation (G, l). By definition (G, l) is said to be line rigid if there is a unique

placement up to translation and reflection, while G is said to be line rigid if (G, l)

is line rigid for every valid l. A 3-cycle (or triangle) graph is line rigid, which is

why the 3-cycle algorithm needs only one round to fix the placement of all the

points. A 4-cycle (or quadrilateral) is not line rigid, as there exists an assignment

of lengths that makes it a parallelogram whose vertices have two different place-

ments as in Fig. 2.3.

p1 p1p4 p4p2 p2p3 p3

(a)

p1

p2 p3

p4
(b) (c)

Figure 2.3: Two different placements of a parallelogram p1p2p3p4

9



Chapter 2. Experimental Study on Point Placement Algorithms 10

2.4.1 4-cycle algorithm

For this algorithm, the query graph presented to the adversary in the first round

has the structure shown in Fig. 2.4.

p1 p2

k edges k + 2 edges
pi pj

Figure 2.4: Query graph for first round in a 2-round algorithm using quadri-
laterals.

Making use of the following simple but useful observation,

Observation 1. At most two points can be at the same distance from a given

point p on a line L

In the second round we query edges connecting pairs of leaves, one from the group

of size k and the other from the group of size k+2, making quadrilaterals that are

not parallelograms (the rigidity condition |p1pi| 6= |p2pj| ensures that the quadri-

lateral p1pipjp2 is not a parallelogram).

2.4.2 5-cycle algorithm

In the 5-cycle algorithm [1], the query graph submitted to the adversary in the

first round is shown in Fig. 2.5.

Each five cycle is completed by selecting edges to ensure that the following

rigidity conditions are satisfied. For more details on this algorithm see [1].

1. |piqi| 6= |rsj|

2. |piqi| 6= |sjtjk|
10



Chapter 2. Experimental Study on Point Placement Algorithms 11

r

qi

pi

si

tik

Figure 2.5: Query graph for the 5-cycle algorithm

3. |piqi| 6= ||rsj| ± |sjtjk||

4. |sjtjk| 6= |qir|

5. |sjtjk| 6= ||piqi| ± |qir||

2.4.3 3-path algorithm

In the 3-path algorithm [13], the query graph submitted to the adversary in the

first round is shown in Fig. 2.6.

Line rigid subgraph of 36 points of S

...

...

... ...

sl

qil

ril rjl rkl

pi

12b+ 7 3-links

b+ 124 leaves

pj pk

qjl qkl
b+ 124 leaves b+ 124 leaves

... ...

Figure 2.6: Query graph for the 3-path algorithm

In the second round, the algorithm select edges suitably to satisfy the fol-

lowing rigidity conditions.

11



Chapter 2. Experimental Study on Point Placement Algorithms 12

1. |p1p2| /∈ {|r1s|, |r2s|, ||r1s| ± |r2s||},

2. |p2p3| /∈ {|r2s|, |r3s|, ||r2s| ± |r3s||},

3. |p3p1| /∈ {|r3s|, |r1s|, ||r3s| ± |r1s||},

4. |p1q1| /∈ {|r1s|, |r2s|, ||r1s|±|r2s||, ||p1p2|±|r1s||, ||p1p2|±|r2s||, ||p1p3|±|r1s||,

||p1p3| ± |r3s||, ||p1p2| ± |r1s| ± |r2s||, ||p1p3| ± |r1s| ± |r3s||},

5. |p2q2| /∈ {|r1s|, |r2s|, |p1q1|, ||r1s| ± |r2s||, ||p1p2| ± |r1s||, ||p1p2| ± |r2s||,

||p2p3| ± |r2s||, ||p2p3| ± |r3s||, ||p1q1| ± |r1s||, ||p1q1| ± |r2s||, ||p1p2| ± |r1s| ±

|r2s||, ||p2p3| ± |r2s| ± |r3s||, ||p1q1| ± |r1s| ± |r2s||, ||p1q1| ± |p1p2| ± |r1s||,

||p1q1| ± |p1p2| ± |r2s||, ||p1q1| ± |p1p2| ± |r1s| ± |r2s||},

6. |p3q3| /∈ {|r1s|, |r2s|, |r3s|, |p1q1|, |p2q2|, ||r2s|± |r3s||, ||r3s|± |r1s||, ||p1p3|±

|r3s||, ||p2p3|±|r3s||, ||p1q1|±|r1s||, ||p1q1|±|r3s||, ||p2q2|±|r2s||, ||p2q2|±|r3s||,

||p1p3|±|r1s|±|r3s||, ||p2p3|±|r2s|±|r3s||, ||p1q1|±|r1s|±|r3s||, ||p2q2|±|r2s|±

|r3s||, ||p1q1|±|p1p3|±|r3s||, ||p2q2|±|p2p3|±|r3s||, ||p1q1|±|p1p3|±|r1s|±|r2s||,

||p2q2| ± |p2p3| ± |r2s| ± |r3s||}.

on each 3-path component shown in Fig. 2.7. For more details on this algo-

rithm see [13].

p1p1 p2 p3

q1 q2 q3

r1 r2 r3

s

Figure 2.7: A 3-path component

12



Chapter 2. Experimental Study on Point Placement Algorithms 13

2.4.4 Randomized algorithm

Damaschke [14] proposed an incremental randomized algorithm (for an introduc-

tion to randomized algorithms see [15]) that expands a set L of points whose

positions have been fixed. The set L is initialized by picking an arbitrary point p0

from S and setting it as the origin of the line on which the points lie. Relative to

p0 a random path P = p0p1p2... is incrementally constucted by choosing a point

pi at random from the set S − L, and measuring the distance d(pi, pi+1) for each

i = 0, 1, 2, ... Simultaneously, the algorithm maintains all possible signed sums

±d(p0p1)± d(p1p2)± · · · ± d(pi, pi+1) · · · , until for some pk+1 the signed sums are

no longer all distinct.

If a signed sum that repeats is the actual distance of pk+1 from p0, then

the placement of pk relative to pk+1 becomes ambiguous. We stop at this point,

query the distance d(p0, pk) and use the signed sum equal to this distance to fix

the placements on L of all the points on the path from p1 to pk (in Damaschke’s

description the position of pk is fixed relative to two points in L and the signed

sum corresponding to this position is chosen to fix the placements of the other

points on the path constructed thus far). Resetting pk as the new p0 and pk+1 as

the new p1, the algorithm repeats until L = S.

Damaschke proved the following result.

Theorem 2.2. The above randomized algorithm for the point location problem

has, for any instance, performance ratio 1 + O(1/ log n) with high probability.

The term performance ratio is the number of distance queries divided by the

number of points.

It is straightforward to turn this into a 2-round algorithm. Fix the placement

of 2 points p0 and p1 and choose a random path P = p1p2 . . . pn on all the remaining

13



Chapter 2. Experimental Study on Point Placement Algorithms 14

points to be placed and submit this query graph to the adversary. As before, we

compute signed sums, stopping when two signed sums are equal when we have

reached the point pk+1 on P . We resolve the ambiguity in the placement of pk+1

by adding edges from pk+1 to p0 and p1, whose lengths we will query in the second

round. Continue as in the incremental algorithm from pk+1 on.

2.5 Experimental Results

We implemented all the four deterministic algorithms and the 2-round version of

the incremental randomized algorithm, discussed in the previous section. The con-

trol parameters used for comparing their performances are: query complexity and

time complexity. The results of the experiments for the deterministic algorithms

are shown in the graphs below. In our experiments, we simulated an adversary

by creating a linear layout and checking the placements of the points by the algo-

rithms against this. This also solved the problem of ensuring a valid assignement

of lengths to the queried edges. We will have more to say about this in the next

section.

Predictably enough, the above chart shows that the behavior of the algo-

rithms with respect to query complexity is consistent with the upper bounds for

these algorithms shown in Table 2.1. Each of these algorithms were run on points

sets of different sizes, up to 50000 points.

Clearly, 3-cycle is consistently the fastest; but despite its complex structure

the 3-path algorithm does well as compared to the 4-cycle and the 5-cycle algo-

rithms. We have not included the performance of the randomized algorithm in

the above graphs as it is incredibly slow and we ran it for point sets of size up to

16,000. Table 2.2 below shows its performance details.

14



Chapter 2. Experimental Study on Point Placement Algorithms 15

Figure 2.8: Query Complexity Graph

Figure 2.9: Time Complexity Graph

2.6 Discussion

The behaviour of the deterministic algorithms with respect to time complexity is

opposite to their behaviour with respect to query complexity. The growth-rate of

the running time versus the size of the input point-set is also near-linear. Both

results are as expected.

15
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Number of points Number of Distance Queries Running time (hrs:mins:secs)
2000 2382 0:10:41
4000 4712 0:57:32
6000 7048 2:25:38
8000 9348 5:27:53
10000 11668 8:38:34
12000 13999 13:25:24
14000 16282 18:34:58
16000 18625 23:19:40

Table 2.2: Performance of 2-round randomized algorithm

As reported, in none of the deterministic algorithms it was explicitly stated

how to obtain an actual layout from the rigid graph constructed on the input

point set. In our implementations we devised a signed-sum technique to generate

a layout.

The assumption that an assignment of lengths is valid is a strong one and, as

mentioned earlier, we circumvented this problem by creating a layout and reporting

quried lengths based on this. The correctness of the placements of the points by

an algorithm is verified by checking that it generates a layout identical to the one

used to report queried lengths.

An algorithmic approach to the solution of this problem is based on con-

structing the Cayley-Menger matrix out of the squared distances of a query graph.

For a query graph with n vertices, the pre-distance matrix D = [Dij] is

a symmetric matrix such that Dij = d2ij, where dij is the distance between the

vertices (points) i and j of the query graph. The Cayley-Menger matrix, C = [Cij]

is a symmetric (n+1)×(n+1) matrix such C0i = Ci0 = 1 for 0 < i ≤ n, C[0, 0] = 0

and Cij = Dij for 1 ≤ i, j ≤ n [16], [5].

The vertices of the query graph has a valid linear placement provided the

rank of the matrix B is at most 3 (this is a special case of the result that there

16



Chapter 2. Experimental Study on Point Placement Algorithms 17

exists a d-dimensional embedding of the query graph if the rank of B is at most

d + 2; our claim follows by setting d = 1) [5].

It’s interesting to check this out for the query graph in Fig. 2.10 on 3 points.

p1

p2

p3

1 2

Figure 2.10: A query graph on 3 vertices

The Cayley-Menger matrix B for the above query graph is:

B =



0 1 1 1

1 0 1 x2

1 1 0 4

1 x2 4 0


,

where x = d13, the unknown distance bewteen the points p1 and p3.

By the above result, the 4× 4 minor, det(B) = 0. This leads to the equation

x4 − 10x2 + 9 = 0

which has two solutions x = 3 and x = 1, corresponding to the two possible

placements (embeddings) of the points p1, p2 and p3. Assuming p2 is placed to the

right of p1, in one of these placements p3 is to the right of both p1 and p2; in the

other, to the left of them both.

17
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2.6.1 Deterministic versus Randomized

Table 2.2 lends credence to the claim by Damaschke [14] that the number of

distance queries of the incremental randomized algorithm is bounded above by

O(n(1 + 1/ log n)) in the worst case. Unfortunately, it is too slow to be run with

very large inputs.

We suspect that the number of times signed sums become equal is intimately

connected with the distribution of the points that we generate by pretending to be

the adversary. To test this we generated the layout by picking a point at random

in a fixed size interval, and picking the next random point in the same fixed-size

interval whose left end point is the last point selected. In our experiments we

varied this fixed interval from 5 units to 500000 units and reported the number

of times we got equal signed sums for points sets of sizes varying from 20 to

1000. Interestingly enough, as can be seen from Table 2.3 below that the numbers

decrease as the interval-size increases.

Range
# of points 1-5 1-10 1-20 1-50 1-100 1− 103 1− 104 1− 5 ∗ 104 1− 105 1− 5 ∗ 105

20 7 7 6 5 4 3 3 2 2 1
50 16 13 11 10 9 7 6 6 5 4
100 25 23 20 19 15 11 9 8 8 7
200 45 39 35 33 29 22 18 17 16
400 78 70 61 56 49 41 39 34
1000 167 149 140 123 111 94 82 76

Table 2.3: Performance of incremental randomized algorithm for nearly uni-
form distributions

The incremental randomized algorithm is often held up as an example of sim-

plicity in comparison to deterministic algorithms, like the 3-path one, for example.

The above experiments paint a completely different picture. From a practical point

of view, it is completely ineffective as it is essentially a brute-force algorithm. The

3-path algorithm, on the other hand, scores high on both parameters - low query

complexity and low time complexity.

18



Chapter 3

Recognizing Line Rigid Graphs

3.1 Introduction

Graph recognition problem is very old and researchers have studied various graph

recognition problems, like interval graph [17], laman graph ( [18], [19]), clique

graph [20], cographs [21] , circle graphs [22] and many more. But line rigid graph

recognition problem is very new. As far our knowledge no prior work has been

done on this problem.

A graph is called line rigid if all the vertices of the graph has unique position

on a line up to translation and reflection; and distance between any two point

consistent with the graph. Consider a graph G = (V,E) consisting with n vertices

and m edges and each edge associated with weights. Now the problem is to

assign coordinates to each vertex so that the Euclidean distance between any

two vertices is equal to the weight associated with that edge. This is the graph

realization problem [23]. The graph realization problem is about computing relative

location of a set of vertices placed in Euclidean space, relying only on inter-vertex

distance measurement. Unique graph realization refers to exactly one realization of

a graph in Euclidean space. A graph that has unique realization must be rigid [23].

19



Chapter 3. Recognizing Line Rigid Graphs 20

Graphs with unique graph realization in one dimension refers to line rigid graphs.

Hendrickson et. al. [23] proposed some conditions for unique graph realization in

any dimension.

Consider a graph G. If G is line rigid then the vertices of G must have

unique placement on a line such that the distances between adjacent nodes are

consistent with the corresponding edges of G. The uniqueness of a layout refers

to the layouts obtained after translation or reflection is same. According to Chin

et. al. [1], a graph is line rigid if and only if it can’t be drawn as layer graph. In

layer graph representation of a graph G must hold the following conditions,

• all the edges are drawn as horizontal(parallel to x) or vertical(parallel to y)

line in xy-plane. i.e. | v1 − v2 |= (v1 − v2).x or (v1 − v2).y

• length of edge | v1v2 |, is same as the weight of the edge.

• there are two vertices v1 and v2 with different x-coordinates and y-coordinates.

i.e. (v1 − v2).x 6=| v1 − v2 | and (v1 − v2).y 6=| v1 − v2 |

• when the angle between x and y tends to 0o or 180o, no vertices will fall on

top of another.

A graph G has two layout if G has layer graph drawing. Fig. 3.1 shows four layout

of a graph that has layer graph representation. Consider xy, yz, xw edges are given

for a 4-cycle and zw edge is free. There are four possible placements of node w

and z

1. w can be left of x and right of y

2. w can be right of x and y

3. z can be left of y and x

20
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w

x

y

z

z

y x

w

y xz w

y xz w y xz w y xz w

(a) 4-Cycle Graph (b) Layer Graph (c) Layout 1

(d) Layout 2 (e) Layout 3 (f) Layout 4

Figure 3.1: Layout of a 4-cycle graph

4. z can be right of y and left of x

Line rigid graph doesn’t have layer graph representation. Some line rigid graphs

are shown in Fig. 3.2. We can’t draw these graphs as layer graph. Now the line

rigid graph recognition problem is reduced to layer graph drawing problem. In

this chapter our goal is to find out whether a given graph has layer graph drawing

or not. If the graph doesn’t have layer graph drawing, then the graph recognized

as a line rigid graph.

(a) Triangle (b) K−
4

(c) Jewel (d) K2,3

Figure 3.2: Line rigid graphs

3.2 Motivation

This problem is motivated from one-dimensional rigidity problem known as point

placement problem. Line rigid graph is widely used in the point placement prob-

lem. The point placement algorithm finds the position of n distinct point on a line,
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Chapter 3. Recognizing Line Rigid Graphs 22

up to translation and reflection with fewest possible pairwise distance queries. The

point placement algorithm creates a point placement graph after making pairwise

distance queries. A point placement graph is line rigid for some valid assignment

of edge lengths. Few interesting question arises from the point placement problem,

1. How to generate arbitrary line rigid graphs ?

2. How to verify line rigid graphs based on the structural property ?

In this thesis we are concentrating on the verification problem.

3.3 Main Idea

Our main idea is based on the layer graph representation of line rigid graph pre-

sented by Chin et. al. [1]. Layer graph drawing of a graph is same as the rectan-

gular grid drawing. In rectangular grid drawing the faces of a graph are drawn as

rectangular shape where each vertex is located on a grid point and each edge is

drawn as a horizontal or vertical line segment. There are two difference between

rectangular drawing and layer graph drawing. In rectangular drawing there are no

bends in the inner subgraph but in layer graph bends are allowed. Furthermore in

layer graph no vertices will fall on top of another one when the angle between the

vertical and horizontal edges are 0o or 180o. But there are no such restriction on

rectangular drawing. In Fig. 3.3 shows that difference. Our intension is to find a

rectangular drawing of arbitrary graph and ensure that no vertex will fall on top

of another vertex when the angle between x-coordinate and y-coordinate is 0o or

180o

Our proposed scheme recognizes arbitrary line rigid graphs with some prop-

erty: the graph must be 2-connected, planar and maximum degree of vertices are

three. A connected graph is 2-connected if the graph remains connected after
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a
b c

d

ef

(a) valid layer graph but
not rectangular drawing

(b) valid layer graph and
rectangular drawing

gh

i
j k

l

a
b c

d

efgh

i
j

k

l
bends

Figure 3.3: Difference between layer graph drawing and rectangular drawing

removing at most one vertex. On the other way we can say that at least two ver-

tices needed to remove to disconnect the graph. At first we will create an planar

embedding of the given graph G. A graph may have exponential number of plane

embedding and all the embeddings may not have rectangular drawing. If any one

of the embedding has a rectangular drawing then we consider G has rectangular

drawing. It is inefficient to check all the embeddings. To solve this issue three more

embeddings are created wisely from the first embedding so that we can decided

whether the graph has rectangular drawing or not by checking these four embed-

ding only. After creating the embeddings four vertices are chosen appropriately

from the outer face of an embedding. These four vertices represents four corner of

a rectangle and all other edges and vertices are either on the boundary or inside of

the rectangle. Then the subgraph inside the rectangle drawn as rectangles faces.

3.4 Recognition Scheme

We consider the arbitrary graph G is 2-connected, planar and maximum degree

of any vertex is three. The adjacency list of G is known. Now we will propose a

scheme that recognizes whether G is line rigid or not. The scheme is divided into

four phases.

Phase 1: Initial Pruning
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Phase 2: Generate a planar Embedding( Γ) of G

Phase 3: Rectangular Drawing of Γ

Phase 4: Layer Graph representation of Rectangular Drawing

The overview of the whole process is visualized in Fig. 3.4. Initially the

adjacency list of a graph G with 31 vertices is given as shown in Fig. 3.4(a). After

that we create an planar embedding Γ of G shown in Fig. 3.4(b). There can

be many embeddings of G. So we create four possible embeddings wisely based

on some structural characterization of Γ. Then we pick each embeddings one by

one and try to obtain rectangular drawing. To obtain rectangular drawing we

need to chose four vertices in the outer face of Γ as shown in Fig. 3.4(c). These

four vertices will be the corners of rectangle. Considering those four vertices as

four corners of a rectangle we obtain the rectangular drawing of inner subgraph

as shown in Fig. 3.4(d). After obtaining the rectangular drawing we adjust the

horizontal edges to ensure that no vertices will fall on top of each other when the

angle between horizontal lines and vertical lines are 0o or 180o. Now the modified

rectangular drawing satisfies all the characteristics of layer graph drawing. The

layer graph drawing of G is shown in Fig. 3.4(e).

3.4.1 Initial Pruning

In this phase we will check some structural property for which there no layer graph

drawing is possible. The graph has to be connected. Triangulated graphs can’t be

drawn as a layer graph as they are line rigid. So if the given graph is triangulated

then we can say that the graph G is line rigid. Some triangulated graphs are

shown in Fig. 3.5.

Triangles are intrinsically line rigid and layer graph drawing is not possible.

If all the faces are triangular in a graph then we can’t draw it as layer graph.
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1 → 2, 9
2 → 1, 3
3 → 2, 4, 11
4 → 3, 5
5 → 4, 6, 12
6 → 5, 7
7 → 6, 8, 13
8 → 7, 18
9 → 1, 10, 19
10 → 9, 11, 14
11 → 3, 10, 15
12 → 5, 13, 16
13 → 7, 12, 17
14 → 10, 15, 20
15 → 11, 14, 16
16 → 12, 15, 22
17 → 13, 18, 23
18 → 8, 17, 24
19 → 9, 26
20 → 14, 21, 27
21 → 20, 22, 29
22 → 16, 21, 23
23 → 17, 21, 25
24 → 18, 25
25 → 23, 24, 31
26 → 19, 27
27 → 20, 26, 28
28 → 27, 29
29 → 21, 28, 30
30 → 29, 31
31 → 25, 30
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(c)

1 2 3 4 5 6 7 8
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14
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19
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24
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26 27 28 29 30 31

(e) Layer graph representation

Figure 3.4: (a) Adjacency list of G (b) Embedding of G (c) Appropriate
four vertices are chosen as corners (d) Rectangular drawing (e) Layer graph

representation

Depth-first search can be used to check for any cycle with length three. The back

edges in the depth-first search represent cycle. Our intension of check cycles with

length three. For each back edge we will look for common adjacent vertex from

the vertices of the back edge. A common vertex from end vertices of a back edge

represents a cycle with length three. There can be more than one common vertex

if the back edge is part of more than one cycles of length three. Two common
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Figure 3.5: Triangulated graphs

vertex of a back edge ensures existence of K−4 . Fig. 3.6 shows clear representa-

tion of the process. Fig 3.6 (a) shows the adjacency list of the given graph, (b)

a b f dc e

BE3

BE1

BE2

(a) Adjacency List of G (b) Depth-first Search

a

c

f

d
e

(c) Graph G

b

a → b, d, e
b → a, c, d
c → b, d, f
d → a, b, c, e, f
e → a, d, f
f → c, d, e

BE4

BE5

Figure 3.6: Check 3-cycles in G

represents an random Depth-First search tree where the bold edges with arrow

are back edges. There are five back edges BE1, BE2, BE3, BE4 and BE5. The

end vertices f and e of back edge BE1 has a common vertex d. Hence there is

3-cycle, def associated with BE1. The same way back edge BE2 is associated

with 3-cycles, ade. Here all the back edges associated with at least one 3-cycle

which shows that all the faces of G are triangular. Hence G is a triangulated graph.

3.4.2 Generate an Planar Embedding

An embedding of a graph G on a surface is a representation of G where the points

are associated to vertices and arcs are associated to edges. An embedding is

planar if no two arcs intersect geometrically. Graph G1 in Fig. 3.7(a) has a planar

embedding but G2 in Fig. 3.7(b) does not have a planar embedding.
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In this phase we will create an planer embedding of an arbitrary graph G

using the algorithms given by Hopcroft et. al. [24] and Mehlhorn et. al. [25].

Hopcroft presented a efficient algorithm to testing planarity of an given graph and

also provided idea to create an embedding if exists. Later in 1996 K. Mehlorn and

P. Mutzel provided a detailed description of the embedding phase of Hopcroft and

Tarjan planarity testing algorithm. Hopcroft used the original idea provided by

Bergs et. al. [26] and Auslander et. al. [27]. Bergs provided a characterization of

planar graph: a graph is planar if and only if all of its biconnected components are

planar. Auslander and Parter has given a idea of planar graph embedding. First,

find a cycle in a graph. After removing the cycle the graph falls into several pieces.

Then an algorithm will recursively embed each piece in the plane with the original

cycle. Lastly all the embeddings of the pieces are merged. If merging is possible

then the embedding of the graph is found otherwise embedding is not possible.

a

b

cd

e

a

e b

d c

a b

cd

e

f
g

a
b

e

c

g

f
d

(a)

(b)

(d)

(e)

Figure 3.7: (a) Graph G1 (b) Planar embedding of G1 (c) Graph G2 (d)
Planar embedding is not possible for G2

In the first step we will check that the number of edges in given graph G(V,E)

does not exceed the edge restriction of planar graph. The number of edges in a
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planar graph must be ≤ 3|V |−3. If there are more edges in G then we decide that

G is nonplanar. In the next step, G will be divided into biconnected components.

Then test planarity of each biconnected components and embed them.

A graph G = (V,E) with a set of finite number of vertices V and a set of

finite number of edges E. A graph G = (V1, E1) is a subgraph of G = (V2, E2) if

V1 ⊆ V2 and E1 ⊆ E2. There is a path from vertex vi to vj if there exists a sequence

of vertices vx, i ≤ x ≤ j, and edges ey, i ≤ y ≤ j, such that ei = (vi, vi+1). A path

from a vertex to itself is a closed path. A closed path from vertex vi to vi with

one or more edges is a cycle if all of its edges are distinct and only the vertex vi

repeated twice.

The edges of depth-first tree are classified into four types: tree edge, back

edge, forward edge and cross edge. During a DFS execution, the classification of

edge (u, v), the edge from vertex u to vertex v, depends on whether we have visited

v before in the DFS and if so, the relationship between u and v.

1. If v is visited for the first time as we traverse the edge (u, v), then

the edge is a tree edge.

2. Else, v has already been visited:

(a) If v is an ancestor of u, then edge (u, v) is a back edge.

(b) Else, if v is a descendant of u, then edge (u, v) is a forward

edge.

(c) Else, if v is neither an ancestor or descendant of u, then edge

(u, v) is a cross edge.

In Fig. 3.8 tree edges are in bold, back edges are Eeb, Ehc, forward edge Eeh,

and cross edge Eae. For our flexibility we will consider two type of edges, tree
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ab

c
d e f g

h

Figure 3.8: Edges of a DFS tree

edges and back edges. Here we define back edge as an edge going from currently

visited vertex to any previously visited vertex.

A cycle in DFS tree consists of tree path and back edge. Tree path is a

path between two vertices that uses tree edges only. Some cycle will consist of

simple path of edges not in previously found cycles, plus a simple path edges in

old cycles. Now consider the first cycle c. It will consist of a sequence of tree

edges followed by one back edge in path P . The numbering of vertices along the

cycle are ordered. Each piece not part of a cycle will consists either of a single

back edge (v, w) or of a tree edge (v, w) plus a subtree with root w, plus all back

edges which lead from the subtree. Then each piece will be processed and add

them to a planar representation in decreasing order of v. Each piece can be either

inside or outside of cycle c. We continue to add new pieces and move old pieces

if necessary until either a piece cannot be added or the entire graph is embed-

ded in the plane. Fig. 3.9 shows the conflict between piece S2, S3 and S4. Two

ways to resolve the conflict between S2 and S3: (1) we can move S2 outside c (2)

or we can move S3 outside c. And two ways to resolve conflict between S3 and

S4: (1) move S4 outside c (2) move S3 outside c. In both case moving S3 outside

c resolve the conflicts. Fig. 3.9(b) shows the embedding after removing the conflict.

At first a depth-first tree will be generated. Depth-first tree can be achieve

by traversing the graph using depth-first tree traversal algorithm. A sequence of

number are assigned to each vertex as they are visited. The numbers must be in

incremental sequence and no numbers will be repeated. Directions are added to

the edges to represents the traversal sequence. Fig. 3.10 (a) shows the adjacency
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c

s1s2

s3
s4

c

s1s2

s3
s4

(a) (b)

Figure 3.9: Conflicts in DFS tree

list of a graph G, Fig. 3.10 (b) represents the DFS tree. In the DFS tree the

back edges are F1, F2, F3, F4, F5, F6, F7 and F8 and the tree edges are in bold.

Fig. 3.10(c) represents the vertex numbering in the DFS tree.

a → b, d
b → a, c, h
c → b, m
d → a, e, n
e → d, f, o
f → e, g, i
g → f, h, j
h → b, g, l
i → f, p, j
j → g, i, k
k → j, l, q
l → h, k, m
m → c, l, r
n → d, o
o → e, n, p
p → o, i, q
q → p, k, r
r → q, m

(a) Adjacency list of G

a
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b
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13
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17

F1 F2

F3

F4

F5
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F7
F8

(b) DFS Tree of G (c) Vertex numbering in DFS Tree

Figure 3.10: DFS tree of a graph

Now the largest cycle is choosen and remove from the DFS tree. In Fig. 3.11(a)

shows the largest cycle in bold lines. After removing the cycle divides the DFS

tree in two subtrees, T1 and T2, shown in Fig. 3.11(b) and Fig. 3.11(c). For each

subtree we will follow the same process: choose the largest cycle, remove it and

embed the pieces or subtrees. In subtree T1 there are two pieces s1 and s2 and in

subtree T2 there are five pieces, s3, s4, s5, s6, s7.
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(a) Largest cycle is chosen (b) Subtree T1 (b) Subtree T2
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Figure 3.11: Subgraphs after removing largest cycle from a graph

In subtree T1 there is no conflict between the pieces. But in T2 there are

conflict between s3, s4 and s5, s6, s7. Fig. 3.12 (a) and (b) shows the embedding

of the subtrees and Fig. 3.12(c) is obtained by combining the embedding of each

subtree to the largest cycle.
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Figure 3.12: Embedding of subtrees and combine the embedding to get entire
embedding of G
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3.4.3 Rectangular Drawing of an Embedding

In this phase we will generate rectangular drawing of G from an embedding using

the algorithm given by M.S Rahman et. al. [28]. Before starting the drawing

algorithm we will go through two preprocessing steps: (a) analyze embedding [29]

and (b) choose four corner vertices [30]. After these two steps we will engage the

drawing algorithm with a fixed embedding and four corner vertices in the outer

face of the embedding.

3.4.3.1 Analyze Embedding

First we will define few structural property of a graph which are necessary to

understand this phase. Suppose we have given a graph, G(V,E) where V is the

set of vertices and E is the set of edges. The degree of a vertex, v is represented

as d(v). In a cubic graph all the vertices are degree three vertices. A graph G

is k-connected if deletion of at least k vertices makes the graph disconnected. In

a 2-connected graph a pair of vertices can disconnect a graph and such pair of

vertices called separation pair in G. There is no separation pair in 3-connected

graph.

Consider a path, P = v0, v1, v2, . . . . . vk+1, k ≥ 1, in G. In P , d(v0) ≥ 3,

d(v2) = d(v3) =. . . =d(vk) = 2, d(vk+1) ≥ 3. The subpath P ′ = v1, v2, . . . .

. vk is called a chain of G and the vertices v0 and vk+1 are the supports of the

chain P ′. The graph shown in Fig 3.13(c) has four chains: P1, P2, P3 and P4.

Subdividing an edge is to add one or more vertices of degree two between the

end vertices the edge and remove the old edge. Subdivision of a graph is shown in

Fig. 3.13(d). Consider we have added a set of vertices, S = {w0, w1, .....wk}. Then

there is a path from u to v that pass through all the vertices S and d(wi) = 2,
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0 ≤ i ≤ k. A graph is called cyclically 4-edge-connected if the removal of any three

or fewer edges leaves a graph such that exactly one of the connected components

has a cycle. Fig. 3.13(a) is cyclically 4-edge connected but not Fig. 3.13(b).

C ′′

C

F1

F2 F3

(a) (b)

C ′

P1

P2

P3

P4

(c) (d)

Figure 3.13: (a) Cyclically 4-edge connected graph (b) Not cyclically 4-edge
connected (c) Four chains in a graph (d) Subdivision of a graph

Consider a planar biconnected graph G and Γ is the embedding of G. The

contour of a face in Γ is a cycle of G and called a face. The outer face of Γ is

represented by F0(Γ). Let C be a cycle in Γ. The plane subgraph of Γ inside C

(including C) is denoted by inner subgraph ΓI(C) for C and the plane subgraph

of Γ outside C(including C) is denoted by outer subgraph ΓO(C) for C. An edge

connects to exactly one vertex of a cycle C and other end of the edge located

outside C is called a leg of C. The vertex of C to which a leg is connected is

called leg-vertex of C. A cycle C is called k-legged cycle of Γ if C has exactly k

legs and there is no edge which joins two vertices on C. Fig. 3.14 the legs are in

bold. In Fig. 3.13(a) and (b) a 3-legged cycle is marked with thick solid lines.
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(a) 1-legged cycle (b) 2-legged cycle (c) 3-legged cycle (d) 4-legged cycle

Figure 3.14: Legged Cycles

A face F of Γ is called peripheral face for a 3-legged cycle C in Γ if F is

in ΓO(C) and the contour of F contains an edge on C. In any embedding Γ for

any 3-legged cycle will have three peripheral faces. In Fig. 3.13(b) there are three

peripheral faces for a 3-legged cycle drawn in thick solid lines. A k-legged cycle C is

called a minimal k-legged cycle if GI(C) does not contain any other k-legged cycle

of G. Cycle C in Fig. 3.13(b) is not minimal 3-legged cycle. But C ′′ is minimal

3-legged cycle. Consider two cycles C and C ′ in Γ are called independent if there is

no common vertex among their Inner subgraphs. A cycle C in Γ is called regular if

the plane graph Γ−ΓI(C) has a cycle. In the plane graph depicted in Fig. 3.13(b),

the cycle C drawn by thick solid lines is a regular 3-legged cycle, while the cycle C ′

indicated by thin dotted lines is not a regular 3-legged cycle. The 2-legged cycle

represented by a thin dotted line in Fig. 3.13(a) is not regular. A 2-legged cycle C

in Γ is not regular if and only if Γ− ΓI(C) is a chain of G and a 3-legged cycle C

is not regular if and only if Γ−ΓI(C) contains exactly one vertex that has degree

3 in G.

An edge eu,v of an embedding Γ which connects to exactly one vertex in the

contour of a cycle C in Γ and located inside C is called an hand of C and the

vertex of C to which hand connects is called hand-vertex of C. In Fig 3.15(a)

cycle C represented in thick solid line has four hands, h1, h2, h3 and h4 and the

hand vertices are vh1 , vh2 , vh3 and vh4 .

In a 2-handed cycle C there will be exactly two hands in Γ and there will

be no edge which joins two vertices on C and located inside C. A 2-handed cycle

C called a regular 2-handed cycle if Γ − ΓO(C) contains a cycle. Every 2-handed
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h1

h2

h3

h4

C2
C1

vh1

vh2

vh3

vh4

C

(a) (b)

h1

h2

C ′

vh1

vh2

C

Figure 3.15: (a)A cycle C with four hands (b) Regular-2-handed cycle C and
regular-2-legged cycle C ′

cycle is associated with a 2-legged cycle. In Fig. 3.15(b) cycle C drawn by thick

solid line is a 2-handed cycle and there is a 2-legged cycle C ′ inside C.

So far we have discussed about all the necessary terms which will be used

to analyze the given embedding. The goal to analyze the embedding to show its

structural property for which there is no rectangular drawing is possible and if we

don’t find those property then we will move to next preprocessing phase.

According to T. Nishizeki et. al. [31] if G is a subdivision of a 3-connected

planar graph then their is exactly one embedding of G for each face embedded

as the outer face. He also mentioned that for any two plane embedding of a

graph, any face cycle in one embedding will also represent a face cycle in another

embedding. Then multiple embeddings of G are possible by choosing each face as

outer face. M.S Rahman [29] provided following necessary and sufficient condition

for a graph to have a rectangular drawing.

Theorem 3.1 (M.S Rahman et. al. [29]:). Consider a G is a subdivision of a

planar 3-connected cubic graph and Γ is an arbitrary plane embedding of G.

1. Let, G is cyclically 4-edge-connected, that is, Γ has no regular 3-legged cycle.

Then the planar graph G has a rectangular drawing if and only if Γ has a
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face F such that

(a) F contains at least four vertices of degree 2.

(b) there are at least two chains on F , and

(c) if there are exactly two chains on F , then they are not adjacent and

each of them contains at least two vertices.

2. Let, G is not cyclically 4-edge connected. Then the embedding Γ of G has a

regular 3-legged cycle C. Let F1, F2 and F3 are three peripheral faces for C,

and let Γ1, Γ2, and Γ3 be the plane embeddings of G taking F1, F2, and F3,

respectively, as the outer face. Then the planar graph G has a rectangular

drawing if and only if at least one of the three embeddings Γ1, Γ2, and Γ3

has a rectangular drawing.

Algorithm: Theorem 3.1 leads to an algorithm to determine if an embed-

ding of a graph has a rectangular drawing. We will start with determining whether

the given graph G is a subdivision of a planar 3-connected cubic graph. Given a

graph G and one of its arbitrary embedding Γ. First we will find a regular 2-legged

cycle in Γ. If there is no regular 2-legged cycle in Γ then G is a subdivision of

a planar 3-connected cubic graph. Then we call another subroutine subdivision

drawing to check existence of rectangular drawing of G and if rectangular drawing

exists, then we move to next preprocessing phase, choose four corner vertices.

Subdivision drawing: Let Γ be any embedding on a graph G. First, we will

check if there is any regular 3-legged cycle in Γ. If Γ contains a regular 3-legged

cycle, then G is cyclically 4-edge-connected. If G is cyclically 4-edge-connected,

then find a face F in Γ that satisfies conditions (a), (b) and (c) in Theorem 3.1-

(1). If such face F is not found then G has no rectangular drawing. If Γ has such
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face F then create another embedding Γ′ of G whose outer face is F . Then we

move to next preprocessing phase choose four corner vertices with graph G and

the embedding Γ. Now consider that G is not cyclically 4-edge-connected and Γ

has a regular 3-legged cycle, C. Next find three peripheral faces F1, F2 and F3 of

C. For each perifheral face create a new embedding of G where the face is the

outer face in G. Lets Γ1, Γ2 and Γ3 are three new embeddings. Then for each new

embedding we go throught next preprocessing phase, choose four corner vertices.

If none of the embeddings pass through next phase then we conclude that G has

no rectangular drawing.
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(a) An embedding, Γ of G

(b) G+

(c) Γ+

(d) Γ∗

z

z

Figure 3.16: (a) Γ, Embedding of a graph G (b) Add dummy vertex z and
dummy edges (xi, z) and (yi, z) (c) z is embedded on outer face of G+ (d)

Removed dummy vertex and dummy edges

If there are regular 2-legged cycle in Γ then G is not a subdivision of a planar

2-connected cubic graph. Suppose total l of regular 2-legged cycles and the pair of

leg-vertices of regular 2-legged cycles or hand-vertices of regular 2-handed cycles

are (xi, yi), 1 ≤ i ≤ l. Then create a new graph G+ from G by adding a dummy
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vertex z and dummy edges (xi, z) and (yi, z); 1 ≤ i ≤ l. Then we will test planarity

of the of G+. If G+ is not planar, then we conclude that G has no rectangular

drawing. Otherwise find an embedding Γ+ of G+ such that z is embedded on the

outer face. Create new embedding Γ∗ by deleting the dummy vertex z and dummy

edges (xi, z) and (yi, z). If there are three or more independent 2-legged cycles in

Γ∗ then we conclude that G has no rectangular drawing. Otherwise consider that

Γ∗ has two minimal regular 2-legged cycles, C1 and C2. Then create four plane

embeddings Γ1, Γ2, Γ3 and Γ4 from Γ∗ by flipping Γ∗I(C1) and Γ∗I(C2) around the

leg-vertices. Now for each embedding we move to next preprocessing step, choose

four corner vertices. If none of the embedding passes through the preprocessing

step then we conclude that G has no rectangular drawing.
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x1 x3 x4 x2

y2y4y3

Rectangular drawing from (b)

Figure 3.17: (a)-(d) Four embedding created by flipping C1 and C2 around
leg vertices (e) Rectangular drawing obtained from Γ2
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3.4.3.2 Choose four corner vertices

In this preprocessing phase we will use the algorithm given by M.S Rahman et.

al.[30] to find appropriate corner vertex. The algorithm works on a special kind

of graph called 2-3 plane graph. A 2-3 plane graph is a plane graph and each

vertex has degree 3 except the vertices on outer face which have degree 2 or 3.

The idea behind choosing four corner vertex prior to drawing is to check if we

can draw the outer face of a graph as a rectangle. It is important to choose right

vertices as corners otherwise it is not possible to draw G in rectangular shape.

In Fig 3.18(b) corner vertices are chosen correctly but in Fig 3.18(c) the corner

vertices are inappropriate and rectangular drawing is not possible.
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g j
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c
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(a) (b) (c)

Figure 3.18: (a) Γ, Embedding of a graph G (b) Rectangular drawing of G
(c) Wrong corner vertices

A contour of a face F is defined by taking a clockwise cycle formed by the

edges on the boundary of the face. The contour of the outer face of a graph

G by C0(G). Any vertex which is not on C0(G) is called inner vertex of G. In

Fig 3.18(a) C0(G) is drawn as thick solid line and the inner vertices are f , g and j.

In a rectangular drawing of a graph G, each faces are represented as a rectangular

shape. The contour C0(G) of the outer face of G should be rectangular and has

four convex corners. But there will be no convex corners or bend in the inner

faces. Since rectangular drawing D of G has no bend in the inner faces, only

the vertices of degree 2 of G can be drawn as a corner in D and should be on

C0(G). Therefore, at least four vertices of degree 2 are needed on C0(G) to obtain

rectangular drawing of G. A C0− component is a subgraph obtained from G after
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removing C0(G). Alternatively we can say that if H is a single C0−component of a

graph G, then G = H∪C0(G). The graph G in Fig 3.19 has four C0−components:

F1, F2, F3 and F4.

F1 F2
F3

F4

(a) (b)

P1

P2

P3

P4

(c)

Figure 3.19: (a) A graph G (b) C0-components of G (c) Four chains in a graph

Theorem 3.2 (M.S Rahman et. al. [30]). A 2-3 plane graph has a rectangular

drawing if and only if it satisfies the following conditions

(a) G has no 1-legged cycle

(b) Every 2-legged cycle in G contain at least two degree 2 vertex.

(c) Every 3-legged cycle in G contain at least one degree 2 vertex.

(d) If G contains c2 independent 2-legged cycle and c3 independent 3-legged

cycle then, 2c2 + c3 ≤ 4.

From Theorem 3.2 (d) it is visible that if a graph G has a rectangular draw-

ing then G can have at most two independent 2-legged cycles and at most four

independent 3-legged cycles. Fig. 3.20 shows maximum number of independent

cycles in rectangular drawing.
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C1 C2

C3
C4

C1 C2

(a) (b)

Figure 3.20: (a) Two Independent 2-legged cycles (b) Four Independent 3-
legged cycles

Algorithm: Consider that a graph G satisfies the conditions in Theorem 4.

This algorithm will help us to choose corner vertices appropriately. The graph G

and one of its embedding Γ is known a priori. Four corner vertices will be chosen

based on the structural property of G and its embedding.

Case 1: Consider G contains at most three degree 3 vertices on C0(G). First

consider that there are only two degree 3 vertex on C0(G). G will have only one

C0-component. These two degree 3 vertex along with degree two vertices in C0(G)

create two chains. Furthermore, there are two 2-legged cycles C1 and C2 in G. In

Fig 3.21 (a) the cycles are shown as dotted lines. Since G satisfies condition (b) is

Theorem 3.2, each 2-legged cycle must contain at least two degree 2 vertices. Then

we can chose any two degree 2 vertices from the chains of each cycle as corners.

Fig 3.21 (a) and (b) shows the process to chose four corner vertices if G contains

only two degree 3 vertices. Furthermore, G will have exactly one C0-component

if there are exactly three degree 3 vertices in C0(G). The C0-component has no

cycles and G has three 3-legged cycles C1, C2 and C3 identified by dotted lines in

Fig 3.21(c). There are three chains associated with three 3-legged cycles. Since

G satisfies condition (c) in Theorem 3.2, each 3-legged cycle contains at least one

degree 2 vertex. Then we select one degree 2 vertex from chains of each 3-legged

cycles and the remaining one can be chosen arbitrarily.

Case 2: Now consider that G contains four or more vertices of degree 3 on

C0(G). First we need to find all 2-legged cycles and 3-legged cycles in G.
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Subcase 1: G will have exactly one C0(G)-component if G does not contain

pair of independent 2-legged cycles. If G has no pair of independent 3-legged cycles

the we can choose four vertices of degree 2 as corners in a way that each chain con-

tains at most two vertices of degree 2 and each pair of consecutive chains contains

at most three. In Fig 3.22(a) show that four corners are chosen from two non-

consecutive chains indicated with dotted regions and the graph in in Fig 3.22(b)

contains three chain chains.

a
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d

C1

C2

a

b
d

c

a

b

cd

a b

cd

(a) (b)

(c) (d)

C1

C2
C3

Figure 3.21: (a) A graph G1 with two chains (b) Rectangular drawing of G1

(c) A graph G2 with three chain (d) Rectangular drawing of G2

If G contains a pair of independent 3-legged cycles then G has at most four

independent 3-legged cycles. In this case first we need to find all independent

minimal 3-legged cycles in G. Lets say there are k independent 3-legged cycles in

G. Each minimal 3-legged cycle contains at least one vertex of degree 2 on C0(G).

Then we arbitrarily choose a vertex of degree 2 from each minimal 3-legged cycles.

If the number of independent 3-legged cycles less than four then we choose 4− k
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a b

cd

a b

cd
(a) (b)

Figure 3.22: (a) A graph with two chains (b) A graph with three chains

vertices of degree 2 on C0(G) which are not chosen so far in a way that each chain

contains at most two of the four chosen vertices. In Fig 3.23(b) four degree 2

vertices a, b, c and d are chosen as designated corners where vertices a, b and c

are chosen from three independent minimal 3-legged cycles and vertex d is chosen

arbitrarily from rest of degree 2 vertices on C0(G).

a

b

d

c

C1 C2a

b

c

d

(a) (b)

Figure 3.23: (a) Three independent 3-legged cycles in G (b) Two independent
2-legged cycles in G

Subcase 2: Consider G has two or more C0(G)-components.Then G has a

pair of independent 2-legged cycles. Let C1 and C2 be two independent minimal

2-legged cycles. We can assume that both C1 and C2 are minimal 2-legged cycles.

Now find the minimal 3-legged cycles in G(Ci); 1 ≤ i ≤ 2. Let kj is the number

of minimal 3-legged cycles in G. For each minimal 3-legged cycles we choose

arbitrarily exactly one vertex of degree 2 on the 3-legged cycles. If the number

of independent 3-legged cycles less than two then we choose arbitrarily 2 − kj
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vertices of degree 2 on V (Ci) which are not chosen so far. In Fig 3.23(b) C1 and

C2 are two independent 2-legged cycles. Cycle C1 has two independent minimal

3-legged cycles and C2 has one independent minimal 3-legged cycle. Among four

corner vertices a, b, c and d; vertices a and b are chosen from two independent

3-legged cycles in C1; and vertex c is chosen from one independent 3-legged cycle,

and vertex d is chosen arbitrarily from the remaining vertices of degree 2 in C2.

3.4.3.3 Rectangular Drawing

In this section we will obtain rectangular drawing of a given graph G. We will use

the rectangular grid drawing algorithm of Md. Rahman et. al.[28] to achieve the

rectangular drawing. So far we have an embedding Γ of G and appropriate four

corner vertices a, b, c and d. So we can easily draw the outer face as rectangle by

joining the four corner vertices. Now we will discuss on drawing all the inner faces

as rectangle.

A plane graph divides the plane into connected regions called faces. The

contour of a face is a clockwise cycle formed by the edges on the boundary of the

face. In a graph G the contour of the outer face of G is denoted by C0(G) or C0.

Theorem 3.3 (Md. Rahman et. al. [28]). G has no rectangular drawing if

(a) the C0-component has a cycle with less than four legs.

(b) G has a critical cycle C attached to path PN , PE, PS or PW , except the outer

cycle C0.

(c) G has a cycle with ncc(C)=0 attached to path P = PN +PE, PE +PS, PS +PW

or PW + PN , except the outer cycle C0

A path P is attached to a cycle C in G if P does not contain any vertices in

the proper inside of C and the intersection of C and P is a single subpath of P .
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Figure 3.24: (a) Faces of a 3-legged cycle (b) Clockwise critical cycle C at-
tached to path P (c) Critical cycle attached to PW when nc(C)=0 (d) Critical
cycle attached to PW when nc(C)=1 (e) A cycle with ncc(C)=0 attached to

PN+PE path

Consider vt is the starting vertex or tail vertex and vh is the ending vertex or head

vertex of P on cycle C. Qc(C) represents a path on C turning clockwise around

C from vt to vh and Qcc(C) represents a path on C turning clockwise around C

from vt to vh. A leg l of a cycle C is called clockwise leg lc for P if it is incident

to a vertex in Qc(C) except vt and vh. The number of clockwise legs of C for a

P is denoted by nc(C). On the same way we define counterclockwise leg lcc of

a C for P and the number of counterclockwise legs are indicated by ncc(C). A

cycle C attached to path P is called a clockwise cycle if Qcc(C) is a subpath of P .

Similarly, a cycle C is called counterclockwise cycle if Qc(C) is a subpath of P . A

cycle C is called critical cycle if either C is a clockwise cycle and nc(C) ≤ 1 or

C is a counterclockwise cycle and ncc(C) ≤ 1. Fig 3.24(b) shows a critical cycle

attached to a path P .
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A graph G has no rectangular drawing if the C0-component has a cycle with

less than four legs. It is impossible of obtain rectangular drawing of all inner faces

of G that are outside C and whose contours contain edges of the cycle if a cycle

in C0-component has less than four legs. Fig 3.24(a) illustrates a cycle with three

legs and the faces.

A rectangle has four sides and opposite sides are parallel to each other. Each

side may contain more than two vertices. To identify the sides we denote upper

side as north-path or PN , bottom side as south-path or PS, right side as east-path

or PE and left side as west-path or PW . A graph G has no rectangular drawing

if G has at least one critical cycle attached to path PN , PE, PS or PW , except

the outer cycle C0. In Fig 3.24(c) a critical cycle C with nc(C)=0 attached to

PW and Fig 3.24(d) shows a critical cycle C with nc(C)=1 attached to PW . G

has no rectangular drawing if G has a cycle with ncc(C)=0 attached to path

P = PN + PE, PE + PS, PS + PW or PW + PN , except the outer cycle C0. In

Fig 3.24(e) a cycle is attached to PN + PE path. It is impossible to draw the

inner face, which is outside C and whose contour contains Qcc(C), as a rectangle.

A C0-component is called a bad component if it satisfies one of the conditions in

Theorem 3.3. The C0-component mentioned in Theorem 3.3(c) is called a bad

corner.

Theorem 3.4 (Md. Rahman et. al. [28]). Let G be a plane 2-3 graph and four

corner vertices of degree 2 divides the outer cycle C0 into four paths PN , PE, PS

and PW . Then G has a rectangular drawing if and only if G has no bad component.

Consider path PN and PS has set of vertices {v0, v1, ...., vp−1, vp} and {uq−1, uq, ...., u1, u0}

respectively. A path is called NS-path if it starts at any one vertex vi on PN and

ends at any one vertex uj on PS without passing through any other vertex on
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C0. Similarly we can define EW-path. If C0 is the outer face of a rectangle

then NS-path or EW-path are the paths that joins between two opposite side of

a rectangle. An NS-path P divides G in to two subgraphs GP
E and GP

W , where

GP
E is the east part of G including P , and GP

W is the west part of G including

P . Drawing P as straight line, we fix the embedding of C0(G
P
W ) as a rectangle

with the north path P
′
N=v0v1, v1v2, .....vi1vi, east path P

′
E = P , the south path

P
′
S=ujuj−1, uj+1uj+2......uq−1uq, and the west path P

′
W=PW . Similarly we can fix

the embedding of C0(G
P
E). Now we define path P is an NS-partitioning path if nei-

ther GP
W nor GP

E has a bad component. Similarly SN-, WE- and EW-partitioning

path can be defined. If G has a partitioning path P then we can obtain a rectan-

gular drawing of G by recursively finding the rectangular drawings of GP
E and GP

W

or GP
N and GP

S , and patching them together with P .

A boundary face is an inner face of G and its contour contains at least one

edge of C0. A boundary path is a maximal (directed) path on the contour of a

boundary face connecting two vertices on C0 without passing through any edge

on C0. The direction of a boundary path is same as the contour of the face. For

X, Y ∈ {N,E, S,W}, a boundary XY-path is a boundary path starting at a vertex

on PX and ending at a vertex on PY .

Lemma 3.5 (Md. Rahman et. al. [28]). Any boundary NS−, SN−, EW−,

WE − path P of G is a partitioning path.

Now consider that G has no boundary NS−, SN−, EW− and WE−paths.

That means there is no single partitioning path. Then the C0 component has

at least one vertex on each of the paths PN , PE, PS and PW . In this case we

can find a pair of partitioning paths Pc and Pcc. These pair of partitioning paths

will divide G into two or more subgraphs having no bad components. Both Pc

and Pcc are NS-paths which have the same ends and do not cross each other in
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Figure 3.25: (a) Faces of a 3-legged cycle (b) Clockwise critical cycle C at-
tached to path P

the place but they may share several edges. If Pc and Pcc are not equal then

several cycles will be created by these to paths. The edges E(Pc) ⊕ E(Pcc) =

E(Pc) ∪ E(Pcc)− E(Pc) ∩ E(Pcc) will create vertex-disjoint cycles C1, C2, .... Ck,

k ≥ 1. Fig 3.25(b) shows such cycles between Pc and Pcc. If there are k cycles

then Pc and Pcc share k + 1 maximal subpaths, P1, P2, .... Pk+1. As Pc and Pcc

does not cross each other we can assume that Pc turns around cycles C1, C2, ...

Ck clockwise and Pcc truns around them counterclockwise. Pc and Pcc are chosen

such a way that each cycle Ci has exactly four legs; assuming clockwise order. The

first leg is in Pi, the second one is a clockwise leg, the third one is contained in

Pi+1 and the fourth leg is a counterclockwise leg. Thus G is divided into GPcc
W ,

GPc
E , G(C1), G(C2), .... G(Ck). In Fig 3.26(a) Pc and Pcc are shown as dotted lines

and in Fig 3.26(b) shows five subgraphs, GPcc
W , GPc

E , GC1, GC2 and GC3, obtained

by spliting G.

Lemma 3.6 (Md. Rahman et. al. [28]). Assume that G has no bad component

and that a cycle C in C0-component has exactly four legs dividing C into four

paths P
′
N , P

′
E, P

′
S and P

′
W . Then the subgraph G(C) of G inside C has no bad

component for any rectangular embedding of C fixed by P
′
N , P

′
E, P

′
S and P

′
W .
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Figure 3.26: (a) Pc and Pcc in G (b) Subgraphs of G (c) Subgraph formed by
P

′
cc (d) Subgraph formed by P

′
c

For any fixed rectangular embeddings of C1, C2, .... Ck we can assume that

G(C1), G(C2), .... G(Ck) has a bad component. Two rectangular embeddings

are possible for each cycle Ci, 1 ≤ i ≤ k as shown in Fig 3.27(a). For cycles

C1, C2, ... Ck there are 2k differenct embeddings are possible where Pc and Pcc

are embedded as alternating sequences of horizontal and vertical line segment as

shown in Fig 3.27(b). From graph GPcc
W we contract all the edges of Pcc which

are on the horizontal side of rectangular embeddings of C1, C2, ... Ck. Let G1

and G2 two graph obtained from GPcc
W and GPc

E by contracting edges from Pcc

and Pc. In the new graph we denote the updated Pcc path as P
′
cc and Pc as P

′
c

as shown in Fig 3.26(c) and Fig 3.26(d). If G2 has a rectangular drawing with

fixed P
′
c as a straight line then the rectangular drawing of G2 can be modified to

achieve rectangular drawing of GPc
E where Pc is drawn as an alternating sequence
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of horizontal and vertical lines. Similarly we can obtain rectangular drawings of

GPcc
W , G(C1), G(C2), .... G(Ck) and patch them to get a rectangular drawing of G.

The paths Pc and Pcc are defined as pair of partitioning paths or a partition-path.

If Pc = Pcc then it is a single partitioning path.

Ci Ci

PN PN

PW PW
PEPE

P

P

P

P

P

P

P

P

P
′
N P

′
N

P
′
W

P
′
S

P
′
E P

′
W P

′
E

P
′
S

PS PS

G(C1)

G(C2)

G(C3)
PcGE

GW

Pcc

PN

PE

PS

PW

(a)

(b)

Figure 3.27: (a) Two alternative embeddings of Ci (b) Embedding of a
partition-pair

Algorithm: So far we have a graph G, an embedding Γ of G and four

designated corner vertices a, b, c, and d from the previous steps. The corner

vertices will be on the contour C0(G) of G. Now we draw the contour C0(G) of the

outer face of G as rectangle by two horizontal line PN and PS and two vertical line

PE and PW by joining a, b, c and d. Then we find all the C0-components H1, H2, ....

Hp. Our intension is to achieve rectangular drawing of each C0-components. We

will call a subroutine draw rectangle for drawing all C0-components Hi. We initiate

the subroutine with a C0-components Hi and a graph Gi where Gi = C0 ∪Hi.
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Subroutine draw rectangle(H,G): Here H is the C0-component of G. First

we will find partitioning paths P in G.

Case 1: G has a partitioning path P . Consider P is one of the boundary

NS−, SN−, EW− or WE − paths. Let, P =NS-path. Then we will draw all the

edges of P on a vertical line. Now if the number of edges in P ≥ 2 then we will find

all the C0-components of GP
E for the fixed rectangular embedding of cycle C0(G

P
E).

Let, F1, F2, ... Fq are the C0-components of C0(G
P
E). Then we will obtain rectan-

gular drawing of each C0-component Fi by calling draw rectangle(Fi,C0(G
P
E)∪Fi)

subroutine. Similarly we can obtain the rectangular drawing of GP
W . Finally patch

all the drawings together to get rectangular drawing of G.

Case 2: G has no partitioning paths or no boundary NS−, SN−, EW−

or WE − paths. In this case we will find the westmost NS − path P . From path

P we will get a partition-pair Pc and Pcc.

Subcase 1: If Pc = Pcc, then we will draw all the edges of Pc on the vertical

line. Now consider Pc divides G into two subgraphs, G1 = GPc
W and G2=GPc

E . Then

our aim is to obtain rectangular drawing of each graph Gi, i = {1, 2}. Now for

each Gi we will find the C0-components, F1, F2, ...... Fq. Then we achieve rectan-

gular drawing of each C0-components Fj by calling draw rectangle(Fi,C0(Gi)∪Fj)

subroutine. Then finally patch all the drawings to obtain rectangular drawing of

G.

Subcase 2: If Pc 6= Pcc, then we will draw all the edges of Pc and Pcc on

alternating sequence of horizontal and vertical lines as shown in Fig 3.27. Let G1

and G2 graphs are obtained by contracting the edges of Pc and Pcc which are on the

horizontal side of C1, C2, .... Ck respectively, and G3 = G(C1), G(C2), ....G(Ck).

Now for each subgraphs Gi we find the C0-components, F1, F2, ...... Fq of Gi

and obtain their rectangular drawing by calling draw rectangle(Fj,C0(Gi) ∪ Fj)
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subroutine. Then finally patch all the drawings together to achieve the rectangular

drawing of G.

3.4.4 Layer Graph representation of Rectangular Drawing

In Layer graph representation all the edges are either vertical or horizontal, each

cross point will represents a vertex and no vertices will fall on top of each other

when angle between vertical and horizontal edges are 0o or 180o. We have already

meet other criteria in previous sections excepts the last one. In this section we

will ensure that no vertex the vertices of rectangular drawing will fall on top

of each other when the angle between vertical and horizontal edges are 0o or

180o. Rectangular drawing of graph G in Fig. 3.28 (a) does not meet all the

characteristics of layer graph drawing. Fig. 3.28 (b) and (c) shows the position

of vertices of G when bended to rigid(angle between horizontal and vertical edges

are 0o) and left(angle between horizontal and vertical edges are 180o) respectively.

In both layouts there are many vertices fall on top of each other.

a b c

d
e

f

g h

a b
d

c
e
g

f h a bd c
e

g

fh

(a) (b) (c)

Figure 3.28: (a) Rectangular drawing of a graph G (b)-(c) Two different
layout of G, vertices fall on top of each other

In the last section we obtained rectangular drawing of G where each face is

drawn as rectangle and each edges are drawn as vertical or horizontal line segment.

According to rectangular drawing so far no vertices are at same position in the

drawing.

The original idea to transform rectangular drawing to layer graph drawing is

to create enough horizontal space between each vertical line segment. By creating

52



Chapter 3. Recognizing Line Rigid Graphs 53

enough horizontal space between each vertical line segment ensures that the ver-

tices on each vertical line segment will not fall on top of any other vertices when

the angle between horizontal and vertical edges are 0o or 180o.

First we will draw the PS path horizontally and PW path vertically starting

from the leftmost vertex of PS and we will draw PN later. Here we consider all

horizontal edges are elastic and all the vertical edge lengths are fixed which will

help us to represent the rectangular drawing as layer graph. After that we will

find several vertical lines connected to PS. Now we will consider two cases based

on the edges of NS-Path.

Case 1: Consider all the vertical line segment connected to PS are NS-paths

and all the edges in NS-path are vertically drawn in rectangular drawing.

Consider there are n vertical lines or NS-Paths V L0, V L1, ...... V Ln, con-

nected to PS. Now we place the first vertical line V L0 at the left most position in

PS. Then we have to fix the position of next vertical line V L1 so that when we bend

the V L0 to right or bend V L1 to left then the vertices on V L0 and V L1 should not

fall on top of each other. To ensure this we should have enough horizontal space

for both vertical lines. So the position of V L1, XV L1 = |V L0| + |V L1| + X + 1,

where X is the number of degree two vertices between V L0 and V L1. Similarly

we can calculate XV L2=|V L1|+ |V L2|+X + 1. After fixing the placement of each

vertical lines we need to add the horizontal lines between the vertices on vertical

lines. Fig 3.29 illustrates the process. From the Fig 3.29 you can see that if we

place the horizontal lines such a way then there is no possibility that the vertices

will fall on top of each other.

Case 2: Consider all the vertical line segment connected to PS are not NS-

paths where all the edges in NS-path are vertically drawn in rectangular drawing.

We are considering about the horizontal edges in Pc or Pcc.
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PS
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Figure 3.29: Layer graph representation from rectangular drawing of G
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g

Figure 3.30: Layer graph representation of rectangular drawing of G in
Fig. 3.28

First we will draw the left most path or NS-Path or PW and place it at XV L0

on a horizontal line. Here the horizontal line will be an edge or a subpath of PS.

Now moving to right on PS we will find the next vertical line V L1 connected to

PS. V L1 can be one of the following:

(a) V L1 is a NS-Path as described in case 1.

(b) V L1 can be an vertical edge or subpath with consecutive vertical edges of

Pc or Pcc.

Let V L1 is an vertical line of type (b). Now we consider a virtual vertical path

Pv containing all horizontal edges pass through V L1. Then we will calculate the

appropriate length of each horizontal edges between V L0 and Pv. Keeping the

vertical line segments fixed and adjust the horizontal line segments.

Consider the Fig. 3.31. We denote distance between any two vertex a and

b by dab. In the Fig. 3.31 daf can be expressed as summation of two horizontal
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edge distances, dgh and dhi. Again dhi can be expressed as summation of another

two horizontal edge distances, dlm and dmn. After that there is no option to

express any of the previously mentioned horizontal edges to summation of some

new horizontal edges. So to determine correct value of daf we need to calculate

dgh, dlm and dmn. For each level of horizontal lines we add the vertical lengths to

calculated distances.

a b

cd

e f

g

h
i j

k l
m

n

o
p

q r s

|ad|=|bc|=|ab|=|cd|
|ak|=|fn|=|bp|=|af |=|eb|=|gi|
|ag|=|fi|=|bj|=|ae|=|gh|=|ef |=|fb|
|ae|=|gh|=|dq|=|dk|=|ql|=|rm|=|so|=|pc|
|hi|=|ln|

Figure 3.31: Rectangular drawing of a graph

So the horizontal distances between vertical lines in Fig. 3.31 are:

|gh| ≥ [|gd|+ |hq|+ 1]

|hi| ≥ [|lq|+ |mr|+ 1] + [|mr|+ 1] + |lh|

|lm| ≥ [|lq|+ |mr|+ 1]

|mn| ≥ [|mr|+ 1]

|no| ≥ [|os|+ 1]

|op| ≥ [|os|+ |pc|+ 1]

|fb| ≥ [|os|+ 1] + [|os|+ |pc|+ 1] + |bp|+ 1

|af | ≥ |gh|+ |hi|+ |fi|+ 1

≥ |gh|+ |lm|+ |mn|+ |hl|+ |fi|+ 1

≥ [|gd|+ |hq|+ 1] + [|lq|+ |mr|+ 1] + [|mr|+ 1] + |fi|+ 1
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Fig. 3.32 represents the layer graph drawing of rectangular drawing in Fig. 3.31.

The layer graph in Fig. 3.32 created by srinking all the edges 33.33% of Fig. 3.31.

d q r s c

p
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k l
n

m

ji

bfe

h
g

a

Figure 3.32: Layer graph drawing of Fig. 3.31

Lemma 3.7. Consider a rectangular drawing of a graph G where the edges are

elastic. Then the rectangular drawing can be transformed to a layer graph drawing

by changing the horizontal edges lengths.

By elastic we considered that the edge lengths of the graph in rectangular

drawing can be increase or decrease the edge lengths. As the edges of G are

elastic, we can create enough space between each pair of consecutive vertical lines

by increasing or decreasing lengths of horizontal line segments. Creating enough

space between each of consecutive vertical lines will ensure that no vertices will

fall on top of each other when angle between vertical and horizontal lines are 0o

or 180o.

Theorem 3.8. A graph G is not line rigid if one of the embedding of G has a

rectangular drawing.

According to the transformation process to layer graph drawing it is clear

that every rectangular drawing can be transformed to layer graph representation.

If there exists an rectangular drawing of a graph then a layer graph drawing also

exists for that graph. Chin et. al. [1] proved that a graph is line rigid if and only

if it has no layer graph drawing.
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Conclusion

4.1 Experimental Study on existing Point Place-

ment Algorithm

All algorithms have been implemented in C on a Apple Mac laptop with the

following configuration: Intel(R) Xeon(R) CPU, X7460 @ 2.66GHz OS: Ubuntu

12.04.5, Architecture: i686.

Further work can be done on several fronts. Particularly worthwhile is to

conduct further experiments into the behavior of the randomized algorithm, specif-

ically the influence of floating point arithmetic on keeping signed sums unequal.

On the theoretical side, it might be interesting to come up with a completely

different randomized algorithm - one that does not depend on maintaining an

exponential number of signed sums.

57



Chapter 4. Conclusion 58

4.2 Recognizing Line Rigid Graphs

Although the proposed scheme considers planar 2-connected graph with maximum

degree 3 but the phases in the scheme obtain layer graph drawing of a 2-3 graph.

So our proposed schema can recognize whether planar 2-connected 2-3 graph is

line rigid or not.

The proposed scheme can’t recognize line rigid graph that has maximum

degree more than 3, and bends in the inner subgraphs. But a in layer graph there

can be bends and maximum degree can be more than 3. It will be interesting

to obtain layer graph drawing of a graph that has multiple bend and maximum

degree is more than 3. Furthermore, line rigid graphs can be non-planar. Another

interesting problem will be to find line rigidity of non-planar graphs.
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