
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2013

Finding differential splice junctions in RNA-Seq
data as transcriptional biomarkers for prostate
cancer
Ahmad Tavakoli
Universty of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Tavakoli, Ahmad, "Finding differential splice junctions in RNA-Seq data as transcriptional biomarkers for prostate cancer" (2013).
Electronic Theses and Dissertations. 5001.
https://scholar.uwindsor.ca/etd/5001

https://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F5001&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5001&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5001&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/5001?utm_source=scholar.uwindsor.ca%2Fetd%2F5001&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


FINDING DIFFERENTIAL SPLICE JUNCTIONS IN RNA-SEQ
DATA AS TRANSCRIPTIONAL BIOMARKERS FOR PROSTATE

CANCER

by
Ahmad Tavakoli

A Thesis
Submitted to the Faculty of Graduate Studies

through Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science the
University of Windsor

Windsor, Ontario, Canada
2013

c© 2013 Ahmad Tavakoli



FINDING DIFFERENTIAL SPLICE JUNCTIONS IN RNA-SEQ
DATA AS TRANSCRIPTIONAL BIOMARKERS FOR PROSTATE

CANCER
by

Ahmad Tavakoli

APPROVED BY:

L. Porter
Department of Biological Sciences

A. Ngom
School of Computer Science

L. Rueda, Advisor
School of Computer Science

A. Mukhopadhyay, Chair of Defense
School of Computer Science

September 9, 2013



Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of this thesis has

been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone’s

copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or

any other material from the work of other people included in my thesis, published or oth-

erwise, are fully acknowledged in accordance with the standard referencing practices. Fur-

thermore, to the extent that I have included copyrighted material that surpasses the bounds

of fair dealing within the meaning of the Canada Copyright Act, I certify that I have ob-

tained a written permission from the copyright owner(s) to include such material(s) in my

thesis and have included copies of such copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved

by my thesis committee and the Graduate Studies office, and that this thesis has not been

submitted for a higher degree to any other University or Institution.

iii



Abstract

Alternative RNA splicing is a naturally occurring phenomenon that has been associated

with different types of cancer. Detecting splice junctions in the genome of an organism

is the key to the study of alternative splicing. RNA-Seq as a high-throughput sequencing

technology has recently opened new horizons on the studying of various fields of transcrip-

tomics, such as gene expression, chimeric events and alternative splicing.

In this research, we study prostate cancer from the viewpoint of splicing events as the

second most common cancer in North America. We have proposed a method for differ-

entially detecting splice junctions, and in a broader sense splice variants, from RNA-Seq

data. We have designed a 2-D peak finding algorithm to combine and remove the dubi-

ous junctions across different samples of our population. A scoring mechanism is used to

select junctions as features for prediction of cancer RNA-Seq data belonging to patients

diagnosed with prostate cancer against benign samples. These junctions could be proposed

as potential biomarkers for prostate cancer. We have employed support vector machines

which proved to be highly successful in prediction of prostate cancer.
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Chapter 1

Introduction

The central dogma of molecular biology is the cornerstone of modern genetics. It consists

of two main transformations, DNA becoming RNA, and RNA becoming protein. The first

transformation is called transcription, in which from a helix-shaped double-stranded DNA

sequence, a single stranded complementary RNA sequence is produced. The resulting RNA

can be coding RNA or non-coding RNA such as rRNA, tRNA, snRNA, or lincRNA. The

second transformation is called translation, where coding RNA sequences, transcripts, make

proteins that are the main operators in a cell [34]. Between these two steps, there is also a

process that is called RNA splicing, or simply splicing. During RNA splicing, parts of the

coding gene are removed, which are called introns, and other parts are preserved, which are

called exons. Figure 1.1 which depicts RNA splicing, shows the introns with a dark color

and exons using a white color. Introns are removed and exons are retained. The points

where introns and exons are separated from each other during splicing, are called splice

junctions. The result of this process is called messenger RNA (mRNA). Messenger RNA

consists of ribonucleotides, which, in turn, code for amino acids and amino acids are the

building blocks of proteins.

2
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Splicing does not happen in the same way, all the time for the same gene. Splicing might

be altered in different ways, which would lead to the same mRNA with a slight difference

such as an included intron or a deleted exon. This process is called alternative splicing,

which has recently been shown to be more prevalent and influential in gene functions than

what was believed before. Although alternative splicing happens as a normal process in

eukaryotes, recent studies have revealed that variations in splicing patterns are associated

with some diseases such Alzheimer’s disease, and alternative splicing also regulates genes

that are associated with cancer [5; 59].

It is estimated that 95% of the multiexonic genes in humans are alternatively spliced

[43]. As such, alternative splicing explains in part the complexity of mammalians given

their small number of genes compared to other organisms [5]. It also makes the synthesis of

several different proteins from the same gene possible for higher eukaryotes [1]. Alternative

splicing has been observed using different methods, such as exon skipping which is the most

common way.

Figure 1.1: Schematic view of RNA splicing.
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1.1 Sequencing

In spite of the fact that modern DNA sequencing started in 1977 with the first complete

DNA sequence, the first sequencing of DNA happened in 1968, merely fifteen years af-

ter the discovery of the double helix [24]. Completion of the Human Genome Project in

2003 was the pinnacle in sequencing, enabling new ways to answer questions in evolution,

biology and the environment.

In genetics, the act of determining nucleic acid bases of a DNA or RNA molecule at

single base pair resolution in the correct order, is called sequencing. Many applied fields,

such as medical diagnosis, biotechnology, forensic biology and biological systems have

been revolutionized by the knowledge of DNA sequences. Obtaining complete genomes

and transcriptomes of numerous types and species of life, including the Human Genome

Project, has become possible only by modern sequencing technologies.

High-throughput sequencing, or next generation sequencing, has brought down the cost

and time of sequencing significantly during recent years. This has happened by parallelizing

the sequencing process, leading to the production of millions of sequences concurrently

[22]. Sequencing has moved from small research labs that could take months and years for

cloning and sequencing of a target gene, to the industrialized large-scale instruments, and

with the advent of next generation sequencing to the bench-top instruments in the labs.

RNA-Seq

RNA-Seq is a high-throughput sequencing technology to sequence a cDNA molecule to

retrieve genetic information regarding the sample’s RNA or transcriptome. RNA-Seq pro-

vides single-base resolution and deep coverage and can be used to measure and quantify

gene expression levels, study differentially spliced transcripts, non-coding RNAs, small
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RNAs, transcriptional structure of genes in terms of their start sites (3′ and 5′ ends), chimeric

events, gene fusion, and post-transcriptional modifications.

RNA-Seq aims to provide us with the content of mRNA. However the mRNA molecule,

in contrast to DNA, is single stranded. This property makes it unstable and hard to se-

quence, and as a result it is transformed into cDNA which is double-stranded and stable to

be sequenced.

1.2 Biomarkers in Diseases

1.2.1 Biomarkers

A biological marker, or biomarker, has been defined by the National Institutes of Health

Biomarkers Definitions Working Group as “a characteristic that is objectively measured and

evaluated as an indicator of normal biological processes, pathogenic processes, or pharma-

cologic responses to a therapeutic intervention”. Biomarkers are now widely considered as

endpoints in basic and clinical research [56]. A wide variety of events have been considered

as biomarkers previously including chimeric events and splice variants, which is the focus

of this research [5; 27].

A chimeric event happens when parts of a gene, merges with other coding sequences

of another gene that results in formation of a new gene [27]. Although this chromosomal

rearrangement process is mostly related to the development of cancer, recent studies suggest

that trans-splicing also might occur frequently in healthy cells with regulation [19]. Trans-

splicing is a chimeric event in which RNAs that have been formed separately, splice together

and form a new RNA.

Based on the observation of 3′ and 5′ splice sites at the junction of almost all of the
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chimeric RNAs in their research, Kannan et al. [27] suggested that the formation of these

chimeras has happened as a result of splicing. This finding implies the close relationship

between these two events. From a bioinformatics point of view, splicing and trans-splicing

are quite similar. The main difference in the process of their detection is that when looking

for possible splicing events, the segments of reads can not be mapped to different genes,

while the same is possible for trans-splicing.

1.2.2 Prostate Cancer

Prostate cancer is the most common cancer in North America after skin cancer, which

affects 1 out of each 6 men [55]. It is estimated that 238,000 men will be diagnosed in 2013

with prostate cancer, and 30,000 men will die because of it [55]. Adenocarcinoma is the

most common type of prostate cancer which occurs when cells lose their natural control

over growth, maturation and death.

There have been many studies regarding prostate cancer using RNA-Seq data, which

covers a wide range of applications including genome wide association and variation stud-

ies, somatic mutations, non-coding RNAs, chimeric RNA and gene fusion [15]. Feng et al.

[15] conducted an extensive survey on the most recent alternative splicing studies in cancer

using RNA-Seq data. They included a review of recently developed RNA-Seq analysis tools

and also a set of publicly available RNA-Seq datasets. Kannan et al. [27] found chimeric

RNAs using RNA-Seq data in prostate cancer [27]. They detected 27 previously-unknown

highly-recurrent chimeric RNAs.

Pflueger et al. [44] concentrated on the discovery of new gene fusions in human prostate

cancer with RNA-Seq data, and detected seven new gene fusions related to prostate cancer

including the renowned TMPRSS2-ERG. Xu et al. [68] has studied RNA-Seq data from five
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prostate cancer patient and identified variations of chromosomal rearrangements, insertions

and deletions [68]. They discovered 92 human genes that had undergone somatic mutations.

Xu et al. [68] has also determined from the data that the gene TNFSF10 is unable to induce

apoptosis, and as a result it further boosts progression of abnormal tumors. Sahu et al.

[51] observed an interesting relationship between RNA splicing and prostate cancer rates

among different ethnic groups in America. In this recent study on RNA-seq enrichment of

long non-coding RNAs and alternative splicing, prostate cancer has been showed to have

a significantly lower incidence rate among Chinese population, and a significantly higher

rate among African Americans comparing to Caucasian men [51]. They also noted some

previously unknown gene fusions, among them the fusion between the genes TMPRSS2

and ERG.

Wang et al. [64] tackled the problem of discovering differentially spliced genes from

two separate RNA-Seq experiments. They designed their solution based on a negative

binomial (NB) distribution model for detection of splice junctions. They obtained their

data for the RNA-Seq library from human kidney and liver samples, but the method can

be applied to other sources, such as prostate cancer samples [64]. Prensner et al. [46] put

their focus on non-coding RNAs (ncRNAs) as emerging key molecules in human cancer.

They discovered a previously unannotated long intervening non-coding RNA (lincRNA),

PCAT-1, that is related to the progression of prostate cancer. In summary, there have been

various studies on prostate cancer recently based on RNA-Seq with the focus on chimeric

RNAs or gene fusions. These studies mostly used traditional statistical tests and focus on

biomarkers at the individual level and/or group of patients.
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1.3 Machine Learning

RNA-Seq experiments produce a vast amount of data, which requires significant compu-

tational resources in terms of time and space. Machine learning methods have proven to

be crucial for data analysis on this scale [13; 50; 69; 8]. These methods provide obvi-

ous advantages in terms of accuracy and adaptability and have been extensively used in

transcriptomics previously to study cancer [65; 48]. Feature selection, classification, and

clustering are among the significant applications of machine learning in bioinformatics.

Support vector machines (SVM) are machine learning methods which have been pro-

posed by Cortes and Vapnik [12] [62] in 1995 based on statistical learning theory, and have

since been used extensively on a wide range of applications including bioinformatics. SVM

follows a data-driven approach towards solving classification problems. High accuracy and

capacity to handle high-dimensional data such as gene expression are among the advantages

of using SVM for transcriptome analysis [53].

1.4 Motivation

The detection of biomarkers would have a meaningful impact on diagnosis and treatment

of cancer. The validity of using alternative splicing, and splice variants as a biomarker for

cancer has been widely studied [5; 54; 42; 17]. Reliable detection of splice junctions is the

most important step towards discovery of alternative splicing.

Kannan et al. [27] studied chimeric events on prostate cancer and discovered chimeras

that were only present in prostate cancer data. They also concluded that formation of these

chimeras are mediated by splicing which led us to the idea of studying differential splice

junction detection on prostate cancer. We applied our model on the same RNA-Seq dataset
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as Kannan et al. [27]. The innovative aspect of this work is based on using machine learning

and pattern recognition techniques for the purpose of classification and feature selection, as

well as data integration and processing. Our study also focuses on the discovery of splice

junctions as a feature for classification of cancer.

1.5 Problem

The problem that we have addressed in this work is finding splice junctions from RNA-

Seq data that could be proposed as biomarkers for prostate cancer. Finding a reliable and

accurate way of detecting splice junctions on an RNA-Seq dataset is the first part, and ex-

tracting meaning from junctions belonging to 30 different samples of two different classes

is the second part of the problem that we tackle in this study.

1.6 Contributions

The main contributions of this thesis are:

• Developing a model for combining and filtering out splice junctions on large scale

data using peak-finding in 2-D histograms.

• Designing a method to propose splice junctions as biomarkers based on differential

results among cancer and benign samples.

• Development of a system for prostate cancer prediction using the biomarkers and

support vector machines.
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1.7 Thesis Organization

This thesis comprises six chapters. Chapter II discusses RNA-Seq as an emerging technol-

ogy in sequencing, its advantages over previous methods and the challenges that researchers

face using it. In Chapter III, we provide an introduction to splice junctions which will be

followed up by a survey on splice junction discovery methods. Next chapter includes the

methods and materials that we have used to address our problem at hand. Chapter V in-

cludes the results of the experiments that we conducted, as well as comparisons and discus-

sions regarding them. Finally, in Chapter VI, a conclusion on this topic is made and future

works are discussed.



Chapter 2

RNA-Seq

2.1 RNA-Seq Technology

RNA-Seq has been dubbed revolutionary by the scientific community because of its ability

to transform our knowledge about eukaryotic transcriptomics at a level of detail and preci-

sion that has never been studied before [22]. Next-generation or high-throughput sequenc-

ing provides a way to sequence cDNA to study a sample’s mature RNA sequence, which

is called RNA sequencing or RNA-Seq. Next-generation sequencing supplies a ground for

massive transcript expression analysis, and has become the prominent approach to study

transcriptomics since 2008. Short reads acquired from high-throughput sequencing tech-

nologies can be used for studying transcriptome and gene structure identification. RNA-Seq

can be used for cellular phenotyping and help establishing the etiology of diseases charac-

terized by abnormal splicing patterns.

Before the invention of RNA-Seq, microarrays were the way to study the transcrip-

tome. The main methods for this purpose are hybridization-or sequence-based approaches

[66]. Limited dynamic range resulting from high level of background, saturation signals

11
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and being dependent on existing genome annotations are amongst the main restraints of

microarrays. The ability to study and measure the transcriptome without prior knowledge

of the reference genome, is one of the advantages of RNA-Seq over microarrays. This en-

ables researchers to detect previously unknown transcripts. RNA-Seq is also more sensitive

in detecting changes in low expressed transcripts [70].

Detection of chimeric transcripts and gene fusion is among many RNA sequencing

applications that are being studied extensively [27; 33; 38; 37; 45]. Chimeric RNAs have

been suggested to be a possible biomarker in at least two recent studies [49; 36]. Kannan

et al. [27] used paired read information to search for chimeric events across genome. They

looked for paired reads that could be mapped to a different gene either in the genome

or transcriptome. They used different filtering strategies to reduce the number of false

positives. The number of mismatches in the initial mapping of the reads is a criteria for this

purpose, which has been set to a tolerance rate of two mismatches.

RNA-Seq is the favorite approach to study gene expression at a base-level with high

coverage, it supplies enough reads for the purpose of detecting alternative splicing. One of

the keys to profiling this genetic information is the identification of intron-exon boundaries

or splice junctions. In RNA-Seq, the exact nature of splicing events is buried in the reads

that span intron-exon boundaries. The accurate and efficient mapping of these reads to the

reference genome over these boundaries is a major challenge, which is a requirement for

studying RNA splicing.
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2.2 RNA-Seq Preprocessing

2.2.1 Preparation

There are various technical approaches for preparation of an RNA-Seq experiment. The first

step that is common among all technology platforms is determining the amount of RNA that

is required. This amount could be different based on the sequencing platform and priming

method [67]. The majority of RNAs (>90%) existing in cells are ribosomal RNA (rRNA).

The remaining RNAs are composed of mRNA and other types of RNAs. As a result, they do

not provide useful information regarding the transcriptome. There are various techniques

to concentrate the sequencing on non-ribosomal RNAs. Selective enrichment of mRNA is

a method that can be carried out by enriching the PolyA tail present in mRNA molecules.

The resulting mRNA from the enrichment process should undergo the priming process

in the next step. This could be done using either random primers or oligo-dT primers

[15; 67], which is also called mRNA-Seq. Another consideration that should be taken into

account, especially for comprehensive RNA-Seq experiments in organisms like human and

mouse with complicated genomes, is creating double-stranded cDNA to maintain strand

specific information of the RNA [67].

2.2.2 Paired-end Reads

RNA-Seq reads comes in two types, single-end reads and paired-end reads. Paired-end

reads which are being used more and more in transcriptomic studies, consist of two frag-

ments obtained from both ends of a DNA fragment [66]. The length of an RNA-Seq read

could be up to 500bp depending on the sequencing conditions. Because of the limitations

of the technology, only sequences from the tails of that read can be obtained. In case of
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obtaining both ends of the read, it is paired-end sequencing or it is single-end if we have

only one of the reads.

Paired-end sequencing provides us with many advantages in data analysis, also it re-

quires no more DNA as single-end sequencing and hence is more efficient [25]. Using

Illumina technology, end users are able to choose their required insert size between forward

and reverse strands of DNA. A dataset of 200 million reads of 2 x 75 bp is the typical result

for a paired-end sequencing run using Illumina technology. An insert size between 120 bp

and 170 bp is generally suitable [67].

Using single-end sequencing, only one strand of the DNA fragment is sequenced and

the information from the other strand is lost. Being able to sequence the other strand, gives

us the capacity to do the aligning more accurately and reduces the number of errors.

Given the insert size of each read and position where one of the reads map to the refer-

ence genome, we know the direction and approximate position of the other read. PASSion

[70], one of the methods studied, use this information to optimize its algorithm’s perfor-

mance.

2.3 RNA-Seq Data Analysis

In RNA-Seq, bioinformatics faces similar challenges as other high-throughput sequencing

technologies. The main challenges are the development of algorithms and tools for storage,

retrieval and processing of large datasets containing the information related to millions of

short reads for each RNA-Seq run. The efficiency of these methods becomes more critical

in dealing with low abundance transcripts where the error rate becomes higher. However,

the same problem existed for previous technologies such as microarrays.
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2.3.1 Coverage

Depth of sequencing is another important aspect of any sequencing technology and also

RNA-Seq. Sequencing coverage, or the percentage of transcripts being read, is affected

by the depth of sequencing. Generally speaking, more sequencing depth will lead to higher

coverage. Sequencing depth, in turn is related directly to the cost of the experiment [26; 66].

To sequence simpler transcripts, for which alternative splicing has not been observed in

them, lower depths are sufficient. However, higher depth might be needed in specific cases,

such as when we are investigating rare events, as in lowly-expressed transcripts. The reason

is that in RNA-Seq different transcripts are expressed depending on their gene expression

levels. Also higher depth might lead to more statistically significant results.

2.3.2 Mapping

Almost in any RNA-Seq data analysis, mapping the reads is the first step to perform. RNA-

Seq is a high-throughput sequencing technology, and as such, it provides us with numerous

short reads. Depending on the details of the sequencing platform and mapping technology

being used, short reads can be mapped directly to the reference genome or can be assembled

to form contigs. These contigs can be used to reveal the transcriptome structure [66].

To maintain a high standard for the reads that are being mapped, and decrease the chance

of errors and dubious results, most of the mapping algorithms implement one or several

ways to filter out reads that have a given number of base pairs with quality scores lower than

a particular threshold. This generally also increases the speed of subsequent processing.

For large transcriptomes, as we have both a high number of reads and lengths of reads

are short, some reads may align to multiple places across the reference genome. This

alignment could have happened with different alignment scores computed by mismatches,
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deletions, and insertions. Based on the application, this problem can be addressed by dis-

carding reads that map to more than a defined number of places in the genome, or filtering

out the reads based on their corresponding alignment scores. The next step in most RNA-

Seq experiment pipelines is on selection of unique reads and removal of repeated reads.

Figure 2.1: Alignment of RNA-Seq reads across splice junctions [61]. Courtesy of User:rcogs,

Wikimedia Foundation.

Part A of Figure 2.1 illustrates the process of splicing. In Part B, the process of mapping

back RNA-Seq reads to the reference genome is shown, which leads to the detection of

splice junctions. The reads that span a splice junction are shown in a light color, and the

reads that map to a single exon are shown in black. This figure demonstrates that light-

colored reads are split when aligning back to reference genome.

Before introducing alignment solutions that are designed and developed specially to
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map short reads in higher volumes, it was only possible to map 10 million short reads using

BLAST or BLAT, which needed 6 and 43 hours to complete respectively (see Li et al. [31]).

Considering the fact that some sequencing platforms are capable of generating 200 million

reads in a single run, it could be concluded that the application of common read aligners

is not feasible with next-generation sequencing technologies. To address this issue, many

short read aligner programs such as ELAND by Mortazavi et al. [39], SOAP and SOAP2

by Li et al. [31] [32], BOWTIE by Langmead et al. [29], SMALT [70], and BWA by Li and

Durbin [30] were developed to facilitate RNA-Seq analyses.

2.4 RNA-Seq Datasets

Studies on RNA-Seq could be conducted on either real or simulated datasets. Simulated

datasets give us the ability to form reads in silico, and hence having the option to try our

methods for different environment-dependent variables such as read length and quality,

insert size, expression level, etc. Also, it provides us a reliable means to compare different

methods against each other.

Most of RNA-Seq datasets are made publicly available for further studies. Various file

formats have been proposed for storing next-generation sequencing files. Sequence Read

Archives (SRA) format is designed for storage of large amounts of sequence data, for this

reason the data is compressed and not easily read. SRA format is one of the standard

formats used by major genomic databases around the world including NCBI, EBI, and

DDBJ to store sequence data [41]. Figure 2.2 shows a paired-end RNA-Seq read in FASTQ

format from the dataset that we use in this study. Each read is represented in 4 lines in this

figure. First and third lines are read IDs, second line includes the read sequence and the

fourth line is the quality score. As can be seen, the read ID and the read length for both
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strands is the same. However, read sequence and quality scores are totally different.

The dataset that we use in our study contains more than half a million paired-end RNA-

Seq reads that have been acquired using Illumina Genome Analyzer II platform [27]. While

this dataset occupies more than 16GB when stored in SRA format, storing it in FASTQ for-

mat takes 5 times the amount of physical memory.

@SRR057653.1 HWUSI-EAS230-R:2:1:27:501 length=36

AAAAAATATGGTTAAAAACTGTATANANNANNNNNT

+SRR057653.1 HWUSI-EAS230-R:2:1:27:501 length=36

=6=@8:><)8=+-B>=:6?######!#!!#!!!!!#

@SRR057653.1 HWUSI-EAS230-R:2:1:27:501 length=36

CTTTAATACACATTAAGTCATTTAATTCTCACCTAG

+SRR057653.1 HWUSI-EAS230-R:2:1:27:501 length=36

@0=+@@@B@?>@:/@B=’><%’7>A908@<B@B==5

Figure 2.2: Sample RNA-Seq read in the FASTQ format.

Following its introduction to the scientific community, RNA-Seq has soon found its

place in research in various fields such as gene expression profiling and RNA splicing

events, and started a new era in transcriptomics. The data acquired from RNA-Seq is com-

prehensive in nature and has shaken the field of transcript identification, and has contributed

significantly to the process of transcriptome assembly. However, the challenge remains in

the bioinformatics field to develop algorithms for analyzing these data and extracting bio-

logical meaning from them.



Chapter 3

Splice Junction Detection

Detecting splice junctions has always been one of the interesting fields of studying tran-

scriptomics, and microarrays have been used extensively for this purpose in the past. Since

2008, next-generation sequencing has become the prominent method to study transcrip-

tomics. In this chapter, we present the major works dealing with the detection of splice

junctions using RNA-Seq data.

All the reviewed works have been categorized according to the method that the authors

have developed to detect splice sites. In the first category, we present the methods developed

by De Bona et al. [13], Dimon et al. [14], and Lou et al. [35]. The authors in this section

have used some sort of machine learning algorithms for detection of splice junctions in

their approach. In the second section of this literature review, we would study the methods

which try to assess the reliability of a possible splice junction by a read-counting method.

This section consists of works by Trapnell et al. [58], Wang et al. [63], Huang et al. [23].

PASSion designed by Zhang et al. [70] also belongs to this group. The third section focuses

on works that use other methods as their main way of removing false positives from their

results. These papers include those of Au et al. [3], Ameur et al. [2], and Bryant et al. [7].

19
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3.1 Alternative Splicing

Understanding the nature of alternative splicing is very important in the detection of splice

junctions. Figure 3.1 illustrates examples of alternative splicing. In this figure, exons and

introns are represented by rectangles and lines respectively. The most prevalent way that

alternative splicing happens is exon skipping which is shown as number 4 in the figure.

Exon skipping happens when an exon that is supposed to be part of the mRNA is removed.

Intron retention (Number 5) is the opposite, when an intron is kept in the mRNA, as it was

supposed to be removed. Alternative 3′ and 5′ splice site usage changes could also happen,

which will lead to different splicing patterns (Numbers 1 and 2). Splice sites are shown

with dark boxes in the figure. Alternative promoters and alternative poly(A) sites are also

other forms of alternative splicing [43; 5] (Numbers 6 and 7).

Figure 3.1: Different types of alternative splicing [5]. The top leftmost image shows the

normal way of splicing where introns are removed and exons are retained.Courtesy of Elsevier.
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3.2 Methods for Splice Junction Detection

RNA-Seq rose to prominence in research after 2008, and as a result, all methods of this

review have been published over a time spanning less than five years. Researchers may not

have enough time to study the works of their peers and make comparisons and experiments

on already developed methods. The works by Ameur et al. [2], Au et al. [3], and Bryant

et al. [7] which are studied in this review, have been published within a month. Obviously,

none of them had the chance to refer to each other. The interesting point is that these papers

fell into the same section in this review, which implies the similarity of their work.

3.2.1 Methods based on Machine Learning

In this section, we review the methods developed by De Bona et al. [13], Dimon et al. [14],

and Lou et al. [35]. All these methods apply some sort of machine learning technique in

their pipeline. QPALma developed by De Bona et al. [13], uses SVM and HMMSplice by

Dimon et al. [14] utilizes hidden Markov models. Lou et al. [35] use maximum likelihood

estimation in their approach to splice junction detection. Table 3.1 reviews the availability

and update frequency of these methods as software packages.

Methods based on Support Vector Machines

Short reads acquired from high-throughput sequencing technologies can be used for study-

ing the transcriptome and gene structure identification. Aligning these reads over intron/exon

boundaries is a requirement for this purpose. De Bona et al. [13] do not refer to any previous

work which relates to the subject of this review.

De Bona et al. [13] developed their approach, called QPALMA, in three independent

parts, splice site prediction model, a dynamic programming algorithm and a scoring func-
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tion. QPALMA aims to align short reads to the reference genome; splice site prediction

helps this approach to achieve better results. This part is based on a machine learning ap-

proach which uses a set of donor and acceptor sites to train a SVM predictor. The authors

propose three different extensions for the Smith-Waterman algorithm for aligning the reads

to the reference genome.

The authors state that they trained their algorithm using a simulated dataset of 10,000

previously aligned sequences. The alignment error rate for these rates has been calcu-

lated by incorporating different available pieces of information. The authors also tried their

approach on a dataset of spliced and unspliced 2.98 million reads of forward strands of

chromosome 1.

De Bona et al. [13] claim that they could align 10,000 in silico spliced reads with an

error rate of 1.78% incorporating quality information, intron length model and splice site

predictions. The authors state that it was the best rate that they could have achieved. The

authors also claim that QPALMA aligned spliced and unspliced reads with a 5.2% and 1.2%

error rates respectively.

The authors claim that they could successfully exploit all information sources to align

short reads over exon boundaries. The authors claim that their approach works reasonably

well for all next-generation sequencing platforms, including Illumina sequencing, which

has been tried in their experiment. The authors state that their method can be extended to

exploit homo-polymer errors, which is available for Roche’s 454 sequencing platform.

Method based on Hidden Markov Models

During the past decade, there has been a growing appreciation of the importance of alterna-

tive splicing as a mechanism for organisms to increase proteomic diversity and regulatory
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complexity. According to Dimon et al. [14], the ability to detect alternative splice isoforms

with accuracy and sensitivity is the key to comprehensive RNA-Seq analysis. The authors

refer to previous work by Mortazavi et al. [39], Trapnell et al. [58], Bryant et al. [7], and

Ameur et al. [2].

They note that the method developed by Mortazavi et al. [39] does not address the

question of novel junctions and cannot be used for organisms with incomplete or inaccu-

rate genome annotations. They state that the algorithm developed by Trapnell et al. [58]

performs best on mammalian transcripts with relatively high abundance, but has defects

in more compact genomes and with non-canonical junctions. They note that the method

proposed by Ameur et al. [2] has the requirement for at least one read to split evenly across

the exon-exon boundary which reduces sensitivity in low coverage datasets and transcripts.

Also, they claim that this method supports only ABI SOLiD reads.

Dimon et al. [14] state that SuperSplat, the method developed by Bryant et al. [7],

requires both pieces of a read to be exact matches to the reference sequence and conclude

that it is not robust against sequencing errors or single-nucleotide polymorphisms. The

authors claim that the algorithm designed by Au et al. [3] considers only canonical splice

junctions and requires read lengths of 50bp or greater.

Dimon et al. [14] claim that they have developed a method to avoid the inherent bias

introduced by relying upon previously defined biological information. Their algorithm,

called HMMSPlicer, works by dividing each read in two halves and seeding the read-halves

against the genome and using a Hidden Markov Model to determine the exon boundary.

They claim that both canonical and non-canonical junctions are reported and a score is

assigned to each junction, which is dependent on the strength of the alignment and the

number and quality of bases supporting the splice junction.
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The authors claim that they compared their algorithm with those designed by Trapnell

et al. [58] and Au et al. [3]. They state that they analyzed the performance of their method

on simulated reads and three publicly available experimental datasets.

Dimon et al. [14]. include the detailed results of their experiments with different al-

gorithm parameters on the examined datasets. The authors state that in comparison with

TopHat, HMMSplicer shows its ability to find more junctions with a similar level of speci-

ficity in each of the tested datasets. They state that in comparison with SpliceMap by Au

et al. [3], their method achieves 7% more matching junctions for human datasets, and it

outperforms SpliceMap in the low sequence quality A. thaliana dataset.

The authors claim that HMMSplicer combines high sensitivity with a low false posi-

tive rate, functions properly on datasets with low quality sequence reads, performs well in

datasets with uneven coverage, identifies many junctions in low abundance transcripts and

also identifies non-canonical junctions. It also finds true novel junctions in genomes with

incomplete annotation. The authors claim that their algorithm is the only software package

that provides a score for each junction, reflecting the strength of the junction prediction.

Method based on Maximum Likelihood Estimation

Studying the way that alternative splicing affects a biological system is as important as

studying its fundamental regulatory mechanisms, and as RNA-Seq provides the ability to

analyze the transcriptome in a base-level resolution and high coverage. Lou et al. [35] refer

to the work by Mortazavi et al. [39], Trapnell et al. [58], Ameur et al. [2], Au et al. [3],

Bryant et al. [7].

The authors state that the approach presented by Trapnell et al. [58] depends on the

canonical splice site motifs. They also state that as the methods developed by Ameur et al.
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[2], Au et al. [3] and Bryant et al. [7] designed based on the idea of read counting, sequenc-

ing depth can significantly affect their performance.

Lou et al. [35] proposed an approach based on maximum likelihood estimation, which

relies on geometric-tail distribution of intron lengths for aligning of paired-end RNA-Seq

reads. The authors used a package named ABMapper, which was particularly developed

for spliced mapping by the same team as the authors and is explained in Lou et al. [35].

They state that their approach is an empirical probabilistic model which adopted a two-part

distribution, an arbitrary length distribution and a geometric distribution. This method uses

maximum likelihood to estimate the most probable location for a paired-end read based on

this two-part distribution. The authors stated that their approach works in three models, one

without any a priori knowledge, and two with expression level and junction-site frequency

as a priori knowledge.

Figure 3.2: Alignment of a paired-end read by the work of Lou et al. [35]. This methodol-

ogy supports mapping of both reads across splice sites. Courtesy of Biomed Central.

The authors state that they compared their model with methods developed by Trapnell

et al. [58] and Au et al. [3]. They used two human lymphoblastoid cell-line datasets for

testing purposes. The dataset consist of 8.4 million 75 bp paired-end reads with an approx-
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imately 250 bp insert size. The results were validated with the Alternative Splicing and

Transcript Diversity (ASTD) database and the Human EST database.

Lou et al. [35] claim that their method could report 53% and 49% more splice junctions

compared to the methods by Au et al. [3] and Trapnell et al. [58]. The authors also claim

that 60% of the junctions which were predicted only by their method could be validated

by the ASTD, which comprised 22% of the total reported splice junctions. According to

the authors, this implies that the methods proposed by Au et al. [3] and Trapnell et al. [58]

missed at least one-fifth of the true splice junctions. The authors claim that by performing

an exhaustive search for junctions in the Human EST database, they found that their method

predicted splice junctions with an accuracy of 96%.

The authors claim that their proposed approach can detect 50% more splice junctions

than other existing tools. Lou et al. [35] claimed that the reason for superiority of their ap-

proach is in using first, ABMapper, which has a much higher sensitivity in spliced-mapping

than other approaches, and the second is the geometric-tail based model.

3.2.2 Counting-Based Filtering Methods

The papers reviewed in this section, use filtering methods based on counting the number

of reads covering the reference genome. The papers presented by Au et al. [3] and Ameur

et al. [2] map the reads by splitting them. The method developed by Bryant et al. [7] use

also empirical data for supporting possible junctions. The availability and update frequency

of the packages reviewed in this section are shown in Table 3.2.
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Year Author Package Name Notes

2008 De Bona et al. QPALMA

Cited by Trapnell et al. [58],
Bryant et al. [7],Wang et al. [63],

and Huang et al. [23]
Last updated in December 2010.
The package is freely available.

2010 Dimon et al. [14] HMMSplicer

Cited by Huang et al. [23],
and Zhang et al. [70]

Last updated in November 2010.
The package is freely available.

2011 Lou et al. N/A
Not Cited.

The package is not available.

Table 3.1: Availability and update frequency of the software packages mentioned in this
section.

Methods based on Mapping reads by splitting

High-throughput sequencing of mRNA opens extraordinary opportunities to identify the

spectrum of splice events in a sample on a global scale. The works presented in this section

describe the methods developed by Au et al. [3] and Ameur et al. [2] to address this problem.

Both of these methods, split the reads initially, and then try to map the fragments onto the

reference genome.

Definite fusion transcripts are commonly produced by cancer cells, and detection of

fusion transcripts is part of routine diagnostics of certain cancer types. Abnormal RNA

splicing is associated with many human diseases. For this reason, methods to identify and

quantify splicing events are important in biology and medicine. Ameur et al. [2] refer to

the work by Trapnell et al. [58].

The authors state that in the method designed by Trapnell et al. [58], a substantial num-

ber of true splice junctions, including junctions with long introns or non-canonical splice

sites are outside of the detection range, and also this method is computationally challenging
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for transcripts expressed at lower levels.

The authors state that their method consists of a combination of a split-read alignment

and the novel SplitSeek program. The alignment is performed using the AB/SOLiD whole-

transcriptome-alignment software. The method proposed by Ameur et al. [2], SplitSeek,

was developed in a way to find junction reads in which as few as five bases overlap with

the other exon. It finds exon-exon boundaries that are supported by several split reads. It is

required that each junction be covered by at least two reads with unique starting points.

The authors state that they evaluated their method using public RNA-seq data from

single mouse oocytes, which was performed on two independent samples, and consist of 50-

bp reads. They also state that they selected 22 base pairs for the anchor length according to

the highest number of uniquely mapped split reads that was obtained for this length. Ameur

et al. [2] present the results of their experiments in terms of the number of splice junctions

and insertions, number of predicted small insertions and deletions within RefSeq exons,

and number of predicted splice junctions as a function of the total number of processed

reads.

The authors claim that the exon-exon boundaries are identified almost at nucleotide

resolution and with a low false-positive rate, less than one in 10,000, for junctions within

100 kb. Ameur et al. [2] state that their method makes it possible to study splice junctions

and fusion genes while also measuring the gene expression using RNA-Seq data. They

claim, according to their results, that their proposed algorithm has a very low false-positive

rate, and they state that acquired false discovery rate of less than one for 1,000 junctions

within 1Mb and less than 1/10,000 for those within 100kb, is supporting their claim.

Au et al. [3], in their research paper, state that the method developed by Mortazavi et al.

[39] is dependent on an annotated exon library and since the exon library is incomplete,
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this method cannot find junctions that involve novel splicing events. The authors do not

mention any shortcomings of the method presented by Trapnell et al. [58].

Au et al. [3] present their method, SpliceMap, based on the idea of the mapping of

half-reads as a way to identify the approximate location of a junction. SpliceMap works in

four steps, half-read mapping, seeding selection, junction search and paired-end filtering.

It maps both halves of the read to the reference genome by a short read mapping tool.

The authors state that they compared their method with the method described by Trap-

nell et al. [58] on an RNA-Seq dataset of 23,412,226 reads. They claimed that they assessed

their method’s specificity by aligning detected junctions to human ESTs in GenBank. They

also stated that they investigated the novelty of discovered junctions by PCR experiments.

Au et al. [3] describe a comparison with ERANGE proposed by Mortazavi et al. [39]. They

also stated that they compared their method with BLAT, which is a common tool for EST

sequences alignment. The authors claimed that they calculated the performance of their

method in a specific CPU running time and compared it with TopHat by Trapnell et al.

[58].

Au et al. [3] claim that 87.9% of junctions found by their method were supported by

EST evidence. They state that SpliceMap achieves more than 95% sensitivity for highly

expressed genes, more than 90% for genes with medium expression and (40− 67%) for

genes with low expression. They state that more genes detected by SpliceMap are of higher

degree (80− 100%) of completeness in junction discovery. Au et al. [3] claim that in a

random sample experiment, 85% of novel junctions were validated using PCR experiment.

The authors stated that ERANGE found 160,899 junctions and SpliceMap found 151,317

junctions, among those found by Au et al. [3] method, 23,020 junctions, which were not

found by ERANGE, were novel. They also claimed that the BLAT package, achieved a
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similar but still slightly lower level of specificity with a much lower sensitivity (70% lower)

as compared to SpliceMap. The authors stated that it took 66 CPU hours for SpliceMap

and 12 CPU hours for ERANGE to process the data set.

They claim that based on their results, SpliceMap detects more annotated junctions than

TopHat, method presented by Trapnell et al. [58]. They claim that 50bp reads can support

an approach of direct de novo detection of splice junctions without the need to first cluster

reads to identify accepted exons, and that this approach can achieve significantly higher

sensitivity in junction detection than current leading methods of RNA-Seq analysis. They

also claim that paired-read information can help reduce false discoveries.

Year Author Package Name Notes

2010 Au et al. SpliceMap

Cited by Wang et al. [63],
Dimon et al. [14],Lou et al. [35],

and Huang et al. [23]
Last update in October 2010.

Source code is freely available.

2010 Ameur et al. SplitSeek

Cited by Dimon et al. [14],
and Lou et al. [35]

Not available for download.
Not being maintained.

2010 Bryant et al. Supersplat

Cited by Dimon et al. [14],
Lou et al. [35],Huang et al. [23]

Not available for download.
Not being maintained.

Table 3.2: Availability and update frequency of the software packages mentioned in this
section.
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Methods based on empirical RNA-Seq data

Next-generation sequencing provides a ground for massive transcript expression analysis.

RNA-Seq supplies enough reads for this purpose, and the key to profiling this genetic in-

formation is identification of intron/exon boundaries or splice junctions. Bryant et al. [7]

refer to the work by De Bona et al. [13], Trapnell et al. [58], and Filichkin et al. [16] in their

paper.

Bryant et al. [7] state that the method developed by De Bona et al. [13] relies on the

previously known splice sites for training the algorithm which influences the results. Fur-

thermore, they note that QPALMA scores junctions that conform with canonical splicing

motifs higher, so it may be inefficient in finding non-canonical splice junctions. The authors

state that this problem also applies to TopHat, the method developed by Trapnell et al. [58].

Bryant et al. [7] state that TopHat needs a high number of RNA-Seq reads to build exon

islands.

Bryant et al. [7] introduce a new approach, called Supersplat, that uses a hash table as a

way to save system memory by storing read sequences as keys and their frequencies as the

value. Supersplat uses two parameters to limit the maximum and minimum length of the

sequence. Later on, Supersplat builds location indexes based on these parameters. After

indexing the reference sequence, Supersplat identifies reads that can be aligned against

the reference genome, as possible splice junctions in an iterative process. Potential splice

junctions are filtered based on the number of overlapping reads on two intron boundaries.

The authors state that they tested the performance of their method on a set of 3,690,882

Arabidopsis thaliana reads. They used the TAIR8 database of annotated junctions to eval-

uate Supersplat’s performance. Bryant et al. [7] also state that they assessed their approach

for de novo splice junction discovery on a dataset of Brachypodium distachyon.
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The authors claim that they confirmed 91% of canonical and 86% non-canonical splice

junctions using PCR and Sanger sequencing. Bryant et al. [7] claimed that they achieved a

predicted positive rate (PPV) of 70% with the minimum read length of 6 and a 90% rate by

increasing it. According to Bryant et al. [7], this rate reaches 97% by setting the overlapping

number of reads filter to 21.

Bryant et al. [7] claim that their approach is unbiased and exhaustive, but it may generate

output files with up to tens of gigabytes in size, and the user should account for determining

the befitting criterion to filter out spurious output. The authors claim that the exhaustive

approach of their method can discover many previously unknown splice junctions.

3.2.3 Non-counting Filtering Methods

The common element between the papers presented in this section is using various filtering

techniques to omit spurious splice junctions. We tried to be as specific as possible in cat-

egorizing the papers presented in this section. As all of these methods use simple search

methods to find junctions, they need some sort of filtering to detect false positives and gain

higher sensitivity. Although, they developed methods that used various strategies for filter-

ing and also were highly similar to each other in nature. The work developed by Trapnell

et al. [58] has been categorized as a filtering based on average read depth coverage method,

the work of Wang et al. [63] as a filtering on minimum anchor length method, and the works

of Huang et al. [23] and Zhang et al. [70] as a filtering using paired-end information and

read coverage methods. The availability and update frequency of these methods is shown

in Table 3.3.
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Methods based on Filtering that use average read depth coverage

Alternative splicing is a significant process in normal cellular functions and also in human

diseases. Finding novel splice junctions is an important part of studying alternative splicing.

Trapnell et al. [58] refer to previous work by De Bona et al. [13] and Mortazavi et al. [39].

The authors mention two shortcomings of the work of De Bona et al. [13], the first is

that their method, QPALMA, depends on a set of known splice junctions from the reference

genome and cannot identify novel junctions. They state that the other shortcoming is that

De Bona et al. [13] use Vmatch, an alignment program which is not designed to map short

reads on machines with small main memories and is considerably slower than other short-

read mappers. Trapnell et al. [58] state that ERANGE, the method developed by Mortazavi

et. al, depends on available annotation of exon-exon junctions for its main objective, which

is gene expression quantification in mammalian RNA-Seq projects.

The authors introduce a new system called TopHat, which works in two phases to find

junctions. In the first phase, all reads are mapped to the reference genome using Bowtie,

all reads that do not map to the reference genome are set aside as initially unmapped reads.

Then, an initial consensus of mapped regions, called exon islands, is computed using the

assembly module in a package named Maq. Sequences flanking potential donor/acceptor

splice sites within neighboring regions are joined to form prospective splice junctions. For

each splice junction, TopHat searches the initially unmapped reads in order to find reads that

span junctions using a seed-and-extend strategy. Figure 3.3 shows the pipeline of TopHat,

that has influenced splice junction detection methods which were developed after it signif-

icantly. This figure shows different stages of splice junction discovery, including mapping

against the reference genome, generating exon islands, and mapping initially unmapped

reads to the splice sites.
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Figure 3.3: The Tophat pipeline which describes necessary steps toward detection of splice

junctions [58]. Courtesy of Oxford Journals.

Trapnell et al. [58] state that they conducted an experiment on 47,781,892 short reads

using their method, TopHat, and a previously developed method called ERANGE by Mor-

tazavi et al. [39]. The authors claim that their method could discover around 72% of splice

junctions compared to annotation-based analysis done by Mortazavi et al. [39] in fewer tran-

scribed regions and 80% of junctions in more actively transcribed regions. They claimed

that out of 19,722 newly discovered junctions that they found in their experiment, many of

them are true splices, but it is difficult to asses exactly how many of them are genuine.

Trapnell et al. [58] claim that the significance of their work is in its ability to detect

novel splice junctions. They also claimed that their tool represents a significant advance
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over previous RNA-Seq splice detection methods.

Methods based on Filtering that uses minimum anchor length

Accurate identification and quantification of transcript isoforms is crucial to characterize

alternative splicing among different cell types. In addition, sequence variants found within

splice sites or splicing enhancer sequences may have functional consequences on alternative

splicing. A large proportion of human genetic disorders results from splicing variants.Wang

et al. [63] refer to the work by De Bona et al. [13], Trapnell et al. [58] and Au et al. [3].

The authors note that the output generated by the method of Au et al. [3] does not include

tag alignments, and hence is incomplete. They do not state any shortcoming regarding the

works of others.

According to Wang et al. [63], their method operates in two phases. In the first phase,

that is called tag alignment, candidate alignments of the mRNA tags to the reference genome

are determined. A set of candidate alignments are computed for each tag as multiple possi-

ble alignments may be found for each read, which is shown in details in Figure 3.4. Map-

Splice uses a double-anchor search method to look for the splice junction. In the second

phase which is called splice inference phase, splice junctions that appear in the alignments

of one or more tags are analyzed to determine a splice significance score based on the qual-

ity and diversity of alignments that include the splice. The most likely alignment for each

tag is chosen based on the splice significance score.
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Figure 3.4: Mapping of a read across two splice junctions by MapSplice [63]. Courtesy of

Oxford Journals.

The authors state that they evaluated specificity and sensitivity of their method using

an experiment on a generated synthetic dataset. They also state that they validated their

method using quantitative RT-PCR experiment. Wang et al. [63] state that they achieved

a true-positive rate of 96% and false-positive rate of 8% for their method. They stated

that over 77% of canonical junctions found by their method were confirmed by known

transcripts in GenBank, which was between 6% to 11% higher in comparison by TopHat

method by Trapnell et al. [58].

The authors claim that both TopHat by Trapnell et al. [58] and their method were more

memory efficient and much faster in experiments than SpliceMap by Au et al. [3]. They also

claim that their method performed best by detecting more true-positive junctions and fewer

false-positive junctions than the other two methods. They state that longer tags improve

both the sensitivity and the specificity of the junction discovery in their method and as well

in the method by Trapnell et al. [58]. They claim that in comparison, their method has a

higher sensitivity in different tag lengths. They also claim that using read lengths of 75 or

100bp yields significantly better sensitivity and specificity for splice detection.

Methods based on Filtering that use paired-end information and read coverage

Splice junction detection is the first step of studying alternative splicing. Alternative splic-

ing is highly effective on diversity of proteins, as it causes different mRNAs to be pro-

duced from the same gene. These different mRNAs translate into different protein isoforms.

Huang et al. [23] refer to the previous work by Mortazavi et al. [39], De Bona et al. [13],

Trapnell et al. [58], Bryant et al. [7], Au et al. [3], Wang et al. [63], and Dimon et al. [14].
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The authors state that QPALMA, the method developed by De Bona et al. [13] which

uses a machine learning approach, is biased toward splice junctions that are similar to the

ones in the training data set. Huang et al. [23] state that low sequencing depth affects the

performance of the algorithm developed by Trapnell et al. [58] and hence there would not be

enough reads for efficient junction detection. The authors state that the method introduced

by Bryant et al. [7], which uses hashing as its alignment approach, needs a large amount of

memory and computing power and as a result is not scalable for reads longer than 50 base

pairs.

Huang et al. [23] state that SpliceMap, the algorithm presented by Au et al. [3], per-

forms poorly when dealing with the reads that can be mapped to more than one location.

Furthermore, they state that this approach is not efficient when the transcriptome is lowly

expressed or the reads have sequencing errors. The authors state that the method developed

by Wang et al. [63] has some inefficiencies while the sequencing depth is low, which leads

to a reduced call rate. The call rate is the number of true positives divided by total number

of junctions.

Huang et al. [23] present SOAPsplice, which finds the splice junctions in two steps.

In the first step, it maps the reads onto the reference genome using the Burrows Wheeler

Transformation for indexing. Then, SOAPSplice detects splice junction candidates based

upon some criteria, which include following known splicing motifs and a maximum in-

tron size of 50,000 bp. SOAPsplice applies two different filtering techniques to omit false

positives. The first strategy is to check the paired-end information with the direction of

the mate-pair reads and later discarding incompatible junctions. The other strategy is to

filter out the junctions that have a missing segment between two sub-reads that have been

mapped to the reference genome.
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Huang et al. [23] compared their method with the algorithms developed by Trapnell

et al. [58], Wang et al. [63], and Au et al. [3] on two 50 and 150 bp simulated datasets and

two 51 and 130 bp real datasets.

The authors claim that based on the results of the simulated datasets for both 50 and 150

bp length reads, their method had the highest call rate while it kept the false positive rate at

its lowest compared to other approaches. For the real dataset with 51 bp reads, Huang et al.

[23] claim that SOAPsplice detects more novel junctions than TopHat by Trapnell et al. [58]

and its results are comparable to the method designed by Au et al. [3] on both novel and

known junctions. According to the authors’ claim, SOAPsplice found more splice junc-

tions than the other compared methods, and 97.24% of detected junctions were reported

by more than one method. Huang et al. [23] claim that although their method found fewer

novel junctions than the methods by Au et al. [3] and Wang et al. [63], but the percentage

of junctions that are reported by more than one method for SOAPsplice (85.34%) is sig-

nificantly higher than those of the other algorithms (TopHat: 67.73%, SpliceMap: 63.24%,

MapSplice: 77.54%).

Huang et al. [23] claim that their method is more efficient for detecting novel splice

junctions as it outperforms all other algorithms with various read lengths and read depths,

especially when sequencing depth is lowest. This is very important considering that new

junctions are usually found in low abundance parts of the transcript. The authors claim that

their method is able to detect more genuine splice junctions than the compared methods.

As described by Zhang et al. [70], RNA-Seq can be used for “cellular phenotyping” and

to help establish the etiology of diseases characterized by abnormal splicing patterns. Re-

cent studies have revealed that variations in splicing patterns are associated with Alzheimer’s
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Year Author Package Name Notes

2009 Trapnell et al. TopHat

Been cited by all papers,
that reviewed in this study,
which published after it.

The most cited paper in overall.
The package is being updated
very often and source code is

freely available.

2010 Wang et al. MapSplice

Cited by Huang et al. [23],
and Zhang et al. [70]

The package is being updated
regularly and source code is

freely available.

2011 Huang et al. SOAPsplice
The package is being updated

regularly and the package
is freely available.

2012 Zhang et al. PASSion
The latest published package

reviewed in this study.
Source code is freely available.

Table 3.3: Availability and update frequency of the software packages mentioned in this
section.

and other complex diseases. In RNA-Seq, the exact nature of splicing events is buried in the

reads that span exon-exon boundaries. The accurate and efficient mapping of these reads to

the reference genome is a major challenge.

Zhang et al. [70] refer to previous works by Trapnell et al. [58], Dimon et al. [14], and

Wang et al. [63]. The authors claim that the methods developed by these authors do not

have the ability to detect junctions without known splicing motifs. Zhang et al. [70] state

that both HMMSplicer by Dimon et al. [14] and MapSplice by Wang et al. [63] potentially

work better for long reads than for short reads and they are less accurate on highly abundant

transcripts. They also claim that neither of these two methods exploit the paired informa-

tion in their algorithms.
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Figure 3.5: First step in PASSion pipeline, including mapping the reads using SMALT and

creating exon islands [70]. Courtesy of Oxford Journals.

PASSion finds the splice junctions in five stages including the initial mapping, build-

ing exon islands, high-resolution remapping, filtering and detection of canonical and non-

canonical junctions. As shown in Figure 3.5, exon islands are built by piling up the mapped

reads after initial mapping by a fast aligner. Pairs of one exonic read and one unmapped read

are used as the basis of junction identification. These pairs are remapped, using the pattern

growth algorithm, to the reference genome and a splice junction is reported if the unique

substrings from both ends can reconstruct the original split read and has a sufficiently large

number of supportive reads. Figure 3.6 shows this process in detail.

Initial mapping and high-resolution remapping are the most time-consuming parts of

the PASSion’s pipeline. PASSion uses SMALT for the initial mapping of the reads to the

reference genome. SMALT is an aligner that has been designed by the Sanger Institute [70],

for aligning of DNA sequences to the reference genome. It only accepts sequence input data

in FASTA or FASTQ format. SMALT uses a hash index of short sequences under 21 base

pairs long.
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Figure 3.6: Using paired-end sequencing technology in splice junction discovery in PAS-

Sion. PASSion designates a mapped read with an unmapped pair as anchor, then uses the

direction of the anchor to look for the other pair possibly mapped across a splice junction

[70]. Courtesy of Oxford Journals.

Zhang et al. [70] analyzed their method on both simulated and real data. They compared

the performance of PASSion with those of TopHat by Trapnell et al. [58], MapSplice by

Wang et al. [63] and HMMSplicer by Dimon et al. [14] on these datasets. The authors claim

that on simulated data, their method, alongside other three tested methods, can detect almost

all the true junctions when coverage is > 100×fold. They note that PASSion predicted

136,664 and 172,568 splicing events for the two real datasets, of which 84.1% and 80.3%

are known junctions.

Zhang et al. [70] state that on the short read library of simulated data, the method by

Trapnell et al. [58] showed the least sensitivity comparing to other methods, and on libraries

with long reads, MapSplice by Wang et al. [63] detects the lowest number of junctions. The

authors claim that in all simulated datasets, the true positive rate of PASSion has the quick-

est growth rate along with the read coverage and it is the most sensitive method overall.

Zhang et al. [70] state that when the specificity of TopHat, MapSplice and HMMSplicer

drops with the read coverage, PASSion’s specificity remains high with specificities of more

than 97%.

The authors claim that for real datasets, in general, PASSion displays a balanced per-

formance with both a high number of predictions and high confirmed ratios. They state that
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the pattern growth algorithm, which is used in their approach, has not been taken advantage

of in RNA-Seq analysis before. Zhang et al. [70] note that PASSion can detect junctions

with unknown motifs, which other three methods were unable to do so. Zhang et al. [70]

state that their method had missed some rare cross-chromosome splicing events, because it

has been assumed that two reads map to the same chromosome. They suggested working

to resolve this issue in the future.

3.3 Conclusion

The work of Trapnell et al. [58] has been cited by 8 out of 10 papers that had been included

in our review of splice junction detection methods. This means that except the work of De

Bona et al. [13] that has been published prior to their work, all subsequent works on this

subject referred to it. Furthermore, the method developed by Trapnell et al. [58], was used

by all other methods as a basis for evaluating the performance of their own work. Table 3.4

lists the works studied in this chapter, and reviews their major contributions.

De Bona et al. [13] state that their method can be extended to exploit homo-polymer

errors, which is available for Roche’s 454 sequencing platform. Trapnell et al. [58] suggest

that using paired-end reads will drastically reduce the number of false positives in TopHat,

and also improves its performance.

Au et al. [3], Lou et al. [35], and Zhang et al. [70] developed their methods to exploit

paired-end read information. Huang et al. [23] mention that in the future, their method

could be optimized to run faster and consume less memory. We observed that SOAPSplice,

the method presented by Huang et al. [23], has been updated after publishing the paper to

reduce the amount of memory usage while generating the output.

Based on the studies on advantages and disadvantageous of various methods on splice



CHAPTER 3. SPLICE JUNCTION DETECTION 43

junctions discovery over each other, we chose to apply PASSion designed by Zhang et al.

[70] in our study. The advantage of PASSion is that it had been originally designed to

exploit paired-end information which is used in its mapping algorithm. Also the work by

Zhang et al. [70] was the latest method developed on this topic studied in our review. There-

fore, they had the chance to compare their results against previously developed methods.

PASSion uses only known splicing motifs in the last step in its pipeline to finalize the break-

point of a junction. As PASSion does not use known motifs in detecting junctions, it can

detect junctions with unknown motifs.

Overall, PASSion showed a very high rate of accuracy in both high and low abundant

transcripts [70]. The only downside of using PASSion is that under the same conditions, it

consumes between two to four times more memory than the methods developed by Trapnell

et al. [58], Dimon et al. [14], and Wang et al. [63]. Also, PASSion is the second slowest

method among other methods in terms of CPU time.
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Year Author Title of Paper Major Contribution

2008 De Bona et al.
Optimal spliced alignments of

short sequence reads.

QPALMA, one of the first
works to address splice junction

finding on RNA-Seq data.
Use of SVM to find

splice junctions.

2009 Trapnell et al.
TopHat: discovering splice junctions

with RNA-Seq.

Introduces the concept
of anchor as a way.

Presents the idea of generating
exon coverage islands.

2010 Au et al.
Detection of splice junctions

from paired-end RNA-seq
data by SpliceMap.

Designed to use information
of paired-end reads.
First method to use
half-read mapping.

Use of hash table for mapping.

2010 Ameur et al.
Global and unbiased detection

of splice junctions
from RNA-seq data.

SplitSeek, splits reads to two
fragments and map them
independently as anchors.

2010 Bryant et al.
Supersplat–

spliced RNA-seq alignment.
Employs empirical RNA-Seq data

for splice junction detection.

2010 Wang et al.
MapSplice: accurate mapping

of RNA-seq reads for splice
junction discovery.

Defining minimum anchor
length as a filtering strategy.

Comprehensive experiments on
effect of various criteria

including noise.

2010 Dimon et al. [14]

HMMSplicer: a tool for efficient
and sensitive discovery of

known and novel splice junctions
in RNA-Seq data.

Employs hidden Markov model
to determine the exon boundaries.

2011 Huang et al.
SOAPsplice: Genome-Wide
ab initio Detection of Splice

Junctions from RNA-Seq Data.

Claims to achieve a better
performance than other major
methods using more Memory
and more computing power.

2011 Lou et al.

Detection of splicing events
and multiread locations from

RNA-seq data based on a
geometric-tail (GT) distribution

of intron length

Incorporates MLE method
to align paired-end reads
into reference genome.

Introduces geometric-tail
distribution for intron lengths.

2012 Zhang et al.

PASSion: A Pattern Growth
Algorithm Based Pipeline

for Splice Junction Detection
in Paired-end RNA-Seq Data.

Introduces Pattern Growth
algorithm to remap the reads.

The ability to identify
junctions with unknown

splicing motifs.

Table 3.4: Splice junction discovery tools at a glance.
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Chapter 4

Methods

In this chapter, we discuss the proposed methodology of our approach to the problem of

finding biomarkers in detail. As Figure 4.1 illustrates an overview of the pipeline of the

proposed method, we start by describing the details of the dataset that we have used and the

pre-processing that enable for splice junction detection. As PASSion’s algorithm has been

discussed in the previous chapter, here we describe its parameters and details of operation

for our study. Following the way, we come across the specifics of our algorithm used for

filtering splice junctions, and selecting and proposing them as biomarkers and classification

features. At last, we introduce SVM as our machine learning method of choice for the

classification of the samples belonging to cancer and normal classes. Also, k-fold cross-

validation is incorporated to validate the accuracy of our predictions.

4.1 Dataset

We have used a dataset consisting of raw RNA-Seq data belonging to 20 samples belonging

to patients diagnosed with prostate adenocarcinoma and 10 matched benign prostate tissue

46
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samples as our control population. None of the patients had received any preoperative

therapy prior to radical prostatectomy. This dataset is publicly available as a GEO dataset

with the Accession number GSE22260 [27].

The dataset contains more than 667 million paired-end RNA-Seq reads that have been

acquired using the Illumina Genome Analyzer II platform. It includes 30 files in SRA

format for 30 different samples. The dataset consists of short reads with of length 36 base

pairs for both forward and reverse strands. Also, the insert size for the prostate cancer

dataset is 150 bp.

4.1.1 Input data format

FASTA is one of the most well-known file formats used to represent and store nucleotide

sequences, in which they are depicted by a sequence of characters. This text-based format

is one of the formats that major databases such as NCBI accept as the input method to

query their databases. Each read sequence in FASTA format contains a line of sequence

description followed by the sequence itself. Different databases use their own template for

the sequence description line to specify the format based on their needs.

FASTQ format is the successor of FASTA format that completes it by including the

quality information for each read in the file. FASTQ has become the de facto standard for

storing high-throughput sequencing technologies.

Most of the well-known software packages, as well as all packages that we use in this

study, are only compatible with FASTA/FASTQ format. For this reason, we used SRA-

Toolkit, developed by NCBI, to convert our dataset in SRA format to FASTQ format [41].

As SRA format stores both strands for reads in a single file, we needed to split each SRA

file belonging to a sample into two separate FASTQ files to account for paired-end input
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format of PASSion. We used “split-3” as a parameter in SRA-Toolkit in order to obtain the

FASTQ files in paired-end format.

Figure 4.1: Pipeline for proposed model of this study.
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4.2 Splice Junction Detection

The splice junction detection module is shown in details in Figure 4.2. In the following, we

describe each part of this pipeline separately.

Figure 4.2: Splice junction detection pipeline.

4.2.1 Reference Genome

In order to successfully run PASSion, SMALT and SAMTools packages should be installed

on the system as PASSion employs them in its pipeline. SMALT is a fast read aligner

developed by the Wellcome Trust Sanger Institute which utilizes a hash index of short

words in its algorithm. SMALT accepts reads and the reference genome in FASTA or

FASTQ format. Prior to running PASSion, chromosome IDs used in the reference genome

should be indexed separately by SAMTools. The resulting index file is used by PASSion as
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an input. We used the latest version of the Human Genome, Build 37 (GRCh37.p10) from

the Genome Reference Consortium [11], as our reference genome which acted as an input

for PASSion and SAMTools. All mentioned software packages have been designed solely

for Linux, and are publicly available.

4.2.2 PASSion

PASSion accepts five required and multiple optional arguments as input parameters. The

required parameters are insert size, the paths to the two input read files, the reference se-

quence, the reference sequence index by SMALT. All optional arguments has been set to

their default values recommended by Zhang et al. [70]. One of the important parameters,

the cut-off limit, which is described in the following, has been set to 0.1. This parameter

implies that any junction where its cut-off score falls short of the this limit will be discarded.

cut−o f f junction =
number o f support reads

coverage o f higher expressed f lanking exon
(4.1)

Other important parameters include maximum number of SNPs allowed that is set to

two. Minimum intron size has been set to 20, and sequence error rate is fixed at 0.05.

Detail output file

PASSion includes details about the mapping of the split reads across each exon-exon junc-

tions in a file called Junctions.detail. A sample Detail file is depicted in Figure 4.3.
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####################################################################################################

1544 D 615 ChrID gi|224384768|gb|CM000663.1| BP 21807470 21808086 BP_range 21807470 21808091

Supports 1 + 0 - 1 S1 2 S2 18.123 LL 16 RL 20 SUM_MS 36 NumSupSamples 1 - 1

ACCAAGAAGAGGAAGAAGACCAAGGCCCACCATGCCccaggtaagt<595>ttctacttttCCAGGCTCAGC

CAAGGCCCACCATGCC CCAGGCTCAGCAGAGAGCTG -21808102

36 -@SRR057629.2921017_1

Figure 4.3: Sample Junction.detail PASSion output file.

BED output file

PASSion stores the found splice junctions using the BED format. The BED format sup-

plies the means to store data for an annotation track as standardized by the UCSC genome

browser [6]. This format requires three fields as obligatory and nine fields as optional.

The required fields store chromosome name, the starting position of the desired feature in

chromosome, and ending position of that feature. Other fields could include information

such as line name, score, strand direction, RGB value, block start and end, and block count.

PASSion uses mainly chromosome start and end field to store break point ranges for each

junction. According to Zhang et al. [70] starting and ending position of a junction can be

calculated using the following equations:

Junctionstart position = chromosome start position+block start (4.2)

Junctionend position = chromosome end position−block end +1 (4.3)
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gi|224384768|gb|CM000663.1| 21807454 21808105 JUNC_0 1 . 21807470 21808091 255,0,0 2 16,20 0,631

gi|224384768|gb|CM000663.1| 94953327 94953469 JUNC_1 3 . 94953345 94953449 255,0,0 2 18,24 0,118

gi|224384768|gb|CM000663.1| 53543454 53544066 JUNC_2 6 . 53543471 53544038 255,0,0 2 17,31 0,581

Figure 4.4: Sample Junction.bed PASSion output file.

PASSion saves block coordinates as the 11th field of the BED file, in which block start

and end coordinates are separated by a comma. As an example, for the first read of the

sample BED file in Figure 4.4, junction start position can be calculated as Junctionstart :

21807454+16 = 21807470 and Junctionend : 21808105−20+1 = 21808086.

These starting and ending positions match the positions for the same read in the corre-

sponding detail file after the phrase “BP” (Break-point), which is shown in Figure 4.3. The

number 1 after the phrase “Supports”, in the detail file, indicates that there is only one read

supporting this junction. This means that the expression level for this junction is only one.

This measurement number can also be found after the junction ID in the bed file (Figure

4.4).

4.3 Filtering Junctions

As we introduced 30 different samples which were processed separately by PASSion in our

system, it was conceivable that PASSion could not account for the factor of error set forth by

differential analysis of the input data. Our dataset included 20 samples in the cancer class

and 10 samples in the benign class in total. Due to this low number of samples and also the

high probability of base pair errors in the mapping process, we needed to identify the same

junctions across all different samples with high accuracy. That is necessary as a single base

pair error introduced in mapping, in either the starting position or the ending position of a
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junction, could jeopardize the process for that junction. We developed a method to filter out

dubious junctions to improve the accuracy of our method as well as to decrease the error

rate. Different parts of our approach for addressing this issue are illustrated in Figure 4.5.

This problem can be modeled as a peak-finding problem in a 3-dimensional space.

Figure 4.5: Modules for filtering junctions.

The solution to the problem of finding splice junctions as biomarker for cancer samples

is based on alternative splicing, which means that in some samples that have been affected

by cancer, mRNA has been spliced differently than the normal samples. We designed a fast

and efficient algorithm to account for the inherent differences that have been introduced to

the system by running peak finding separately for starting and ending positions.
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Considering the fact that starting and ending positions of each junction are the bound-

aries between exons and introns, we expect in case of alternative splicing in each sample the

same position would happen in other junctions but with different starting or ending posi-

tions. It is important to remember that studying alternative splicing only is possible because

we are mapping our reads against the reference genome. Our method models the starting

and the ending points as semi-independent entities to each other.

4.3.1 JunctionResolver

We developed a Java API called JunctionResolver to handle all processing involved in

working with junctions. The Junction class contains the following fields: start, end, length,

expLvl, chrom corresponding respectively to start and end position of a junction relative

to the chromosome, length of the junction, number of reads supporting the junction, and

chromosome ID of the junctions. Chromosome ID for chromosomes 1 to 22 are the same

as their number, and we considered 23 and 24 for X and Y chromosomes for convenience.

A class called ChromJunc were designed to store a list of junctions belonging to each

specific chromosome. Classes BedReader and DetailReader have been developed to read

information from PASSion’s output files. In order to differentiate between samples, we in-

cluded the sample ID as a property in the BedReader class. We developed the ChromFinder

class in order to find each junction in a list of junctions, which are stored as a ChromJunc

object. A class named Comparator has been designed to compare junctions for two dif-

ferent ChromJunc objects and report the number of junctions that start or end at the same

position.

We developed a solution to write data in Comma-separated values (CSV) format to store

data for the next module of our pipeline. Figure 4.6 shows a sample of the output of the
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JunctionResolver module in CSV format. This file includes the sample ID, the chromo-

some ID, starting position, ending position, junction’s length, and supporting reads count,

respectively for each junction.

29,1,21807470,21808086,616,1

29,1,94953345,94953446,101,3

29,1,53543471,53544036,565,6

Figure 4.6: Sample CSV output file.

4.3.2 Merging Chromosomes

As starting and ending positions of the junctions are relative to each chromosome, it was

critical for our program to separate the junctions by chromosomes. As the first step, we

used MATLAB to read CSV files belonging to each sample based on the sample ID in their

file names, also CSV files included the sample ID as the first field for each junction. We

separated the junctions for each chromosome in a different data structure. After this step,

we would have a table with the size of number o f chromsomes×number o f samples cells.

This table in our case included 24× 30 cells. This table will be the input for our peak

finding module as described in Algorithm 1. In the next step, we join all junctions for each

chromosome in a single cell. The results will be a table of 1× number o f chromosomes

cells.
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4.3.3 2-D Peak finding

We designed a module in MATLAB to create a histogram based on either starting or ending

position of junctions, and this module was utilized on all chromosomes. The last position

of a starting junction on the first chromosome was 249,231,781 in our dataset. To account

for the amount of memory required to process the data for the whole genome in this scale,

we used the sparse matrix data structure in MATLAB to handle the problems arising from

working with these huge tables. The solution was to split the table into several smaller

windows, transform the data into a full matrix for each of them, and then process the data

in each window separately. Finally, we merge the results together in a new sparse matrix

structure. The size of the window is a parameter for our module that has been set to 100,000

for our study.

We also implemented a safety mechanism to make sure that no peak occurs at the bound-

aries of a window. In order to do so, in case of a non-zero value at vicinity of a window,

we move the window until we reach an empty space with at least a length of 5. We have

developed a module, that uses MATLAB to find the rough peaks, to find junctions along

the whole chromosome using the sparse matrix as described.

We define a parameter called margin to be passed to this module as a minimum peak

distance variable, which defines the minimum distance between two peaks. After peak find-

ing process on starting positions finishes, if position a is found as a peak, we search for all

junctions that have a start position in the neighbourhood of (a−margin,a+margin) and we

acquire a set of ending points for the selected starting points. As our peak finding module

discards some starting points near peaks, we use our margin parameter to account for them

when analyzing end points in the next step. Considering the minimum length of a junction

in our dataset which is 19bp , we selected 5bp as the vicinity for combining junctions. This
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gives a safe margin near a quarter of the size of the minimum intron. We chose margin = 2

to cover a 5bp area of the genome for each junction position.

Data: Junctions table of size samples× chromosomes

Result: Set of merged junctions per chromosome

direction← “start”;

margin← 2;

for k← 1 to Number of chromosomes do

Positions(k)←CombineSamples(k,direction);

Peaks(k)← f indPeaks(Positions(k),margin);

foreach start position i of the Peaks(k) do

for j← i−margin to i+margin do
endPositions( j)← End points f or all junctions starting on j;

end

endPositions(i)← f indPeaks(endPositions( j),margin);

end

end

Algorithm 1: 2-d peak finding algorithm.

Ending points

So far, we have unified the starting points for all junctions in each chromosome across all

samples. As can be seen in Algorithm 1, these unified starting points have been found by

running peak finding modules for the first time. We continue by considering each starting

point separately i of Peaks(k). For each starting point, only end points are deemed fit that

have their starting position in the vicinity of our unified starting positions, and hence these

points act as a mean to limit the searching space to find the local maxima. To obtain the
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final junctions, we run our peak finding algorithm on the ending points. We also stored

sample IDs for each ending point of a junction.

4.4 Selecting Junctions

4.4.1 Scoring Junctions

We propose a method to score each junction based on the number and class of samples

which that junction occurs in them. Given the fact that we have twice the number of cancer

samples compared to our benign population, our model considers a +1 score for each sam-

ple that belongs to the cancer class, and a −2 score for each normal sample. The scoring

formula is defined in Equation 4.4. This scoring scheme guarantees that a junction that has

occurred in all samples, which implies no significance in terms of differentiating between

classes, would receive a score of zero.

Score junction = (No. o f JunctionsNormal×−2)+(No. o f JunctionsCancer×1) (4.4)

4.4.2 Thresholding

We can limit the number of junctions reported by our filtering mechanism based on a de-

fined minimum score. As high scoring junctions have occurred more frequently in only one

class of our samples, they are expected to be more significant as features for a classification

scheme.
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4.4.3 Expression Level Measurement

The number of reads supporting each junction could act as a measure on the importance

and impact of a particular junction across different samples. We exploit this information by

creating a table of expression levels for each junction across all samples, which has scored

higher than our score thresholds. We use this table as the feature set for our classification.

Figure 4.7 shows a sample of this table containing expression level measures on three lines

for three different junctions. The first 20 numbers on each line correspond to the expression

measure for samples belonging to the cancer group and the remaining 10 numbers are ex-

pression measures for the samples in the benign group. A value of 0 for any sample implies

that the specific junction has not been found for him, and any value greater than 0 shows

the supporting number of reads for that junction.

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,0,1,0,2

3,1,19,4,37,8,3,9,14,16,0,27,23,10,57,7,53,30,1,16,0,0,0,0,2,0,10,0,0,0

1,2,1,1,0,0,1,2,0,3,0,1,4,2,1,1,2,1,0,2,0,0,0,0,0,0,0,0,0,0

Figure 4.7: Sample expression level output table.

4.5 Classification

4.5.1 Support Vector Machines

Support vector machines are supervised learning methods, based on statistical learning the-

ory, which are designed for classification and pattern recognition. SVM works by estimat-

ing a function called linear discriminant function that models the problem at hand [12; 62].
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The basic SVM is a two-class linear classifier that is based on a linear discriminant function

[4]. SVM could also be modeled as a non-linear classifier with the use of different kernel

functions. We examine both linear SVM and non-linear SVM in our approach. We have

tried various functions such as polynomial of degrees 2 and 3, radial basis, and sigmoid

function as kernels.

In essence, SVM maps the input samples to a higher dimension feature space, and tries

to find a hyperplane that separates the classes with the largest margin possible in the new

space. In case that the problem is not linearly separable, SVM, based on the idea of the

soft-margin, chooses a plane that separates the samples as clearly as possible.

In the present study, we used Weka with libSVM as well as libSVM implementation

in MATLAB for our SVM implementation. Both of these software packages are freely

available at their web sites [10; 21].

4.5.2 K-fold Cross-validation

In k-fold Cross-validation, the dataset is divided into k equal subsets. Each time, one of the

k subsets is chosen as the prediction set and the other k− 1 sets are used as training sets.

The average of the k accuracy rates is the cross-validation accuracy rate. The accuracy rate

is calculated by dividing the number of samples that has been classified correctly by the

total number of samples. We have used k-fold cross-validation as a validation technique for

our study in which we randomly divide our dataset into 10 subsets of equal sizes to perform

classification.
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Chapter 5

Results and Discussion

In this chapter, we present our results on steps that we take starting from finding splice

junctions from raw reads, to filtering them, selecting junctions as biomarkers, and finally

using them as features for the classification step.

5.1 Experimental Results

5.1.1 Reads

Our dataset contains 667,748,180 reads in total, with an average of 24,597,860 reads for

cancer samples and 17,579,096 for benign samples. This difference in number of reads

could be explained by different levels of expression between cancer and benign samples.

Figures 5.1 and 5.2 show the number of reads per sample for benign and cancer-diagnosed

groups.

62
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Figure 5.1: Number of reads among benign samples.

Figure 5.2: Number of reads among cancer samples.
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5.1.2 Splice Junctions

We obtained a total of 3,272,686 splice junctions from 30 samples using PASSion across

all chromosomes. Total number of junctions per sample is shown in Figure 5.3. In this

figure, the number of reads and number of junctions have been plotted against two different

axes. The number of junctions is represented by bars, while the number of reads is shown

by a dashed line. Figures 5.4 and 5.5 show the number of junctions found per sample for

the benign and cancer samples respectively. The Pearson correlation coefficient of 0.97

between the number of reads and the number of junctions found per sample indicates a

strong relationship between them.

Processing this data by PASSion took an estimated time of 2,200 CPU hours using two

2.26GHz Intel Xeon CPUs server running Ubuntu 10.04. While it is possible to run as many

threads as required using PASSion concurrently, due to the high memory consumption of

each thread, that is near 9GB, it was not possible for us to run more than 5 threads at a time

considering our server’s 48GB memory capacity.
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Figure 5.3: Number of reads and found junctions among all samples.

The average numbers of junctions found were 116,267 and 94,734 for cancer-diagnosed

samples and benign samples respectively. The higher number of junctions for cancer-

diagnosed samples indicates that higher levels of expression has lead to more splicing and

hence higher number of junctions. This result regarding splice junctions, follows the same

pattern as that observed by Kannan et al. [27], who studied this dataset previously, stating

that paired chimeric reads are shown to happen more frequently in cancer samples than in

benign samples.
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Figure 5.4: Number of junctions among benign samples.

Figure 5.5: Number of junctions among cancer samples.
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5.1.3 Junction Lengths

We calculated the length of the junctions across different samples and groups, and also

across different chromosomes. As can be seen in Figure 5.6, there is no significant differ-

ence between the lengths of junctions across different chromosomes. The minimum length

of junctions for all chromosomes is between 19 to 21 bp and the maximum length falls

between 391,653 to 409,637 bp. However, after analyzing the average lengths of junc-

tions across different samples, shown in Figure 5.7, it can be seen that the average length

of junctions in samples is affected by the number of reads for each junction and subse-

quently number of found junctions. In this figure, samples belonging to the benign group

are highlighted with a light color.

Figure 5.6: Average length of junctions across different chromosomes.
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Figure 5.7: Average length of junctions across different samples.

5.1.4 Filtering

We merged and combined junctions from our population of 30 samples to find a set of dis-

tinct junctions to be used as features for prediction of prostate cancer. After this step, we

applied our 2-D peak finding algorithm to remove dubious junctions. Figure 5.8 shows the

number of junctions before and after the filtering process. As expected, most junctions have

been found in Chromosome 1, which is the largest chromosome in the Human genome [52],

and the least number of junctions has been observed in Y chromosome. Our filtering mech-

anism reduced the number of junctions by 6 to 8 percent by removing erroneous junctions

by selecting 2 bp as our margin of error for the filtering process. Selecting a larger number

for the margin leads to larger cuts in the number of junctions. Table A.1 contains full list of

numbers of junctions before and after the filtering process for all chromosomes. We found
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469,133 distinct junctions in total across all chromosomes using 2bp as margin.

Figure 5.8: Number of junctions for each chromosome before and after filtering (margin =

2bp).

5.1.5 Scored Junctions

We calculated the frequency of junctions on different samples for each chromosome sepa-

rately. Using our scoring scheme that has been previously described in Section 4.4.1, we

score each junction using a number between −20 and 20, based on the number and class

of the samples which the junction belongs to. We acquired 323,097 junctions with score

greater than or equal to 1, and 146,036 junctions with a score lower than 1.

The histogram of junction scores for the first chromosome is shown in Figure 5.9. There

are two main peaks seen in the histogram, these peaks happen at the scores of 1 and −2.

This shows that the majority of junctions have been observed in only one sample. Each

junction that has happened in a single cancer sample scores 1 and each junction from the

benign group scores −2.
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The local minima seen at score −1 is explained mostly by the junctions that have oc-

curred at one sample belonging to cancer group and one sample from the normal group.

Figures 5.9, 5.10, 5.11, show the histograms for chromosomes 1, 14 and Y. It can be ob-

served from these figures that the shape of the histogram is almost identical across all these

three chromosomes. The same pattern happens among all other chromosomes as well. A

sharp peak is observed across all chromosomes at score 1.

Figure 5.9: Histogram of junction scores for Chromosome 1.

Figure 5.10: Histogram of junction scores for Chromosome 14.
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Figure 5.11: Histogram of junction scores for Chromosome Y.

5.1.6 Junction Selection

In order to select the junctions that better differentiate cancer group versus the benign group,

we designated an upper bound and a lower bound cutoff value for our feature selection. This

means that only junctions with scores more than the upper bound or with scores less than the

lower bound will be considered in our junction selection process, implying that junctions

that have happened more frequently for each class of samples have a higher chance to be

selected as our features. This process would make our classification meaningful and also

feasible given the vast number of junctions found from the dataset.

We applied classification on our scored junction dataset using SVM in order to predict

the class of the samples. We used a grid-search approach to find cross-validation accuracies

using SVM with different kernel functions. The grid-search approach enabled us to try a

wide range of different feature sets, based on different upper and lower bounds, for our

classification. The included kernels are: linear, radial basis, sigmoid and polynomial of

degrees 2 and 3.
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A range of 5 to 20 and −13 to −5, for upper and lower bounds respectively, have been

selected as our grid search range. Junctions with scores ranging from −5 to 5 have been

discarded altogether due to their insignificance in prediction and because of being at large

numbers. The lower bound limit stops at −13, as there was no junction with a score less

than that value. Table 5.1 shows different number of junctions selected based on different

upper and lower bounds.

-13 -12 -11 -10 -9 -8 -7 -6 -5
5 23,354 23,357 23,362 23,367 23,407 23,472 23,691 24,117 25,135
6 14,816 14,819 14,824 14,829 14,869 14,934 15,153 15,579 16,597
7 9,150 9,153 9,158 9,163 9,203 9,268 9,487 9,913 10,931
8 5,394 5,397 5,402 5,407 5,447 5,512 5,731 6,157 7,175
9 3,039 3,042 3,047 3,052 3,092 3,157 3,376 3,802 4,820

10 1,640 1,643 1,648 1,653 1,693 1,758 1,977 2,403 3,421
11 828 831 836 841 881 946 1,165 1,591 2,609
12 409 412 417 422 462 527 746 1,172 2,190
13 172 175 180 185 225 290 509 935 1,953
14 79 82 87 92 132 197 416 842 1,860
15 34 37 42 47 87 152 371 797 1,815
16 12 15 20 25 65 130 349 775 1,793
17 4 7 12 17 57 122 341 767 1,785
18 1 4 9 14 54 119 338 764 1,782
19 1 4 9 14 54 119 338 764 1,782
20 1 4 9 14 54 119 338 764 1,782

Table 5.1: Number of junctions used as features in the classification based on the scores.

The junctions considered for grid search, and consequently being in the feature set, are

shown with a lighter color in comparison to all junctions for Chromosome 1 in Figure 5.9.

In each run, a different set of features was used as the input for our classification module.

As shown in Figure 5.12, we achieved the best results using linear SVM. Table 5.2 shows

the acquired accuracy rates based on the upper and lower bounds of our algorithm. The

accuracy score in a square ranging from pairs of (−13,10) to (−10,14), in addition to
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other pairs close to the square such as (15,−9) was 100%, which is shown by a light shade

in the figure. Darker shades on the right side of the figure shows the areas that the accuracy

falls under 80%. This trend is observable also in Figures 5.13 and 5.14, which represents

our classification results using polynomial and RBF kernels.

We report our results with fixed SVM parameters with values of ε = 0.001, γ = 1, as

they proved to be the best in our runs. 100% 10-fold cross validation accuracy was gained

using linear SVM with as low as 12 junctions with all being positives scores, meaning that

they were more frequent in cancer samples.

Figure 5.12: Accuracy of linear SVM classification.
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Figure 5.13: Accuracy of SVM with polynomial kernel (degree 2) classification.

Figure 5.14: Accuracy of SVM with RBF kernel classification.
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-13 -12 -11 -10 -9 -8 -7 -6 -5
5 86.66 86.66 86.66 86.66 86.66 83.33 83.33 83.33 83.33
6 86.66 86.66 86.66 86.66 86.66 86.66 90.00 90.00 90.00
7 100.00 100.00 100.00 100.00 100.00 93.33 93.33 90.00 90.00
8 96.66 96.66 96.66 96.66 96.66 96.66 96.66 93.33 96.66
9 96.66 96.66 96.66 96.66 96.66 96.66 96.66 96.66 96.66

10 100.00 100.00 100.00 100.00 100.00 96.66 96.66 96.66 96.66
11 100.00 100.00 100.00 100.00 100.00 96.66 96.66 96.66 96.66
12 100.00 100.00 100.00 100.00 100.00 96.66 96.66 96.66 96.66
13 100.00 100.00 100.00 100.00 96.66 96.66 96.66 100.00 96.66
14 100.00 100.00 100.00 100.00 96.66 96.66 96.66 93.33 86.66
15 96.66 100.00 100.00 100.00 100.00 100.00 83.33 90.00 76.66
16 100.00 100.00 96.66 96.66 86.66 80.00 73.33 70.00 70.00
17 90.00 96.66 90.00 86.66 66.66 73.33 63.33 63.33 66.66
18 63.33 70.00 93.33 76.66 63.33 70.00 63.33 63.33 66.66
19 63.33 70.00 93.33 76.66 63.33 70.00 63.33 63.33 66.66
20 63.33 70.00 93.33 76.66 63.33 70.00 63.33 63.33 66.66

Table 5.2: Accuracy rates for linear SVM related to different scores.

5.1.7 Biological Analysis

To biologically analyze the results of our junction selection model, we focused on the 12

specific junctions belonging to the cancer-diagnosed group that we found using our scor-

ing scheme and led us to 100% classification accuracy. We used BioMart [28] to find

the corresponding gene for each of these junctions. In the next step, we used the Human

Protein Atlas [60] to study previous annotations of each of these genes and their relation-

ship prostate cancer. As shown in Table 5.3, cancer tissue staining was estimated at four

different levels, including strong, moderate, weak, and negative. Based on this resource,

these estimated numbers represent the percentage of samples that have been detected with

prostate cancer antibody for each gene. The last column of this table, Normal Tissue Stain-

ing (NTS), represents the level of staining for that particular gene under normal conditions.

We were then able to find cancer-staining information for 8 out of 12 studied genes. We
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left the table cells empty for the genes that we could not find in the Human Protein Atlas or

their impacts on various cancers were still under study.

Gene Str. Mod. Weak Neg. Junction Start Junction End Score Chr. NTS
SRBD1 0 14 45 41 45812911 45826586 17 2 Medium

CRYBG3 0 18 9 73 97619328 97631010 18 3 Negative
ATP8A1 5 86 5 4 42454074 42457312 17 4 Medium

TRAPPC13 64957973 64960060 17 5
FAM135A 0 46 25 29 71185250 71185364 17 6 Medium
POLR2J4 44056121 44058659 18 7
PDE3B 0 81 19 0 14810786 14825488 17 11 Medium
XPOT 0 0 64 36 64811891 64812652 17 12 Weak

LEMD3 0 18 55 27 65634865 65637166 17 12 Weak
AC004696.2 56989748 57005530 18 19

PLCB4 9351940 9352948 17 20
CA5B 27 73 0 0 15792518 15793367 17 X Weak

Table 5.3: Relationship of the genes containing selected features with prostate cancer.

5.2 Discussion

Based on the results of our study, we noticed that splice junctions happened more frequently

in the cancer-diagnosed group compared to the normal group. Kannan et al. [27] also claim

that based on their experiment, there are more chimeric RNAs in cancer than in benign

samples. They state that this could be a sign of chimeric events as a result of cancer.

The fact that no junction with a score less than−13 has been found, implies the insignif-

icance of junctions that only occur in samples belonging to benign tissues. The number of

junctions observed with a score less than −10 is only 13. In other words, in more than

460,000 junctions across all chromosomes, only 13 junctions have been found exclusively

in more than half of the benign sample population. The corresponding number of junctions

of the cancer group, with a score over 10, is 1,640 junctions.

This observation matches the fact that we were able to reach 100% accuracy using only
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junctions with positive scores, which we could not reach with negative scoring junctions.

It also can be seen that in all versions of the SVM classification that we tried, depicted in

Figures 5.12, 5.13, and 5.14, reducing the number of junctions with positive scores sig-

nificantly reduces the accuracy of our classification. This effect is not significant for the

opposite, meaning that accuracy of classification is not impacted heavily by reducing junc-

tions from normal group in the feature set.

By observing the histograms for scored junctions across all chromosomes, we were

unable to notice any significance for any chromosome. We also observed that linear clas-

sification leads to the best prediction results. Among other kernels, polynomial of degree

2 performed better than all other kernels including polynomial of degree 3. Also, sigmoid

and radial basis function kernels performed the worst among all the classifiers. This could

be due to overfitting in higher dimensions, indicating the linear nature of the problem [18].

We were able to spot a junction from gene CA5B in the X chromosome with a score

of 17. According to the Human Protein Atlas project, this gene has 27% strong and 73%

moderate staining property. This detection is significant as the aforementioned gene has

a weak staining property for normal samples. This could hint at further studies towards

splicing variants regarding this specific part of the gene. Also regarding the 8 genes that we

found information regarding their relationship with prostate cancer, they were 42% stained

moderately on average for prostate cancer. This fact supports our observation of higher

expression levels in prostate cancer samples for higher scoring junctions in our study.
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Chapter 6

Conclusions

In this research, our goal was to exploit the paired-end information of RNA-Seq reads to

extract biological meaning across a low population of samples. The sheer amount of data

in our dataset added a new level of complexity to the RNA-seq experiments. Another

challenge that we faced was differential detection of junctions across all samples in the

population.

Although the effects of alternative splicing on prostate cancer has been previously stud-

ied [20; 40; 57; 9], and Ren et al. [47] studied prostate cancer in the Chinese population

using alternative splicing on RNA-Seq data, we developed a novel model to apply machine

learning methods on RNA-Seq dataset to select junctions as features and classified prostate

cancer samples.

After studying current methods available for splice junction discovery, we selected PAS-

Sion to detect splice junctions for each individual sample. We designed and developed an

algorithm to combine and merge these individual results and used an scoring scheme to

select our junctions as biomarkers and consequently use them as features for our prediction

module. We tried support vector machines with different kernels and on different sets of
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features. A 100% 10-fold cross-validation accuracy has been achieved using linear SVM

for different sets of junctions as features. Finally, we did research on the smallest set of

junctions to compare with the previous findings regarding to prostate cancer on the genes

that those junctions were belonging to. We found out that at least in one of the genes, there

is an indication of significant relation to prostate cancer.

6.1 Contributions

• Design of a model for differential splice junction detection on prostate cancer data on

large scale.

• Developing a filtering and scoring model as a feature selection mechanism leading to

introducing junctions as biomarkers.

• Design of a machine learning based model for prediction of prostate cancer based on

the selected features.

6.2 Future Work

Although we have used number of supporting reads for each junction as part of our features

for the classification process, further analysis is needed in order to discover the probable

effect of using expression level measurements in the feature selection process. Combining

expression levels with our scoring algorithm might lead to more accurate results. Also

combining different known feature selection algorithms could improve the results of our

study.

Further studies regarding more accurate mapping of reads to the reference genome,
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which will lead to more accurate splice junctions could lead to better accuracies in our study.

Specifically, exploiting quality information of the reads stored in FASTQ format should

enable PASSion to find more precise expression level measurements and more accurate

junction positions.

Conducting pathway analysis could lead to a deeper biological insight into the result of

the junction selection process, as well as the biological processes associated with prostate

cancer.
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Number of chromosome Junctions after the filtering Junctions by PASSion
1 37309 40184
2 25718 27683
3 21779 23512
4 13537 14524
5 15896 17111
6 17841 19275
7 18718 20068
8 12092 13047
9 15967 17257

10 14789 15972
11 20453 22120
12 19674 21228
13 6315 6795
14 11970 12902
15 13165 14173
16 18150 19669
17 23382 25247
18 5543 5959
19 26088 28128
20 9891 10699
21 4763 5167
22 10605 11498
X 10330 11080
Y 666 710

Table A.1: Number of splice junctions for each chromosome before and after the filtering
process (Margin = 2).



Appendix B

Guide for Running the Software Tools

B.1 Running PASSion

For setting up the respective modules, the following settings should be applied:

• SRA-Toolkit usage: $fastq-dump --split-3 read.sra

• SMALT usage: $smalt index -k 13 -s 6 refindex reference.fa

• SAMTools: Latest version of samtools installed form ubuntu packages

– usage: $samtools faidx reference.fa

• PASSion ver 1.2.1 has been installed.

– PASSion usage: $passion.pl -s 150 -r read1.fq -f read2.fq

-R reference.fa -I refindex -o passion output
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B.2 Junction Dataset

• Dataset of raw junctions is available in BED and DETAIL format upon request.

B.3 JunctionResolver

• JRE 1.7 should be installed to run this package.

• Readme file is provided with the package as a guide for installation and runnning.

B.4 2-D peak finding and Junction Selection

• MATLAB installation is needed to run modules developed in MATLAB language.

• Full documentation is provided in Readme file.
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