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ABSTRACT

In recent years there has been a growing recognition of the need for develop-

ing energy efficient network design approaches for WDM backbone networks

as well. The typical approach has been to switch off some components such

as line cards and router ports during low demand periods, and has focussed

on traditional static and dynamic traffic models. In this paper, we present

a new approach that exploits knowledge of demand holding times to in-

telligently share resources among non-overlapping demands and reduce the

overall power consumption of the network. We consider the fixed-window

scheduled traffic model (STM), and present i) a Genetic Algorithm (GA) and

ii) a Memetic Algorithm (MA) based strategy that jointly minimizes both

power consumption and transceiver cost for the logical topology. Simulation

results clearly demonstrate that both of the proposed algorithms outperform

traditional holding time unaware (HTU) approaches; the GA leads to addi-

tional improvements even compared to the shortest path holding time aware

(HTA) heuristic. However, the MA manages to achieve similar results to the

GA while taking up 4 to 5 times less computational resources and time to

compute.
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Chapter 1

Introduction

1.1 Overview

Optical communication is communication at a distance to carry information

using light. It can be performed visually or by using electronic interfaces.

The earliest and most basic forms of optical communication date back several

millennia, while the earliest electrical device created to do so was invented

in 1880, called the photophone – a device that allowed for the transmission

of speech on a beam of light. An optical communication system uses a

transmitter, a channel, and a receiver. The transmitter encodes a message

into an optical signal, the channel carries the signal to its destination, and

finally the receiver reproduces the message from the received optical signal.

An optical network is composed of the fiber-optic cables that carry chan-

nels of light, combined with the equipment deployed along the fiber to pro-

cess the light. The capabilities of an optical network are necessarily tied

to the physics of light and the technologies for manipulating lightstreams
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(or wavelengths). Hence, the evolution of optical networks has been marked

with major paradigm shifts as breakthrough technologies are developed [1].

One of the earliest technological advances was the ability to carry multiple

channels of light on a single fiber-optic cable. Each wavelength is carried at

a different optical frequency and multiplexed onto a single fiber, giving rise

to Wavelength Division Multiplexing (WDM).

Increased wavelength rate, combined with a greater number of wave-

lengths per fiber has expanded the capacity of optical networks by several or-

ders of magnitude over a period of 25 years. However, transmission capacity

is only one important factor. Historically, the contents of each wavelength

have undergone electronic processing at numerous points nt he network. As

networks increased greatly in size, this necessitated the use of a tremendous

amount of electronic terminating and switching equipment, which presented

challenges in cost, power consumption, heat dissipation, physical space, and

maintenance.

1.2 Motivation

In the past decade, the immense growth in high-bandwidth applications,

such as Video-on-Demand and online media sharing, has given rise to a cor-

responding increase in energy consumption of the network equipment [2].

Researchers have realized the importance of designing energy-minimized

green networks to utilize the available power efficiently and consequently

reduce the network operational cost. For a middle-sized country, for ex-

ample, a 1% improvement of the total energy consumption can lead to a
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reduction of 5 billion US dollars per year in electricity cost [3]. It is there-

fore necessary to develop robust optimization strategies for the design of

energy-efficient core networks. The typical approach is to switch off some

network components during low traffic periods.

There have been many different approaches have been proposed for re-

ducing power consumption in communication networks, including putting

network interfaces and components to sleep [2], switching off line cards [4, 5],

or even entire links or nodes [6, 7]. Our approach differs from these exist-

ing schemes in that we consider the applications that require periodic use

of bandwidth at predetermined times. Unlike the static or dynamic traffic

demands, this type of demands (also called scheduled traffic demands [8])

is periodic and predictable, so resource allocation can be optimized in both

space and time.

Typically, optimization problems of this kind are solved by Integer Lin-

ear Programs (ILPs). Although ILPs achieve an optimal solution, they can

only do so for smaller network sizes, once networks such as the 14 node

NSFNET and the 20 node ARPANET come into the equation, the ILP

tends to become computationally intractable, as it takes too long and con-

sumes too many computational resources to find its solution. The proposed

Genetic Algorithm (GA) and Memetic Algorithm (MA) are able to achieve

moderate energy improvements at a much shorter time, and using up less

computational resources. On the other hand, our MA consumes even less

computational resources and achieves results that are as good as or better

than the results reported by the GA in a significantly less amount of time.
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1.3 Solution Outline

We present a GA-based approach as well as an MA-based approach to route

a set of periodic, sub-wavelength traffic demands over the network and show

that consideration of demand holding times can play an important role in

reducing the overall energy consumption of a network. The primary goal

for these two approaches is to route the traffic demands in such a way

that the maximum number of lightpaths can be switched off at any given

time, hence reducing the overall power consumption. Additionally, the other

objective is to reduce the total number of lightpaths needed to realize the

logical topology, such that the capacity constraints of the lightpaths are not

exceeded. Specifically, we try to implement each logical edge using as few

lightpaths as possible, which in turn reduces the need for optical transceivers.

Our GA is able to reduce the energy consumption more so than a sim-

ple shortest path holding-time-aware heuristic, presented in [9]. Further-

more, where ILPs become too computationally expensive to apply to large

networks, the GA can be applied to achieve solutions with good energy effi-

ciency. In contrast, the MA builds upon the GA and improves it even further

by adding local search capabilities, allowing it to further optimize the GA’s

solution and achieve more energy efficient routing and power consumption

while at the same time using up even less computational resources and time

due to its ability to detect population convergence.
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1.4 Thesis Organization

The remainder of this thesis is as follows. In Chapter 2, we review optical

networks and their underlying technologies. Furthermore, we review the

biological motivation behind evolutionary algorithms such as GAs and MAs.

We then review GAs and MAs, as well as past research that has looked into

using evolutionary algorithms in optical networks and other applications. In

Chapter 3, we present our solution and methodology, as well as a network

model upon which we based our experimentation. In Chapter 4 a summary

of the results and experiments carried out to test the proposed algorithms.

Finally, Chapter 5 concludes the work done in this thesis and suggests some

possible future research directions.
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Chapter 2

Review

2.1 Optical Networks

Optical fiber communication is a method of transmitting information from

one place to another by sending pulses of light through an optical fiber, form-

ing an electromagnetic carrier wave that is modulated to carry information.

Because of its advantages over electrical transmission, copper wire com-

munications have largely been replaced by optical fibers in core networks.

The process of communicating using fiber-optics involves the following basic

steps:

1. Creating the optical signal using a transmitter.

2. Relaying the signal along the fiber, ensuring the signal does not become

distorted or weak via the use of amplifiers.

3. Recieving the optical signal.

4. Converting the signal into an electrical signal.

6



Optical communications are used by many telecommunications compa-

nies to transmit various signals, including but not limited to: telephone sig-

nals, Internet communication, and cable television signals. Optical fiber has

large advantages over existing copper wire in long-distance and high-demand

applications due to lower attenuation and interference. At the time of writ-

ing this paper, optical fibers are relatively cheap. However, this was not the

case more than a decade ago. Since infrastructure development within cities

was a difficult and time consuming process, and optical fiber systems and

networks were complex and expensive to install and operate. Hence, optical

fiber communication systems were primarily installed in long-distance appli-

cations, where they can be used to their full transmission capacity, offsetting

their high cost.

Today, however, the price for rolling out fiber to the home has currently

become more cost-effective than that of rolling out a copper-based network.

Since 1990, the telecommunications industry has laid a vast network of in-

tercity and transoceanic fiber optic communication lines. By 2002, an inter-

continental network of 250,000 km of submarine communications cable with

a capacity of 2.56 Tb/sec was completed.

2.1.1 Technologies

Modern fiber-optic communication systems generally include:

1. An optical transmitter to convert an electrical signal into an optical

signal to send into the optical fiber.

2. A cable containing bundles of multiple optical-fibers that is routed

7



through underground conduits and buildings.

3. Various kinds of amplifiers.

4. An optical receiver to recover the signal as an electrical signal.

2.1.1.1 Transmitters

The most commonly used optical transmitters are semiconductor devices

such as Light-Emitting Diodes (LEDs) and laser diodes. In optical com-

munications, semiconductor optical transmitters must be designed to be

compact, efficient, and reliable, while operating in an optimal wavelength

range, and directly modulated at high frequencies.

2.1.1.2 Amplifiers

The transmission distance of an optical fiber network has typically been

limited by fiber attenuation and by fiber distortion. By using opti-electronic

repeaters, these problems have been eliminated. The problems of limited

transmission distance due to fiber attenuation fiber distortion have been

eliminated via the use of opto-electronic repeaters. The repeaters convert

the signal into an electrical signal, and then use a transmitter to send the

signal again at a higher density than it was before. These repeaters tend

to be very expensive due to the high complexity with modern Wavelength-

Division Multiplexed (WDM) signals [10].

Instead, engineers use optical amplifiers, which amplify the optical signal

directly, bypassing the process of converting the signal into an electrical

signal. Naturally, they have largely replaced repeaters in new installations.

8



2.1.1.3 Fiber Cables

An optical fiber consists of a core and a cladding (made of high-quality silica

glass, although plastic can be used as well), as well as a buffer (a protective

outer coating), in which the cladding guides the light along the core by

using total internal reflection. Total internal reflection is a phenomenon

that occurs when a propagating light wave strikes a medium boundary at

an angle larger than a particular critical angle with respect to the normal to

the surface. Connecting two optical fibers is done by fusion or mechanical

splicing. Due to the microscopic precision required to align the fiber cores,

it also requires interconnection technology and special training [10].

2.1.1.4 Receivers

Photodetectors, the main components of optical receivers, convert light into

electricity. A Photodetector is typically a semiconductor-based photodiode.

Several types of photodiodes include:

1. p− n photodiodes.

2. p− i− n photodiodes.

3. Avalanche photodiodes.

Metal-semiconductor-metal (MSM) photodetectors are also used due to

their suitability for circuit integration in regenerators and WDMs [10].

9



2.1.2 Comparison with Electrical Transmission

Optical fiber is generally chosen for systems requiring higher bandwidth or

spanning longer distances than electrical cabling can accommodate. Specif-

ically, the main benefits of fiber optics are [10]:

1. Very low data loss rate (thereby allowing long distances between am-

plifiers and repeaters).

2. Due to its reliance on light rather than electricity for transmission,

and the dielectric nature of fiber optics, there is an absence of ground

currents and other signal and power issues that are otherwise common

in long parallel electric conductor runs.

3. Its high data-carrying capacity (for perspective, thousands of electri-

cal cables would be required to replace a single high bandwidth fiber

cable).

In short distance and relatively low bandwidth applications, electrical

transmission is often preferred because of its [10]:

1. Lower material cost, where large quantities are not required.

2. Lower cost of transmitters and receivers.

3. Capability to carry electrical power as well as signals.

4. Ease of operating transducers in linear mode.

At higher power outputs, optical fibers are susceptible to fiber fuse (oc-

curs when a fiber is subjected to a shock or otherwise suddenly damaged),

10



resulting in the destruction of the fiber core and damage to transmission

components. Furthermore, optical fibers are more difficult and expensive to

splice than electrical conductors [10].

Because of these benefits of electrical transmission, optical communica-

tion is not common in short box-to-box, backplane, or chip-to-chip applica-

tions. In certain situations, optical fiber may be used even for short distance

or low bandwidth applications, due to other important features:

1. Lighter weight to carry in transport.

2. Not electromagnetically radiating and difficult to tap without disrupt-

ing the signal — this is an asset in high security situations.

3. Resistance to corrosion due to non-metallic transmission medium.

4. No sparks — eliminates the concern for flammability.

5. Immunity to electromagnetic interference.

6. High electrical resistance, making it safe to use near high-voltage

equipment or in geographically challenging areas.

7. Smaller cable size — important where pathway is limited.

Optical fiber cables can be installed in buildings with the same equipment

that is used to install copper and coaxial cables, with some modifications

due to the small size and limited pull tension and bend radius of optical

cables [10].
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2.2 The Biology

The theory of evolution is central to this thesis. As such it makes sense to

discuss the biological side of the theory before we dive into the gritty com-

putational side. We will first highlight some definitions that will be used

often in the rest of this work. A gene is a sequence of DNA bases that code

for a trait, like eye or hair color. An allele is a value of a trait. For exam-

ple the eye color gene could have a blue allele or a hazel allele in different

people [11]. Hence, the definition accepted by most biologists is “Evolution

is the variation of allele frequencies in populations over time”. Interestingly

enough, “evolution is the survival of the fittest” is a good description of

many evolutionary computation systems. When we use evolutionary com-

putation to solve a problem, we operate on a collection, or population, of

data structures (or creatures). These “creatures” will have explicitly com-

puted fitnesses used to decide which of them will be partially or completely

copied (have offspring) [11]. This fundamental difference in the notion of

fitness is a key difference between biological evolution and most evolutionary

computation.

Evolution produces new forms over time. This is clear from fossil record

examinations and from looking at molecular evidence or “genetic fossils”.

This ability to produce new forms, in essence to innovate without outside

direction other than the imperative to have children that live long enough

to have children themselves, is the key feature that we wish to reproduce in

this research.

There are two opposing forces that drive evolution: variation and selec-

12



tion. Variation is the process that produces new alleles, and, more slowly,

genes. Furthermore, variation can also change which genes are or are not

expressed in a given individual. The simplest method of doing this is sexual

reproduction with its interplay of dominant and recessive genes. In contrast,

evolutionary computing operates on populations of data structures. It ac-

complishes variation by making random changes in these data structures

and by blending parts of different structures via processes called mutation

and crossover, together referred to as variation operators. There are good

and bad mutations operating on a population of data structures. A good

mutation is one that increases the fitness of a data structure, while a bad

mutation is one that reduces the fitness of a data structure [11].

Selection is the process whereby some alleles survive and others do not.

In short, variation builds up genetic diversity, while selection reduces it. In

terms of evolutionary computing, selection is accomplished with any algo-

rithm that favours data structures with a higher fitness score. There are

many possible methods to achieve selection.

2.3 Evolutionary Algorithms

Nearly three decades of research and development have demonstrated that

the mimicked search process of natural evolution can yield very robust, direct

computer algorithms, even though these imitations are crude simplifications

of biological reality [12]. The result of these efforts is Evolutionary Algo-

rithms (EA). Based on the collective learning process within a population of

individuals, each of which represents a search point in the space of potential

13



solutions to a specific problem.

The population evolves towards improving regions of the search space

by means of randomized processes of selection, mutation and recombina-

tion (sometimes recombination is not used in some algorithms). Moreover,

the population is arbitrarily initialized. The environment delivers quality

information (i.e. fitness value) of the individuals, and the selection pro-

cess favours those individuals of higher fitness to reproduce more often than

worse individuals [12]. Finally, the recombination mechanism allows the

mixing of parental information while passing it to their descendants, while

mutation introduces innovation into the population (some algorithms do not

check if the ”innovation” is good or bad, and proceed nonetheless).

In order to solidify our description, we will introduce some notational

conventions. Let f : Rn → R denote the objective function to be opti-

mized, and without loss of generality we assume a minimization task in the

following: let Φ : I → R (with I being the space of individuals) be the

fitness function. Generally speaking, fitness and objective function values

of an individual are not required to be identical, such that Φ and f are

distinguished mappings, however f is always a component of Φ. Meanwhile

−→a ∈ I is used to denote an individual, −→x ∈ Rn indicates an object variable

vector. Moreover, µ ≥ 1 and λ ≥ 1 denote the size of the parent population

and the size of the offspring population (created by recombination and mu-

tation at each generation) size, respectively. A population at generation t,

P (t) = {−→a 1(t), ...,−→a µ(t)}, consists of individuals −→a i(t) ∈ I. rΘr : Iµ → Iλ

denotes the recombination operator which might be controlled by additional

parameters summarized in the set Θr.
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Similarly, the mutation operator mΘm : Iµ → Iλ modifies the offspring

population, also being controlled by some parameters Θm. Although in-

troduced in this thesis as macro-operators transforming populations into

populations, both mutation and recombination can be reduced to local op-

erators m′Θm : Iµ → Iλ and r′Θr : Iµ → Iλ, respectively, that create one

individual when applied. To choose the parent population of the next gen-

eration, selection sΘs : (Iλ ∪ Iµ+λ) → Iλ is applied. The fitness function

Φ : I → R is calculated for all individuals of a population during the eval-

uation step, and ι : Iµ → {true, false} us used to denote the termination

criterion.

Thus, we can represent this with the following algorithm:

begin
t = 0;
initializeP (0) = {−→a 1(0), ...,−→a µ(0)} ;
evaluateP (0) = {Φ(−→a 1(0)), ...,Φ(−→a µ(0))} ;
while ι(P (t)) 6= true do

recombine : P ′(t) = rΘr(P (t)) ;
mutate : P ′′(t) = mΘm(P ′(t)) ;

evaluate : P ′′(t) : {Φ(
−→
a′′1(t)), ...,Φ(

−→
a′′λ(t))} ;

select : P (t+ 1) = sΘs(P
′′(t) ∪Q) ;

t = t+ 1 ;

end

end
Algorithm 1: Evolutionary Algorithm Skeleton, as described in [12]

Where Q ∈ {θ, P (t)} is a set of individuals that are additionally taken

into account during the selection step. The evaluation process yields a multi-

set of fitness values, which are not necessarily identical to objective function

values [12]. However, fitness values are used here as a result of the evaluation
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process, since the selection criterion operates on fitness instead of objective

function values. The evaluation of objective function values is always neces-

sary during the calculation of fitness, this is so the information is available

and can easily be stored in an appropriate data structure.

2.4 Genetic Algorithms

Genetic Algorithms (GAs) are the most common of evolutionary algorithms.

Generally, a population of candidate solutions to an optimization problem

is evolved towards better solutions. Each solution has a set of properties

(chromosomes or genotype) which can be mutated and altered. Tradition-

ally, solutions are represented in binary as strings of 1s and 0s, however

other encodings are possible [13]. An iterative process, the evolution typi-

cally starts from a population of randomly generated individuals, with the

population in each generation referred to as a generation. The fitness of

every individual – the value of the objective function in the optimization

problem being solved – is evaluated in every generation. The more fit in-

dividuals are stochastically selected from the current population, and each

individual’s genome is modified (typically recombined or randomly mutated)

to form a new generation [13]. The new generation of candidate solutions

is then used in the next iteration of the algorithm. Traditionally, the algo-

rithm terminates when either a maximum number of generations has been

produced, or a satisfactory fitness level has been reached for the population.

Typically, a GA requires:

1. A genetic representation of the solution domain.
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2. A fitness function to evaluate the solution domain.

An array of bits is usually the standard representation of each candidate

solution. They are typically used because their parts are easily aligned

due to their fixed size, however arrays of other types and structures can be

used in the same way. Variable length representations are also possible, but

crossover implementation becomes more complex when one has to account

for different sizes of chromosomes.

Eventually, structures in the search space were progressively modified

in this model by operators selected by an adaptive plan, judging about

the quality of previous trials by means of an evaluation measure [12]. In

1975 John Holland showed how to interpret the reproductive plans in terms

of genetics, economics, game-playing, pattern recognition and parameter

optimization [14].His GAs were applied to parameter optimization for the

first time by K. De Jong [12], who laid the foundations of this application

technique.

Today there exist many numerous modifications of the original GA –

usually referred to as Canonical GAs – are all applied to many fields in

Computer Science. However, many of these applications show enormous

differences to the canonical GA, as we will explain shortly.

2.4.0.1 Representation and Fitness

For initialization, GAs assume a bounded subspace Πn
i=1[ui, vi] ⊂ Rn with

ui < vi, and work on bit strings of fixed length l – that is, I = {0, 1}l

[12]. The bit string is logically divided into n segments – typically of equal
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length lx (that is, l = n · lx) – in order to apply canonical GAs to continuous

parameter optimization problems of the form f : Πn
i=1[ui, vi]→ R(ui < vi).

Each segment is interpreted as the binary code of the corresponding object

variable xi ∈ [ui, vi].

A segment decoding function Γi : {0, 1}lx → [ui, vi] typically looks like:

Γi(ai1...ailx) = ui +
vi − ui
2lx − 1

(
lx∑
j=1

aij2
j−1) (2.1)

where the i-th segment of an individual −→a = (a11...anlx) ∈ {0, 1}n·lx = I

is denoted by (ai1...ailx). Combining the segment-wise decoding functions

Γi to an individual-decoding function Γ = Γ1 × ... × Γn, fitness values are

obtained by setting Θ(−→a ) = δ(f(Γ(−→a ))), where again δ denotes a scaling

function assuring positive fitness values such that the best individual receives

the largest fitness [12]. A linear scaling is more commonly used to take into

account the worst individual of the population P (t−ω) ω time steps before

(t− ω < 0⇒ P (t− ω) = P (0)):

δ(f(Γ(
−→
( a)), P (t− ω))) = max{f(Γ(−→aj ))|−→aj ∈ P (t− ω)} − f(Γ(−→a )) (2.2)

where ω is referred to as the scaling window. This representation method

is a special technique developed for the application of canonical GAs to pa-

rameter optimization problems [12]. The wide range of alternative repre-

sentations based on the binary code allows canonical GAs to be applied to

various different problems.
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2.4.0.2 Mutation

Traditionally referred to as a “background operator” [14], in canonical GAs

works on the bit string level. Particularly, it inverts single bits of individuals,

with the probability pm of this event typically being small – pm ≈ 1 · 10−3

per bit, for our MA, we have applied a mutation probability of pm ≈ 2 ·

10−3, which we will discuss later. This kind of mutation depends neither

on the number n of object variables, nor on the total length l of the bit

string, instead it is ruled by randomness, like the Monte Carlo method. The

reason we did not apply mutation to our GA was that it did not produce a

significant difference in results. For a single individual, mutation m′pm : I →

I,m′pm(s1, ..., sl) = (s′1, ..., s
′
l) works as follows:

s′i =


si χi > pm

1− si χi <= pm

χi ∈ [0, 1] here is the product of a uniformly distributed function, thereby

a uniform random variable, sampled anew for each bit.

2.4.0.3 Recombination

Emphasis is placed mainly on crossover in canonical GAs, the recombina-

tion operator of GAs, as the main variation operator which researchers hope

recombines useful segments from different individuals. Crossover is again an

operator working entirely on bit string representation, and completely ig-

nores the genetic code and epigenetic apparatus [12]. It also does not respect

the semantic boundaries of the encoded variables. An eternal parameter pc
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(or crossover rate) indicates the probability per individual to undergo re-

combination. Typical values for pc are in the range of [0.6, 1.0]. Our rate of

recombination for both our Memetic and GAs is 1.0.

When two parent individuals −→s = (s1, ..., sl),
−→v = (v1, ..., vl) have been

selected (at random) from the population, crossover forms two offspring

individuals
−→
s′ and

−→
v′ . Represented by:

−→
s′ = (s1, ..., sχ−1, sχ, vχ+1, ..., vl)

−→
v′ = (v1, ..., vχ−1, vχ, sχ+1, ..., sl)

(2.3)

χi ∈ [0, 1] still is the product of a uniformly distributed function, thereby

a uniform random variable, and one of the two offspring individuals is ran-

domly selected to be the overall result of a crossover. This is referred to

generally as one-point crossover, and can be extended to a more general-

ized m-point crossover by sampling more than one breakpoint and alter-

nately exchanging each second resulting segment [15]. On the other hand,

the uniform crossover operator drives the number of crossover points to

an extreme by performing the random decision on whether to exchange in-

formation between parents or not for each new bit of the genotype [16].

Interestingly, neither a theoretical nor empirical evidence exists to decide

upon the question of which crossover operator is most appropriate, despite

several investigations on this topic [12].
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2.4.0.4 Selection

Similarly to EAs, selection in canonical GAs is based on a probabilistic

survival rule, combined with a fitness-dependent chance to have different

partners for producing more or less offspring. For proportional selection

s : Iµ → Iµ, the reproduction probabilities of individuals −→a j are given by

their relative fitness, that is:

∀i ∈ {1, ..., µ}ps(−→a i) =
Θ(−→a i)

Σµ
j=1Θ(−→a j)

(2.4)

Sampling µ individuals according to this probability distribution should

yield the next generation of parents. This mechanism fails in the case of

negative fitness or minimization tasks, this is when the scaling function

described earlier comes in.

Having described the canonical GAs methodology above, it is time to

put it together for a conceptual algorithm:

Interestingly, Back and Schwefel report in [12] that the position of the

select operation did not have to be at the beginning; they experimented by

placing it at the end and the difference was marginally small.

2.5 Memetic Algorithms

While GAs have been inspired in trying to emulate biological evolution,

Memetic Algorithms (MAs) try to mimic cultural evolution. Essentially,

MAs are a marriage between population-based global search and the local
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begin
t = 0 ;
initialize P (0) = {−→a 1(0), ...,−→a µ(0) ∈ Iµ} ;

where I = {0, 1}l ;
evaluate P (0) = {Φ(−→a 1(0)), ...,Φ(−→a µ(0)) ∈ Iµ} ;

where Φ(−→a k(0) = δ(f(Γ(−→a µ(0)))), P (0)) ;
while (ι(P (t) 6= true)) do

select: P (t+ 1) = s(P ′′(t)) recombine:
−→
a′ k(t) = r′{pc}(P (t))∀k ∈ {1, ..., µ} ;

mutate:
−→
a′′k(t) = m′{pm}(

−→
a′ k(t))∀k ∈ {1, ..., µ} ;

evaluate: P ′′(t) = {
−→
a′′1(t), ...,

−→
a′′µ(t)} ;

where ps(
−→
a′′k(t)) = Φ(

−→
a′′k(t))

σµj=1Φ(
−→
a′′j(t))

;

t = t+ 1 ;

end

end
Algorithm 2: Canonical GA algorithm Skeleton as described by Holland
in [14]

search heuristic made by each of the individuals. Genetic programmers nor-

mally regard MA as a special kind of GA with a local search implementation,

typically hill-climbing.

Early in the history of the application of EAs to real-world problems, it

became apparent that canonical GAs, namely ones using a simple binary rep-

resentation, n-point crossover, bitwise mutation, and fitness proportionate

selection could not possibly compete with tailor-made algorithms [17]. This

empirical observation resonated well with theoretical and experimental stud-

ies on the so-called “baldwin effect” and on “lamarckian evolution” [17] that

focused on how learning could affect the process of evolution. Therefore, the

global search dynamic of EAs needed to be complimented by local search re-

finement provided by a suitable hybridization using problem-specific solvers
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including heuristics, and approximate and exact algorithms.

Hence, by means of specialized crossover and mutation operators, so-

phisticated problem-specific representations, smart population initialization,

complex fitness functions, local search heuristics and local and exact algo-

rithms, domain-specific knowledge was added to the EA framework. As of

late, Richard Dawkins’ concept of “memes” [18] has been picking up speed

within the MA literature as they can be thought of as representing “evolv-

able” strategies for problem solving, thus breaking the mould of a fixed and

static domain knowledge captured once during the design of MAs and left

untouched afterwards. Therefore, Dawkins’ Memes, and their extensions as

evolvable search strategies provide a critical link to the possibility of open-

ended combinatorial and/or continuous problem solving [17].

2.5.1 Local Search

The global search capacity of the evolutionary part of an MA takes care

of exploration, trying to identify the most promising search space regions;

the local search part scrutinizes the surroundings of some initial solution,

thereby exploiting it in this way. For a vast majority of combinatorial opti-

mization problems and, as it is also becoming more clear in recent research,

also for many continuous optimization problems, this combination leads to

some of the best performing heuristic optimization algorithms [19]. The

local search can be integrated within the evolutionary cycle mainly in two

ways. The first is the so-called “life-time learning”, that is, the application

of the local search to a candidate solution. In this case, the metaphor is

the cultural development of the individuals which is then transmitted to
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the other solutions over the subsequent generations. The second way is the

application of the local search during the solution generation phase, that is,

the generation of a perfect child. This class of Memetic implementations

aims at selecting the most convenient offspring amongst the potential off-

spring solutions [19]. This aim can be achieved, for example, by applying a

local search to select the most convenient cutting point in a GA crossover.

2.5.1.1 Neighbourhoods and Local Optima

Essentially, a solution s′ is deemed a neighbour of s if the former can be

reached from the latter by a single step (using a so-called ”move” operator)

[19]. Moves can typically be regarded as modifications of some parts of a

solution. Under an appropriate distance measure between solutions, these

moves can thus be seen as ”local”, hence the name Local Search. There are

two things that the reader must keep in mind:

1. Neighbourhoods are – more often than not – symmetrical.

2. The move operator allows the implicit definition of neighbourhoods, by

referring to the potential transitions attainable upon the application

of the operator.

There are some intrinsic differences in combinatorial and continuous

search spaces, due to the differences in the types of underlying search spaces.

Combinatorial spaces are finite for finite size problems, while continuous

search spaces are infinite and hence not enumerable [19]. These differences

cause the local optima and the way how one is searching for an improved
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candidate to be different as well (a local optimum is the best solution in its

local neighbourhood). We will now explore these differences. First, let S

denote the search space.

The number of candidate solutions in the neighbourhood of a current

candidate solution s is enumerable in combinatorial problems, and a local

optimum can be defined as a candidate solution sl for which it holds that

∀s ∈ Φ(sl) we have f(s) ≤ f(sl), where f : s→ R is the objective function.

Since one simply needs to enumerate all neighbouring candidate solutions

and check whether they are better or not than the current candidate so-

lution, it’s easy to verify whether the current candidate solution is a local

optimum or not. This check can be done in polynomial time if the number

of neighbours is polynomial in the instance size, and the objective function

is computable in polynomial time, which is the typical case for many neigh-

bourhood definitions and optimization problems [19]. Our problem is finite

instance is finite, and hence involves combinatorial search, and hence con-

tinuous search is out of the scope of this thesis. We now will very briefly

summarize the idea behind continuous search, for further details [19] con-

tains a much more comprehensive review.

In the case of continuous optimization problems, the decision space is, in

principle, a dense set, and is thus composed of an infinite amount of points.

Therefore, enumeration becomes impossible for the search of the optimum,

and cannot be used. We can formally define a local optimum in a continuous

space S as a point so ∈ S, such that

f(so) ≤ f(s) ∀s ∈ S, 0 ≤ ||so − s|| ≤ ε (2.5)

25



The neighbourhood of the local optimum so is the set of points encircled

in the region limited by the magnitude of ε.

2.5.1.2 Classifications

There are many various perspectives from local search can be classified [19],

and based on these classifications one must consider two important points.

First, every optimization algorithm can be seen as a logical procedure com-

posed of two sets of operations: trial solution generation and trial solution

selection. Second, the classifications should not be considered in a binary

way (i.e. it’s not one or the other), but more as properties of the phases of

the procedure. As a concrete example, let’s take the idea behind this work

into consideration. The algorithm is not fully stochastic or fully determin-

istic, but instead has a certain degree of stochastic logic and determinism.

Furthermore, our algorithm is self-adaptive, meaning it has two behaviours:

exploitation and exploration. Hence when the population is diverse it acts

like a local search procedure (following the greedy approach), and when the

population converges its goal becomes to diversify the search (following an

approach that is closer to the Steepest Descent).

1. According to the nature of the search logic:

• Deterministic: Deterministic generation of the trial solution.

• Stochastic: Randomized generation of the trial solution.

2. According to the amount of solutions involved:
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• Single-solution: The algorithm processes and influences only

one solution.

• Multiple-solution: The algorithm processes and influences more

than one solution, usually employed for interacting with and join-

ing generic trial solutions.

3. According to the pivot rule:

• Steepest Descent: The algorithm generates a set of solutions

and selects the most promising one only after having explored all

other solutions.

• Greedy: The algorithm performs the replacement as soon as it

detects a solution that outperforms the current best and starts

over the exploration.

2.5.1.3 Algorithm

The following algorithm provides a general outline of a single-solution meta-

heuristic. It receives an initial solution and iteratively picks a neighbour and

decides whether or not to accept this neighbour as the new current solution

or not. The algorithm may use a memory structure that modulates this pro-

cess to select which neighbourhood should be used to select the neighbour,

whether to accept the latter as the new current solution or not, and even to

support some high-level strategy for intensifying or diversifying the search

[19].

The possibility of performing some sort of incremental evaluation of

neighbours is one of the most distinctive features of local search strategies in
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begin
InitializeMemory(M) ;
while (TerminationCriterion(M) 6= true) do

Φ← PickNeighbourhoodStructure(M) ;
s′ ← PickNeighbour(Φ, s) ;
SELECT(s, s′,M) ;
UpdateMemory(s,M)

end
return s ;

end
Algorithm 3: Typical Single-solution Local Search Algorithm

combinatorial domains. That is, computing f(s′) as f(s′) = f(s) + δf(s, s′)

where δf(s, s′) is a term that depends on the influence exerted on s to get s′

and can be typically computed in a simplistic and efficient way. More often

than not, this means the cost of exploring the neighbourhood of a solution

is not much higher than a few full evaluations. This allows the practical use

of some intensive local procedures [19].

2.6 Approaches to Optical Network Optimization

Memetic and GAs have been applied extensively to solve problems in optical

networks. In the following section we review some of the prominent solu-

tions to WDM traffic grooming issues that have been attempted using GAs.

Moreover, we also review some MA solutions to more generic problems. At

the time of writing this paper, MAs are not very well explored in terms

of traffic grooming in WDM optical networks. As such, we instead review

some closely related applications of MAs to problems that range from parti-

cle swarm optimization to the Travelling Salesman Problem (TSP). Related
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Literature is listed and discussed chronologically.

In 1994, Radcliffe et al. introduced a formal, representation-independent

form of an MA(i.e. a GA incorporating a local search mechanism) . They

claim that, as expected, given the decomposable nature of the evaluation

function and the large number ofpossible alleles to the TSP, the MA signifi-

cantly outperformed the GA. The GA failed by a large margin to match the

performance achieved by repeatedly generating 2-opt solutions [21].

Later, in 1999 Gazen et al. proposed a method based on GAs for optimiz-

ing the logically re-arrangeable multihop lightwave networks. The algorithm

takes topologies as individuals of its population, and tries to find optimal

ones by mating, mutating and eliminating them [22]. Although the GA pro-

duced high quality solutions to this problem, it required long running times.

The authors claim that improvements to the GA are still possible, and that

a more compact representation, faster evaluation algorithms and very finely

tuned set of parameters will increase the time performance of the GA and

the quality of the results. Krasnogor et al. proposed a new hybridization

scheme in 2000 for an MA which is composed of two hybridization processes:

a GA and a Monte Carlo (MC) Method. They claim the proposed research

reached optimal and near optimal molecular confirmations in the Protein

Folding problem. They further report that when applied to the Travelling

Salesman Problem (TSP), the algorithms did not reach an optimal solution

but followed the intended behaviour [23].

To minimize the total network facility cost for the traffic demand at each

evolutionary stage of the network, Datta et al. proposed a simulated anneal-

ing (SA) approach in 2003 for near-optimal routing of static connections in a
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mesh-restorable network, and provide a generalized framework for network

evolution in large networks with complex demand sets [24]. They show that

the SA finds the solution close to the ILP optimal solution. The authors

conclude the scheme can be used as a heuristic to arrive to near-optimal

solutions in cases of complex demand sets and moderately large networks,

where the run-time of the ILP becomes practically infeasible. The pro-

posed framework can be implemented in networks that collect information

through link-state protocols and employ source-based routing. The authors

note the scheme is highly inexpensive, fast, and can be ideally employed for

all backbone networks. The methodology can be extended to heterogeneous

networks, wherein one can study the impact of switching architectures on

route selections [24].

Meanwhile, Kuri et al proposed a branch and bound (B&B) algorithm

for exact resolution and an alternative Tabu search (TS) algorithm for ap-

proximate resolution. Furthermore, a greedy graph vertex coloring approach

is used to solve the wavelength assignment problem. The authors claim to

be able to obtain approximate solutions very close to the optimal ones by

modifying the TS parameters. Kuri et al. further report that the time

correlation among scheduled lightpath demands (SLDs) in a set ∆ has a sig-

nificant effect on the average gain in WDM channels [8]. Particularly, they

have found the number of required wavelengths to be significantly smaller

than the number of demands because of the time and space wavelength

reuse.

In 2005, Prathombutr et al. considered the grooming problem of static

demands as an optimization problem. Specifically, they proposed e a Mul-
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tiple Objective Evolutionary Algorithm (MOEA) that deals with encoding,

routing and wavelength assignment schemes. They claim the algorithm is

able to:

1. Maximize traffic throughput.

2. Minimize the number of transcievers.

3. Minimize average propagation delay or average hop counts.

The authors claim that the results showed that the MOEA performed

better in any cases than that of the Maximizing Single-hop Traffic (MST)

heuristic and the Maximizing Resource Utilization (MRU) heuristic, with

the acceptable processing time. Krasnogor began to look into creating MAs

with a less complicated foundation, and defined a syntactic model which

enables a better understanding of the interplay between the different com-

ponent parts of a MA. By using the defined syntactic model and taxonomy,

the writers claim the process of identifying which of the many components

and interactions of these complex algorithms relate to which of those design

issues should be facilitated. While this model is not applicable to every

implementation of a MA, it would certainly be beneficial to keep this model

in mind to inform design decisions.

Also in 2005, Tsenov et al. proposed a way for combined use of two

non-traditional algorithms by solving topological problems on telecommu-

nications concentrated networks. Specifically, Tsenov suggests simulated

annealing (SA) and GA as viable solutions. Results show that “such an

approach may lead to good results” [25]. However, more research is needed
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to investigate the impact of the parameterization of the algorithms. Chen et

al. attempted find a routing-tree with minimal multicast cost which satis-

fies a delay constraint and a destination constraint defined in their previous

work in 2002 [26]. The authors report the ILP was able to find an opti-

mal solution for routing the request with fewer than 8 destinations, however

an optimal solution for routing the request with more than 8 destinations

could not be found in an affordable time [27]. In contrast, the GA can also

find the equivalent to the light forest found by the ILP. Specifically, they

report the results show that the GA can always find a better solution than

3-Phase Model, but the computation time is still high, and the reduction of

computational time will remain a challenge to the GA method.

In 2007, Roy et al. proposed a simple GA that minimizes the number of

required Add-Drop Multiplexers (ADM)s based on the shortest path and a

possible alternate shortest path. They claim that the distinguishing feature

of this algorithm is in introducing a catalyst to direct the solution. Fur-

thermore, the authors state there have been some different approaches to

this problem, however there exists no solution that can be applied in gen-

eral, making all the published solutions too specific to apply to a broader

area [28]. Hence they introduced a simple Routing and Wavelength As-

signment (RWA) mechanism that aims to minimize ADM employing the

shortest path and possible alternate shortest path. The standard deviation

of the individuals is taken as a performance index of the generation, and the

algorithm converges when the performance index becomes 0. In the case of

bi-directional ring networks, the authors were able to achieve 30% reduction

of ADMs, and observed that as generations proceed, some better chromo-
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somes appear due to the evolutionary mechanism. However, they were not

able to achieve significant results in other cases (such as all-to-all uniform

and non-uniform traffic in a uni-directional ring network).

Meanwhile, an indirect encoding EA using a construction heuristic for

the Shared-Path-Protection (SPP) problems in WDM optical networks un-

der Shared-Risk Link Group (SRLG) constraints is proposed by Zhang et

al.. Experimental results show that the EA/G outperforms the conventional

GA in tuning the control parameters, which indicates that the combination

of local information and global statistical information can improve the per-

formance of the EA [29]. This work also shows that there is further room

for researching the meta-use of EAs to fine tune the parameters of existing

programs, however this only applies to problems where the quality of the

solution depends on the parameter settings.

In 2008, Chabarek et al. advocated a broad approach to addressing this

problem that includes making power-awareness a primary objective in the

design and configuration of networks, and in the design and implementation

of network protocols. In 2009, Shen et al. note that although at the time

of writing this paper the backbone network is only consuming a small frac-

tion of the total network energy, the percentage is perceived to significantly

increase with the popularity of bandwidth intensive user applications. Fur-

thermore, because energy consumption of the backbone network is confined

to a few buildings, the energy density within these key locations is also

an important issue [3]. Thus they developed a Mixed Integer Linear Pro-

gram (MILP) optimization model and 2 heuristics based on the lightpath

bypass model. Experimental results show the strategy of lightpath bypass
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can significantly cut power consumption over non-bypass designs, ranging

from 25% to 45%.

Meanwhile, Huang et al. report that power aware networking is not

well explored, and they intend to address this problem by grooming traffic

[30]. Hence, they provide formulations for green optical network design

and show a simple algorithm working at one of the layers identified by the

model. Moreover, Yetinger et al. investigated the grooming problem from a

power consumption perspective and develop a formulation which combines

the objectives of minimizing the number of lightpaths and electronically

routed traffic. The authors report that the results obtained suggest that

minimizing the number of lightpaths or amount of traffic switched alone

may be inefficient in terms of overall power consumption even for a small

network, and a power-aware grooming strategy may help reduce the power

consumption of optical networks significantly for low to moderate traffic

loads, which is actually the operating regime for most of today’s real world

networks [31].

Bathula et al. propose a multi path selection approach to minimize the

energy consumption of the optical core network. These wavelength routed

paths may have to forgo minimum distance paths and choose a path which

is at a larger distance [7]. At the same time, Idzikowski estimated and

compared the potential energy savings of three different approaches to make

line cards idle by reconfiguring the routing at the Internet Protocol (IP)

and/or WDM layer [5]. Idzikowski et al. argued that their work indicates

that energy aspects should be included in daily IP routing reconfigurations

done by network operators. Furthermore, they argue that it should also

34



motivate equipment vendors to provide line cards with a convenient and

fast functionality to be switched on and off.

Finally, in 2011 Coiro et al. considered a circuit-switched WDM optical

network, and based on topological and power consumption considerations

as well as on-link considerations proceeded to propose several link-ordering

criteria, and applied them to an optical link switch off algorithm. The

authors aimed to minimize the energy consumed by WDM optical links by

reducing the number of fibers powered on into the whole network.
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Chapter 3

Energy Efficient Grooming in

Optical Networks

3.1 Introduction

In this chapter, we first define our problem, and then describe our two

approaches to solving the problem of energy efficient grooming of sub-

wavelength traffic demands in optical networks. Specifically, we developed a

canonical GA and further transposed the GA into an MA in order to quickly

and efficiently route a set of periodic, sub-wavelength traffic demands over

the network and show that consideration of demand holding times can play

an important role in reducing the overall energy consumption of the network.

Hence, we present two techniques:

1. A new Canonical GA.

2. An MA built on top of the GA that improves the performance and
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results presented by the GA.

We have shown, through simulations, that both approaches can be used

to handle larger networks with many demands – situations in which ILPs

would become computationally intractable and not practical – and lead to

significant improvements in resource utilization, compared to the holding-

time-unaware(HTU) techniques (algorithms in which it is not known how

long a network resource (typically a lightpath) is used, or kept “on” for).

While the GA approach is able to further reduce the energy consumption

over the simple shortest path holding time aware (HTA) heuristic [9] pre-

sented in our previous work in 2012. Furthermore, the proposed MA slightly

outperforms the GA in terms of energy reduction, however, it significantly

outperforms the GA in terms of computational resources, reducing the com-

putational time needed by at least 2 orders of magnitude.

3.2 Problem Definition

Before we discuss our proposed canonical GA and the further proposed MA,

we must first formally define our problem. Suppose we have a logical topol-

ogy of a small network with four end nodes and four logical edges (i.e.

lightpaths), represented by circles and solid lines, respectively, as shown in

Figure 3.1a.

Demand q1(q2) is active and routed over lightpaths l1 and l2 (or l3 and l4).

As shown in 3.1b, θi, and ωi represent the start and end time of demand qi,

and are used to partition the entire time period into a number of consecutive

time intervals i1, i2, ..., imax (with imax = 4 in our case). The bandwidth
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Figure 3.1: a) Logical topology and Traffic routing. b) Overlapping de-
mands.

requirement for each demand is expressed as a fraction of the lightpath

capacity. Now, suppose a new demand – q3 – with a bandwidth requirement

of 0.3 needs to be routed from node 1 to node 4, starting at interval i2.

There are only two ways to do this:

• Combine q3 with q1 on to lightpaths l1 and l2, or

• Combine q3 with q2 on to lightpaths l3 and l4.

When considering the demand holding times, we note that option 1 will

require more energy, as both l1 and l2 need to remain active for one extra

interval (up until the end of i3). In contrast, however, if q3 is routed over l3

and l4, then l1 and l2 can be switched off at the end of interval i2. Thus, by

selecting an appropriate route for each demand, power consumption can be

greatly reduced by turning off the transponders corresponding to a lightpath

when it is not carrying any traffic. For a medium-large network, there may

be hundreds or even thousands of individual demands, and many possible

paths between each pair of nodes. Hence, it is necessary to develop efficient

techniques to determine a route for each demand such that the overall energy
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consumption – as well as the number of lightpaths needed to implement each

logical edge – are reduced as much as possible.

3.3 Network Model

Our experimentation and tests were done on 10-node, 14-node and 20-node

network models. The 14-node network is to emulate the 14-node National

Science Foundation Network (NSFNET) as in Figure 3.2. Initially cre-

ated to link researchers to the nation’s NSF-funded supercomputing cen-

tres, through further public funding and private industry partnerships it

developed into a major part of the internet backbone.

Figure 3.2: 14-node 21-link NSFNET

The network operates in connectionless mode using the Internet Protocol(IP)[32]

as the basic networking mechanism. End-to-end reliability is maintained us-
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ing the Transmission Control Protocol(TCP)[33], which assembles and re-

orders datagrams received over possibly diverse and unreliable paths using

retransmissions as necessary. The User Datagram Protocol (UDP)[34] pro-

vides direct IP datagram access for transaction services, including routing

and network control in some cases.

The 20-node network is to emulate the 20-node Advanced Research

Projects Agency Network (ARPANET) as in Figure 3.3. The world’s first

operational packet switching network, it was the first ti implement TCP/IP,

and the progenitor of what was to become the global internet.

Figure 3.3: 20-node 32-link NSFNET

Our algorithms both take the same two inputs: the network topology

and the demand matrix. The first line contains text in the form (n e), where

n is the number of nodes and e is the number of edges. Let N be the network

topology, we can represent each connection in the network topology in the

form of (ni, nj), where ni is the source node and nj is the destination node.
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On the other hand, the demand matrix is inputted similarly, however

the first line contains (d n), where d is the number of demands, and n is the

number of nodes. The rest of the file contains the demands in the form of

the tuple. A demand q ∈ Q is represented by a tuple (sq, dq, nq, αq, ωq, τq),

where sq and dq are the source and destination respectively, nq represents

the bandwidth requirement for the demand, αq, ωq are the start and end

times of the demand, and τq is the demand holding time.

3.4 Genetic Algorithm

As discussed in section 2.2 and 2.4, a GA (GA) is a technique that is based on

the evolution theory for difficult solving optimization and search problems

[35, 36, 22]. The general idea behind GAs is that we can build a better

solution if we somehow combine the “good” parts of other solutions, just

like nature does by combining the DNA of living beings, producing new

offspring or “generations”. It has been applied in a wide range of studies

in solving optimization problems, especially problems that are not well-

structured and interact with large numbers of possible solutions. To ensure

that the new population is at least as fit as the previous generation, the

best performing chromosomes from the previous generation can replace the

poorest performing chromosomes of the current generation, a process called

Elitism [37]. The algorithm terminates once a termination criterion is met.

The steps of a standard GA [27] are outlined in Algorithm 4.
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Input: Population
Output: New, elitist population
Populationα = GeneratePopulation()
compute fitness of individuals(Populationα)
while (criterion == True) do

Parentβ = selectParent(Populationα)
doCrossover(Parentβ)
mutate(Parentβ)
Offspringγ = compute fitness of individuals(Parentβ)
repopulate with offspring(Offspringγ , Populationα)

end
Algorithm 4: Genetic algorithm

3.4.1 GA Based Energy Minimization for Scheduled Traffic

The primary goal of the proposed GA is to route the traffic demands in

such a way that the maximum number of lightpaths can be switched off

at any given time, thus reducing the overall power consumption. Another

objective is to reduce the total number of lightpaths needed to realize the

logical topology, such that the capacity constraints of the lightpaths are

not exceeded. In other words, we try to implement each logical edge using

as few lightpaths as possible, which in turn reduces the need for costly

optical transceivers. In the following sections we define our chromosome

representation, specify the initial population, describe the fitness function,

and discuss the strategies and validity for crossover and mutation for our

proposed GA approach.

3.4.1.1 Chromosome representation

For each demand q to be routed, we pre-compute a set of up to k paths over

the logical topology, where pq,k is the kth potential path for demand q. We
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Table 3.1: Potential paths for scheduled demands
demand (q) pq,1 pq,2

1(1→ 3) 1→ 3 1→ 2→ 3
2 (1→ 2) 1→ 2 1→ 3→ 2
3 (2→ 3) 2→ 3 2→ 1→ 3
4 (1→ 3) 1→ 3 1→ 2→ 3

represent the chromosome as an array of integers, specifying the selected

path for routing each demand. So, the length of each chromosome is equal

to the number of demands, and the integer in position q indicates the path

along which demand q will be routed. For example, let us consider the

simple topology with 3 nodes and 6 logical edges (shown as solid arrows),

in Fig. 3.4(a). There are 4 demands to be routed over the network, and

we pre-compute k = 2 potential paths for each demand. Table 3.1 shows

the two potential paths for each demand. The chromosome in Fig. 3.4(b)

indicates that demand 1 is routed using the second pre-computed path for

that demand (i.e. along the path p1,2 = 1 → 2 → 3). Similarly, demand 2

is routed using the first pre-computed path (p2,1) for that demand and so

on. Based on the information in Table 3.1, the routing corresponding to the

chromosome in Fig. 3.4(b) is shown (using dashed lines) Fig. 2 (a).

Figure 3.4: Chromosome representation for a given traffic routing.
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3.4.1.2 Initial population

Each chromosome in the initial population specifies a single valid path (from

a set of k potential paths) for each demand. The potential paths are cal-

culated beforehand, using a modified version of Dijkstra’s algorithm [38].

However, our GA does not depend on the particular algorithm used to gen-

erate the potential paths for the initial population, and any suitable routing

algorithm can be used. Chromosomes for the initial population are gen-

erated by randomly selecting a path for each demand. The initialization

ensures the validity of the paths as genes in the chromosome, but does not

consider the energy consumption of the optical network.

3.4.1.3 Fitness function

After generating each new individual, it is necessary to evaluate its fitness

value. The fitness function for a chromosome consists of two components,

as shown in eqn 3.1.

fitness =
∑
i

Ti
∑
l∈L

nl,i + a
∑
l

nl (3.1)

The first term in eqn 3.1 represents the total energy consumption for the

logical topology. Here nl,i represents the number of active lightpaths needed

for logical edge l during interval i and Ti is the duration of interval i. So, if

the capacity of a single lightpath is OC−192, and the total traffic traversing

logical edge l in interval i is OC − 220, then 2 lightpaths need to be active

during interval i to accommodate the traffic and nl,i = 2. Subsequently,

in another interval j, if the total traffic on l is reduced to OC − 180, then
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only one lightpath needs to be activated during that interval and nl,j =

1. In order to obtain more energy efficient grooming, we try to minimize

the number of active lightpaths at each given time interval, which in turn

reduces the overall static power consumption. The second term in eqn 3.1

attempts to reduce the overall (transceiver) cost for the logical topology, by

minimizing the number of lightpaths nl needed to implement each logical

edge l. We have seen that the number of active lightpaths nl,i for l can vary,

depending on the traffic in interval i. So, the number of transceivers used for

implementing l is determined by the maximum number of active lightpaths

needed for l in any given interval, i.e. nl = max{nl,i|i = i1, i2, . . . , imax}.

Finally a is a constant (weight) representing the relative cost of adding a new

lightpath compared to increasing the energy consumption. Since our goal

is to reduce energy consumption and transceiver cost, lower fitness values

indicate ‘better’ chromosomes.

3.4.1.4 Selection, crossover and mutation

Selection of individuals from the initial population as parents is carried out

using the Roulette-Wheel selection method [35, 36], where chromosomes

with better (lower) fitness values are more likely to be selected for crossover.

The routine to generate a member of the initial population can be summa-

rized as follows:

1. Remove a chromosome e from the list of network demands.

2. Determine if it is legal to place e into the search subspace Π, as defined

by Πn
i=1[ui, vi] ⊂ Rn with ui < vi. If it is good, then calculate how
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“good” it would be using the following:

numCommon+ Size+ 1

penalty + 1
(3.2)

where numCommon is the number of neighbours that e has in common

with the solutions already placed in the specified subspace. Meanwhile

Size is the number of solutions already in the subspace, and penalty

is the cost (as used in the evaluation function) of placing e in that sub-

space. The implications of this heuristic are two-fold. First, to place

the current solution within the neighbourhood of similar solutions to

it. Second, it tries to minimize the penalty caused by placing e by

biasing the roulette wheel to those subspaces which can accommodate

e with lower penalties.

3. Construct and execute a roulette wheel

Figure 3.5: Example of single-point crossover.

To produce new offspring (children) from the selected parents, we have

used k − point crossover(k = 1, 2, or3,selected randomly) for each crossover

operation [39]. Fig. 3.5 shows an example of single-point crossover, with two
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parent chromosomes, parentA and parentB, for the network and demand

set shown in Fig. 3.1(a). Two routing schemes corresponding to the two new

child chromosomes, childC and childD, are shown in Fig. 3.5. As discussed

earlier, a value of r in the qth position indicates that the rth pre-computed

route pq,r (given in Table 3.1) is used for demand q.

The crossover operation does not create any new gene that is not present

in the initial population. Mutation can be applied after the process of

crossover to attempt to improve the fitness value of an individual. Mu-

tation is performed in each round after crossover has been completed. First

a single candidate chromosome is selected randomly for mutation (all chro-

mosomes have an equal probability of being selected). Then a particular

gene in that chromosome is selected (again randomly), and the specified

route is changed to a different value.

We note that an important feature of our GA is that both the crossover

and mutation operations are guaranteed to generate valid chromosomes. So,

there is no need need to “repair” the resulting chromosomes. This is be-

cause each pre-computed route for a demand is a valid path from the source

to the destination over the given topology. Since multiple lightpaths may

be used, as needed, to implement a logical edge, capacity constraints will

never invalidate the set of selected routes corresponding to a chromosome

(although it does affect the ‘fitness’ of the chromosome).

47



3.4.1.5 Termination condition

In each iteration a new generation of chromosomes is created, until a termi-

nation condition is met. Common termination conditions include:

1. A solution is found that satisfies the minimum criteria.

2. A fixed number of generations is reached.

3. An allocated budget (computational time/money) is reached.

4. The highest ranking solution’s fitness is reaching or has reached a

plateau such that successive iterations no longer produce better results.

5. Manual Inspection.

We terminate the GA after a fixed number of generations (500 gener-

ations in our simulations). This value was determined by trial and error,

after observing that the highest ranking solution’s fitness reaches a plateau

by 500 generations.

3.5 MAs

Particularly, the main difference between MAs and GAs is that MAs are

essentially GAs which were modified to use some kind of interaction with

local searchers. From an optimization point of view, MAs have repeatedly

shown that they are orders of magnitude more accurate than canonical GAs

for certain problem domains. It is generally argued the trade-off between

the exploration abilities of the underlying GA and the exploitation abilities

of the local searchers used is the main reason behind the success of MAs.
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The catch for this is a greater number of fitness evaluations, and often a

loss of diversity within the population, however local searchers and MAs are

now being designed to maintain diversity within the population while trying

to obtain an energy efficient solution. With regard to the mutations, as we

can see there is a 15% chance of mutation at each iteration.

The overall pseudo-code of the MA is hence as follows:

begin
Initialize Population Parents ;
while (TerminationCriterion 6= true) do

LocalSearch (Parents, Pls) ;
MatingPool = SelectMating(Parents) ;
if random(0,1) ≤ 0.08 then

randomChrom = random(0, Parent) ;
Mutate(randomChrom) ;

end
Offsprings = doCrossover(MatingPool) ;
Parents = Select(Parents,Offsprings) ;

end

end
Algorithm 5: MA Pseudo-code

In this strategy, the Select() procedure is a (µ, λ) or a (µ+ λ) selection

strategy, with the +-strategy having the highest pressure, and the ,-strategy

having the lowest pressure. Selectmating() is a roulette wheel selection

method. A given individual can be modified several times during its life

span either by local search or by mutation in the case of +-strategy, because

the strategy allows an individual to persist. The best individual is never

modified by the local search method.

As we can see from the algorithm, it is a very similar structure to our

GA discussed above, with the main difference being the use of a local search
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method before every iteration. In order to more technically define MAs, let’s

consider a search space S (of phenotypes) and a representation space C (of

genotypes), and let p : S → C be the representation function which, given

any solution in search space S, returns the chromosome in C that represents

it. Let f be the fitness function, which would be convenient to regard as the

mapping f : C → R+. Our aim is to maximize fitness, and the set of global

optima will be denoted by C∗ ⊂ C.

Let Q be a stochastic unary move operator over C. It would be con-

venient for the moment to accommodate the stochastic element of such an

operator through a control set KQ, from which a control parameter will be

drawn to determine which of the possible moves actually occurs. For an

example, in the case of binary strings a binary mask might be used as the

control parameter with the presence of a 1 at position i indicating that the

i-th bit should be mutated. This makes the functional form for Q:

Q : S ×KQ → S (3.3)

A chromosome x ∈ C will be said to be locally optimal with respect to Q

or Q-opt if no chromosome of higher fitness than x can be generated from

it by a single application of Q, that is, if and only if

∀k ∈ KQ : f(Q(x, k)) ≤ f(x) (3.4)

then let CQ ⊂ C be the set of Q-opt chromosomes in C, that is

CQ ≡ {x ∈ C|x ≡ Q-opt} (3.5)
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A GA applied to the task of optimizing f over C has some goal such

as finding some or all optima in C∗ or making rapid improvements towards

more fit chromosomes. It is trivial that for any move operator Q, all chro-

mosomes in C∗ are Q-opt, and therefore C∗ ∈ CQ. This makes it sufficient

to formulate the search instead over CQ.

Given a representation space C, a move operator Q and the subspace

CQ of local optima as above, define a hill-climber (local search paradigm) to

be an stochastic, parametrised operator that, given a chromosome x ∈ C,

returns a local optimum in CQ. Therefore a hill-climber H with control set

KH is any function

H : C ×KH → CQ (3.6)

Note that there is no requirement that the solution returned be in any

sense ”near” the starting solution, although this will often be the case in

practice [20]. As we have already mentioned, GAs produce new chromosomes

by recombination of two parents followed by some small level of mutation,

so that if

X : C × C ×KX → C (3.7)

is the recombination operator, with a control set KC , and

M : C ×KM → C (3.8)

is the mutation operator, with a control setKM , the combined generating

reproductive function Rg would typically be given by the composition of
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mutation and recombination Rg = M ◦X, yielding:

Rg : C × C ×KM ×KX → C (3.9)

defined by:

Rg(x, y, kM , kX) ≡M(X(x, y, kX), kM ) (3.10)

However, if Rg is further composed with a hill-climber H (with respect to

some unary move operator Q), and restricted to CQ, a memetic reproduction

function Rm ≡ H ◦M ◦X results in:

Rm : CQ × CQ ×KH ×KM ×KX → CQ (3.11)

defined by:

Rm(x, y, kH , kM , kX) ≡ H(M(X(x, y, kX), kM ), kH) (3.12)

3.5.1 Local Search

Let us first take a simple example in order to simplify the way Local Search

works. Suppose we have a population P of chromosomes – or candidate

solutions – and we divide this population into N neighbourhoods of chro-

mosomes, as shown in Figure 3.5.1. We can define a “neighbour” of a chro-

mosome via any criteria that suits us, for the purposes of this thesis, we

simply considered adjacent chromosomes to be the neighbours. Note that

we can use an optimization algorithm to find out the best way to choose the
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Figure 3.6: A neighbourhood of Chromosomes or Candidate Solutions.

neighbours, however this is beyond the scope of this work. The chromosomes

are referred to as (c1, c2, ..., cn) where n is the number of chromosomes in

that neighbourhood. When local search is implemented, it searches through

the neighbourhoods within population P and chooses the most locally opti-

mal chromosome from each neighbourhood. As we have mentioned in section

2.5.1, the local search can be integrated within the evolutionary cycle mainly

in two ways. The first is the application of the local search to a candidate

solution, called lifetime learning. In this case, the metaphor is the cultural

development of the individuals which is then transmitted to the other solu-

tions over the subsequent generations. We have implemented our method

using the second way, which is the application of the local search during the

solution generation phase, that is, the generation of a perfect child. This

class of Memetic implementations aims at selecting the most convenient off-

spring amongst the potential offspring solutions [19]. Hence this way we

make sure that our most locally optimal or near-locally-optimal solutions

always make it to the next generation, sharply reducing our time needed to

find the most near-optimal solution, as well as giving us better results than

the canonical GA.

The local search and diversification process is described in Algorithm 6.

Parents is a set of solutions to which local search will be applied, with prob-

ability Pls. The self adaptation of the local search to either exploitation or
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exploration behavior is governed by the adapt variable. This variable deter-

mines the degree by which uphill moves will be allowed. adapt is inversely

proportional to the spread of fitnesses within the population, when the latter

converges, the former rises. One consequence of this is that each individual

in the population will become more “nervous”, and try to move away from

its initial position, thereby forcefully exploring the search space. Eventually,

the fitnesses will spread, lowering the population adaptation rate. The best

fitness is always maintained as we do not allow the modification of the best

individual via local search. This process of adaptation, exploration, exploita-

tion and acception of solutions is achieved via our ApplyMove subroutine

described in Algorithm 7.

begin
adapt = 1

|maxFitness−minFitness| ;

size = sizeOf(Parents) ;
for i = 0; i < size do

chrom = Parents[i] ;
if (pls ≥ random(0, 1)) ∧ (chrom ¬bestSolution) then

ApplyMove(chrom) ;
end
i+ +;

end

end
Algorithm 6: Local Search Procedure

3.5.2 Mutation

The mutation model that we have implemented is the same one implemented

in canonical GAs. Specifically, we flip a single bit of an individual, with a

Pls probability of this event happening. Via rigorous trial and error, we have
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begin
previousF itness = fitness(chrom) ;
Modify(chrom) ;
nextF itness = fitness(chrom) ;
if previousF itness > nextF itness then

Accept Configuration, solution is good ;
end
else

deltae = nextF itness− previousF itness ;

threshold = e−k · deltaeadapt ;

if random(0,1) < threshold then
Accept configuration, even if worse than previous one ;

end
else

Reject any changes ;
end

end

end
Algorithm 7: Apply Move Procedure

Move(initialPosition, size)
begin

newPosition = random(0, initialPosition) ;
for i = 0; i < numberOfDemands do

temp[0][i] = chrom[initialPosition][i];
i+ +;

end
for i = 0; i < numberOfDemands do

chrom[initialPosition][i] = parent[newPosition][i] ;
i+ +;

end
for i = 0; i < numberOfDemands do

chrom[newPosition][i] = temp[0][i] ;
i+ +;

end

end
Algorithm 8: Move procedure
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arrived at a probability of 8% being the best mutation rate, as it does not

converge the population too quickly, nor does it ruin the population diversity.

This kind of mutation is ruled by pure randomness, and hence it does not

depend on the number n of object variables, nor on the length l of the bit

string. On a single individual, mutation m′pm : I → I,m′pm(s1, ..., sl) =

(s′1, ..., s
′
l) works as follows:

∀i ∈ {1, ..., l}s′i =


si χi > Pm

1− si χi ≤ Pm

Where Pm is the probability of mutating a bit in the individual. For our

purposes we chose Pm ≈ 1 · 10−3. Let us take a simple example to further

explain our Mutation mechanism. Suppose we have a population P . We

choose a random chromosome, Pr, to be mutated. The basic structure of

chosen chromosome is an array of integers, specifying the selected path for

routing each demand.

Hence, Figure 3.7 shows a typical chromosome, containing:

• Demand 1, path 1.

• Demand 2, path 2.

• Demand 3, path 3.

• Demand 4, path 2.

• Demand 5, path 1.
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Figure 3.7: Chromosome Mutation within the population.

We then randomly select a gene, and set a new, “mutated” value from

the potential lightpaths that can be routed correspondingly to demands.

For example, if our random choice lands on the demand 2, we can change

the path that it is routed on, as in Figure 3.7. In this case it was rerouted

to path 3.

Below, we show our algorithm used to achieve mutation, where Position

is a random position chosen before calling the function where Position ∈

[0, Parent], and hence can specify any chromosome in the parent population:

Mutate(Position)
begin

randomBit = Random(0, numberOfDemands) ;
randomPath = Random(1, k) ;
Offspring[randombit][randompath] =
(demands[randombit][index] · k) + n ;
recalculateFitness(Position) ;

end

Note that k specifies the number of paths chosen when invoking the
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algorithm, between 3 and 5. Hence the algorithm chooses a random chro-

mosome and a random bit (or allele) in that chromosome, and changes its

value according to the path and the random path chosen, thereby “flip-

ping” its bit, in a sense. The reason for this is that the data format for our

input is not specifically 1’s and 0’s, and hence we were required to come

up with a simplistic method of changing the bit value randomly, for bet-

ter or for worse. However, the randomization algorithm uses the uniformly

distributed Mersenne twist method, and hence we can – to some degree –

guarantee the same probability for all chromosomes we specify from a sub-

space of chromosomes to be chosen. Hence we can specify a subspace of

“good” chromosomes to be mutated, and reinserted into the population.
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Chapter 4

Experimental Results

In order to assess our GA based approach, we have run simulations with

different demand sets on a number of well known networks such as the 14-

node NSFNET and 20-node ARPANET [40]. For each network topology and

size of demand set, the results reported in this section represent the average

values of at least five runs. We also experimented with different values of the

constant a (a = 0, 3, 10, and 20) in the fitness function of eqn. 3.1. We have

found that the changing the value of a did not produce a significant change

in the results, so we have reported the results corresponding to a = 10 in

this section; results for other values of a follow a very similar pattern. The

experiments for the GA were run on a Amazon EC2 Virtual “Elastic Cloud”

server, with 8GB of RAM memory and 4 Amazon EC2 Compute Units (with

each Compute Unit being equivalent to a 1.0-1.2 GHz 2007 Opteron or 2007

Xeon processor). However, the MA experiments, although using the same

data sets, were run on a small 2GB RAM memory server, utilizing 1 Amazon

EC2 Compute Unit.
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Simulation results clearly demonstrate that knowledge of demand hold-

ing times result in significant savings over HTU approaches. Furthermore,

the proposed GA based algorithm leads to additional improvements, com-

pared to a HTA shortest path heuristic. Furthermore, they demonstrate

that by using an MA we can reduce the amount of computational resources

and time used while further improving upon the solutions presented by the

GA.

4.1 Energy consumption within Genetic Algorithm

Fig. 4.1 shows the overall energy consumption for different networks, nor-

malized to the energy consumption for the HTU case. It is clear that knowl-

edge of demand holding times significantly reduces energy consumption (26%

- 40%), even using a simple shortest path routing approach. This reduction

is achieved by simply switching off lightpaths when they are not carrying

any traffic. Additional improvements of 8% - 13% are then achieved using

our proposed GA, even compared to the holding time aware shortest path

approach.
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Figure 4.1: Comparison of the energy consumption for different approaches.
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However, no significant additional improvement in terms of energy con-

sumption was achieved by the MA. The significance of the MA does not

come from the improvement of its results compared to the GA. Rather, the

improvement comes from the time taken to achieve these results by the MA,

which we will discuss at the end of this chapter.

4.2 Number of lightpaths

The objective of our GA algorithm was not only to minimize energy con-

sumption, but also to reduce the total transceiver cost for the network by

minimizing the number of lightpaths needed to implement each logical edge.

The second term of the fitness function addresses this criterion. Fig. 4.2

shows the total number of lightpaths needed to construct the logical topol-

ogy capable of handling all traffic demands. Knowledge of demand hold-

ing times reduces the number of lightpaths required, by allowing reuse of

WDM channels by non-overlapping demands. The proposed GA outper-

forms holding-time-aware (HTA) shortest path routing, and HTU case by

an average of 15% and 17% respectively. The MA achieved the same number

of lightpaths needed as the GA.
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Figure 4.2: Comparison of the number of lightpaths needed for different
approaches.

4.3 Numerical Results

In this section, we present our numerical results obtained for the canonical

MA as well as the MA. a is the weight of a new lightpath, we have tested for

a = 0, 3, 10, and 20, we have also set the bandwidth capacity of the optical

fiber to be G = 160Gbit/s. For each value of A in our figures, we took the

average of five test cases, and plotted the improvement percentage against

the value of A. Figure 4.3 shows the average of 5 data sets of 10 node

networks. From the average between the initial population and the final

population, we see an initial improvement of about 14% in energy efficiency

when a = 0, where a is the weight cost of a new lightpath. As a increases,

we see an increase to 15% when a = 10, and finally we see a decrease to 15%

when a = 20.
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Figure 4.3: Average Results of GA on 10 Node Network.

In the case of the 14-node architecture we used the same testing condi-

tions. Figure 4.4 indicates the algorithm performed a little less efficiently,

in which it showed a 15% initial improvement, and went lower as the cost

of a increased. However, the improvement did not go below 10%. Therefore

we can safely assume that the efficiency will not go lower than 10% when

dealing with a network like the NSFNET.
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Figure 4.4: Average Results of GA on 14 Node NSFNET.

Finally, in the case of the 20-node ARPANET architecture, Figure 4.5

show an initial improvement of approximately 12%. When a = 3, we see

an improvement of 10%. However, the improvement rises to 12% when a =

10 and subsequently to 13% when a = 20. Hence, our canonical GA is a
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good improvement and replacement to ILPs as it takes less time and at the

same time achieves as high as a 13% - 15% efficiency improvement on large

networks such as the 20-node ARPANET.

0 3 10 20
Cost of New Lightpath0

2

4

6

8

10

12

Improvement Percentage

A=0

A=3

A=10

A=20

Figure 4.5: Average Results of GA on 20 Node ARPANET.

On the other hand, Figure 4.6 shows the results from our proposed MA

applied to the same dataset. As we can see, the results are the same or

better than the GA, with a 12% to a 15% improvement rate. The running

time for all five test cases was 5 hours.
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Figure 4.6: Average Results of MA on 10 Node Network.

Figure 4.7 shows the results for the 14 node NSFNET architecture. Sim-

ilarly to the GA, there is a downward trend in terms of efficiency as the value

of A goes up. The average efficiency is between 8% and 13%. However, the
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GA took approximately 45 hours to run on a 14 node topology, while the MA

took approximately 11.5 hours to produce these results, which are generally

as good as or better than the GA.
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Figure 4.7: Average Results of MA on 14 Node NSFNET.

Finally, Figure 4.8 shows the results of the 20 node ARPANET architec-

ture. Curiously however, it goes opposite to our 14 node case in Figure 4.7.

Starting out at approximately 5% improvement, and going up to as high

as 12% efficiency as the weight of A, the cost of adding a new lightpath,

increases. Hence, the more expensive placing lightpaths becomes, the more

energy efficient the results become in the case of the ARPANET architec-

ture.
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Figure 4.8: Average Results of MA on 20 Node ARPANET.
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As the figures and the results show, there is approximately a 10% to 15%

fluctuation of improvement in terms of the GA and the MA. These fluctu-

ations can be attributed to the randomizations within the algorithm, such

as mutation rates, local search probabilities, and chromosome positioning –

which we chose to be random for the purposes of this thesis. There is much

room for research in terms of optimizing these parameters to achieve the

best results.

It must be noted, however, that at the time of writing this paper, there

are no known techniques that can generate exact solutions for practical

networks with large demands. In future work, it is possible to create an ILP

in order to have an optimal solution benchmark to compare against, or even

to brute force small instances of this problem and compare our proposed

solution.

4.4 Chronological Analysis

Although our GA achieved an improvement between 8% - 13% of energy

reduction compared to the holding time aware and unaware shortest path

approaches, it took a significant amount of time to achieve so. Indeed, as the

number of nodes in the network increased, the time taken by the algorithm to

compute the solutions increased as well. However, the proposed MA shows

its significance over the GA especially over the time taken to achieve results

that are also more energy efficient than those achieved by the GA. The graph

in figure 4.9 highlights the difference in computational time between the two

algorithms.
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Table 4.1: Computational times for MAs and GAs
Nodes (n) GA MA

10 20 hours 5 hours
14 45 hours 11.4 hours
20 80 hours 20 hours

In Figure 4.9 we plotted the nodes (x-axis) vs the amount of time taken

in hours (y-axis), as the number of nodes increases, the time needed for the

GA to finish computing the solutions sharply increases. Although GAs still

a significant amount of time less than an ILP would, they can still take a

considerable amount of time to compute nonetheless. This sometimes hap-

pens during the selection process, as it becomes time-consuming to compute

the fitness for each individual every cycle [41], however there have been pro-

posed works to circumvent this issue [42, 43, 44]. A comparison is made in

terms of computational time required to run each algorithm is demonstrated

in Table 4.1.
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Figure 4.9: Comparison of computational time between MA and GA, plotted
on a time vs node graph.

We speculate that this is not due to the MA doing less computations

than a GA (in fact, the MA does more computations per cycle than the
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GA does due to the local search capability). However, it is likely due to

the MA’s capability of detecting when a population converges. Once the

local search detects that there are no more better solutions to be obtained,

it stops. Thereby saving multiple useless computations that would lead to

the same solution.
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Chapter 5

Conclusion

Since its inception, the internet has experienced an exponential growth in

both users and content availability. In order to sustain this growth, new

technologies must be developed in order to provide a reliable form of high

performance communication. Optical communication is communication at

a distance to carry information using light. It can be performed visually

or by using electronic interfaces. An optical communication system uses a

transmitter, a channel, and a receiver.

In the past decade, the immense growth in high-bandwidth applications

such as multimedia streaming and sharing has given rise to a corresponding

increase in energy consumption of the network equipment [2]. Researchers

have realized the importance of designing energy-minimized green networks

to utilize the available power efficiently and consequently reduce the network

operational cost. It is therefore necessary to develop robust optimization

strategies for the design of energy-efficient core networks. The typical ap-

proach is to switch off some network components during low traffic periods.
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We presented a GA-based approach as well as an MA-based approach

to route a set of periodic, sub-wavelength traffic demands over the network.

Moreover, we have shown that consideration of demand holding times can

play an important role in reducing the overall energy consumption of op-

tical networks. Our primary goal for these approaches was to route the

traffic demands in such a way that the maximum number of lightpaths can

be switched off at any given time, hence reducing the overall power con-

sumption. Furthermore, our other objective was to reduce the total number

of lightpaths needed to realize the logical topology, such that the capacity

constraints of the lightpaths are not exceeded. Specifically, we have imple-

mented each logical edge using as few lightpaths as possible, which in turn

reduces the need for optical transceivers.

Results show that our GA is capable of achieving improvements of ap-

proximately 10% to 15%, while our MA is capable of achieving results of

approximately 10% to 14%. However, the MA achieves similar results at

4 to 5 times less time than the GA. At the time of writing this paper, we

have found no research that applies GAs to energy optimization in optical

networks with static sub-wavelength traffic demands. There is even less re-

search applying MAs to solve optical network energy optimization problems.

Hence we believe there is room to be explored in this area, and the param-

eters of our research can be optimized greatly to achieve greater results.
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5.1 Future Work

While the proposed GA and MA perform better than ILPs in terms of com-

putational time and resources, there is still potential for future improvement.

One of the fundamental strengths of GAs and MAs is the diversity of their

parameters. It is very possible to achieve better results after optimizing the

parameters to make them more optimized for a specific architecture.

In particular, MAs have great potential in energy optimization problems

in optical networks. In terms of parameters, the way the Local Search mech-

anism defines neighbourhoods can be changed to something more complex

than “chromosomes that happen to be next to each other during solution

population”, while this is a common and viable implementation, it may not

be the most optimized for our purposes. Furthermore, we have only used

one of many “move” mechanisms in Local Search, there are countless oth-

ers that can be explored and exploited in order to achieve more optimized

results.

It is also possible to change the way the MA switches from “exploitation”

to “exploration” behaviour within its local search sub-routine. By changing

the way the adaptation variable is defined, it is possible to achieve a more

customized exploration and exploitation behaviour, where exploration and

exploitation modes are invoked at specified times within the generations.

A natural variation of the scheme presented in Algorithm 6 is one where

every individual in the population has its own adapt variable and the local

search/diversification process is applied according to it.

With respect to our current implementation, more experimentation and
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data analysis should be applied, not only with different size and complexity

of instances of networks, but also with other network optimization problems,

as this has proven to be a promising direction in optical network optimization

problems.
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