
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

10-19-2015

An extensible natural-language query interface to
the DBpedia Triple-store
Wale Agboola
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Agboola, Wale, "An extensible natural-language query interface to the DBpedia Triple-store" (2015). Electronic Theses and Dissertations.
5442.
https://scholar.uwindsor.ca/etd/5442

https://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F5442&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5442&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5442&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/5442?utm_source=scholar.uwindsor.ca%2Fetd%2F5442&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

AN EXTENSIBLE
NATURAL-LANGUAGE

QUERY INTERFACE TO THE
DBPEDIA TRIPLE-STORE

by

Wale Agboola

A Thesis
Submitted to the Faculty of Graduate Studies

through the School of Computer Science
in Partial Fulfilment of the Requirements for

the Degree of Master of Science
at the University of Windsor

Windsor, Ontario, Canada

2015

c© 2015 Wale Agboola

AN EXTENSIBLE
NATURAL-LANGUAGE

QUERY INTERFACE TO THE
DBPEDIA TRIPLE-STORE

by

Wale Agboola
APPROVED BY:

Dr. Richard J. Caron, Outside Department Reader
Mathematics and Statistics Department

Dr. Ziad Kobti, Inside Department Reader
School of Computer Science

Dr. Scott Goodwin, Inside Department Reader
School of Computer Science

Dr. Richard A. Frost, Advisor
School of Computer Science

August 27, 2015

Wale Agboola

DECLARATION OF CO-AUTHORSHIP
/ PREVIOUS PUBLICATION

I hereby declare that this thesis incorporates the outcome of a joint research
undertaken in collaboration with Jonathon Donais, Eric Mathews, and Rob
Stewart under the supervision of Dr. Richard A. Frost.

The collaboration is covered in Chapter 3.2 of the thesis. In all cases,
the key ideas, primary contributions, experimental designs, data analysis and
interpretation, were performed by the author, and the contribution of co-authors
was primarily through the provision of Dr. Richard A. Frost.

I am aware of the University of Windsor Senate Policy on Authorship and I
certify that I have properly acknowledged the contribution of other researchers to
my thesis, and have obtained written permission from each of the co-author(s) to
include the above material(s) in my thesis.

I certify that, with the above qualification, this thesis, and the research to
which it refers, is the product of my own work. This thesis incorporates two
original papers that have been previously published / submitted for publication in
peer reviewed journals, as follows:

iii

Wale Agboola

Thesis
Chapter

Publication title / full citation
Publication
status

2

Frost, R. A., Agboola, W., Matthews, E., and
Donais, J. (2014a). An event-driven approach for
querying graph-structured data using natural
language. In Querying Graph Structured Data
(GraphQ)), Organization=EDBT/ICDT 2014
Joint Conference, pages=192–199

published

2

Frost, R. A., Donais, J., Matthews, E., Agboola,
W., and Stewart, R. (2014b). A demonstration of
a natural language query interface to an
event-based semantic web triplestore. In The
Semantic Web: ESWC 2014 Satellite Events,
pages 343–348. Springer International Publishing

published

I certify that I have obtained a written permission from the copyright owner(s)
to include the above published material(s) in my thesis. I certify that the above
material describes work completed during my registration as graduate student at
the University of Windsor.

I declare that, to the best of my knowledge, my thesis does not infringe
upon anyone’s copyright nor violate any proprietary rights and that any ideas,
techniques, quotations, or any other material from the work of other people
included in my thesis, published or otherwise, are fully acknowledged in accordance
with the standard referencing practices. Furthermore, to the extent that I have
included copyrighted material that surpasses the bounds of fair dealing within the
meaning of the Canada Copyright Act, I certify that I have obtained a written
permission from the copyright owner(s) to include such material(s) in my thesis.
I declare that this is a true copy of my thesis, including any final revisions, as
approved by my thesis committee and the Graduate Studies office, and that this
thesis has not been submitted for a higher degree to any other University or
Institution.

iv

Wale Agboola

ABSTRACT

DBpedia is a triple-based binary-relational database which contains 3 billion,
and counting, facts derived from Wikipedia. Ideally, individuals should be able to
access semantic web triple-store data through natural-language queries. Several
attempts have been made to create natural-language (NL) query interfaces to
DBpedia. However, no one has yet built a wide-coverage natural-language query
processor for DBpedia. DBpedia does not currently encode contextual data
representing the time, location or other properties of binary-relationships. This
means that NL queries cannot contain prepositional phrases such as the phrase "in
2004" in the query: "what film was directed by Clint Eastwood in 2004". Existing
NL query interfaces to DBpedia cannot handle prepositional phrases; they are
also unable to be extended to do so when used with triple-stores other than
DBpedia, which can accommodate contextual data. In this thesis, we investigate
an alternative approach to querying DBpedia in which NL queries are treated as
expressions of the lambda calculus which are evaluated directly with respect to
the triple-store using a compositional and extensible denotational semantics of
English.

v

Wale Agboola

ACKNOWLEDGEMENT

This project would not have been possible without the support of many people.
Many thanks to my advisor, Dr. Richard A. Frost, who read my numerous revisions
and guided my thesis study, and provided me with financial support from the
Natural Science and Engineering Research Council of Canada (NSERC).

I would also like to thank Rob Stewart from Heriot-Watt University in
Edinburgh, Scotland.

I would also like to thank Dr. Richard J. Caron, Dr. Ziad Kobti and Dr.
Scott Goodwin for reading my thesis report and for their valuable comments. And
finally, I would like to thank my family and friends who endured this long process
with me, always offering support.

vi

Wale Agboola

CONTENTS

Declaration of CO-Authorship / Previous Publication iii

Abstract v

Acknowledgement vi

List of Figures ix

List of Tables x

List of Source Codes xi

List of Appendices xii

Nomenclature xiii

1. Introduction 1
1.1 What is DBpedia? . 1
1.2 Overview of natural-language query interfaces to DBpedia 2
1.3 The problem . 3
1.4 Emerging, more expressive triple-stores 3

1.4.1 DEV-NLQ . 3
1.4.2 YAGO2 . 4

1.5 A new approach . 5
1.6 The thesis statement . 6
1.7 Importance of thesis statement . 7
1.8 Non-triviality of thesis statement 7
1.9 Proof of thesis statement . 8
1.10 Structure of the thesis report . 8

2. Related Work 9
2.1 Related work by other NLQI researchers 9
2.2 Event-based triples and DEV-NLQ 9

vii

Wale Agboola

3. The Semantics 11
3.1 The new idea . 11

3.1.1 Interfacing the NLQ processor to DBpedia SPARQL endpoint
using HSPARQL . 14

3.1.2 Example denotations of words 15
3.2 Contribution to DEV-NLQ . 24

4. Timing evaluation of queries 26
4.1 Experiment design . 26
4.2 Experiment result . 28

5. Complexity analysis of queries 32

6. Reducing computational cost 36
6.1 Redefine transitive verbs . 36
6.2 New definition of COLLECT function 37

7. Extending this approach to accommodate prepositional
phrases 39

8. Conclusion 41
8.1 Proof of thesis . 41
8.2 Limitations . 41
8.3 Conclusion and future work . 43

References 44

Appendices 47

Vita Auctoris 63

viii

Wale Agboola

LIST OF FIGURES

1.1 The basic idea . 6

4.1 Sample query: directed (a film) . 29
4.2 Sample query: directed million_dollar_baby 30

6.1 TreeMap: fromListWith (++) . 38

ix

Wale Agboola

LIST OF TABLES

1.1 Example of YAGO2 data-store . 5

4.1 Queries used in the experiment . 27
4.2 Experiment results . 28
4.3 Experiment results: timings . 29

x

Wale Agboola

LIST OF SOURCE CODES

1 Sample triples: facts about Clint Eastwood 1
2 DBpedia prefixes denotations . 11
3 Common nouns denotations . 12
4 Proper noun denotations . 13
5 Quantifiers . 13
6 Transitive verb denotation: produced 13
7 Transitive verb denotation: directed 13
8 A simple haskell function interface with HSPARQL 14
9 Common noun: film . 15
10 Common noun: actor . 15
11 Proper nouns . 16
12 Conjunction words . 17
13 Determiners . 17
14 Transitive verb: directed . 18
15 Transitive verb: produced . 21
16 Intransitive verbs: produce and direct 21
17 Transitive verb: directed a film . 36
18 Transitive verb: directed two films 36

xi

Wale Agboola

LIST OF APPENDICES

Appendix A Program source code . 48

xii

Wale Agboola

NOMENCLATURE

DBpedia DataBase-pedia

DEV-NLQ Direct Evaluation of Natural Language Queries

MS Richard Montague’s Semantics

NL Natural Language

NLQI Natural Language Query Interface

NLQIs Natural Language Query Interfaces

RDF Resource Description Framework

SPARQL SPARQL Protocol and RDF Query Language

YAGO Yet Another Great Ontology

xiii

Wale Agboola

1. INTRODUCTION

1.1 What is DBpedia?

DBpedia ("database-pedia") is a project aiming to extract structured content
from the on-line text information created as part of the Wikipedia project. This
structured information is available on the World Wide Web. DBpedia allows
users to query relationships and properties associated with Wikipedia resources,
including links to other related datasets. The current DBpedia (version 2014) data
set describes 4.58 million entities, including 1,445,000 persons, 735,000 places,
123,000 music albums, 87,000 films, 19,000 video games, 241,000 organizations,
251,000 species and 6,000 diseases. The DBpedia project uses the Resource
Description Framework (RDF) to represent the extracted information and consists
of 3 billion RDF triples, 580 million extracted from the English edition of Wikipedia
and 2.46 billion from other language editions.

The datasets are stored in a set of RDF triples. An RDF Triple is a statement
which relates one object to a subject using a predicate in the form, <Subject>
<Predicate> <Object>. For example, facts about Clint Eastwood may include
the following triples in DBpedia the dataset:

<dbpedia:Clint_Eastwood> <dbpedia-owl:birthplace> <dbpedia:San_Francisco>.
<dbpedia:Gran_Torino> <dbprop:director> <dbpedia:Clint_Eastwood>.
<dbpedia:Heartbreak_Ridge> <dbprop:director> <dbpedia:Clint_Eastwood>.
<dbpedia:J.Edgar> <dbprop:director> <dbpedia:Clint_Eastwood>.
<dbpedia:Unforgiven> <dbprop:director> <dbpedia:Clint_Eastwood>.
<dbpedia:Million_Dollar_Baby> <dbprop:director> <dbpedia:Clint_Eastwood>.

Listing 1: Sample triples: facts about Clint Eastwood

In the set of triples, dbpedia, as in <dbpedia:Clint_Eastwood>, represents a
resource name prefix in DBpedia; dbpedia-owl, as in <dbpedia-owl:birthplace>,
represents an ontology prefix used as a bridge between to resources; and dbprop,
as in <dbprop:director>, represents a property prefix used as a bridge between to
resources.

1

Wale Agboola

Based on the set of triples, it is noted that Clint Eastwood was born in San
Francisco. It is also noted that Clint Eastwood directed the films Gran Torino,
Heartbreak Ridge, J. Edgar, Unforgiven and Million Dollar Baby.

Each identifier in each triple is a uniform resource identifier (URI), which is a
string of characters used to identify the name of a resource.

1.2 Overview of natural-language query interfaces to DBpedia

Many researchers in the Semantic Web field have designed Natural Language
Interfaces to DBpedia. Tablan et al. [17] claims to have designed an NLI system,
QuestIO, that is able to accept a wide range of syntactically ill-formed queries
or short fragments and convert them into formal queries that can be executed
against a knowledge store. Lehmann et al. [13] claims to have designed a system,
DEQA, that improves existing search functionality by combining web extraction,
data integration and enrichment as well as question answering. Unger et al. [18]
claim to have a template based NLI system than can generate SPARQL templates
to capture the semantic structure of the natural language input provided by the
user. Lopez et al. [14] designed an NLI system, PowerAqua, that can answer
user’s requests extending beyond the coverage of single datasets. Damljanovic
et al. [5] designed an NLI system, FREyA, that is portable and was tested with
both MusicBrainz and DBpedia datasets, and claimed to produces better results
than PowerAqua [14]. Wan et al. [19] claim to have designed an NLI system that
allows querying of semantic information from multiple sources through a unified
user-friendly interface and automatic data integration to improve the coverage and
accuracy of users information query.

These Natural Language Interfaces use SPARQL (SPARQL Protocol and RDF
Query Language), a semantic query language for databases, that is able to retrieve
and manipulate data stored in the Resource Description Framework (RDF) format.
However, the use of SPARQL, as well as DBpedia triple-stores, limits the expressive
power of Natural Language Interfaces.

2

Wale Agboola

1.3 The problem

Firstly, most existing Natural-Language Query Interfaces (NLQIs) such as
FREyA [5], PowerAqua [14] and QuestIO [17] have limited expressive power
and cannot handle queries involving chained complex prepositional phrases and
arbitrarily-nested quantification. For example, it appears to be impossible for
these Natural Language Query Interfaces to translate the query "who stole a car in
Manhattan in 1918 or 1920?" to SPARQL because there is no contextual properties
of relationships between entities, namely time and location.

<"Al_Capone"> <"steal"> <"car_1">.
<"car_1"> <"steal_Date"> <"1918">.
<"car_1"> <"steal_Location"> <"Manhattan">.
<"car_1"> <"steal_Location"> <"London"> ...

In other words, there might be a triple-store data representation in a Semantic
Web triple-store that "Al Capone stole car 1 ", but the triple is not a direct
representation that "Al Capone stole car 1 in Manhattan in 1918 ". Furthermore,
there might be a triple-store data representation that "car 1 was stolen in 1918 ",
but the two triples do not represent the fact that "car 1 was stolen by Al Capone
in Manhattan" because there is nothing to link the triples together.

Consequentially, no one has yet been able to successfully translate complex
natural language queries with prepositional phrases to SPARQL.

1.4 Emerging, more expressive triple-stores

1.4.1 DEV-NLQ

Frost et al. [8]’s Direct Evaluation of Natural Language Queries (DEV-NLQ)
defines and uses event-based triple-stores, treating bracketed English queries as
expressions of the lambda calculus which can be evaluated directly with respect to
the triple-store. For example the fact that Al Capone stole car_1 is represented
as follows:

3

Wale Agboola

<EV 1001> <REL "type"> <TYPE "steal_ev"> .
<EV 1001> <REL "subject"> <ENT "Al Capone"> .
<EV 1001> <REL "object"> <ENT "car_1"> .

The fact that Al Capone stole car_1 in 1918 can now be represented by adding
the following triple:

<EV 1001> <REL "year"> <ENTNUM 1918> .

‘Al Capone stole car_1 in 1918’ is now represented by a single event: <EV 1001>.
Furthermore, Frost et al. [8] noted that no method, other than theirs, can

accommodate NL queries, such as the "Who stole a car in 1918 in Manhattan?",
which contain chained complex prepositional phrases.

Quantifiers are words or phrases which indicate the number or amount being
referred to. Such quantifiers include "a", "one", "two", "every", and "no".

1.4.2 YAGO2

Hoffart et al. [11] noted that a major drawback for querying DBpedia with
SPARQL is that even a small query on a particular object required convoluted
joins. Hoffart et al.’s YAGO2 [11] is a Semantic Web Knowledge base with a focus
on temporal and spatial knowledge. It is automatically built from Wikipedia,
GeoNames, and Word-Net, and contains nearly 10 million entities and events, as
well as 80 million facts representing general world knowledge. A new model is
introduced in the form of SPOTL(X) View; an extended 5-tuple containing SPO
triples augmented by Time, Location and eXplanation.

An example of YAGO2’s dataset containing the extended 5-tuples is shown in
table 1.1.

4

Wale Agboola

Tab. 1.1: Example of YAGO2 data-store
Id Subject Property Object Time Location Keywords

id1 Al Capone steal car_1 1918 Manhattan
id2 Al Capone born USA 1899 New York
id3 Gran Torino director Clint Eastwood 2008 Michigan Detroit, Grand Rapids,

Grosse Pointe, Royal Oak
id4 Heartbreak Ridge director Clint Eastwood 1986 California San Clemente, Agua Dulce,

Santa Clarita, El Toro, San
Diego, San Juan Capistrano

id5 J. Edgar director Clint Eastwood 2011 USA District of Columbia,
California, Virginia, USA

id6 Unforgiven director Clint Eastwood 1992 Alberta, Canada Brooks, Longview,
Drumheller, High River,
Calgary

id7 Million Dollar Baby director Clint Eastwood 2004 USA California, Nevada

As seen in table 1.1, YAGO2 extends triples to 5-tuples which allow context to
be added to the facts. Furthermore, YAGO2 use a technique called reification to
represent contextual data. However, reification further complicates the translation
to SPARQL. Therefore, an alternative approach is to treat the Natural Language
queries as expressions of the Lambda Calculus and evaluate them directly with
respect to the triple-stores.

1.5 A new approach

The new approach involves a natural language query interface to DBpedia
triple-store that treat words and phrases in the query as expressions of the lambda
calculus which are applied to each other according to the syntactic structure of the
query.

5

Wale Agboola

Fig. 1.1: The basic idea

Where λ are functional denotations of words based on an efficient version of
Montague Semantics [6]. The λ . . . (λ . . . (λ . . . λ . . .) [(λ . . . , (λ
. . . . above is an expression of the lambda calculus. The lambda expressions are
implemented and evaluated directly in the Haskell programming language. Some
functions (indicated by ⇑ in the above) are defined in terms of triple-store retrieval
operations.

This approach is based on Montague’s Semantics (MS) of natural language in
which words denote functions, and the meaning of a phrase is computed by applying
those functions to each other according to the syntactic structure of the phrase.
This approach can be modified to work with more expressive triple-stores such
as YAGO2 [11] and emerging event-based triple-stores [7], which can represent
contextual data about facts, such as the time and location of an event, which
DBpedia cannot.

In other words, when a simple query is asked, that query is input to a parser
[9]. The parser then generates the denotation and meaning of words, then the
functional expression denoted by the query is evaluated with respect to the
DBpedia triple-store.

1.6 The thesis statement

It is possible to construct an extensible, usable, wide coverage natural language
query interface to DBpedia triple-store by treating words and phrases in the query

6

Wale Agboola

as expressions of the lambda calculus which are applied to each other according to
the syntactic structure of the query.

By usable, it is possible for answers to be returned in less than 100 seconds.
By wide coverage, the queries can include common nouns, proper nouns,

adjectives, "and", "or", "then", intransitive and transitive verbs, and nested
quantification with quantifiers: "a", "one", "two", "every", and "no".

By extensible, the approach can be extended for use with more powerful
triple-stores, such as YAGO2 and event-based triple-stores.

1.7 Importance of thesis statement

Firstly, most NLQIs convert a Natural Language (NL) query to a SPARQL
[15] query which is then evaluated with respect to one or more triple-stores.
The new approach uses a method of retrieving triples and manipulating those
triples with respect to each other. Furthermore, theories for building extensible
query processors can be implemented. When more expressive triple-stores become
available, the query processor can be extended to accommodate prepositional
phrases, as in the query "what did Al Capone steal in 1918?". Secondly, most
semantic web triple-stores cannot represent "contextual" properties of relationships
between entities such as time, location, and context without using some form of
"reification" – the reification significantly complicates the translation to SPARQL,
and lastly, no-one has yet been able to translate a NL query such as "who stole a
car in Manhattan in 1918 or 1920" to SPARQL.

1.8 Non-triviality of thesis statement

Most NLQIs translate NL queries to SPARQL and answers are presented to
the users. However, these NLQIs cannot answer complex questions that deal with
complex prepositional phrases. We appear to be the first to treat NL queries
as expressions of the lambda calculus and evaluate them directly with respect to
DBpedia.

The functions which are the meaning of words are defined in the Haskell
programming language. This approach to Natural Language interfaces has not

7

Wale Agboola

been implemented by any other research group, therefore, we are the first to use
the Haskell HSPARQL [20] package in a triple-store query interface.

1.9 Proof of thesis statement

To prove the thesis, a new modular and extensible approach for building Natural
Language Query Interfaces to triple-stores will be implemented:

• that treats the (bracketed) queries as expressions of the lambda calculus.

• evaluates the queries directly with respect to the DBpedia triple-store.

• Time query evaluation followed by optimization.

• Show how the approach could be extended to accommodate prepositional
phrases if the triple-store represents contextual data.

1.10 Structure of the thesis report

The rest of the thesis paper is structured as follows: Chapter 2 contains a
summary of related work done by other research groups, as well as related work
by members of the University of Windsor’s Speechweb research group. Chapter
3 fully describes the Semantics. Chapter 4 describes the time evaluation of
queries. Chapter 5 analyses and shows the time complexities. Chapter 6 contains
recommendations for reducing the computational cost of the semantics described
in this paper. Chapter 7 explains how the approach described in this thesis can be
extended to accommodate prepositional phrases. Lastly, chapter 8 concludes the
thesis and discusses future work.

8

Wale Agboola

2. RELATED WORK

2.1 Related work by other NLQI researchers

Papers which are closely related to this thesis include [5, 12, 13, 14, 17, 18, 19].
These papers are all concerned with building and implementing Natural Language
Query Interfaces to structured information on the Semantic Web. These papers
describe systems that are able to accept a wide range of queries or short fragments
and convert them into formal queries that can be executed against a knowledge
store. Consequentially, the methods proposed in these papers have proven to be
essential for further research into Question Answering Systems for the Semantic
Web. These papers also concern architectures that are able to allow queries from
users to be expressed in natural language, aggregate and rank answers drawn
from relevant distributed resources on the Semantic Web, such as MusicBrainz [16]
and DBpedia. Furthermore, these architectures extend far beyond single domains
across different sources and domains.

2.2 Event-based triples and DEV-NLQ

Frost et al., including the author of this Master’s thesis, published a paper
[7] concerning the use of events rather than entities as the subject of triples
and treating (bracketed) Natural Language queries as expressions of the lambda
calculus. Furthermore, Natural Language queries are translated to functional
expressions, rather than an intermediate language such as SPARQL. Another paper
was published by Frost’s research group [8]. This paper focuses on the concept that
Natural Language semantic web queries can be evaluated directly with respect
to an event-based triple-store using only basic triple retrieval operations, which
then facilitates the accommodation of complex Natural Language constructs.
DEV-NLQ, Direct Evaluation of Natural Language Queries, uses event-based
triple-stores, treating bracketed English queries as expressions of the lambda
calculus which can be evaluated directly with respect to the triple-store.

However, this thesis uses entity-based triple-stores from DBpedia, treating
bracketed English queries as expressions of the lambda calculus which can be

9

Wale Agboola

evaluated directly with respect to DBpedia’s triple-stores.

10

Wale Agboola

3. THE SEMANTICS

3.1 The new idea

The idea presented in the semantics treats bracketed English queries as
expressions of the lambda calculus which are evaluated directly with respect to
triple-stores. The semantics accommodate proper and common nouns, adjectives,
intransitive and transitive verbs, negation, and chained complex prepositional
phrases containing arbitrarily-nested quantifiers. Furthermore, each word in
English denotes a function.

Firstly, words that correspond to DBpedia prefixes that are part of the RDF
identifiers are defined.

namespace_prop = "http://dbpedia.org/property/"
namespace_res = "http://dbpedia.org/resource/"
namespace_ont = "http://dbpedia.org/ontology/"
namespace_ctgry = "http://dbpedia.org/resource/Category:"
namespace_umbel = "http://umbel.org/umbel/rc/"
namespace_yago = "http://dbpedia.org/class/yago/"
type0 = "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"
subject = "http://purl.org/dc/terms/subject"
prop fragment = namespace_prop ++ fragment
res fragment = namespace_res ++ fragment
ont fragment = namespace_ont ++ fragment
ctgry fragment = namespace_ctgry ++ fragment
umbel fragment = namespace_umbel ++ fragment
yago fragment = namespace_yago ++ fragment

Listing 2: DBpedia prefixes denotations

Common nouns such as actors, producers, and directors are defined. Each of
these functions as well as others are defined using Haskell programming language.
Simple getts function is used to retrieve triples from DBpedia using the HSPARQL
package. HSPARQL is a Haskell module that allows the Haskell program to

11

Wale Agboola

execute SPARQL queries against a remote triple-store through a remote SPARQL
endpoint. However, we only use HSPARQL to issue basic triple retrieval requests,
not complex SPARQL queries. We are thereby able to take advantage of the
efficient retrieval capabilities of remote SPARQL endpoints without having to
translate the NL query to SPARQL.

--films

film = getts_1 ("?", type0, ont "Film")
--actors

actor = getts_1 ("?", subject, ctgry "American_film_actors")
--producers

producer = getts_1 ("?", subject, ctgry "American_film_producers")
--directors

director = getts_1 ("?", subject, ctgry "American_film_directors")

Listing 3: Common nouns denotations

The queries are not converted to SPARQL. In order to execute these SPARQL
functions, the HSPARQL package [20], is used to connect to a specified SPARQL
endpoint and retrieve triples. These triples can then be manipulated directly
without the complicated task of translating to SPARQL.

Using Montague semantics [6], the meaning of a sentence in English is composed
from the meanings of its component words and phrases. The Montague semantics
is extended for more complex Natural Language queries. Proper nouns are defined
in terms of entities. For example, the proper noun Clint Eastwood denotes the
entity in DBpedia associated with "Clint_Eastwood", which is http://dbpedia.
org/resource/Clint_Eastwood.

The phrase "Clint Eastwood directs" is interpreted as shown below, where xy =
z indicates that the result of xy is equal to the evaluation of z. Proper nouns are
defined to return a boolean answer. If the entity (e.g. Clint Eastwood), is in the
list of entities (e.g. Directors), it returns True, and False, otherwise.

12

http://dbpedia.org/resource/Clint_Eastwood
http://dbpedia.org/resource/Clint_Eastwood

Wale Agboola

--proper nouns

--every noun is defined

brad_pitt setofents = checkMember (res "Brad_Pitt") setofents
angelina_jolie setofents = checkMember (res "Angelina_Jolie") setofents
chuck_lorre setofents = checkMember (res "Chuck_Lorre") setofents
clint_eastwood setofents = checkMember (res "Clint_Eastwood") setofents

Listing 4: Proper noun denotations

Furthermore, there are functions that are defined for the quantifiers "every",
"a", "one", "two", etc.

a nph vbph = length (interset nph vbph) /= 0
every nph vbph = subset nph vbph
one nph vbph = length(interset nph vbph) == 1
two nph vbph = length(interset nph vbph) == 2
which nph vbph = interset nph vbph
how_many nph vbph = length (interset nph vbph)

Listing 5: Quantifiers

produced tmph = [subject | (subject, objects) <-
reverse_image2 "producer",
tmph objects]

Listing 6: Transitive verb denotation: produced

directed tmph = [subject | (subject, objects) <-
reverse_image2 "director",
tmph objects]

Listing 7: Transitive verb denotation: directed

13

Wale Agboola

3.1.1 Interfacing the NLQ processor to DBpedia SPARQL endpoint using
HSPARQL

HSPARQL [20] is a Haskell package that allows Haskell programs to interface
remotely with the Semantic Web triple-stores. HSPARQL supports SELECT,
CONSTRUCT, ASK and UPDATE queries. However, for this thesis and the query
interface, only simple triple retrieval SPARQL queries are used.

SELECT ?first WHERE {?first, <given_second>, <given-third>} .
SELECT ?third WHERE {<given_first>, <given_second>, ?third} .
SELECT ?first ?third WHERE {?first, <given_second>, ?third} .

Triple-stores are accessed through the Virtuoso "SPARQL endpoint". In order
to access these triple-stores, the SPARQL endpoint must be made available over
the internet. For example, Frost et al.’s event-based triple-stores [7] can be accessed
at http://speechweb2.cs.uwindsor.ca/sparql, therefore its SPARQL endpoint
is http://speechweb2.cs.uwindsor.ca/sparql. In the case of DBpedia, its
SPARQL endpoint is located at http://dbpedia.org/sparql or http://live.
dbpedia.org/sparql.

film = getts_1 ("?", type0, ont "Film") ---List of films

-- getts_1 (x, y, z) returns a set x, given y and z.

Listing 8: A simple haskell function interface with HSPARQL

Furthermore, the Haskell package HSPARQL [20] is used to interface the query
processor to the external SPARQL endpoint containing the DBpedia data. Data
retrieval functions, such as the getts_1 above, are defined in terms of HSPARQL
functions in a module called Getts_v7. (see Appendix A).

There are two modules that must be imported to use the HSPARQL package
in Haskell.

import Database.HSparql.Connection
import Database.HSparql.QueryGenerator

14

http://speechweb2.cs.uwindsor.ca/sparql
http://speechweb2.cs.uwindsor.ca/sparql
http://dbpedia.org/sparql
http://live.dbpedia.org/sparql
http://live.dbpedia.org/sparql

Wale Agboola

The first package, Connection, creates the connection to the SPARQL endpoint,
while QueryGenerator package, the query generator for SPARQL, is used when
connecting to a remote endpoint.

All strings, such as "Al_Capone" or "Clint_Eastwood" in the definitions are
modified by a function res or prop to include a full resource or property URI prefix
of the String. URI (Uniform Resource Identifier) is a world-wide unique identifier
used in the semantic web to resolve ambiguities in entity naming. For example, the
URI for "Clint_Eastwood" is http://dbpedia.org/resource/Clint_Eastwood.

3.1.2 Example denotations of words

Common Nouns

Common nouns are defined as functions that denote a class of objects or a
concept as opposed to a particular individual. For example, the common noun
film denotes a function that returns all subjects listed as "English-languageFilms"
in DBpedia.

--films

film = getts_1 ("?", type0, yago "English-languageFilms")

Listing 9: Common noun: film

The prefix "yago" represents a function to recognize DBpedia prefixes that
are part of the RDF identifiers. The url "http://dbpedia.org/class/yago/
English-languageFilms" is the RDF identifier for "English-languageFilms", and
yago "English-languageFilms" used to identify "English-languageFilms" as an RDF
resource.

Another example is the common noun actor. The actor function returns all
subjects that are listed as actors in DBpedia.

--actors

actor = getts_1 ("?", type0, yago "AmericanFilmActors")

Listing 10: Common noun: actor

15

http://dbpedia.org/resource/Clint_Eastwood
http://dbpedia.org/class/yago/English-languageFilms
http://dbpedia.org/class/yago/English-languageFilms

Wale Agboola

Proper nouns

Proper nouns are related to a person, place, thing, or idea. In this thesis
paper, proper nouns include only specific names. Examples of proper nouns
are Million Dollar Baby, Django Unchained, and Eat Pray Love. Each of these
proper nouns is a film. Note that film is a common noun. Using Montague
Semantics, proper nouns do not denote entities directly. Rather, proper nouns
denote functions that take a set of entities as an argument and which return True
if a particular entity is a member of that set. For example, the proper noun
"Million_Dollar_Baby" is denoted by the function million_dollar_baby where
"million_dollar_baby" represents the entity associated with the URI name for
"Million Dollar Baby". Therefore million_dollar_baby setofents returns true if
"million_dollar_baby" is in the list setofents.

--proper nouns

brad_pitt setofents
= checkMember (res "Brad_Pitt") setofents

quentin_tarantino setofents
= checkMember (res "Quentin_Tarantino") setofents

django_unchained setofents
= checkMember (res "Django_Unchained") setofents

eat_pray_love setofents
= checkMember (res "Eat_Pray_Love") setofents

clint_eastwood setofents
= checkMember (res "Clint_Eastwood") setofents

million_dollar_baby setofents
= checkMember (res "Million_Dollar_Baby") setofents

pulp_fiction setofents
= checkMember (res "Pulp_Fiction") setofents

Listing 11: Proper nouns

16

Wale Agboola

Conjunctions: "and" and "or"

A conjunction is a part of speech that connects words, sentences, phrases, or
clauses. Conjunctions are defined as functions that take words, phrases or term
phrases, and returns the boolean answer based on the contents of the argument
passed and context of the conjunction.

--returns a set that is common in both input sets s and t

nounand s t = interset s t
--returns a union set of both input sets s and t

nounor s t = makeset(s ++ t)
--Finds a common set given 2 sets

--Complexity => O(n+m)

interset s t = List.intersect s t

Listing 12: Conjunction words

Determiners

Determiners are used before nouns in a term phrase. That is to say, a determiner
will be followed by a noun. For example, in the phrase direct a film, "a" is the
determiner.

Furthermore, determiners are defined as functions that take term phrases and
returns a boolean based on the definition of that particular determiner.

a nph vbph = length (interset nph vbph) /= 0
--returns true if nph and vbph have at least 1 item in common

every nph vbph = subset nph vbph
--returns true if nph set is contained in vbph

one nph vbph = length(interset nph vbph) == 1
--returns true if nph and vbph have exactly 1 item in common

two nph vbph = length(interset nph vbph) == 2
--returns true if nph and vbph have exactly 2 items in common

Listing 13: Determiners

17

Wale Agboola

Transitive verbs

Transitive verbs are explicitly defined such that they have a term phrase to
receive that action or verb. For example, the denotation of directed (as in "directed
a film") is shown below, in which the directed predicate corresponds to the predicate
URI representing "director" in DBpedia.

directed tmph = [subject | (subject, objects) <-
reverse_image2 "director",
tmph objects]

Listing 14: Transitive verb: directed

Informally, the definition of directed uses relative set notation.
[subject | b1 = (subject, objects) ∈ set1, c1] is read as the set of all subject

such that b1 is a member of the set set1 and c1 is condition.
The function reverse_image2 is defined such that it returns a new binary-relation.

Furthermore, reverse_image2 "director" returns all (s)ubject, (o)bject pairs with
the (p)redicate <dbprop:director> from DBpedia.
[(x1, y1), (x2, y2),...]
The pairs in the list are then reversed:
[(y1, x1), (y2, x2),...]
Reversing the pairs is only necessary if the pairs are not in the correct pair order.
For example, the pairs for the "director" predicate returns a list:
[(film1, director1), (film2, director2),...], but the correct result required is
[(director1, film1), (director2, film2),...].
The pairs are then processed by a "collect" function that creates a collection of
images where each item in the list is a pair of directors and the list of films they
directed. E.g = [(director1, [film1, film2, film3, ...]), ...].

For example, consider the following triples:

18

Wale Agboola

{...
<dbpedia:Gran_Torino> <dbprop:director> <dbpedia:Clint_Eastwood> .
<dbpedia:Heartbreak_Ridge> <dbprop:director> <dbpedia:Clint_Eastwood> .
<dbpedia:J.Edgar> <dbprop:director> <dbpedia:Clint_Eastwood> .
<dbpedia:Unforgiven> <dbprop:director> <dbpedia:Clint_Eastwood> .
<dbpedia:Million_Dollar_Baby> <dbprop:director> <dbpedia:Clint_Eastwood>.
...}

Then

reverse_image2 "director" = [..., (<dbpedia:Clint_Eastwood>,
[<dbpedia:Gran_Torino>, <dbpedia:Heartbreak_Ridge>,
<dbpedia:J.Edgar>, <dbpedia:Unforgiven>,
<dbpedia:Million_Dollar_Baby>]), ... etc]

Note that the tmph in directed tmph denotes a term phrase. This term phrase
may include a proper noun or a phrase within a quantifier. For example, the query
can be "directed million_dollar_baby" or "directed (a film)".

The term phrase tmph is applied to the image associated with the subjects by
a function, and returns the subject if the evaluation of tmph with the subject’s set
of objects is True. For example:

directed (a film)
= [subject | (subject, objects) <-

reverse_image2 "director",
a film objects]

In the code snippet above, anything before "|" is the result set expected, "<-"
is a generator, and the expressions after ’,’ are conditions. This means that each
subject-objects pair is retrieved from the result of reverse_image2 "director", and
for each pair, the condition a film objects is checked. If the condition is True,
then add the subject of the subject-objects pair to the result set.

19

Wale Agboola

The query "directed (a film)" takes about 80 seconds to complete. For every
objects list in the subject-objects pairs, the ’a’ function checks if there is at least a
common element in both film and objects. The ’a’ function, as described on page
17, makes use of the intersect function in the List module [1]. Its complexity is
O(n+m), where m is the number of elements in the film list and n is the number
of elements in objects list.

directed million_dollar_baby
= [subject | (subject, objects) <-

reverse_image2 "director",
million_dollar_baby objects]

The query "directed million_dollar_baby" takes about 7 seconds to complete.
For every objects list in the subject-objects pairs, the "million_dollar_baby"
function checks if the URI representing the entity ’Million Dollar Baby’ is in the
list objects. Its complexity is O(n), where n is the number of elements in objects
list.
directed (two films)

= [subject | (subject, objects) <-
reverse_image2 "director",
two films objects]

The query "directed (two films)" takes about 80 seconds to complete. For every
objects list in the subject-objects pairs, the ’a’ function checks if there are exactly
2 common elements in both film and objects. The ’two’ function, as described in
17, makes use of the intersect function in the List module [1]. Its complexity is
O(n+m), where m is the number of elements in the film list and n is the number
of elements in objects list.

The denotation of transitive verbs makes the semantics computationally
expensive: First, the pairs are retrieved from the triple-store. Second, the image
function creates a subject-objects map from the pairs. Third, the term phrase
is evaluated with the list of objects associated with a subject. Fourth, for all
evaluations that are True, return the subject.

20

Wale Agboola

The resulting semantics is highly compositional, that is, denotations of
compound phrases and sentences are created using function application, according
to the syntactic structure of the query, and any phrase can be replaced by any
other phrase of the same syntactic category.

produced tmph = [subject | (subject, objects) <-
revers_image2 "producer",
tmph objects]

Listing 15: Transitive verb: produced

Intransitive verbs

Intransitive verbs, unlike transitive verbs, do not have an object or phrase
receiving the action. Furthermore, a intransitive verb denotes a function in which
the set of entities that are subjects of the type associated with that verb. For
example, the intransitive verb produce as in "Brad Pitt produce" will return all
subjects that have an object URI that represents producer in DBpedia. In other
words, the definition of produce is defined below.

--Intransitive verbs

--returns all subjects that are producers

produce = getts_1 ("?", type0, yago "AmericanFilmProducers")
--returns all subjects that are directors

direct = getts_1 ("?", type0, yago "AmericanFilmDirectors")

Listing 16: Intransitive verbs: produce and direct

The denotation of intransitive verbs help to answer queries in which phrases
include verbs that do not require an object or a term phrase.

Example queries

In this section, sample queries are evaluated and the steps in which they are
evaluated is explained. The answer to a query is mathematically composed from
the meaning of its parts. The syntax of the query creates the order of evaluation.

21

Wale Agboola

The composition of the meaning of the query, and parts of it, is determined by a
formal denotational semantics.

The query "Brad Pitt is a director" is considered and evaluated as follows.

--Brad Pitt directs

brad_pitt directs = checkMember (res "Brad_Pitt") directs
= checkMember (dbpedia:Brad_Pitt) [dbpedia:Chris_Sparling,

dbpedia:Aram_Avakian, dbpedia:Barnet_Kellman,
dbpedia:Bobby_Burns, dbpedia:Chris_Sanders_(director),
dbpedia:Christopher_Smith_(performer),
dbpedia:Dana_Adam_Shapiro, dbpedia:David_Duchovny,...]

= False

This query evaluates the proper noun for "Brad Pitt" that take a set of entities
directs as an argument and which return True if a particular entity is a member of
that set. The query result is noted as False since the resource URI which represents
"Brad Pitt" is not a member of the set of entities denoted by "directs".

Secondly, the query "Clint Eastwood is a producer and a director" is considered
and evaluated. After parsing, the query is translated to as follows.

--Clint Eastwood produces and directs

clint_eastwood (nounand produces directs)
= checkMember (dbpedia:Clint_Eastwood) (nounand [

dbpedia:Ali_LeRoi, dbpedia:Alina_Panova,
dbpedia:Alvin_H._Perlmutter, dbpedia:Anthony_Cardoza,
dbpedia:B._P._Schulberg, dbpedia:Bitsie_Tulloch,
dbpedia:Bobby_Miller_(filmmaker),...,
dbpedia:Clint_Eastwood,...] [dbpedia:Chris_Sparling,
dbpedia:Aram_Avakian, dbpedia:Barnet_Kellman,
dbpedia:Bobby_Burns, dbpedia:Chris_Sanders_(director),
dbpedia:Christopher_Smith_(performer),
dbpedia:Dana_Adam_Shapiro, dbpedia:David_Duchovny,...,
dbpedia:Clint_Eastwood,...])

22

Wale Agboola

The "nounand" function intersects the two lists to create a single ’common’ list,
only entities that are common in both input lists will appear in the single common
list.

= checkMember (dbpedia:Clint_Eastwood) [dbpedia:Ali_LeRoi,
dbpedia:Alina_Panova, dbpedia:Alvin_H._Perlmutter,
dbpedia:Anthony_Cardoza, dbpedia:B._P._Schulberg,
dbpedia:Bitsie_Tulloch, dbpedia:Bobby_Miller_(filmmaker),
dbpedia:Chris_Sparling, dbpedia:Aram_Avakian,
dbpedia:Barnet_Kellman, dbpedia:Bobby_Burns,
dbpedia:Chris_Sanders_(director),
dbpedia:Christopher_Smith_(performer),
dbpedia:Dana_Adam_Shapiro, dbpedia:David_Duchovny,...,
dbpedia:Clint_Eastwood,...])

= True

This query evaluates the proper noun for "Clint Eastwood" that take a set of
entities, the single common result list from the "nounand" function, as an argument
and which return True if a particular entity is a member of that set. The query
result is noted as True since the resource URI which represents "Clint Eastwood"
is a member of the set of entities denoted by "nounand produces directs".

The query "Clint Eastwood directed a film" is evaluated as follows:

--Clint Eastwood directed a film

clint_eastwood (directed (a film))
= checkMember dpedia:Clint_Eastwood [

dbpedia:Aaron_Katz_(filmmaker), dbpedia:Abraham_Polonsky,
dbpedia:Akiva_Schaffer, dbpedia:Al_Pacino,
dbpedia:Alain_Zaloum, dbpedia:Alan_Crosland,
dbpedia:Alan_Gibson_(director), dbpedia:Albert_Finney,
dbpedia:Albert_Magnoli, ..., dpedia:Clint_Eastwood, ...]

= True

As explained in the Semantics, The "directed" function takes a proper noun

23

Wale Agboola

or a term phrase and creates a subject list which is properly associated with the
predicate that is denoted by the actual name of the its argument.

The query result is noted as True since the resource URI which represents "Clint
Eastwood" is a member of the set of entities denoted and evaluated by "directed (a
film)".

The query "Clint Eastwood directed Million Dollar Baby" is evaluated as
follows:
--Clint Eastwood directed Million Dollar Baby?

clint_eastwood (directed million_dollar_baby)
= checkMember dbpedia:Clint_Eastwood [dbpedia:Clint_Eastwood]
= True

The "directed" function takes a proper noun or a term phrase and creates a
subject list which are properly connected by the predicate property director and
the object or term phrase denoted by the actual name of the directed function’s
argument. In this case, the "directed" function will take the "million_dollar_baby"
proper noun and create a list of subjects connected by predicate property
director and returns the list of subjects that are associated with the dbpedia :
million_dollar_baby proper noun.

The query result is noted as True since the resource URI which represents "Clint
Eastwood" is a member of the set of entities denoted and evaluated by "directed
million_dollar_baby". The function denoted by "clint_eastwood" returns True
when applied to the list of entities who directed Million Dollar Baby.

3.2 Contribution to DEV-NLQ

The author of this thesis co-authored two papers [7] and [8], which were
presented at EDBT/ICDT 2014 Joint Conference and ESWC 2014, respectively.

The author’s major contribution to An Event-Driven Approach for Querying
Graph-Structured Data Using Natural Language [7] was to design the event-based
graph and the semantics in the Haskell programming language.

The author’s major contribution to A Demonstration of a Natural Language
Query Interface to an Event-Based Semantic Web Triplestore [8] was to design

24

Wale Agboola

the event-based graph and semantics in the Haskell programming language and
to demonstrate that bracketed English queries can be used to query DBpedia
triple-stores, and other triple-stores like DBpedia. Another contribution is
investigating how to extract sets of event-based n-tuple data-stores such as
YAGO2’s data-store [11].

In the paper An Event-Driven Approach for Querying Graph-Structured Data
Using Natural Language [7], the co-author’s name is listed as the second of five
authors. In the paper A Demonstration of a Natural Language Query Interface to
an Event-Based Semantic Web Triplestore [8], the co-author’s name is listed as the
fourth of five authors.

Another research contribution is the creation of [7]’s denotational semantics
and the definition of arbitrarily-nested quantifications for DBpedia triple-stores.
The use of the HSPARQL [20] package that is used to access triples from DBpedia
is also a contribution.

The major research contribution of this thesis work is the extension of the paper
and research described in [8] to show that the idea developed by Frost et al. can
be used to query DBpedia.

25

Wale Agboola

4. TIMING EVALUATION OF QUERIES

This chapter shows the time evaluation of some example queries. To evaluate,
we will first look at the experiment/algorithm design and pick the appropriate
queries made in that process. In this chapter we will also look at the procedure of
the data collection and how it was designed.

4.1 Experiment design

When testing various queries, it was important to choose the right queries for
the experiment. After testing multiple queries, it was discovered that the Virtuoso
DBpedia interface has a 10000 max row limit on result sets [4]. This limit was
set to prevent abuse of the DBpedia public server by crawlers. The limit was also
imposed by the DBpedia SPARQL endpoint for performance reasons. A solution
to this problem would have been to download the DBpedia data and run all queries
locally. However, the virtual machines that run the speechweb2 server [9] have a
finite amount of disk space and RAM memory allocated which are significantly less
than the requirements for the DBpedia dump files and datasets.

The requirements for setting up the DBpedia data on a local machine include
a powerful machine with at least 4 Cores and 32 GigaBytes of RAM for DBpedia
only. The requirements also include at least 256 GigaBytes of free Hard Drive
space for downloading and repacking the DBpedia datasets, as well as the growing
database file when importing the triples in to a graph [10].

The goal of the experiment is to test if results are complete and returned in
reasonable amount of time. Most importantly, this experiment also helps determine
if the algorithms designed can be optimized.

The queries used in this experiment are listed in table 4.1 below.

26

Wale Agboola

Tab. 4.1: Queries used in the experiment
ID Haskell Query English query

1 film list all films
2 actor list all actors
3 directed (a film) directed a film
4 clint_eastwood (directed (a film)) Clint Eastwood directed a film

5
clint_eastwood (directed
million_dollar_baby)

Clint Eastwood directed Million
Dollar Baby

6 brad_pitt (produced (a film)) Brad Pitt produced a film
7 produced eat_pray_love who produced Eat Pray Love
8 brad_pitt (produced eat_pray_love) Brad Pitt produced Eat Pray Love
9 brad_pitt directs Brad Pitt directs
10 clint_eastwood directs Clint Eastwood directs

11
clint_eastwood (nounand produces
directs)

Clint Eastwood produces and directs

12
produced_by (a (directed
(million_dollar_baby)))

list films produced by a director of
Million Dollar Baby

13 a person (directed (a film)) A person directed a film

The Haskell queries were evaluated using 2 methods: The first method consisted
of running all valid queries in the Haskell program interface using a command line
entry. In order to determine the timing for a valid query, the built-in timer was
enabled before executing the query. The simplest way to enable the timer was to
run the ’:set +s’ command in Haskell. This allowed users to see the execution time
and memory usage of any valid query that is run. This is the Haskell Program
part of the experiment.

The second evaluation method consisted of designing a web program that is
able to interface and run the Haskell program. The web program address is located
at http://speechweb2.cs.uwindsor.ca/wale_demo. The timer starts when the
query starts and ends when the query results are displayed. This is the Web
Program part of the experiment.

27

http://speechweb2.cs.uwindsor.ca/wale_demo

Wale Agboola

4.2 Experiment result

Each query is executed 10 times for the web program. The average times are
record by noting all query times and dividing the total query time by 10 to get the
averages.

The full results are listed in table 4.2.

Tab. 4.2: Experiment results

ID Haskell Query
Web Program Average

(seconds)
Haskell Program

Average (seconds)

1 film 5 2.8
2 actor 5 1.1
3 directed (a film) 81 78.82
4 clint_eastwood (directed (a film)) 44 39.83

5
clint_eastwood (directed
million_dollar_baby)

7.2 4.25

6 brad_pitt (produced (a film)) 18.3 10.95
7 produced eat_pray_love 7 4.67
8 brad_pitt (produced eat_pray_love) 7 4.3
9 brad_pitt directs 4 1.47
10 clint_eastwood directs 2 1
11 clint_eastwood (nounand produces directs) 5 2.2

12
produced_by (a (directed
million_dollar_baby))

13.1 8.86

13 a person (directed (a film)) 97.6 92.74

All 10 times for queries 3, 4, 5, 6, 12 and 13 are show in the table 4.3.

28

Wale Agboola

Tab. 4.3: Experiment results: timings

ID Haskell Query Web Program (seconds)
Haskell Program

(seconds)

3 directed (a film)
83, 84, 81, 80, 85, 83, 77,

77, 79, 81

79.06, 78.72, 78.87, 79.29,
78.87, 78.54, 78.54, 78.93,

78.61, 78.74

4 clint_eastwood (directed (a film))
46, 46, 45, 44, 44, 45, 41,

45, 43, 41

40.05, 39.86, 39.69, 39.77,
39.86, 39.84, 39.81, 39.86,

39.83, 39.75

5
clint_eastwood (directed
million_dollar_baby)

7, 7, 7, 7, 7, 8, 6, 8, 8, 7
4.38, 4.12, 4.39, 4.39, 4.13,
4.40, 3.95, 4.38, 4.42, 3.94

6 brad_pitt (produced (a film))
19, 18, 18, 18, 21, 17, 19,

17, 18, 18

11.00, 10.57, 11.31, 10.76,
10.55, 11.60, 10.99, 11.13,

10.99, 10.62

12
produced_by (a (directed
million_dollar_baby))

13, 13, 13, 13, 13, 13, 13,
13, 14, 13

9.04, 9.02, 8.94, 9.14, 7.95,
8.56, 9.03, 9.00, 8.91, 9.03

13 a person (directed (a film))
99, 101, 101, 102, 97, 97,

95, 94, 97, 93

93.34, 92.87, 93.56, 92.87,
90.12, 93.54, 93.34, 92.12,

92.98, 92.66

It is noted that queries executed with the web program require a few more
seconds to complete. This is because the web program opens a connection to the
Haskell program, executes the query, and closes the connection.

It is also noted that queries involving transitive verbs can take some time to
complete. This is because the functions for transitive verbs require a collection to
map a subject to a list of objects. The function collection takes a list of pairs:

[(director1, film1), (director2, film2), (director3, film3), ...],
and converts them to a map such that each subject is paired with a list of

objects:
[(director1, [film1, film2, film3, ...]), ...].
Consider the query "directed (a film)" below:

Fig. 4.1: Sample query: directed (a film)

29

Wale Agboola

This query first creates a list. Each item in the list contains a subject-objects
pair [(director1, [film1, film2, film3, ...]), ...], and then evaluates "a film
[film1, film2, film3, ...])" for all objects list in the subject-objects pair. Note
that the query "film" returns a set of films (see page 12) and "a film [film1, film2,
film3, ...])" returns True if the set film and the set [film1, film2, film3, ...])
have at least a common element (see page 17).

This process requires a lot of processing time.
Consider the query "directed million_dollar_baby" below:

Fig. 4.2: Sample query: directed million_dollar_baby

This query first creates a list. Each item in the list contains a subject-objects
pair

[(director1, [film1, film2, film3, ...]), ...]
and then evaluates

million dollar baby [film1, film2, film3, ...]
for all objects list in the subject-objects pair. Note that the query

million dollar baby [film1, film2, film3, ...]
returns True if the URI entity representing million dollar baby is in the set [film1,
film2, film3, ...] (see page 16).

This explains the timing results of the query "directed (a film)" and the query
"directed million_dollar_baby". million_dollar_baby is single entity, while film is
a set of at most 10000 entities (see page 41 for more on the limitation).

However, queries involving intransitive verbs only take a couple of seconds.
This is because the transitive verbs definition does not need to make a collection,
it only needs to return a list associated with that verb. Furthermore, the queries
that involving proper nouns will only check for that resource URI (entity) in a list
of entities. For example, the query

clint_eastwood directs
is a proper noun definition that will checks the resource URI for "Clint

Eastwood" in the list of entities denoted by directs.

30

Wale Agboola

The complexity analysis of the algorithms designed for the thesis such as the
collection method for transitive verbs, checkMember method for proper nouns,
and quantifiers are discussed in chapter 5.

31

Wale Agboola

5. COMPLEXITY ANALYSIS OF QUERIES

The complexity of the algorithms defined in this paper are discussed and
analysed in this section. The worst/average case is considered.

Firstly, the function checkMember is considered. This function is used in the
denotation of proper nouns.

--checks if the element ’x’ is in the list ’ls’

--Complexity => O(n)

checkMember x ls = List.elem x ls

For the average case scenario, the algorithm is a linear search, then the number
of times it takes will be n− (n− i), where i ∈ [1...n]. Therefore, finding the correct
element in the ith position will take O(n− (n− i)). Since O(n− (n− i)) ∈ O(n),
the average case complexity is O(n).

The function interset is considered. This function is used in the definition of
quantifiers.

--Finds a common set/list given 2 sets/lists

--Complexity => O(n+m)

interset s t = List.intersect s t

For the best case scenario, the algorithm will stop and return empty set if either
of list s or list t is empty, then best case complexity is O(1).

For the average and worst case scenarios, the implementation is similar
to Set.intersection [3] and uses an efficient hedge algorithm comparable with
hedge-union, in which the first list is converted into a set A, this operation is
O(n log n) [3]. Then the algorithm looks for elements of the second list in the
set A. Since lookup on a set is O(1), then for all elements in the second list,
complexity is O(m). The elements of the result come from the first set A [3].
Therefore, the complexity of the interset function is O((n log n) + m), where n

32

Wale Agboola

is the number of elements in the first set and m is the number of elements in the
second set.

The function collect is considered. This function is used in the definition of
transitive verbs.

--create a map of key-values [(a,[b, ...]), ...]

--from a list of pairs [(a,b), ...]

--COLLECTION (expensive function - O(n^2))

collect [] = []
collect ((x,y):t) = (x, y:[e2 |

(e1, e2) <- t,
e1 == x]) :
collect [(e1, e2) |

(e1, e2) <- t,
e1 /= x]

Frost et al. [8] designed a collection algorithm to build a map from a list of
key/value pairs. However, there was concern that the definitions of Frost et al.’s
collect function, which is used in the denotations of transitive verbs, is very
expensive and may not be used for very large database triple-stores like DBpedia
[4] and MusicBrainz [16].

For the best case scenario, the function will stop and return empty if the input
list is empty, then best case complexity is O(1).

For the average and worst case scenarios, the function takes each pair and
checks for all other pairs in the list with the same keys and concatenates the values
together. Consequentially, the checking of the all pairs in each iterations requires
O(n) lookup. Since there are n elements and the total lookup time is O(n), then
total complexity is O(n) ∗ n ∈ O(n2).

In order for the collect function to work efficiently with a sample of larger
triple-stores, then modifications would be made to the function. A modification
of these semantic definitions is to use the Map library [2] functions such as
fromListWith and toList in Haskell.

33

Wale Agboola

--COLLECTION (a lot less expensive function - O(nlogn))

convertKVsList ls = (Map.toList .
Map.fromListWith (++) .
map (\ (x,y) -> (x,[y]))) ls

collect = convertKVsList

In the newly modified version of the collect function from right to left, there
are 3 operations that are applied to the list of pairs.

1. map(\(x, y) − > (x, [y])) applies the singly-list style to all values in the pairs
such that each pair (x, y) becomes (x, [y]). Example:

map (\ (x,y) -> (x,[y]))
[(5,"a"), (5,"b"), (3,"b"), (3,"a"), (5,"a")]

== [(5,["a"]), (5,["b"]), (3,["b"]), (3,["a"]), (5,["a"])]

This operation takes O(1) time for a single pair, therefore, for a list of pairs,
the complexity is (O(1) ∗ n) ∈ O(n), where n is the number pairs in the list.

2. Map.fromListWith (++) builds a map from a list of key/value pairs with a
combining function. However, the result is not a list, it is a Map element.
According to [2], its complexity is O(n log n). Example:

fromListWith (++)
[(5,["a"]), (5,["b"]), (3,["b"]), (3,["a"]), (5,["a"])]

= fromList [(3, ["a","b"]), (5, ["a","b","a"])]

3. Map.toList converts a fromList Map element to a list of key/value pairs.
According to [2], its complexity is O(n). Example:

toList (fromList [(3, ["a","b"]), (5, ["a","b","a"])])
= [(3, ["a","b"]), (5, ["a","b","a"])]

Combining all 3 functions, the combining complexity of collect function = (O(n)+
O(n log n) + O(n)) ∈ O(n log n). Therefore, the final complexity of the collect
function isO(n log n). The effect of improving complexity fromO(n2) toO(n log n)

34

Wale Agboola

is considerable. Consider 10,000 "x directed y triples" (10, 0002) is 100,000,000
whereas 10,000 logbase2 10,000 is approximately 10,000 * 13, which is approx 780
times less than 100,000,000.

35

Wale Agboola

6. REDUCING COMPUTATIONAL COST

6.1 Redefine transitive verbs

A way to reduce the computational cost of the semantics described in this
paper is rewrite the definitions for transitive verbs using general knowledge. The
algorithm for transitive verbs may have to be redefined to remove redundancy. For
example, the query "directed (a film)" and "directed (two films)" will check if the
list of objects are films then return the subject who directed the film.

directed tmph = [subject | (subject, objects) <-
reverse_image2 "director",
tmph objects]

The phrase "a film" is redundant in "directed a film" because the word "directed"
is only ever used with films, therefore the transitive verbs could be redefined to
remove the redundant parts. The "directed" could be defined with no term-phrase
to return all entities which are subjects of triples with predicate "director".

--Reducing computational cost

--alternate definition for ’directed a film’

directed_a_film = [subj | (subj, objs) <-
reverse_image2 "director"]

Listing 17: Transitive verb: directed a film

--Reducing computational cost

--alternate definition for ’directed 2 films’

directed_two_films = [subj | (subj, objs) <-
reverse_image2 "director",
length objs == 2]

Listing 18: Transitive verb: directed two films

36

Wale Agboola

The use of this redefinition must be carried out by the parser, and would be
would be difficult to implement.

6.2 New definition of COLLECT function

-- collection (a lot less expensive function - O(nlogn))

convertKVsList ls = (Map.toList .
Map.fromListWith (++) .
map (\ (x,y) -> (x,[y]))) ls

collect = convertKVsList

In the newly modified version of the collect function from right to left, there
are 3 operations that are applied to the list of pairs.

1. map(\(x, y) − > (x, [y])) applies the singly-list style to all values in the pairs
such that each pair (x, y) becomes (x, [y]). Example:

map (\ (x,y) -> (x,[y]))
[(5,"a"), (5,"b"), (3,"b"), (3,"a"), (5,"a")]

== [(5,["a"]), (5,["b"]), (3,["b"]), (3,["a"]), (5,["a"])]

2. Map.fromListWith (++) builds a map from a list of key/value pairs with a
combining function. However, the result is not a list, it is a fromList element.
Example:

fromListWith (++)
[(5,["a"]), (5,["b"]), (3,["b"]), (3,["a"]), (5,["a"])]

= fromList [(3, ["a","b"]), (5, ["a","b","a"])]

3. Map.toList converts a fromList Map element to a list of key/value pairs.
Example:

toList (fromList [(3, ["a","b"]), (5, ["a","b","a"])])
= [(3, ["a","b"]), (5, ["a","b","a"])]

37

Wale Agboola

The most important function is "Map.fromListWith". This function creates a tree
map.

In a tree map, insertions and lookup require Θ(log n) rotations if the tree map
was maximally imbalanced before the element was inserted [2]. As a result, creating
a tree-map from a list of pairs require O(n log n) time, since O(log n) time is
required per each of the n pairs. If a duplicate key is found, the function that is
passed, "++", is used to combine the values of those keys.

Consider the following list of pairs:
[(5,["a"]), (5,["b"]), (3,["b"]), (3,["a"]), (5,["a"])].

After converting the list into a Map using fromListWith (++), we would get
the map in Figure 6.1.

Fig. 6.1: TreeMap: fromListWith (++)

Inserting a pair into a balanced search tree is O(log n); this is because inserting
requires navigating through the tree node which leads to the location in the tree
map in which the new value is. Since there are n elements to insert, there are
exactly O(n log n) bounds that the ’Map.fromListWith’ function has.

38

Wale Agboola

7. EXTENDING THIS APPROACH TO
ACCOMMODATE PREPOSITIONAL
PHRASES

According to Frost et al. [7] [8], complex prepositional phrases, such as "in
2004 or in 2004 in a city in California" have typically been somewhat difficult to
integrate into a compositional NL query semantics which allows arbitrarily-nested
quantification. A way to extend this approach to accommodate prepositional
phrases is make use of YAGO2’s [11] extended 5-tuples which allows the use a
technique called reification to represent contextual data. Furthermore, extending
this approach to accommodate prepositional phrases may require modifying the
definition of transitive verbs. The definition of each transitive verb is redefined to
make use of a list to filter entities which are in the image list of the transitive verb.

A recursive function called "filter" applies each prepositional phrase in turn as
a filter to each entity.

--modified transitive verb "directed" denotation with

prepositional phrase↪→

directed1 tmph preps = [subj| (subj, objs) <-
reverse_image2 "director",
tmph objs &&
length (filter1 objs preps) /= 0]

The "filter1" function will return the list of objects that satisfies all the
prepositional conditions preps.

39

Wale Agboola

--filter for prepositional phrase

filter1 objs preps = [x | x <- objs,
containfilter x preps]

containfilter x [] = True
containfilter x (y:ys) = List.isInfixOf y x &&

containfilter x ys

--a part of a prepositional phrase examples:

--"in 2008", "in 2010" and "in 2013"

in_2008 = ["2008"]
in_2010 = ["2010"]
in_2013 = ["2013"]

Consider the query "Did Ron Howard direct Rush in 2013"? This query
converted to bracketed query becomes "ron_howard (directed1 rush in_2013)".
This query, which includes prepositional phrase, can then be evaluated.

This concept is reliant on the fact that some URIs in DBpedia have representation
of time. For example, the URI for the film ’Rush’ is ’http://dbpedia.org/
resource/Rush_(2013_film)’ or ’dbpedia:Rush_(2013_film)’.

Note that this idea is only a concept. Frost et al. [8] plan to improve and extend
the semantics to accommodate prepositional phrases. A possible way forward is
to use Frost et al.’s [8] event-based approach to develop a formal denotational
semantics for the YAGO2 [11] data-store which may cover a wide range of NL
constructs including complex chained prepositional phrases.

40

http://dbpedia.org/resource/Rush_(2013_film)
http://dbpedia.org/resource/Rush_(2013_film)

Wale Agboola

8. CONCLUSION

8.1 Proof of thesis

According to the experiment conducted in this thesis, it is proven that NLQIs
designed where words and phrases are evaluated as expressions in lambda calculus
can be used to query large datasets such as DBpedia.

It is possible to construct a usable, wide coverage natural language query
interface to DBpedia triple-store by treating words and phrases in the query as
expressions of the lambda calculus which are applied to each other according to
the syntactic structure of the query. In this thesis, Frost et al.’s direct-evaluation
approach has been adapted for use with DBpedia and have tested the revised
approach with sample queries.

By usable, it is possible for answers to be returned in less than 100 seconds.
The example queries presented in this thesis can all be evaluated in less than 100
seconds.

By wide coverage, the queries can include common nouns, proper nouns,
quantifiers, intransitive and transitive verbs, and nested quantification. The
queries presented in this thesis contain examples of all of these constructs.

By extensible, the approach can be extended for use with more powerful
triple-stores, such as YAGO2 and event-based triple-stores. The approach
described in this thesis regarding prepositional phrases can be used as a concept
into further research.

8.2 Limitations

The proposed approach is able to answer many questions correctly. There is a
limit in the result set returned by querying Dbpedia. Querying DBpedia will limit
the result-set to 10000. For example, there are 60000+ films listed in DBpedia
dataset, however, querying DBpedia for all films will only return the first 10000
results.

A solution is to use SPARQL sub-queries, such that a query uses a combination
of multiple queries with limits and offsets. For example, querying DBPedia for all

41

Wale Agboola

films requires the following SPARQL query:

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

{

SELECT DISTINCT ?film_title

WHERE {

?film_title rdf:type <http://dbpedia.org/ontology/Film> .

} LIMIT 10000 OFFSET 0

}

UNION

{

SELECT DISTINCT ?film_title

WHERE {

?film_title rdf:type <http://dbpedia.org/ontology/Film> .

} LIMIT 10000 OFFSET 10000

}

UNION

{

SELECT DISTINCT ?film_title

WHERE {

?film_title rdf:type <http://dbpedia.org/ontology/Film> .

} LIMIT 10000 OFFSET 20000

}

UNION

{

SELECT DISTINCT ?film_title

WHERE {

?film_title rdf:type <http://dbpedia.org/ontology/Film> .

} LIMIT 10000 OFFSET 30000

}

UNION

{

SELECT DISTINCT ?film_title

WHERE {

?film_title rdf:type <http://dbpedia.org/ontology/Film> .

42

Wale Agboola

} LIMIT 10000 OFFSET 40000

}

UNION

{

SELECT DISTINCT ?film_title

WHERE {

?film_title rdf:type <http://dbpedia.org/ontology/Film> .

} LIMIT 10000 OFFSET 50000

}

UNION

{

SELECT DISTINCT ?film_title

WHERE {

?film_title rdf:type <http://dbpedia.org/ontology/Film> .

} LIMIT 10000 OFFSET 60000

}

However, it would be difficult to translate the SPARQL query to Haskell using
HSPARQL, and the total result-set count will have to be determined before all
queries are evaluated.

8.3 Conclusion and future work

In this thesis, the event based approach that has been proposed by Frost et al.
[7, 8] has been modified to query the DBpedia triple-store. We have also discussed
how the approach could be extended to accommodate prepositional phrases if the
triple-stores could represent contextual data.

Triple-stores are being developed to accommodate more informative contextual
data such as YAGO2 [11] which uses a simple form of reification to represent
temporal and spatial properties. Despite the fact that there are no available
endpoints, that the author knows of, in which it is possible to query the YAGO2
data-store, Frost et al.’s research group are developing another denotational
semantics so that NL queries can be evaluated directly with respect to YAGO2
data.

43

Wale Agboola

REFERENCES

[1] 2002, D. L. (2002a). Hackage: Data.List. https://hackage.haskell.
org/package/base-4.7.0.1/docs/Data-List.html. [Online; accessed
19-July-2015].

[2] 2002, D. L. (2002b). Hackage: Data.Map. https://hackage.haskell.
org/package/containers-0.4.0.0/docs/Data-Map.html. [Online; accessed
30-June-2015].

[3] 2002, D. L. (2002c). Hackage: Data.Set. http://hackage.haskell.
org/package/containers-0.5.6.3/docs/Data-Set.html. [Online; accessed
30-June-2015].

[4] Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., and Ives, Z.
(2007). DBpedia: A Nucleus for a Web of Open Data. Springer.

[5] Damljanovic, D., Agatonovic, M., and Cunningham, H. (2012). Freya: An
interactive way of querying linked data using natural language. In Proceedings
of the 8th International Conference on The Semantic Web, ESWC’11, pages
125–138, Berlin, Heidelberg. Springer-Verlag.

[6] Dowty, D. R., Wall, R., and Peters, S. (1981). Introduction to Montague
semantics, volume 11. Springer.

[7] Frost, R. A., Agboola, W., Matthews, E., and Donais, J. (2014a).
An event-driven approach for querying graph-structured data using
natural language. In Querying Graph Structured Data (GraphQ)),
Organization=EDBT/ICDT 2014 Joint Conference, pages=192–199.

[8] Frost, R. A., Donais, J., Matthews, E., Agboola, W., and Stewart, R. (2014b).
A demonstration of a natural language query interface to an event-based
semantic web triplestore. In The Semantic Web: ESWC 2014 Satellite Events,
pages 343–348. Springer International Publishing.

44

https://hackage.haskell.org/package/base-4.7.0.1/docs/Data-List.html
https://hackage.haskell.org/package/base-4.7.0.1/docs/Data-List.html
https://hackage.haskell.org/package/containers-0.4.0.0/docs/Data-Map.html
https://hackage.haskell.org/package/containers-0.4.0.0/docs/Data-Map.html
http://hackage.haskell.org/package/containers-0.5.6.3/docs/Data-Set.html
http://hackage.haskell.org/package/containers-0.5.6.3/docs/Data-Set.html

Wale Agboola

[9] Hafiz, R. and Frost, R. A. (2010). Lazy combinators for executable
specifications of general attribute grammars. In Practical Aspects of Declarative
Languages, pages 167–182. Springer.

[10] Hees, J. (2014). Setting up a local DBpedia 2014 mirror
with Virtuoso 7.1.0. https://joernhees.de/blog/2014/11/10/
setting-up-a-local-dbpedia-2014-mirror-with-virtuoso-7-1-0/.
[Online; accessed 27-June-2015].

[11] Hoffart, J., Suchanek, F. M., Berberich, K., and Weikuma, G. (2013). Yago2:
A spatially and temporally enhanced knowledge base from wikipedia. Artificial
Intelligence, 194:28–61.

[12] Höffner, K., Unger, C., Bühmann, L., Lehmann, J., Ngonga Ngomo, A.-C.,
Gerber, D., and Cimiano, P. (2013). User interface for a template based question
answering system. In Klinov, P. and Mouromtsev, D., editors, Knowledge
Engineering and the Semantic Web, volume 394 of Communications in Computer
and Information Science, pages 258–264. Springer Berlin Heidelberg.

[13] Lehmann, J., Furche, T., Grasso, G., Ngomo, A.-C. N., Schallhart, C., Sellers,
A., Unger, C., Bühmann, L., Gerber, D., Höffner, K., Liu, D., and Auer, S.
(2012). Deqa: Deep web extraction for question answering. In Proceedings
of the 11th International Conference on The Semantic Web - Volume Part II,
ISWC’12, pages 131–147. Springer-Verlag, Berlin, Heidelberg.

[14] Lopez, V., Fernández, M., Motta, E., and Stieler, N. (2012). Poweraqua:
Supporting users in querying and exploring the semantic web. Semantic web,
3(3):249–265.

[15] P(é)rez, J., Arenas, M., and Gutierrez, C. (2006). Semantics and complexity of
sparql. In The Semantic Web - ISWC 2006, volume 4273, pages 30–43. Springer.

[16] Swartz, A. (2002). Musicbrainz: A semantic web service. Intelligent Systems,
IEEE, 17(1):76–77.

[17] Tablan, V., Damljanovic, D., and Bontcheva, K. (2008). A natural language
query interface to structured information. In Proceedings of the 5th European

45

https://joernhees.de/blog/2014/11/10/setting-up-a-local-dbpedia-2014-mirror-with-virtuoso-7-1-0/
https://joernhees.de/blog/2014/11/10/setting-up-a-local-dbpedia-2014-mirror-with-virtuoso-7-1-0/

Wale Agboola

Semantic Web Conference on The Semantic Web: Research and Applications,
ESWC’08, pages 361–375. Springer-Verlag, Berlin, Heidelberg.

[18] Unger, C., Bühmann, L., Lehmann, J., Ngonga Ngomo, A.-C., Gerber, D.,
and Cimiano, P. (2012). Template-based question answering over rdf data. In
Proceedings of the 21st International Conference on World Wide Web, WWW
’12, pages 639–648, New York, NY, USA. ACM.

[19] Wan, Z., Zhai, Y., and Yu, H. (2013). A semantic web information integration
system based on ontology-mapping and multilevel query interface. In Qi, G.,
Tang, J., Du, J., Pan, J., and Yu, Y., editors, Linked Data and Knowledge
Graph, volume 406 of Communications in Computer and Information Science,
pages 76–89. Springer Berlin Heidelberg.

[20] Wheeler, J. and Stewart, R. (2014). The hsparql package.
http://hackage.haskell.org/package/hsparql-0.2.5 Author: Jeff Wheeler,
Maintained by: Rob Stewart.

46

Wale Agboola

Appendices

47

Wale Agboola

PROGRAM SOURCE CODE
A.1 Filename: gangster_v7.hs

import qualified Data.List as List
import qualified Data.Tuple as Tuple
import qualified Data.Set as Set
import qualified Data.Map as Map
import qualified Data.HashSet as HashSet
import qualified Text.Regex.Posix as Posix

import Getts_v7

namespace_prop = "http://dbpedia.org/property/"
namespace_res = "http://dbpedia.org/resource/"
namespace_ont = "http://dbpedia.org/ontology/"
namespace_ctgry = "http://dbpedia.org/resource/Category:"
namespace_umbel = "http://umbel.org/umbel/rc/"
namespace_yago = "http://dbpedia.org/class/yago/"

type0 = "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"
subject = "http://purl.org/dc/terms/subject"

prop fragment = namespace_prop ++ fragment
res fragment = namespace_res ++ fragment
ont fragment = namespace_ont ++ fragment
ctgry fragment = namespace_ctgry ++ fragment
umbel fragment = namespace_umbel ++ fragment
yago fragment = namespace_yago ++ fragment

count setofents = length(setofents)

person = getts_1("?", type0, ont "Person")

48

Wale Agboola

firsts = map first
first (a,b) = a

seconds = map second
second (a,b) = b

thirdswithfirsts = map thirdwithfirst
thirdwithfirst (a,b,c) = (c,a)

thirds = map third
third (a,b,c) = c

invert = map Tuple.swap

-- |film

--film = getts_1 ("?", subject, ctgry "English-language_films")

--film = getts_1 ("?", type0, yago "English-languageFilms")

film = getts_1 ("?", type0, ont "Film")
--film = getts_1 ("?", subject, ctgry "English-language_films")

-- ++ getts_1 ("?", type0, yago "English-languageFilms")

-- ++ getts_1 ("?", type0, ont "Film")

films = film

-- |tv_show

--tv_show = getts_1 ("?", type0, ont "TelevisionShow")

tv_show = getts_1 ("?", subject, ctgry
"English-language_television_programming")↪→

tv_shows = tv_show

-- |actors

american_film_actor = getts_1 ("?", type0, yago
"AmericanFilmActors")↪→

49

Wale Agboola

english_film_actor = getts_1 ("?", type0, yago "EnglishFilmActors")
american_tv_actor = getts_1 ("?", type0, yago

"AmericanTelevisionActors")↪→

english_tv_actor = getts_1 ("?", type0, yago
"EnglishTelevisionActors")↪→

tv_actor = american_tv_actor ++ english_tv_actor
film_actor = american_film_actor ++ english_film_actor
--act = getts_1 ("?", type0, umbel "Actor") ++ film_actor ++

tv_actor↪→

act = american_film_actor
acts = act
actor = acts

-- |intransitive verbs

-- |producer

american_film_producer = getts_1 ("?", type0, yago
"AmericanFilmProducers")↪→

english_film_producer = getts_1 ("?", type0, yago
"EnglishFilmProducers")↪→

film_producer = american_film_producer ++ english_film_producer
american_tv_producer = getts_1 ("?", type0, yago

"AmericanTelevisionProducers")↪→

english_tv_producer = getts_1 ("?", type0, yago
"EnglishTelevisionProducers")↪→

tv_producer = american_tv_producer ++ english_tv_producer
produce = film_producer ++ tv_producer
produces = produce

-- |director

american_film_director = getts_1 ("?", type0, yago
"AmericanFilmDirectors")↪→

english_film_director = getts_1 ("?", type0, yago
"EnglishFilmDirectors")↪→

50

Wale Agboola

film_director = american_film_director ++ english_film_director
american_tv_director = getts_1 ("?", type0, yago

"AmericanTelevisionDirectors")↪→

english_tv_director = getts_1 ("?", type0, yago
"EnglishTelevisionDirectors")↪→

tv_director = american_tv_director ++ english_tv_director
direct = film_director ++ tv_director
directs = direct

-- |US_presidents

united_states_president = getts_1 ("?", subject, ctgry
"Presidents_of_the_United_States")↪→

-- |every noun is defined

-- |proper nouns

brad_pitt setofents = checkMember (res "Brad_Pitt") setofents
michelle_obama setofents = checkMember (res "Michelle_Obama")

setofents↪→

angelina_jolie setofents = checkMember (res "Angelina_Jolie")
setofents↪→

barack_obama setofents = checkMember (res "Barack_Obama") setofents
chuck_lorre setofents = checkMember (res "Chuck_Lorre") setofents
quentin_tarantino setofents = checkMember (res "Quentin_Tarantino")

setofents↪→

django_unchained setofents = checkMember (res "Django_Unchained")
setofents↪→

eat_pray_love setofents = checkMember (res "Eat_Pray_Love")
setofents↪→

clint_eastwood setofents = checkMember (res "Clint_Eastwood")
setofents↪→

million_dollar_baby setofents = checkMember (res
"Million_Dollar_Baby") setofents↪→

51

Wale Agboola

pulp_fiction setofents = checkMember (res "Pulp_Fiction")
setofents↪→

guy_ritchie setofents = checkMember (res "Guy_Ritchie") setofents
julia_roberts setofents = checkMember (res "Julia_Roberts")

setofents↪→

mark_gatiss setofents = checkMember (res "Mark_Gatiss") setofents
steven_moffat setofents = checkMember (res "Steven_Moffat")

setofents↪→

benedict_cumberbatch setofents = checkMember (res
"Benedict_Cumberbatch") setofents↪→

kevin_feige setofents = checkMember (res "Kevin_Feige") setofents
the_godfather setofents = checkMember (res "The_Godfather")

setofents↪→

tyler_perry setofents = checkMember (res "Tyler_Perry") setofents
jodie_foster setofents = checkMember (res "Jodie_Foster") setofents
cowboys_and_aliens setofents = checkMember (res "Cowboys_&_Aliens")

setofents↪→

ron_howard setofents = checkMember (res "Ron_Howard") setofents
angels_and_demons setofents = checkMember (res "Angels_&_Demons")

setofents↪→

j_edgar setofents = checkMember (res "J._Edgar") setofents
rush setofents = checkMember (res "Rush_(2013_film)") setofents

-- |checks if the element ’x’ is in the list ’ls’

-- |Complexity => O(n)

checkMember x ls = List.elem x ls

-- |Complexity => O(nlogn)

makeset x = Set.toList (Set.fromList x)
that s t = nounand s t
nounand s t = interset s t
nounor s t = makeset(s ++ t)
what x = x

52

Wale Agboola

did x = x

-- |Quantifiers

a nph vbph = length (interset nph vbph) /= 0
every nph vbph = subset nph vbph
one nph vbph = length(interset nph vbph) == 1
two nph vbph = length(interset nph vbph) == 2
which nph vbph = interset nph vbph
how_many nph vbph = length (interset nph vbph)
who vbph = which person vbph
was nph vbph = if nph vbph then "Yes" else "No"

-- |Finds a common set given 2 sets

-- |Complexity => O(n+m)

interset s t = List.intersect s t
--interset s t = (s List.\\ (s List.\\ t))

-- |Complexity = O(nlogn) + O(mlogm)

--interset s t = Set.toList (Set.intersection (Set.fromList s)

(Set.fromList t))↪→

-- |Complexity = O(nlogn) + O(mlogm)

subset s t = Set.fromList s ‘Set.isSubsetOf‘ Set.fromList t

-- |Image Relation

image2 rel = collect (getts_1_3 ("?", prop rel, "?"))

-- |Reverse Image Relation

reverse_image2 rel = collect (invert (getts_1_3 ("?", prop rel,
"?")))↪→

-- |collection (expensive function -> O(n^2))

--collect [] = []

53

Wale Agboola

--collect ((x,y):t) = (x, y:[e2 | (e1, e2) <- t, e1 == x]) :

collect [(e1, e2) | (e1, e2) <- t, e1 /= x]↪→

-- |collection (a lot less expensive function -> O(nlogn))

convertKVsList ls = (Map.toList . Map.fromListWith (++) . map (\
(x,y) -> (x,[y]))) ls↪→

collect = convertKVsList

{-

-- |Faster collect: runs in n lg n time

-- |Written by: Shane Peeler

collect = condense . sortFirst

-- |condense computes the image under a sorted relation

-- |condense runs in O(n) time and is lazy, also is lazy in the

list computed in each tuple↪→

condense :: (Eq a, Ord a) => [(a, a)] -> [(a, [a])]

condense [] = []

condense ((x,y):t) = (x, y:a):(condense r)

where

(a, r) = findall x t

findall x [] = ([], [])

findall x list@((t,y):ts) | x /= t = ([], list)

findall x ((t,y):ts) | x == t = let (a2, t2) = (findall x

ts) in (y:a2, t2)↪→

-- |sort

sortFirst = List.sortBy (\x y -> compare (fst x) (fst y))

-}

-- |Transitive Verbs

-- |Produce

54

Wale Agboola

produced tmph = [subj | (subj, objs) <- reverse_image2 "producer",
tmph objs]↪→

producer_of = produced
produced_by tmph = [subj | (subj, objs) <- image2 "producer", tmph

objs]↪→

producer = produced (a film)

-- |Direct

directed tmph = [subj | (subj, objs) <- reverse_image2 "director",
tmph objs]↪→

director_of = directed
directed_by tmph = [subj | (subj, objs) <- image2 "director", tmph

objs]↪→

director = directed (a film)

-- |Reducing computational cost

-- |alternate definition for ’directed a film’

directed_a_film = [subj | (subj, objs) <- reverse_image2
"director"]↪→

-- |alternate definition for ’directed 2 films’

directed_two_films = [subj | (subj, objs) <- reverse_image2
"director", length objs == 2]↪→

-- |acted

acted_in tmph = [subj | (subj, objs) <- reverse_image2 "starring",
tmph objs]↪→

starred_in = acted_in
movie_star = starred_in (a film)

-- |Transitional verb with prepositional phrase

directed1 tmph preps = [subj| (subj, obj) <-

55

Wale Agboola

reverse_image2 "director",
tmph obj && length (filter1 obj preps) /=

0]↪→

-- |filter for prepositional phrase

filter1 objs preps = [x | x <- objs, containfilter x preps]
containfilter x [] = True
containfilter x (y:ys) = List.isInfixOf y x && containfilter x ys

-- |a part of a prepositional phrase examples:

-- |"in 2008", "in 2010" and "in 2013"

in_2008 = ["2008"]
in_2010 = ["2010"]
in_2013 = ["2013"]

-- |marry/spouse

married tmph = [subj | (subj, objs) <- image2 "spouse", tmph objs]
-- |born

born_in tmph = [subj | (subj, objs) <- image2 "placeOfBirth", tmph
objs]↪→

-- |Sample Queries

-- |did Brad Pitt produce a film?

did_quentin_tarantino_direct_a_film = quentin_tarantino (directed
(a film))↪→

-- |did Clint Eastwood direct Million Dollar Baby

clint_eastwood_direct_million_dollar_baby = clint_eastwood
(directed (million_dollar_baby))↪→

-- |list films produced by the director of Million Dollar Baby

--produced_by (directed (million_dollar_baby))

56

Wale Agboola

-- |list films produced by Kevin Feige

--produced_by kevin_feige

-- |did Brad Pitt produce a film?

did_brad_pitt_produce_a_film = brad_pitt (produced (a film))
did_brad_pitt_produce_eat_pray_love = brad_pitt (produced

(eat_pray_love))↪→

-- |did Brad Pitt produce every film?

did_brad_pitt_produce_every_film = brad_pitt (produced (every
film))↪→

-- |Is Brad Pitt a Producer?

is_brad_pitt_a_producer = brad_pitt producer

-- |Is Brad Pitt an actor?

is_brad_pitt_an_actor = brad_pitt act

-- |Is Michelle Obama married to a US President?

did_michelle_obama_marry_a_US_president = michelle_obama (married
(a united_states_president))↪→

-- |Is Michelle Obama a US president?

is_michelle_obama_a_US_president = michelle_obama
united_states_president↪→

-- |Is Barack Obama a US president?

is_barack_obama_a_US_president = barack_obama
united_states_president↪→

-- |Is Chuck Lorre a producer?

is_chuck_lorre_a_producer = chuck_lorre producer

57

Wale Agboola

-- |OR / AND

termor tmph1 tmph2
= f

where f setofevs = (tmph1 setofevs) || (tmph2 setofevs)

termand tmph1 tmph2
= f

where f setofevs = (tmph1 setofevs) && (tmph2 setofevs)

A.2 Filename: getts_v7.hs

{-# LANGUAGE OverloadedStrings #-}

module Getts_v7
(
getts_1,
getts_2,
getts_3,
getts_1_3,
getts_1_2,
getts_2_3
)

where
import Control.Monad (forM_)
import Data.List (intersperse)
import Data.String.Unicode (unicodeRemoveNoneAscii)
import Data.String.Utils (split)
import Data.Set as Set

import Data.RDF hiding (triple)
import Database.HSparql.Connection
import Database.HSparql.QueryGenerator
--import Connection

58

Wale Agboola

--import QueryGenerator

import Data.Text hiding (head, concat, map)
import System.IO.Unsafe

--endpoint = "http://speechweb2.cs.uwindsor.ca/sparql"

endpoint = "http://dbpedia.org/sparql"
--endpoint = "http://live.dbpedia.org/sparql"

getts_1’ :: (t, Text, Text) -> IO [[BindingValue]]
getts_1’ (a, b, c) = do

(Just s) <- selectQuery endpoint getts_1_query
return s
where

getts_1_query = do
x <- var
triple x (iriRef b) (iriRef c)
return SelectQuery { queryVars = [x] }

getts_2’ :: (Text, Text, Text) -> IO [[BindingValue]]
getts_2’ (a, b, c) = do

(Just s) <- selectQuery endpoint getts_2_query
return s
where

getts_2_query = do
x <- var
triple (iriRef a) x (iriRef c)
return SelectQuery { queryVars = [x] }

getts_3’ :: (Text, Text, Text) -> IO [[BindingValue]]
getts_3’ (a, b, c) = do

(Just s) <- selectQuery endpoint getts_3_query
return s

59

Wale Agboola

where
getts_3_query = do

x <- var
triple (iriRef a) (iriRef b) x
return SelectQuery { queryVars = [x] }

getts_1_3’ :: (Text, Text, Text) -> IO [[BindingValue]]
getts_1_3’ (a, b, c) = do

(Just s) <- selectQuery endpoint getts_1_3_query
return s
where

getts_1_3_query = do
x <- var
z <- var
triple x (iriRef b) z
return SelectQuery { queryVars = [x, z] }

getts_2_3’ :: (Text, Text, Text) -> IO [[BindingValue]]
getts_2_3’ (a, b, c) = do

(Just s) <- selectQuery endpoint getts_2_3_query
return s
where

getts_2_3_query = do
y <- var
z <- var
triple (iriRef a) y z
return SelectQuery { queryVars = [y, z] }

getts_1_2’ :: (Text, Text, Text) -> IO [[BindingValue]]
getts_1_2’ (a, b, c) = do

(Just s) <- selectQuery endpoint getts_1_2_query
return s
where

60

Wale Agboola

getts_1_2_query = do
x <- var
y <- var
triple x y (iriRef c)
return SelectQuery { queryVars = [x, y] }

getts_1 :: (String, String, String) -> [String]
getts_1 (a, b, c) = preprocess (getts_1’(pack a, pack b, pack c))
getts_2 :: (String, String, String) -> [String]
getts_2 (a, b, c) = preprocess (getts_2’(pack a, pack b, pack c))
getts_3 :: (String, String, String) -> [String]
getts_3 (a, b, c) = preprocess (getts_3’(pack a, pack b, pack c))

getts_1_3 :: (String, String, String) -> [(String, String)]
getts_1_3 (a, b, c) = pair_up (preprocess (getts_1_3’(pack a, pack

b, pack c)))↪→

getts_2_3 :: (String, String, String) -> [(String, String)]
getts_2_3 (a, b, c) = pair_up (preprocess (getts_2_3’(pack a, pack

b, pack c)))↪→

getts_1_2 :: (String, String, String) -> [(String, String)]
getts_1_2 (a, b, c) = pair_up (preprocess (getts_1_2’(pack a, pack

b, pack c)))↪→

preprocess :: IO [[BindingValue]] -> [String]
preprocess = Prelude.map nodeToString . concat . dropDups .

unsafeDupablePerformIO↪→

-- Simple decode of RDF

nodeToString :: BindingValue -> String
nodeToString (Bound (UNode uriText)) = unpack (Prelude.last

(splitOn "#" uriText))↪→

nodeToString (Bound (LNode (TypedL text _))) = unpack text
nodeToString (Bound (LNode (PlainL text))) = unpack text

61

Wale Agboola

nodeToString (Bound (LNode (PlainLL text text2))) = unpack text
nodeToString (Bound other) = show other
nodeToString _ = "unknown"

--dropDups :: (Eq a) => [a] -> [a]

--dropDups = Set.toList . Set.fromList

--{-

dropDups :: (Eq a) => [a] -> [a]
dropDups [] = []
dropDups (x:xs) = if elem x xs

then dropDups xs
else x : dropDups xs

--}

pair_up :: [String] => [(String, String)]
pair_up [] = []
pair_up (x:y:ys) = (x, y) : pair_up ys

62

Wale Agboola

VITA AUCTORIS

Wale Agboola was born in 1989 in Ibadan, Nigeria. In 2007, he graduated

from Kennedy Collegiate Institute in Windsor, Ontario. From there he went to

the University of Windsor where he obtained a Bachelor of Science degree with

Honours in Computer Science specializing in Software Engineering in 2011. In the

Fall of 2015, he graduated with a Master of Science Degree in Computer Science

from the University of Windsor in Ontario, Canada.

63

	University of Windsor
	Scholarship at UWindsor
	10-19-2015

	An extensible natural-language query interface to the DBpedia Triple-store
	Wale Agboola
	Recommended Citation

	Declaration of CO-Authorship / Previous Publication
	Abstract
	Acknowledgement
	List of Figures
	List of Tables
	List of Source Codes
	List of Appendices
	Nomenclature
	Introduction
	What is DBpedia?
	Overview of natural-language query interfaces to DBpedia
	The problem
	Emerging, more expressive triple-stores
	DEV-NLQ
	YAGO2

	A new approach
	The thesis statement
	Importance of thesis statement
	Non-triviality of thesis statement
	Proof of thesis statement
	Structure of the thesis report

	Related Work
	Related work by other NLQI researchers
	Event-based triples and DEV-NLQ

	The Semantics
	The new idea
	Interfacing the NLQ processor to DBpedia SPARQL endpoint using HSPARQL
	Example denotations of words

	Contribution to DEV-NLQ

	Timing evaluation of queries
	Experiment design
	Experiment result

	Complexity analysis of queries
	Reducing computational cost
	Redefine transitive verbs
	New definition of COLLECT function

	Extending this approach to accommodate prepositional phrases
	Conclusion
	Proof of thesis
	Limitations
	Conclusion and future work

	References
	Appendices
	Vita Auctoris

