
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

10-19-2015

The point placement problem in an inexact model
and its applications
Kishore Kumar Varaharajan Kannan
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Varaharajan Kannan, Kishore Kumar, "The point placement problem in an inexact model and its applications" (2015). Electronic Theses
and Dissertations. 5434.
https://scholar.uwindsor.ca/etd/5434

https://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F5434&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5434&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5434&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/5434?utm_source=scholar.uwindsor.ca%2Fetd%2F5434&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

The point placement problem in an inexact model and its applications

by

Kishore Kumar Varadharajan Kannan

A Thesis

Submitted to the Faculty of Graduate Studies

through the School of Computer Science

in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the

University of Windsor

Windsor, Ontario, Canada

2015

c©2015, Kishore Kumar Varadharajan Kannan

The point placement problem in an inexact model and its applications

by

Kishore Kumar Varadharajan Kannan

APPROVED BY:

Tirupati Bolisetti

Department of Civil Engineering

Subir Bandyopadhyay

School of Computer Science

Asish Mukhopadhyay, Advisor

School of Computer Science

August 20,2015

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyones copyright nor violate any proprietary rights and that any ideas, tech-

niques, quotations, or any other material from the work of other people included

in my thesis, published or otherwise, are fully acknowledged in accordance with

the standard referencing practices. Furthermore, to the extent that I have in-

cluded copyrighted material that surpasses the bounds of fair dealing within the

meaning of the Canada Copyright Act, I certify that I have obtained a written

permission from the copyright owner(s) to include such material(s) in my thesis

and have included copies of such copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions,

as approved by my thesis committee and the Graduate Studies office, and that

this thesis has not been submitted for a higher degree to any other University or

Institution.

iii

ABSTRACT

In the recent years, due to the advancement in computational tools and techniques

to analyze the biological data, biologists have been actively engaged in conducting

different experiments to study the arrangements of nucleotide sequence in a chro-

mosome. This masters thesis focuses on the area of the computational methods

for the genomic map problem.

Though the probe location problem under consideration is known to be NP-

complete, it is possible to obtain approximate solutions. The distance geometry

approach for achieving efficient and better results is shown here. This also solves

the point placement problem when the available distance bounds on some probe

pairs, correspond to adversarial responses to distance queries between some pairs

of points.

DGPL program has also been implemented to construct a probe map. Finally

some chosen results from the experiments and their significance have been dis-

cussed. The screenshots of the working of DGPL algorithm have been attached

for better understanding.

iv

DEDICATION

To my loving family, who has supported me in every step of my life

v

ACKNOWLEDGMENTS

I express my sincere gratitude to Dr. Ashish Mukopadhyay, without whose patient

guidance and constant supervision, I would not have come so far.

I offer my sincere appreciation to the committee members, Prof. Tirupati

Bolisetti and Prof. Subir Bandyopadhyay for their useful critiques and advice.

My special thanks to the love of my life Nitisha, who spent most of her time in

active discussions and gave moral support that helped me to finish up my thesis.

My grateful thanks is also extended to my colleagues cum friends Pijus, Roy,

Satish, Pramod and Prakash for their invaluable help throughout my Master’s

degree. Finally to my loving parents for their unmatched encouragement and

support.

vi

Table of Contents

DECLARATION OF ORIGINALITY iii

ABSTRACT iv

DEDICATION v

ACKNOWLEDGMENTS vi

LIST OF FIGURES x

LIST OF TABLES xii

1 Introduction 1

1.1 The point placement problem . 1

1.2 Problem Statement . 2

1.3 Motivation . 3

1.4 Thesis Organization . 4

2 Probe location problem revisited 6

2.1 Preliminaries . 6

2.1.1 What are probes? . 6

2.1.2 Probe synthesis . 7

2.1.3 FISH experiment . 8

2.2 Literature review of approaches to the probe location problem . . . 10

2.2.1 Seriation Algorithm . 10

vii

2.2.2 Redstone’s approach . 12

2.3 Mumey’s approach to solve the probe location problem 14

2.3.1 Problem statement . 14

2.3.2 Overview of Mumey’s approach 15

2.3.3 Construction of an Edge Orientation Graph 16

2.3.4 Finding feasible probe positions 17

3 Distance geometry approach 19

3.1 Background and review of the Distance geometry techniques 19

3.1.1 Cayley-Menger Determinant 20

3.1.2 Decomposition of Distance matrix 22

3.1.3 Graph Reduction . 23

3.1.3.1 ABBIE . 24

3.1.4 Least-Squares Formulation 25

3.1.4.1 DGSOL . 26

3.1.5 Alternating Projection Algorithm 27

3.2 Crippen and Havel’s algorithm . 27

3.2.1 Bound Smoothing . 28

3.2.2 Metrization . 28

3.2.3 Embedding . 29

4 Distance geometry based probe location 31

4.1 Preliminaries . 31

4.2 Algorithm description . 32

4.2.1 Flowchart . 33

4.2.2 DGPL Algorithm . 34

4.2.3 Details . 35

4.2.4 Three dimensional embedding 37

4.2.4.1 Protein Data Bank 37

4.2.4.2 Generation of Coordinates in three-dimension . . . 38

viii

4.3 Experminental results . 39

5 Conclusions 48

5.1 Future work . 49

BIBLIOGRAPHY 51

APPENDIX 55

VITA AUCTORIS 57

ix

List of Figures

1.1 Query graph using triangles . 2

1.2 Embedding with inexact distances 2

1.3 DNA probe test [26] showing fluroscently labeled probes 4

2.1 A metaphase cell positive for the bcr/abl rearrangement (associated

with chronic myelogenous leukemia) using FISH. The chromosomes

can be seen in blue and one that is labeled with green and red spots

(upper left) is the one where the rearrangement is present found by

injecting probes in to the chromosome [28] 7

2.2 A sample double stranded DNA sequence 8

2.3 Denaturing of double stranded DNA into a single stranded DNA

sequence . 9

2.4 Probe injection . 9

2.5 DNA Probe Hybridization . 10

2.6 At a node, the children are orderings in which each of the unordered

probes have been placed to the right of the rightmost ordered probe. 13

3.1 A query graph on 3 vertices . 21

4.1 Flowchart depicting step by step process of DGPL 33

4.2 Final embedding of the four input points 36

4.3 A sample three-dimensional embedding of 9 points generated by the

DGPL program . 39

4.4 One-dimensional embedding of four points with one unknown distance 40

x

4.5 One-dimensional embedding of four points with coordinates 40

4.6 Screenshot of the DGPL program input 41

4.7 Screenshot of the DGPL program upper and lower bound inputs

for ten points with five unknown distances 41

4.8 Calculation of triangle limits and setting distances based on these

limits . 42

4.9 Calculation of a B matrix . 42

4.10 Final output generated by the program 43

4.11 Final embedding of the given ten points in a line 43

4.12 Graph depicting the run times of Mumey’s approach 44

4.13 Graph depicting the run times of DGPL algorithm 45

4.14 Time complexity graph Mumey’s vs DGPL algorithm - Increasing

number of unknown distances between fixed number of points . . . 47

xi

List of Tables

4.1 Performance comparison of Mumey’s and DGPL algorithm 46

xii

Chapter 1

Introduction

Distance Geometry [27] is the study of set of points based on the given distances

between the pair of points. Nowadays a large community of researchers are ac-

tively working in the field of distance geometry because of the several real-life

applications within it. Some of them are locating sensors in telecommunication

networks, where the position of particular sensors and the distance between some

sensors were known, the problem is to identify the position of all sensors in a space.

Another interesting application in biology where the experimental techniques are

able to estimate the distance between the pair of atoms of a given molecule and the

problem would be to identify the three-dimensional conformation of a molecule.

1.1 The point placement problem

The point placement problem on a line is a distance geometry problem which is

to determine the location of points uniquely(upto translation and reflection) by

making the fewest possible pairwise distance queries of an adversary. The queries

can be made in one or more rounds and are modeled as a graph whose nodes

represent the points and there is an edge connecting two points, if the distance

between the corresponding points is being queried. The simplest of all, the 3-cycle

algorithm, has the following query graph.

1

p0 p1

pn

p3

Figure 1.1: Query graph using triangles

If G = (V,E) is a query graph, an assignment l of lengths to the edges of G

is said to be valid if there is a placement of the nodes V on a line such that the

distance between adjacent nodes are consistent with l. Here in this problem, the

distance between the pair of points returned by the adversary are exact. The algo-

rithm designer tries to construct a graph over fixed number of rounds to minimize

the number of edge queries and also make sure that there is a unique placement

of vertices. The construction of such a graph is the heart of different algorithms

for this problem.

1.2 Problem Statement

A classical version of the point placement problem is the construction of the co-

ordinates of a set of n points, given inexact distance between some pair of points.

This problem could also be termed as point placement problem in an inexact

model as the distances provided were not exact. The inexact distances are given

in terms of upper and lower bounds. Consider an example of three points with

some distance constraints in it:

Figure 1.2: Embedding with inexact distances

2

Here in the figure, x1, x2 and x3 are three points, the placement of those points

are represented by a vertical line below the point. The horizontal dotted line

represents the distance between each pair of points. The dotted rectangular box

represents the distance constraints. If we consider the distance between the point

x2 and x3, it is constrained by the rectangular box in x2. For clear understanding

we can say that the vertical rod x2 could be moved either to the right or to the

left of the rectangular box and based on that the placement of x2 will be varied.

Let P = {p0, p1,, pn} be a set of points. Some pair of points are separated

with distance intervals [l,u], where l and u denotes the lower and upper bound of

the distance between the pair of points pi and pj. The distance matrix is divided

into two matrices: upper and lower distance matrix. Here for the fixed distance

between the pair of points the values in upper and lower bound matrix will be

same, whereas for the unknown distance between a pair of points the distance

interval would be [−∞,∞]. Ideally the aim is to find the coordinates of all the

points in a metric space.

1.3 Motivation

The motivation of the problem comes from the probe location problem in DNA

mapping, where many of the research subjects in biology focus on analyzing the

arrangement of nucleotide sequences in DNA. A specific set of nucleotide sequence

in a DNA is a called a gene. Each gene is responsible for specific functions in an

organism. For genomic studies the probes are synthesized in the laboratory by

biologists by taking a complementary sequence of a specific strand of DNA and

they are injected in to a chromosome to detect the presence of specific sequence of

nucleotides. So these probe locations are to be mapped on a chromosome, given

estimates of distance between pair of probes that are obtained from Fluorescence

in-situ hybridization(FISH) experiments. Probes are the labeled segment of DNA

or RNA used to find the specific sequence of nucleotides. A sample probe used in

3

a DNA probe test is shown below: Identifying the location of specific probes on a

Figure 1.3: DNA probe test [26] showing fluroscently labeled probes

chromosome and relative distance between different probes on a chromosome helps

the scientists to discover the heritable diseases, as well as diseases and other traits

that are common to human beings. Different algorithmic approaches include :

simulated annealing [21], branch and bound algorithm [22] and Mumey’s algorithm

[19] have already been implemented to solve this problem. Some of algorithms are

limited to 20 probes or fewer and costs much time.

1.4 Thesis Organization

The list below presents the organization of the chapters which makes up this thesis.

Also given is a brief description of the topics each chapter deals with.

• Chapter 2 gives a clear background knowledge on the probe location problem

in DNA mapping and other extensive approaches to solve the probe location

problem. An existing algorithm by Mumey [19] to solve the probe location

problem with brief description of each step is explained.

• Chapter 3 we review the existing distance geometry techniques and an al-

gorithm by Crippen and Havel [13] for solving the molecular conformation

problem.

• Chapter 4 describes the proposed algorithm and its inner workings giving

justification for the chosen approach at each step and also shows the exper-

imental results after applying our algorithm.

4

• Chapter 5 concludes the work done in this thesis and suggests some possible

future research directions.

• Bibliography contains a detailed list of references from which factlets and

numbers have been used as a guide for this thesis.

5

Chapter 2

Probe location problem revisited

One of the chief problem biologists face is to find the position of the probes in a

DNA sequence from the distance intervals between each pair of probes. Probes

are the small DNA fragments which helps to identify the presence of a gene in a

DNA sequence. The distance intervals between a pair of probes are estimated from

fluorescence in-situ hybridization(FISH) experiments. This problem is stated as

the probe location problem since the distance intervals between some pair of probes

are known only with some confidence level and the location of all the probes have

to be determined. Identifying the location of specific probes on a chromosome and

relative distance between different probes on a chromosome helps the scientists to

discover the heritable diseases and other traits that are common to human beings.

2.1 Preliminaries

The following section gives a background details of probes and its synthesis and

followed by different algorithmic approaches to solve this probe location problem.

2.1.1 What are probes?

Probes [29] are the fragments of DNA or RNA of variable length(usually 100-

1000 bases long) which is radioactively labeled. It can be used in DNA or RNA

6

samples to detect the presence of nucleotide sequences(the DNA target) that are

complementary to the sequence in the probe. The probe hybridizes to single-

stranded nucleic acid (DNA or RNA) whose base sequence allows probe-target base

pairing due to the presence of complementary sequence between the probe and the

target. The labeled probe is first denatured(by heating or alkaline conditions such

as exposure to sodium hydroxide) into single stranded DNA and then hybridized

to the target ssDNA or RNA immobilized on a membrane or in situ.

2.1.2 Probe synthesis

To detect the hybridization of the probe [29] to the target, the probes are labeled

with a molecular marker of the fluorescent molecules. Some of the commonly used

markers are radioactive isotope of phosphorus or Digoxigenin, which is a non-

radioactive, antibody-based marker. DNA sequences or RNA transcripts that have

moderate to high sequence similarity to the probe are then detected by visualizing

the hybridized probe through different imaging techniques. Normally, either X-ray

pictures are taken of the filter, or the filter is placed under UV light.

Figure 2.1: A metaphase cell positive for the bcr/abl rearrangement (associated
with chronic myelogenous leukemia) using FISH. The chromosomes can be seen in
blue and one that is labeled with green and red spots (upper left) is the one where
the rearrangement is present found by injecting probes in to the chromosome [28]

Depending on the method, the probe may be synthesized using the phospho-

ramidite method, or it can be generated and labeled by PCR amplification or

7

cloning (both are older methods). Molecular DNA- or RNA-based probes are

used in DNA sequencing which helps scientists to discover the pattern of disease

causing genes and other genetic disorders.

2.1.3 FISH experiment

Fluorescence in situ hybridization [28] is a versatile tool that uses fluorescent

probes in locating DNA sequences on fixed chromosomes in order to study the

structure and function of chromosomes. Non-radioactively labeled fractions of

repetitive DNA are used as probes. The fluorescent probes locate and bind with

chromosomes with high degree of sequence complementarity. This complementary

base pairing allows cells to copy information from one generation to another.

It can even find and repair damage to the information stored in the sequences.

The information is used in genetic counseling, medicine and species identification.

FISH can also be used to detect and localize specific RNA targets (mRNA, lncRNA

and miRNA) in cells, circulating tumor cells, and tissue samples. This technique

[FISH] allows the analysis of a large series of archival cases much easier to identify

the pinpointed chromosome by creating a probe with an artificial chromosomal

foundation that will attract similar chromosomes. Consider the following sample

DNA sequence: The Fig. 2.2 shows a double stranded DNA. At high temperature

T A C T G G A C A T G

A T G A C C T G T A C

5
′

3
′

3
′

5
′

Figure 2.2: A sample double stranded DNA sequence

or excessive heat double stranded DNA denatures into single strand DNA. Once

DNA sequences are denatured, they can be immobilized by using enzymes like

nitro cellulose. The details are found in the Fig. 2.3

Later the biologist prepares the fluorescently labeled probes complementary to the

8

5
′

3
′

5
′

3
′

T
A

C
T

G
G

A
C

A
T

G

T
A

C
T

G
G

A
C

A
T

G

Nitrocellulose

DNA seq 1 from Chromosome A DNA seq 2 from Chromosome A

Figure 2.3: Denaturing of double stranded DNA into a single stranded DNA
sequence

target DNA sequence and they are injected into the chromosome to identify the

target DNA sequence.

5
′

3
′

5
′

3
′

T
A

C
T

G
G

A
C

A
T

G

T
A

C
T

G
G

A
C

A
T

G

Nitrocellulose

3
′

5
′

A
T

G
A

C
C

T
G

T
A

C

3
′

5
′

A
T

G
A

C
C

T
G

T
A

C

Probe 1 Probe 2

DNA seq 1 from Chromosome A DNA seq 2 from Chromosome A

Figure 2.4: Probe injection

9

As soon as the probe is injected, base pairing occurs when the probes find the

complimentary strands.

Finally the FISH experiment measures the physical distance (on a microscope

5
′

3
′

T
A

C
T

G
G

A
C

A
T

G

Nitrocellulose

DNA seq 1 from Chromosome A

3
′

5
′

A
T

G
A

C
C

T
G

T
A

C

Probe 1

5
′

3
′

T

A

C

T

G

G

A

C

A

T

G

3
′

5
′

A

T

G

A

C

C

T

G

T

A

C

Probe 2

DNA seq 2 from Chromosome A

Figure 2.5: DNA Probe Hybridization

slide) between pairs of fluorescently marked probes hybridized to an interphase

chromosome [9,8]. For genomic distances of up to about 12 megabases, DNA fold-

ing can be described by a random walk model. Statistics can be used to estimate a

confidence interval for the genomic distance (in base-pairs) separating two probes

given a measured sample of physical distance.

2.2 Literature review of approaches to

the probe location problem

2.2.1 Seriation Algorithm

Kenneth and Aravindha [4] developed the technique to find the initial and accurate

interference of locus(position of gene) order and accurate inter-locus distance and

interference obtained using seriation techniques. This analysis requires a matrix of

recombination frequency values that can be estimated by pairwise linkage analysis.

Recombination frequency is the frequency in which the genetic recombination takes

10

place between two genes in a chromosome. The chief advantage of this method is

that the seriation can be performed without the use of computer. In this work a

new multi point mapping methodology called seriation algorithm was presented

which uses the results of pairwise linkage analysis to determine the locus order

and estimate map distances.

Gelfand(1971) presented an algorithm by which collection of n objects could be

linearly arranged by knowing the similarity between the pair of objects. The idea of

this algorithm is to order the set of points provided. Consider a distance matrix of

pairwise recombination values forn where θij is the estimated recombination value

between the ith and j th locus in the matrix. The pseudo code of the seriation

algorithm [4] to find the locus order is mentioned below:

For each locus Li, i = 1, 2, . . ., n,

1. Write locus Li.

2. Consider the distance between Li and the other (n - 1) loci.

Select the locus (Lj) with the smallest distance from Li and place it to the right

of Li, i.e., LiLj.

For the remaining (n - 2) loci in the row referenced by Li, the following procedure

is repeated:

1. Choose the locus Lk from the remaining unplaced loci in that row with the

smallest distance to Li.

2. Compare the distance of Lk with the two loci currently external in the cluster

of placed loci, LI (the locus on the left side) and Lr (the locus on the right side),

i.e., LI , ..., Lr.

If θkr>θkI , place Lk to the left of the cluster of currently placed loci, i.e.,

LkLl, ..., Lr, or, if θkr<θkI , place Lk to the right of the cluster of currently placed

loci, i.e., LI , ..., LrLk

Thus by the end of the seriation algorithm we would be able to find the position

of the all loci. After obtaining the locus order, the interlocus map distances can

be obtained from the pairwise distance measurements by means of least squares.

11

In this procedure, the ordered distance matrix of recombination frequency values

is transformed into map distances by means of mapping functions. From this

transformed matrix, estimates of interlocus distances between adjacent loci (di)

can be obtained.

Seriation offers lot of practical advantages. Such as the this method is ap-

plicable to an arbitrarily large number of loci. Second the algorithm doesn’t use

computer rather if desired it can be performed by hand. Simplicity in computation

is one main advantage compared to other methods. Some limitations to seriation

algorithm is that it requires all possible pairs of distances between loci be available

which is difficult as it requires complete set of pairwise comparisons.

2.2.2 Redstone’s approach

Redstone [22] chose sum of squares cost function to evaluate different probe order-

ings and positions. From the developed model they examined the effectiveness of a

branch and bound and a local search technique. The branch and bound algorithm

searches through a tree of all possible probe orderings. For each probe ordering,

the optimal (in the least-squares sense) positions of the probes are determined.

This branch and bound approach finds exact solutions upto 18 probes and it will

take time when the number of points increases.

Initially the data returned by the FISH process is in terms of physical distance

between the probes measured in micrometers. They evaluated the probe placement

based on the cost function. The cost measure is to use the sum of squares of the

difference between the measured distance between two probes and the distance

between the probes in the estimated linear placement of the probes. Considering

N be the number of probes, xi be the position of the probe i, and dij be the

measure distance between the probe i and j. We can write the sum of squares of

12

difference(errors) as

Cost(x1 , ..., xn) =
∑
i<j

(|xi − xj | − dij)
2

where dij is measured. The major advantage of this approach is that they can

develop a branch and bound pruning heuristic based on solving for the minimum

of this cost function. To construct a branch and bound search the chosen tree

representation would be,

A B C

AB AC BA BC CA CB

ABC ACB BAC BCA CAB CBA

Figure 2.6: At a node, the children are orderings in which each of the unordered
probes have been placed to the right of the rightmost ordered probe.

For this approach, in Fig. 2.6. , the ordering of a child of an interior node P

will be the ordering of P augmented by a probe placed adjacent to the rightmost

ordered probe in P. Later, the Branch and bound algorithm searches through

nodes in a tree, pruning a node if its cost is greater than the lowest cost found in

a leaf node so far. The basic idea behind this approach is that if the cost for a

particular ordering of a probe is minimum then it corresponds to feasible solution.

Due to the exponential nature of the branch and bound algorithm, it doesn’t

work for large number of probes. However experiments conducted provided good

performance on 18 probes or less.

13

2.3 Mumey’s approach to solve the probe

location problem

Mumey [19] considered the problem of mapping probes along the genome with the

given pairwise distance intervals as input. He called this problem as the probe

location problem because the distance intervals are known only with some confi-

dence level, some may be error-prone and it must be identified to find a consistent

map. His work was motivated by the goal of mapping probes along a chromosome

based on separation intervals estimated from fluorescence in-situ hybridization

(FISH) experiment. Since the problem is big to solve some previous algorithmic

approaches like: a seriation algorithm [4], a simulated annealing approach [21] and

a branch and bound algorithm [22] due to their exhaustive nature they are limited

to 20 or few number of probes. Here the Mumey’s algorithm can solve upto 100

probes at several minutes in a work station. An overview of the Mumey’s approach

and detailed step by step explanation were discussed in the upcoming sections.

2.3.1 Problem statement

Let P = {p1, p2,, pn} be the list of probes in a chromosome separated with

some distance intervals [l,u], where l and u denotes the lower and upper bound

of the distance between the pair of probes pi and pj. The distance matrix is

divided into two matrices: upper and lower distance matrix. Here for the fixed

distance between the pair of probes the values in upper and lower bound matrix

will be same, where as for the unknown distance between a pair of probes the

distance interval would be [−∞,∞] or other distance intervals returned from FISH

experiments. The probe location problem is to identify the location of the probes

{x1, x2,, xn} from the given distance intervals such that | xi − xj | ∈ [l, u].

14

2.3.2 Overview of Mumey’s approach

Given the constraints on a distance measure, xi − xj ∈ [l, u], we have to choose

between xi − xj ∈ [l, u] or xj − xi ∈ [l, u]. Either choice puts an orientation

on an edge connecting the vertices xi and xj in a graph whose vertices are the

variables, x1, x2,, xn and m edges corresponding to the m given constraints. The

orientation is from xi to xj if xi is to the left of xj and from xj to xi otherwise.

If edge orientations are correctly set then a set of feasible solutions corresponds

to the solution of a linear program whose constraints are of the form xj − xi ≤ u

and xi − xj ≤ −l, subject to minimizing the sum Σ1≤i≤nxi. In fact, the linear

program can be solved by running Bellman-Ford’s algorithm for finding shortest

paths from a given source vertex in a weighted graph. The weight of an edge is set

to be the upper bound u if it is traversed in the same direction as its orientation,

else to -l if it is traversed in the opposite direction. There is no feasible solution

if the Bellman-Ford algorithm detects a negative cycle.

To set the orientation of the edges correctly a branch-and-bound approach is

adopted. A binary orientation tree is constructed where each level of the tree

corresponds to an edge and the edges going out of a node corresponds to the left

and right orientation. Thus a path from the root to a leaf node gives the orientation

of all the edges in the graph. To bound the search, when we reach a given node in

the tree, we run Bellman-Ford with the currently available orientations to check for

a negative cycle. If there is one, we terminate this branch. The detailed description

of each step in Mumey’s approach is mentioned in the upcoming sections.

15

2.3.3 Construction of an Edge Orientation Graph

First step in construction of an edge orientation graph is to set orientation of each

edge by choosing one placement. Let xi and xj are the position of the probes then:

xj − xi ∈ [l, u] (1)

xi − xj ∈ [l, u] (2)

where xi and xj are the probe positions between the probes i and j. If (1) holds

then xi is to the left of xj and if (2) holds, then xj is to the left of xi. Now the

second step would be to assign weights to the edges. For each placement there

exists two edges, if xi is to the left of xj then there exists two inequalities,

l ≤ xj − xi ≤ u

xj − xi ≤ u =⇒ (1) and xi − xj ≤ −l =⇒ (2)

Siimilarly, if xj is to the left of xi then there exists again two inequalities,

l ≤ xi − xj ≤ u

xi − xj ≤ u =⇒ (3) and xj − xi ≤ −l =⇒ (4)

Each inequalities mentioned above are represented by an edge, weights will be

assigned either upper bound or negative of the lower bound based on the direction

of the edge. Similarly we fix edge weights for all pair of probes whose distances

are not exact. For the fixed distance between pair of probes the upper and lower

bound will be the same and based on the placement of the probe, there will be

just one edge connecting the respective probes. Finally an edge orientation graph

is constructed.

16

2.3.4 Finding feasible probe positions

Once all the edge weights are fixed, we plug-in to Bellman-Ford algorithm which

finds the shortest path between the source and target vertex. Bellman-Ford al-

gorithm is also used to check for the existence of negative weight cycles. The

pseudo-code for Bellman-Ford algorithm [6] as follows:

function BellmanFord(list vertices, list edges, vertex source)

::distance[],predecessor[]

// This implementation takes in a graph, represented as

// lists of vertices and edges, and fills two arrays

// (distance and predecessor) with shortest-path

// (less cost/distance/metric) information

// Step 1: initialize graph

for each vertex v in vertices:

if v is source then distance[v] := 0

else distance[v] := inf

predecessor[v] := null

// Step 2: relax edges repeatedly

for i from 1 to size(vertices)-1:

for each edge (u, v) in Graph with weight w in edges:

if distance[u] + w < distance[v]:

distance[v] := distance[u] + w

predecessor[v] := u

// Step 3: check for negative-weight cycles

for each edge (u, v) in Graph with weight w in edges:

if distance[u] + w < distance[v]:

17

error "Graph contains a negative-weight cycle"

return distance[], predecessor[]

If there is no negative cycle, the Bellman-Ford algorithm outputs set of feasible

solutions (x1, x2, ..., xn) and if there exists a negative weight cycle the program

recalculates the edge weights by changing the placement of probes and run the

Bellman-Ford algorithm till it finds feasible solutions.

An interesting observation is that the problem of identifying probes in DNA

mapping and the molecular conformation problem in distance geometry tends to

be similar. Thus the probe location problem can be conveniently cast in the

framework of distance geometry which is discussed in the following chapters.

18

Chapter 3

Distance geometry approach

In the distance geometry framework the coordinates of a set of points can be

found if distances between all pairs of points are available. Interesting application

in biology is that the experimental techniques were able to measure the distances

between pair of atoms of a given molecule and the problem is to identify the three-

dimensional conformation of the molecule (i.e. the position of all its atoms). This

is called as the Molecular Conformation problem. The main interest is on proteins,

because of the three-dimensional conformation which allows to get clues about

the function they are able to perform. The particular problem which is mainly

focused in this thesis is constructing a probe map(one-dimension) in DNA mapping

which helps biologists to locate the specific sequence of nucleotides in DNA. The

approximate distance between the probes are estimated from FISH(Fluorescence

in-situ hybridization) experiments and are provided in terms of distance intervals

[l,u].

3.1 Background and review of the Dis-

tance geometry techniques

In this section we discuss some techniques [30] used for solving the distance geom-

etry problem and the software packages developed on basis of these techniques.

19

Some of them are mentioned in the upcoming section. The first and second tech-

nique is concerned with solution to the problems with all exact distances. The

third technique tells how to reduce a given problem into smaller subproblems.

The least-square minimization algorithm is used to solve the distance geometry

problem as a special type of optimization problem.

3.1.1 Cayley-Menger Determinant

Suppose the exact distances between all the points are known, the necessary and

sufficient condition for that the distance matrix

D(p0 ,, pn) =

0 d01 ... d0n

d10 0 ... d1n

...

dn0 dn1 ... 0

n+1 points p0, p1, ..., pn is embeddable in euclidean space En is given by Cayley-

Menger [24] that the CM determinant(p1, ...pn) ≥ 0. The given distance matrix

represented by a determinant [24] form:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1

1 0 d201 d202 d203

1 d210 0 d212 d213

1 d220 d221 0 d223

1 d230 d231 d232 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
According to Gale and Householder, the rank of the Cayley-menger determinant

tells exactly the dimension in which the given points could be embedded. For

details please refer to [31].

Cayley-Menger matrix can also be used to find the missing distances in the

distance matrix. For a query graph with n vertices, the pre-distance matrix D =

20

[Dij] is a symmetric matrix such that Dij = d2ij, where dij is the distance between

the vertices (points) i and j of the query graph. The Cayley-Menger matrix, C =

[Cij] is a symmetric (n + 1) × (n + 1) matrix such C0i = Ci0 = 1 for 0 < i ≤

n, C[0, 0] = 0 and Cij = Dij for 1 < i, j ≤ n [11].

The vertices of the query graph has a valid linear placement provided the rank

of the matrix B is at most 3 (this is a special case of the result that there exists

a d-dimensional embedding of the query graph if the rank of B is at most d + 2;

our claim follows by setting d = 1) [31]. It’s interesting to check this out for the

query graph in Fig. 3.1 on 3 points. The Cayley-Menger matrix B for the above

query graph is:

1 2

p0

p2

p1

Figure 3.1: A query graph on 3 vertices

B =

0 1 1 1

1 0 1 x2

1 1 0 4

1 x2 4 0

where x = d13, the unknown distance between the points p1 and p3. By the above

result, the 4 × 4 minor, det(B) = 0. This leads to the equation

x4 − 10x2 + 9 = 0

which has two solutions x = 3 and x = 1, corresponding to the two possible

placements of the points p1, p2 and p3. Assuming p2 is placed to the right of p1,

in one of these placements p3 is to the right of both p1 and p2; or to the left of

them both.

21

3.1.2 Decomposition of Distance matrix

Suppose if we know the exact distance between all the points, then it can be

arranged into a matrix, d = [dij], with dij corresponds to the distance between i

and j. If we have set of points x0, x1, x2, ..., xn our problem is to find coordinates

of those points. The distance constraints can be written as:

|xi − xj | = dij , i , j = 1 ,n

or equivalently,

|xi |2 = d2
i0

,

|xi − xj |2 = d2
ij

, by expansion,

d2
i0 − d2

ij + d2
j0 = 2 xT

i xj , i , j = 1 , 2 ,, n

Let

Dij = (d2
i0 − d2

ij + d2
j0)/2 ,

we can then define a matrix

D = [Dij]

. Let X be an n × 3 and

X = [xT1 ;;xTn ;]

we then have

D = XXT

22

For a solution to exist the matrix D must be of rank 3. Therefore, we can

make a singular value decomposition for D to obtain

D = UσU T

Where U is an n × 3 orthogonal matrix and σ be the eigen value diagonal

matrix with diagonal elements σ1, σ2, σ3 being three non-zero singular values of D.

A solution for

D = XXT

can be obtained with

X = Uσ(1/2)

Here the singular value decomposition can be done in O(n3) time. Therefore the

solution to the distance geometry problem can be obtained in polynomial time if

all the exact distances are given. More details can be found in [7].

3.1.3 Graph Reduction

Considering the points as nodes and distances as edges, the distance geometry

problem can be described in a distance graph and the solution would be to re-

alize the graph in an Euclidean space. This problem is therefore called graph

embedding. The edge weights in the graph are sparse so there won’t be a unique

embedding. In other words we can say that there are more than one ways to po-

sition the points so that the distance constraints can all be satisfied. To conclude

there are infinitely many ways to embed the graph, so the graph is called flexible

or rigid.

The rigidity of the graph is important for the study of the distance geometry

problem. A necessary condition that a graph has a unique embedding is that it

must be rigid. Another conditions for the graph to have a unique embedding is

that it doesn’t have partial reflections. For three-dimensional embedding a graph

23

has to be four-connected. These conditions can be used to find graphs or subgraphs

that have unique embeddings. The embedding problem for a given distance graph

can solved by decomposing the graph into such sub-graphs. Once the solution for

subgraphs are found, they are combined to form a solution for the whole graph.

For mode details refer to [14].

3.1.3.1 ABBIE

Hendrickson developed the ABBIE software package [14] to obtain the three di-

mensional embedding of the molecular structure by giving pairwise distance mea-

surements as inputs. The method in this software is based on graph reduction.

The problem of determining a set of points in space is divided into smaller subset

of points whose relative locations can be determined uniquely. The basic idea is

to use divide-and-conquer rule and dividing the problem into smaller problems

to ultimately find a unique solution. The solutions found for the subgraphs can

then be combined into a solution for the whole graph. This is done by using

the method of graph reduction discussed in section 2.9.2 in which the given dis-

tance graph is decomposed recursively into sub-graphs. These sub-graphs are then

solved by minimizing a least-square error function. The sub-graphs consist of sub-

set of points whose location can be determined. Once such a subset is positioned

its points can be treated as a rigid body. There are several advantages of this

algorithm. To begin with even if there is insufficient information, the method will

identify and solve unique sub problems. Secondly the solution to the sub-graphs

can be as important and of interest. Third this method determines if there is

sufficient information for the problem. Finally erroneous data can be identified by

the inability to solve a sub problem.

24

3.1.4 Least-Squares Formulation

The distance geometry problem can be formulated as a global least-squares prob-

lem. Considering the problem with exact distances, the problem can be defined

with set of equality constraints,

|xi − xj | = dij , (i,j) ∈ S

Where S may or may not be the whole set of distance pairs. In order to solve this

class of problems, we measure the following relative errors between the calculated

and given distance,
|xi − xj |2 − d2

ij

d2
ij

, (i,j) ∈ S

and collected to obtain an error function,

f (x1 , ...xn) =

∑
i,j∈S

[
|xi − xj |2 − d2

ij

d2
ij

]2

Here we see that if the distance constraints are satisfied then the error function is

equal to zero. Similarly, for problems with bounds on the distance we have,

lij ≤ |xi − xj | ≤ uij , (i,j) ∈ S

Then an error function can be constructed as,

f (x1 , ...xn) =

∑
i,j∈S

min2 [
|xi − xj |2 − d2

ij

d2
ij

, 0] + max 2 [
|xi − xj |2 − d2

ij

d2
ij

, 0]

It is not easy to verify that if all the inequality constraints are satisfied , the error

function is equal to zero.

Given the above error function f, it is easy to see that a set of coordinates

x1, x2, ...xn is a solution to the distance geometry problem if and only if it is the

25

global minimizer of f with the global minimum equal to zero. Therefore, the

distance geometry problem can be formulated as an optimization problem.

minx1 ,..,xn f (x1 , ..., xn)

More details could be found in [7].

3.1.4.1 DGSOL

DGSOL software package is developed by More and Wu [16][17] used global

smoothing and continuation for solving molecular distance geometry problem.

This particular method does not require all distance or bounds to be available.

This method considers the least-squares formulation of the distance geomtry prob-

lem.

The least-squares problem may have many local minimizers. In order to locate

the global minimizer, the global smoothing and continuation method first trans-

forms the least-squares function into a set of gradually deformed but smoother

or easier functions with fewer local minimizers. This method is applied to some

small to medium-sized test problems with around 200 points or atoms. The result

showed that the method was able to find the global minimizer of the least-squares

function with a very high probability.

One of the advantages of this method is that it does not need all the distances

or bounds. Since they use smaller number of terms the cost for solving the distance

geometry problem is cheaper. The method is more practical in the sense since only

sparse set of distance bounds are available. The bound smoothing technique may

be helpful for providing some additional distance data, but they are not so reliable

in general.

26

3.1.5 Alternating Projection Algorithm

Alternating Projection algorithm developed by Glunt et al [12] is used for solving

the distance geometry problem with a given set of bounds on distances. The

main idea used is to first get the set of distances from the distance bounds.

Then this distance geometry problem is solved by minimizing an error func-

tion(optimization).The program is done until a solution is found, otherwise the

violated constraints are used to adjust the distance and algorithm is repeated for

new set of distances.

The bounds on all the distances should be available for the program to execute.

In every iteration a least-squares problem is solved, which requires large amount

of computation. For example, if a Newton’s algorithm is used, the total cost can

be as much as O(n)3 and if n is large and the problem needs to be solved many

times, it can be too expensive to use. Therefore spectral gradient algorithm which

is much cheaper is used in the alternating projecting algorithm instead.

3.2 Crippen and Havel’s algorithm

Crippen and Havel [13], pioneered the work in distance geometry for molecular con-

formation. Their algorithm is used for solving the molecular conformation problem

arising in NMR spectroscopy and protein structure determination. There are three

main stages in the algorithm. The first stage takes the input distance bounds and

converts into distance limits(bound smoothing). In the second step, a random

value is chosen between the limits and fix the distance for all pairs of probes, final

stage would be to retrieve the coordinates from the distance constraints(least-

squares optimization). The brief description of all the stages is described in the

upcoming section.

27

3.2.1 Bound Smoothing

Due to imprecision in measurements, the distance between the probes are specified

as pairs of upper and lower bounds. In order to identify the coordinates of the

points, the distance bounds has to be tightened into limits and this step to convert

the given bounds into limits is called bound smoothing. These limits that satisfies

triangle inequality are called triangle inequality limits. A modified version of

Floyd’s algorithm presented by Dress and Havel [9] is used to convert the bounds

into limits that satisfy the triangle inequality. If there is a triangle inequality

violation lij > uij found, then the program exits the current process and then

repeatedly iterates over to find out the limits.

Some geometric rules are used in the bound smoothing. For given three points

i,j, and k, let the lower and upper bounds be denoted as lij, uij, ljk and ujk. Then

the lower and upper bounds for the distance between points i and k must agree

with the following rules [9],

lik = max(lik, lij − ujk, ljk − uij)

uik = min(uik, uij + ujk)

Other rules can also be derived similarly for the distance bounds for more than

three points [9].

3.2.2 Metrization

The next step would be to convert those distance limits into distances, this process

is known as Metrization. Here in this process we take one of the distances and

sets it to some random number between its lower and upper limits. Later we set

its lower and upper limits to this number and recompute the triangle inequality

limits using these modified limits as the upper and lower bounds. Repeating this

process for each distance will result in set of lower and upper triangle inequality

28

limits that are equal to each other and lies within the original limits and these

distances will be the desired matrix of distances that satisfies both the triangle

inequality and original limits. For details please refer to [13],[9].

3.2.3 Embedding

Final step in the Crippen and Havel’s algorithm is to find the coordinates from

the distance matrix. This consists of the following steps(Havel et al.,[13]):

(i) The distance of each point from the center-of-mass is calculated, to avoid

over emphasizing any set of points, according to

D2
i0 =

1

N

N∑
j=1

D2
ij +

1

N2

N∑
j=2

j−1∑
k=1

D2
jk

where Di0 is the distance of the point i from the origin and Dij is the distance

between points i and j.

(ii) The elements aij of the metric matrix A are computed from the distance

of points from the origin,

aij =
1

2
(D2

i0 +D2
j0 −D2

ij)

(iii) Let W be the diagonal matrix of weights W = diag(w1,, wn), then in our

case the weights are all assumed to be 1, then the calculation of the B matrix is

B = W AW

(iv) If B matrix is positive semi-definite then according to Gale and Householder

equation [31], the final coordinate matrix X is obtained by diagonalizing the B

matrix,

B = σ L2 σ
′

29

and

L2 = [λ21, λ
2
2,λ

2
r, 0, ...0]

Finally,

X = σ
√
L

where L is the diagonal matrix of latent roots of the B matrix, and σ is the

diagonalized eigen vectors of the corresponding latent roots.

30

Chapter 4

Distance geometry based probe

location

Building on the material of the previous chapters, in this chapter we described

the main contribution of this thesis. We propose a new algorithm DGPL for the

probe location problem based on the distance geometry approach. The subsequent

sections discuss in this order: how synthetic data is generated for the DGPL

algorithm, followed by a formal description of the algorithm.

4.1 Preliminaries

Synthetic data is generated based on an adversarial model. An adversary is a

system which knows the placement of points in the respective dimension. The

idea underlying the notion of an adversary is to check the placement of points

generated by the algorithm against this. Once the user inputs the number of

points for which the coordinates have to be found, the adversary creates a distance

matrix with a valid layout for those points. Then based on the number of unknown

distances provided by the user, adversary chooses random set of point pairs for

which the distances are not known. The adversary creates a lower and upper

bound distance matrix which assigns [−∞,∞] as the distances for points with

31

unknown distances, i.e. in the upper bound distance matrix for the corresponding

points with unknown distance it will be ∞, and -∞ in the lower bound distance

matrix. For the pair of points with exact distances known, the values in the upper

and lower bound distance matrix will be the same(exact distance). For instance,

three points with one unknown distance, a sample input upper and lower bound

distance matrix generated by the adversary are:

U (p0 , p1 , p2) =

0 60 ∞

60 0 3

∞ 3 0

L(p0 , p1 , p2) =

0 60 −∞

60 0 3

−∞ 3 0

Thus the adversary creates these upper and lower bound distance matrices which

will be the input for the DGPL.

4.2 Algorithm description

The DGPL algorithm works in three phases:

a) Phase 1: Preparation - Adversary first creates a valid layout based on

the number of points provided by the user and sets up the distance intervals

to [−∞,∞] for unknown distances and finally creates a lower and upper bound

distance matrix.

b) Phase 2: Processing - uses the upper and lower bound distance matrices

from the phase 1 and convert those distances into the coordinates.

c) Phase 3: Embedding - produces a visualization of the points plotted in a

graph and verify it against the initial layout generated by the algorithm.

A flowchart of DGPL algorithm is shown in the upcoming section.

32

4.2.1 Flowchart

 Preparation

 Processing

 Embedding

Start

Input N points

Process input to

create valid layout

Bound Smoothing

(Bounds->Limits)

 Metrization

(Limits-> Distances)

Generation of

coordinates

Visualization of

points in graph

Verification of final

coordinates with

initial layout

Stop

Figure 4.1: Flowchart depicting step by step process of DGPL

33

4.2.2 DGPL Algorithm

Input data: i. The total number of points used. ii. The number of unknown

distances to embed the points.

Output : Coordinates of the given points.

Process:

//phase 1

Step 1 : Create a random valid layout with the fixed number of points such as

{p0, p1,, pn} where n is the number of points.

Step 2 : Based on the number of unknown distances entered by the user, assign

[−∞,∞] as the corresponding values in upper and lower bounds distance matrix.

// phase 2

Step 3 : A modified version of the Floyd’s shortest path algorithm[13] is applied

to convert the bounds into limits.

Step 4 : Choose a random number between upper and lower limit and assign the

same value as the upper and lower limit for each pair of unknown distance intervals

and apply step 2 to get a fixed distance between all the points. Repeat the process

till all the distances are fixed.

Step 5 : Calculate matrix B =[bij], where bij is given by [31]:

bij = (d2io + d2jo − d2ij)/2

where dij is the distance between points i and j, o is the starting point(origin) p0.

i, j lies between 1,.....,n-1 and n is the total number of points.

Step 6 : Computer the eigenvalue decomposition of the B matrix and the product

of the largest eigenvalue with its corresponding normalized eigen vectors will give

the values of the coordinates for all the points in one-dimension.

//phase 3

Step 7 : The coordinates are plotted in a graph and the final coordinates are

verified with initial layout generated by the program.

34

4.2.3 Details

1. A sample input to the program as follows: number of points: 4, number of

unknown distances: 1 and dimension to embed the points: 1.

2. A random valid layout is created in one-dimension, the points are:

p0 = 0, p1 = 59, p2 = 48, p3 = 74.

3. The input upper and lower bound distance matrices are:

LB =

0 59 48 74

59 0 11 −∞

48 11 0 26

74 −∞ 26 0

, UB =

0 59 48 74

59 0 11 ∞

48 11 0 26

74 ∞ 26 0

where the distance d13 between the points p1 and p3 is contained in the interval

[−∞,∞].

4. Shortest path limits obtained through bound smoothing from the given upper

and lower distance bounds are:

LL =

0 59 48 74

59 0 11 15

48 11 0 26

74 15 26 0

, UL =

0 59 48 74

59 0 11 37

48 11 0 26

74 37 26 0

Here UL,LL are the lower and upper limits.

5. The distance limits are then metrized, as discussed in section 2.2, to fixed

distances as:

D =

0 59 48 74

59 0 11 35

48 11 0 26

74 15 26 0

.

6. The B matrix with the point p0 as origin is found to be

35

B =

3481 2832 3866

2832 2304 3552

3866 3552 5476

.

7. With the eigenvalue decomposition of B matrix, the product of the square

root of largest eigenvalue with its corresponding normalized eigen vectors gives

the coordinate matrix:

X =

58.677

48.828

73.671

.

8. These coordinates are verified with the layout generated initially by the pro-

gram at step 2. Finally a graph is drawn to plot the points finally obtained by

the DGPL algorithm. A graph with the points embedded are shown here:

p0 p2 p1 p3

0 48 59 74

Figure 4.2: Final embedding of the four input points

36

4.2.4 Three dimensional embedding

The DGPL program could also be used to identify the three-dimensional conforma-

tion of a molecule. The structure of a protein could be determined experimentally

through NMR spectroscopy or X-ray crystallography or theoretically through po-

tential energy minimization or molecular dynamics simulation. More specifically

the problem considered here is the determination of a structure of a protein given

the distance between some pair of atoms in the protein and the unknown dis-

tances could be represented in terms of distance intervals. The known distances

are obtained with our knowledge of certain bond lengths and bond angles or es-

timated from NMR experiments. This problem is generally called as a molecular

conformation problem.

4.2.4.1 Protein Data Bank

The Protein data Bank (PDB) [2] was first conceived at Brookhaven National

Laboratories in 1971. The archive initially contained only seven structures of

macro-molecules. The advent of technologies such as nuclear magnetic resonance

imaging and X-ray crystallography for structure determination in the early eighties

quickly increased the number of available structures. A huge boost to the bank’s

accessibility and exponential growth was provided by a change in the attitude

towards sharing the data and all above all the advent of the Internet. Proteins

are gigantic sequential molecules of smaller recurring molecules. They are made

up of amino acids which are linked by peptide bonds to form polymers in the

polypeptide chains. A protein may consist of one or more polypeptide chains.

All known protein structures are stored in the repository in PDB format. The

PDB format contains data for each atom in the structure, viz. its type and (x,y,z)

coordinates, residue number and the type of the residue. Each atom takes up a

single line in the PDB file. For instance, an entry in the pdb file for the globin

FERRIC APLYSIA LIMACINA which has PDB code 2FAL is as follows:

37

ATOM 493 CA ARG A 66 56.089 1.103 41.810(1)

Similarly if there are two other atoms:

ATOM 117 CA ASP A 14 14.969 37.123 6.770(2)

ATOM 109 CA LEU A 13 15.162 35.549 X(3)

In short, a pdb file is a digitized version of the actual protein chemical. The

above (1) indicates that there is a carbon atom with the value of x, y and z

coordinates (56.089,1.103,41.810). Moreover, the ’CA’ shows that is the central

Cα atom of a residue, namely residue 66 of type ’ARG’ from chain A. The value

493 is a unique atom identifier within the file. Similarly other atom(2) of residue

14 with it coordinates were shown and the atom(3) with the missing Z coordinates

represented as X could also be identified through the DGPL algorithm, however the

values of the coordinate matrix obtained from our algorithm is translated, further

refinement has to be done to get accurate coordinates. The current steps followed

to get approximate estimates of the missing coordinates in three-dimension is

described in the upcoming section.

4.2.4.2 Generation of Coordinates in three-dimension

The steps applied to generate the coordinates in three-dimension from the DGPL

is slightly different from the generation of the coordinates in one-dimension. The

input to the DGPL would be the upper and lower distance intervals for each pair of

atoms and the embedding would be three in this case. The steps described in the

algorithm section 2.6 till step 5 are same. Finally the eigenvalue decomposition of

the B matrix is done and the product of the three largest eigenvalues with their

corresponding normalized eigenvectors will give the coordinates of all the points

in three-dimension. A sample plot showing the three-dimensional embedding gen-

erated by DGPL is shown below:

38

x axis

90 80 70 60 50 40 30 20 10 0

y a
xis

4
3

2
1

0
1

2
3

4

z
a
x
is

1
e

7

3
2
1

0

1

2

3

4

5

6

1

2

34 5
67

8

9

Figure 4.3: A sample three-dimensional embedding of 9 points generated by the
DGPL program

4.3 Experminental results

We implemented both the DGPL and also the Mumey’s approach discussed in the

previous sections in Python 2.7 on a computer with the following configuration:

Intel(R) Xeon(R) CPU, X7460@2.66GHz OS: Ubuntu 12.04.5, Architecture:i686.

Some of the mathematical packages used were numpy.linAlg which helps in cal-

culating eigen value decomposition and also for solving linear equations, mat-

plotlib.pyplot is used to plot the final coordinates obtained from the DGPL and

Mumey’s program into a graph with respective dimensions. In this section we

first present the computational results that were obtained using the algorithmic

approach described in thesis. This is followed by a discussion of the results along

with some conclusions that can be drawn from them. Finally, we look into some

potential limitations of both the programs, and any possible future work that can

39

emanate from it.

Consider a small example of four points p0, p1, p2 and p3 which has a valid

layout in one-dimension generated by the program. Therefore the coordinates are

p0 = 0, p1 = 36, p2 = 65 and p3 = 85.

p0 p1 p2 p336 29 20

[−∞,∞]

Figure 4.4: One-dimensional embedding of four points with one unknown distance

Our aim is to estimate the coordinates of all the points through Mumey’s

and DGPL program by randomly fixing distance intervals [−∞,∞] for unknown

distances. Here in this case the program sets one unknown distance d02 between p0

and p2 is set to in the range [−∞,∞] . Then as per Mumey’s approach discussed

at section 2.2, based on the orientation assigned between the points p0 and p2

it chooses upper bound or negative of the lower bound as the fixed distance and

runs bellman-ford algorithm to detect the negative cycle and if not it finds feasible

solutions.

DGPL program also runs with the same input for the given four points, as

discussed in section 4.2 the program initially tightens the distance bounds for un-

known distance pairs into distance limits, then it does metrization by randomly

choosing values between the limits and it calculates the B matrix and does eigen

value decomposition according to Gale and Householder equation [31] to find out

the Coordinate matrix. The final layout obtained from both the algorithms were

shown below:

0 36 65 85

p0 p1 p2 p3

Figure 4.5: One-dimensional embedding of four points with coordinates

Some sample screenshots for large number of points by increasing number of un-

known distances are shown in the upcoming sections.

40

Figure 4.6: Screenshot of the DGPL program input

Figure 4.7: Screenshot of the DGPL program upper and lower bound inputs for
ten points with five unknown distances

41

Figure 4.8: Calculation of triangle limits and setting distances based on these
limits

Figure 4.9: Calculation of a B matrix

42

Figure 4.10: Final output generated by the program

p0 p6 p5 p1 p9 p7 p4 p2 p8 p3

0 6 27 42 54 57 59 69 92 98

Figure 4.11: Final embedding of the given ten points in a line

However the results of the experiments by increasing the number of unknown

distances for fixed points in both Mumey’s and DGPL algorithm approach is shown

in the graph below.

43

Figure 4.12: Graph depicting the run times of Mumey’s approach

The above chart represents the run times of Mumey’s approach, where the x-

axis denotes the number of points and y-axis denotes the time in microseconds.

The blue line in the graph shows the time-variation for fixed number of points

and increasing number of unknown distances. For example in the graph, for 80

points with five unknown distances Mumey’s approach takes approximately 10.60

seconds and as we increase the number of unknown distance say 15, time taken

by Mumey’s approach is more than five hours. For further details please refer to

Fig. 4.12 and Table. 4.1.

44

Figure 4.13: Graph depicting the run times of DGPL algorithm

The above chart represents the time complexity of DGPL algorithm, where

the x- axis denotes the number of points and y-axis denotes the time-complexity.

The red line in the graph shows the time-variation for fixed number of points

and increasing number of unknown distances. For example in the graph, for same

80 points with five unknown distances DGPL algorithm takes approximately 2.5

seconds and as we increase the number of unknown distances say 15, time taken

by Embed algorithm is almost the same. Here in this graph the increase in the

run times is just due to the increase in number of points. For further details please

refer to Fig. 4.13 and Table. 4.1.

45

No.of No.of unknown Mumey’s approach DGPL algorithm
points distances running time running time

(hrs:mins:secs) (hrs:mins:secs)
3 1 0:00:00.000184 0:00:00.001514
10 2 0:00:00.001339 0:00:00.006938
10 5 0:00:00.024560 0:00:00.006816
10 8 0:00:00.060520 0:00:00.017163
20 2 0:00:00.001369 0:00:00.007464
20 5 0:00:00.001336 0:00:00.007743
20 10 0:00:01.164363 0:00:00.007436
40 5 0:00:00.947250 0:00:00.328563
40 8 0:00:07.369925 0:00:00.315001
40 10 0:00:30.857658 0:00:00.312674
80 5 0:00:10.609233 0:00:02.503798
80 10 0:06:15.443501 0:00:02.496285
80 15 5:00:00.000000+ 0:00:02.687672
101 5 0:00:14.256343 0:00:05.020695
101 10 0:10:32.299084 0:00:05.282747
101 15 5:00:00.000000+ 0:00:05.192594

Table 4.1: Performance comparison of Mumey’s and DGPL algorithm

46

Figure 4.14: Time complexity graph Mumey’s vs DGPL algorithm - Increasing
number of unknown distances between fixed number of points

Combining the two charts presented in the previous section is the chart men-

tioned above which compares the time complexity of the Mumey’s approach with

the DGPL algorithm. Predictably enough, the above chart Fig. 4.14. shows that

the Mumey’s approach takes longer time when the number of unknown distances

increases as shown in the graph and the table. Each of these algorithms were run

on point sets of different sizes, up to 101 points.

Clearly, the DGPL algorithm is consistently the fastest; as we can see from

the graph irrespective of the number of unknown distances in the fixed number of

points the algorithm runs in linear time where as the Mumey’s approach doesn’t

run consistently based on the fixed number of points due to the presence of negative

cycle while running Bellmann-Ford algorithm with the distance matrix chosen and

as the number of unknown distances increases, the running time also increases

exponentially. After each detection of negative cycle, a new distance matrix will

be plugged into Bellmann-Ford to find the feasible solutions and it’s costlier to

keep track of distances chosen between each unknown distance pair.

47

Chapter 5

Conclusions

This thesis contributes towards the goal of constructing probes in DNA mapping

which is useful for genomic studies and also helps scientists to discover the heritable

diseases and other traits that are common to human beings. To this end we focused

on using a novel approach by reducing the time-complexity of embedding probes

in one-dimension and adopting a distance geometry approach to arrive at better

results for the probe location problem.

Chapter 2 discussed about the probe location problem in DNA mapping. Fun-

damental ideas and techniques for probe synthesis and mapping the probes in a

chromosome were briefly described. The existing algorithm by Mumey [19] for

finding the location of the probes in a chromosome is explained in detail and it’s

implemented to compare the results with our proposed algorithm discussed in the

upcoming chapter. Apart from that, a literature review of other algorithms used

before Mumey were also mentioned in this chapter with a detailed description.

The research work started in chapter 3 with a detailed description of the dis-

tance geometry techniques and softwares used to solve the Molecular conformation

problem. EMBED algorithm which is the fundamental and chief distance geome-

try technique developed by Crippen and Havel [13] for embedding points in a space

is explained in depth which formed the basis for our proposed algorithm. Main

ideas and basic building blocks were defined in order to construct a solid under-

48

standing of the embedding, mathematical methods and other distance geometry

approaches.

The main contribution of this thesis is mentioned in the chapter 4 and the

proposed algorithm to solve the probe location problem is explained in detail.

The core of this work took the form of experiments. A representative set of results

from these experiments have been presented in the same chapter. Both Mumey’s

algorithm and our algorithm were tested with different set of points starting from 3

to 101 number of points with different set of unknown distances. DGPL algorithm

can efficiently find the missing coordinates of the given probes than the Mumey’s

approach.

The interesting conclusions were drawn from experiments in the previous chap-

ter. For example, with 15 unknown distances in 80 points DGPL algorithm shows

superior performance than the Mumey’s approach, since the Mumey’s approach

has to keep track of the distances chosen between each pair of unknown distance,

it is costlier compared to the DGPL algorithm. The results have been shown in

a graph with the coordinates being plotted in one-dimension. This final graph

could be used to validate the correctness of the placement of points by verifying

all coordinate values against the initial layout generated by the program. Some

of the things to look forward in the future is described in the upcoming section.

5.1 Future work

Further work can be done on several fronts. So far from the experiments con-

ducted and previous techniques used to solve the point placement problem there

is no reference to the minimum number of distances to be known for fixed number

of points to find the exact placement. So the fundamental question remains open

about the minimum number of distances to be known to get the exact coordinates

from the DGPL program. It would be interesting if there is any future work in

response to this problem. Apart from that, the DGPL program could be applied

49

in higher dimensions for identifying three-dimensional structure of a protein which

helps in the identification of their biological function. Although the current imple-

mentation of the DGPL program works for finding coordinates in three-dimension,

further upgrade of the DGPL program could be done to refine those coordinates

to get exact values, which I am sure it will be in the near future.

50

Bibliography

[1] Roger Baker and Kenneth Kuttler. Linear algebra with applications. World

Scientific, 2014.

[2] Frances C Bernstein, Thomas F Koetzle, Graheme JB Williams, Edgar F

Meyer, Michael D Brice, John R Rodgers, Olga Kennard, Takehiko Shi-

manouchi, and Mitsuo Tasumi. The protein data bank: a computer-based

archival file for macromolecular structures. Archives of biochemistry and bio-

physics, 185(2):584–591, 1978.

[3] LM Blumenthal. Theory and applications of distance geometry. Distance

Geometry, 1970.

[4] Kenneth H Buetow and Aravinda Chakravarti. Multipoint gene mapping

using seriation. i. general methods. American journal of human genetics,

41(2):180, 1987.

[5] Francis YL Chin, Henry CM Leung, Wing-Kin Sung, and Siu-Ming Yiu. The

point placement problem on a line–improved bounds for pairwise distance

queries. In Algorithms in Bioinformatics, pages 372–382. Springer, 2007.

[6] Thomas H Cormen. Introduction to algorithms. MIT press, 2009.

[7] Gordon M Crippen, Timothy F Havel, et al. Distance geometry and molecular

conformation, volume 74. Research Studies Press Somerset, England, 1988.

[8] Peter Damaschke. Point placement on the line by distance data. Discrete

Applied Mathematics, 127(1):53–62, 2003.

51

[9] Andreas WM Dress and Timothy F Havel. Shortest-path problems and molec-

ular conformation. Discrete Applied Mathematics, 19(1):129–144, 1988.

[10] Carl Eckart and Gale Young. The approximation of one matrix by another

of lower rank. Psychometrika, 1(3):211–218, 1936.

[11] Ioannis Z Emiris and Ioannis Psarros. Counting euclidean embeddings of rigid

graphs. arXiv preprint arXiv:1402.1484, 2014.

[12] W Glunt, TL Hayden, and M Raydan. Molecular conformations from distance

matrices. Journal of Computational Chemistry, 14(1):114–120, 1993.

[13] Timothy F Havel. Distance geometry: Theory, algorithms, and chemical

applications. Encyclopedia of Computational Chemistry, 120, 1998.

[14] B.A. Hendrickson. The Molecule Problem: Determining Conformation from

Pairwise Distances. PhD thesis, Cornell University, 1990.

[15] Thérèse E Malliavin, Antonio Mucherino, and Michael Nilges. Distance ge-

ometry in structural biology: new perspectives. In Distance Geometry, pages

329–350. Springer, 2013.

[16] Jorge J Moré and Zhijun Wu. Global continuation for distance geometry

problems. SIAM Journal on Optimization, 7(3):814–836, 1997.

[17] Wu Zhijun More, Jorge. Distance geometry optimization for protein struc-

tures. Journal of Global Optimization, 15(3):219–234, 1999.

[18] Asish Mukhopadhyay, PijusKumar Sarker, and KishoreKumarVaradharajan

Kannan. Randomized versus deterministic point placement algorithms: An

experimental study. In Osvaldo Gervasi, Beniamino Murgante, Sanjay Misra,

Marina L. Gavrilova, Ana Maria Alves Coutinho Rocha, Carmelo Torre,

David Taniar, and Bernady O. Apduhan, editors, Computational Science and

Its Applications – ICCSA 2015, volume 9156 of Lecture Notes in Computer

Science, pages 185–196. Springer International Publishing, 2015.

52

[19] Brendan Mumey. Probe location in the presence of errors: a problem from

dna mapping. Discrete Applied Mathematics, 104(1):187–201, 2000.

[20] William R Newell, Richard Mott, Stephan Beck, and Hans Lehrach. Con-

struction of genetic maps using distance geometry. Genomics, 30(1):59–70,

1995.

[21] B Pinkerton. Results of a simulated annealing algorithm for fish mapping.

Communicated by Dr. Larry Ruzzo, University of Washington, 1993.

[22] Joshua Redstone and Walter L Ruzzo. Algorithms for a simple point place-

ment problem. In Algorithms and Complexity, pages 32–43. Springer, 2000.

[23] Kaushik Roy, Satish Chandra Panigrahi, and Asish Mukhopadhyay. Multiple

alignment of structures using center of proteins. In Bioinformatics Research

and Applications, pages 284–296. Springer, 2015.

[24] Manfred J Sippl and Harold A Scheraga. Cayley-menger coordinates. Pro-

ceedings of the National Academy of Sciences, 83(8):2283–2287, 1986.

[25] Zachary Voller and Zhijun Wu. Distance geometry methods for protein struc-

ture determination. In Distance Geometry, pages 139–159. Springer, 2013.

[26] Wikipedia. Cytogenetics — wikipedia, the free encyclopedia, 2015. [Online;

accessed 10-August-2015].

[27] Wikipedia. Distance geometry — wikipedia, the free encyclopedia, 2015.

[Online; accessed 10-August-2015].

[28] Wikipedia. Fluorescence in situ hybridization — wikipedia, the free encyclo-

pedia, 2015. [Online; accessed 9-August-2015].

[29] Wikipedia. Hybridization probe — wikipedia, the free encyclopedia, 2015.

[Online; accessed 10-August-2015].

53

[30] Jeong-Mi Yoon, Yash Gad, and Zhijun Wu. Mathematical modeling of protein

structure using distance geometry. Department of Computational & Applied

Mathematics, Rice University, 2000.

[31] Gale Young and Alston S Householder. Discussion of a set of points in terms

of their mutual distances. Psychometrika, 3(1):19–22, 1938.

54

APPENDIX

Eigenvalues and Eigenvectors: An eigenvector of a matrix is a vector that

does not change its direction under the associated linear transformation. In other

wordsif v is a vector that is not zero, then it is an eigenvector of a square matrix

A if Av is a scalar multiple of v. This condition could be written as the equation:

AV = λV

where λ is the eigenvalue associated with the eigenvector v.

Modified version of Floyds algorithm by Crippen and Havel:

This finds an all-pair shortest path in a directed graph. The algorithm is given

below:

procedure Floyd(Natom,Lower,Upper)

for k from 1 to Natom do

for i from 1 to Natom - 1 do

for j from i + 1 to Natom do

comment: Path lengths in left-hand network.

if Upper[i,j] > Upper[i,k] + Upper[k,j] then

Upper[i,j] :=Upper[i,k] + Upper[k,j];

comment: Path lengths from left to right-hand network.

if Lower[i,j] < Lower[i,k] - Upper[k,j] then

Lower[i,j] :=Lower[i,k] - Upper[k,j];

else

55

if Lower[i,j] < Lower[j,k] - Upper[k,i] then

Lower[i,j] :=Lower[j,k] - Upper[k,i];

comment: Check for triangle inequality violations.

if Lower[i,j] > Upper[i,j] then

exit(bad bounds);

endfor endfor endfor

endproc

Positive semi-definite:

If all the eigenvalues of a matrix are positive then it is termed as positive semi-

definite matrix.

Rank of a Matrix:

It is the dimension of the vector space generated by its columns or rows.

56

VITA AUCTORIS

Kishore Kumar Varadharajan Kannan was born in Salem, India in the year 1991.

He passed Bachelor of Technology in Information technology from St.Joseph’s

college of engineering, India in the year 2012. He is currently a candidate for the

Masters degree in Computer Science at the University of Windsor, Ontario and

to graduate in Fall 2015.

57

	University of Windsor
	Scholarship at UWindsor
	10-19-2015

	The point placement problem in an inexact model and its applications
	Kishore Kumar Varaharajan Kannan
	Recommended Citation

	tmp.1446564494.pdf.L1pu_

