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ABSTRACT 

This study investigated memory in children with temporal lobe epilepsy and the 

ability to discern hippocampal dysfunction with conventional memory tests that are 

typically used to detect more global memory impairment. All data was obtained 

retrospectively from the epilepsy surgery program at a local children’s hospital.  The 

research population consisted of 54 children with intractable epilepsy of temporal onset, 

balanced across pathology types (with and without hippocampal disease) and other 

demographics. Each was given a clinical battery prior to surgical intervention, which 

included the WRAML/WRAML2 Verbal Learning subtest from which the dependent 

variables for this study were extracted.  

The research hypothesis had predicted that memory retention between verbal 

learning and recall would be worse for participants with pathology that included 

hippocampal sclerosis than for those with non-hippocampal temporal lobe pathology.  A 

two-way mixed-design ANOVA was used to test the hypothesis, which allowed 

incorporation of variables of interest related to memory factors, pathology type, and 

hemispheric laterality, as well as their various interactions. There was a significant main 

effect for change in the number of words retained from the final learning trial to the 

delayed recall. Although the interaction between memory retention and pathology type 

was not statistically significant, the average of the memory scores as it related to 

pathology by side did show significance. Thus, results did not support the hypothetical 

relationship between retention and hippocampal function. However, additional 

exploratory analyses revealed that the final learning trial by itself was associated with 

hippocampal pathology, which applied only to those participants with left-hemisphere 



 

 

lesions. Logistic regression with the final learning trial correctly classified 74 percent of 

participants into the appropriate pathology category, with 81 percent sensitivity to 

hippocampal dysfunction. 

Mean participant memory scores were nearly one standard deviation below the 

normative mean for both delayed recall and total learning scaled scores, regardless of 

pathology type or lesion hemisphericity. Thus, while the conventionally used indices of 

the WRAML Verbal Learning test are useful for determining overall memory status, they 

are not specific to pathological substrate. The within-subject main effect showed an 

expected loss of information across the time of the delay, but overall the recall score 

showed no association with hippocampal functioning.  

This study revealed the possibility of measuring hippocampal function at 

statistically significant group levels using learning scores from a widely used measure of 

verbal memory, even in participants with intact contralateral mesial temporal structures. 

It also indicated that hippocampal structures do not play a role during recall measures 

given after a standard time delay. Data further demonstrated a role of the hippocampus 

for encoding and transferring information beyond short term/working memory into long 

term. During the learning process, the hippocampus appears to work in concert with 

short-term memory systems, but does not take over the encoding process until enough 

repetitions have occurred to saturate the working memory buffer. This research represents 

a small, yet important step forward in our understanding of the hippocampus, with 

potentially important implications for the future study of memory constructs and 

mensuration.
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CHAPTER I: STATEMENT OF THE PROBLEM 

Memory is a primary feature of human cognition and is necessary for completion 

of daily tasks from the very mundane to the most creative.  Without functional memory, 

our ability to fulfill academic, vocational, or even recreational pursuits would be virtually 

impossible. However, despite considerable research efforts, memory may be the most 

complex yet least understood of all cognitive domains.  

Declarative memory processes transform perceptual information into enduring 

pseudo-sensory representations via functional networks that synchronously engage 

multiple anatomical regions (Helmstaedter, Grunwald, Lehnertz, Gleibner, & Elger, 

1997). In normal subjects, aspects of the neocortex and mesial temporal areas are 

functionally intertwined (Eichenbaum et al, 1996).  However pathological damage to one 

component of the network can affect the entire network’s function, leading to impaired 

declarative memory (Jones-Gotman et al., 1997). While memory impairments are very 

likely to occur in cases of temporal lesions, they may also be caused by frontal damage 

(Jambaque et al., 1993).  

Studies of individuals with bilateral mesial temporal resection have validated the 

principle importance of the hippocampus for episodic memory encoding (Milner, Corkin, 

& Teuber, 1968; Scoville & Milner, 1957). However, isolating hippocampal memory 

functions from other basic cognitive processes has been difficult because they are so 

closely intertwined (Glosser et al., 2002). Localizing mesial temporal damage is further 

complicated by the inherently reconstructive nature of memory, as described by Loftus 

and Palmer (1974).  After encoding, memory traces are believed to be stored in various 

parts of the cortex, dependent upon associated sensory modality. If these traces are 
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adequately stored, they may be put back together to form coherent memories, but the role 

of mesial temporal structures in the retrieval process remains a topic of considerable 

debate. 

Neuropsychological assessment has become a routine part of the presurgical 

epilepsy evaluation (Stanford & Miller, 2007). In conjunction with other members of the 

surgical team, the neuropsychologist assists in localizing cerebral dysfunction and 

advises when cognitive losses may be expected following resection (Harvison, Griffith, 

& Grote, 2006). Unfortunately, neuropsychological measures often fall short in 

identifying isolated dysfunctional structures because normative scores reflect gross 

cognitive processes made up of many elemental subprocesses.  They often lack the 

sensitivity to detect specific areas of memory deficiency, such as hippocampal 

functioning and material-specific lateralization (Wisniewski, Wendling, Manning, & 

Steinloff, 2012).  

These limitations also extend to research application of these measures, with 

added complexity due to methodological issues (Loring et al., 1988). Many studies of 

temporal lobe epilepsy have not accounted for underlying pathology (Cormack, Varga-

Khadem, Wood, Cross, and Baldeweg, 2012), highlighting a failure to differentiate 

between lateral and mesial lesions. Discriminative power may also be influenced by test 

selection and the nature of test stimuli (Mabbott & Smith, 2003). 

Children with intractable seizures frequently have neuropsychological 

impairments (Nolan et al., 2004). In those with temporal lobe foci, memory deficits are 

especially common, even when IQ scores are within the normal range (Guimaraes, Li, et 

al., 2007). Furthermore, pediatric patients with refractory temporal lobe seizures often 
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have impaired executive skills (Rzezak et al., 2007). Rzezak, Guimaraes, Fuentes, 

Guerriero, and Valente (2012) found an association between executive dysfunction and 

episodic memory in children with temporal lobe epilepsy, but no indication of causality 

between them. The relationship between deficient encoding and retrieval mechanisms 

and executive impairment is suggested by greater impairment of recollection than 

recognition in patients with frontal lesions (Wheeler, Stuss, & Tulving, 1995). However, 

questionable hippocampal involvement in these processes and potential participation of 

parahippocampal structures further obscures the ability to evaluate isolated memory 

processes with readily available neuropsychological tests. Assessing these functions in 

children becomes even more complex due to numerous developmental issues that do not 

apply to adults. 

In sum, memory complexity confounds the ability to use conventional 

neuropsychological data to adequately evaluate fundamental cognitive operations. Given 

these limitations, research is needed to explore more appropriate evaluation methods. 

This knowledge would enhance surgical decision making and provide patients and their 

families with more accurate estimates of postsurgical cognitive outcome.  It would also 

potentially assist with rehabilitative strategies, suitable educational placement, and 

evaluation of therapeutic effectiveness in children with brain lesions.  
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CHAPTER II: REVIEW OF THE LITERATURE 

Memory 

Conceptual Overview 

As a fundamental component of human cognition, memory encompasses the 

acquisition, storage, and retrieval of information (Meeter & Murre, 2004), including past 

events or experiences, factual knowledge, external perceptions and internally generated 

thoughts.  This also provides the basis for anticipating future events as well as storing 

formulated plans, and enables the development of strategies. Because multiple cognitive 

processes are required to process such information, memory is clearly not a unitary 

construct (Paller, 2006), which greatly increases the complexity of its study.  

Eichenbaum (1997) appropriately pointed out that memory can be viewed from 

numerous perspectives. Neuroanatomically, a memory system may be conceptualized as 

a series of neural circuits that work together to subserve a single memory function, or 

conversely as one larger network that mediates multiple types of memory. From a 

psychological frame of reference, these systems work collaboratively to support the 

performance of cognitive tasks, thus providing a functional explanation of how various 

sensory modalities are integrated in memory. Eichenbaum (1997) also presented the 

viewpoint that perhaps ‘memory is not an entity at all, but rather a reflection of the 

plasticity [sic] properties that characterize each functional circuit of the brain.”  

Mammalian memory concepts, particularly those pertaining to humans, have 

gradually evolved into models that help explain various inter-related processes. One of 

the first was the Atkinson and Shiffrin (1968) “multi-store” model, which included long-

term, short-term, and sensory processes. Since then, numerous authors have proposed 
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proprietary taxonomies; most have substantial commonality between primary 

components, with greater differences in the details. A common organizational scheme is 

depicted in figure 1. The various categories and divisions within this classification 

structure serve as heuristics for understanding mental processes and relating these to 

neuroanatomical substrates.  

 

Figure 1: Common Taxonomy of Various Memory Types 

 

 
 

In line with the hypothetical framework driving the present research, this review 

focuses on declarative memory; however because this cannot be isolated from other 

cognitive processes, an introduction to related elements is also provided.  

Knowledge of primary or temporary memory storage is prerequisite to studying 

long-term memory. In his address to the Eastern Psychological Association in 1955, 

Miller (1956) proposed that the amount of information one could remember in one 

exposure ranges between five and nine items, depending on the type of data. Miller’s 

“magical number seven, plus or minus two” thereafter became recognized as the capacity 

of primary memory. While short term and working memory are frequently treated as 
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synonymous, there are both similarities and differences. Both are time-limited and have a 

limited capacity, but working memory has the distinction of actively holding information 

in a short-term buffer so it can be processed or manipulated (Strauss, Sherman, & Spreen, 

2006). Working memory is required for continually updated processes such as 

computations, and flexible, problem-solving behaviors (Cantor, Engle, & Hamilton, 

1991).  

Declarative memory is that ability which allows one to remember prior 

autobiographical episodes and complex facts (Squire, 1987).  The terms declarative and 

explicit memory are often used interchangeably, and are assessed using tests of recall 

and/or recognition of facts and episodes. Tulving (1972) introduced episodic and 

semantic memory as two subtypes of declarative memory with very different properties. 

Episodic memory provides for conscious recollection of prior personal events or 

“episodes” in one’s life. Recall of such experiences is linked with specific situations, 

places, and times related to acquisition of that information. Storage of episodic 

information is thus referenced to existing stores of autobiographical memory. In contrast, 

semantic memory is factual knowledge about the world, such as meaning of words, 

concepts, and objects, but independent of time or place. According to Tulving, 

information stored within each system has the potential of affecting the other; thus, 

registration of episodic information may be influenced by information held within 

semantic memory, while storage or retrieval of factual information can depend heavily 

upon its integration with autobiographical memories.  

Several different types of implicit memory have also been identified, which do 

not require intentional encoding or even awareness that information is being registered. 
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Unlike explicit memory, implicit memory is below the threshold of conscious awareness 

(Papanicolaou, 2006), without involvement of executive processes or strategies 

(Baddeley, 1997). Priming refers to improvements in perceptual recognition of objects 

due to prior exposure, but independent of conscious recollection of the previous 

encounter (Schacter, 1992). Classical conditioning involves an unconscious association 

between two stimuli based upon sequential occurrence, one of which triggers an 

automatic response (Paller, 2006). Procedural memory is storage of motor skills, habits, 

mannerisms, and other temporally ordered sequences (Papanicolaou, 2006). 

Mnemonic Functions of the Temporal Lobes 

Mesial Temporal Lobe. A role of the mesial temporal region in memory function 

had been suspected since the early 1900’s (DeJong, 1973) and was confirmed when 

Scoville and Milner (1957) published the neuropsychological outcomes of bilateral 

hippocampal resection in a series of nine patients (and one unilateral case). The most 

famous of these subjects was known as “H.M.”, a bright, emotionally stable man who 

underwent this radical procedure to relieve incapacitating and medically refractory 

seizures. Prior to this time, mesial temporal lobe surgery had been used only as a 

treatment for severe psychoses, although without significant therapeutic effect. The 

resection performed on H.M. by Scoville removed the greater part of the hippocampi on 

both sides, extending 8 cm posteriorly from the temporal horns.  

Following surgery, H.M. was unable to create any new personal memories but 

had “vivid and intact” remote memory; that is, he retained most memories acquired from 

years prior to the surgery. He did have some retrograde amnesia for select events such as 

the death of an uncle several years earlier. He maintained an above-average IQ, and since 



8 

 

 

 

his comprehension and reasoning remained intact, had no difficulty interacting normally 

in conversation. Despite these intact abilities, H.M. had no conscious recollection of tasks 

performed many times over again (Scoville & Milner, 1957). Many years later he 

continued to be globally amnestic, with impaired recall, regardless of the stimulus 

modality. He had good perceptual skills and short-term retention of information such as 

task instructions. Although he demonstrated a limited capacity for learning simple mazes, 

particularly tactile mazes, he never achieved error-free performance (Milner, Corkin, & 

Teuber, 1968). His motor task learning was also much slower than normal, but he did 

show consistent improvement across days of testing and retention of simple visuomotor 

skills for up to a year (Corkin, 2002). Despite his amnesia, H.M. was able to accurately 

describe the layout of the home he moved into following his surgery, where he lived for 

many years (Corkin, 2002). He also demonstrated normal long-term recognition of 

pictures. Even after 6 months, he was able to recognize magazine pictures he had studied 

for 20 seconds each, despite no memory of having seen them before (Freed, Corkin, & 

Cohen, 1987).  

H.M. also demonstrated intact immediate memory. He was able to recall a three 

digit number for up to 15 minutes, maintaining such verbal material through continuous 

rehearsal (Milner, 2005). However, as soon as his attention was diverted and rehearsal 

disrupted, the information was lost. H.M.’s digit span pattern has been of considerable 

interest to researchers. Despite the capacity to flawlessly repeat six digits, he was unable 

to mimic a seven-digit string regardless of the number of trials presented (Jeneson, 

Mauldin, & Squire, 2010; Milner, Corkin, & Teuber, 1968). 
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While H.M. remains the most salient case study of mesial temporal memory 

functions, several patients with similar lesions have verified the original findings. Zola-

Morgan, Squire, and Amaral (1986) reported on R.B., a middle aged man who 

experienced severe anterograde amnesia following an ischemic event related to 

complications of cardiac surgery. Postmortem evaluation five years later revealed almost 

complete cell loss of the CA1 area of the hippocampus bilaterally, with the remainder of 

the mesial temporal lobes essentially intact. Three comparable cases with isolated 

memory impairment were subsequently reported ten years after R.B. (patients G.D., 

L.M., and W.H.); MRI revealed bilateral hippocampal damage in all three cases, which 

was confirmed by neuropathology at death (Rempel-Clower, Zola, Squire, & Amaral, 

1996). As with H.M., all four of these patients had normal IQ scores, impaired 

declarative memory with normal implicit memory performance, and greatest sparing of 

remote memories. Like R.B., G.D.’s damage was restricted to the hippocampi, with a 

small infarction of the right globus pallidus. L.M’s hippocampal damage was slightly 

more extensive than the others. Both L.M. and W.H. demonstrated more extensive cell 

loss within the left hippocampus, and each demonstrated significantly more retrograde 

amnesia than H.M. and R.B. L.M.’s loss of prior memories extended back approximately 

15 years. W.H. had greater sparing of CA1 neurons than the others but paradoxically 

showed worse retention of new materials than the others across all modalities as well as 

extensive, temporally-graded amnesia going back 25 years. Each remained cognitively 

stable from the time of their first evaluation until their deaths (average of 7 years).  

Despite evidence of the essential role of the mesial temporal region for declarative 

memory formation, the intrinsic functions of the hippocampus remain somewhat 
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enigmatic. The relational nature of hippocampal neurons has been demonstrated by the 

response of single rat cells to associated stimuli during performance of memory and 

learning tasks (Eichenbaum, Cohen, Otto, & Wible, 1992). However, anterior and 

posterior portions of the hippocampus appear to be disconnected from one another 

(Colombo, Fernandez, Nakamura, & Gross, 1998), with multiple distinct circuits for 

processing different types of memory (Moser & Moser, 1998). Functional MRI has 

demonstrated that dentate gyrus and Cornu Ammonis (CA) fields are more active during 

encoding, while the subiculum was more active during retrieval (Eldridge, Engel, Zeineh, 

Brookheimer, & Knowlton, 2005). 

Parahippocampal structures are also known to play roles in learning and memory, 

but their precise functions are only partially understood. It is believed that neurons in the 

hippocampus and parahippocampal areas perform different, but complementary memory 

functions (Suzuki & Eichenbaum, 2000). Significant knowledge has been gained through 

translational animal research because it allows ablation of homologous brain regions, 

where such experimentation in humans is not possible. Limitations remain due to 

neuroanatomical differences across species, particularly with regard to structures that 

subserve verbal cognitive functions. Nonetheless, these studies have revealed a 

perceptual role of mesial temporal areas, in addition to mnemonic functions (Lee et al., 

2005). Animal studies have also demonstrated functional independence of the mesial 

temporal structures; whereas hippocampal lesions lead to impaired spatial cognition, 

lesions of the perirhinal and postrhinal cortex impair object recognition (Winters, 

Forwood, Cowell, Saksida, & Bussey, 2004). Disrupted object recognition by transient 

inactivation of the perirhinal cortex further evidences the importance of this area in 
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encoding and retrieval (Winters & Bussey, 2005). The essential nature of the perirhinal 

cortex for visual paired associate and configural learning has also been established 

through primate experimentation (Buckley & Gaffan, 1998).  

A potential role of novelty detection by parahippocampal areas was highlighted 

by H.M.’s recognition of previously seen pictures despite hippocampal absence (Corkin, 

2002). This role is supported by fMRI activation of the perirhinal cortex during encoding 

of novel picture pairs in human subjects (Pihlajamaki et al., 2003). The perirhinal cortex 

also participates in verbal memory encoding, as demonstrated by fMRI activation that 

was greater when encoding words that were subsequently remembered than those not 

successfully registered (Strange, Otten, Josephs, Rugg, & Dolan, 2002). 

Temporal Neocortex. While the mesial temporal structures are clearly vital 

components of the declarative memory system, research on the precise mnemonic 

functions of the temporal neocortex has not been as conclusive. Neither Giovagnoli and 

Avanzini (1999) nor Jones-Gotman et al. (1997) reported significant performance 

differences related to temporal lesion location in adults. However, Mueller et al. (2013) 

provided evidence of differing structures associated with memory impairments in 

temporal lobe epilepsy. In patients with hippocampal foci, the deficits were related to 

hippocampal and prefrontal volume loss; those with neocortical foci showed a much 

lesser degree of mesial temporal volume loss. Perhaps the most striking differences 

relevant to temporal lesion location were noted by Helmstaedter et al. (1997), who 

indicated specific impairment patterns: Mesial lesions were related to poor consolidation, 

while neocortical lesions were associated with working memory and encoding deficits. 

Pediatric comparisons have also varied in their conclusions. Although Gonzalez, 
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Anderson, Wood, Mitchell, and Harvey (2007) revealed a greater probability of 

mnemonic deficits in children with mesial than lateral temporal seizure foci, Nolan et al. 

(2004) found no differences. 

Numerous investigations have suggested an important role of the anterior 

temporal lobe (ATL) in semantic memory. While the precise boundaries of the ATL are 

somewhat ill-defined, it generally refers to the temporal pole, anterior aspects of superior 

and middle temporal gyri, and parts of the fusiform and parahippocampal gyri (Bonner & 

Price, 2013). Atrophy of the ATL is frequently accompanied by pronounced difficulties 

in retrieval of semantic information (Rogers et al., 2006). While semantic memory shows 

greater disruption in patients with left anterior temporal lesions, right-sided temporal 

neocortex may also play an important role in semantic memory representations (Ralph, 

Ciplotti, Manes, & Patterson, 2010).  

Amnestic patients with bilateral hippocampal damage often demonstrate relatively 

preserved semantic memory, despite severely impaired episodic retention (Schmolck, 

Kensinger, Corkin, & Squire, 2002).  Kitchener, Hodges, and McCarthy (1998) reported 

on the case of a 49-year-old man with amnesia due to total destruction of the left 

hippocampus, parahippocampal gyrus, entorhinal and perirhinal cortices following a 

cerebro-vascular event 13 years earlier. His amygdala and temporal pole were both 

spared. The man was unable to recall any personally experienced episodes from any 

period of his life, but had no insight regarding his deficits. Despite inability to remember 

major autobiographical events, he retained some ability to acquire new semantic 

knowledge, particularly vocabulary and facts. Similar cases in children have been 

reported by Vargha-Khadem and colleagues (1997). They detailed observations of three 
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children with bilateral hippocampal pathology who were amnestic to personal 

experiences, but still able to attend school, learn factual knowledge, and attain general 

academic competence within the low average to average range. By contrast, all three had 

very poor temporal and spatial orientation, highly impaired autobiographical memories as 

and little recall of the day’s events, including interactions, trips, and special occasions.  

Such an anatomical dissociation for declarative memory subtypes is very 

oversimplified (Hoscheidt, Nadel, Payne, & Ryan, 2010) and remains controversial. 

Despite evidence for localization of semantic memory functions, other data supports the 

view that mesial temporal structures play an important role in semantic memory (Squire 

& Zola, 1998).  Limited semantic deficits in H.M. and other patients with bilateral 

hippocampal damage have suggested that mesial temporal structures are important for 

acquisition and storage of semantic knowledge (Manns, Hopkins, & Squire, 2003; 

Schmolck, Kensinger, Corkin, & Squire, 2002). Semantic impairment has been noted in 

adults with left hemisphere epilepsy regardless of whether seizures were temporal or 

extratemporal (Giovagnoli, 2005). Messas, Mansur, and Castro (2008) also found 

impaired semantic memory in adult epilepsy patients with lesions restricted to the 

hippocampus. While semantic performance was diminished for both left and right TLE 

compared with controls, those with left-sided foci had significantly greater impairment in 

defining words.  Atrophy observed in semantic dementia patients frequently includes 

areas of the perirhinal cortex, while sparing the adjacent posterior temporal neocortex 

(Davies, Halliday, Xuereb, Kril, & Hodges, 2009). Furthermore, functional MRI has 

shown activation of the temporal neocortex as well as the hippocampus on both episodic 

and semantic memory tasks in healthy adults (Hoscheidt, Nadel, Payne, & Ryan, 2010; 
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Menon, Boyett-Anderson, Schatzberg, & Reiss, 2002) suggesting both are important 

substrates of general declarative memory.  

Neuroanatomy of the Mesial Temporal Region 

From a gross perspective, the mesial temporal lobe is comprised of the 

hippocampal formation and the parahippocampal gyrus. The hippocampus proper (named 

for its resemblance of a seahorse) is oriented with its arched structure terminating near 

the splenium of the corpus callosum, and has been regarded by some as an extension or 

“appendage” of the neocortex (Amaral & Lavanex, 2007) despite differences in 

cytoarchitecture. During fetal development, the hippocampus progressively infolds upon 

itself twice, forming the characteristic S-shape within the remainder of the temporal lobe 

(Kier, Kim, Fulbright & Bronen, 1997). Fully developed, the head of the hippocampus is 

immediately caudal and inferior to the gray matter of the amygdala (Tein, Feisberg, & 

Crain, 1992). The hippocampus proper consists of the cornu ammonis (literally 

“Ammon’s horn”) and dentate gyrus, which are separated by the hippocampal sulcus, an 

embryonic fissure between the two. The CA is divided into four parts, known as CA1 

through CA4, which are linearly aligned. CA1 is the largest and outermost aspect, 

extending from the subiculum to CA2. This in turn transitions to CA3 at the infolding by 

the dentate gyrus, while CA4 is surrounded on its exterior boundary by the dentate. The 

left and right hippocampi communicate directly through the interhippocampal 

commissure,  a white matter bundle that may also provide a pathway for the spread of 

seizures from an epileptogenic hippocampus to the contralateral side one side to the other 

(Khalilov, Holmes, & Ben-Ari, 2003).  

http://go.galegroup.com.ezproxylocal.library.nova.edu/ps/advancedSearch.do?inputFieldName(0)=AU&prodId=AONE&userGroupName=novaseu_main&method=doSearch&inputFieldValue(0)=%22Ilgam+Khalilov%22&searchType=AdvancedSearchForm
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The structural network in which the hippocampus resides is often referred to as 

the Papez circuit or medial limbic network. This system connects the hippocampus with 

the temporal and frontal lobes using the following components linked in series: 

Entorhinal cortex, hippocampus, fornix, anteromedial thalamus, mammillary body, 

cingulum, and parahippocampal gyrus (Shah, Jhawar, & Goel, 2012).  The 

parahippocampal gyrus sits inferior and lateral to the hippocampal formation, comprised 

primarily of the entorhinal, perirhinal, and parahippocampal cortices, and provides the 

majority of links between cortical and mesial temporal structures.  

The entorhinal cortex is the most visually prominent part of the mesial temporal 

region, located in the anterior portion of the parahippocampal gyrus adjacent to the 

subiculum (Amaral, 1999) and serving as the major bidirectional conduit between the 

hippocampus and neocortical association areas (Fitzgerald, Gruener, & Mtui, 2007). 

Two-thirds of information from polymodal association areas in superior temporal, 

prefrontal, and parieto-occipital cortices reaches the entorhinal cortex via the perirhinal 

and parahippocampal cortices, with the remainder reaching the entorhinal cortex directly 

(Burwell, 2000; Insausti, Amaral, & Cowan, 1987). The subiculum is essentially the 

continuation of the cornu Ammonis and thus connects the entorhinal cortex with the HPc. 

The perirhinal cortex is lateral to the rhinal sulcus. The lateral border of the PRc extends 

into the inferotemporal gyrus and extends anteriorly into the medial part of the temporal 

pole (Suzuki, 1996). The parahippocampal cortex occupies the posterior part of the 

parahippocampal gyrus. Perirhinal and parahippocampal cortices serve as the primary 

pathways for information between sensory association cortex and the hippocampus, via 

the entorhinal cortex.  
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There are additional connections between the hippocampus and frontal lobes. The 

ventral portions of CA1 and the subiculum have dense monosynaptic projections to the 

ventral medial prefrontal cortex (LaRoche, Davis, & Jay, 2000). As revealed by 

anterograde tracers injected into the rat brain, CA1 also has fibers running to the medial 

orbital cortex (Hoover & Vertes, 2007; Jay & Witter, 1991). Perirhinal and entorhinal 

cortices also project directly to the ventral medial prefrontal cortex (Hoover & Vertes, 

2007).  

Several areas of the diencephalon also play important roles in memory, primarily 

for recall of episodic information. Subcortical inputs to the hippocampus via the fornix 

include the amygdala, thalamus, and septal nuclei. The amygdala plays a role in 

emotionally-linked memory, but damage otherwise has little effect upon declarative 

memory performance (Kolb & Wishaw, 2009). While the diencephalic system is very 

important for declarative memory (Van derWerf et al., 2003) it is beyond the scope of 

this paper and will not be discussed further. A comprehensive review of the diencephalic 

memory system may be found in Zola-Morgan and Squire (1993).  

Hemispheric Memory Specialization 

Hemispheric lateralization for material-specific episodic memory has long been a 

neuropsychological concept, with some adult studies finding a hemispheric double-

dissociation whereby right hemisphere lesions caused visual memory impairment and left 

side lesions affecting verbal memory (Lezak, Howieson, & Loring, 2004). In a series of 

70 epilepsy surgery patients, Chiarvalloti & Glosser (2001) demonstrated verbal memory 

decline following left temporal lobectomy, while those with right temporal resection 

declined in visospatial memory. In a more recent study, Bonelli and colleagues (2010) 
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demonstrated a similar relationship using fMRI activation; they found a positive 

correlation between left hippocampal activation and verbal memory performance, while 

right hippocampal activation was related to proficiency in design learning. By contrast, 

however, numerous adult studies have noted left lateralization of verbal memory, but 

non-lateralized visual memory. In a comprehensive review of this topic, Saling (2009) 

concluded, “verbal and non-verbal memory are not opposites in terms of their respective 

patterns of cerebral organization.”  A number of studies have found verbal memory 

deficits in patients with left TLE but non-lateralized visual memory (Alessio et al., 2006; 

Baxendale et al., 1998; Bonilha et al., 2007; Sawrie, et al., 2001). At least one adult study 

was unable to determine reliable lateralization of either verbal or non-verbal memory in 

patients with TLE (Hermann, Seidenberg, Haltiner, & Wyler, 1992). Non-verbal memory 

measures have been much less lateralizing and generally shown to be poor indicators of 

right mesial temporal dysfunction in adults (Kneebone, Lee, Wade, & Loring, 2007; 

Moore & Baker, 1996; Wilde et al., 2003). In addressing the variability of findings, 

Jeyaraj et al. (2013) cautioned that particular characteristics of the tasks used are likely to 

influence their ability to lateralize impairments. 

Despite findings of verbal memory lateralization in the adult literature, there is 

considerably less systematic evidence of this phenomenon in pediatric populations 

(Laurent & Arzimanoglou, 2006). Most studies of verbal memory in children with TLE 

have found no relationship between seizure laterality and verbal memory deficits (Jocic-

Jakubi & Jovic, 2006; Kar, Rao, Chandramouli, Thennarasu, & Satishchandra, 2010; 

Lendt, Helmstaedter, & Elger, 1999; Nolan et al., 2004). Exceptions to this include 

Jambaque, Dellatolas, Dulac, Ponsot, and Signoret (1993), who discovered dissociable 
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memory patterns in children similar to those in adults, and Gonzalez et al. (2007), who 

noted a significant relationship between right temporal dysfunction and non-verbal 

memory. While Mabbott and Smith (2003) found no relationship between verbal memory 

and seizure lateralization, they did find impaired face recognition memory in children 

with right temporal lesions.  

Lateralization of verbal memory has demonstrated a strong relationship with 

propositional language hemisphericity, particularly in epilepsy patients. Labudda and 

colleagues (2010) described an association between left language fMRI activation and 

verbal memory decline following left mesial temporal resection in adult TLE patients. In 

children with seizures, Everts et al. (2010) found a significant association between side of 

fMRI language activation and hippocampal memory activation. In another study of adults 

with temporal lobe epilepsy, those with left-sided language dominance and left seizure 

focus had better non-verbal memory capacity (Kim, Yi, Son, & Kim, 2003). In each of 

these studies, patients with left-sided seizure focus and atypical language dominance had 

better verbal memory scores than those with traditional language laterality. Hermann et 

al. (1992) noted verbal memory differences between left and right temporal foci on the 

California Verbal Learning Test; however these became insignificant once they 

controlled for language function.  

Verbal memory lateralization appears to be related primarily to temporal 

neocortical structures, as mesial temporal areas have shown no modal bias.  Helmstaedter 

et al. (1997) evaluated 60 adults with left temporal lobe epilepsy and left language 

dominance to differentiate this aspect of mesial and lateral temporal lobe function. 

Memory and Wada testing were performed on all patients; and 32 underwent intracranial 
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event–related potential recordings during a word recognition paradigm.  The authors 

concluded that mesial temporal areas were modality-neutral for their role in long-term 

consolidation and retrieval, while the lateral temporal lobe supported language-specific 

memory functions.  These inferences were further reinforced by Binder et al. (2010) who 

published language lateralization and verbal memory results following left temporal 

lobectomy. They studied 30 adults with left temporal lobe epilepsy prior to and following 

resective surgery. Postoperative verbal memory decline was associated with language 

laterality, but not with asymmetrical fMRI activation of the hippocampi during scene 

encoding.  

Differences in verbal memory lateralization between adults and children may be 

further explained by two factors: (1) the developmental transition of language from pure 

visual to a combination of visual and verbal processes during the grade school years 

(Cramer, 1976) and increased hemispheric language specialization. Multiple fMRI 

studies of the degree of language lateralization have shown a progressive increase with 

age from early childhood through adolescence and early adulthood (Everts et al., 2009; 

Holland et al., 2001; Szaflarski, Holland, Schmithorst, & Byars, 2006). The literature also 

supports age-related hemispheric lateralization of general cognitive processes (Moses et 

al., 2002) and short-term visuospatial memory (Groen, Whitehouse, Badcock, & Bishop, 

2012). Such a developmental pattern for declarative memory was documented by 

Gonzalez, Mahdavi, Anderson, and Harvey (2012) in their evaluation of children with 

temporal lobe epilepsy longitudinally from childhood to young adulthood. In those with 

left seizure foci, verbal memory was worse at maturation (mean age 16.10 years) than it 
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had been during childhood, which might reflect either progressive memory lateralization 

or merely advancing memory decline.  

Development of Declarative Memory 

As indicated earlier, most current notions about the neurological substrates of 

memory are derived from adult studies.  Conversely, there is relatively little known about 

biological mechanisms involved in childhood memory development. While numerous 

books and reviews have documented memory status across the lifespan, a minority have 

integrated memory changes with neural substrates maturation. As indicated by Bauer 

(2007), there has been considerable recent focus on memory development in infants and 

toddlers, almost to the neglect of preschool and later years. In preverbal children, 

paradigms and techniques similar to those used to study memory in nonhuman primates 

are often used (Nelson, 1995), despite significant differences between the species.  

Improved memory over the course of childhood results from maturation of 

neuroanatomical structures and connectivity between them (Demaster & Ghetti, 2013; 

Ghetti & Bunge, 2012). Structurally, the mesial temporal structures develop relatively 

early in life, with all areas of the hippocampal formation identifiable at birth (Insausti, 

Cebada-Sanchez, and Marcos, 2010). The prefrontal cortex, by contrast, develops 

relatively late (Ofen et al., 2007), with prolonged myelination of axons, particularly those 

of the lateral prefrontal cortex, where aspects of executive control are coordinated 

(Fuster, 2002). Despite functional and anatomical immaturity of the dorsolateral 

prefrontal cortex working memory is almost fully mature by age 9 to 10 (Farber & 

Beteleva, 2011). Hippocampal-dependent registration develops in the first few months of 

life (Nelson, 1995), with mesial temporal activation observed during encoding in early 
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childhood and decreasing with age (Maril et al., 2010). Early childhood encoding relies 

predominantly on perceptual networks; with increasing age frontal structures gradually 

assume a more important role (Maril et al., 2011). fMRI studies also demonstrate 

hippocampal activation from an early age during recall, although considerably more 

robust in adolescents and adults (Ghetti, DeMaster, Yonelinas, & Bunge, 2010).  

It is well-recognized that memory performance generally improves as children 

mature, with greater memory plasticity in the nascent brain (Shing & Lindenberger, 

2011).  Episodic memory involves an interaction between “associative” and “strategic” 

components. Whereas the capacity to form and store associations is relatively mature by 

mid-childhood, the use of memory strategies does not develop until somewhat later 

(Shing & Lindenberger, 2011), coinciding with the maturation of executive functions. 

According to Anderson, Northam, Hendy, and Wrenall (2001) executive abilities undergo 

growth periods from birth to age two, from seven to nine years old, and between 16 and 

19 years of age. Rhodes, Murphy, and Hancock (2011) found verbal strategies aiding 

memory retrieval beginning at age 10. Early memory performance is also limited by 

inexperience. A greater repertoire of background knowledge is linked with greater 

capacity to bind related information (Srull, 1983). Thus, age-related improvements in 

fund of general knowledge (i.e., crystallized intelligence) may directly influence memory 

performance (Ofen, 2012). More sophisticated knowledge structures also facilitate better 

use of organizational strategies (Srull, 1983). 

There is evidence that emerging language skills are an important factor in 

childhood memory maturation. While verbal expression of past events provides the 

earliest evidence of intentionally accessed memory in childhood, the onset of language 
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use marks an important event in memory development. Even in pre-verbal infants, verbal 

cues given by adults have been shown to facilitate memory performance (Hayne & 

Herbert, 2004). According to social-interactionist theory, linguistic development is a vital 

element of mental schemata (Sutton, 2002). Vygotsky (1978) described language as a 

tool that forms the basis of thought processes such as reasoning and problem solving. He 

further reasoned that internal and external speech also provide a conduit for learning, use 

of strategic thought, and behavioral regulation. Furthermore, language development 

appears to influence the emergence of certain memory strategies. Compared with normal 

children, children with prelingual hearing loss have noted delays in the evolution of 

systematic strategies (Bebko, 1998).  

Memory Processes: Encoding, Storage, and Retrieval 

There are several processes involved in successful execution of declarative 

memory: information that is perceptually captured is initially encoded and then stored, 

after which it may either be retrieved or forgotten. Encoding refers to the initial 

awareness, comprehension, and registration of stimuli (Paller, 2006). Experiences or 

stimuli perceived but not retained are processed very differently than those that are. 

Memory encoding is dependent upon the prefrontal cortex for organization of materials 

within the context of working memory (Blumenfeld & Ranganath, 2007; Fletcher, 

Shallice, & Dolan, 1998), while mesial temporal structures appear to support subsequent 

transfer into long-term storage. Schott and colleagues (2013) noted fMRI differences in 

neuroanatomical activity dependent upon the quality of stimulus encoding. Deeper 

encoding promoted by greater elaboration of stimuli leads to better retrieval than 

perceptual encoding alone (Craik & Tulving, 1975; Schott et al., 2013).  
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Declarative memories are believed to reside in various areas of the neocortex; 

however despite technological advances in mapping cognitive networks and their 

corresponding substrates, the exact details of memory formation and retrieval remain 

unknown. While mesial temporal areas appear to be crucial for formation and initial 

retrieval of memories, they become less important as information is gradually transferred 

and consolidated within the neocortex (Alvarez & Squire, 1994; Squire & Alvarez, 

1995). Presumably, neurophysiological representations of experiences or stimuli must 

first be converted to a format or “trace” compatible with cortical storage (Pribram, 1971). 

Hebb (1949) postulated that simultaneous activation of neighboring neurons is 

responsible for memory storage and learning through increased synaptic strength between 

the involved cells. Hebb also introduced the concept of organized storage by related 

cortical function, whereby synaptic changes occur close to corresponding neocortical 

sensory regions.  

Penfield and Perot (1963) presented one of the first accounts of cortical storage 

after they electrically stimulated the temporal neocortex of more than 1000 individuals 

during awake craniotomy for epilepsy surgery. In a small proportion of these patients, 

they elicited vivid recollection of past personal experiences or flashbacks. This procedure 

has been replicated numerous times (reviewed by Selimbeyoglu and Parvizi, 2010), with 

elicitation of various sensory and behavioral phenomena across the studies, depending 

upon the area stimulated. Jacobs, Lega, & Anderson (2012) suggested that such 

memories are evoked by altering neural circuits to approximate their normal status during 

memory retrieval. Cortical storage is also supported by animal studies in which damage 
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or inactivation to areas of the neocortex has produced selective memory deficits (Shema, 

Sacktor, and Dudai, 2007; Wiltgen, Brown, Talton, & Silva, 2004).  

The process by which memory traces stabilize and become resistant to 

interference and decay is known as consolidation. Ribot (1882) described a time gradient 

commonly associated with amnesia, in which memories acquired earliest in life are the 

least vulnerable to loss due to brain damage. Furthermore, newest memories are the least 

stable, but are gradually strengthened over time (Wiltgen et al., 2004). Smith & Squire 

(2009) presented evidence for a reciprocal temporal relationship between mesial temporal 

lobe and cortical structures, whereby with the passage of time stored information relies 

more on the cortex and less on the hippocampus. Consolidation is enhanced by 

distributed learning, or spreading learning trials out over time, rather than having them all 

in a single session (Litman & Davachi, 2008). This essentially allows for initial 

consolidation of information before re-activation, which makes memories very resistant 

to decay.  

Synapses between the prefrontal cortex and hippocampus are bidirectionally 

modifiable, contributing to long-term potentiation necessary for memory maintenance 

(Laroche et al., 2000). Signals between these structures are regulated through neuronal 

oscillations (Colgin, 2011). The nature of these oscillations varies with the type of 

information being relayed and its relevance to other cognitive processes (Benchenane, 

Tiesinga, & Battaglia, 2011). Oscillations within the theta band, and particularly their 

coherence between prefrontal and hippocampal regions, appear to be key in consolidation 

of memories (Benchenane et al., 2010). This process appears to be prominent during 
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slow-wave sleep, when there is strong synchronous communication between mesial 

temporal and frontal structures (Wierzynski, Lubenov, Gu, & Siapas, 2009).  

As seen with patient H.M., remote memories eventually become independent of 

the hippocampus (Colgin, 2011). This has been attributed to remote memory storage in 

cortical areas of the brain, allowing other areas to autonomously retrieve memories. It 

could also have possible attribution to the changing nature of memory content over time. 

A time-dependent gradient has been reported for transformation of memory traces as they 

shed many of their details, becoming gradually more parsimonious (Furman, 

Mendelsohn, & Dudai, 2012; Nadel, Winocur, Ryan, and Moscovitch, 2007) Despite the 

observed correlation between hippocampal involvement in retrieval and loss of memory 

detail, the causative direction of this relationship remains unknown. The literature does 

not indicate whether remote memories become less dependent upon the hippocampus as a 

result of such changes to memory traces, or if they lose detail due to hippocampal 

disengagement. A related phenomenon was proposed by Cermak (1984), who described 

episodic memory being stripped of “when”, “what,” and “where” to become semantic in 

nature; under this model, newly acquired memories would have an episodic quality, with 

remote memories becoming more semantic over time.  

Memory retrieval involves re-activation of memory traces, and depending upon 

the complexity of the memory, may require linking or reconstruction of episodic 

components (Kokinov, Petkov, & Petrova, 2007).  Like the other processes, memory 

retrieval relies on interaction between the prefrontal and mesial temporal regions, often 

with reorganization of neural circuits (Osada, Adachi, Kimura, & Miyashita, 2008). 

Various executive skills are involved in both episodic and semantic memory retrieval 
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(Shimamura, 2002), with a greater executive burden for detailed recollection than 

familiarity tasks (Dobbins, Foley, Schacter, & Wagner, 2002). During retrieval, 

prefrontal regions typically show a greater response to familiar than unfamiliar stimuli 

(Xiang & Brown, 2004). The majority of retrieval processes are mediated by the left 

prefrontal cortex, but the precise anatomical substrate varies with the specific process 

(Shimamura, 2002; Xiang & Brown, 2004). Individuals with strong working memory 

skills successfully use organizational strategies during the learning phase and contextual 

cues during retrieval to a much greater extent with those with poor working memory 

(Spillers & Unsworth, 2011; Unsworth & Spillers, 2010).  

Memory recollection may be either free or associative retrieval, while familiarity 

tasks are based on recognition of stimuli. There is some ongoing debate regarding the 

neuroanatomical substrates supporting differing types of retrieval. One view maintains 

that both recollection and familiarity are supported by hippocampal neurons (Rutishauser, 

Schuman, & Mamelek, 2008). The other indicates hippocampal mediation only for 

recollection (Yu, Johnson, & Rugg, 2012), which is consistent with familiarity supported 

by perirhinal cortex (Pihlajamaki et al., 2003). Several recent studies have provided a 

degree of clarity to this controversy by defining conditions under which the hippocampus 

is likely to be involved. Smith, Wixted, and Squire (2011) reported hippocampal 

involvement in both recollection and familiarity only when memories are robust. An 

argument has also been made for recollection as a continuous, rather than discrete 

process, and therefore both are supported by the same brain regions (Wixted, Mickes, & 

Squire, 2010). Furthermore, mesial temporal activity has demonstrated greater activation 
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with successful retrieval rather than just attempted retrieval (Nyberg, McIntosh, Houle, 

Nilssen, & Tulving, 1996). 

Executive Functioning and Working Memory 

Overview 

Executive functioning (EF) constitutes a collection of cognitive skills required for 

many complex, goal-oriented behaviors (Elliott, 2003). While EF is difficult to define 

discretely, most sources conceptualize it as encompassing higher order cognitive 

processes, often involving control over other types of thought and behavior (Black, 

Semple, Pokhrel, & Grenard, 2011). Internal processes regulated by EF include 

information and knowledge processing, behavioral control, and metacognitive activities 

enabling introspection and self-monitoring (Chan, Shum, Toulopoulou, & Chen, 2008). 

Executive skills also include novel problem-solving that might require the flexibility to 

modify a strategy or behavior in the presence of new information (Elliott, 2003) as well 

as speculation of potential future outcomes so goal-directed strategies may be formulated 

(Jurado & Rosselli, 2007).   

The accurate clinical assessment of executive skills may be confounded by 

conceptual issues. Common tests include general problem-solving ability, thought 

flexibility, fluency, planning, behavioral initiation, response inhibition, and deductive 

reasoning (Chan, Shum, Toulopoulou, & Chen, 2008; Strauss, Sherman, & Spreen, 

2006), but these lack specificity because they require multiple skills, such as perception 

and motor output. Although once believed to measure purely frontal lobe dysfunction, it 

is often difficult to dissociate processes occurring in other anatomical zones. Data from 

clinical and imaging studies have linked these measures primarily to the frontal lobes, 
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especially prefrontal areas (Stuss & Alexander, 2000), but some additional variance has 

been attributed to other regions (McDonald et al., 2006). Thus, while the terms 

“executive function” and “frontal lobe function” continue to be used synonymously, this 

appears to be an overly simplistic conceptual view, as these functions depend upon 

integration with other cerebral areas across dynamic functional networks (Elliott, 2003; 

Stuss & Alexander, 2000).  

Some authors include working memory under the umbrella of executive functions 

(Elliott, 2003). Others have conceptualized it as a type of “executive attention” (Engle, 

2002), while factor analytic studies have established executive attention as a common 

element of both executive functioning and working memory (McCabe et al., 2010).  

Depending upon the executive process required by a specific working memory task, PET 

activation has been noted within either the dorsolateral or ventrolateral prefrontal cortex, 

or both (Owen, Evans, & Petrides, 1996; Owen, Lee, & Williams, 2000). However, more 

recent evidence of widespread working memory networks encompassing both neocortical 

and mesial temporal regions calls for reconsideration of some traditional working 

memory concepts (Poch & Campo, 2012; Stretton et al., 2012).  

Role of Frontal Cortex in Explicit Memory 

Executive processes mediated by the frontal lobes play an important role in 

various aspects of memory and learning. Functional imaging has demonstrated activation 

of left prefrontal cortex when subjects were tested on various episodic memory tasks 

(Dobbins et al., 2002).  Cortical thickness within frontal areas has also been associated 

with verbal memory scores (Chang et al. 2010).  While there is evidence connecting 

frontal lobe damage with disrupted declarative memory, there tend to be qualitative 
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differences in performance between frontal and temporal lesions (Ranganath & Knight, 

2002). In comparing patients following epilepsy surgery, those with temporal resections 

had worse recall overall, but those with frontal resections struggled more with encoding 

and retrieval (McDonald, Bauer, Grande, Gilmore, & Roper, 2001). Wheeler, Stuss, and 

Tulving (1995) performed a meta-analysis on 21 studies exploring the relationship 

between the frontal lobes and memory. They determined that frontal lesions significantly 

disrupted memory function for free recall, cued recall, and recognition compared with 

normal controls. However, they also noted that frontal lesions differentially affected 

recall tests to a greater extent than recognition tests.  

Declarative memory performance is highly dependent upon executive skills 

mediated by the frontal lobes, including working memory, vigilance, inhibitory control, 

and retrieval fluency (Baddeley, 1997; Head, Rodrigue, Kennedy, and Raz, 2008). 

Children are able to acquire simple factual information from an early age (Picard, Cousin, 

Guillery-Girard, Eustache, & Piolino, 2012) but greater executive ability is required for 

more novel or complex memory tasks (Busch et al., 2005). The prefrontal cortex is a 

primary substrate for processes associated with organization of learned information 

(Fletcher et al., 1998) and guides the encoding and retrieval of stored memory 

representations (Badre & Wagner, 2007; Blumenfeld & Ranganath, 2007). It supports 

long-term synaptic plasticity as part of the neural network controlling declarative 

memory (Jung, Baeg, Kim, Kim, & Kim, 2008). Along with progressive development of 

the frontal lobes, memory strategies such as rehearsal, elaboration, and organization 

generally improve as children mature (Ofen, 2012). Contextual recall of episodic memory 

is also highly reliant upon executive processes (Picard et al., 2012). 
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Relationship of Executive Functioning to Declarative Memory  

Deficient explicit memory secondary to weak executive skills have been noted 

across populations with various neurological disorders. Hermann, Seidenberg, Lee, Chan, 

and Rutecki (2007) indicated 29 percent of adults with TLE had both memory and 

executive skills impairments, while 24 percent exhibited isolated memory impairment. 

Noel et al. (2012) evaluated memory recall and executive functioning in detoxified 

alcoholics. Compared with non-alcoholic controls, the alcoholic subjects had 

significantly worse performance on the California Verbal Learning Test. Stepwise 

regression revealed Trails B scores were strong predictors of immediate and delayed 

word list recall. In these subjects, EF deficits appeared to affect encoding and retrieval 

with intact information storage. Simard, Rouleau, Brosseau, Laframboise, and Bojansky 

(2003) found memory deficits that varied directly with executive abilities in adults with 

ruptured aneurysms of the anterior communicating artery. Those with poor executive 

functioning had the worst free recall, while recognition was still intact. Despite disparate 

etiologies, these patients demonstrated intact memory storage overall, with deficient 

retrieval of stored information. 

In healthy older adults EF has been demonstrated as a significant mediator of 

episodic memory (Lee et al., 2012); however in the majority of aging studies, causal 

relationships have been less consistently found. Declines in both EF and memory in 

normal aging as well as Alzheimer’s disease have been clearly documented (Bisiacchi et 

al., 2008). Degenerative brain changes in older adults generally manifest as deficient 

storage as well as poor application of strategies (Shing et al., 2010). Among individuals 

with Mild Cognitive Impairment (MCI) those with good EF have demonstrated better 
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episodic memory performance than those with more deficient executive skills (Chang et 

al., 2010). In older adults with MCI or dementia, greater volumes of MRI white matter 

hyperintensity have adversely affected both EF and episodic memory, although the 

relationship between EF and memory has varied among studies. Smith et al. (2011) found 

independent associations between these two factors and hyperintensity volume. Their 

study showed lesion location was the most important factor in predicting cognitive 

deficits. By contrast, Parks et al. (2011) reported mediation of hyperintensity effects upon 

episodic memory. Diminished executive skills have been noted in elderly with severe 

mesial temporal atrophy (Oosterman et al., 2012). Furthermore, hippocampal atrophy in 

Alzheimer’s patients interacted with EF such that patients with decreased hippocampal 

volume and good EF had better episodic memory function than those with worse EF 

(Parks et al., 2011).    

Working Memory 

In discussing declarative memory, it is imperative to address working memory 

due to the associations between working memory, long-term memory, and their related 

neurological substrates. The ability to maintain and manipulate information has been 

highly correlated with intellectual and reasoning skills (Conway, Kane, & Engel, 2003; 

Poch & Campo, 2012). Numerous theoretical models of working memory have been 

proposed. Atkinson and Shiffrin’s (1968) unitary memory model distinguished between 

“structural” systems for memory storage, and control processes to manipulate and 

transfer stored information. Along these lines, Baddeley and Hitch (1974) postulated that 

working memory utilized separate storage and control processes. However, their model is 

predicated upon multiple passive systems for temporary data storage with an independent 
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executive controlling system to manipulate the stored information. These slave systems 

include a verbally-based “phonological loop” and nonverbal “visuospatial sketchpad” 

with later addition of an episodic buffer (Baddeley, 2003). The phonological loop is the 

best-developed component of the model, conceptualized as a temporary warehouse for 

discrete verbal information (Baddeley, 2000). The episodic buffer has the theoretical 

capacity to bind information from the other working memory components as well as from 

long-term memory, thus modeling a unified gateway mechanism for multimodal episodic 

memory.    

Medial temporal involvement in working memory continues to be controversial 

(Poch & Campo, 2012), as the interaction between hippocampal structures and prefrontal 

cortex is apparently more complex than previously recognized (Laroche et al., 2000). 

Hippocampal activation during working memory has not been seen universally however, 

but instead is systematically dependent upon the specific task demands (Laroche et al., 

2000). Functional MRI studies by Takashima et al., (2006) identified common areas 

involved in declarative memory and certain working memory processes; sustained 

activation of the left frontal and right occipital regions were consistent with deeper 

encoding processes. fMRI has also demonstrated bilateral hippocampal activation during 

maintenance of unfamiliar faces (Ranganath & Esposito, 2001). 

Olson, Moore, Stark, and Chatterjee (2006) found impaired visual working 

memory in patients with mesial temporal lesions when stimuli could not be verbally 

recoded. Working memory was also disrupted in adults with epilepsy due to mesial 

temporal sclerosis, regardless of laterality of pathology (Stretton et al., 2012). However, 

intact working memory has been reported in adults (Tudesco et al., 2010) and children 
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(Cormack et al., 2012) with temporal lobe epilepsy due to hippocampal sclerosis. 

Similarly, H.M.’s immediate auditory span was within normal limits (Milner, Corkin, & 

Teuber, 1968); Jeneson, Mauldin, and Squire ( 2010) studied others with mesial temporal 

damage and found they were able to maintain a small number of object-location 

associations over a short period of time. As with H.M., their performances fell off sharply 

with larger information sets, regardless of repeated learning trials. While participation of 

mesial temporal areas appears to occur “if the capacity of working memory is exceeded” 

(Jeneson & Squire, 2011), fMRI has demonstrated progressively diminished mesial 

temporal activity with increased working memory demands (Stretton et al., 2012).  

Information held in working memory originates from both sensory input and 

long-term stores, dependent upon the task (Strauss, Sherman, & Spreen, 2006). A number 

of studies have described a direct relationship between long-term memory activation and 

working memory capacity (Cantor & Engle, 1993; Cantor, Engle, & Hamilton, 1991; 

Radvansky & Copeland, 2006; Unsworth, Brewer, & Spillers, 2013). Recent studies have 

implicated the hippocampus in coordination of neocortical regions for the purpose of re-

activating internal representations during WM efforts (Poch & Campo, 2012).  

Synchronization of hippocampal and prefrontal areas has also been measured by 

coherence of rhythmic activity in rats while engaged in learning (Benchenane et al., 

2010). These oscillations change depending upon the type of information being 

processed, and may have a role in working memory as well as long-term consolidation 

(Benchenane et al., 2011), particularly during slow wave sleep (Colgin, 2011).  

The literature also presents evidence of extrahippocampal mesial temporal 

activity during working memory tasks. Egorov et al. (2002) found individual neurons in 
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the entorhinal cortex with the ability to generate graded persistent activity in response to 

consecutive stimuli. Theta oscillations in the entorhinal cortex correlate with working 

memory performance (Fransen, 2005) as they allow cells to maintain information for 

simultaneous computation or manipulation. The entorhinal cortex also appears to play a 

role in maintaining representations of stimuli with overlapping or ambiguous properties 

across short delay periods (Newmark, Schon, Ross, & Stern, 2013).  

Temporal Lobe Epilepsy 

Introduction to Epilepsy  

Epilepsy is defined as a brain disorder characterized by a predisposition toward 

recurring, unprovoked seizures. It is the most common serious neurological disease seen 

in children (Friedman & Sharieff, 2006), affecting more than 345,000 children in the U.S. 

alone (Data Resource Center for Child and Adolescent Health, 2010), with much higher 

prevalence in developing countries (World Health Organization, 2016). Between 25 and 

40 percent of patients do not respond adequately to pharmacological management and are 

thus considered to have refractory epilepsy (Kwan et al., 2010; Snead, 2001). Patients 

whose seizures originate from a focal area of the brain are especially at risk for pharmao-

resistance (Donnadieu, 2013) but often benefit from surgical intervention (Foldvary, 

Bingaman, & Wyllie, 2001).  

Lesional Substrates of Temporal Lobe Epilepsy 

Focal seizures are usually classified into syndromes based upon the lobe in which 

they originate, although they may be caused by a variety of brain pathologies. Temporal 

lobe epilepsy (TLE) is the most common form of epilepsy (Devinsky, 2004) and is 

etiologically heterogeneous. Adult temporal seizures most commonly arise from acquired 
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damage to mesial temporal structures (Blumcke, 2009), while in children the basis may 

be either developmental or acquired postnatally. Focal cortical dysplasia (FCD) is one of 

most commonly identified developmental malformations associated with intractable 

pediatric epilepsy (Harvey, Cross, Shinnar, & Mathern, 2008; Cepeda et al., 2006), and is 

frequently associated with early seizure onset and neurological deficits (Chassoux et al., 

2000). A high percentage of children with developmental malformations of the temporal 

neocortex have additional pathology of the hippocampus (Bocti et al., 2003; Mohamed et 

al., 2001). 

Focal Cortical Dysplasia. FCD is a developmental malformation of cortical brain 

tissue, identified by microscopic findings of disrupted laminar organization and abnormal 

neuronal morphology. While MRI findings typically include cortical thickening, blurring 

of the gray-white interface, and signal changes in the underlying white matter, FCD often 

remains undetected on MRI (Hader et al., 2004). FCD lesions are intrinsically 

epileptogenic (Boonyapisit et al., 2003; Morioka et al., 1999) often leading to high 

seizure burden (Bast, Ramanti, Seitz, & Rating, 2006). FCD as a cause of epilepsy was 

first recognized by Taylor four decades ago (Taylor & Falconer, 1971), when he reported 

cortical disorganization and large, bizarre-shaped cells in ten epileptic patients. Bocti et 

al. (2003) identified FCD as the cause of temporal lobe epilepsy in 64% of pediatric 

surgical cases evaluated.   

Several groups have proposed classification systems specific to the focal cortical 

dysplasias. In 2004 Palmini et al. documented the consensus of an expert panel based on 

specific variants of neocortical architecture and cellular histopathology. Their taxonomy 

of FCD subtypes enabled more extensive study of histological correlation with clinical 
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variables. More recently, Blumcke and colleagues (2011) proposed an expansive 

classification system that includes occurrence of FCD in tandem with other brain lesions.   

Hippocampal Sclerosis. Hippocampal sclerosis (HS), also called mesial temporal 

sclerosis or Ammon’s horn sclerosis, consists of neuronal loss, resultant atrophic change, 

and gliotic scarring. While the exact etiology is unknown (Thom, Zhou, Martinian, & 

Sisodiya, 2005), there is a strong association between febrile convulsions in childhood 

and the later observation of HS (Cendes et al., 1993). Despite lack of known causative 

mechanisms, animal models of damage to all hippocampal regions resulting from 

repeated kindled seizures suggest that HS is an acquired lesion (Cavazos, Das, & Sutula, 

1994). HS further appears to be a progressive disorder, with greater severity of pathology 

associated with earlier onset and longer duration of seizures (Fuerst et al., 2001). Gradual 

decreases in hippocampal volume have been noted in patients with continued seizures 

(Fuerst et al., 2003), likely related to uncontrolled inflammation caused by a casade of 

molecular and cellular events associated with ongoing epileptiform discharges (Yang, 

Zhou, & Stefan, 2010).  

Wyler and colleagues (1992) described a grading system for the progression of 

hippocampal sclerosis (based on relative gliosis and neuronal cell loss at pathology): 

 Grade I: Mild damage to CA1, CA3, and/or CA4, with less than 10% neuronal loss 

 Grade II: Moderate damage with 10 to 50% loss of neurons 

 Grade III: Severe damage with more than 50% neuronal dropout, sparing CA2 

 Grade IV: Marked mesial temporal damage, including greater than 50% cell loss 

involving all pyramidal cell layers. May also involve the dentate, subiculum, and 

parahippocampal gyrus. 
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More recently, an international consensus was reached that further refined HS subtypes 

based on specific areas of cell loss and gliosis (Blumcke et al., 2013). 

MRI evidence of HS includes volumetric loss, increased T2 signal, and loss of 

normal internal architecture (Lewis, 2005). While MRI visibility often predicts that 

seizures will be pharmacologically resistant (Spooner, Berkovic, Mitchell, Wrennall, & 

Harvey, 2006), the severity of MR findings has not been directly correlated with 

intractability (Briellmann et al., 2007). Watson, Nielsen, Cobb, Burgerman, and 

Williamson (1996) devised a volumetric MRI grading system for HS, yielding high 

correlation with Wyler’s pathological grades. This grading method is based upon 

comparison between the measured volume of the epileptogenic hippocampus and that of 

the non-involved side. Although such volumetric measurement requires manually 

defining structural contours due to the complexity of the hippocampal formation, it also 

allows pre-operative estimation of HS severity.    

  HS is the most common etiology of refractory seizure activity in adults (Lee & 

Lee, 2013). However, in children with TLE, HS is rarely found isolated from other 

pathologies (Mani, 2008).  In a pediatric surgical series of 136 TLE patients aged 3 mos 

to 20 years, only 15% had HS (Wyllie et al., 1998). The majority of HS seen in childhood 

is in older adolescents, rather than younger children (Duchowny et al., 1992; Wyllie, 

1998); while it does exist in younger children (Mohamed et al., 2001) the incidence in 

infants is rare (Mani, 2008).    

Dual Pathology. As implied by the label, “dual pathology” denotes the presence 

of more than one lesion type. For the purposes of this study, dual pathology designates 

only hippocampal sclerosis in tandem with FCD, consistent with type IIIa (Blumcke et 
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al., 2011). In most patients, the co-existing FCD is also located within the same temporal 

lobe as the HS (Fauser et al., 2006). In a minority of cases, signs of dysplastic tissue 

within the hippocampus itself have also been noted (Bocti et al., 2003).  

Dual HS and FCD pathologies are frequently detected in epilepsy surgery 

patients, but the incidence varyies with population selection criteria. Overall studies of 

pediatric patients with temporal lobe epilepsy reveal dual pathology in 58 to 79 % of 

surgical patients (Bocti et al., 2003; Mohamed et al., 2001). Fifty-six percent of children 

and adolescents with histopathologically confirmed FCD evidenced dual pathology 

regardless of lobar location of dysplasia (Krsek et al., 2008). In children and adults with 

early seizure onset and confirmed FCD, 27% to 40% had co-occurring HS irrespective of 

seizure localization (Tassi et al., 2002; Fauser et al., 2006); in a similar sample using 

MRI evidence of FCD limited to the temporal lobes, this jumped to 87% (Ho, Kuzniecky, 

Gilliam, Faught, & Morawetz, 1998). In a surgical series of 33 adults with TLE, the 

majority had isolated HS, with only 48% evidencing dual pathologies (Eriksson, 

Nordborg, Rydenhag, & Malmgren, 2005). 

Invasive EEG recordings have revealed patterns of epileptogenic activity 

associated with dual pathologies. In twelve children and young adults with temporal dual 

pathology seizure activity originating from the mesial temporal area in 41 % of the cases, 

35 %t from the temporal neocortex, and 22 % demonstrated simultaneous discharges 

(Fauser & Schulze-Bonhage, 2006). Etiological theories of co-existing temporal 

pathology include kindling from the developmental malformation causing secondary 

damage to the hippocampal structures, and alternately, that both originate from a 

common developmental disturbance during gestation (Ho et al., 1998).  
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Cognitive and Psychological Considerations in Epilepsy  

Cognitive deficits are frequently comorbid in children with epilepsy (Nolan, et al, 

2003), particularly those with intractable seizures (Besag, 2006; Trimble, 1988). There is 

also a higher than normal incidence of learning disorders in this population (Beghi, 

Cornaggia, Grigeni, & Beghi, 2006; Lhatoo & Sander, 2001). TLE patients are at 

increased risk of impaired memory, language, and executive skills (Hermann et al., 2007; 

Laurent & Arzimanoglou, 2006). In most patients, these cognitive deficits are detectable 

at or before the onset of seizures (Helmstaedter & Kockelmann, 2006). While mental 

deficiencies are not universal to children with TLE, seizures beginning in childhood are 

associated with greater cognitive impairments than normal controls or patients with later 

onset (Hermann et al., 2002). The data suggest disruption of an early critical period of 

development by early seizure onset (Cormack et al., 2007; Glosser, Cole, French, Saykin, 

& Sperling, 1997; Korman et al., 2013). Cormack et al. (2007) reported that 82% of 

children with intractable temporal seizures that began prior to one year old had full-scale 

IQ scores below 79. While adult TLE is associated with a progressive decline in 

intellectual ability related to duration of the disease (Jokeit and Ebner, 1999; Marques et 

al, 2007; Oyegbile et al., 2004) pediatric studies have not demonstrated this relationship 

(Cormack et al., 2007; Korman et al., 2013). 

Epilepsy also frequently has adverse impact upon quality of life and family 

adaptation (Leonard & George, 1999; Smith, Elliott, & Lach, 2004). In addition to 

obvious medical complexities, children with epilepsy have a high prevalence of comorbid 

psychiatric issues such as depression, anxiety, psychosis, and aggression (Grabowska-

Grzyb, Jedrzejczak, Naganska, & Fiszer, 2006; Cornaggia, Beghi, Provenzi, & Beghi, 
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2006). Behavioral problems are also common (Austin et al., 2001; McDermott, Mani, & 

Krishnawami, 1995) including ADHD (Sherman, Slick, Connolly, and Eyrl, 2007) and 

social difficulties (Sugiyama et al., 1996), with considerably higher co-occurrence of 

autism than in the general population (Berg & Plioplys, 2012; Clarke et al., 2005). 

Memory Deficits in Temporal Lobe Epilepsy 

While seizures originating from anywhere in the brain can affect overall 

cognition, there are specific deficits associated with various focal lobar locations. TLE is 

associated with global cognitive deficits, but has its primary effect upon declarative 

memory (Guimaraes, Li, et al., 2007; Jocic-Jakubi & Jovic, 2006; Ozkara et al., 2004; 

Tudesco et al., 2010). In contrast, primary deficits in frontal epilepsy include 

psychomotor speed, attention, and immediate memory span (Helmstaedter, Kemper, & 

Elger, 1996). Nolan and colleagues (2004) compared memory performance in children 

with temporal lobe epilepsy, frontal lobe epilepsy, and childhood absence epilepsy. Their 

results indicated memory disturbance in all three groups, but patients with TLE had the 

highest risk of mnemonic deficits. Children with temporal lobe seizures demonstrated 

significant impairment in all verbal and most visual skills. Children with frontal lobe 

epilepsy were statistically below the norm for some of these tasks, while those with 

childhood absence seizures had only subtle deficits in visual memory.  

A number of researchers have examined memory in patients with temporal lobe 

epilepsy (TLE). Most have found greater deficits associated with longer duration of 

epilepsy (Cheung, Chan, Chan, Lam, & Lam, 2006; Helmstaedter, Kurthen, Lux, Reuber, 

& Elger, 2003; Kent et al., 2006; Marques et al., 2007) and age of seizure onset (Alessio 

et al., 2004; Baxendale et al.,1998; Kent et al., 2006). Temporal lobe seizure activity is 
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associated with neuronal loss in the hippocampi and frontal cortex (Guimaraes, Bonilha, 

et al., 2007). While seizure frequency has been identified as a significant factor (Alessio 

et al., 2004), mnemonic impairments appear to result from a combination of transient 

ictal events and damage to neuronal structures (Helmstaedter & Kockelmann, 2006; 

Ozkara et al., 2004). Progressive memory impairments (Helmstaedter, Kurthen, Lux, 

Reuber, & Elger, 2003) are accompanied by reduced hippocampal fMRI activation 

during complex scene encoding in proportion to illness duration (Cheung et al., 2006). 

Declarative memory performance has been correlated to hippocampal volume as well as 

frontal lobe gray matter volume (Baxendale et al., 1998; Guimaraes, Bonilha, et al., 

2007). 

Certain patients with TLE may have normal performance on standard memory 

testing after a 30-minute delay, but deficient long-term retention, suggesting disruption of 

only long-term consolidation (Blake, Wroe, Breen, & McCarthy, 2000). Wilkinson et al. 

(2011) matched TLE patients to control subjects based on IQ, age, and gender. Compared 

with controls, patients with left sided HS demonstrated verbal memory deficits within a 

one-hour delay. Forgetting after six weeks was noted in patients with pathology on either 

side, and was related with seizure frequency. However, Bell (2006) found conflicting 

results with a different type of memory metric. Using retention scores, he demonstrated 

impaired performance for adults with TLE on WMS-III Logical Memory after the 

standard 30-minute delay, but after two weeks forgetting was proportional to controls. 

The utility of long-term retention testing in patients with TLE has not been substantiated, 

but these discrepant results do illustrate the importance of choosing proper measures and 

scoring methods. 
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Executive Deficits in Epilepsy 

Impaired EF is a common finding in children with epilepsy, even when seizures 

are well-controlled (Parrish et al., 2007). Such deficits are found in localization-related as 

well as generalized epilepsy syndromes, but are notably worse in those with greater 

seizure burden (Treitz, Daum, Faustmann, & Haase, 2009). Children with recent-onset 

epilepsy have shown significantly greater EF deficits on parent ratings and objective 

testing compared with normal controls, even when seizures are well controlled (Parrish et 

al., 2007).  In this population, executive skills are strongly related to quality of life 

(Sherman, Slick, & Eyrl, 2006). Children with frontal lobe epilepsy are particularly at 

risk for poor adaptive skills due to executive dysfunction (Culhane-Shelburne, Chapieski, 

Hiscock, & Glaze, 2002).  

As expected, executive dysfunction often presents in patients with seizures 

originating in the frontal lobes. Many executive skills are subserved by a distributed 

network involving the frontal regions as well as other areas of the cortex (McDonald et 

al., 2006). Propagation of seizure activity to the frontal lobes by extrafrontal seizure 

activity is not uncommon (Stretton & Thompson, 2012). Indeed, executive deficits are 

also found in extrafrontal epilepsy (Treitz, Daum, Faustmann, & Haase, 2009), however 

there are notable localization-related and task-related differences (McDonald et al., 

2005).  

Rzezak and colleagues (2007) reported that children with temporal lobe epilepsy 

performed worse than controls on tests of semantic fluency, cognitive shifting, and 

forward digit repetition. Factors associated with poor EF included early age of seizure 

onset, years with seizures, and polypharmaceutical treatment.  Those with mesial lesions 
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had worse overall executive performance than those with neocortical temporal lesions 

(Rzezak et al., 2007). Adults with mesial temporal seizures also performed worse than 

controls for risk-based decision-making based on feedback (Labudda et al., 2009). 

Several groups also found relative impairments on the Wisconsin Card Sort Test in TLE 

patients compared to neurologically normal controls (Kim, Lee, Yoo, Kang, & Lee, 2007; 

Martin et al., 2000; Wang et al., 2011). However, in contrast to pediatric studies 

associating mesial temporal foci with more impaired executive performance than lateral 

temporal foci, this was not a consistent finding across adults with TLE (Kim et al., 2007; 

Martin et al., 2000).  

Cognition in Dual Pathology Patients 

Only one report of neuropsychological performance in patients with dual-

pathology was found in the literature. Martin, et al. (1999) studied fifteen adults with 

both HS and cortical dysplasia within the left temporal lobe and compared with HS-only 

patients. The majority of measures revealed no significant differences, however both 

groups showed impairments in verbal and visual memory, language skills, and academic 

achievement. Although verbal memory was equal overall, there was less efficient 

memory encoding in the dual pathology group, particularly with regard to utilization of 

semantic cueing to improve word list learning. 
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Research Hypothesis: 

 

As illustrated by the preceding literature review, much has been learned about 

memory and hippocampal function, yet a great deal remains unknown. Based on this 

foundational knowledge, the following hypothesis was formulated to answer specific 

questions about hippocampal memory functioning and detection of dysfunction.  

Additional research questions arising in the process of data analysis are presented in the 

discussion. 

Hypothesis: It was predicted that participants with dual pathology of the temporal lobe 

would have significantly worse memory performance than those participants with only 

neocortical pathology as measured by quotient of retained memory.  

Rationale for Hypothesis: Declarative memory differences between lateral and mesial 

substrates in adults have proven equivocal. Giovagnoli and Avanzini (1999) showed 

comparable levels of mnemonic deficit for lateral and mesial epileptic foci, while Jones-

Gotman and colleagues (1997) demonstrated similar memory performance following 

resection of either hippocampus or temporal neocortex. Martin et al. (1999) found no 

overall difference in memory performance for patients with hippocampal sclerosis and 

those with additional neocortical malformations, but those with dual pathology did have 

less efficient encoding. Helmstaedter et al. (1997) indicated perhaps the most striking 

differences, with varying impairment patterns related to temporal lesion location. 

Findings have also varied in children. Although Gonzalez et al. (2007) revealed greater 

mnemonic deficits for mesial foci, Nolan and colleagues (2004) found no differences.   

Because normative memory scores represent wholistic functioning of memory 

networks, including encoding, retention, and retrieval, these scores may be adversely 
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impacted by disruption to any part of the network (Jones-Gotman et al, 1997). This is 

exemplified in extra-temporal epilepsy syndromes (Jambaque et al., 1993; Lendt, 

Helmstaedter, & Elger, 1999) in which declarative memory impairments are found even 

in the absence of hippocampal dysfunction. 

Compared with normative scores for delayed recall, the retention metric was 

expected to have greater statistical power to differentiate between TLE with and without 

hippocampal involvement. Normative scoring of delayed retrieval compares test subject 

performance against that of a sample of neurologically intact individuals within the same 

age group. In contrast, comparison of delayed memory performance to the subject’s 

earlier performance mitigates potential effects of poor encoding in that individual 

(McDonald et al., 2001).  Present knowledge of the hippocampal system and its presumed 

association with consolidation and retrieval of recently encoded information predicts that 

TLE that includes mesial temporal pathology would have significantly worse memory 

retention than TLE involving only neocortex.  

An unpublished study of memory performance in pediatric epilepsy found 

retention scores discriminated between the presence and absence of hippocampal 

sclerosis, while normative delayed memory scores did not (Korman et al., 2010). 

However, selection criteria for that study included patients with seizures originating from 

various cortical regions and those with isolated hippocampal sclerosis, which were not 

included in the present study. 
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CHAPTER III: METHODS 

Participant selection 

 Participants were retrospectively selected from a de-identified data set of patients 

with seizures resistant to anti-epileptic drug polytherapy who underwent surgical 

resection at Nicklaus Children’s Hospital (NCH) from 1999 through 2015.  All had been 

clinically referred for the treatment of intractable epilepsy and evaluated using a 

standardized presurgical protocol. Permission was obtained from the director of the NCH 

epilepsy program for use of surgical and neurological data, and the principle investigator 

has direct access to neuropsychological data through his employment at the hospital. 

Participants were chosen only if they met specific criteria for one of the study 

classifications, which included temporal lobe FCD, or dual pathology consisting of HS 

and FCD of the temporal lobe. A total of 54 subjects with EEG evidence of temporal 

seizure focus and histological diagnosis of temporal lobe FCD were chosen for inclusion; 

of these, 25 had FCD only, while the other 29 had dual pathology. Those with further 

pathology other than HS were excluded from the study, including tuberous sclerosis 

complex, brain tumors, polymicrogyria, nodular heterotopias, Sturge-Weber syndrome, 

and hemimegalencephaly. Potential participants with incomplete neuropsychological or 

clinical data were also excluded. 

Participant Descriptives 

Descriptive statistics are presented in table format to demonstrate basic 

information regarding participant data. General demographic information is presented in 

table 1, with descriptives for the entire sample shown in table 2.  
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Table 1:  

Descriptive Statistics for Total Sample (N=54) 

Characteristic  Mean Range SD 

Age at Testing (years)  13.44 5.50-22.00 3.90 

Age at Seizure Onset (years)  6.20 .10-16.00 4.50 

Duration of Epilepsy (years)  7.38 1.0-15.56 3.90 

Full Scale IQ  83.30 56-112 14.32 

Verbal IQ  82.80 59-113 14.16 

Performance IQ  87.70 55-130 16.67 

Receptive Vocabulary  85.04 40-117 17.80 

Final Learning Trial Raw Score  8.98 2-16 3.31 

Learning Total Raw Score  27.91 7-45 8.85 

Learning Total Scaled Score  7.46 2-14 2.46 

Delayed Recall Raw Score  6.52 0-13 3.75 

Delayed Recall Scaled Score  7.43 2-13 3.03 

 

Of note, the mean full scale IQ for the entire sample was slightly more than one 

standard deviation below the normative population mean. The average delayed memory 

normative score was not quite a full standard deviation below the population mean.  
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Table 2:  

 

Demographic Frequencies for Total Sample (N=54) 

 

Characteristic  n % 

Gender    

    Male  33 61.1 

    Female  21 38.9 

Handedness    

    Right  49 90.7 

    Left  5 9.3 

Lesion Type    

    FCD Only  25 46.3 

    Dual Pathology  29 53.7 

Lesion Laterality    

    Right  27 50.0 

    Left  27 50.0 

Seizure Frequency    

    Less than once per month  1 1.9 

    Monthly or more  8 14.8 

    Weekly or more  27 50.0 

    At least once per day  18 33.3 

History of Status Epilepticus  12 22.2 

Additional Frontal Lesion  5 9.3 

Additional Parietal Lesion  4 7.4 
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Age at seizure onset was significantly correlated with Full-Scale IQ (r=.465, 

p<.01), with a stronger relationship to Verbal (r=.529, p<.01) than to Performance IQ 

(r=.329, p<.05). Demographic details are broken down by pathology type in table 3.  

Table 3:  

Descriptive Statistics for FCD Only and Dual Pathology Groups 

 

FCD Only 

(N=25) 

 

Dual Pathology 

(N=29) 

  

Characteristic Mean SD  Mean SD t(52) p 

Age at Testing (years) 13.36 3.76  13.50 4.09 -.135 .893 

Seizure Onset Age (years) 6.77 4.16  5.70 4.78 .870 .388 

Epilepsy Duration (years) 6.75 3.43  7.91 4.24 -1.094 .279 

Full Scale IQ 83.40 15.38  83.21 13.61 .049 .961 

Verbal IQ 82.56 14.76  83.00 13.88 -.113 .911 

Performance IQ 90.12 18.33  85.62 15.02 .991 .326 

Receptive Vocabulary 86.08 21.28  84.14 14.49 .397 .693 

Learning Total Raw Score 28.08 9.04  27.76 8.85 .132 .896 

Learning Total Scaled Score 7.56 2.71  7.38 2.27 .266 .791 

Delayed Recall Raw Score 6.84 3.59  6.24 3.92 .582 .563 

Delayed Recall Scaled Score 7.48 2.82  7.38 3.25 .121 .904 

Student’s t-test revealed no statistically significant demographic differences 

between the two pathology groups for the characteristics presented in table 3. Additional 

descriptives broken down by pathology group are presented in table 4.  
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Table 4:  

Demographic Frequencies for FCD Only and Dual Pathology Groups 

 FCD Only (N=25)  Dual Path (N=29)   

Characteristic n %  n % 2 p 

Gender      .930 .335 

Male 17 68.0  16 55.2   

Female 8 32.0  13 44.8   

Handedness      4.75 .029 

Right 25 100.0  24 82.8   

Left 0 0  5 17.2   

Lesion Laterality      .670 .413 

Right 14 56.0  13 44.8   

Left 11 44.0  16 55.2   

Seizure Frequency      3.259 .353 

Less than monthly 0 0  1 3.4   

Monthly or more 5 20.0  3 10.3   

Weekly or more 10 40.0  17 58.6   

At least once per day 10 40.0  8 27.6   

Status Epilepticus History 5 20.0  7 24.1 .133 .715 

Additional Frontal Lesion 5 20.0  0 0 6.392 .011 

Additional Parietal Lesion 3 12.0  1 3.4 1.432 .232 

 

With the exception of handedness and presence of additional frontal lobe lesions, 

Chi-squared analyses indicated no demographic differences between the pathology 
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groups with HS (dual pathology) and without (FCD only). Left-handed participants were 

found exclusively in the dual pathology group (2=4.750, p=.029); of the five, three had 

pathology of the left hemisphere, while the remaining two had right-sided lesions. 

Additional frontal lesions were present only in those participants without additional HS 

(2=6.392, p=.011); only one had left hemisphere pathology, with the rest lateralized to 

the right side.    

Measures 

Neuropathological classification: 

 Brain tissue analysis on patients seen from 1999 to 2003 was performed at the 

Department of Pathology, Nicklaus Children's Hospital, Miami, Florida and for those 

seen from 2003 to 2013 it was done at the Department of Pathology and Laboratory 

Medicine (Neuropathology), David Geffen School of Medicine, University of California, 

Los Angeles. Inclusionary criteria were based upon pathology reported, as follows: 

Focal Cortical Dysplasia (FCD).  Determination of presence of FCD in both 

participants groups was based upon the histopathological classification system described 

by Palmini et al. (2004), as determined by histopathological findings from postsurgical 

pathology reports. Subsequent to 2004, reported findings were directly described as FCD, 

when applicable. For subjects that underwent surgery prior to 2004, histopathological 

findings that fit within FCD parameters were reclassified by the NCH epileptologists 

according to the Palmini et al. (2004) criteria: Architectural abnormalities and 

disorganization (e.g., laminar disruption, columnar disorganization), giant neurons, 

dysmorphic neurons, or balloon cells. 
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Dual Pathology. The presence of both FCD and HS was considered as dual 

pathology. HS was determined based on both histopathological and MRI criteria. Each 

potential participant for the dual pathology group was assessed for HS using findings 

from resected tissue and MRI evidence consisting of hippocampal atrophy, signal 

intensity change, and aberrant hippocampal architecture. In several cases, hippocampal 

specimens were fragmented and insufficient for histopathologic analysis, and the MRI 

data was used as the determinant of HS, as read/interpreted by an NCH neuroradiologist.  

Other lesional variables:  

In addition to the histopathological classification obtained from resected lesions, 

other descriptive variables included the side of the lesion. When additional lobes were 

resected and contained FCD, those lobar locations were also recorded (e.g. frontal, 

parietal, occipital).  

Clinical variables:  

 As part of their presurgical evaluation, historical information was recorded for all 

participants and they underwent a neurological examination. Demographic variables 

recorded include gender, handedness, age at seizure onset, age at neuropsychological 

testing, frequency of seizures, duration of epilepsy prior to testing, and prior occurrence 

of status epilepticus. 

Neuropsychological Variables: 

Verbal Memory Assessment. The Wide Range Assessment of Memory and 

Learning (WRAML and WRAML2) is an instrument used for the evaluation of memory 

retention in many assessment contexts (Sheslow & Adams, 1990, 2003). The original 

WRAML was normed for children aged five through 17 years and is comprised of nine 
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subtests that yield three scales: Verbal Memory, Visual Memory, and Learning Scales. 

Four subtests also have delayed recall tasks. The WRAML2 extends the normative age 

range upward to 90 years and consists of six core subtests that factor into Verbal 

Memory, Visual Memory, and Attention/ Concentration. The newer version increased the 

number of delayed memory tasks to seven. The Verbal Learning subtest evaluates a 

child’s ability to actively learn a list of non-related words and repeat as many as they can 

recall.  This procedure was repeated for a total of four trials. Delayed Recall of the list 

was assessed after a delay of approximately 20 minutes to measure recall of previously 

learned verbal information. The same format, word list, and administration procedures 

are used for both WRAML editions: For children eight years and younger a 13-item list is 

used, while persons nine and older are given 16 items to learn. For this study, the raw 

scores for each learning trial and the delayed recall trial were obtained. The number of 

total words learned and later recalled after the delay were compared with age-based 

norms provided with the WRAML2 to yield a scaled score with a mean of ten and 

standard deviation of three. The WRAML2 norms were applied for all participants 

regardless of which version was originally used for testing. 

Assessment of Intellectual Ability. The Wechsler Scales of Intelligence were used 

to estimate intellectual functioning in all study participants. Wechsler Index Scores are 

presented as standard scores as described above. Full Scale IQ (FSIQ), a widely used 

marker of overall intellectual functioning, was used as a representation of participants’ 

general cognitive ability. The specific test used depended upon age, the latest version 

available at testing, and clinical presentation.  FSIQ scores between the tests used in this 

study are strongly correlated, with Pearson coefficients ranging from .84 to .94 
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(Wechsler, 1997; Wechsler, 2002; Wechsler, Coalson, & Riaford, 2008; Wechsler, 

Coalson, & Riaford, 2012). 

Wechsler Intelligence Scales for Children- Third and Fourth Editions:  The 

Wechsler Intelligence Scales for Children (WISC-III and WISC-IV) are individually 

administered instruments for assessing intellectual ability in children aged six years 

through 16 years, 11 months (Wechsler, 1991, 2003). They are each comprised of ten 

core subtests that represent specific domains of cognitive functioning, and provide a 

composite FSIQ score. The WISC additionally provides Verbal IQ and Performance IQ 

scores. The WISC-IV retained the majority of WISC-III subtests, and added five new 

tests. Index factors were structured to provide a Verbal Comprehension Index and 

Perceptual Reasoning Index that are clinically similar to Verbal IQ and Performance IQ. 

Additional, factor-based index scores are available with each WISC edition.   

Wechsler Adult Intelligence Scales – Third and Fourth Editions: The Wechsler 

Adult Intelligence Scales (WAIS-III and WAIS-IV) are measures of intellectual ability 

for individuals aged 16 through late adulthood (Wechsler, 1997; Wechsler, Coalson, & 

Riaford, 2008). The WAIS-III has ten core subtests assessing various facets of 

intelligence that comprise the FSIQ, including: Picture Completion, Vocabulary, Coding, 

Similarities, Block Design, Arithmetic, Matrix Reasoning, Digit Span, Information, 

Picture Arrangement, and Comprehension. Subtest scores are combined to yield age-

adjusted index scores, including FSIQ plus separate indices for Verbal IQ and 

Performance IQ. On the WAIS-IV Picture Completion and Comprehension are optional 

subtests, Picture Arrangement was deleted from the battery, with Symbol Search and 

Visual Puzzles added as core subtests required to calculate the FSIQ.   
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Wechsler Abbreviated Scales of Intelligence—First and Second Editions: The 

Wechsler Abbreviated Scales of Intelligence (WASI and WASI-II) are measures of 

intellectual functioning for individuals between 6 and 89 years of age (Wechsler, 1999; 

Wechsler & Zhou, 2011). They are comprised of four subtests as a means of quickly 

estimating intellectual functioning. The included tests are forms of those found in other 

Wechsler scales: Vocabulary, Block Design, Similarities, and Matrix Reasoning. These 

subtests were chosen for their association with general cognitive ability (g) and strong 

theoretical basis in intellectual measurement. The WASI yields three index scores: Verbal 

IQ, Performance IQ, and FSIQ. The WASI-II has the same basic structure as the earlier 

version, with updated psychometric properties. 

Wechsler Preschool and Primary Scales of Intelligence- Third and Fourth 

Editions: The Wechsler Preschool and Primary Scale of Intelligence- Third Edition 

(WPPSI-III) is an instrument used to assess intellectual functioning in children aged 2 

years, 6 months through 7 years, 3 months (Wechsler, 2002). In children older than four, 

seven core subtests that represent various domains (Block Design, Information, Matrix 

Reasoning, Vocabulary, Picture Concepts, Word Reasoning, Coding) are used to obtain 

age-adjusted index scores for FSIQ, Verbal IQ, and Performance IQ. For the WPPSI-IV 

(Wechsler, Coalson, & Riaford, 2012), the upper age norms were extended to 7 years, 7 

months. Some subtests were deleted from the earlier version and others added. Only six 

subtests are needed to calculate the WPPSI-IV FSIQ in children four years and older: 

Block Design, Information, Matrix Reasoning, Bug Search, Picture Memory, and 

Similarities.  
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Procedures 

Because this was a retrospective study, all data had been previously collected, 

including history, clinical information, and pathological analysis of resected tissue. Data 

resided in the NCH Department of Neurology and the NCH Brain Institute, 

Neuropsychology Section.  Participant neurological, neuropsychological, and historical 

data were harvested from the NCH files by the principle investigator with permission of 

the hospital, and he personally entered them into an SPSS data table for study analyses. 

Neuropsychological measures were administered to patients by licensed clinical 

neuropsychologists or doctoral-level practicum students or interns trained and supervised 

by a licensed neuropsychologist in the NCH Brain Institute.  

Since this study involved archival data, exempt status was secured from the 

Western Institutional Review Board (WIRB), the body representing Nicklaus Children’s 

Hospital. Approval and exempt status was subsequently obtained from the Nova 

Southeastern Institutional Review Board. In keeping with IRB requirements and 

standards for the protection of human subjects, all collected data used for analyses were 

devoid of protected health information and de-identified to maintain the confidentiality of 

participants.  
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CHAPTER IV: RESULTS 

 

Preliminary Analyses 

All data analyses were conducted using IBM’s SPSS version 24.  Prior to 

analyses, data tables were visually evaluated for missing and extreme values to ensure 

fidelity of data entry. Following this, descriptive values were examined to determine that 

scores fell within the actual range of values for each measure recorded. Continuous 

variables were also analyzed for departures from normality that might limit statistical 

inference, including skewness and kurtosis statistics, as presented in table 5.  

Table 5. 

Normality Statistics for the Entire Sample (n=54) 

    Shapiro-Wilk 

Variable  Skewness Kurtosis Statistic p 

Retention Quotient  .431 2.700 .929 .003 

Final learning Trial  -.330 -.427 .965 .111 

Highest Learning Trial  -.202 -.475 .966 .130 

Total Learning Raw Score  -.284 -.392 .979 .462 

Words recalled after delay  .001 -1.098 .957 .051 

Delayed memory scaled score  .008 -1.073 .955 .040 

 

All continuous variables had normal skew, with delayed recall raw and scaled 

scores at the upper limits of normality for kurtosis; the retention quotient was noted to be 

significantly leptokurtic, thus violating standards of normality. The failure of these 

variables to fall within a normal distribution was not entirely surprising due to the 
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relatively small number of patients in the sample. Although not all properties of 

population samples are normally distributed, most tend toward a normal distribution as 

the sample size increases (Sirkin, 1999).  Kurtosis is especially dependent upon the 

scores in the tails of a distribution, to a greater extent than scores in the center of the 

distribution. Although there were no “extreme” values for the recall measures (raw and 

scaled scores), scores were distributed across the range, giving a boxy appearance to the 

distribution and increasing the kurtosis statistic. 

Table 6 presents normality statistics broken down by pathology group. 
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Table 6. 

Normality Statistics Broken Down by Pathology (FCD= Focal Cortical Dysplasia; DP= 

Dual Pathology) 

Variable Pathology n Skewness Kurtosis Shapiro-Wilk 

Retention Quotient FCD 25 1.288 4.608    .881** 

 DP 29 -.523 .170 .939 

Final Learning Trial FCD 25 -.794 -.477    .885** 

 DP 29 .161 .087 .967 

Highest Learning Trial FCD 25 -.601 -.818  .907* 

 DP 29 .170 .219 .961 

Learning Total Raw FCD 25 -.660 -.174 .954 

 DP 29 .037 -.368 .973 

Words recalled after delay FCD 25 -.035 -1.258 .946 

 DP 29 .062 -1.009 .938 

Delayed Memory Sc. Score FCD 25 .169 -1.095 .938 

 DP 29 -.070 -1.120 .945 

Age FCD 25 .092 -.571 .972 

 DP 29 -.276 -.471 .961 

*p< .05  **p < .01 

As expected, there was some additional non-normality found after separation into 

groups due to diminished sample sizes.  However there was also an emerging trend noted 

whereby the learning scores showed more negative skew in the FCD group and greater 

positive skew in the dual pathology group. 
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Study Analyses 

Hypothesis: It was predicted that participants with dual pathology of the temporal lobe 

would have significantly worse memory performance than those participants with only 

neocortical pathology (FCD) as measured by quotient of retained memory. 

Statistical Approach: The hypothesis was tested using a two-way mixed design ANOVA 

incorporating both between-subject and within-subject analyses and their interactions. 

Side of lesion was included as an independent variable, since verbal memory measures 

have previously shown association with the left hemisphere. The within-subject factor 

was the difference across time between initial word learning (e.g., final learning trial, 

previously the denominator of the retention quotient) and delayed word recall (previously 

the numerator of the retention quotient). The two between subject factors were type of 

pathology and side of pathology. Although certain variables in the model did not meet 

strict ANOVA normality assumptions, the F-test is robust enough to withstand minor 

deviations from normality while preserving the Type I error rate (Schmider, Ziegler, 

Danay, Beyer, & Buhner, 2010; Zar, 1996), and there was no violation of variance 

homogeneity.   

Table 7 indicates the means and standard deviations for memory measures 

relevant to the hypothesis, broken down by type of pathology and hemispheric laterality.  
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Table 7. 

Memory Variable Means and Standard Deviations by Pathology Type and Side 

   Type of Pathology 

Memory Variable 

 FCD Only (n=25)  Dual Pathology (n=29) 

 M SD  M SD 

Retention Quotient  .776 .362  .672 .333 

Words Recalled After Delay  6.84 3.59  6.24 3.92 

Final learning Trial  9.20 3.55  8.79 3.14 

Table 8 represents a summary of ANOVA results for the main hypothesis.  

Table 8. 

Main and Interaction Effects for Mixed Design ANOVA Comparing Final Learning Trial 

with Words Recalled After a Delay 

Source df SS MS F p 2 

  Within Subjects   

Memory 1 165.42 165.42 52.29 .000 .511 

Memory* Path 1 .094 .094 .030 .864 .001 

Memory* Side 1 2.35 2.35 .741 .393 .015 

Memory *Path*Side 1 3.34 3.34 1.057 .309 .021 

Within Subjects Error 50 158.17 3.16    

  Between Subjects   

Pathology Type 1 7.77 7.77 .372 .545 .007 

Side of Lesion 1 .988 .988 .047 .829 .001 

Pathology*Side 1 110.76 110.76 5.309 .025 .096 

Between Subjects Error 50 1043.16 20.86    
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These analyses demonstrated a significant main effect for memory scores, 

indicating a statistically significant difference between the mean number of words 

learned on the final trail and those recalled following a delay period. Inspection of the 

scores revealed that as expected, word recall after a delay was lower than at the end of the 

learning trials, dropping by approximately 2.5 words on average across the entire sample. 

While between-subjects analyses demonstrated a significant interaction between type of 

pathology, side of lesion, and the mean of the two memory scores, they did not indicate 

significant interaction between pathology type, side of lesion, and the within-subject 

main effect between final learning trial and delayed recall. Thus, the proposed hypothesis 

was not supported. To isolate the source of the significant interaction effects, exploratory 

analyses were performed using univariate ANOVAs.  Pathology type and lesion laterality 

were the predictors, with final learning trial and words recalled after delay analyzed 

individually as dependent variables. Results are presented in Table 9.  
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Table 9. 

Exploratory ANOVA Results for Interaction Between Pathology Type and Lesion 

Laterality, by Final Learning Trial and Delayed Recall (Independently) 

Source df SS MS F p 2 

  DV: Final Learning Trial   

Pathology Type (Path) 1 3.07 3.07 .307 .582 .006 

Side of Lesion (Side) 1 3.19 3.19 .318 .575 .006 

Path * Side 1 76.30 76.30 7.61 .008 .132 

Error 50 501.20 10.02    

  DV: Delayed Word Recall   

Pathology Type (Path) 1 4.79 4.79 .342 .561 .007 

Side of Lesion (Side) 1 .145 145 .010 .919 .000 

Path * Side 1 37.81 37.81 2.70 .107 051 

Error 50 700.14 14.00    

As indicated in table 9, the exploratory ANOVA’s revealed that the interaction 

between pathology type and side of lesion was significantly associated only with final 

learning trial and not with delayed recall. Additional follow-up t-tests comparing mean 

final learning trial scores for each type of pathology by side are shown in table 10.  
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Table 10. 

Post-hoc Comparison of Final Learning Trial Means by Pathology for Each Side 

 Type of Pathology     

 FCD Only  Dual Pathology     

Side n M SD  n M SD  t(25) p Cohen’s d 

Left 11 10.82 2.04  16 7.94 2.32  3.322 .003 1.33 

Right 14 7.93 4.01  13 9.85 3.76  -1.279 .213 .51 

Comparison of final learning trial means by pathology for each side of lesion 

using Student’s t-test revealed significant differences between pathology groups, but only 

for lesions occurring on the left side. As expected, the mean difference showed better 

learning in the group without hippocampal sclerosis, with a large effect size (Cohen’s d = 

1.33). Although the proposed hypothesis was not supported, the data did demonstrate that 

pathology of the left hippocampus has a significant relationship with diminished verbal 

learning rather than with memory retention. 

A-Posteriori Analyses 

The means and standard deviations for additional memory measures of interest 

are shown in table 11, by pathology grouping and side of lesion, along with exploratory 

significance testing for differences between pathology group means.  
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Table 11. 

Additional Memory Variable Means, Standard Deviations, and Test of Differences by 

Pathology Type and Side  

    Type of Pathology   

Memory 

Variable 

  FCD Only  Dual Pathology   

Side  n M SD  n M SD  t 

Words Recalled 

After Delay 

Total  25 6.84 3.59  29 6.24 3.92  .582 

Right  14 6.14 3.51  13 7.23 4.53  -.701 

 Left  11 7.73 3.66  16 5.44 3.27  1.704 

Delayed Mem 

Scaled Score 

Total  25 7.48 2.82  29 7.38 3.25  .121 

Right  14 7.21 2.52  13 8.08 3.50  -.740 

 Left  11 7.82 3.25  16 6.81 3.02  .825 

Final Learning 

Trial 

Total  25 9.20 3.55  29 8.79 3.14  .447 

Right  14 7.93 4.01  13 9.85 3.76  -1.279 

 Left  11 10.82 2.04  16 7.94 2.32  3.322** 

Highest 

Learning Trial 

Total  25 9.48 3.10  29 9.17 2.92  .376 

Right  14 8.43 3.44  13 10.23 3.22  -1.40 

 Left  11 10.82 2.04  16 8.31 2.41  2.815** 

Total Learning 

Raw 

Total  25 28.08 9.04  29 27.76 8.85  .132 

Right  14 25.79 10.40  13 30.77 9.97  -1.269 

 Left  11 31.00 6.23  16 25.31 7.24  2.120* 

Total Learning 

Scaled Score 

Total  25 7.56 2.71  29 7.38 2.27  .266 

Right  14 7.57 3.18  13 8.15 2.58  -.520 

 Left  11 7.55 2.12  16 6.75 1.84  1.038 

*p< .05  **p < .01 
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Although delayed recall scores showed no contrast between the pathology groups 

with and without hippocampal involvement, each of the non-normative variables related 

to verbal learning (Final learning trial, high learning trial, raw total learning) did show 

significant differences between pathology groups, but only for those with left-sided 

pathology. The difference between pathology groups was in the direction expected for all 

three learning scores, with the group having hippocampal disease demonstrating the 

worse performance. 

Binomial logistic regression was performed to determine how well participants 

with left-sided pathology were classified by pathology type, based on final learning trial.  

Categorization accuracy is represented in table 12. 

Table 12. 

Classification of Predicted vs. Actual Pathology Type, for Left-Sided Pathology Only 

  Predicted Group Membership 

Actual Group 

Membership 

 Dual Pathology  FCD Only 

 n n %  n %  

Dual Pathology 16 13 81.3  3 18.7 

FCD Only 11 4 36.4  7 63.6 

Note: Overall percentage of correctly classified cases= 74.1 

 

Although more than 81% of the dual pathology group were correctly classified 

based on final learning trial, just under 64% of the FCD group were placed in the correct 

category.   

A visual representation of learning trial means for participants with left-sided 

pathology is presented in figure 2. 
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Figure 2.  

Mean Learning Trial Performance by Group, Only Left Temporal Lesions 

 
 While the number of words repeated during the initial two trials demonstrated no 

significant difference, there is increasing divergence noted as the trials proceed, with 

much better performance for the group without hippocampal pathology by trials three and 

four.  

Table 13 presents additional breakdown of language measures by side of 

pathology. 
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Table 13. 

Means, Standard Deviations and Test of Differences for Language Measures by Side, 

Broken Down by Pathology Type 

   Side of Lesion   

Language 

Variable 

 Left  Right   

Pathology n M SD  n M SD t p 

Verbal IQ FCD 11 83.55 16.14  14 81.79 14.15  -2.90 .774 

Dual Path 16 83.31 14.30  13 82.62 13.91 -.132 .896 

PPVT FCD 11 81.64 22.95  14 89.57 20.03 .923 .366 

Dual Path 16 85.25 13.65  13 82.77 15.91 -.452 .655 

 

 As shown in the table above, there were no significant lateralized differences 

between language tasks, regardless of pathology. 

To determine whether having left-handed participants or those with additional 

frontal lobe pathology changed the relationship between the final learning trial and 

pathology type, additional exploratory analyses were run. Table 14 presents a summary 

of ANOVA results without including data points for those participants that are left 

handed and for those with additional frontal pathology.  



69 

 

 

 

Table 14. 

Exploratory ANOVA Results for Interaction Between Pathology Type and Side upon 

Final Learning Trial, with Specified Participants Excluded 

Source df SS MS F p 2 

              Left- Handers Excluded   

Pathology Type (Path) 1 5.91 5.91 .625 .433 .014 

Side of Lesion (Side) 1 8.69 8.69 .919 .343 .020 

Path * Side 1 50.55 50.55 5.34 .025 .106 

Error 45 425.67 9.46    

         Additional Frontal Lobe Pathology Excluded  

Pathology Type (Path) 1 3.67 3.67 .385 .538 .008 

Side of Lesion (Side) 1 .451 .451 .047 .829 .001 

Path * Side 1 52.19 52.19 5.47 .024 .108 

Error 45 429.13 9.54    

Table 15 indicates the means and standard deviations for the memory variables 

entered into the analysis without the inclusion of participants having additional frontal 

pathology, broken down by laterality and type of pathology.  
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Table 15. 

Final Learning Trial Mean and Standard Deviations Excluding Specified Participants, 

with Significance Testing by Pathology Type 

 Type of Pathology     

 FCD Only  Dual Pathology     

Side n M SD  n M SD  t p Cohen’s d 

          Left- Handers Excluded   

Left 11 10.82 2.04  13 8.08 1.98  3.335 .003  1.42 

Right 14 7.93 4.01  11 9.27 3.58  -.871 .393 -.364 

           Additional Frontal Lobe Pathology Excluded   

Left 10 10.60 2.01  16 7.94 2.32  2.987 .006  1.22 

Right 10 8.30 3.97  13 9.85 3.76  -.954 .351 -.416 

 

Despite exclusion of each of these subsets of participants, the difference between 

pathology groups for the final learning trial continued to be statistically significant, with 

robust effect sizes only for those with left hemisphere involvement.  Thus, the mean 

difference between pathology groups on the left side continued to show better learning in 

the group without hippocampal sclerosis.   
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Chapter V: DISCUSSION 

The purpose of the current study was to gain a greater understanding of the 

relationship between neuroanatomical memory structures and functional determinants of 

their cognitive and psychophysiological properties. This process has been approached 

through exploring alternate application of conventional memory indices, with a subgoal 

of identifying hippocampal damage in children with intractable seizures originating from 

the temporal lobe through measures of verbal learning and retrieval.  

Discussion of Study Results 

The study hypothesis predicted that memory retention, as measured between the 

last learning/encoding trial to delayed recall of the list of stimuli on a word list learning 

test, could differentiate those participants having only neocortical pathology from those 

with dual pathology of the temporal lobe. The expectation was that pathology involving 

hippocampal structures would be associated with far greater loss of encoded verbal 

information than pathology that did not involve the hippocampus. While the data did not 

support this hypothetical relationship, the findings have potentially important 

implications and raise many relevant questions. 

This study was somewhat unique in that both groups had underlying focal cortical 

dysplasia affecting the temporal neocortex. One of the groups had additional damage to 

the mesial temporal region, predominantly affecting the hippocampus. Thus, the two 

pathology groups had overlapping, yet neuroanatomically distinct involvement of the 

temporal lobes, as confirmed by post-surgical microscopic evaluation of resected tissues. 

Because both sets had developmentally-based disruption of cortex and seizures that were 

pharmacologically intractable, similarities between the groups (i.e., seizures, medication 
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effects, developmental issues) helped to reduce or eliminate biases that might have 

otherwise occurred if comparing epileptic patients with neurologically normal controls. 

In this regard, the FCD group functioned as a clinical control against which participants 

in the dual pathology group could be contrasted.  

 Based on the results of the present study alone the data demonstrated a significant 

role of left hippocampus in the encoding phase of verbal memory. In addition to 

association of left mesial temporal networks with the final word learning trial, there was a 

distinction between specific neuroanatomical components of the memory system, but 

only within the dominant hemisphere. When group scores for children with HS were 

contrasted with others having very similar features except that they lacked HS, a robust 

inter-group difference emerged with large effect size.   

Because the final learning trial was significant only for lesions on the left side, 

classification of predicted vs. actual pathology type was run only for those participants 

with left-sided epilepsy. Classification into each pathology type had an overall accuracy 

of 74 percent; sensitivity for the detection of HS was 81 percent, while the specificity was 

only 64 percent. Thus, the prediction rate for presence of hippocampal pathology was 

much better than for that of its absence (e.g., FCD only). Based on these data, if the final 

learning trial is used independently of collateral information, there is a much higher 

probability of accurately predicting the presence of hippocampal pathology than its 

absence.   

Additional exploratory analyses showed that among the learning scores collected, 

the fourth learning trial, high learning trial (defined as the higher of the third or fourth 

learning trials), and raw total for all trials each demonstrated a statistically significant 
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association with left temporal hippocampal pathology. However the earlier learning trials 

revealed no relationship with pathology type. As expected, the total learning score had a 

smaller effect size than either the high or final trials, due to mathematical dilution by the 

early trials. The finding that only later trials are of significance in predicting pathology 

type suggests the importance of one or more properties of incremental learning across 

trials with regard to hippocampal function.  Visualization of the learning slopes for both 

groups, as illustrated in figure 2, reveals that the slope for the FCD group, in which both 

hippocampi have remained intact, initially parallels that of the group with left 

hippocampal damage, but the slopes begin to diverge after trial two and become 

increasingly disparate by the final trial.   

Examination of the mean scores across each learning trial for participants with 

left-sided pathology revealed that FCD group mean scores were higher than the dual 

pathology group across all learning trials. These differences were relatively small and 

insignificant for the first two trials and became incrementally larger, with the biggest 

discrepancy on the final learning trial. The mean scores themselves, which represent the 

number of words correctly repeated on each trial, also increased incrementally across 

trials for both pathology groups. However, a comparison of differences between the final 

and high learning trials for left-sided lesions revealed only a small disparity between 

these scores within each pathology group, consistent with the significant association of 

pathology type and each of these learning metrics. 

Taken together, the data indicate that the hippocampus shares the task of learning 

verbal stimuli across repetitions with working memory systems.  On early trials, where 

there are few words learned, working memory carries the load independently, but as the 
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stimulus burden increases, the intact language-dominant hippocampus progressively 

contributes to enhancement of cumulative learning. Mesial temporal structures do not 

autonomously support verbal learning until the buffer for immediate auditory memory 

reaches its capacity. In this situation, repetition is necessary to raise the quantity of 

learned stimuli high enough to saturate the buffer. In the present sample the buffer’s 

capacity was estimated to be about seven to eight words.   

Results of the within-subjects ANOVA also revealed a main effect of memory 

whereby the scores decreased in the interval between learning and recall for the entire 

group. Inspection of the mean standard scores for total learning and delayed recall for the 

current sample reveal that the standard scores are nearly identical across the time points, 

reflecting that the change across time is in the direction expected and already accounted 

for by the WRAML norms. More importantly, there was no interaction between the 

within-subject main effect of memory and pathology group. Therefore, although there 

was a statistically significant loss of information from learning/encoding to recall, it is 

not substantively important because of symmetrical performance across pathology groups 

when pathology when considering participants with damage on both sides of the brain. 

As with most measures of cognition, verbal memory tests reflect functions across 

a widespread cognitive network, with proper performance requiring integrated activity of 

multiple cognitive and neurological functions (i.e., attention, hearing, language). 

Therefore, resultant scores represent synchronous performance of the function of interest 

along with numerous ancillary processes. Assuming adequate support from other 

cognitive systems, memory scores that are below normative expectancy represent the 

potential failure of any one of a number of components or connections within the 
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eloquent network. This principle is well-represented by overall memory measures for the 

present sample, as indicated in the demographics. Across the entire sample, the mean for 

delayed recall scaled scores are nearly one standard deviation below that of the normative 

population, with virtually identical scaled scores across both pathology groups for both 

total learning and delayed memory. This is a good indicator of the WRAML Verbal 

Learning subtest’s ability to detect global memory dysfunction; however, using the 

traditional indices of immediate and delayed recall, these scores lack neuroanatomical 

specificity. 

Cognitive reserve is a concept most commonly applied to aging and dementia, but 

potentially applicable to temporal epilepsy. Simply put, cognitive reserve provides a 

buffer against cognitive decline, despite underlying pathological degradation of neuronal 

systems. Although learning scores produced a strong effect for differentiating between 

pathology types at the group level, they are not reliable at the individual level. Various 

reserve mechanisms offer possible explanations for why learning scores may not be a 

direct reflection of hippocampal disease, despite strong statistical association. For the 

current study the following mechanisms may have occurred either individually or in some 

combination: (1) enough neuronal substrate remained viable to support adequate recall, 

(2) cognitive networks underwent offsetting plastic changes, or (3) more dynamic 

compensatory mechanisms were able to perform the task normally handled by the 

damaged hippocampal formation.  

When both hippocampi are destroyed by pathology or surgical removal, a dense 

amnesia is inevitable. In unilateral HS however, gradual, progressive degradation of 

affected structures may allow relative maintenance of function for some time. As neurons 
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within Ammons Horn regions slowly die and the hippocampus visibly shrinks, the 

pathological threshold will eventually be reached, at which point memory scores would 

be expected to fall. However, when the contralateral hippocampus remains intact, as with 

all study participants in the dual pathology group, homologous structures may 

compensate and maintain memory function. However, this is also likely to depend upon 

mediation by the intact contralateral hippocampus. 

In the current study, another potential source of memory reserve is assistance 

from semantic memory. In general, learning is supported by anchoring new information 

to the base of existing semantic knowledge. Stronger reservoirs of factual information, 

vocabulary, and general word knowledge commonly bolster performance when learning 

an unfamiliar list of words through semantic priming. Because semantic memory stores 

consist of information most often learned in school (i.e., factual knowledge and 

information about the world), they are highly correlated with educational attainment, a 

common proxy for cognitive reserve.  

Given that verbal memory was being measured, the interaction between pathology 

type and side of the lesion was not unexpected. The results also add conceptual meaning 

to the debate regarding the side of mesial temporal dysfunction in relation to memory 

modality. Verbal memory measures lateralize to the left hemisphere due to the match 

between characteristics of the stimuli and those of the left-sided cortical structures. 

Verbal stimuli are consistently processed by the left hemisphere when they have been 

previously encountered, with greatest reliability for overlearned stimuli. The left 

hemisphere is also more likely to process concrete details, especially those that are 

familiar. In addition to meeting the aforementioned criteria, stimulus words would also be 
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processed by the left hemisphere due to their linguistic qualities. In the current sample, 

participants with left-sided temporal lesions did not perform any worse than those with 

right-sided lesions for measures of verbal functioning that include Verbal IQ and 

receptive vocabulary. Furthermore, neither of the verbal measures differentiated between 

pathology types in participants with left-sided lesions. It is therefore accepted that the 

verbal learning task is measuring primarily mnemonic rather than linguistic performance, 

as related to pathology type. 

The final learning trial can be useful for discrimination between pathology types 

for those participants having left-sided lesions due to the interaction between the side of 

lesion and type of pathology that allows for differentiation based on learning 

performance.  However, these findings do not generalize to performance of modal-

specific memory tasks (i.e. verbal vs. visual tasks) based on hemispheric side.  This 

means that memory performance in children is not expected to be a good predictor of 

epileptogenic zone lateralization, regardless of whether verbal or nonverbal memory is 

being measured.  

Alterated or atypical language networks are common among the epilepsy 

population and may play a role in memory performance because of affiliations between 

mesial and lateral temporal structures. When considering the importance of propositional 

language lateralization, the high rate of left-handed subjects within the sample becomes a 

salient demographic issue. Of the total sample of 54 participants, the five members (9%) 

identified as left-handed were all in the dual-pathology group (17% of that group), much 

higher than expected rates by all accounts. Of these five left-handers, three had left-sided 

temporal seizure onset, which tends to cause re-organization of language networks to the 
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contralateral side. Assuming all three had atypical, right-sided language networks, this 

would pose no threat to increased type I error. To determine whether this might have an 

effect upon study outcome, the five left-handed participants were removed from the data 

set and analyses run again, without a substantial difference in outcome.   

Likewise, as indicated in the demographics, five participants had additional 

frontal lesions detected during their neurological workup, all from the FCD group. 

Among these, only one had left-sided pathology, while the remaining four had seizures 

emanating from the right hemisphere. After exclusion of these frontal lobe cases from the 

data set, additional analyses were performed, which showed that these cases of additional 

frontal pathology also had negligible effect on the study results.    

Although semantic and episodic memory are psychophysiological constructs that 

do not necessarily coincide with anatomical brain regions, such paradigms are often 

defined by how they are measured. Logically, tests purported to measure explicit memory 

have been assumed to measure processes related to mesial temporal structures, and 

likewise, hippocampal functioning is generally considered a dimension of episodic 

memory. Because current results indicate that hippocampal functioning has a significant 

relationship with learning (perhaps better described as ‘progressive encoding across 

trials’), consideration of how verbal learning paradigms fit within the contemporary 

memory taxonomy is warranted; this in turn leads to questions regarding the relationship 

between memory theory and clinical reality. Do these tasks qualify as being valid 

appraisals of episodic memory, semantic memory, or something different altogether?  

Regardless of labels, what processes are the tasks actually measuring? Contrasted with 

memory for logical passages, learning and recall of simple stimuli (e.g., word lists) lacks 
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contextual information such as time, place, or emotional frame of reference; therefore, 

such tasks do not capture ‘episodes’ in the traditional sense of the construct, and certainly 

not in the same manner as story memory. Such learning and recall of serial information 

results in encoded information devoid of episodic tags such as “who, why, when, and 

where,” falling short of reaching the episodic benchmark. On the other hand, stimulus 

word lists do provide an indication of “what” but words by themselves do not constitute 

facts, concepts, or other meaningful information about the world; thus, learning and recall 

tasks of this type also do not meet criteria for semantic memory measures.  

With this in mind, it may be appropriate to consider whether the current taxonomy 

of declarative memory is a suitable conceptual framework on which to base the next 

generation of mnemonic research. In particular, the role of item context and its potential 

impact upon functional localization of neuroanatomical correlates should be carefully 

deliberated.  

General Discussion 

Within the neurosciences, evaluation of deficits specific to mesial temporal lobe 

dysfunction has presented as a major challenge (Rausch, 2002).  Although many 

contemporary memory measures appear to be sensitive to global memory dysfunction, 

they lack neuroanatomical specificity and are not valid differentiators between types of 

memory disorders (Delis, Massman, Butters, & Salmon, 1991).  While attempts to 

improve verbal learning tasks by adding metrics for monitoring memory strategies and 

errors have aided our understanding of memory processes, they have not improved 

neuroanatomical relevance.  
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A number of promising studies conducted in the 1990’s suggested that beyond 

identification of generalized dysfunction of the network, certain verbal memory scores 

could be useful for measuring hippocampal function in adults with temporal lobe 

epilepsy. In particular, significant associations were noted between the percentage of 

information retained from logical passages and MRI-based measurements of the 

language-dominant hippocampus, both before and after surgical resection. In left TLE, 

Wechsler Memory Scale (WMS) Logical Memory retention has been correlated with 

presurgical hippocampal volumes (Lencz et al., 1992) and with residual volumes after 

resection (Trenerry et al., 1993).  

Sass and colleagues (1992b) described recall of logical story passages relative to 

initial learning as a means of identifying left mesial hippocampal disease in adults with 

temporal epilepsy. They stated that “when patients can be equated with regard to their 

initial level of performance on measures of story recall, measurement of the loss of 

information over time is sensitive to hippocampal dysfunction.” Their group further 

identified percent retention of Logical Memory on the WMS as an indicator specific to 

left hippocampal disease (Sass et al., 1992b), with presurgical retention scores correlating 

with histopathological analysis of hippocampal cell loss following surgery (Sass et al., 

1992a).  Moreover, immediate and delayed recall scores by themselves failed to 

differentiate between mesial and lateral temporal lobe pathology. Another group found 

similar results with story retention, but only in patients with bilateral atrophy of the 

hippocampal structures (Sawrie et al., 2001). However, despite the evidence correlating 

story memory retention with hippocampal pathology, this may have been an effect of 

measuring language more than memory skills. To wit: The Boston Naming Test, a 
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measure of confrontational naming and language ability, was noted to independently 

correlate with hippocampal pathology (Sass et al., 1992b), suggesting that story 

memory’s sensitivity to left hippocampal dysfunction may vary with language 

competence. 

Correlational studies between list learning and story memory measures have 

indicated strong convergence across their primary indices (Delis, Cullum, Butters, & 

Cairns, 1988).  For the current study, the decision to adapt the retention quotient to a 

verbal learning paradigm rather than story memory for isolating hippocampal pathology 

in children was based on factors believed to make the former more suitable for this 

particular application. First was data suggesting that word list memory is more sensitive 

than story memory for detecting mesial temporal pathology.  This included a study of 

older Korean adults that described superior discrimination between neurological normals 

and those with Alzheimer’s pathology (Baek, Kim, & Kim, 2012). Thus, even in other 

languages and cultures, verbal learning tests appear to be more sensitive than story 

memory. Secondly, many children with intractable seizures have impaired language 

skills, particularly those with dominant temporal lobe epileptogenic zones, and may 

struggle with accurate story recall due to the high burden imposed on language skills 

(Sass et al., 1992a; 1992b). The word list task was expected to be less dependent upon 

language competence.  Use of the retention quotient was further intended to eliminate 

personal biases in encoding that might affect retrieval by comparing information recall 

with the participant’s own prior performance.  

Numerous studies have evaluated mesial temporal functions in patients with 

Alzheimer’s dementia (AD) and amnestic mild cognitive impairment (MCI). AD is a 



82 

 

 

 

progressive disease that primarily affects older adults, beginning in the perirhinal and 

entorhinal regions of the mesial temporal lobes, progressively spreading to the 

hippocampus, and ultimately to neocortical regions (Braak & Braak, 1995). Meanwhile, 

MCI is considered a prodromal phase of AD that demonstrates similar patterns of 

hippocampal subfield atrophy (Mueller et al., 2010). Because of the high correlation 

between hippocampal volume and general memory performance (Bonner-Jackson, 

Mahmoud, Miller, & Banks, 2015; Kilpatrick et al., 1997) it comes as no surprise that 

people with AD have greater memory issues than their neurologically normal 

counterparts (Barnes et al., 2009).   

The current study has shown a relationship between hippocampal disease and 

learning scores in children with temporal lobe epilepsy. This is consistent with a report 

by Kockelmann et al. (2006) indicating that verbal learning is subserved by the left 

hippocampus, particularly the dentate gyrus, CA3, and CA4 regions. Atrophy of the 

mesial temporal structures has likewise been correlated with diminished learning 

performance in amnestic MCI (Gifford et al., 2015), while a number of studies have also 

indicated that learning can discriminate between patients with AD and controls. 

Specifically, multiple authors have demonstrated worse learning across trials for AD or 

MCI patients than in and elderly neurological controls (Delis, Massman, Butters, & 

Salmon, 1991; Mast & Allaire, 2006; Foster et al., 2009; Woodard, Dunlosky & 

Salthouse, 1999). Furthermore, hippocampal responsivity to fMRI during learning tasks 

may successfully differentiate AD patients from controls (Johnson et al., 2008). 

Abnormalities of hippocampal development secondary to prenatal alcohol exposure have 
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been associated with impaired verbal learning in children (Willoughby, Sheard, Nash, & 

Rovet, 2008). 

The hippocampal learning effect may depend, at least in part, on stimulus 

familiarization across repeated trials. In a study of adults with AD, Wolk and Dickerson 

(2011) observed that only the final learning trial correlated with MTL atrophy, while 

earlier learning trials did not. This was reinforced by a more recent study indicating that 

discriminant power may be improved by increasing the number of learning trials 

presented (Wang, Li, Li, & Zhang, 2013).  Taken together, these findings are consistent 

with the suggestion made by Hermann, Wyler, Bush, and Tabatabai (1992) that mesial 

temporal structures play an important role in learning when the capacity of the short-term 

memory buffer has been exceeded. Extrapolating from Miller‘s work (1956) to supraspan 

learning tasks, hippocampal activation may be necessary to support encoding beyond 

about seven words (“plus or minus two”); this is consistent with present data but might 

expected to be lower for younger or more impaired children.  Indeed, with bilateral 

hippocampal damage, HM was able to flawlessly repeat six digit strings, but regardless of 

the number of learning trials could not remember any additional digits (Jeneson, Mauldin, 

& Squire, 2010). 

Although well-accepted that individuals with hippocampal damage are prone to 

memory impairments, diminished performance on global memory measures may also be 

caused by damage or disease within various other neuroanatomical regions (Zola-Morgan 

& Squire, 1993). Episodic memory may be compromised by selective damage either to 

mesial temporal structures or the surrounding Papez network (Dickerson & Eichenbaum, 

2010).  Not only is there no singular site or cortical circuit that can independently 
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subserve episodic memory functions, but neuroanatomical locations or connectivity may 

also vary with specific task characteristics (Rugg, Otten, & Henson, 2002).  

Functional neuroimaging, and fMRI in particular, has played an invaluable role in 

understanding brain connectivity and plasticity. Performance-based imaging studies 

continue to be the primary means of delineating functional networks that are task or 

action-dependent. There is evidence that declarative memory in healthy individuals 

activates a network that includes not only the perirhinal and entorhinal cortices, 

hippocampus, and amygdala, but also the lateral temporal neocortex (Gour et al., 2011). 

This suggests that abnormalities of lateral temporal cortex, such as FCD, have the 

potential to substantially impact explicit memory functions. It also helps make sense of 

studies demonstrating that some verbal memory impairments may stem from ether mesial 

or lateral temporal disturbance. Furthermore, temporal lobe epilepsies commonly present 

with altered connectivity of memory network components proximal to the seizure onset 

zone. Within the hemisphere of the epileptogenic focus, fMRI has further demonstrated 

diminished connectivity between the posterior cingulate gyrus and the hippocampus, as 

well as between the hippocampal formation and the parahippocampal cortex (James, 

Tripathi, Ojemann, Gross, & Drane, 2013).   

Adding to the complexity of understanding eloquent functional networks, in 

patients with early onset epilepsies, connectivity and network development are subject to 

plastic changes, particular when seizures are present during nascent maturational stages. 

Because TLE is a systemic brain disorder, abnormal physiological alterations are 

generally accompanied by numerous pathophysiological changes to cognitive networks 

that extend far beyond the seizure onset zone. Left TLE with HS is notable for white 
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matter alterations within the ipsilateral temporal lobe, as well as connections to mesial 

temporal, bilateral frontal, and parietal areas (Liu, Chen, Beaulieu, & Gross, 2014; Voets 

et al., 2009). Network changes include both increased and reduced connectivity. While 

functional coupling may decrease between some areas of the affected temporal lobe and 

homologous regions in the opposite hemisphere, frontal and subcortical connectivity may 

be enhanced (Maccotta et al., 2013). TLE patients have shown negatively correlated 

connectivity maps in comparison with controls (Morgan, Gore, & Abou-Khalil, 2010). 

Noted changes to cortical hubs include gray matter atrophy in temporal, frontal, and 

parahippocampal areas, as well as in the cerebellum (Riederer et al., 2008). 

While the neocortex is material specific, mesial temporal areas are regarded as 

being relatively nonspecific, with the left hippocampus involved in processing verbal 

memory only because of its interaction with neighboring neocortical structures 

(Helmstaedter et al., 1997). Patients with bilateral hippocampal damage or surgical 

removal suffer permanent episodic memory loss (Milner, 2005; Scoville & Milner, 1957).  

When considering postoperative changes following unilateral hippocampal resection, 

most studies have found that the degree of memory decline following surgery is greatest 

in those with the best memory performance (LoGalbo et al., 2005; Stroup et al., 2003). 

Intact memory is directly related to the least amount of compromise to hippocampal 

neurons. Because HS is a progressive, slowing evolving condition, the drop in memory 

performance is essentially the result of resecting residual hippocampal tissue that has 

remained functional (Fuerst et al., 2001; Rausch & Babb, 1993; Helmstaedter, Elger, 

Hufnagel, Zenter, & Schramm, 1996; Witt et al., 2015). Two studies have demonstrated 

learning and memory declines following resection in children with left temporal seizures, 
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with the majority recovering by one year after surgery, regardless of pathology (Gleissner 

et al., 2002; Gleissner, Sassen, Schramm, Elger, & Helmstaedter, 2005). Adults 

evidenced similar declines, but did not show recovery as the children had.  

Given the high rate of atypical organization of language networks in patients with 

left temporal lobe epilepsy, language lateralization can potentially confound the 

evaluation of unilateral hippocampal functioning.  A considerable number of children 

with left TLE show atypical language organization prior to surgery (Korman, 2010; 

Maulisova et al., 2016); however, declines in verbal episodic memory immediately 

following left hippocampectomy reflect that at the time of surgery right mesial temporal 

structures had not yet subsumed verbal memory functions. Many adults with left 

temporal lobe epilepsy also exhibit atypical language organization (Powell et al., 2007), 

even though they do not recover verbal memory after hippocampal resection, regardless 

of how much time has elapsed since surgery. This is presumably due to adults having less 

residual developmental plasticity than children. Thus, despite early reorganization of 

language networks, it appears that memory network restructuring ensues only after many 

months following mesial temporal surgery in children, but not in adults. Verbal memory 

is not necessarily isolated to one hemisphere, but functional contributions to verbal 

learning and memory are best evaluated within the context of lesions affecting the 

language-dominant hemisphere.  However, modal-specific memory weakness is not 

necessarily a reliable indicator of epileptogenic zone lateralization. 

The concept of memory reserve capacity as it relates to epilepsy has been 

described in a handful of studies. As with the dementia studies, higher levels of reserve 

have been associated with better preservation of overall cognitive functioning in epileptic 
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adults (Jokeit & Ebner, 1999; Oyegbile et al., 2004; Pai & Tsai, 2005). Studies and 

reviews focused on memory resilience specific to temporal lobe epilepsy have discussed 

various factors related to viability of diseased structures, plasticity of memory networks, 

and degree of compensation by contralateral structures (assuming they are intact) 

following resection (Chelune, 1995; Helmstaedter,1999). 

Semantic and episodic memory likely rely on different networks, yet are 

functionally interrelated, affecting each other at encoding as well as retrieval (Greenberg 

& Verfaellie, 2010). Whether or not the hippocampus participates in semantic 

consolidation and retrieval remains a topic of ongoing debate. While retrieval of existing 

semantic knowledge is relatively unaffected by bilateral hippocampal damage (Schmolck, 

Kensinger, Corkin, & Squire, 2002), fMRI activation of the left hippocampus has been 

observed during both episodic and semantic retrieval (Ryan, Cox, Hayes, & Nadel, 

2008).  In a study of children with temporal lobe epilepsy, Smith and Lah (2011) found a 

double-dissociation between scores for semantic and episodic memory tasks. Some 

children performed well on semantic but not on episodic memory tasks, whereas others 

had poor episodic performance, but scored well on semantic tasks. Their results 

suggested two neuroanatomically distinct systems, with episodic memory subserved by 

mesial temporal systems while semantic memory is instead reliant on lateral structures. 

Other authors have postulated that semantic information is initially acquired as episodic, 

but over time aspects of the episode fade away, including the time of acquisition and 

information source (Cermak, 1984; Moskovitch et al, 2005.)    

The hippocampus appears to improve semantic competence in neurologically 

normal individuals, but evidence suggests that the hippocampus is not absolutely 
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necessary for acquisition of semantic knowledge.  While semantic learning is impaired 

following mesial temporal damage, factual knowledge can still be augmented by other 

intact brain regions (Kensinger & Giovanello, 2005; Vargha-Khadem et al., 1997). This 

was exemplified by the ability of amnestic patients including H.M. (Corkin, 2002; 

O’Kane, Kensinger, & Corkin, 2004) and others (Manns, Hopkins, & Squire, 2003) to 

make semantic knowledge gains, although the process is quite slow, laborious, and 

inefficient. 

Semantic memory may also function in a priming capacity for episodic memory 

(McNamara, 2005). In neurologically intact individuals, factual knowledge stores may 

act as a framework for encoding of episodic information (Brewer & Treyens, 1981). 

Strong foundational knowledge of a particular subject tends to aid episodic learning and 

recall for related details (Schneider, Korkel, & Weinert, 1989). In contrast to H.M. and 

others who were unable to augment episodic knowledge, some amnestic patients with 

mesial temporal damage have been able to support new episodic learning using semantic 

information as anchor or reference points (Kan, Alexander, & Verfaellie, 2009). Taken 

together, these semantic-episodic interactions suggest a compensatory mechanism 

whereby levels of functionality are maintained in spite of underlying pathology, 

providing a reserve capacity of sorts. In a similar vein, procedural and declarative 

memory processes may also interact to optimize performance, even though they are 

clearly anatomically distinct systems (Poldrack & Rodriguez, 2004). 

The most common demographic characteristics used to estimate cognitive reserve 

have included years of education (Stern, 1992) and IQ (Stern, 2009), particularly 

premorbid IQ levels (Alexander, 1997). Given that semantic knowledge capacity, a form 
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of crystallized intelligence, is often used to estimate premorbid IQ, it is a likely candidate 

as a CR proxy (D’Aniello, Castelnuovo, & Scarpina, 2015). Semantic memory 

impairment is often noted in patients with AD, but generally only after substantial 

progression of pathology (Hodges & Patterson, 1995) due to failure of explicit retrieval 

mechanisms (Rogers & Friedman, 2008). Until that point is reached, semantic knowledge  

may bolster explicit memory performance and maintain apparent function.  

In formulating the hypothesis for this study, prior research describing the 

mnemonic roles of medial and lateral temporal structures was carefully considered. The 

adult epilepsy literature reported that temporal neocortical structures mediate working 

memory (Helmstaedter et al., 1997) and material-specific acquisition, including verbal 

learning (Helmstaedter et al., 2008). Numerous authors have also indicated that the 

mesial temporal structures support long-term retrieval and consolidation of episodic 

memory (Harand et al., 2012; Hosscheidt, Nadel, Payne, & Ryan, 2010; Rutishauser, 

Schuman, & Mamelak, 2008).  This study derives alternative concepts of hippocampal 

involvement in verbal memory, with the implication that memory systems are 

considerably more complex than often described using the current theoretical framework.   

Limitations 

 

Various limitations of this study warrant discussion so they may be addressed in 

future investigations. While retrospective studies have certain advantages, they often 

present with numerous challenges, particularly when taking information collected within 

a clinical context and configuring it to answer a set of research questions. Because of the 

archival nature of this study, some usable data fields were limited across subjects. This 

was largely due to the clinical practice of tailoring measures used and scores collected to 
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fit demographic requirements and respond to individualized referral questions.  

Moreover, some subjects had to be systematically excluded due to missing data points. 

This effect was further amplified by the collection of information across multiple years. 

Over any expanse of time, not only do new versions of tests and new measures emerge, 

but there may be shifts in the zeitgeist that dictate which tests are the most appropriate for 

any given clinical presentation.   

There are also far more limitations in pediatric than adult practice. When working 

with children, the measures used vary depending upon age, with fewer available tests for 

younger children. Measures of memory begin at age five and are very simplistic. 

Executive skills are not effectively measured until about age 7, when reading skills 

become proficient enough to produce reliable responses to written and more language-

laden tasks. Thus, it is often not possible to use equivalent measures across a broad range 

of pediatric ages.  Because children with early onset epilepsy tend to be lower 

functioning, evaluation of this group poses additional challenges. Compared with the 

general population of refractory pediatric epilepsy, the present study sample is likely 

biased toward somewhat higher functioning children, only because they were able to 

complete most of the neuropsychological measures presented. Despite this upward bias, 

the mean full scale IQ for the entire sample of study participants was still just under one 

standard deviation below the normative population mean. Validity of memory scores may 

also be confounded by the attentional and behavioral difficulties often seen in children 

with epilepsy.  

Because sampling bias can affect results, a discussion of specific factors leading 

to this type of bias is warranted. Since microscopic examination of tissue is required to 
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verify pathology, the accuracy can occasionally be confounded by technical issues. This 

can be especially problematic for certain hippocampal resections in which structures are 

removed using vacuum extraction, rather than being taken out en-bloc; this may lead to 

small or insufficient amounts of tissue available for evaluation, perhaps not representative 

of the entire specimen. Hippocampal subfield damage to may differentially influence 

memory performance depending upon the specific areas affected (Coras et al., 2014). 

Pathological grading is also more difficult when surgical specimens are damaged during 

surgical removal. Specimen characteristics can also bias the pathological analysis if not 

all sectors are not represented (e.g., isolated anterior hippocampus). Fortunately, most 

bias can be reduced through specialized staining techniques that delinate mossy fiber 

sprouting, which increases with hippocampal damage and is a sensitive and reliable 

measure of HS progression, regardless of the section sampled (Proper et al., 2001). The 

use of radiological scales for grading the progression of hippocampal sclerosis can 

provide secondary evidence of hippocampal status (Watson et al., 1996), which would 

likely improve diagnostic accuracy for research as well as clinical applications. 

Presurgical neuropsychological assessment is often complicated by the passage of 

time between seizure onset and evaluation, which may be a number of years in some 

cases. During this time period, the brain may compensate through reorganization of 

networks and the child may either compensate behaviorally or other behavioral issues 

may arise, which in turn can interfere with the evaluative process. Because the early onset 

of seizures tends to interfere with neurocognitive development and critical periods, older 

children who have an extended seizure history may be exceptionally delayed or difficult 
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to test, particularly when considering the sparse selection of age-appropriate measures 

with very low psychometric floors.     

When doing research involving hippocampal sclerosis, it is often easier to work 

with adult patients than children. Because HS generally develops later in life, there are 

considerably greater numbers of adult than child cases without additional cortical 

pathology. Having a larger base population increases the ease of recruiting and retaining 

study populations. Most adults have also had the opportunity to develop normally prior to 

disease onset, contrasted with pediatric populations that are often very cognitively 

impaired due to developmental interference and similar complexities. Regardless of the 

intended clinical or research application, developmental differences must be accounted 

for in the assessment of , it is not feasible to compare raw scores across subjects of 

different ages, or even those at different developmental levels. Thus, despite showing a 

strong relationship between hippocampal dysfunction and repetitive learning trials, raw 

learning scores are meaningless in isolation. Without having a normal group against 

which to compare, we only know that patients with left hippocampal damage tend to have 

worse learning than those with FCD. However, we don’t yet have information on how 

patients with lateral temporal lobe damage (e.g., FCD group) compare against age-

matched, non-neurological patients. Normative memory scores from the current sample 

suggest that patients with lateral temporal pathology have general memory issues equal in 

magnitude to those with unilateral mesial temporal pathology. Furthermore, stratification 

by age, laterality, and lesional variables may prove challenging, particularly when 

studying children, in whom underlying lesions rarely affect a single cortical lobe.  
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As new neuropsychological techniques are developed and older applications 

refined, accompanying changes in knowledge or understanding are likely to require new 

terminology or a new application of meaning to existing terms to accurately describe 

phenomenon and maintain scientific consistency. In the current study, there is only a 

vague definition of what constitutes “learning, ” which makes it more difficult to interpret 

the relevance of the findings. In this case, learning is defined more by what is measured, 

and less through theoretical construct, which also creates ambiguity for terminology 

associated with learning and memory and the relationship between the two. Furthermore, 

although the terms have been used somewhat interchangeably, it is hardly clear whether 

learning is the same as memory encoding, or perhaps one is a subset of the other. This 

becomes problematic, as previously explained, because the use of a retention index relies 

entirely on knowing how much information was actually encoded. Otherwise, deficient 

encoding could masquerade as poor recall. This might be resolved through the use of an 

immediate recall trial following the completion of learning trials, which could then be 

compared with the recall after a delay period, such as presented on the CVLT. Although 

an interference trial (e.g., given on the CVLT following immediate recall) may indicate 

resistance to decay and intrusion, it is likely to again confound the discernment of what 

has actually been encoded versus what is retained.  Thus, it is important to plan for the 

memory properties of interest and carefully choosing the specific tasks that will achieve 

that goal. However, this also means that memory measures cannot be “all things to all 

neuropsychologists” and poses a considerable challenge to test developers.   

Analysis of the data presented some challenges due to limited sample size, which 

diminished the statistical power to differentiate between groups. Although there was a 
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large effect size for the relationship between final learning trial and hippocampal 

function, the fewer subjects means that results may be less reliable than with a larger 

group. There were also some departures from normality that violated basic assumptions 

of parametric statistics, some of which stemmed from the relatively small number of 

subjects. This became more of an issue when groups were broken down by hemispheric 

laterality and even more when divided into pathology type. Alternative ways of 

performing statistical analyses were used when possible, such as using a repeated 

measures ANOVA, rather than analyzing the retention quotient, due to high kurtosis in 

the latter composite variable. Although there were no true outliers, some distributions had 

more high and low scores than expected. This particularly affected word recall following 

the delay for the entire sample (both the raw score and associated scaled scores) due to 

squared-off distributions stemming from scores in the tails of the distributions.  When 

variables were broken down by pathology group, even more examples of non-normality 

were observed, affecting the final and highest learning trials. Because this often happens 

as sample sizes become smaller, it was not unexpected.  Inspection of skewness statistics 

and histogram plots revealed significantly accentuated negative skew for the group of 

participants with FCD only upon these learning variables, consistent with the analytic 

data previously presented.  

Future Directions 

Although the data did not directly support the hypothesis as predicted, it did raise 

a number of relevant questions for further exploration that will presently be addressed.  

Perhaps most importantly, the results indicate that currently available memory 

tests are good at quantifying overall memory competence, but yield very little 
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information relevant to anatomical localization. Although neurologists and neurosurgeons 

now rely on MRI and other advanced imaging procedures to determine the location of 

brain tumors, the neuropsychologist is still heavily relied upon to provide information 

upon which decisions will be made about surgical procedures. This is especially true for 

those involving hippocampal resection or ablation. With the discovery of a new way of 

using and interpreting an old measure as a starting point, new tests need to be developed 

that provide a normative basis of comparison, rather than needing to compare clinical 

cases as referential controls. 

However, before new tests are developed, the present results should be replicated 

and tested within a broader scope to ensure that there is a true relationship between 

learning and hippocampal function. Pediatric replication should be done across stratified 

age cohorts. To rule out potential developmental confounds, testing with adults is also 

warranted, which would also ensure that results may be generalized across age groups. 

Because FCD is an unusual finding in adults, those with HS would likely need to be 

compared with non-neurological controls.   

While expected that learning across trials as a marker of left hippocampal 

dysfunction should be robust across various verbal learning measures, this will remain 

uncertain until further studies are done. The strength of the effect is also likely to vary, 

depending upon stimulus and test-specific characteristics such as list length and word 

properties that include imageability, semantic relation, and base rate frequency of natural 

occurrence. Several examples illustrate the importance of stimulus selection upon 

learning. Task demands vary with different lengths of word lists, which can in turn affect 

how information is processed (Sunderaramon, Blumen, DeMatteo, Apa, & Cosentino, 
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2013). Learning across trials has demonstrated significant correlation between the 

Hopkins Verbal Learning Test (HVLT) and the California Verbal Learning Test (CVLT) 

within groups of normal elderly as well as patients with AD (Lacritz & Cullum, 1998; 

Lacritz, Cullum, Weiner, & Rosenberg, 2001). However these studies showed little 

association between the learning tasks for certain error types and recognition scores.  

Surprisingly, there is not a large body of literature discussing the effects of 

implicit semantic structure within memory tasks. Categorical groups of words within a 

list (such as found on the CVLT) might improve encoding through a chunking strategy 

that effectively reduces the number of individual elements (McLean & Gregg, 1967). As 

long as subjects know the basis for category membership (i.e., peaches and grapes belong 

to the fruit category) memory processes become more efficient by freeing up working 

memory and requiring less hippocampal activation during encoding. However, this does 

not necessarily improve encoding in healthy young adults (Shear, Wells, & Brock, 2000). 

Despite enhanced semantic clustering during delayed recall on the CVLT, overall 

recollection was not superior to participants who did not receive semantic cueing prior to 

stimulus presentation.  Furthermore, the implicit structure of the CVLT may even 

diminish sensitivity to some deficits in impaired patients. A study comparing the CVLT-

C with WRAML verbal learning in children within the fetal alcohol spectrum found 

significantly better delayed retention on the semantically structured measure, while these 

differences were not present in age-matched healthy controls (Roebuck-Spencer & 

Mattson, 2004). Results indicated that less-structured tests like the WRAML were more 

sensitive to deficits in memory retention, suggesting that word list structure may actually 

mask certain types of deficits rather than revealing them. 
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Finally, standard administration procedures for most memory measures include 

similar delay times to that used in the present study. Because recall after a 20 minute 

delay was not related to hippocampal function, future studies should evaluate recall at 

varying time intervals to validate this finding or determine the condition(s) under which 

the hippocampus does participate in memory recall. Delay times should be strategically 

created, with suggested intervals at one hour, one day, and one week; it is acknowledged 

that the longer intervals will be more difficult to test, however technology now makes it 

possible to test long memory delays through remote means (i.e., telephone and internet-

mediated video chats). Randt, Brown, and Osborne (1980) developed an adult memory 

test with 24-hour delay norms intended to be tested remotely by telephone, but this 

practice has not been incorporated into any contemporary memory measures. While the 

delay between word list presentation and “long term” recall is routinely evaluated after a 

20 to 30 minute delay interval (Delis, Kramer, Kaplan, & Ober, 1994; Schmidt, 1996; 

Sherman, E.M., & Brooks, 2015), this interval appears to be arbitrarily set. While the 

present results indicate that this time period allows for the normally expected decay of 

information there was no evidence discovered in the literature or test manuals for 

determination of this epoch. Thus, additional study is required to determine the most 

appropriate recall delay times for memory measures, particularly for evaluation of those 

patients with potential mesial temporal damage.  

Drawing upon the present results, we can speculate that a nonverbal learning 

analogue presented across four trials might yield similar results for the opposite 

hemisphere. However, numerous caveats would need to be addressed before conclusions 

regarding the role of hippocampal function could be generalized across learning 



98 

 

 

 

modalities. Although the use of nonverbal stimuli may intuitively make more sense from 

the standpoint of eliminating language as a source of potential confound, the following 

issues are likely to be encountered in this endeavor: First, although the right hemisphere 

may process a visual gestalt, more concrete, familiar details within the design are less 

likely to reliably lateralize to the right side. Secondly, nonverbal stimuli may be prone to 

automatic verbal labeling, dependent upon complexity, novelty, and other characteristics, 

thereby further confounding results. Furthermore, due to the nature of verbal stimuli and 

overlearning, words are likely to be automatically processed by the left hemisphere, but 

there is no prepotent analogue for the right hemisphere and processing of nonverbal 

stimuli. As has been found previously, there are fewer lateralizing effects for non-verbal 

than verbal memory (Alessio et al., 2006; Baxendale et al., 1998; Bonilha et al., 2007; 

Sawrie, et al., 2001), suggesting greater difficulty in isolating non-language-dominant 

hippocampal function in participants with intact contralateral structures. 

Because the results of this study and the work of other authors have suggested that 

repeated learning across multiple trials is a key element for the hippocampus to 

participate in learning, further study of this phenomenon is warranted to elucidate the key 

elements and specific processes involved. Consideration should be given to the learning 

slope, as that has been identified as an indicator of material specific memory impairments 

in temporal lobe epilepsy (Foster, et al., 2009). Other studies in epileptic patients have 

correlated left temporal resections with reduced verbal learning slope (Dulay et al., 

2009). Others have suggested that learning slope may represent a neurophysiological 

process associated with the hippocampal formation (Poreh, Sultan, & Levin, 2012). 
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Despite such mentions in the literature, there is little published empirical evidence 

validating a relationship between hippocampal functioning and rate of stimulus learning. 

The effect of the number of learning trials is also worthy of consideration. The 

current data further suggest that a minimum of four consecutive repetitions is necessary 

to engage the hippocampus enough to find group differences in children.  The difference 

in words learned between trials three and four was a sensitive differentiator between 

subjects with and without hippocampal dysfunction, and this juncture also appeared to be 

when the hippocampal structures assumed primary control of the encoding process. It is 

vital to recognize that the current paradigm identified participants with HS due to failed 

activation of the hippocampus across progressive learning trials, while those with intact 

hippocampi had relatively enhanced encoding in the later trials, but were less-

successfully identified. Within this context it would be helpful to know whether 

additional trials might improve specificity enough to differentiate between pathologies at 

an individual level. While overall memory screening may be sufficient with few encoding 

trials, measure suitability depends on the intended use. This is also important because 

some abbreviated learning tasks, such as that found in the Child and Adolescent Memory 

Profile (ChAMP) with only three verbal learning trials (Sherman & Brooks, 2015) may 

not sufficiently evaluate for memory issues isolated to elements of the Papez circuit. 

 Finally, if future studies do validate learning scores as a gateway to identification 

of hippocampal damage, then more practical applications may be devised and tested. One 

of the most germane uses would be for improving the prediction rate of relative risk and 

degree of verbal memory decline following left hippocampal resection. In patients with 

intractable seizures it may be used in conjunction with imaging and electrophysiological 
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data to help identify the presence and extent of hippocampal dysfunction prior to surgery. 

With further development that includes well thought-out study designs and the inclusion 

of appropriate control subjects to improve specificity rates, outcome studies will 

ultimately determine whether this may one day be successfully applied to the prediction 

of individual outcomes.   
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