
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2013

A role-based access control schema for materialized
views
Hassaan Yousafi
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Yousafi, Hassaan, "A role-based access control schema for materialized views" (2013). Electronic Theses and Dissertations. 4895.
https://scholar.uwindsor.ca/etd/4895

https://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F4895&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F4895&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F4895&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/4895?utm_source=scholar.uwindsor.ca%2Fetd%2F4895&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

A ROLE-BASED ACCESS CONTROL SCHEMA FOR MATERIALIZED VIEWS

By

Hassaan Yousafi

A Thesis

Submitted to the Faculty of Graduate Studies

Through the School of Computer Science

in Partial Fulfillment of the Requirements for

the Degree of Master of Science

 at the University of Windsor

Windsor, Ontario, Canada

2013

© 2013 Hassaan Yousafi

ii

A ROLE-BASED ACCESS CONTROL SCHEMA FOR MATERIALIZED VIEWS

by

Hassaan Yousafi

APPROVED BY:

__

Kemal Tepe

Department of Electrical Engineering

__

Dan Wu

School of Computer Science

__

Robert D. Kent, Advisor

School of Computer Science

 May 06, 2013

iii

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my thesis,

published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis has

not been submitted for a higher degree to any other University or Institution.

iv

ABSTRACT

This thesis research presents a framework that enhances security at the level of

materialized views. Materialized views can be used for performance reasons in very large

systems such as data warehouses or distributed systems, or for providing a filtered

selection of data from a more general database. Existing proposed techniques provide

rule-based access control for materialized views, however, the administration of such

systems is time consuming and cumbersome in a large environment. This thesis presents

a role-based access control schema for materialized views in which data authorization

rules are associated with roles and defined in Datalog syntax in plain text files, a column

level restriction is imposed on a materialized view based on a user assigned role, and a

role conflict strategy is defined in which priority is given to each conflicting role in order

to resolve role conflicts if a user is gaining authorization for permissions associated with

conflicting roles at the same time.

KEYWORDS

Materialized Views, Authorization Views, Session Roles, Role Conflicts

v

DEDICATION

To my parents, my sister Munnaza, and my loving wife Mariam

vi

ACKNOWLEDGEMENTS

I would like to thank all the people who have helped me during my thesis research.

Special thanks to my supervisor Dr. Robert D. Kent for his immense support and

guidance throughout my master’s degree.

My sincere appreciation goes to my parents for their unconditional support, and also to

my wife Mariam for her encouragement and support in all these years.

I express my deep appreciation to my elder sister Munazza for standing by me during

these years.

I would also like to thank Dr. Dan Wu and Dr. Kamal Tepe for serving in my thesis

committee.

Lastly, I would like to thank all my colleagues in Computer Science department who

helped me through their inputs to improve my thesis work.

vii

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY ... iii

ABSTRACT ... iv

DEDICATION ... v

ACKNOWLEDGEMENTS ... vi

LIST OF TABLES .. ix

LIST OF FIGURES ... x

CHAPTER I ... 1

INTRODUCTION.. 1

1.1 - Data Access Control Methods ... 2

1.1.1 - Mandatory Access Control (MAC) .. 2

1.1.2 - Discretionary Access Control (DAC) ... 2

1.1.3 - Role-based Access Control (RBAC) .. 3

1.2 - Materialized View ... 6

1.3 - Authorization View ... 9

1.4 - Query Rewriting .. 11

1.5 - Problem Statement ... 12

1.6 - Thesis Contribution ... 13

1.7 - Organization of thesis .. 13

CHAPTER II .. 14

RELATED WORK .. 14

2.1 - Context Based Access Control (CBAC) .. 14

2.2 - Attribute Based Access Control (ABAC) .. 15

2.3 - XML Based Access Control .. 16

2.4 - Access Authorization for Relational Database .. 18

2.5 - Fine-grained Authorization Policies .. 19

2.6 - Authorization Views and Conditional Query Containment ... 20

2.7 - Access Control to Materialized Views .. 21

viii

2.8 - Comparison of Various Research Works .. 24

CHAPTER III .. 25

PROPOSED FRAMEWORK ... 25

3.1 - Data Access Control to Materialized Views .. 25

3.2 - Proposed Role-Based Framework ... 26

3.2.1 - Role Assignment ... 28

3.2.2 - Role-Based Authorizations ... 30

3.2.3 - Session Roles .. 32

3.2.4 - Role Conflicts ... 33

CHAPTER IV .. 36

IMPLEMENTATION AND VERIFICATION ... 36

4.1 - Background .. 36

4.2 - Implementation .. 36

4.2.1 - Role Assignment Module ... 37

4.2.2 - Request Handler Module .. 38

4.3 - Verification .. 41

4.3.1 - Basic Requirements .. 42

4.3.2 - Additional Functions .. 46

4.4 - Scalability Test Results ... 49

4.5 - Summary Comments ... 49

CHAPTER V .. 50

CONCLUSION AND FUTURE WORK ... 50

5.1 - Conclusion ... 50

5.2 - Future Work ... 51

5.2.1 - Role Automation ... 51

5.2.2 - Workflow Management in RBAC .. 51

5.2.3 - Global vs. Local Authorizations ... 52

BIBLIOGRAPHY .. 53

VITA AUCTORIS ... 57

ix

LIST OF TABLES

2.1 - Comparison of various researches works…………………………………………. 24

4.1 - Scalability test results………………………………………………………………49

x

LIST OF FIGURES

1.1 - RBAC Architecture (NIST solution)……………………………………………….. 4

1.2 - RBAC Hierarchal Structure (NIST solution)………………………………………. 5

1.3 - RBAC Separation of Duties (NIST solution)………………………………………. 5

1.4 - RBAC Elements (NIST solution)…………………………………………………... 6

1.5 - Materialized view site architecture…………………………………………………. 7

2.1 - XACML data flow………………………………………………………………… 17

2.2 - RBAC Model and X-RBAC Policy Components………………………………… 17

2.3 - Authorization policies for materialized views…………………………………….. 22

3.1 - Proposed RBAC Architecture for Materialized Views…………………………… 27

3.2 - Workflow of Role Assignment process…………………………………………… 28

3.3 - Architecture of Role-Based Authorization………………………………………... 30

3.4 - Role and Authorization Views……………………………………………………. 32

3.5 - Role Conflict Strategies…………………………………………………………… 34

4.1 - Proposed Architecture…………………………………………………………….. 36

4.2 - Role Assignment module pseudo code…………………………………………… 37

4.3 - Active Sessions pseudo code……………………………………………………… 38

4.4 - View Selection pseudo code………………………………………………………. 40

4.5 - Query Construction………………………………………………………………... 41

4.6 - Login page………………………………………………………………………… 42

4.7 - Homepage…………………………………………………………………………. 43

xi

4.8 - Simple query execution and results……………………………………………….. 44

4.9 - Authorization Views………………………………………………………………. 44

4.10 - Conflict Strategy…………………………………………………………………. 45

4.11 - Role conflict detected……………………………………………………………. 45

4.12 - Additional SQL statement clauses……………………………………………….. 46

4.13 - Query Generation using SQL statement clauses………………………………… 47

4.14 - Results of query with additional SQL clauses…………………………………….47

4.15 - Query Generation using Display None function………………………………… 48

4.16 - Results of query using Display None function…………………………………... 48

1

CHAPTER I

INTRODUCTION

Data Access Control has been considered a major issue in the information technology

community. The main focus of researcher is to provide a mechanism to secure data, and

provide the access of data based on identity and attributes of a known users or a process

by using a reference monitor and specialized authorization rules.

The authorization policies are defined to limit the access of data based on user attributes

or role. Several different approaches have been proposed based on the requirements of

different domains. There are some research works which are generic, and can be applied

to any domain. Role-Based Access Control (RBAC) [24] is the leading access control

model due to its flexible nature and ease of maintenance.

Currently, data amount and availability is increasing rapidly; much of the data is stored

on remote file systems. Materialized Views is another addition in Relational Database

Management Systems. A materialized view takes a different approach in which the query

result is cached as a concrete table that may be updated from the original base tables from

time to time. This enables much more efficient access of data. It may be a local copy of

data located remotely or a subset of the rows or columns of a table or join result, or may

be a summary based on aggregations of a table’s data.

Existing proposed techniques provide rule-based access control for materialized views

[2][3], but to the best of our knowledge, the administration of such systems is time

consuming and cumbersome in a large environment as administrators define rules for

each user to control the access to materialized views.

In this chapter, we give an introduction of existing data access control methods,

Materialized View, Authorization View, and Query Rewriting. In last two sections, we

describe the problem statement, and thesis contribution.

http://en.wikipedia.org/wiki/Database_cache
http://en.wikipedia.org/wiki/Sql_join

2

1.1 - Data Access Control Methods

Several Data Access Control methods have been introduced by keeping in view the

requirements of an organization, and the sensitivity of the data. In this section, we discuss

different data access control methods.

1.1.1 - Mandatory Access Control (MAC)

Mandatory Access Control utilizes hard coded security rules. Rules are coded into an

application or operating system. The security policy is centrally administered and can be

override by the users, and it is applied to various resources, objects, and applications. The

data classification of MAC security policy begins with sensitive, secret, and confidential,

and next the classification of resources that will be making requests for data. MAC

concept is incorporated mostly in military and governmental applications where high

level security is required.

The benefit of this model is that the rules are hard coded into software so there are very

less chances of an administrative error or social engineering.

The shortcoming of this model is that the rules are hard coded so it takes time to review

and modify the rules as the requirements are changed. MAC is best suited for a group of

users with similar needs.

1.1.2 - Discretionary Access Control (DAC)

Discretionary Access Control can be utilized as a centralized and distributed model. DAC

centralized model is administered by an administrator or a team of administrators, who

are responsible to make security policies and assign privileges as per policy, but this

approach is time consuming, especially if the administrator is off or outsourced. In

distributed approach, the data access is distributed to some responsible personnel such as

managers, supervisors, or team.

This approach provides a way to avoid delays as the administration of accounts is

dispersed.

3

The shortcoming of this model is that the uniformity of data access for end-user with

same job functions can be diminished as access of data is distributed at the discretion of

the owner.

1.1.3 - Role-based Access Control (RBAC)

In this competitive environment, the risk of losing information is more for leading

organization. MAC and DAC model secure data, but they have limitations. To overcome

their shortcomings, RBAC has been proposed [24]. As Role Based Access controls are in

existence in last 20 years, especially in UNIX and mainframe environments, but they lack

some standards as each system use its own propriety elements. There was a need to

design such a system which is standardized, scalable, logical in design, and non-system

dependent.

National Institute of Standards and Technology (NIST) started a project for unified

standards of RBAC by integrating the existing model.

In 1992 a model was introduced by David Ferraiolo and Rick Kuhn that attempted to

meet the requirements of the scope and created a full-fledged RBAC solution.

RBAC0 is the first proposed method in this series, this model consist of separation of

duties and providing minimum privileges to each role. It doesn't have the hierarchy

mechanism so the permissions were assigned directly to the users within a certain role or

function.

By considering the need of hierarchy as it exists in any organization such as Manager,

Supervisor, and team members RBAC1 is introduced based on RBAC0. It provides a

natural distribution of responsibilities within an organization that is usually layered as

senior and junior roles. This layered security distribution method is suitable for large

environments.

Constraints are introduced in RBAC2 which offer more control over any network in large

environments. Constraints help to enforce the policies while not having the hierarchy.

Constraints work as limiters and ensure that the policies are being enforced. For instance,

4

if an organization wants to give administrative rights to one user or role, the constraints

ensures that only one user has the system administration rights.

Another purpose of constraints is to regulate the access by ensuring certain criteria is met.

For instance, to gain the permissions of Senior Analyst role one must have the

memberships of Junior Analyst role.

Finally, constraints serve the purpose of separation of duties by limiting the users in a

certain domain.

RBAC3 is complete model of RBAC, and it consists of both hierarchy and constraints.

Figure 1.1 represents RBAC architecture.

Role

Session

session_roles

user_session

user_assignment

Permission
Assignment

OPS OBS

Permissions

Fig 1.1: RBAC Architecture (NIST solution)

In RBAC3 constraints are used to regulate access on hierarchal structure. For instance, a

programmer role is associated with a senior programmer role, and there are several senior

programmers but a programmer role is associated only a specific senior programmer. As

RBAC3 supports a hierarchal design, it provides ease of administration by allowing

rights to flow down to subordinate objects. Figure 1.2 represents RBAC Hierarchal

Structure.

5

User 1

IT Programmer

User 2

IT Programmer

User 3

IT Programmer

SR. ADMIN

ROLE

JR. ADMIN

ROLE

TECH

ROLE

NOT

NOT

Sr. Admin Inherits
Jr. Admin capabilities

Jr. Admin Inherits
Tech capabilities

Fig 1.2: RBAC Hierarchal Structure (NIST solution)

Another benefit is the multiple roles which are associated with each other and provide

better functionality to the users. RBAC3 constraints enforce separation of duties; it

restricts the users to perform other tasks which are not in his job function. Figure 1.3

represents RBAC Separation of Duties (SoD).

Billing System

Payment System

Finance

Billing

Finance

Payment

User2

Finance

User1

Finance

NOT NOT

Fig 1.3: RBAC Separation of Duties (NIST solution)

In Figure 1.3, ‘NOT’ represents that both the roles cannot be activated at the same time

by the same user.

RBAC3 is a complex method, but it is suitable for large environments where

implementation and maintenance of other security models is time consuming with high

cost.

6

RBAC3 provides all functionalities that a large organization requires, but implementation

is complex due to its structure. Before implementing RBAC3, the organizational structure

or roles must be well documented, otherwise, it can turn into a nightmare for an

organization.

RBAC3 has five elements as represented in Figure 1.4; they are related to each other in

order to create level of permissions and constraints.

USER

ROLE

PERMISSIONS

OPERATIONS

OBJECTS

Wishing to access the data

Determines user’s permissions

Grant to access the data

Read, write, modify, and delete.
Operations can also be function
within an application

Data and resources user tries to access

Fig 1.4: RBAC Elements (NIST solution)

1.2 - Materialized View

Materialized view is a replica of a table or tables which is created in a distributed

environment where master table is located in a main database. Materialized views are

created and deployed at remote locations in a distributed environment in order to ease the

network load, and provide uninterrupted data extraction as it doesn’t require a dedicated

network connection to the main database server.

7

Master Site Master Site

Master Site
Materialized

View
Site

Fig 1.5: Materialized view site architecture http://docs.oracle.com

Materialized views can increase query execution performance in the following ways:

 Pre-computed aggregations can be created to minimize expensive computations

during query executions.

 Tables can be pre-joined and resulting data can be stored in a materialized view.

 Combinations of joins and aggregations can be stored for analysis purpose.

Application that benefits from the creation/deployment of the materialized views:

 Decision Support Systems

 Data Marts

 Data Warehouses

 Online Analytical Processing (OLAP)

 Data Mining Workloads

A view is a temporary table that is created during run time, and discarded when the

session is closed. A materialized view is a physical table that is stored in a database such

as the traditional database tables. The creation process of the materialized view is

different in each Database Management System (DBMS).

Oracle supports read only, updatable, and writable materialized views [27]. Users cannot

manipulate read only materialized views, but they can perform actions on writable and

updatable materialized views.

http://docs.oracle.com/

8

Oracle offers several different types of materialized views in order to meet the different

replication situation.

a) Primary Key Materialized Views

b) Object Materialized Views

c) ROWID Materialized Views

d) Complex Materialized Views

a. Primary Key Materialized Views

Primary Key Materialized Views are the default type materialized views. They are

updatable and created as part of a materialized view group. The updatable materialized

views must reside in a different database instead of the master replication group. Changes

are occurred at row level as identified by the primary key value of the row.

b. Object Materialized Views

Object Materialized View is based on the object table and created using OF type clause.

The structure is same as the object table and composed of row objects, and each row

object is identified by the object identifier (OID) column.

c. ROWID Materialized Views

A ROWID materialized view is based on the physical row identifiers (rowids) of the rows

in a master table. They are used with Oracle7 database.

d. Complex Materialized Views

There are certain restrictions which need to be observed during the creation of a

materialized view, and if these restrictions are not followed then a materialized view is

considered a complex materialized view, and it cannot be fast refreshed.

In Microsoft SQL Server, materialized views are called indexed views, and the creation

of materialized views is available in tutorials.

http://docs.oracle.com/cd/B10501_01/server.920/a96567/repmview.htm#30769
http://docs.oracle.com/cd/B10501_01/server.920/a96567/repmview.htm#55594
http://docs.oracle.com/cd/B10501_01/server.920/a96567/repmview.htm#29240
http://docs.oracle.com/cd/B10501_01/server.920/a96567/repmview.htm#25391

9

In open source database systems such as MySQL that doesn’t provide materialized view

by itself. But it is easy to build materialized views manually or using some available APIs

such as flexviews [28] which helps to create the materialized views and refresh them.

1.3 - Authorization View

Authorization view is a well-known database technique that provides a fine-grained

access control [2][3][20]. It provides a way to restrict users to view only authorized data

which is specified in the available authorization views for that particular user.

Authorization views are logical tables that don’t contain any records. The structure of

these views consists of the table name and the number of columns which are mentioned

during the authorized view creation process.

There are different approaches to define an authorization view. Motro [15] proposed a

model in which database access is specified in terms of views. According to the authors,

“a set of views is defined, and each user is granted permission to access one or more

views”. Users query the database and database system derives views of the request that

are views of the views to which the user has access permission, and then presents the

available views.

Motro [15] defines a view creation in following way:

view ELP (EMPLOYEE.NAME, EMPLOYEE.TITLE,

 PROJECT.NUMBER, PROJECT.BUDGET)

where EMPLOYEE.NAME = ASSIGNMENT.E_NAME

 And PROJECT.NUMBER = ASSIGNMENT.P_NO

 And PROJECT.BUDGET ≥ 250,000

Rizvi et al. [20] introduced parameterized authorization views. According to the authors,

it is impractical to create and maintain the authorization views for each user when the

database has thousands of users. Also, if there is a slight change in the authorization

policy then a large number of views will be affected. Rizvi et al. [20] states that the

10

parameterized views are like the normal views, but there are some additional parameters

such as user-id, time and user-location appearing in its definition.

Rizvi et al. [20] defines a view creation in the following way:

create authorization view Co-studentGrades as

select Grades.*

from Grades, Registered

where Registered.student-id = $user-id

and Grades.course-id = Registered.course-id

Bahloul et al. [3] proposed an inference-based approach in order to control the access of

Materialized Views. According to Bahloul et al. [3], their approach “facilitates the

administration of access control rules to ensure the confidentiality of data at the level of

materialized views”. The authors use authorization views to provide a fine-grained access

control over the materialized views. In this approach, the authors propose the use of

Datalog as a formal framework for expressing the access control rules. Datalog is a

declarative programming language that is syntactically a subset of Prolog. It is used as a

query language for deductive databases. Datalog is more expressive than SQL; it can

perform multi-database queries with a cleaner syntax, and it facilitates re-use of SQL

code snippets for frequent joins and formulas. In recent years, Datalog is used for data

integration, data extraction, cloud computing, data analysis, and security.

The authors [3] assume the existence of three types of symbols: variables, constants and

predicate names. p(t1….tn) is a literal where p is a predicate name with arity n and each ti

for 1≤ i ≤ n is either a constant or a variable.

According to the authors, the logical sentence associated with the Datalog rule

P(u) ← q1(u1),…,qn(un) is:

∀x1.. xn(p(u1) ← q1(u1) ^…^ qn(un)).

Bahloul et al. [3] states that the relations defined by deductive rules are called intentional

relations. For example,

11

Info-Doc (Id-D, Dname, Dfname, Dspeciality) ←

doctor (Id-D, Dname, Dfname, Dadr, Dphone, Dspeciality,

Dsalary)

is a rule that defines the (intentional) Info-Doc relation in terms of the (extensional)

doctor relation.

In the above example, the user is allowed to view doctor ID, last-name, first-name, and

specialty from the available materialized view.

1.4 - Query Rewriting

The problem of answering queries using the views has recently received a significant

attention due to data management problems. In order to solve such problems, query

rewriting algorithms has been introduced. These algorithms rewrite the user query using

the defined authorization views which are associated with traditional database tables or

materialized views. A query is rewritten to take best advantage of summaries, joins or

aggregations of base table that are found in materialized views

There are several proposed query rewriting algorithms, we discuss Bucket algorithm [18]

to understand the query rewriting process in the following paragraph.

Bucket algorithm creates subgoal g in the original query, and then each subgoal g

contains the views that include subgoals to which g can be mapped in a rewriting of the

query. In second step, the algorithm consider conjunctive query rewriting, each consists

of one conjunct from every bucket. The algorithm further checks whether it is contained

or can be made to be contained with join predicates in the query. The result of the Bucket

algorithm is the result of conjunctive query rewritings.

Example:

create authorization view MyGrades as

select * from Grades where student-id = $user-id

Let q be the query posed by the user.

12

q : select avg(grade) from Grades

The system-modified query

qʹ: select avg(grade) from MyGrades

1.5 - Problem Statement

In distributed environment, materialized views can be used to replicate data at distributed

sites. Materialized views provide local access to data instead of accessing data from

remote sites.

In large organizations, materialized view site are created at remote destinations in order

to reduce the network load and the load from the main database server. A user query is

sent to the local materialized view database instead of main database server. Existing

proposed techniques provide rule-based access control for materialized views; however,

the administration of such systems is time consuming and cumbersome in a large

environment where administrators define rules for each user to control the access to

materialized views.

In order to control the access of materialized view, we need a framework which provides

a fine-grained access control to materialized view using the authorization view [3], and

provides a Role-Based access instead of defining policies for each user. In our thesis

research, we identified the problem of assigning authorization views to roles instead of

defining for each user. We also noticed that if our framework allows the users to activate

multiple roles in same session with different permissions, then we need to provide a

strategy to resolve role conflicts that occur if a user is gaining authorization for

permissions associated with conflicting roles at the same time. In our thesis research, we

have identified the following problems:

• How can we assign the authorization views to roles?

• How can we impose a column level restriction on a materialized view based on

rules associated with roles?

13

• How can we avoid role conflicts if user is gaining authorization for permissions

associated with conflicting roles?

1.6 - Thesis Contribution

My contributions in this thesis are:

• A fine-grained access control framework to prevent unauthorized access of

materialized views

• Users are assigned to roles, and users acquire permissions through authorization

views

• Provides a column level restriction based on an assigned role

• Enforces constraints to avoid role conflicts

• The proposed framework can be implemented for materialized view sites in

distributed environments and for data warehouses

1.7 - Organization of thesis

The rest of the thesis is organized as follows. Chapter II provides the background

literature review of different proposed models which extend Role-Based Access Control

approach and data authorization techniques using authorization views. The details of this

thesis research are provided in Chapter III that includes proposed framework, workflows

diagrams, and the steps that each module performs in the entire role-based data

authorization process. The details of implementation and verification of proposed

framework along with the final results are provided in Chapter IV. Finally, Chapter V

concludes our contribution and provides recommendations for future work.

14

CHAPTER II

RELATED WORK

In this chapter, we will discuss about the approaches and models proposed to control the

access of data. In first three sections, we discuss some existing access control models

which are the extension of Role-Based Access Control (RBAC). In next three sections,

we discuss the proposed techniques to build authorization views at the database level

instead of specifying the authorization policies in the application code, which has

numerous drawbacks. In the last section, we discuss recent papers [2][3] which introduce

Datalog based syntax to build the authorization views to control the access of

materialized views.

2.1 - Context Based Access Control (CBAC)

RBAC grants access on the basis of the role regardless of the context of the request. In

CBAC the request is granted by verifying the context of the request.

Toninelli et al. [22] propose a “Semantic Context-Aware Access Control Policy Model”.

The authors state that they adopt a resource-centric approach to context modeling;

contexts are associated with resources to be controlled and represent only those

conditions that enable access to the resources. According to the authors, access control

policies define for each context how to operate on the associated resource. The authors

describe that the context consist of characterization information which is considered

relevant for access control such as load, the entity operation on the resource, roles,

identities and security credentials, and surrounding environment conditions, such as time,

location, and other available resources.

Kulkarni et al. [13] introduce a Context-aware RBAC (CRBAC) model that is an

extension of RBAC. According to the authors, in NIST RBAC model roles are assigned

by the administrator, and in such systems roles have a long life time. In CRBAC model,

roles are defined as part of application’s design, and roles come to in existence only when

15

the application is deployed and executed. A person's context is defined in terms of his/her

current physical location, devices being used, network on which the devices are

connected, and the activities in which the user is currently engaged.

Feng et al. [8] propose TCAC “A Trust and Context based Access Control Model for

open and distributed systems”. According to the authors, role assignment is based on the

trustworthiness and context information of the requestors. The authors state that if the

trust value is not less than the set threshold value defined by the system policies, and the

user context information satisfies the context constrains, the user is assigned a role and

can perform the operations associated with assigned role. The authors state that context

constraints which are considered in their model such as time and location of the user.

2.2 - Attribute Based Access Control (ABAC)

In ABAC, data access is granted on the basis of three attributes: Subject Attributes,

Resource Attributes, and Environment Attributes.

Cruz et al. [5] propose “A Location Aware Role and Attribute Based Access Control

System” by extending the role-based access control (RBAC) model for the dynamic

association of roles with users. The authors state that in their framework privileges

associated with resources are assigned depending on the attribute values of the resources,

attribute values associated with the users determine the association of users with

privileges, and a location mapping function between physical and logical locations allows

to enable/disable roles depending on the logical location of the users and thus preserve

the privacy of the location. The authors define their Access Model in which constraints

can be defined on the attribute values of resources or users.

Finin et al. [7] introduce a model ROWLBAC “Representing Role Based Access Control

in OWL”. The authors state that their work defines the relationship between Web

Ontology Language (OWL) and the Role Based Access Control (RBAC). In addition,

they further examine and assess OWL’s suitability for two other access control problems:

supporting attribute based access control and performing security analysis in a trust-

management framework. According to authors, in their approach role hierarchies are

16

represented by OWL class hierarchies, member get more privileges as one moves up the

hierarchy, while in class hierarchies, classes get more attributes as user move down. The

authors state that access constraints are based on general attributes of an action, including

constraints on its subject and object. The authors further state that this provides general

support to a more general model of attribute-based access control.

2.3 - XML Based Access Control

EXtensible Access Control Markup Language (XACML) is one of the well know XML

formats for Access control. XACML is a general purpose access control policy language,

and it provides syntax to enforce access control policies which help in managing

authorization decisions. The policies defined by XACML decide whether to authorize

access to data and at what extend. In addition, it provides an architecture that supports the

services with the help of two enforcement entities or modules: Policy Enforcement Point

(PEP) and Policy Decision Point (PDP).

XACML architecture consists of four components: The Policy Administration Point

(PAP), Policy Decision Point (PDP), Policy Enforcement Point (PEP), and Policy

Information Point (PIP). The PAP creates polices evaluated by the PDP. The PDP

evaluates the policies against the incoming requests and sends the results to PEP. The

PEP performs access controls on the basis of the authorization decision provided by the

PDP. Finally, the PIP provides attributes values provided by the PDP during the policy

evaluation process. Component that receives and dispatches all the information between

these components is called Context Handler that performs as a mediator. Figure 2.1

represents XACML data flow.

17

Fig 2.1: XACML data flow (http://www.informit.com)

Joshi et al. [10] propose a framework X-RBAC “an XML-based access control policy

specification language” that extends NIST RBAC, and it provides a framework for

specifying mediation policies in a multi-domain environment and extends RBAC with

temporal constraints, role attributes, contextual conditions, a notion of role states, and

preconditions of state transitions. According to the authors, X-RBAC provides a wide

range of protection granularity for protected data and supports policy mapping in multi-

domain environments. Figure 2.2 represents X-RBAC model.

Fig 2.2: RBAC Model and X-RBAC Policy Components [Joshi et al. [10] page 41]

http://www.informit.com/

18

2.4 - Access Authorization for Relational Database

Motro [15] proposed a model for relational database. According to author, “in this model

access permissions are a form of database knowledge, from which access permissions

that apply to specific requests are inferred”. There are three basic principles of this

model:

1) Database access is specified in terms of views: a set of authorization views are

defined in order to control the access of data, and each user is granted permissions

based on the available views.

2) A user queries sends to the actual database, not at any particular view.

3) When the request is sent to the database system, the system checks the available

views of the request that could be the views of views which the user has access

permissions.

According to the author, the model represents the definition of views in special “meta-

relations”, and extents algebraic operators to these relations.

Example of the authorization process of the proposed model,

Assume a user sends a request to retrieve the names and sponsors of large projects:

retrieve(PROJECT.NUMBER, PROJECT.SPONSOR)

where PROJECT.BUDGET ≥ 250,000

Implementation of the above query with the following sequence of algebraic operations:

1. A ← ϭ(BUDGET ≥ 250,000)(PROJECT)

2. A ← ΠNUMBER,SPONSOR(A)

PROJECTʹ includes only tuples of views that Brown is authorized to access as defined in

the following relation:

PROJECTʹ

VIEW NUMBER SPONSOR BUDGET

PSA * Acme* *

19

Now the same operations that are applied to the database relations are applied to their

meta-relation:

1. Aʹ ← ϭ(BUDGET ≥ 250,000)(PROJECTʹ)

2. Aʹ

← ΠNUMBER,SPONSOR(Aʹ)

The selection retains only those view tuple which are unmodified, and the final projection

is:

Aʹ

NUMBER SPONSOR

* Acme*

The above mask indicates that the user is restricted to projects sponsored by Acme, and

following view definition will inform the user that permission exists only for SPONSOR

= Acme.

permit (NUMBER, SPONSOR)

where SPONSOR = Acme

2.5 - Fine-grained Authorization Policies

Rizvi et al. [20] proposed a fine-grained access control model based on authorization

views that allow “authorization-transparent” querying in which queries can be written

against the database relation without referring to the authorization views. According to

the authors, in their approach user queries can be written in terms of database relation,

and the query is valid only if it can be answered using the available authorization views.

The authors state that they have introduced a new notion of validity and conditional

validity check in their proposed framework.

According to the authors, their model is based on six key features as follows:

1. Access control is specified using the authorization views. A view can be a traditional

relational view or a parameterized view. According to the authors, a parameterized

20

authorization view is like the normal view, but there are some additional parameters

such as user-id, time and user-location appearing in its definition.

create authorization view MyGrades as

Select * from Grades where student-id = $user-id

2. Queries can be written in an authorization-transparent manner against the database

relations without having referred to the authorization views.

3. A query q is unconditionally valid if there is an equivalent query qʹ and both the

queries give the same result of all database states.

4. Certain queries can be answered using the available set of authorization views, even if

they cannot be rewritten using the views.

5. Conditionally valid queries that can be answered using the information contained in a

set of authorization views in a given database state.

6. Set of powerful inference rules which check the unconditional and conditional

validity of queries.

2.6 - Authorization Views and Conditional Query Containment

Zhang et al. [25] proposed an algorithm that tests conditional containment of conjunctive

queries respect to a set of materialized conjunctive views. According the authors, they

identified the problem of ∏
 .The authors state that based on their algorithm,

they test if the query is conditionally authorized given a set of materialized authorization

views.

According to the authors, they adopt the definition of Rizvi et al. [20]: a query is

conditionally valid to a set of views V and a set of materialized views MV for all

database states where the values of the views V agree with MV, q agrees with qʹ.

The authors define the conditionally contained query, conditionally empty query, and

conditionally authorized query in the following definitions:

Definition 1 - For any two queries Q1 and Q2,

Q1 is said to be conditionally contained in Q2 with respect to V and MV,

21

denoted by Q1 ⊆V, MV Q2, if for every d in D, Q1(d) ⊆Q2(d).

Q1 is said to be conditionally equivalent to Q2 with respect to V and MV,

denoted by Q1≡V, MV Q2, if Q1 ⊆V, MV Q2 and Q2 ⊆V, MV Q1.

Definition 2 - A query Q is conditionally empty with respect to V and MV if Q(d) us

empty for every d in D.

Zhang et al. [25] states that their approach first initiates the parameterized views by

extracting the parameter values associated with the user and the session, before declaring

whether a query should be conditionally authorized

Definition 3 - A query Q is conditionally authorized with respect to authorization views

V and materialized views MV, if there is a query Qr, that is written using only the views

in V, and that is conditionally equivalent to Q.

2.7 - Access Control to Materialized Views

In previous sections, we have discussed some of the data access control techniques which

are being utilized by the organizations based on organizational requirements. Bahloul et

al. [3] proposed an approach to control the access of materialized views. The authors

identified the problem of automatically generating the access control rules for

materialized views based on the access control rules defined over the base relations. The

authors adopt the technique of authorization views in order control the access of

materialized views.

22

Authorization views on DB

Authorization views on MVs

DB

MVs

Inference

Views Definition

Query
Evaluation

Query

Fig 2.3: Authorization policies for materialized views (Bahloul et al. [2])

The authors propose the use of Datalog syntax for defining the access control rules. The

authors assume the existence of three types of symbols: variables, constants and predicate

names. p(t1….tn) is a literal where p is a predicate name with arity n and each ti for 1≤ i ≤

n is either a constant or a variable.

According to the authors, the logical sentence associated with the Datalog rule

P(u) ← q1(u1),…,qn(un) is:

∀x1..xn(p(u1) ← q1(u1) ^…^ qn(un)).

Bahloul et al. [3] states that the relations defined by deductive rules are called intentional

relations. For example,

Info-Doc (Id-D, Dname, Dfname, Dspeciality) ←

doctor (Id-D, Dname, Dfname, Dadr, Dphone, Dspeciality,

Dsalary)

is a rule that defines the (intentional) Info-Doc relation in terms of the (extensional)

doctor relation.

In the following example, the authorization views are defined to control the access of

hospital database.

23

Hospital database:

doctor (IdD, Dname, Dfname, Dadr, Dphone, Dspecialty, Dsalary).

nurse (IdI, Snum, Nname, Nfname, Nadr, Nphone, Nsalary).

Authorization views:

av1 (IdD, Dname, Dfname, Dspecialty) ← doctor (IdD, Dname, Dfname, Dadr, Dphone,

Dspecialty, Dsalary)

av2 (IdI, Snum, Nname, Nfname) ← nurse (IdI, Snum, Nname, Nfname, Nadr, Nphone,

Nsalary)

In order to determine what data are accessible for each intentional relation mv in MV, the

first step is authorization view selection. According to the authors, they utilize a query

rewriting technique build on the Bucket algorithm that rewrites user query based on the

available authorization views.

The authors state that they modified the original Bucket algorithm [18] as if they utilize

the original algorithm then the authorization view will be considered irrelevant. For

example, (1) shown below is a materialized view definition. The authorization view (2)

defines the tuples x, y which a user has right to access.

mv(x,y,z) ← r(x,y,z) (1)

av(x,y) ← r(x,y,z) (2)

In the original Bucket algorithm, the attribute ‘z’ appears in the sub-goal of the query and

also in the head of the query, then it must also be in the head of the view. According to

the authors, it is too strict as one can project out ‘z’ by generating the appropriate

authorization view on mv.

In 2012, they authors propose the use of MiniCon algorithm [18] for query rewriting with

their previous approach. According to the authors, this algorithm is more efficient in

terms of matching tuples with the set of available authorization views.

24

2.8 - Comparison of Various Research Works

Year Author Proposed work Access

control

approach

Rule

specificati

on

language

Domain of

accessed

data

Contributio

n

Implementation

2004 Shariq Rizvi Extending Query

Rewriting
Techniques for

Fine -Grained

Access Control

Rule-based SQL Generic Gives a

powerful set
of inference

rules to

check for
query

validity

Not addressed

2010 Alfredo

Cuzzocrea

Effectively and

Efficiently

Selecting Access
Control Rules on

Materialized

Views over
Relational

Databases

Rule-based Datalog Generic Introduces

Datalog

based syntax
for

expressing

rules, and
VSP-Bucket

algorithm for

query
rewriting

Not addressed

2011 Sarah Nait-
Bahloul

Access Control
to Materialized

Views: an

Inference-Based
Approach

Rule-based Datalog Generic Ensures
confidentialit

y of

materialized
views based

on basic

access

control rules

Not addressed

2012 Sarah Nait-

Bahloul

Authorization

Policies for
Materialized

Views

Rule-based Datalog Generic Presents S-

MiniCon
algorithm, an

adaptation of

a query
rewriting

algorithm to

the security
context

Not addressed

2013 Hassaan
Yousafi

A Role-Based
Access Control

Schema for

Materialized
Views

Role + Rule
-based

Datalog Generic Presents a
fine-grained

access

control
model based

on roles for

materialized
views

Open source
technologies

Table 2.1: Comparison of various researches works

25

CHAPTER III

PROPOSED FRAMEWORK

In this chapter, we present the details of our proposed framework “A Role-Based Access

Control Schema for Materialized Views”. We present an architecture that enables

organizations to define and manage data access control authorizations for materialized

views based on roles. This thesis introduces a role-based access control schema for

materialized views in which rules are associated with roles, a column level restriction is

imposed on a materialized view based on a user assigned role, and a role conflicting

strategy is defined if the user is gaining authorization for permissions associated with

conflicting roles. In this proposed framework, we focus on open source Database

Management Systems such as MySQL and PostgreSQL as the open source databases

don’t provide any automated process to enforce authorizations on Materialized Views.

The proposed framework can also be applied to other relation databases as authorization

views are defined by keeping in view the structure of materialized view tables defined in

relational databases.

3.1 - Data Access Control to Materialized Views

A materialized view records query results (or simply a view) into a physical table that can

be stored, and the user can then query a materialized view in the same manner as

querying a database. Materialized views can be used for performance reasons in very

large systems such as data warehouses or distributed systems, or for providing a filtered

selection of data from a more general database. Existing proposed techniques provide

rule-based access control for materialized view, but to the best of our knowledge, the

administration of such systems is time consuming and cumbersome in a large

environment as administrators define rules for each user to control the access to

materialized views.

26

In this thesis, we extend the earlier work proposed by Bahloul et al. [3] that defines

authorization policies in Datalog as a formal framework for expressing the access control

rules (Abiteboul et al. [1]). In this thesis research, we define the authorization policies for

roles instead of defining these policies for individuals. In second chapter, we discuss the

details of related works which defines data authorization policies at the database level

such as parameterized authorization views (Rizvi et al. [20]), and we have also discussed

the recent work of Bahloul et al. [3] that defines authorization views in Datalog syntax.

3.2 - Proposed Role-Based Framework

The proposed architecture presents a new approach to define data access control

authorizations for Materialized Views. We have identified the administrative problems of

defining and modifying the data access control rules for materialized views in large

organizations where thousands of employees perform their duties. Existing proposed

techniques provide rule-based access control for materialized views; however, the

administration of such systems is time consuming and cumbersome in a large

environment where administrators define rules for each user to control the access to

materialized views.

In our approach, we utilize the existing Role-Based Access Control (RBAC) [24] model

that is proposed by National Institute of Standards and Technology (NIST) in 1992. The

RBAC model is currently the widely used model among all other existing models due to

its dynamic nature and ease of administration.

In RBAC, the access to organizational resources is granted on the bases of the user

assigned role. When a role is assigned to a user, all the privileges associated with that role

are also granted to the user. In the first chapter, we have discussed RBAC in detail.

In our proposed framework, we define authorization views for each role. The

authorizations are defined in Datalog syntax. The authorization views that are defined for

materialized views provide column-level restrictions.

27

DB1

DB2

IdD

1
2
-
-
-
-
-

Dname

ABC
XYZ

-
-
-
-
-

Dfname

DEF
XXX

-
-
-
-
-

Dphone

519
226

-
-
-
-
-

Dspeciality

Cardiologist
Hygienist

-
-
-
-
-

Dsalary

 1,00,000
 1,50,000

-
-
-
-
-

Materialized View

Authorization
Views

Role

Attributes

User

Sessions
session_roles

Fig 3.1: Proposed RBAC Architecture for Materialized Views

In figure 3.1, a materialized view is created by joining two tables from two different

databases, and the view is deployed in a local database on a distributed site. As the

proposed architecture depicts, the authorization views are associated with user assigned

role, and the user profile attributes are extracted during the role assignment process.

These attributes are extracted from database table where user profile attributes such as

username, department name, user role, and other attributes are stored. The attributes are

used for authentication and role assignment.

In our proposed framework, we also maintain the session_roles, as we have noticed

during our thesis research that a user can be assigned multiple roles such as a Project

Manager can also work as a Programmer same time. So keeping in view the multiple role

assignment, we allow a user to open multiple session_roles. We provide the detail of the

session_roles in section 3.2.3.

As we allow users to open multiple accounts in the same session, we also need to keep

track of Role Conflict that occurs due to the conflict of interest between two roles. A user

has to deactivate one session in order to activate another conflicting session_role. We

discuss role conflicts in detail in section 3.2.4.

28

3.2.1 - Role Assignment

The Role Assignment process starts after the authentication process, if the user

credentials such as Username and Password are valid then the process proceeds further.

Figure 3.2 represents the work flow of role assignment process.

Emp_info (U, D, R, Sid)

U = ASU

ActiveSessions (ASU, ASD, ASR, ASid, ASUrl)

Role Conflict
(ASD = CD)

ASR = CR

Open activeSession (ASUrl)

Conflict strategy
CD(CR, RP)

Deactivate
(ASD, ASR)

D=ASD, R=ASR

Attributes
matched

Sid = ASid

Assign session_role (U, D, R, Sid)
NO

YES

NO

YES

1

2

SessionID
matched

NO

YES

RP

NO

YES

Deactivate previous session
(ASU, ASD, ASR)

 User Attributes

 U Username
 D Department
 R Role
 Sid Session ID

 Active Users Session Attributes

 ASU Active session username
 ASD Active session user department
 ASR Active session user role
 ASid Active user session ID
 ASUrl Active session URL

 Conflict Strategy Attributes.

 CD Conflicting department
 CR Conflicting role
 RP Role priority

1

2

3

4

5

6

Fig 3.2: Workflow of Role Assignment process

29

Once the user credentials are verified then the process checks the already active sessions.

Active Session is a table where all active user sessions’ information is stored.

We describe the above workflow in the following six steps as represented in figure 3.2:

1. The process checks if the user information already exists in the active_session

table. If the user information doesn’t exist in the active_session table then the user

information (i.e. username, department, and role) that is extracted from database

based on user credentials (i.e. username, password) is sent to role assignment

module where the role is assigned to the user. Otherwise, if the user session

information exists then the user attributes are matched with the already existing

user session attributes. If the attributes are matched with one of already active

sessions then it is considered that the user is already an active user with the same

role.

2. If the user is already an active user, then the user session ID is checked, if the

session ID is matched with active role session ID then the user is redirected to the

same session, otherwise, if the session ID is different, the process deactivates

already active session and proceeds to the role assignment process.

3. If the user session attributes are not matched with already active user session

except the username as described in step 1, then it is considered that the user is an

active user with a different role. In this case, role conflict is checked by extracting

the attributes defined in role conflict strategy with already active user sessions’

attributes.

4. If the role conflict exists after analyzing the role conflict strategy then the role

priority is further checked. Role priorities are defined in conflict strategies. If the

priority is ‘1’ then the already existing conflicting session is deactivated without

notifying the user, and the new user proceeds to role assignment process. If the

priority is ‘2’ then a notification is sent with conflicting role information to the

user that a role conflict exists, and in order to activate a new session_role, user

must deactivate the conflicting session_role.

30

5. After deactivating the conflicting session_role, the user can proceed to role

assignment process as represented in figure 3.2.

6. If the role conflict doesn’t exist as described in step 4, then the user is assigned a

role that is based on user credentials.

3.2.2 - Role-Based Authorizations

In our proposed framework, the authorization to access a materialized view is based on

user role. Figure 3.3 represents Role-Based Authorization architecture.

Request handler

Role
conflict
strategy

Authorization Views

AV1(EID, Ename, Ephone)
AV2(EID, Designation)

User profile
attributes

Role
assignment

Rule
selection

Interpreter

Query
Generator

User

MV

Fig 3.3: Architecture of Role-Based Authorization

The process starts with role assignment, user attributes are extracted based on user

credentials which user provides during the login process. The following example

describes the above architecture.

31

Example:

Once a user is assigned a role after going through the Role Assignment process as

discussed in previous section, the user query is sent to the Request Handler.

The Request Handler sends the materialized view name as mentioned in the user query to

the Rule Selection module.

The Rule Selection module searches for the given materialize view name in the

associated authorization views file of user assigned role. If the materialized view name

is found in the list of authorized views, the Rule Selection process extracts the

authorized view information and returns it to the Request Handler.

The Request Handler sends the authorized view to the Interpreter.

The Interpreter extracts the column names from the given authorized view and sends it to

the Query Generator.

The Query Generator module generates the query on the basis of the provided column

names and materialized view name, and returns it to the Request Handler.

The Request Handler further sends the query to database system and returns the results to

user.

We use an existing approach to define authorization views proposed by Bahloul et al. [3].

In the following example, the authors define the authorization views to control the access

of hospital database.

Example:

Hospital database:

doctor (IdD, Dname, Dfname, Dadr, Dphone, Dspecialty, Dsalary).

nurse (IdI, Snum, Nname, Nfname, Nadr, Nphone, Nsalary).

32

Authorization views:

av1 (IdD, Dname, Dfname, Dspecialty) ← doctor (IdD, Dname, Dfname, Dadr,

Dphone, Dspecialty, Dsalary)

av2 (IdI, Snum, Nname, Nfname) ← nurse (IdI, Snum, Nname, Nfname, Nadr,

Nphone, Nsalary)

In the above example, there are two parts of authorization view. The left hand side

defines the body of an authorization view, and the right hand side defines a complete

definition of a materialized view from which an authorization view is derived. The body

of an authorization view is used to define the authorizations for a particular user. In our

proposed framework, we define the authorization views for roles as represented in figure

3.4.

User

Authorization Views

AV1(EID, Ename, Ephone)
AV2(EID, Designation)

Role

Fig 3.4: Role and Authorization Views

3.2.3 - Session Roles

In our proposed framework, we use Role-Based Access Control (RBAC) model proposed

by NIST. RBAC is used by majority of organizations due to its dynamic nature and ease

of administration. Three primary rules are defined for RBAC:

1. Role assignment: A user can access the resources only if he/she has selected or

been assigned a role.

2. Role authorization: User active role must be authorized to the user.

3. Permission authorization: A user can access the resources only if the permission is

authorized to the user’s active role.

RBAC specifications:

 User Assignment = UA ⊆ USERS X ROLES, a many-to-many mapping user to

role assignment relation.

33

 Permission Assignment = PA ⊆ PREMS X ROLES, a many-to-many mapping

permission to role assignment relation.

 session_users (s: SESSIONS) → USERS, the mapping of session s onto the

corresponding user.

 session_roles (s: SESSIONS) → 2
ROLES

, the mapping of session s onto a set of

roles.

A user may open multiple simultaneous sessions with different roles and permissions. In

our proposed framework, we follow the above rules and also allow user to open multiple

simultaneous sessions. A user can open multiple sessions with different role, and each

concurrent session authorizes a user to access the views based on an assigned role. Each

session extracts user attributes (i.e. username, department, and role) that are passed

through a generic URL to the Request Handler after Role Assignment. When a user sends

a query, the Request Handler extracts the attributes and authorizes the user to view the

records of a requested materialized view based on the available authorization view that is

defined in authorized views file associated with user role within a particular department.

3.2.4 - Role Conflicts

In previous section, we discuss multiple simultaneous sessions which allow users to open

multiple sessions with different roles and permissions. But we also need to restrict users

to avoid role conflicts. Role conflict defines that no individual can assume the power of

two or more conflicting roles at the same time. Role conflicts occur when individuals

have various conflicting responsibilities

RBAC introduces Separation of Duties (SoD) that restricts users to perform duties in

confliction roles at the same time by enforcing the constraints.

We take an example of finance system in which user has access to the billing system

through a “Finance Billing” role, and he also has access to the payment system through

the “Finance Paying” role. In this case, user cannot activate both the roles at the same

time. User has to deactivate one session in order to activate the other session.

34

In our proposed framework, we introduce Conflict Strategies which are associated with

user role same as the authorization views to avoid any role conflict. In our proposed

conflict strategy, we introduce role priority.

If a role conflict occurs during the role assignment process, the system checks the priority

of the role that is defined in the conflict strategy by the administrator. We describe the

conflict strategy as follows.

After identifying the role conflict between two roles, the conflict strategy is defined in the

following manner.

Department (Role, Priority)

The conflict strategy is defined in a text file associated with each role. During the Role

Assignment process as we discuss in previous section. The Request Handler checks

already activated session_roles of the same user with different roles. It extracts the

attributes of the active session_roles one by one, and matches with the attributes defined

in conflict strategy (i.e. department, role). If the attributes are matched then it is

considered a role conflict. In this case, the Request Handler checks for the role priority

defined in the conflict strategy. If the priority is ‘1’ then the system activates the new

session_role and deactivates the previous session. If the priority is ‘2’ then the system

sends a notification with the conflicting role attributes, and the user can activate the new

session_role after deactivating the already active session_role.

In the following example, we define conflict strategies for Finance Billing and Finance

Paying roles which belong to Finance department.

Username: Facello

Department: Finance

Role: Finance Billing

Username: Facello

Department: Finance

Role: Finance Paying

Finance (Finance Paying, 1)

Finance (Finance Billing, 2)

Fig 3.5: Role Conflict Strategies

35

In figure 3.5, user Facello is assigned two roles, but he cannot activate both roles at the

same time. The role priorities are defined in the conflict strategy associated with both the

roles. In the above scenario, the Finance Billing role is assigned first priority and Finance

Paying role is assigned second priority.

36

CHAPTER IV

IMPLEMENTATION AND VERIFICATION

4.1 - Background

The main objective of this thesis research is to provide architecture to control the access

of Materialized Views based on user roles. The case study is built on top of research done

at the University of Windsor (Kent et al. [11] and Kobti et al. [12]) towards the creation

of automated tools to conduct healthcare surveys, decision support system, and real-time

data management system. In this research work, we identified the need of securing

sensitive healthcare data. In our proposed framework, we present a Role-Based Access

Control architecture in which authorizations are associated with user roles. Moreover, we

introduce a mechanism to resolve role conflicts by defining role priorities in role conflict

strategies which are also associated with user role same as authorization views.

4.2 - Implementation

In previous chapter, we discuss the steps involved in authentication, role assignment, and

user authorizations in our proposed framework. In this section, we provide the details of

implementation of our proposed framework.

Request handler

Role
conflict
strategy

Authorization Views

AV1(EID, Ename, Ephone)
AV2(EID, Designation)

User profile
attributes

Role
assignment

Rule
selection

Interpreter

Query
Generator

User

MV

Fig 4.1: Proposed Architecture

37

In the proposed framework, we focus on open source Database Management Systems

(DBMS) as the open source DBMS doesn’t provide any automated process to regulate

the access of Materialized Views. In the implementation of our proposed framework, we

use MySQL database, the internal structure of our application is developed in PHP, and

the User Interface (UI) is developed in HTML and CSS.

4.2.1 - Role Assignment Module

Role Assignment is a process to assign a role to the user based on the credentials that a

user provides during the authentication process. Before a role is assigned, a user has to

pass few checks in order to avoid any role conflicts and duplication of session_roles. In

previous chapter, we explain a complete workflow of Role Assignment module. In this

section we provide pseudo code of this module.

Role Assignment Module

CHECK if the user is already an active user

IF user exists in Actives_Sessions

 EXTRACT user Active_Sessions attributes

 IF user attributes match with any Active_Sessions

 CHECK for SessionID

 IF SessionID match with current user SessionID

 REDIRECT user to same Session_Role

 ELSE

 Deactivate ActiveSession role

 Activate new Session_Role

 BREAK

CHECK Role Conflict with existing Session_Roles in ActiveSessions

 EXTRACT attributes of ActiveSessions

 EXTRACT Conflict_Strategy of current role

 IF any of ActiveSessions role match with role defined in Conflict_Strategy for current user

 CHECK for the role priority defined in Conflict_Strategy

 IF Priority is 1

 Deactivate ActiveSession role

 Activate current role

 IF Priority is 2

 Send an alert with conflicting role information

 BREAK

Fig 4.2: Role Assignment module pseudo code

38

4.2.1.1 - Active Sessions

In Active Sessions table, we store user information (i.e. username, role, department,

sessionID, and session URL) whenever a user login to the system. The information

available in this table is extracted during the role assignment process in order to match

user active roles and current role attributes to avoid any role conflict and duplication of

session_roles. The session ID is stored in order to prevent a user to activate multiple

sessions for same session_role from different system. A user cannot open a session_role

from two different session IDs at the same time. If a user tries to activate a session_role

which is already in active session list then the system deactivates the existing

session_role, and creates a new entry in active sessions with new Session ID. In this way,

we can track user’s activities.

We extract user’s active session’s information by calling activeSession function.

Active Sessions

function activeSession (username) {

 EXTRACT username, role, department, session_id, url from active_sessions

 WHERE username == username

 IF found

 Store user ActiveSessions attributes in an ARRAY

 Return ARRAY

 ELSE

 Return NULL

}

Fig 4.3: Active Sessions pseudo code

4.2.2 - Request Handler Module

The Request Handler processes all users’ request once a user is assigned a role. It

receives users’ request and sends it to the View Selection module. Before processing a

user request, the Request Handler verifies that the user still exists in Active Sessions. If

the user is still an active user, the Request Handler confirms that the user Session ID

matches with the existing Session ID in Active Sessions. If it so then it processes user’s

39

request, otherwise, it deactivates user session_role and redirects the user to the login

page. The Request Handler operates by the following steps:

1. The Request Handler receives a user query, extracts the requested Materialized

View name from the query, and sends it to the View Selection module.

2. The View Selection module search for the requested Materialized View name in

Authorization Views file that is associated with the user’s role.

3. The View Selection module returns the Authorization View information to the

Request Handler.

4. The Request Handler sends the authorized view information to the Interpreter.

5. The Interpreter extracts authorized column names from the authorization view and

sends it to the Request Handler.

6. The Request Handler sends the view name and the authorized columns name to

the Query Generator.

7. The Query Generator generates the query in SQL based on the provided

information from the Request Handler, and sends the query to a database.

8. The Request Handler receives the records from the Query Generator, and returns

it to the user.

4.2.2.1 - View Selection

View Selection is a process to search and select an Authorization View based on a user

selected Materialized View. View Selection process starts when a request is sent to the

View Selection module from the Request Handler that contains a requested Materialized

View name. In order to link the Authorization Views file that is associated to each role,

the View Selection modules receives user’s attributes (i.e. department name and role)

along with a Materialized View name from the Request Handler, and generates a path in

order to link to Authorization Views file of user assigned role.

40

View Selection

function ViewSelection (MaterializedView Name, Department Name, Role) {

 Path to user Auhtorization Views file = "AuthorizationViews/department_name/role"

 LOOP Search for MaterializedView in defined Authorization Views

 IF found

 Store AuthorizationView body information in an ARRAY

 Return AuthorizationView

 ELSE

 Return NULL

}

Fig 4.4: View Selection pseudo code

4.2.2.2 - Interpreter

The Interpreter translates an Authorization View in SQL syntax. The Request Handler

sends authorization view information that is returned by the View Selection module to

the Interpreter. The authorization view is received in the following format.

av1(emp_no, first_name, last_name)

The Interpreter removes the view name and the brackets that contain authorized column

names from the given Authorization View, and returns the column names to the Request

Handler in order to send it to the Query Generation module.

emp_no, first_name, last_name

4.2.2.3 - Query Generation

Query Generation is a process to generate a query in Sequential Query Language (SQL)

syntax, and send it to the Request Handler in order to send the query to a database. The

following architecture describes query construction process.

41

View Selection

Request Handler

User

MV Name

MV Name MV(emp_no, last_name, first_name)

Interpreter

MV(emp_no, last_name, first_name)

emp_no, last_name, first_name

Query Generator

MV Name

emp_no, last_name, first_name SELECT emp_no, last_name, first_name from MV_Name

Step 1

S
tep

 2

Step 3

Fig 4.5: Query Construction

In figure 4.5, the Query Generation module receives the materialized view name and

column names from the Request Handler. The materialized view name and column

names are assigned to the dynamic variables which are declared in Request Handler. The

Request Handler passes the variables to Query Generator in order to construct a complete

query. SQL SELECT and FROM clause is statically defined in query syntax and the

dynamic variables are placed for column names and a view name. There are some other

clauses that are used in SQL SELECT statement such as WHERE, GROUP BY, ORDER

BY, and LIMIT which can be defined by the user through the options available in the

user interface. The values of these additional SELECT clauses are also assigned to

dynamic variables which are declared in Request Handler, and the Request Handler

passes these values to the Query Generator along with MV name and column names.

4.3 - Verification

In order to test our proposed framework, we have implemented an application based on

our proposed architecture. The application is developed in accordance with the

specification described in Chapter 3. We discuss the implementation part in previous

42

section where we define steps that each module performs. In this section, we examine our

application that we have developed to test and verify our proposed approach.

4.3.1 - Basic Requirements

The verification of basic requirements is to test the core elements of the application. In

our thesis research, we are focused on providing architecture to authorize users to access

the data based on their role. The Role Assignment process starts after the authentication

process. A user needs to provide a valid username and password for authentication.

Figure 4.6 represents login page.

Fig 4.6: Login page

After the authentication process, the user is redirected to the homepage. The following

image represents the homepage.

43

Fig 4.7: Homepage

Username, department, and the role of the user appear on the top right of the header

section as in figure 4.7. There is a logout button available that deactivates user session

and redirects user to the login page. The left panel down to the header is used to place

Query Generator. A user can generate a query using the features available in Query

Generator. There is a dropdown list available to select a materialized view. This

dropdown list contains only those authorized views which are defined in authorization

view file that is associated with user assigned role. There are some check boxes which are

used to enable and disable additional SQL statement clauses, and ‘Display None’ feature

is used for analysis purposes.

The basic requirement of this framework is to restrict the user to view only those columns

of materialized view which the user has authorization. The following image represents a

simple query execution without mentioning any additional clauses.

44

Fig 4.8: Simple query execution and results

In figure 4.8, user Facello selects a view emp_info from the dropdown list of views and

executes the query without adding any additional clauses. The system returns only those

columns information which the user authorized to view as defined for users’ assigned

role in its associated authorization views file as below.

Fig 4.9: Authorization Views

In figure 4.9, the complete view definition is defined at the right side that contains six

columns, but the user is not authorized to view the information of two columns (i.e.

birth_date and hire_date) as defined at the left side. In Fig 4.8, the system returns the

results based on the defined authorization view.

In our proposed framework, we introduce role conflict strategies. A user can activate

multiple session_roles simultaneously as a user can be working in multiple roles in same

organization. We define conflict strategy to avoid any conflict of interest between two

45

roles as the conflicting roles cannot be activated at the same time by same user. In our

proposed framework, we assign priorities to conflicting roles. The conflict strategy is

associated with roles same as the authorization views.

In chapter 3, we discuss role conflicts in detail with an example. In order to validate this

requirement, we define role conflict strategy for ‘Finance Paying’ and ‘Finance Billing’

role in Finance department, and we assign both the roles to same user. The strategies are

defined in following manner.

Fig 4.10: Conflict Strategy

In figure 4.10, a conflict strategy is defined for ‘Finance Billing’ and ‘Finance Paying’

roles in their associated role files as both the roles cannot be activated at the same time.

The ‘Finance Billing’ role is given first priority and ‘Finance Paying’ role is at second

priority. The user activates ‘Finance Billing’ role and at the same time the user wants to

activate ‘Finance Paying’ role. As the ‘Finance Billing’ role is given first priority,

therefore, the user gets the following message during the role assignment process and

redirected to the Login page as represented in figure 4.11.

Fig 4.11: Role conflict detected

46

If the user activates ‘Finance Paying’ role first and at same time the user activates

‘Finance Billing’ role. In this case, the system deactivates ‘Finance Paying’ role without

notifying to the user as the ‘Finance Billing’ role is given first priority.

4.3.2 - Additional Functions

There are some additional functions in our application. These functions enable users to

filter the results coming from the database. The additional functions include the

additional SQL statement clauses such as WHERE, GROUP BY, and ORDER BY. These

features are available in Query Generator. The following figure represents the additional

clauses available in the User Interface.

Fig 4.12: Additional SQL statement clauses

In figure 4.12, there are additional SQL statement clauses which a user can enable to

filter the results. A user can enable them by clicking on the checkboxes available in each

clause. The following figure represents query generation using the additional clauses.

47

Fig 4.13: Query Generation using SQL statement clauses

Figure 4.13 represents Query Generation using additional SQL statement clauses, the

user executes the query and the Request Handler returns the results based on

authorization view defined for user assigned role as represented in figure 4.14.

Fig 4.14: Results of query with additional SQL clauses

48

Apart from the additional SQL clauses, there is another additional features ‘Display

None’ that is added in the User Interface for data analysis purpose. The Request Handler

extracts the number records for a requested query, and if the number of records is less

than the value defined in “Display None” field then the request handler returns a total

number of rows.

Fig 4.15: Query Generation using Display None function

In figure 4.15, the ‘Display None’ function is enabled and in “rows less than” field, a

value ‘2’ is given. In this case, the Request Handler doesn’t return any results if the

number of records is less than two. The following figure represents the results after

executing the query as mentioned in Fig 4.15.

Fig 4.16: Results of query using Display None function

49

4.4 - Scalability Test Results

NU = Number of users

SARO = Number of Session Roles

SARU = Number of rules associated with roles

Load
NU SARO SARU RoleAssg

time (secs)

RuleSelection

time (secs)

QueryExecution

time (secs)

QueryResponse

time (secs)

15 21 234 0.95854 0.00126 1.59740 0.00050

30 40 468 0.98607 0.00163 1.59740 0.00036

45 57 520 1.07722 0.00140 1.50204 0.00035
Table 4.1: Scalability test results

4.5 - Summary Comments

In this chapter, we have discussed the implementation of our proposed framework in

detail. We have also validated our approach and presented the results. The proposed

framework is not domain specific. It can be adopted by any organization which has huge

number of employees working at different remote locations in a distributed environment.

The organizations create Materialized Views database and deploy such databases at

remote sites in order to ease the network load, and also to reduce load of the main

database server. There is no such automated mechanism available in open source

databases which can be utilized to control the access of Materialized Views locally at the

remote sites. The proposed framework can be utilized for local Materialized View sites in

a distributed environment.

50

CHAPTER V

CONCLUSION AND FUTURE WORK

In this chapter, we conclude our proposed framework and discuss some areas for future

work.

5.1 - Conclusion

This thesis work presents a framework to control the access of Materialized Views based

on user role. The authorizations are associated with user role, and these authorizations are

defined in Datalog syntax. Our work extends an earlier work proposed by Bahloul et al.

[3]. The authors define authorization views for individual users to control the access of

materialized views, but in our approach we define authorization views for roles.

In our proposed framework, we utilize a Role-based access control approach specification

that is proposed by National Institute of Standard and Technology (NIST), and we

authorize user to view the data based on an assigned role. We provide column based

authorization on a requested Materialized View.

In our proposed framework, we enable users to activate multiple session_roles

simultaneously. In our thesis research, we identified that if two roles have conflict of

interest then they cannot be activated at the same time. In order to avoid role conflicts, we

introduce role conflict strategies, these strategies are associated with user role same as

authorization views. In a role conflict strategy, the attributes are defined to enforce

Separation of Duties (SoD), and conflicting roles are given priority to resolve role

conflicts.

In order to test our proposed architecture, we developed an application using the open

source technologies (i.e. MySQL and PHP). The implementation is done in accordance

with the basic requirement of our proposed architecture.

51

The results show that the application meets the basic requirements of our proposed

framework which include defining authorization views for roles, provide column based

authorizations, activation of multiple session_roles, detection of conflicting roles, and

setting up priorities to resolve role conflicts.

Our proposed framework is not domain specific; it is a generic framework and can be

utilized in any domain.

5.2 - Future Work

We address some other potential areas which can be addressed in future work based on

the experience gained in this thesis research.

5.2.1 - Role Automation

In this thesis research, we identified that the role automation is another important area of

research. The role automation is required in big organizations where thousands of

employees perform their duties. In such organizations to create, assign, and change the

role of each employee is a time consuming process. Currently, a dedicated department

such as Human Resources department assigns a role to each employee based on his/her

job descriptions. The entire process is manually controlled; once a role is assigned to an

employee by the concerned department, the system administrator creates a new entry in a

database table or Access Control List (ACL) in which the employee profile attributes are

stored.

Future work includes a role automation process that assign roles to employees based on

their job descriptions.

5.2.2 - Workflow Management in RBAC

In Role-based Access Control system, the chain of command (role hierarchies) should be

defined clearly where top-most role is first in the command and the next in command is

down one level and so on. Each role in the role hierarchy is assigned responsibilities such

52

as a Supervisor is responsible to submit the working hours of his subordinates. In this

case, if the Supervisor is not available then it can delay the process.

In order to avoid such delays, we need a mechanism that authorizes each role to transfer

its responsibilities to next in the role hierarchy. The redirection of responsibilities to

another role in the role hierarchy is supposed to be temporarily, and a time slot must be

assigned during the transfer process. After the assigned time, the authorizations

associated with the given responsibilities must be revoked by the system.

Future work includes implementing and integrating role automation and workflow

management system with our existing framework.

5.2.3 - Global vs. Local Authorizations

In our thesis research, we have presented a framework that enforces authorizations based

on user assigned role on a local materialized view database. Future work includes

extending our Role Authorization Framework that will allow user to access data from

remote databases in a distributed environment based on authorization defined on local

database (Local authorization views) and remote databases (Global authorization views).

The local and global authorization must be analysed by the system before granting access

to users. In order to resolve conflicts between both local and global authorization views,

we need to design a strategy to resolve such conflicts.

53

BIBLIOGRAPHY

[1] Abiteboul, S., Hull, R., AND Vianu, V. 1995. Foundation of Databases. Addison-

Wesley.

[2] Bahloul, S. N., Coquery, E., AND Hacid, M. 2012. Authorization Policies for

Materialized Views. Proceedings of 27
th

 IFIP TC 11 Information Security and

Privacy Conference. Heraklion, Crete, Greece. 525-530.

[3] Bahloul, S. N., Coquery, E., AND Hacid, M. 2011. Access Control to Materialized

Views: an Inference Based Approach. Proceedings of the 2011 Joint EDBT/ICDT

Ph.D. Workshop. New York, USA. 19-24.

[4] Cuzzocrea, A., Hacid, M., AND Grillo, N. 2010. Effectively and Efficiently

Selecting Access Control Rules on Materialized Views over Relational Database.

IDEAS’ 10 Proceedings of the Fourteenth International Database Engineering &

Application Symposium. 225-235.

[5] Cruz, I. F., Gjomemo, R., Lin, B., AND Orsini, M. 2008. A location aware role and

attribute based access system. Proceedings of the 16th ACM SIGSPATIAL

international conference on Advances in geographic information systems. New

York, NY, USA.

[6] Ferrini, R., AND Bertino, E. 2009. Supporting RB AC with XACML + OWL.

Proceeding of the 14
th

 ACM symposium on access control models and

technologies. ACM New York, NY, USA.

[7] Finin, T., Joshi, AND A,. Kagal,. 2008. Using OWL to Model Role Based Access

Control. UMBC Ebiquity Laboratory Technical Reort, University of Maryland,

Baltimore County, Baltimore, USA.

54

[8] Feng, F., Lin, C., Peng, D., AND Li, Junshan. 2008. A Trust and Context Based

Access Control Model for Distributed System. In Proceeding of 10
th

 International

Conference on High Performance Computing and Communications. 629-634.

[9] Haddad, A., Hacid, M., AND Laurini, R. 2012. Data integration in presence of

authorization policies. Proceedings of IEEE 11
th

 International Conference on

Trust, Security and Privacy in Computing and Communications. Lyon, France.

92-99.

[10] Joshi, J. B. D., Bhatti, R., Bertino, E., AND Ghafoor, Arif. 2004. Access-Control

Language for Multi-domain Environments. IEEE Internet Computing. 40-50.

[11] Kent, R.D., Kobtiz., Snowdon, A.W., AND Aggarwal, A. 2010. Towards a Unified

Data Management and Decision Support System for Health Care. Intelligent

Interactive Multimedia Systems and Services, Volume 6, 205-220.

[12] Kobtiz., Snowdon, A.W., Kent, R.D., Bhandari, G., Rahman, S.F., Preney, P.D.,

Kolga C.A., Tiessen, B., AND ZHU, L. 2011. Towards a “Just-in-Time”

Distributed Decision Support System in Health Care Research. Annals of

Information Systems: Supporting Real Time Decision-Making, Volume 13 (3),

253-285.

[13] Kulkarni, D. AND Tripathi, A. 2008. Context-Aware Role-based Access Control in

Pervasive Computing Systems. In Proceeding of the 13
th

 ACM Symposium on

Access Control Models and Technologies. Estes Park, Colorado, USA, 113-121.

[14] Liang, C. A Faster Way to Temporarily Redirect the Role Based Access Control

Workflow Processes. Proceeding of 21
st
 Computer Science Seminar.

55

[15] Motro, A. 1989. An Access Authorization Model for Relational Databases Based on

Algebraic Manipulation of View Definitions. Proceedings of IEEE 5
th

International Conference on Data Engineering. 339-347.

[17] Ni, Q., Trombetta, A., Bertino, E., AND Lobo, J,. 2007. Privacy-Aware Role-Based

Access Control. Proceedings of the 12th ACM symposium on Access control

models and technologies. ACM New York, NY, USA.

[18] Pottinger, R. AND Halevy , A. 2001. MiniCon: A scalable algorithm for answering

queries using views. The VLDB Journal. 10. 182-198.

[19] Priebe, T,. Dobmeier, W,. Schlager, C., AND Kamprath, N,. 2007. Supporting

Attribute-based Access Control in Authorization and Authentication

Infrastructures with Ontologies. Journal of Software, 2, 27-38.

[20] Rizvi, S., Mendelzon, A,. Sudarshan, S., AND Roy, P. 2004. Extending Query

Rewriting Techniques for Fine-Grained Access Control. Proceedings of the 2004

ACM SIGMOD international conference on Management of data. 551-562.

[21] Ryutov, T., AND Kichkaylo, T., Neches, R., 2009. Access Control Policies for

Semantic Networks, IEEE International Symposium on Policies for Distributed

Systems and Networks. 150-157, 20-22.

[22] Toninelli, A., Montanari, R., Kagal, L., AND Lassila, O. 2006. A Semantic Context-

Aware Access Control Framework for Secure Collaboration in Pervasive

Computing Environment. In Proceeding of International Semantic Web

Conference. Verlag, Berlin, Heidelberg, 473-486.

[23] Wang, J., Maher, M., AND Topor, R. 2002. Rewriting Unions of General

Conjuctive Queries Using Views. Proceedings of 8
th

 International Conference on

Extending Database Technology. Prague, Czech. 52-69.

http://www.acm.org/publications

56

[24] Weber, A., Hazen. 2003. Role Based Access Control: The NIST Solution.

[25] Zheng, Z., AND Mendelzon, A. 2005. Authorization Views and Conditional Query

Containment. Proceeding of 10
th

 International Conference. Edinburgh, UK, 259-

273.

[26] http://en.wikipedia.org/wiki/Role-based_access_control

[27] http://docs.oracle.com/cd/B10501_01/server.920/a96567/repmview.htm

[28] https://code.google.com/p/flexviews/

[29] http://www.mysql.com/

http://en.wikipedia.org/wiki/Role-based_access_control
http://docs.oracle.com/cd/B10501_01/server.920/a96567/repmview.htm
https://code.google.com/p/flexviews/
http://www.mysql.com/

57

VITA AUCTORIS

Hassaan Yousafi was born in 1978 in Lahore, Pakistan. He received his B.Sc. (honours)

in Computer Science from the University of Management and Technology in 2005. After

completion of his undergraduate degree, He worked as IT Administrator, Software

Engineer, and Web & Systems Engineer in Schlumberger, TricastMedia, and IBM

Canada Ltd respectively. Currently, he is a candidate for the Master’s degree in

Computer Science at the University of Windsor and hopes to graduate in Winter, 2013.

	University of Windsor
	Scholarship at UWindsor
	2013

	A role-based access control schema for materialized views
	Hassaan Yousafi
	Recommended Citation

	tmp.1378733504.pdf.JlvJ3

