
Washington University in St. Louis
Washington University Open Scholarship

All Theses and Dissertations (ETDs)

Summer 8-1-2013

End-to-End Delay Analysis for Wireless Control
Networks under EDF Scheduling
Chengjie Wu
Washington University in St. Louis

Follow this and additional works at: http://openscholarship.wustl.edu/etd

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by Washington University Open Scholarship. It has been accepted for inclusion in All Theses and
Dissertations (ETDs) by an authorized administrator of Washington University Open Scholarship. For more information, please contact
digital@wumail.wustl.edu.

Recommended Citation
Wu, Chengjie, "End-to-End Delay Analysis for Wireless Control Networks under EDF Scheduling" (2013). All Theses and Dissertations
(ETDs). 1169.
http://openscholarship.wustl.edu/etd/1169

http://openscholarship.wustl.edu?utm_source=openscholarship.wustl.edu%2Fetd%2F1169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F1169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F1169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fetd%2F1169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openscholarship.wustl.edu/etd/1169?utm_source=openscholarship.wustl.edu%2Fetd%2F1169&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


Washington University in St. Louis

School of Engineering and Applied Science

Department of Computer Science and Engineering

Thesis Examination Committee:
Chenyang Lu, Chair

Yixin Chen
Christopher D. Gill

End-to-End Delay Analysis for Wireless Control Networks under EDF Scheduling

by

Chengjie Wu

A thesis presented to the Graduate School of Arts and Sciences
of Washington University in partial fulfillment of the

requirements for the degree of

Master of Science

August 2013
Saint Louis, Missouri



copyright by

Chengjie Wu

2013



Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Wireless Control Network Model . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 Worst-Case End-to-End Delay Analysis . . . . . . . . . . . . . . . . . . . . 10
5.1 Improved Worst-case End-to-End Delay Analysis . . . . . . . . . . . . . . . 15
5.2 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.1 Evaluation on Testbed Topologies . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2 Evaluation on Random Topologies . . . . . . . . . . . . . . . . . . . . . . . . 24
6.3 Comparative Study of Scheduling Policies . . . . . . . . . . . . . . . . . . . 26

7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

ii



List of Tables

4.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

iii



List of Figures

5.1 Worst-case scenario for packet Pkj . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2 An example to show conflict delay . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3 An example for Observation 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.4 Worst-case scenario under Observation 2 . . . . . . . . . . . . . . . . . . . . 17

6.1 Testbed topology (at transmission power of 0 dBm) . . . . . . . . . . . . . 22
6.2 Schedulability analysis on testbed topology . . . . . . . . . . . . . . . . . . . 23
6.3 Schedulability analysis on random topology . . . . . . . . . . . . . . . . . . 25
6.4 Comparison of different scheduling policies . . . . . . . . . . . . . . . . . . . 27

iv



Acknowledgments

First, I would like to thank my advisor Professor Chenyang Lu for his continuous guidance

and advice both in research and my personal growth. He has introduced me to important

research areas, taught me how to find real-world high-impact questions and how to appreciate

the beauty and simplicity in real research.

My sincere gratitude goes to my committee members Professor Yixin Chen and Professor

Christopher D. Gill. Thanks for Professor Yixin Chen’s patient advice on my research

projects. Thanks for Professor Christopher D. Gill for serving as my committee member.

I am grateful to my current and previous intelligent colleagues in the our research group.

My gratitude goes to Dr. Greg Hackmann, Professor Octav Chipara, Yong Fu, Abu Sayeed

Saifullah, Mo Sha, Sisu Xi, Bo Li, Rahav Dor and Jing Li.

Finally, I would like to give my deepest gratitude to my parents and my wife for their endless

love and support.

Chengjie Wu

Washington University in Saint Louis

August 2013

v



Dedicated to my parents and my wife

vi



ABSTRACT OF THE THESIS

End-to-End Delay Analysis for Wireless Control Networks under EDF Scheduling

by

Chengjie Wu

Master of Science in Computer Science

Washington University in St. Louis, August 2013

Research Advisor: Professor Chenyang Lu

Process industries are starting to adopt multi-hop and multi-channel wireless control net-

works (WCNs) for process control applications. To meet the stringent real-time performance

requirements of control systems, there is a critical need for fast end-to-end delay analysis to

support online admission control of periodic real-time flows. While recent results on delay

analysis for WCNs have focused on fixed-priority scheduling, this thesis presents the first

end-to-end delay analysis for real-time flows in WCNs that schedule transmissions based

on the Earliest Deadline First (EDF) policy, a widely used dynamic scheduling policy in

real-time systems. This analysis provides safe end-to-end delay bounds for real-time flows

and can be used for efficient admission control at run time. Simulations based on both ran-

dom topologies and the topology of a wireless testbed demonstrate the effectiveness of our

analysis for online admission control of real-time flows.
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Chapter 1

Introduction

With the emergence of industrial standards such as WirelessHART [2] and ISA100 [12],

process control industries are now moving towards Wireless Control Networks (WCNs). In a

WCN, feedback control loops periodically deliver sensor data from sensors to controllers, and

then deliver control messages from controllers to actuators through a wireless mesh network.

Since excessive communication delay may lead to severe degradation of control performance

or even instability of the control system, it is critical to estimate worst-case end-to-end

communication delays for real-time flows in WCNs. Moreover, fast delay analysis is needed

for online admission control and network reconfiguration in response to dynamic changes of

channel conditions in industrial environments.

Recently, real-time transmission scheduling for WCNs has received attention [15–17, 20, 23,

24]. However, existing end-to-end delay analysis [15] for WCNs focuses on fixed priority

transmission scheduling. While dynamic scheduling has been studied [17], to date there is

no fast delay analysis for WCNs scheduled based on dynamic priority scheduling. Earliest

Deadline First (EDF) policy is a widely adopted dynamic priority scheduling strategy for real-

time systems [22] and has been shown to be an effective scheduling strategy for WCNs [17].

We focus our analysis on EDF because we can leverage existing schedulability analysis of

EDF for CPU scheduling. Moreover, our simulation study shows EDF outperforms fixed

priority scheduling with near optimal priority assignment while only slightly underperform

state-of-the-art dynamic priority scheduling with no efficient schedulability analysis.

In this paper, we address the open problem of delay analysis for periodic flows in WCNs

scheduled by EDF scheduling policy. In this problem, real-time flows periodically gener-

ate packets at sources which needed to be delivered to destinations within their respective
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deadlines. Under the EDF policy, transmissions are scheduled based on the deadlines of the

packets. Packets with earlier deadlines are assigned with higher priorities. A key feature of

our analysis lies in a novel approach to combine two types of delays in a wireless control

network: contention delay due to limited number of wireless channels, and the conflict delay

caused by conflicts between concurrent wireless transmissions. Specifically, this paper (1)

leverages real-time multiprocessor scheduling analysis for global EDF to derive contention

delays, (2) integrates both conflict and contention delays in a holistic end-to-end delay anal-

ysis, and (3) reduces the pessimisms in admission control through tighter delay bounds on

flows with tight deadlines.

We evaluate our delay analysis through simulations based on both random network topologies

and topologies of a 69-node wireless sensor network testbed. The simulation results show that

our sufficient schedulability tests are effective in terms of the acceptance ratio while providing

safe end-to-end communication delays. We also provide a comprehensive simulation study

that compares different existing real-time scheduling analyses in terms of both schedulability

and the computation time.
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Chapter 2

Wireless Control Network Model

We consider a Wireless Control Network (WCN) model based on the WirelessHART stan-

dard [2] with simplifications discussed in the end of this chapter. A WCN consists of a

set of field devices and a gateway. A field device could be a sensor, an actuator, or both.

Each device (field device or gateway) is equipped with a half-duplex omnidirectional radio

transceiver, and cannot transmit or receive simultaneously. All devices and the gateway

form a mesh network. The gateway is the bridge between the mesh network and the process

control system. The WCN has a centralized architecture. All devices are managed by a cen-

tralized network manager connected to the gateway through wired connection. For industrial

process control applications, controllers are also installed in a host that is wired connected

to the gateway. All sensing data packets are delivered from sensors to the controllers. Then,

the controllers send control packets to actuators. The network manager determines the rout-

ing based on topology information of the network. Scheduling of transmissions across the

network is also generated by the network manager in a centralized fashion.

The WCN model adopts a Time Division Multiple Access (TDMA) MAC. All devices across

the network are synchronized. The time is divided into 10 ms slots. Each time slot can

accommodate one data packet transmission and its associated acknowledgment. The WCN

employs multi-channel communication using the channels defined in IEEE 802.15.4 stan-

dard. To avoid internal interference, channel reuse is prevented. Each channel can only

accommodate one transmission across the entire network in any time slot. As a result, the

total number of concurrent transmissions in the network can not exceed the number of chan-

nels. While this conservative design adopted by WirelessHART reduces network throughput
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and scalability, it helps enhance reliability and predictability that is important for industrial

control applications.

As the first step toward real-time EDF scheduling analysis for WCNs, we make simplify-

ing assumptions about routing. Instead of the graph routing approach employed by Wire-

lessHART, we assume there exist one or more routes between every source and destination

and a flow with N redundant routes can be treated as N separate flows for the purpose of

transmission scheduling. Henceforth each flow refers to a flow over a single route. Under this

simplified routing approach our delay analysis does not need to consider redundant routes

made available by graph routing. By establishing the first delay analysis for EDF scheduling

in WCNs, this work provides a foundation towards a practical analysis for WirelessHART

networks with graph routing and EDF scheduling.
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Chapter 3

Related Works

Real-time transmission scheduling in wireless networks has been well studied in the litera-

ture [21]. However, early research on real-time scheduling is not applicable to recent indus-

trial WCN standards such as WirelessHART with multi-channel TDMA scheduling and a

centralized architecture. For example, [9,10,13,14] proposed real-time transmission schedul-

ing algorithms for wireless sensor networks. Real-time capacity and communication delay

of wireless sensor networks have been studied in [3, 19]. These works are targeted at data

collection in wireless sensor networks instead of real-time flows in wireless control networks.

Some recent works [20,23,24] have studied the transmission scheduling for WCNs with linear

or tree topologies. Transmission scheduling of real-time flows for arbitrary WCN topologies

was studied in [17]. It presented a real-time scheduling algorithm based on branch-and-

bound and a dynamic priority scheduling algorithm called C-LLF, but it did not present any

delay analysis.

End-to-end delay analysis for fixed priority scheduling in WCN has been proposed in [15,18].

The performance of fixed priority scheduling highly depends on the priority assignment,

which is proven to be a difficult problem [16] and near-optimal priority assignment algo-

rithms incurs significant delay when used online (e.g., for admission control or network

reconfiguration). While dynamic priority scheduling represents an attractive alternative to

fixed priority scheduling, end-to-end delay analysis for dynamic priority scheduling has not

been studied for WCNs. EDF is a commonly used dynamic priority scheduling algorithm in

real-time systems and has also been found to outperform common fixed priority scheduling

algorithms in WCNs in previous studies [17].
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EDF schedulability test for multiprocessor scheduling has been studied in several works [4–

8,11]. Goossens et al. [11] proposed a sufficient schedulability test which can be summarized

as one inequation. Baker [4, 5] proposed a schedulability test by identifying the necessary

conditions that a task job will miss its deadline. Bertogna et al. [7] proposed schedulability

tests by bounding interferences a task job may suffer. They improved their analysis in

[8] by an iterative algorithm. Baruah [6] claimed to improve the schedulability test by

proposing a pseudo-polynomial analysis. However, none of them works for our problem,

since transmission conflict is a unique property of real-time flow scheduling problem. In our

approach, we will incorporate conflict delay into our schedulability analysis. We provide

the first end-to-end delay analysis of EDF scheduling (and dynamic scheduling in general)

for WCNs. Moreover, we provide a comprehensive simulation study that compares different

existing real-time scheduling analyses in terms of both schedulability and the computation

time.

6



Chapter 4

Problem Formulation

A WCN is modeled as a graph G = (V,E), where the node set V represents the network

devices and E is the set of links between these devices. The set V consists of the gateway

and field devices. A device cannot both send and receive a packet in the same time slot.

A transmission ~uv is associated with a link (u, v), a time slot and a channel. Device u is

designated as the sender and device v as the receiver. Note that channel reuse is avoided in

WCN, only one transmission can be scheduled on a channel in each time slot. If all available

channels are assigned to transmissions, remaining transmissions have to be postponed to

later slots. Because channel reuse is avoided, only one transmission will be scheduled on

any channel in one time slot, there is no interference between transmissions in a time slot.

However, two transmissions conflict with each other only if they share at least a node,

because a radio interface can transmit or receive only one packet in a time slot. Specifically,

two transmissions ~uv and ~pq are conflicting if (u = p) ∨ (u = q) ∨ (v = p) ∨ (v = q). Two

conflicting transmissions cannot be scheduled in the same time slot.

A set of real-time periodic flows F = {F1, F2, · · · , FN} need to be scheduled. Each flow Fi is

associated with a period Ti, a relative deadline Di, a source device si, a destination device di,

a route φi. φi is composed by a sequence of links in the network. To ensure reliability, each

transmission is scheduled κ times to overcome link failure. We define Ci as the execution

time of Fi, which equals to the total number of transmissions scheduled for one packet of

this flow. In this case, Ci = |φi|κ, where |φi| is the length of φi. A constrained deadline

model Di ≤ Ti is followed here, hence different packets of the same flow can not exist in the

network in the same time slot.
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At the beginning of jth period, flow Fi releases a packet Pij at source node si. Each packet

Pij needs to be delivered to the destination di through a sequence of transmissions along

φi that are scheduled according to the EDF policy. Each packet is assigned with a priority

based on its absolute deadline. The packet with earlier absolute deadline is assigned with

higher priority. Transmissions of all packets are scheduled to m channels. At any time slot,

among all ready transmissions which do not conflict with the scheduled transmissions, the

transmission that belongs to the highest priority packet is scheduled on a channel among all

available channels.

For a packet Pij, if it is released from the source at time slot tr and is delivered to the

destination at slot td through its route, its end-to-end delay is defined as rij = td − tr + 1.

Here we define the worst-case end-to-end delay of flow Fi as Ri, which is the maximum

end-to-end delay among all its packets.

A flow set F = {F1, F2, · · · , FN} is schedulable under a scheduling algorithm A, if A can

schedule all transmissions that belong to F using m channels such that no deadline is missed.

A schedulability test S for A is sufficient if any flow set which is tested to be schedulable

by S is indeed schedulable by A. Given the set of real-time flows F , our goal is to derive

an upper bound on worst-case end-to-end delay of every flow. The delay analysis can then

be used as a sufficient schedulability test S that can predict the schedulability of F under

EDF.

All notations used in our analysis are summarized in Table 4.1.
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Fk A flow with index k
Tk Period of flow Fk

Dk Deadline of flow Fk

Ck Total number of transmissions for one packet of Fk

Rk Worst-case end-to-end delay of flow Fk

Pkj jth packet of flow Fk

I(k, i) Number of transmissions that belong to Fi and are scheduled
in lifetime of a packet of Fk

Iconf (k, i) Number of transmissions of Fi that introduce conflict delay
to a packet of Fk

Icont(k, i) Number of transmissions of Fi that introduce contention de-
lay to a packet of Fk

Wki Maximum conflict delay that a single packet of Fi could
introduce to a single packet of Fk

Wki(ν) Maximum conflict delay that the last ν transmissions of a
single packet of Fi could introduce to the first ν transmis-
sions of a single packet of Fk

Table 4.1: Notations
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Chapter 5

Worst-Case End-to-End Delay

Analysis

In this chapter, we present our worst-case end-to-end delay analysis for real-time flows under

the EDF policy. A set of real-time flows are schedulable if every flow has a worst-case end-

to-end delay that is less than or equals to its deadline. A packet Pkj of flow Fk is delayed if

it has a transmission ~uv that is ready at a time slot t but not scheduled at t. As observed

in [15], we categorize the delays that a packet may experience in a WSN into two types:

contention delay and conflict delay.

• Contention Delay Since channel reuse is forbidden in a WCN, each channel can only

accommodate one transmission across the network in each time slot. If all channels are

assigned to transmissions of other packets, a packet suffers one time slot of contention

delay because its ready transmission can not be scheduled onto any channel at this

time slot.

• Conflict Delay Because of the half-duplex radio, two transmissions conflict with each

other if they share a node (sender or receiver). Then only one of them can be scheduled

at one time slot. Therefore, if a transmission conflicts with another transmission that

has already been scheduled in current time slot, it has to be postponed to a later time

slot, resulting in one time slot of conflict delay.

Previous work [15] has studied worst-case end-to-end delay of flows under fixed priority

scheduling policy, but their analysis can not be applied to this work. As proven in [15],
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the worst-case delay of a real-flow is the sum of the worst-case conflict delay and the worst-

case contention under fixed priority scheduling. This property allows a divide and conquer

approach that derives the upper bound of each type of delay. Unfortunately, this property

does not hold under dynamic priority scheduling such as EDF. A key challenge tackled in

our analysis is to find the worst-case scenario for a packet of a flow. Then we propose a

worst-case end-to-end delay analysis based on our worst-case scenario analysis.

Consider a packet Pkj of flow Fk released at tr with absolute deadline an td = tr − 1 + Dk.

We want to analyze the delay Pkj suffers from packets of all the other flows. We start with

analyzing the delay caused by the packets of an arbitrary flow Fi, and then we include all

flows into our analysis.

Given EDF is used to schedule transmissions of packets, we ignore packets of Fi that have

absolute deadlines which are earlier than tr or later than td. Packets with absolute deadlines

earlier than tr will finish their transmissions before Pkj’s release. Packets with absolute

deadlines later than td have lower priorities than Pkj, hence they will not delay Pkj.

Dk mod Ti   

Di

Ci

  ⎣Dk / Ti⎦∙ Ti

Di

Ci
Di

Ci

Pkj tdtr

Figure 5.1: Worst-case scenario for packet Pkj

We first consider the scenario illustrated in Fig. 5.1. In the figure, the release time of a

packet is indicated as an ascending arrow, and the deadline is indicated as a descending

arrow. The dashed area is used to denote the time slots where transmissions are scheduled.

In the worst-case scenario, the absolute deadline of one packet of Fi aligns with td. In this

case, the workload of packets in flow Fi within Pkj’s lifetime is maximized. Because if we slide

Pkj’s absolute deadline earlier, then the last packet of Fi in the figure would have an absolute

deadline later than td, which makes it has a lower priority than Pkj. Also, if we slide Pkj’s
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absolute deadline later, the workload of packets of Fi would decrease as well. We also assume

all transmissions of a packet Pih, whose absolute deadline is later than tr and earlier than

td, are scheduled in latest time slots. The third assumption is among these transmissions,

those have potential to conflict with Pkj’s transmissions indeed introduce conflict delays.

Observation 1. For a packet Pkj of flow Fk, Pkj meets the worst-case delay when the

following conditions are true for every flow Fi, i 6= k:

1. The absolute deadline of a packet of Fi aligns with the absolute deadline of Pkj.

2. For any packet Pih in flow Fi that has an absolute deadline later than tr and no later

than td, all its transmissions are scheduled at the very end of its scheduling window. In

other words all transmissions are scheduled at the latest time slots before the absolute

deadlines.

3. For any packet Pih in flow Fi that has an absolute deadline later than tr and no later

than td, all its transmissions that may conflict with transmissions of Pkj indeed intro-

duce conflict delay to Pkj.

We use I(k, i) to denote the number of transmissions of flow Fi scheduled within Pkj’s lifetime.

Given the first condition in Observation 1, since the absolute deadline of one packet of Fi

aligns with the absolute deadline of Pkj, we upper bound the workload of packets in Fi that

are within Pkj’s lifetime as:

I(k, i) = bDk/TicCi + min(Ci, Dk mod Ti)

Within I(k, i), there are two types of transmissions: (1) transmissions that bring conflict

delay to Pkj and (2) transmissions that bring contention delay to Pkj. We name the first

type of transmissions as conflict transmissions, and denote the total number of conflict trans-

missions as Iconf (k, i). Meanwhile we name the second type of transmissions as contention

transmissions and denote the total number of contention transmissions as Icont(k, i).

Note that one conflict transmission introduces much more delay than one contention trans-

mission since it will directly delay a packet Pkj for one time slot regardless of the number
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of available channels. A contention transmission will occupy one channel for its time slot.

The packet Pkj can be delayed by contention transmissions only if all channels are occupied.

Also the number of conflict transmissions equals to the conflict delay that Pkj suffers, since

one conflict transmission will delay Pkj for exactly one time slot.

The necessary condition of a transmission ~uv of flow Fi to become conflict transmission is

that it should at least share one node with one transmission ~pq of flow Fk, i.e. u = p or v = p

or v = q or u = q. However, this is not a sufficient condition, since only when ~pq is ready at

time slot t and ~uv is scheduled at time slot t, ~uv becomes a conflict transmission. Otherwise,

it is a contention transmission. We name all transmissions of Fi that share at least one node

with one transmission of Fk as potential transmissions. Here we use the number of potential

transmissions as the upper bound of number of conflict transmissions.

u

G

s

Route for Fi
Route for Fk

v

ba z

e f

y
x

 C(k,i)=5

Figure 5.2: An example to show conflict delay

As shown in Figure 5.2, suppose Fk and Fi are two flows that share a part of their routes.

Now we analyze the maximum number of potential transmissions within one packet of Fi that

may introduce conflict delay to Pkj. Suppose absolute deadline of Pih is earlier than Pkj, and

Pih has a higher priority than Pkj. A transmission of Pkj conflicts with a transmission of Pih

when they involve a common node. Whenever two transmissions conflict, the transmission

that belongs to the lower priority packet must be delayed, no matter how many channels are

available. The number of potential transmissions equals to the number of Fi’s transmissions

that share nodes with Fk’s route. Let Wki be the total number of Fi’s transmissions that

share nodes with Fk’s route, then Wki is the number of potential transmissions.
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For example, in Fig. 5.2, the set of transmissions of flow Fi that share common nodes with Fk

is { ~uv, ~vG, ~Gx, ~xy}. Here Wki equals to 4. Then the maximum conflict delay a packet of Fk

can suffer from one packet of flow Fi is no more than the number of potential transmissions

Wki, which equals 4 in this case.

Following the same reasoning of analyzing the maximum workload, the worst-case conflict

delay Pkj suffers from packets of flow Fi is:

Iconf (k, i) = bDk/TicWki + min(Wki, Dk mod Ti) (5.1)

After bounding the maximum conflict delay that single packet Pkj suffers from flow Fi, we

analyze the maximum contention delay that packets of flow Fi could introduce. As discussed

before, the number of conflict transmissions of flow Fi equals to the conflict delay that Pkj

suffers from flow Fi. Besides conflict transmissions, the remaining transmissions in I(k, i)

are grouped into contention transmissions:

Icont(k, i) = I(k, i)− Iconf (k, i). (5.2)

Theorem 1. The maximum delay a single packet of flow Fk can suffer is:

θk = b 1

m

∑
i 6=k

Icont(k, i)c+
∑
i 6=k

Iconf (k, i)

Proof. The maximum conflict delay that a packet Pkj can suffer from flow Fi is Iconf (k, i)

as equation 5.1 showed. By adding up all flows except flow Fk (a constrained deadline

model is considered here, so packet can not be delayed by packets from the same flow), we

get the overall conflict delay as
∑

i 6=k I
conf (k, i). Then we consider contention delay. By

removing transmissions that bring conflict delay from I(k, i), Icont(k, i) is the number of

transmissions from flow Fi that will consume channel resource. By adding Icont(k, i) from

all flows, then divided by number of channels m, we get the the worst-case contention delay

b 1
m

∑
i 6=k I

cont(k, i)c. This follows from the observation that EDF is work conserving, thus

when a packet of Fk is ready but not executing, if it does not experience a conflict delay,

each channel must be occupied by a packet of other flows.
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Recall worst-case end-to-end delay of flow Fi is the largest end-to-end delay among all its

packets. Since end-to-end delay of a packet is the delay it suffers plus its execution time, we

have following corollary:

Corollary 1. The worst-case end-to-end delay of flow Fk is:

Rk = b 1

m

∑
i 6=k

Icont(k, i)c+
∑
i 6=k

Iconf (k, i) + Ck (5.3)

5.1 Improved Worst-case End-to-End Delay Analysis

We proposed a worst-case end-to-end delay analysis in previous section. Inspired by the

multiprocessor scheduling techniques proposed in [8], we propose an improved worst-case

end-to-end delay analysis based on a new observation. From now on, we will call the worst-

case end-to-end delay analysis in Corollary 1 as the basic delay analysis (BDA).

Ri

Dk

Di

Ci Pk,j

Pih

Figure 5.3: An example for Observation 2

We start from the Observation 1 for worst-case scenario. Remind the second point of the

observation is that all transmissions of packets are scheduled at the very end of their schedul-

ing windows. However, this observation can be broken in some cases. For example, if the

end-to-end delay of a packet is far smaller than its absolute deadline, all transmissions should

be scheduled far before its absolute deadline, which makes this point invalid. From a flow
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perspective, if the worst-case end-to-end delay of a flow is far smaller than its relative dead-

line, then any packet of this flow will schedule all its transmissions far before its absolute

deadline. We summarize it with the following observation.

Observation 2. Transmissions of a packet Pih cannot be scheduled later than the worst-case

end-to-end delay Ri of flow Fi.

As shown in Figure 5.3, transmissions of Pih can only be scheduled before the worst-case end-

to-end delay, which makes the assumption that all transmissions are scheduled at the very

end of its scheduling window unreasonable. Actually, this observation will greatly improve

the effectiveness of our end-to-end delay analysis. In BDA, the most difficult part is about

flows with very short deadlines. A flow with short deadline is sensitive to delay especially

conflict delay. When a flow Fk has a very short deadline Dk, it is critical to derive a precise

delay analysis. Because even a small pessimistic delay analysis for each Fi will turn out to

give a large amount of pessimism when we add delay from all flows together. Specifically,

when Dk is small, with previous analysis, each flow Fi will introduce delay on Fk. However,

with improved analysis, Fi will not even introduce any delay on Fk if the gap between Fi’s

worst-case end-to-end delay Ri and deadline Di is larger than Dk. For example, in Figure 5.3,

we discuss the delay that Pkj suffers from flow Fi. Deadline of packet Pih is aligned with

deadline of packet Pkj. Worst-case end-to-end delay of Fi is shown in the figure with Ri.

From the figure, end-to-end delay of Pih is before absolute deadline of Pih as well as release

time of Pkj. Then all transmissions of Pi,l are scheduled before release of Pkj. This makes

the delay that Pkj suffers from Pih zero. However, based on BDA, conflict delay that Pkj

suffers is Wki, besides the channel contention delay it suffers.

By incorporating this observation, we propose an improved delay analysis (IDA). In the

IDA, we use * to denote the new result of any terminology we already analyzed in BDA.

The general worst-case scenario is shown in Figure 5.4. We discuss the worst-case delay

packet Pkj suffered from flow Fi. The lifetime of Pkj is [tr, td). Note that we also show the

worst-case end-to-end delay Ri in the figure. From the figure, we can see the leftmost packet

of Fi has at most min(Ci, (Dk mod Ti) − (Di − Ri)) transmissions scheduled within time

window [tr, td). This is different from our previous analysis min(Ci, Dk mod Ti), where worst

case end-to-end delay of Fi is not considered. Based on this new observation, a new upper
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  ⎣Dk / Ti⎦∙ Ti

Dk mod Ti   

Ri
Di

Ci
Ri

Di

Ci
Ri

Di

Ci

Figure 5.4: Worst-case scenario under Observation 2

bound of workload that Fi finishes within the time window [tr, td) is

I(k, i)∗ = bDk/TicCi + min(Ci, (Dk mod Ti)− (Di −Ri)) (5.4)

It becomes more interesting when we derive an upper bound on the transmission conflict

delay a packet of Fk suffers from Fi.

Theorem 2. An upper bound on the conflict delay that any packet of Fk experiences from

Fi is:

Iconf (k, i)∗ =
0, if Dk ≤ Di −Ri

Wki(Dk − (Di −Ri)), if Di −Ri < Dk ≤ Di

bDk/TicWki +Wki(max{0, Dk mod Ti − (Di −Ri)}), if Dk > Di

(5.5)

Proof. We discuss the transmission conflict delay in three cases.

• Dk ≤ Di −Ri

• Di −Ri < Dk ≤ Di

• Dk > Di
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Suppose Pkj is the packet we are discussing for Fk. In the first case, deadline of Fk is smaller

than gap between Fi’s worst-case end-to-end delay and its deadline. All transmissions of Fi

are scheduled before Pkj’s release time. Then there is no transmission conflict delay in this

case.

In the second case, release time of Pkj is before Fi’s worst-case end-to-end delay. Part of Fi’s

transmissions are scheduled after Pkj’s release time. The first Dk − (Di −Ri) transmissions

of Pkj could potentially conflict with Fi’s last Dk− (Di−Ri) transmissions. We introduce a

new terminology Wki(ν), which denote the maximum conflict delay that last ν transmissions

of Fi could introduce to the first ν transmissions of Fk. Intuitively, we can treat the last ν

transmissions of Fi as a new flow F ′i and treat the first ν transmissions of Fk as a new flow F ′k.

We calculate Wki(ν) by counting the number of transmissions of F ′i that share nodes with

F ′k. Note that if ν is larger than both Ci and Ck, then Wki(ν) = Wki. Then the maximum

possible transmission conflict delay is Wki(Dk − (Di −Ri)).

In the third condition, there is potentially more than one packet of Fi that brings transmission

conflict delay into Pkj. The number of packets of Fi that fully coincide with Pkj’s lifetime

is bDk/Tic, and their worst-case conflict delay to Pkj is bDk/TicWki. The conflict delay that

the leftmost packet of Fi in Figure 5.4 brings to Pkj depends on the length of Dk mod Ti. If

Dk mod Ti ≤ Di−Ri, then the leftmost packet will not bring conflict delay. If Dk mod Ti >

Di−Ri, the leftmost packet will bring at most Wki(min{0, Dk mod Ti− (Di−Ri)}) to Pkj.

Given the new analysis on workload and transmission conflict delay of flow Fi on flow Fk,

the number of channel transmissions is:

Icont(k, i)∗ = I(k, i)∗ − Iconf (k, i)∗. (5.6)

Similar to Theorem 1, we give an upper bound on the maximum delay that any packet of

flow Fk can suffer and the worst-case end-to-end delay of Fk here.
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Corollary 2. The maximum delay a single packet of flow Fk can suffer is:

θ∗k = b 1

m

∑
i 6=k

Icont(k, i)∗c+
∑
i 6=k

Iconf (k, i)∗ (5.7)

Corollary 3. The worst-case end-to-end delay of flow Fk is:

R∗k = b 1

m

∑
i 6=k

Icont(k, i)∗c+
∑
i 6=k

Iconf (k, i)∗ + Ck (5.8)

The flow set {F1, F2, · · · , Fn} is schedulable if following is true for each flow Fk:

R∗k ≤ Dk (5.9)

We use an iterative algorithm to derive the worst-case end-to-end delay R∗k. In the initial-

ization, Rk is set to Dk for all flows. At the beginning of each iteration, for each flow Fk,

Rk is set to R∗k from last iteration. And R∗k is calculated based on equation (5.4)-(5.8). The

algorithm will enter a new iteration if the flow set is unschedulable and at least one flow has a

worst-case end-to-end delay R∗k updated, otherwise it terminates. We show the pseudo-code

in Algorithm 1.

Algorithm 1: Iterative algorithm

Set R∗k = Dk,∀k ≤ N ;
repeat

Set Rk = R∗k,∀k ≤ N ;
for k ≤ N do

Calculate R∗k based on (5.4)-(5.8);
end

until ∀k ≤ N,R∗k ≤ Dk or ∀k ≤ N,R∗k = Rk;

5.2 Complexity Analysis

Now we want to estimate the complexity of our delay analysis. The BDA in Corollary 1 is

polynomial. The calculation of worst-case delay of flow Fk is in O(n) since we have n flows.

19



The complexity of BDA is O(n2) since we need to calculate worst-case delay for every flow.

The total time complexity is O(n2).

The improved delay analysis (IDA) in Corollary 3 is pseudo-polynomial. The analysis in

each iteration is O(n2) as discussed above. Since there are n flows, and each one’s worst-

case end-to-end delay can range from Ck to Dk, the number of iterations is bounded as

O(nmax(Dk − Ck)). Thus, the overall complexity is O(n3 max(Dk − Ck)).
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Chapter 6

Evaluation

We evaluate our end-to-end delay analysis through simulations based on both the real topolo-

gies of a wireless sensor network testbed and random topologies. We evaluate our improved

delay analysis (IDA) in Corollary 3 by comparing it with the basic delay analysis (BDA) in

Corollary 1 and the simulation (SIM).

Our delay analysis is evaluated in terms of pessimism ratio and acceptance ratio. The former

one is used to assess the tightness of the delay analysis, and the latter one is used to evaluate

the effectiveness of our analysis for online admission control. For each flow, the pessimism

ratio is defined as the ratio of its theoretical worst-case end-to-end delay given by our analysis

to its maximum end-to-end delay observed in simulation. The acceptance ratio is defined as

the ratio of the number of test cases deemed schedulable by our analysis (or simulation) to

the total number of test cases. A test case is schedulable in simulation if all flow instances

released in the hyper-period meet their deadlines. The simulator is written in C++ and all

tests are performed on a MacBook Pro laptop with 2.4 GHz Intel Core 2 Duo processor.

6.1 Evaluation on Testbed Topologies

In this part of evaluation, we use the topologies of a real sensor network testbed [1] deployed

on the fifth floor in Bryan Hall and Jolley Hall of Washington University in St. Louis, as

shown in Figure 6.1. The testbed consists of 69 TelosB motes. The TelosB mote’s radio is

compliant with the IEEE 802.15.4 standard. For each link in the testbed, we measured its

packet reception ratio (PRR) by counting the number of received packets among 250 packets
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Figure 6.1: Testbed topology (at transmission power of 0 dBm)

transmitted on the link. We only add links with PRR higher than 80% to the topology of the

testbed. Topologies at 3 different transmission power levels (0 dBm, -1 dBm, -3 dBm) are

collected for our simulations. The node with the highest number of neighbors is designated

as the gateway (yellow diamond in Figure 6.1). A fraction of the remaining nodes are used

as sources and destinations. The sets of sources and destinations are disjoint.

Different numbers of flows are generated by increasing the number of source and destination

pairs. The period Ti of the each flow Fi is randomly generated in the range of 26∼11 time slots.

The relative deadline Di of every flow Fi is randomly generated in the range of (Ci, β ∗ Pi)

slots, here β is a randomly generated number in range of (0, 1). Ci is the required time slots

needed to deliver a packet from the source to the destination. For each flow set, we generate

100 test cases and simulate them on topologies at different transmission power levels.

The acceptance ratios of IDA, BDA and simulation (SIM) using topology with transmission

power of 0 dBm are shown in Figure 6.2(a). The acceptance ratio of IDA remain close to

simulations. The gap between IDA and SIM widens as the number of flows increases, but

remains within 10%. This result indicates the effectiveness of IDA for admission control. The

acceptance ratio of IDA is much higher than BDA, which shows the IDA highly outperforms

BDA in terms of acceptance ratio.

22



3 6 9 12 15 18 21 24 27 30
Number of flows

0

10

20

30

40

50

60

70

80

90

100

Ac
ce

pt
an

ce
 r

at
io

 (
%

)
BDA

IDA

SIM

(a) Acceptance ratio

3 6 9 12 15 18 21 24 27 30
Number of flows

1

2

4

8

16

32

64

Pe
ss

im
is

m
 r

at
io

AAAAAAA

AAAAAAA

BDA

IDA

(b) Boxplot of pessimism ratio

3 6 9 12 15 18 21 24 27 30
 Number of flows

0

5

10

15

20

25

30

35

40

Ex
ec

ut
io

n 
ti

m
e 

(m
s) AAAAAAA

AAAAAAA

BDA

IDA

(c) Boxplot of execution time

3 6 9 12 15 18 21 24 27 30
Number of flows

0

1

2

3

4

5

6

N
um

be
r 

of
 it

er
at

io
ns

(d) Boxplot of number of iterations

Figure 6.2: Schedulability analysis on testbed topology
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Figure 6.2(b) shows the boxplots of the pessimism ratios of IDA and BDA. Note that the

y-axis is plotted in a log scale. Since if a test case is not schedulable under simulation,

the simulator could not lay out the schedule of all flows, then we could not get the actual

maximum end-to-end delay. So all pessimism ratios here are from test cases that are schedu-

lable under simulation. This result confirms IDA greatly improves the tightness of the delay

bound compared to BDA. The pessimism ratio of BDA increases as the number of flows

increases. However, the pessimism ratio of IDA remain low despite the increase of number

of flows. This figure shows our IDA is scalable to large number of flows.

The time complexity of our algorithms are shown in Figure 6.2(c). The execution time of

IDA grows faster than BDA as the number of flows grows. Figure 6.2(c) and Figure 6.2(d)

shows the boxplot of number of iterations in IDA. The median value is at most 2 and the

75% percentile is at most 3. The figure shows that when number of flows is small, our

algorithm IDA converges fast. Figures 6.2(a)-6.2(c) show the tradeoff between accuracy and

time complexity. While IDA runs slower than BDA, it gives a much more precise estimation

of end-to-end delay, which leads to a higher acceptance ratio.

6.2 Evaluation on Random Topologies

Besides real testbed topologies, we also test our analysis on larger random topologies with

larger number of flows. We generate random networks with 400 nodes and 800 links. Links

are chosen randomly and assigned PRR randomly in the range of [0.80, 1.0]. We test our

delay analysis on different number of flows. The rest of the simulation setup is same as our

simulations on testbed topologies.

The results under large random topologies have similar trends as those under the testbed

topologies. IDA is effective for admission control with the acceptance ratio within 30% to

simulations even when the network is heavily loaded. IDA significantly outperforms BDA in

admission control thanks to its tighter delay bounds as shown in Figure 6.3(b). Even when

the number of flows increases 100, the pessimism ratio of IDA still remains in the same

range as 10 flows, which shows IDA’s scalability in terms of pessimism ratio. Figure 6.3(d)

shows the median number of iterations in IDA increase from 2 to 5 on random topologies.

As shown in Figure 6.3(c), although the number of flows increases to 100, the maximum
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Figure 6.3: Schedulability analysis on random topology

25



execution time is less than 1.5 seconds in worst case. This figure shows IDA is scale to large

number of flows in terms of computational cost.

6.3 Comparative Study of Scheduling Policies

In this section, we compare EDF with some representative scheduling policies: (a) Fixed

Priority scheduling with Deadline Monotonic priority assignment (FPDM), which assigns

priorities to flows using the relative deadline and schedules transmissions based on flows’

priorities; (b) Fixed Priority scheduling with Near Optimal priority assignment (FPNO),

which assigns priorities of flows using a heuristic search algorithm [16]; (c) Conflict-aware

Least Laxity First (CLLF) [17], which incorporates conflict delay into traditional Least

Laxity First scheduling policy. We also compare our IDA delay analysis against Delay

Analysis for Fixed Priority scheduling policies (DAFP) [15]. All tests in this subsection are

based on random topologies. We increase the number of flows in the network from 20 to 80

and show simulation results in Figure 6.4.

We compare scheduling policies through simulation in Figure 6.4(a). Dash lines show the

percentage of task sets that different scheduling policies can schedule in simulation. Solid

lines show acceptance ratios of different schedulability analysis techniques. Results show

EDF can schedule more task sets than FPNO and FPDM, which indicates that EDF is

indeed an effective scheduling policy. Although CLLF can schedule more task sets than EDF,

there is no schedulability analysis for CLLF. We also compare IDA with DAFP in Figure

6.4(a). Given the complexity that EDF brings to schedulability analysis, the acceptance

ratio of IDA is slightly lower than DAFP. Overall IDA is shown to be competitive to the

state-of-the-art delay analysis technique DAFP.

Figure 6.4(b) shows execution time of two schedulability analysis techniques as well as prior-

ity assignment algorithm used in FPNO. The execution time of priority assignment algorithm

used in FPNO (FPNO-ASG) is much higher than execution time of DAFP and IDA. We

further compare execution time of DAFP and IDA in Figure 6.4(c). Given EDF is a more

complicated scheduling policy compared to fixed priority scheduling policies, the execution

time of IDA is slightly higher than DAFP. It indicates that IDA is an efficient schedulability

analysis approach.
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Figure 6.4: Comparison of different scheduling policies
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Chapter 7

Conclusions

With the emergence of industrial standards such as WirelessHART, industrial process con-

trol is moving towards wireless control networks as the network technology for real-time

communication between sensors, controllers and actuators. To meet the stringent real-time

performance requirements of control systems, there is a critical need for fast end-to-end de-

lay analysis to support online admission control of periodic real-time flows in WCNs. This

thesis presents the first end-to-end delay analysis for WCNs under Earliest Deadline First

(EDF) transmission scheduling, a widely used dynamic priority scheduling policy in real-time

systems. Our analysis considers delays caused by both channel contentions and conflicts be-

tween concurrent transmissions and provides safe upper bounds for the end-to-end delays

of real-time flows. Specifically, this thesis (1) leverages real-time multiprocessor scheduling

analysis to derive contention delays, (2) integrates both conflict and contention delays in

a holistic end-to-end delay analysis, and (3) reduces the pessimisms in admission control

through tighter delay bounds on flows with tight deadlines. Simulations based on both ran-

dom topologies and the topology of a wireless testbed demonstrate the effectiveness of our

analysis for online admission control of real-time flows.
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