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ABSTRACT OF THE THESIS

Ensemble Support Vector Machine Models of Radiation-Induced Lung Injury Risk

by

Todd Wademan Schiller

Master of Science in Computer Science

Washington University in St. Louis, 2009

Research Advisor: Professor Yixin Chen

Patients undergoing radiation therapy can develop a potentially fatal inflammation

of the lungs known as radiation pneumonitis (RP). In practice, modeling RP factors

is difficult because existing data are under-sampled and imbalanced. Support vector

machines (SVMs), a class of statistical learning methods that implicitly maps data

into a higher dimensional space, is one machine learning method that recently has

been applied to the RP problem with encouraging results. In this thesis, we present

and evaluate an ensemble SVM method of modeling radiation pneumonitis. The

method internalizes kernel/model parameter selection into model building and enables

feature scaling via Olivier Chapelle’s method. We show that the ensemble method

provides statistically significant increases to the cross-folded area under the receiver

operating characteristic curve while maintaining model parsimony. Finally, we extend

our model with John C. Platt’s method to support non-binary outcomes in order to

augment clinical relevancy.
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Preface

This thesis is composed of two main chapters. In Chapter 2, we present an improved

binary-outcome model for predicting radiation pneumonitis in patients undergoing

radiation therapy. In Chapter 3, we adjust the model to support a more clinically

relevant view of risk. Each part is meant to be able to stand alone as an innovative

contribution to the field of patient outcome modeling. Such intention is drawn, in

part, by the circumstances under which the chapters were researched and written:

the second chapter was written as a submission for a special issue of Neurocomputing

on subspace learning; later, the third chapter was written as a submission to a spe-

cial session on modeling treatment outcomes in cancer and radiation therapy at the

International Conference on Machine Learning and Applications.
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Chapter 1

Introduction

Radiation pneumonitis (RP) is an inflammation of the lungs that presents within six

months of thoracic radiation therapy. RP is potentially fatal, but symptoms can be

as mild as a cough. Numerous factors, such as gender [14, 47], maximum dose [16],

and tumor location [32] have been associated with radiation pneumonitis.

Accurate models of the risks stemming from patient irradiation allow clinicians to

design effective radiation plans while controlling potential side effects. For RP, an

ideal model would output the exact probability that a patient will develop clinically

significant radiation pneumonitis. Such a model, however, does not exist yet – but

not for a lack of trying. In fact, lung-injury prediction research has a rich history.

Though a full review is beyond the scope of this thesis, a brief chronology helps to

provide context for our work:

By the early 1970s, a growing set of factors had been identified as effecting RP

risk [20, 34]. During the decade, RP research focused on describing the effects of

various drugs on RP incidence. For example, in 1973, Wara et al. presented a probit

model to evaluate the effect of dactinomycin administration on RP incidence [57].

Radiation pneumonitis research in the 1980s lacked a cohesive theme. Rothwell et

al. showed that RP was strongly linked to irradiation volumes in breast cancer pa-

tients [48]. Koga et al. found that age was a significant factor effecting RP sever-

ity [36]. There was also a push to gain a better understanding of the biology under-

lying radiation pneumonitis [26, 56].
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In the 1990s, efforts began to model patient outcomes for various conditions with

machine learning techniques. For example, in 1997, Cooper et al. evaluated 8 sta-

tistical and machine learning models for predicting pneumonia mortality [13]. They

found that an artificial neural network provided the best performance (though not

necessarily statistically significant). In 1998, Munley et al. demonstrated that neural

networks could also produce promising models of radiation-induced lung injury [43].

In the past ten years, many more machine learning techniques have been applied

to the lung-injury prediction problem with varying levels of success; for example

– self-organizing maps [11], decision trees [15], and support vector machines [10,

19]. However, an increase in available data also enabled a reexamination of more

traditional statistical models [50, 32].

In this thesis, we build an improved model of RP with support vector machines

(SVMs), a class of statistical learning methods. SVMs project their input into a

higher-dimensional feature space in which the data is separable by a hyperplane. The

mapping allows SVMs to capture complex relationships between features/factors.

SVM-based models of RP have shown encouraging results [10, 14, 19].

The overriding purpose of this work is to improve the current state of SVM models

of RP and to highlight issues affecting model quality. The primary vehicle used to

achieve this purpose is an ensemble SVM method we present. The ensemble model

combines the output from numerous SVMs to produce a higher-quality prediction

function.

In Chapter 2, we formalize the ensemble SVM method and present results that sug-

gest increased performance over previous SVM models. We explain the performance

benefits by looking at the synergies captured by the model.

In Chapter 3, we adjust the feature selection method of our ensemble method in

order to support model parsimony and statistically show that the ensemble method

provides improved performance. Finally, we introduce a tuning step that allows the

model to produce probabilistic risk estimates and discuss the step’s positive impact

on clinical relevance.

In Chapter 4, we offer concluding remarks and provide guidance for future research.
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Chapter 2

Modeling Radiation-Induced Lung

Injury Risk with an Ensemble of

Support Vector Machines1

2.1 Introduction

Radiation Pneumonitis (RP) is a potentially fatal inflammation of the lungs that

can occur as a result of thoracic radiation therapy (See Figure 2.1). Symptoms

ranging from cough and fever to acute respiratory distress present themselves within

six months of therapy. Because of the wide range of severity, institutions develop

grading scales to characterize radiation pneumonitis events. Washington University’s

scale is shown in Table 2.1.

Numerous factors have been identified as contributing to radiation pneumonitis risk.

Factors shown to be correlated with RP include treatment factors such as equivalent

uniform dose [14, 10] and dose location [32, 60, 53] as well as clinical factors like

1Submitted on May 10, 2009 to the Neurocomputing special issue on subspace learning.

Figure 2.1: CT scan showing radiation-induced inflammation in the right lung (left
in the picture) [37].
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Table 2.1: Radiation pneumonitis grade definition from [32]

Washington University Lung Toxicity Criteria
Grade Definition
1 Mild symptoms of dry cough or dyspnea on exertion not re-

quiring clinical intervention or radiographic evidence of pneu-
monitis without clinical symptoms

2 Steroids given for clinically significant pulmonary symptoms
3 Hospitalization for symptoms of dyspnea requiring supportive

care (oxygen)
4 Severe respiratory insufficiency/continuous oxygen or assisted

ventilation
5 Fatal

gender [14, 47]. Many of the factors individually correlated with RP are highly inter-

correlated [32]. Therefore, attempts to construct parsimonious models of radiation

pneumonitis typically argue for a small subset of factors. For example, Das et al.

identify chemotherapy, equivalent uniform dose, gender, and squamous cell histology

as significant [14].

Modeling radiation pneumonitis is a particularly challenging problem because exist-

ing data is under-sampled – the ratio of variable factors to the number of patients

is large – and unbalanced. Recently, the academic and medical community has seen

an increased interest in applying machine learning techniques to predicting radiation

pneumonitis risk. In particular, support vector machines (SVMs), which have been

successfully used in domains ranging from cancer classification [28, 23] to image re-

trieval [52, 61], are now being applied to the RP modeling problem with promising

results [10, 19].

In this paper, we introduce three innovations for modeling binary RP risk with sup-

port vector machines: (1) Utilizing an ensemble of SVMs to address data imbalance

and boost performance (2) Feature scaling during model building to complement for-

ward feature selection (3) Performing parameter selection concurrently with model

building. We show that our model outperforms previous SVM models by comparing

the area under the cross-validated receiver operating characteristic curves (ROC).

4
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Figure 2.2: SVM classification. Left: Two classes of instances. Right: Instances in
the implicit space, separated by the maximum-margin hyperplane; the dashed lines
denote the margin.

In the next section, we provide a brief explanation of support vector machine classi-

fication. In Section 2.3, recent related literature and models are discussed. Then, in

Section 2.4, we describe a novel SVM approach for modeling RP risk. In Section 2.5,

we evaluate the model in relation to previous models. Finally, we offer concluding

remarks in Section 2.6.

2.2 Background information

In this section, a brief background of classification methods is presented. The section

first formalizes binary classification and support vector machine training. Feature

selection and methods for model evaluation are then discussed.

2.2.1 Binary classification

The goal of binary classification is to construct a mapping function f : R
n → {−1, 1}

that maps an input vector to a label. In supervised learning, a set of input-label

pairs,{(x1, y1), · · · , (xl, yl)}, is used to train the classifier. The trained model should

minimize model error when applied to future data.

2.2.2 Support vector machines

Support vector machines (SVMs) are a class of statistical learning methods that

permit input data to be implicitly mapped into higher, possibly infinite, dimensional

5



spaces. Each potential mapping φ : R
n → H produces a different SVM. Instead of

explicitly mapping the input using φ, however, a kernel function K : R
n × R

n → R

defining the inner product in H implicitly maps the data. One popular kernel is the

Gaussian radial basis function (RBF):

Kσ(x, y) = exp

(

−
∑

i

(xi − yi)
2

2σ2
i

)

, (2.1)

where σ is a vector of scaling factors.

The SVM training process finds the maximum-margin hyperplane separating the

classes in the implicit space (Figure 2.2). Training results in a binary decision function

of the form f(x) = (w) · φ(x) + b. For separable data, the SVM training problem is

the following optimization problem:

min
w,b

1

2
wTw (2.2)

subject to:

yi(w
T φ(xi) + b) ≥ 1 .

Though the SVM can be trained using the primal (see [6] and [41]), the dual is

typically solved instead:

max
α

∑

i

αi −
1

2

∑

i

∑

j

αiαjyiyjK(xi, xj) (2.3)

subject to:

∑

i

αiyi = 0

∀i, ai ≥ 0 .
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The corresponding decision function is given by:

f(x) =
∑

i

αiyiK(xi,x) + b . (2.4)

For non-separable datasets, a complexity constant can be introduced to permit train-

ing error. This is the class of soft-margin SVMs. Though the complexity parameter

is often introduced into the model as a constraint on the Lagrangian multipliers in

Equation 2.3, we instead choose to extend the kernel as in [8, 58]:

K← K +
1

C
I . (2.5)

In practice, given a complexity parameter and a kernel, the SVM is trained using

an algorithm such as sequential minimal optimization [45]. The proper complexity

and kernel parameters are chosen by a naive enumeration over the parameter space,

retraining the model each time. Chapelle et al., however, offer an alternative method

for selecting parameters in which alternating SVM training and gradient descent steps

are used to minimize the estimated generalization error [8].

2.2.3 Feature selection

As the number of features in the input increases relative to the number of significant

features, models take longer to construct and also become less optimal (the curse of

dimensionality). The goal of feature selection is to pick a subset of features such that

the expected generalization error is minimized.

Let θ ∈ {0, 1}n be a feature selection vector providing a preprocessing of the data:

x → (x ∗ θ) and τ : {0, 1}n → R be the expected generalization error when using

preprocessing θ. The feature selection problem can then be expressed formally as

[58]:

arg minθ∈{0,1}nτ(θ) . (2.6)

7



Since an exhaustive search of the 2n possible subsets is generally intractable, other

approaches are used.

2.2.4 Statistical model evaluation

Models are typically tested on a validation set, a set of data that is not used when

constructing the model. When data is scarce, however, it is undesirable to exclude a

subset of data from training. Therefore, cross-validation is used. In cross-validation,

the available data is split into mutually exclusive subsets. Each subset is used as a

validation set one time while the model is constructed using the remaining subsets.

The results are then compiled to estimate the model’s performance. When data is

particularly scarce, leave-one-out (LOO) cross-validation is used. In LOO, each input-

label pair (xi, yi) is used as a validation set exactly once while the model is trained

using the other data.

Given a set of input-label pairs,{(x1, y1), · · · , (xl, yl)}, the sensitivity and specificity

of a binary classifier are:

sensitivity =
TP

TP + FN
(2.7)

specificity =
TN

TN + FP
, (2.8)

where TP , FP , TN and FN are the number of true positives, false positives, true

negatives, and false negatives, respectively.

The receiver operating characteristic (ROC) curve is a plot of sensitivity against (1 -

specificity) for varying decision function thresholds. The area under the ROC curve,

the AUC, is used as a single-variable metric of model performance. An AUC of 0.5

corresponds to the performance of a random classifier. If the decision function scores

are sorted in ascending order, the AUC can be estimated using:

8



Â =
S0 − n0(n0 + 1)/2

n0n1

, (2.9)

where n0 is the number of positive instances, n1 is the number of negative instances,

and S0 is the rank sum of the positive instances [30].

Another single-value measure of model performance is the Matthews correlation co-

efficient (MCC):

MCC =
TP × TN − FP × FN

√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(2.10)

An MCC of +1.0 corresponds to a perfect classifier, while an MCC of 0.0 corresponds

to a random classifier.

2.3 Related work

Hope et al. construct a logistic regression model for radiation pneumonitis risk in

patients undergoing radiation therapy for non-small-cell lung cancer. Features are

selected via statistical bootstrapping. The resulting model is evaluated by first bin-

ning the instances according to predicted risk and then comparing the predicted and

the actual RP incidence within the bin [32]. Gayou et al. instead use a genetic al-

gorithm to select features for the logistic regression. The algorithm’s fitness function

is based on the model’s predictive ability and on the statistical significance of the

constituent features, the latter being included to prevent over-fitting. The choice of

fitness function as a limiting factor of the model’s actual performance is emphasized

[24].

Chen et al. use a binary-outcome SVM model with an RBF kernel for predicting clin-

ically significant RP events (Grade 2+ pneumonitis). The dataset was constructed

from a study of 235 patients receiving three-dimensional conformal radiotherapy. Fea-

ture selection is performed based on improvement to the area under a cross-validated

ROC curve. A model built from all variables is compared via ROC analysis to a

9



model with only dosimetric variables. For 10-fold cross-validated testing, the areas

under the ROC curves are 0.71 for the dosimetric model and 0.76 for the full model

[10]. Das et al. extend this work by including the SVM model in an ensemble of

classifiers that include a feed-forward neural network [12], a decision tree [15], and a

self-organizing map [11]. The cross-folded binary results of the classifiers are averaged

to produce a real-valued risk estimate. An AUC of 0.79 is found for the combination

of 100 cross-validated predictions from each of the models [14].

Using the same patient population, Dehing-Oberije et al. build uni- and multi- variate

models with SVMs. Uni-variate models are built using V20 – the volume of the lung

receiving at least 20 Gy – and the mean dose to the lung (MLD). The models are

evaluated using LOO AUC. The highest AUC, 0.62, is achieved by the multi-variate

model. The difference in AUC from [10] is attributed to differences in radiation doses

[17].

El Naqa et al. also use SVMs to construct a binary model of RP risk using dosimetric

and non-dose variables. The performance of features selected using logistic regression

are compared to those chosen by recursive feature elimination (see [28]). The SVM

built with features from the logistic model is shown to outperform those chosen by

SVM-RFE – an MCC of 0.34 compared to 0.22. The model MCC of 0.34 constitutes

a 46% improvement over the previous logistic model [19].

The idea of aggregating the output of classifiers trained on sampled data can be traced

back to Breiman’s work in 1996 [3]; Breiman’s “bagging” method is now standard

fare in data mining textbooks [29]. However, performance differences arising from

implementation and domain variations warrant application specific studies.

For example, Tao et al. apply an ensemble SVM to the problem of image retrieval.

Since the image retrieval domain also deals with unbalanced data, they employ a

method similar to the one we present in Section 2.4.2 to produce balanced training

data for the component classifiers. The difference is that their method selects negative

instances via sampling with replacement while ours draws the negative instances from

a random permutation. In addition, instead of performing feature selection, they build

component classifiers with randomly sampled feature sets [51]. While this approach

addresses the under-sampling problem, it is of limited use in domains (such as RP)

where is useful to identify a core set of important features. Li et al. combine these

10
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Figure 2.3: SVM ensemble. Decision function scores from each SVM are combined
using fusion function Ψ.

methods with cotraining to better meet the relevance feedback paradigm common in

image retrieval [39]. Other areas in which SVM ensembles have been applied include

face detection [4] and cancer recognition [54].

Selecting training subsets in the presence of unbalanced data is a field in its own

right [38, 9, 1, 2, 51]. Using the training subsets in an ensemble learner can provide

many new challenges and opportunities. For instance, Hido and Kashima recently

suggested under-sampling with a negative binomial distribution to produce roughly

balanced subsets for training an ensemble. The method may be more robust than

those that rely on equally balanced subsets [31].

2.4 Radiation pneumonitis risk model

In this section, we present the construction of our binary radiation pneumonitis model.

The output of a collection of SVMs (Figure 2.3) is synthesized to produce a single

decision function.

2.4.1 Data description

The dataset consists of 209 patients treated with radiation for non-small-cell lung can-

cer between 1991 and 2001. WUSTL Grade 2+ and RTOG Grade 3+ RP events were
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considered significant for data labeling. Of the 209 patients, 48 (23%) exhibited clin-

ically significant radiation pneumonitis events. The data include clinical, treatment,

and location variables including, but not limited to: age, gender, performance sta-

tus, smoking, treatment time, concurrent chemotherapy, and tumor-position. Some

features, such as performance status – the general health of the patient – were de-

termined by the patient’s physician. Tumor position is recorded using a series of

variables including lateral position (COMLAT), superior-inferior position (COMSI),

and anterior-posterior position (COMAP). In addition, a series of dosimetric variables

are also included in the data:

• DX [heart, lung]: minimum dose to X% volume of the heart or lung, respectively

• VX [heart, lung]: volume of the heart/lung receiving at least X Gy dose

• MOHX [heart, lung]: mean of the hottest dose for X% of the heart/lung.

A Monte Carlo-based method was used to correct dose heterogeneity effect [16]. Fea-

tures selected by the ensemble SVM model will be discussed in more detail in Section

2.5. We scale each feature to the range [0,1].

2.4.2 Ensemble classifier

Since only 23% of the patients developed significant RP, naively training a classifier

on the full dataset results in a biased classifier – in the extreme case, the classifier

will predict that no new instances will exhibit RP.

To address the issue of unbalanced data, we partitioned the data into a collection of

balanced subsets. Each part consists of all the positive RP instances and an equal

number of instances drawn from a random permutation of the negative instances

(shown in Figure 2.4). See Algorithm 1.

A classifier is built for each subset of the data, as described in Sections 2.4.3 and

2.4.4. The decision function for the ensemble classifier is given by:

f(x) = Ψ (f1(x), · · · , fC(x)) , (2.11)
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. . .

Partition:                            1                  2                 3

Unbalanced Data
Under-represented data is copied

Over-represented data is sampled

Figure 2.4: The data balancing process. The over-represented data is sampled ac-
cording to a random permutation.

where fi(x) is the decision function for classifier i and Ψ : R
C → R is a fusion function.

We calculate results for using both the mean and the median function for Ψ. The

median is equivalent to a majority-vote when using an odd number of classifiers. It

is possible to fuse the classifiers using a parametric scheme such as Adaboost [22],

however, the theoretical and practical grounding for applying these methods to SVMs

is still unclear [59, 40]. Therefore, we opt to use non-parametric fusion in this research.

2.4.3 SVM training and parameter selection

The model parameter C and RBF kernel width are not pre-selected. Instead, these

parameters are selected at SVM training time using Chapelle et al.’s algorithm (a

MATLAB implementation can be found at Olivier Chappelle’s website)[8]. The al-

gorithm alternates between SVM training and gradient descent steps to minimize

expected generalization error. We use the algorithm to minimize the expected LOO

error based on the span of the support vectors [7, 55]. The span Sp of support vector

xp is the minimum distance between φ(xp) and the set







∑

i6=p,α0

i

λiφ(xi),
∑

i6=p

λi = 1







, (2.12)

for
∑

λi = 1 and α0 are the values chosen by training the SVM in the dual.
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Assuming the set of support vectors remains constant during LOO, the number of

errors is:

T =
1

l

l
∑

p=1

χ(α0

pS
2

p − 1) , (2.13)

where l is the number of training instances, and

χ(x) =







1, if x > 0

0, otherwise
.

We use the algorithm to select a scaling factor σi for each feature in the RBF kernel

instead of selecting a single kernel width (see Equation 2.1).

2.4.4 Feature selection

Feature selection is performed for each classifier in the ensemble. As in [10], features

are forward-selected by adding or substituting features that increase the 10-fold cross-

validated AUC (on only the input-label pairs in the subset). New features are added

or randomly substituted into the model until the AUC is no longer improved. The

AUC is estimated using Equation 2.9. Forward selection is utilized for two reasons:

1. The features have previously been shown to be highly intercorrelated [32], mak-

ing accurate backward selection difficult.

2. The existing body of literature suggests that RP can be modeled with relatively

few features.

It should be noted that each time a model is built and evaluated for a subset of

features, parameters C and σ are re-selected. This differs from previous work, in

which final model and kernel parameters are selected prior to feature selection. We

introduce an explicit cap for the number of features in an individual classifier in order

to support the parsimony of the ensemble classifier.
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Input: Positive instances, negative instances, number of partitions
Output: Balanced partitions
P = set of positive input-label pairs
|P | = number of positive instances
NegPerm = RandomPermutation(negative instances)
foreach Partition X do

N = the next |P | elements of NegPerm, re-permuting if necessary
X = P ∪N

end

Algorithm 1: Creating balanced data partitions

2.5 Experimental results and discussion

Decision function scores for the ensemble are calculated using LOO cross-validation

on the dataset. If an instance was used to build a particular classifier, that SVM

is rebuilt without the instance (including reselecting model parameters C and σ).

The scores are used to calculate the ROC curve and the AUC. Unlike during feature

selection, the AUC is found via trapezoidal integration of the ROC. Models were

created by using an ensemble of 3, 5, or 7 classifiers and by limiting each classifier

to 3, 5, or 7 features. We will refer to the ensemble classifier with i classifiers and j

maximum features as the i/j classifier. Five trials were performed for each ensemble

classifier.

The mean fusion function outperformed the median function for 78% of the ensemble

trials (with a mean difference to the AUC of 0.012). Therefore, we will only discuss

classifiers using a mean to create fusion henceforth.

The min/mean/max results are shown for the */3 and */5 classifiers with a mean

fusion function in Figure 2.5. The best mean AUC for a */3 classifier of 0.802 was

obtained when 5 classifiers were used in the ensemble. The best for a */5 classifier,

0.818, was also obtained when 5 classifiers were used. For the */7 case (not shown),

the best mean, 0.815, occurred when 7 classifiers were used.

We will use the mean 5/5 classifier results to evaluate our method in the context of

previous work. The 5/5 model provides a better AUC mean and range when compared

to the */3 class (see Figure 2.5). The 5/5 model uses more features, however, and
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Table 2.2: Features selected by a 5/5 classifier with near-average performance. For
classifiers with less than 5 features, the cross-validated AUC could not be increased
by a round of substitution or addition of another feature. Scaling factors are shown
in parenthesis. The corresponding ROC curves are shown in Figure 2.6.

Features Selected by an Average 5/5 Model

1
COS Heart Z (.5815) Performance Status (.2597)
D80 Lung MC (.1705) COMLAT (.0726)

2
MOH60 Lung MC (.4783) COMAP (.2806)
COMSI (.2465) Performance Status (.2445)

3
Performance Status (.2815) MOH5 Heart MC (.2147)
MOH95 Lung MC (.1588) D45 Lung MC (.1456)
D5 Lung MC (.1361)

4
MOH10 Heart MC (.3935) D75 Lung MC (.3549)
Performance Status (.1906)

5 D45 Lung MC (.3476) MOH5 Heart MC (.2728)

thus may be less parsimonious. Compared to the */7 class, the 5/5 results in a larger

AUC while also using fewer features.

The features chosen by a nearly average 5/5 classifier (AUC=0.814) are shown in

Table 2.2. This set of selected features includes tumor location features (COMLAT,

COMSI, COMAP), performance status, and dosimetric parameters (DX for heart and

lung, MOHX for heart and lung). As the dosimetric variables – DX in particular –

have previously been shown to be intercorrelated [32], it may be possible to further

condense the feature space without significantly harming model performance.

The 5/5 ensemble classifier for binary RP prediction compares favorably to the work

by Chen et. al that finds an AUC of 0.76. The results are not directly comparable,

however, for two reasons: (1) we calculated the AUC using LOO whereas Chen et.

al use 10-fold cross-validation; (2) our dataset is restricted to patients undergoing

treatment for non-small-cell lung cancer as opposed to general lung cancer patients.

It should be noted that the component classifiers in this work typically underperform

the resulting single SVM classifier in Chen et al.’s work. This can be explained

by the data partitioning process in which only 28.2% of the RP-negative instances

are included as training data for each classifier. Though the partitioning limits the

performance of a single classifier, we believe it is important in the creation of synergies
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Figure 2.5: The mean AUC (across 5 trials) vs. the number of classifiers in the
ensemble. The end points of the vertical bars denote the maximum and minimum
AUCs. Top: Each classifier is limited to 3 features. Bottom: Each classifier is limited
to 5 features.

during model fusion (model biases complement each other). Figure 2.6 shows the ROC

of the near-average 5/5 model and its component classifiers.

This type of synergy is also described in Das et al.’s work on combining multiple

classification methods for predicting RP [14]. Using 100 cross-validated predictions

from each collection of classifier (an SVM, an NN, an SOM, and a decision tree) results

in an AUC of 0.79. As with Chen et al.’s work in [10], the results aren’t directly

comparable since the patient populations and the method of calculating AUC differ.

But, a couple insights can sill be made: (1) our model produces a similar performance

using only a single type of classifier (2) ensemble/fusion classification is a promising

way to take advantage of classifier bias.
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The average 5/5 classifier also outperforms El Naqa et al.’s classifier in [19]. The

LOO Matthews correlation coefficient in El Naqa’s work is 0.34. The 5/5 classifier

ensemble has a mean LOO MCC of 0.497 across the five trials. It should be noted,

however, that the dataset used by El Naqa et al. does not include dosimetric variables

for the heart. Therefore, for comparison, we tested the 5/5 classifier on the same data

used in El Naqa’s work. Across 10 LOO trials, an average MCC of 0.37 was obtained.

For both data sets, the decision function threshold can be tweaked to obtain yet a

higher MCC. By transitivity, the ensemble also compares favorably to the model in

[32], which El Naqa’s method outperforms by 46% (measured using MCC).

To investigate the role that the balanced partitioning scheme plays in model perfor-

mance, we tested the performance of a 5/5 classifier with training subsets randomly

drawn from the complete dataset with replacement. Across 5 trials, the mean LOO

AUC is 0.73 (with a minimum and maximum of 0.69 and 0.77, respectively). The

mean MCC was 0.20. The inferior AUC and MCC suggest that data balancing is an

integral part of the presented ensemble method.

Parameter selection during model building is not free – the average feature selection

time for a component classifier with a maximum of 3, 5, and 7 features is 36.0,

57.6, and 45.8 minutes respectively (across 100 trials on Intel Core 2 Q6600 2.4 GHz

machines with 2GB memory). The seemingly anomalous */5 and */7 running times

result from the maximum feature constraint being not binding for all SVMs. For

comparison, the standard grid search + LIBSVM [5] approach takes approximately

a minute for component feature selection (for a maximum of 3, 5, and 7 features).

The increased running times are still practical, however, since: (1) feature selection

for component classifiers is trivially parallelizable and (2) the training time is short

relative to the length of potential clinical use.

Overall, the method performs favorably when compared to previous SVM methods.

Using the same base feature selection methodology as in [10], creating an ensemble of

SVMs, using gradient selection to perform parameter selection, and permitting each

feature to be scaled individually has resulted in a performance increase. Though it

is clear that model fusion is beneficial, the individual effects of the gradient selection

and feature scaling are not clear. It will be important to isolate these effects in the
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Figure 2.6: An average performance ensemble classifier with 5 component SVMs each
restricted to 5 (the 5/5 model). The relatively weak classifiers complement each other
to produce a strong ensemble classifier. The features used by each classifier are shown
in Table 2.2.

future. It would also be interesting to see the effects of using our improved SVM

model as part of a multi-classifier ensemble, such as the one presented in [14].

2.6 Conclusion

We have presented an SVM model of binary radiation pneumonitis risk with 3 inno-

vations over previous models:

1. Utilizing an ensemble of SVMs to address data imbalance and to boost perfor-

mance

2. Feature scaling during model building to complement forward feature selection

3. Performing parameter selection concurrently with model building
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Using our methodology, we produced a set of models with varying numbers of clas-

sifiers and a maximum number of features per classifier. From these models, the

ensemble with 5 component classifiers, with a maximum of 5 features each, is selected

with an average leave-one-out AUC of 0.818. We showed that the average model of

this type outperforms previous SVM and logistic models.
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Chapter 3

Improving Clinical Relevance in

Ensemble Support Vector Machine

Models of Radiation Pneumonitis

Risk2

3.1 Introduction

Radiation pneumonitis (RP) is a potentially fatal inflammation of the lungs that can

result from thoracic radiation therapy. Numerous factors, such as maximum dose [32]

and gender [47, 14], have been shown to correspond RP incidence. A tabulated sum-

mary of previous findings can be found in Table IV of Das et al.’s work in [14]. There

is no clear consensus on a core set of factors affecting RP risk; the lack of consen-

sus can be partly attributed to salient differences across studies including patient

populations [17] and model evaluation metrics.

Within the last 5 years, there has been a push to move beyond correlation analysis to

the construction of predictive models using machine learning techniques. One such

technique relies on SVMs – a class of statistical learning methods. Within an SVM,

the input data are mapped into a higher, possibly infinite, dimensional space. The

hyperplane best separating the two classes in this feature space is used to define a

decision function. The best hyperplane maximizes the margin (distance) between the

plane and the closest instances on either side (see Fig. 3.1).

2Submitted on August 1, 2009 to the The Eighth International Conference on Machine Learn-

ing and Applications (ICMLA 2009) special session on Machine Learning Methods for Modeling

Treatment Outcomes in Cancer.
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Φ(·)

Figure 3.1: SVM classification: two classes of instances are mapped to an implicit
space in which they are separable.

The model’s decision function score can be used as a relative indication of risk /

certainty – a premise used when calculating the area under the curve (AUC) for a

receiver operating characteristic (ROC) curve. The clinical meaning of the difference

between scores is not well-defined, however. For instance, a patient with a decision

score 20% higher than that of a another patient does not necessarily have 20% greater

chance of developing RP. In this way, decision function scores are of limited use in a

clinical setting.

Up until now, SVM-only models of RP risk have been binary-outcome – predicting

that the patient will either develop or not develop RP. However, support vector

machine theory is now sufficiently advanced to correctly produce probability estimates

from decision function scores [46, 42].

In [49], we presented a model that fused the output from multiple SVMs to produce

an improved binary-outcome model of RP risk. In this paper, we:

1. Introduce a feature-ranking selection step to our previous ensemble method to

improve model parsimony

2. Show increased ensemble size provides a statistically significant benefit to model

AUC

3. Probabilistically tune component SVM output to improve clinical relevance

These innovations produce a better SVM-based approach to assessing radiation pneu-

monitis risk and help to characterize challenges in the problem domain.

In the next section, we provide background information on SVM model building,

model evaluation, and tuning SVM output to produce probabilistic estimates. In
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Section 3.3, we survey related work. In Section 3.4, we outline our improved ensemble

SVM methodology. Results are presented and discussed in Section 3.5. Finally, we

offer concluding remarks in Section 3.6.

3.2 Training and evaluating support

vector machines

This section briefly introduces SVM training methodology, the cross-validated AUC

method for model evaluation, and Platt’s method for producing probabilistic outputs

from an SVM.

3.2.1 Support vector machine training

SVMs are trained by finding the hyperplane that best separates the classes in the

feature space. The instances are implicitly mapped into the space using a kernel

function such as the Gaussian Radial Basis Function (RBF):

Kσ(x, y) = exp

(

−
∑

i

(xi − yi)
2

2σ2
i

)

, (3.1)

where σ is a vector of scaling factors.

Finding the optimal hyperplane can be formulated as an optimization problem:

max
α

∑

i

αi −
1

2

∑

i

∑

j

αiαjyiyjK(xi, xj) (3.2)

subject to:
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∑

i

αiyi = 0

∀i, ai ≥ 0 .

Finding the optimal α results in a decision function of the form:

f(x) =
∑

i

αiyiK(xi,x) + b . (3.3)

When the data are not separable in the feature space, a complexity parameter C is

introduced to allow training error. C can be included in the model as an extension

of the kernel during training:

K← K +
1

C
I , (3.4)

where I is the identity matrix [8].

Kernel parameter σ and model parameter C are often selected prior to model building

using grid-search [35].The optimization problem in Equation 3.2 can then be solved

using Platt’s sequential minimal optimization (SMO) method [45]. Chapelle et al.

present an alternative method in which model/parameters are selected concurrently

with model building. Alternating SVM training steps and gradient descent parameter

selection steps are used to minimize an estimate of generalization error [8].

3.2.2 Cross-validation analysis

To properly evaluate a model’s predictive ability, the training and testing data sets

should be disjoint. Data scarcity, however, makes utilizing a separate monolithic

validation set undesirable. Instead, cross-validation, a method for alternately using

data for training and testing is used. In k-folds cross-validation analysis, the dataset

is segmented into k pair-wise disjoint subsets. Each subset is used as a validation set
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exactly once as the remaining subsets are used to build the model. The results from

testing on the k subsets are then combined. When the number of folds is equal to

the number data instances (each subset contains one instance), the method is called

the leave-one-out (LOO) method.

3.2.3 Area under the receiver operating characteristic curve

The area under the curve (AUC) for the receiver operating characteristic (ROC) curve

is a popular single-value metric of model performance. The ROC is a plot of a model’s

sensitivity against (1 - specificity) as the decision function threshold is varied, where

sensitivity and specificity are defined as:

sensitivity =
# true positives

# true positives + # false negatives

specificity =
# true negatives

# true negatives + # false positives
.

For the radiation pneumonitis problem, the AUC can be interpreted as the probability

that a randomly chosen patient that develops RP will be given a higher risk estimate

by the model than a randomly chosen patient that does not develop RP [21]. An

AUC of 0.5 corresponds to a model that produces random risk estimates, while an

AUC of 1.0 corresponds to a perfect model.

Instead of explicitly finding the area under the ROC curve, the AUC can be calculated

as:

Â =
S0 − n0(n0 + 1)/2

n0n1

, (3.5)

where S0 is the rank sum of the positive instances when the decision scores are sorted

in ascending order, n0 in the number of positive instances, and n1 is the number of

negative instances [30].
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Figure 3.2: Sigmoid probability curve with A=-2 and B=1

3.2.4 Platt’s method for probabilistic support vector

machine output

The unthresholded SVM decision function produces a real-valued output correspond-

ing to the distance between the instance and the separating hyperplane in the SVM’s

implicit space. While relative distance to the hyperplane is used as a proxy for rel-

ative risk when calculating AUC, the SVM decision function score cannot be used

directly as an absolute probability estimate.

Platt offers a relatively simple, but effective, way to convert the decision function

score to a probability measure by fitting a sigmoid function of the form

P (y = 1|f) =
1

1 + exp(Af + B)
(3.6)

to the SVM output [46]. See Fig. 3.2 for an example curve with A = −2 and B = 1.

Let N+ and N− be the number of RP positive and negative instances in a training

set, respectively. Then the target probabilities for t+ for positive instances and t− for

RP negative instances are defined as:

t+ =
N+ + 1

N+ + 2

t− =
1

N− + 2
. (3.7)
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The sigmoid parameters A and B are selected by minimizing the cross-entropy error

on training data:

min
A,B

∑

i

ti log(pi) + (1− ti) log(1− pi) , (3.8)

where pi = P (yi = 1|fi) and ti = t+ when instance i is RP positive.

Lin et al. provide pseudo-code for a corrected (and improved) implementation of

Platt’s method in [42].

3.3 Related work

Chen et al. investigate two classes of binary SVM models for significant RP events

(2+ grade) in lung cancer receiving 3-D conformal radiotherapy [10]. The first class

only includes dosimetric parameters, such as equivalent uniform dose (EUD), while

the second also includes clinical parameters – race, age, etc. The classes are evaluated

using a 10-fold AUC. Parameter and feature selection is performed within each of the

10-folds. A published model reports both the SVM decision function score and the

number of patients in the original dataset that received a higher score given a novel

patient/treatment plan. The authors do not formally discuss/investigate the latter

rank as an estimation of radiation pneumonitis risk.

El Naqa et al. briefly compare recursive feature elimination (RFE) and logistic regres-

sion for feature selection when modeling RP outcomes with an SVM. An SVM with

a RBF kernel is constructed using features selected from dosimetric and non-dose

variables. The resulting models are compared using Matthew’s correlation coefficient

(MCC), a function of the confusion matrix for some test set [19].

Other research performed by the same research groups explore real-valued models

(analog) models of RP risk. Das et al. extend their SVM investigation in [10] by

including the binary SVM model in a model that includes a feed-forward neural

network, a decision tree, and a self-organizing map [14]. The models are combined

(fused) by taking the mean of 100 binary cross-folded predictions from each of the four

models. An extreme output of 1.0 – produced by 400 model positive RP predictions –
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implies consensus that the patient will suffer RP. The mean is described as a proxy for

the probability of a RP event. However, its validity as such is not formally established.

Equivalent uniform dose, pre-radiotherapy chemotherapy, and gender are chosen as

variables for a logistic regression of the fusion function probabilities. The fit of the

regression is demonstrated graphically.

Hope et al. construct a 3-variable logistic model of radiation pneumonitis using

features selected via statistical bootstrapping. Though their method does not use

SVMs, their method of model comparison is notable. Patients are binned into 6 risk

groups according to predicted RP risk values. The average predicted risk value within

each risk bin is compared graphically to the actual incidence of RP experienced by

patients within the bin [32].

3.4 Methods

This section briefly outlines our ensemble method in [49] and provides implementation

details for the methods specific to this work. All the methods were implemented in

Matlab 7.8.0 (R2009a).

3.4.1 Data set description

The data set is composed of 209 patients that underwent radiation treatment for non-

small-cell lung cancer between 1991 and 2001. Data for each patient include clinical,

treatment, and tumor location factors such as age, gender, performance status (overall

patient health), the maximum dose to the heart, the lateral position of the tumor

(COMLAT), and the superior-inferior position of the tumor (COMSI). Each feature

is scaled to the range [0,1], inclusive. Patients that developed WUSTL Grade 2+

and RTOG Grade 3+ RP events were labeled as RP positive (a summary of grading

systems can be found in Table 1 of [32]). Using this standard, 48 (23%) patients were

considered to have exhibited clinically significant RP. A detailed description of the

data set can be found in [16].
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3.4.2 Ensemble of support vector machines

Instead of the single SVM approach used by Chen et al. [10], we use an ensemble of

SVMs to address data imbalance and exploit potential synergies [49, 14]. As in our

previous work in [49], the data is randomly partitioned into equally-balanced subsets.

Each of these partitions is used as the underlying training data for an SVM with a

Gaussian RBF kernel. The decision function for the ensemble classifier is the mean

of the decision function scores of the component classifiers. Each component SVM is

built using Chapelle et al.’s method mentioned in Section 3.2.1. The method is used

to minimize a support vector span estimate of the LOO error [55]. It is important to

re-emphasize that model parameter C and kernel parameter σ are selected for each

SVM during model building, as opposed to separately before.

3.4.3 SVM feature selection

Features are selected according to a modified version of the AUC-maximizing forward

selection algorithm in [10]. As with component SVM construction, training data is

randomly partitioned into equally-balanced subsets to be used as underlying data for

a larger set of feature selection SVMs. For each of these SVMs, features are added

/ randomly substituted into the model until the 10-fold cross-validated AUC for the

SVM fails to improve. To maintain model parsimony and limit training time, the

maximum number of features selected by each classifier is limited to five. The feature

selections are compiled to rank the features according to the number of times each

feature was selected. The set of top-ranked features are used as the feature set for

all of the component SVMs in the ensemble. In practice, we use the set of features

included in at least one out of every five models.

3.4.4 Probabilistic tuning

After the feature selection step, the output of each component SVM is tuned with an

implementation of Lin et al.’s refinement of Platt’s method (see Section 3.2.3) [42].
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Table 3.1: Minimum, mean, and maximum 10-fold AUCs by ensemble size across 100
trials. The SVM feature set was composed of lateral tumor position, superior-inferior
tumor position, performance status, and maximum dose to the heart.

n minimum AUC mean AUC maximum AUC
1 0.5828 0.6959 0.7712
3 0.6486 0.7246 0.7853
5 0.6786 0.7374 0.7940
10 0.6925 0.7501 0.7937

The decision function scores for input are generated by testing using a 10-fold cross-

folding of the training set.

3.5 Results and discussion

We trained a series of 5 classifier ensembles using leave-one-out. The most commonly

selected features across all the folds are the lateral position of the tumor (COMLAT),

the superior-inferior position of the tumor (COMSI), the performance status of the

patient (general health as evaluated by a physician), and the maximum dose to the

heart. These features have all been identified as important RP factors in previous

research [32, 25, 16]. Throughout this section, we will use this feature set as an ap-

proximation of the features set that would be selected by a sufficiently large collection

of SVMs during feature selection within a fold.

To test for synergies arising from the ensemble method, we evaluated paired differ-

ences in 10-fold AUC for 100 different foldings using n = 1, 3, 5, 10 component

SVMs. The outputs of the component SVMs were not tuned. Instead of repeatedly

performing feature selection, the feature set containing COMSI, COMLAT, perfor-

mance status, and maximum dose to the heart was used. Feature scaling was still

allowed during model building, however, via kernel σ selection. AUC summaries from

the trials are shown in Table 3.1. These AUCs are not directly comparable to the

prior SVM result in [10] because of patient population differences – patients in our

data only received treatment for non-small-cell lung cancer. The seeming inconsis-

tency with our prior result in [49] can be explained, in part, by (1) the difference in
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Table 3.2: Jarque-Bera test p-values for paired differences in AUC. Diagonal contains
p-values for the individual sets.

n 1 3 5 10
1 0.2040 0.0693 0.0317 0.7593
3 0.4010 0.2930 0.6738
5 0.3898 0.6195
10 0.6771

Table 3.3: One-tailed Student t-test p-values for paired differences in AUC. * indicates
normality assumption was violated.

n 3 5 10
1 3.9964e-10 * 7.6572e-29
3 2.9434e-06 1.1102e-16
5 1.4991e-07

the number of folds (2) the uniform set of features across all component SVMs (3)

differences in the partitions underlying the component SVMs.

To perform a paired Student’s t-test to detect differences in mean model performance,

the underlying distribution of differences must be approximately normal. Jarque-Bera

tests reject normality at the 5% significance level only for the n=5 v. n=1 case (p-

values are shown in Table 3.2) [33]. For the other pairs, a series of paired Student’s

t-test were performed with the hypotheses:

• Hnull : µX−Y = 0

• Halt : µX−Y > 0 ,

where X is the distribution of AUCs for larger classifier. The null hypothesis was

rejected for all comparisons at the 5% significance level in favor of the one-tailed

alternative (see Table 3.3). This suggests that larger ensembles outperform smaller

ensembles and single classifiers for the selected sizes. Thus, synergy can be captured

without introducing methodological differences in component classifiers as seen in

[14]. It it important to note, however, that the assumption of independence between

pairs had to be relaxed since all foldings contain the same underlying patient data.
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Figure 3.3: ROC built from LOO cross-validation scores for a n=20 SVM ensemble
with probabilistic outputs.

Next, we consider ensembles with tuned output. Since patient outcomes are binary,

the quality of probabilistic outputs cannot be directly measured. AUC, however, is

still an important metric because it is based on the relative decision function scores.

A low AUC for an ROC curve constructed from probability estimates implies poor

relative probabilities.

Hope et al. evaluate model probability outputs graphically by binning patients by

predicted risk and plotting the predicted and actual incidences of RP within each bin

[32]. We do the same using LOO probability scores for ensembles with 20 component

SVMs. The ROC curve, with AUC=0.7312, is shown in Fig. 3.3.

Fig. 3.4 shows the predicted and actual RP incidence rates in 6 groups binned by

predicted RP. The higher actual RP incidence rate in Bin 3 compared to Bin 4 is

indicative of poor relative rankings. This discrepancy can be expected since the AUC

of 0.7312 reflects a 27% probability that a random patient that does not develop

RP will receive a higher predicted risk than a random patient that will develop RP.

The over-estimation of RP risk in the lower bins can be explained by the averaging

performed during model fusion. The lowest fused probability is 8.04%, while the

lowest single SVM probability estimate is 1.26%.

Fig. 3.5 shows predicted and actual RP binned rates when predicted probabilities are

calculated as the mean of 100 non-tuned binary-outcome SVMs – following the main

idea in [14]. The large over-estimation of risk in Bin 5 and Bin 6 suggest that the

mean binary-outcome is not a suitable proxy for RP risk probability.
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Figure 3.4: RP incidence probabilities binned by Platt-tuned predicted probability.
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Figure 3.5: RP incidence probabilities binned by binary-averaged predicted probabil-
ity.

While the quality of absolute probability estimates generated by both methods is

debatable, the ability to assign a patient to a relative risk group is useful in a clinical

setting.

3.6 Conclusion

We have presented a feature-ranking step for maintaining parsimony when modeling

radiation pneumonitis with an ensemble of support vector machines. We then showed

that larger ensembles produce improved 10-fold cross-validated AUCs at a statistically

significant level. Finally, we demonstrated that generating probability estimates with

Platt’s method from the component SVMs provides benefits for clinical use. However,

these potential benefits are limited by errors in relative risk assessments, as explained

by the area under the receiver operating characteristic curve.
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Chapter 4

Conclusion and Directions for

Future Work

We have presented an ensemble SVM model of radiation pneumonitis that combines

the strengths of individual SVM classifiers. Taking advantage of advances in general

SVM theory, the model offers increased performance and probabilistic risk estimates

while maintaining model parsimony.

Moving forward, there are many topics that should be investigated in SVM RP mod-

eling. In particular, efforts to increase model AUC ought to continue. Models with

higher AUCs not only serve as better binary-outcome models of RP risk, but also

may provide more informative probability estimates.

Focus should also be given to improving the clinical relevance of AUC results. One po-

tential improvement would be to restrict the AUC calculation to relevant/acceptable

levels of specificity. Though estimating this partial AUC is less straight-forward, the

body of theory is at the point where good estimates are possible [18].

Restricting the set of patients for which binary outcomes are predicted may also

be advantageous. Allowing certain patients to be labeled as “hard-to-classify” by the

model could result in an improved model for classifiable patients. Care must be taken,

however, to ensure that the usefulness of the model is not undermined by excluding

too many patients.

For any metric, the greatest future gains in model performance are most likely to

come from the application of domain knowledge in data preprocessing – for example,

Chen et al.’s work with equivalent uniform dose [10]. These methods help to capture

complex and meaningful factor interactions that even the SVM kernel cannot.
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The modeling of radiation pneumonitis risk with SVMs is still a new field. Our ensem-

ble method provides a firm grounding for future research to maximize the performance

of SVM-based models.
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