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Abstract

In this thesis, we consider the nonparametric estimation of the hazard rate function

for identically independent data. To solve the problem of bias effect near the zero,

when the hazard rate function is estimated by asymmetric kernel, we proposed to

estimate it by using the Inverse Gaussian (IG) kernel estimation. The asymptotic

mean squared error (AMSE) and the asymptotic normality of the proposed estimator

are investigated under criteria conditions. Also, the problem of optimal bandwidth

selection has been discussed. The performance of the proposed has been tested by

applications using simulated and real data. Then we compared its performance with

the performance of the Gaussian kernel. The comparasion indecated that the IG

kernel is better than the Gaussian kernel especially near the zero.
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Preface

A density estimation is a fundamental concept in statistics defined as the construc-

tion of an estimate of the density function f from a set of observed data points

assumed to be a sample from an unknown probability density function f .

There are two ways for estimating the density function the first is the parametric

way which assumes that the data are drawn from a known parametric distribution

which depends only on finitely many parameters. The main goal in this approach

is to estimate these parameters using the sample data, the normal and gamma dis-

tributions are familiar examples of a parametric distribution families . The second

one is the nonparametric estimation which assumes that the data does not belong

to a known distribution family and then the estimation depend only on the data,

the oldest and most widely uses is histograms, naive estimators and kernel estima-

tor,etc.

In this thesis, we will consider the kernel estimation (as a tool in the non parametric

method) for the hazard rate function, which is one of the most important ways for

representing the life time distribution in the survival analysis. To get this point, we

will study the kernel estimator for the probability density function (pdf) for inde-

pendent and identically distributed (iid) data. Next, a study for the Gaussian kernel

estimator for the hazard rate function will present. After this the main aim of the

thesis with a theoretical and practical comparison will discuss. We will follow same

way where Chen and Scallite were proposed in [2] and [15] respectively for solving

the boundary bias near the zero. For the theoretical comparison we will consider

the MSE criteria for both estimators and for the practical comparison we will use

simulated and real data to test the performance of the two estimators.

This thesis will consist of the following chapters

x



Chapter 1. Introduction

This chapter will contain some basic definitions, facts and notations that will be

used in the thesis. Also, it will contain an introduction to the kernel estimation and

the Inverse Gaussian distribution .

Chapter 2. Kernel estimator of the hazard rate function

we will study the symmetric kernel estimator of the hazard rate function.

Chapter 3. Estimation of the Hazard Rate Function Using

the IG Kernel

This chapter is the main chapter of the thesis. we will introduce the Inverse Gaussian

(IG) kernel and using it to estimate the pdf, cdf and the hazard Rate function.

Chapter 4. Application

This chapter will contain applications using simulated and real life data to test

the performance of the IG estimator. Also, we will compare it to the symmetric

Gaussian kernel estimator.

The applications will construct using S-Plus program.

xi



Chapter 1

Introduction

This chapter contains some basic definitions and facts that we need in the remaining

of this thesis . In Section 1.1, we present some preliminaries from probability theory

and statistics. The idea of the density estimation and some important subjects

related to it will be discussed in Section 1.2. In Section 1.3, we present the kernel

density estimation and some important subjects related to it. In Section 1.4, we

present1 the invers Gaussian distribution and some definitions and facts related to

it.

1.1 Preliminaries

Definition 1.1.1. [1] A random variable X is a function from a sample space into

the reals numbers.

If we have a sample space S = {s1 · · · sn} with a probability function P and

if we define a random variable X with range χ = {x1 · · ·xn}. We can define a

probability function PX on χ as follow : we observe that X = xi if and only if the

outcome of the random experiment is an sj ∈ S such that X(sj) = xi and hence

PX(X = xi) = P ({sj ∈ S : X(sj) = xi}).

For every random variable X, we a associate a function called cumulative dis-

tribution function , which is defined as follows:

Definition 1.1.2. [1] The cumulative distribution function or cdf of a random vari-

1



able X, denoted by FX(x) or F (x) is defined by

FX(x) = PX(X ≤ x), for all x.

A random variable X continuous if FX(x) is continuous function of x and its

discrete if FX(x) is step function.

Definition 1.1.3. probability distribution[3]

If X is a discrete random variable, the function given by f(x) = P (X = x) for each

x within the range of X is called the (Probability distribution) of X.

Definition 1.1.4. [3]

A function with values f(x) , defined over the set of all real numbers, is called (a

probability density function) of the continuous random variable X if and only if

P (a ≤ X ≤ b) =
∫ b
a
f(x)dx

for any real constants a and b with a ≤ b

Theorem 1.1.1. [1] A function fX(x) (or f(x)) is a pdf or pmf of a random variable

random X if and only if:

1. fX(x) ≥ 0 for all x.

2.
∑

x fX(x) = 1 (pmf) and
∫∞
−∞ fX(x)dx = 1(pdf).

Definition 1.1.5. Expectation [4]

Let X be a random variable. If X is a continuous random variable with pdf f(x)

and ∫ ∞
−∞
|x|f(x) dx <∞,

then the expectation of X is

E(X) =

∫ ∞
−∞

xf(x) dx.

If X is a discrete random variable with pmf p(x) and
∑

x |x|p(x) <∞. The expec-

tation of X is

E(X) =
∑
x

xp(x)

2



Definition 1.1.6. The mth Moment [4]

Let X be a random variable. If X is a continuous random variable with
∫∞
−∞ |x|

mf(x) dx <

∞, then The mth moment of X is

E(Xm) =

∫ ∞
−∞

xmf(x) dx, m = 1, 2, 3, . . .

If X has discrete random variable with
∑

x |x|mp(x) < ∞. The mth moment of

X is

E(Xm) =
∑
x

xmp(x), m = 1, 2, 3, . . .

Definition 1.1.7. Mean[3]

Let X be a random variable whose expectation exists the mean of X is defined by

µ = E(X).

Definition 1.1.8. Variance[3]

Let X be a random variable with finite mean µ and such that E[(X−µ)2] is finite.

Then the variance of X is defined to be E[(X − µ)]2. It is usually denoted by σ2 or

by V ar(X)

σ2 = E[(X − µ)2] = E[(X2 − 2µX + µ2)]

and since E is linear operator.

σ2 = E(X2)− 2µE(X) + µ2

= E(X2)− 2µ2 + µ2

= E(X2)− µ2

Definition 1.1.9. Independence [4]

Let the random variables X1 and X2 have the joint pdf f(x1, x2) and the marginal

pdf f1(x1) and f2(x2) respectively. The random variables X1 and X2 are said to be

independent if and only if,

f(x1, x2) = f1(x1)f2(x2)

Random variables that are not independent are said to be dependent.

3



Definition 1.1.10. [1] The random variables X1, · · · , Xn are called a random

sample of size n from population f(x) if X1, · · · , Xn mutually independent random

variables and the marginal pdf or pmf of each Xi is the same function f(x). Alter-

natively, X1, · · · , Xn are called independent and identically distributed random

variables abbreviated to iid random variables.

Definition 1.1.11. [11]

If A is any set, we define the Indicator function IA of the set A to be the function

given by

IA =

 1 ifx∈A,

0 ifx/∈A.

Definition 1.1.12. (Converge in Probability)[4].

Let Xn be a sequence of random variables and let X be a random variable defined on

a sample space. We say Xn converges in probability to X if for all ε > 0, we have

lim
n−→∞

P [|Xn −X|≥ε] = 0, (1.1.1)

or equivalently,

lim
n−→∞

P [|Xn −X| < ε] = 1. (1.1.2)

If so, we write Xn
p−→ X

Definition 1.1.13. Converge in Distribution[4].

Let Xn be a sequence of random variables and let X be a random variable. Let FXn

and FX be, respectively, the cdfs of Xn and X. Let C(FX) denote the set of all points

where FX is continuous. We say that Xn converge in distribution to X if

lim
n−→∞

FXn(x) = FX(x), for all x ∈ C(FX). (1.1.3)

We denote this convergence by

Xn
d−→ X

4



Theorem 1.1.2. [4]

1. If Xn converge to X with probability 1, then Xn converge to X in probability.

2. If Xn converge to X in probability, then Xn converge to X in distribution.

3. Let Xn converge to X in probability and let g be a continuous function on R;

then g(Xn) converge to g(X) in probability.

Definition 1.1.14. Characteristic Function[4].

The characteristic function of a random variable X with distribution function F ,

denoted by k(u), is defined be

k(u) =

∫ ∞
−∞

e−iuyK(y)dy.

Definition 1.1.15. [1] Let X be a random variable with a cdf FX . The moment

generating function (mgf) of X, denoted by MX(t), is

MX(t) = E(etX)

provided that the expectation exists.

By taking the natural logarithm of MX(t), we get the cumulant moment KX(t).

KX(t) = LogMX(t)

A very important and most famous probability inequality that we will need it is

Chebychev’s inequality were presented in the next theorem.

Theorem 1.1.3. [1] Let X be a random variable and g(x) be non negative function.

Then for any r > 0,

P (g(X) ≥ r) ≤ E(g(X))

r
(1.1.4)

Definition 1.1.16. Order Notation O And o [20].

Let an and bn each be sequences of real numbers. Then we say that an is of order

bn or (an is big oh bn) as n→∞ and write an = O(bn) as n→∞, if and only if

lim sup
n→∞

|an
bn
| <∞.

5



In other words, an = O(bn) if |an
bn
| remains bounded as n→∞.

We say that an is of small order bn and write an = o(bn) as n→∞, if and only if

lim
n→∞

|an
bn
| = 0.

we will use the Liapounov Theorem stated in the next theorem.

Theorem 1.1.4. Liapounov Theorem [9]

Let X1, X2, · · · , be (iid) random variables such that E(Xk) = µk and V ar(Xk) = σ2
k

and for some 0 < δ ≤ 1, vk2+δ = E(|Xk − µk|2+δ) < ∞ for all k ≥ 10. Also let

Tn =
∑n

k=1Xk, ζn = E(Tn) =
∑n

k=1 µk, s2
n = V ar(Tn =

∑n
k=1 σ

2
k), Zn = Tn−ζn

sn
and

ρn = s
−(2+δ)
n

∑n
k=1 v

k
2+δ. Then if lim

n→∞
ρn = 0, we have Zn

d→ N(0, 1).

Taylor expansion is important mathematical tool for obtaining asymptotic ap-

proximations in kernel smoothing and allows us to approximate function values

close to a given point in term of higher-order derivatives at that point( provided the

derivatives exists).

Theorem 1.1.5. Taylor’s Theorem [20]

Suppose that f is real-valued function defined on R and let x ∈ R. Assume that

f has p continuous derivatives in an interval (x − δ, x + δ) for some δ > 0. Then

for any sequence αn converging to zero.

f(x+ αn) =

p∑
j=0

(
αjn
j!

)f j(x) + o(αpn)

1.2 Density Function Estimation

In this section, the concepts of density estimation parametric and non parametric

density estimation are introduced.

Density estimation has experienced a wide explosion of interest over the last 40

years. Density estimation has been applied in many fields, including archaeology

chemistry, banking, climatology, genetics, economics, hydrology and physiology. For

more details See, [12] and [22].

6



1.2.1 Estimation

The purpose of inferential statistical conclusion of community properties sample

drawn from it, when you use the sample data Statistic to infer from the commu-

nity because we don’t have all the facts, community urge for practical way we can

trust the fact required within a given dependent on the nature of the desired com-

munity appreciation transactions Parameter trying to access values numerical to

community through sample data drawn from it at random. Statistical inference is

divided into two sections:

• Statistical Estimation.

• Hypothesis testing.

The main purpose of this thesis is the first section, the statistical estimation.

The probability density function is a fundamental concept in statistics. Consider

any random variable X that has probability density function f . Specifying the func-

tion f gives a natural description of the distribution of X, and allows probabilities

associated with X to be found from the relation.

P (a < X < b) =

∫ b

a

f(x)dx,

for any real constants a and b with a < b.

Definition 1.2.1. Estimator[3]. An estimator is a rule, often expressed as a for-

mula, that tells how to calculate the value of an estimate based on the measurements

contained in a sample.

Definition 1.2.2. [3]. Let X be a random variable with pdf with parameter θ. Let

X1,X2,... ,Xn be a random sample from the distribution of X and let θ̂ denotes an

estimator of θ. We say θ̂ is an unbiased estimator of θ if

E(θ̂) = θ.

If θ̂ is not unbiased, we say that θ̂ is a biased estimator of θ.

7



Definition 1.2.3. [3]. If θ̂ is an unbiased estimator of θ and

V ar(θ̂) =
1

nE
[(

∂lnf(X)
∂θ

)]2 (1.2.1)

then θ̂ is called a minimum variance unbiased estimator (efficient) of θ.

Definition 1.2.4. [3]. The statistic θ̂ is a Consistent estimator of the parameter

θ if and only if for each c > 0

lim
n−→∞

P (|θ̂ − θ| < c) = 1. (1.2.2)

Theorem 1.2.1. [3]. If θ̂ is an unbiased estimator of θ and V ar(θ̂)→ 0, as n→∞,

then θ̂ is a consistent estimator of θ.

Definition 1.2.5. [3]. The statistic θ̂ is a sufficient estimator of the parameter

θ if, and only if for each value of θ̂ the conditional probability distribution or density

of the random sample X1,X2, ... ,Xn given θ̂ = θ is independent of θ.

1.2.2 Density Estimator

Suppose, now, that we have a set of observed data points assumed to be a sample

from an unknown probability density function. Density estimation is the construc-

tion of an estimate of the density function from the observed data.

The two main aims are to explain how to estimate a density from a given data

set and to explore how density estimates can be used, both in their own right and

as an ingredient of other statistical procedures.

One approach to density estimation is parametric. Assume that the data are

drawn from one of a known parametric family of distributions, for example the

normal distribution with mean µ and variance σ2 . The density f underlying the

data could then be estimated by finding estimates of µ and σ2 from the data and

substituting these estimates into the formula for the normal density.

Another approach to a density estimation is a nonparametric .
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1.2.3 Parametric Estimation

Parametric statistics is a branch of statistics that assume that the data has come

from a type of probability distribution and makes inferences about the parameters

of the distribution. Most well known elementary statistical methods are Parametric.

Parametric formula are often simpler to write down and faster to compute .

The parametric approach for estimating f(x) is to assume that f(x) is a member

of some parametric family of distributions, e.g. N(µ, σ2), and then to estimate the

parameters of the assumed distribution from the data. For example, fitting a normal

distribution leads to the estimator

f̂(x) = 1√
2πσ̂

exp

(
(x− µ̂)2

2σ̂2

)
, x ∈ R,

where,

µ̂ =
1

n

n∑
i=1

xi, and σ̂2 =
1

n− 1

n∑
i=1

(xi − µ̂)2.

This approach has advantages as long as the distributional assumption is correct,

or at least is not seriously wrong. It is easy to apply and it yields (relatively) stable

estimates. The main disadvantage of the parametric approach is lack of flexibility.

Each parametric family of distributions imposes restrictions on the shapes that f(x)

can have. For example the density function of the normal distribution is symmetrical

and bell-shaped, and therefore is unsuitable for representing skewed densities or

bimodal densities.

Methods of finding parametric Estimator :-

Here, we will introduce two main methods of parametric estimation, the method of

moments and the method of maximum likelihood function.

(1) The Method of Moments

In statistics, the method of moments is a method of estimation of population

parameters such as mean, variance, median, etc. (which need not be moments ), by

equating sample moments with unobservable population moments and then solving

those equations for the quantities to be estimated .

9



(2) The Method of Maximum Likelihood

The maximum likelihood method which depends on finding the value of the un-

known parameter θ that maximize the joint distribution f(x1, x2, ..., xn; θ).

Definition 1.2.6. If x1, x2, ..., xn are the values of the random sample from a pop-

ulation with the parameter θ , the likelihood function of the sample is given by

L(θ) =f(x1, x2, ..., xn;θ)=
∏
f(xi/θ)

as x1, x2, ..., xn are independent random the Maximum likelihood Method.

The Maximum likelihood Method for finding an estimator of θ, consist of finding the

estimator θ which make the function L(θ̂) is maximum . That is to find θ by finding

∂LnL(θ)
∂θ

= 0.

Example 1.2.1. If x1, x2, .., xn are the values of a random sample of size n, from

the Bernoulli population.

f(x) =θx(1− θ)1−x , x = 0, 1 , 0 < θ < 1

L(θ) =
∏

θx(1− θ)1−x = θ
∑
xi(1− θ)n−

∑
xi

LnL(θ) =
∑

xiLn(θ) + (n−
∑

xi)Ln(1− θ)
∂LnL(θ)

∂θ
=

∑
xi
θ
− n−

∑
xi

1− θ
= 0∑

xi
θ

=
n−

∑
xi

1− θ∑
xi − θ

∑
xi = nθ − θ

∑
xi∑

xi = nθ

θ̂ =

∑
xi
n

1.2.4 Non Parametric Estimation

Nonparametric density estimation extracts information about the underlying struc-

ture of a data set when no appropriate parametric model is available. It is an

10



important data analytic tool which provides a very effective way of showing struc-

ture in a set of data at the beginning of its analysis.

For obtaining a nonparametric estimation of a probability density function there are

many methods. Three of them are the following methods:

• Histogram

• The naive estimator

• Kernel density estimation

Non Parametric Methods

(1) Histogram :

The oldest and most widely used density estimator is the histogram. The idea of

the nonparametric approach is to avoid restrictive assumptions about the form of

f(x) and to estimate this directly from the data. A well known nonparametric

estimator of the pdf is the histogram. It has the advantage of simplicity but it

also has disadvantages, such as lack of continuity. Secondly, in terms of various

mathematical measures of accuracy there exist alternative nonparametric estimators

that are superior to histograms.

To construct a histogram one needs to select a left bound, or starting point, x0,

and the bin width, h. The bins are of the form [x0 +mh;x0 + (m+ 1)h], for positive

and negative integers m. The estimator of f(x) is then given by

f̂(x) =
1

nh
(number of Xi in same bin as x). (1.2.3)

More generally one can also use bins of different widths, in which case

f̂(x) =
1

nh

(number of Xi in same bin as x)

(Width of bin containing x)
. (1.2.4)

The choice of bins, especially the bin widths, has a substantial effect on the shape

and other properties of f̂(x). For more detalies see [6]
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(2)The naive estimator

A generalization of the histogram method, is the naive estimator. From the defi-

nition of a probability density function, if the random variable X has density f , then

f(x) = lim
h−→0

1

2h
P (x− h < X ≤ x+ h). (1.2.5)

where,

lim
h−→0

(
1

2h
P (x− h < X ≤ x+ h)) = lim

h−→0

1

2h
(FX(x+ h)− FX(x− h))

= F ′X(x) = f(x).

For any given h, we can estimate P (x − h < X < x + h) by the proportion of

the sample falling in the interval (x− h, x+ h). Thus a natural estimator f̂ of the

density function is given by choosing a small number h and setting

f̂(x) =
1

2nh
(number of X1, ..., Xn falling in (x− h, x+ h)). (1.2.6)

This estimator is called the naive estimator.

To express the estimator more transparently, define the weight function w by

w(x) =

 1
2

: |x| < 1

0 : other wise.
(1.2.7)

Using this notation, we can express the naive estimator as

f̂(x) =
1

n

n∑
i=1

1

h
w

(
x−Xi

h

)
. (1.2.8)

where Xi are the data samples.

In this form, it is easy to see that the naive estimator places a box of width 2h

and height (2hn)−1 at each data point and sums up the contributions.

This interpretation is useful in deriving the kernel estimator, which we discuss in

the next section. For more detalies see [4]
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1.3 Kernel Density Estimation

A generalization of the naive density estimation is the Kernel Density Estimation .

1.3.1 Kernel Estimator

From the definition of the pdf, f(x), of a random variable, X, one has that

P (x− h < X < x+ h) =

∫ x+h

x−h
f(t)dt ≈ 2hf(x) (1.3.1)

and hence

f(x) ≈ 1

2h
P (x− h < X < x+ h) (1.3.2)

Let X1, X2, ..., Xn be i.i.d. random variables with distribution function

F (x) =
∫ x
−∞ f(y)dy with probability density function f(x). The sample distribution

function f̂(x) at a point x is defined as

f̂(x) = 1
n

( number of observations x1, x2, ..., xn falling in (−∞, x ] ). It is natural

to take f̂(x) as an estimate of f(x) at a given point x, where h is chosen as a positive

number and can be written as

f̂(x) =
1

2nh
(number of observations falling in the interval[x− h, x+ h])

=
1

2nh

n∑
i=1

I(|Xi − x| ≤ h)

=
1

nh

n∑
i=1

1

2
I(
|Xi − x|

h
≤ 1)

=
1

nh

n∑
i=1

w(
Xi − x
h

)

where, w(Xi−x
h

) = 1
2
I(|Xi−x

h
| ≤ 1) =


1
2
, −1 ≤ Xi−x

h
≤ 1,

0 otherwise.

Definition 1.3.1. We consider the function that centered at the estimation point

used to weight nearby data points as a weight function and will call it the kernel

13



function and denoted by K(.) which defined as

f̂(x) =
1

nh

n∑
i=1

K(
x−Xi

h
) (1.3.3)

Note that Equation (1.3.3) can be written as

f̂(x) = 1
n

∑n
i=1Kh(x−Xi)

where, Kh(x) =
K( x

h
)

h

Figure 1.1 shows kernel density estimation with different bandwidths h, con-

structed using seven points with kernel chosen to be N(0, 1) density (fG(x)),

i.e. K(x) = fG(x) , where fG(x) = 1
2
√
π
e−

x2

2 .

From this we have

Kh(x) = 1
h
K(x

h
) = 1

h
fG(x

h
)

hence Kh(x) have N(0, h2) distribution. So h determine the spread of the kernel.

Figure 1.1: Kernel density estimation based on 7 points.
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From Figure 1.1, we have:

(1) The shape of the bump is defined the kernel function.

(2) The spread of the bump is determined by a bandwidth h, that is analogous to

the bandwidth of a histogram.

That is the value of the kernel estimate at the point x is the average of the n kernel

ordinates at this point.

1.3.2 The Properties of the Kernel Estimator

There are various ways to quantify the accuracy of a density estimator. We will

study two types of the error criteria, the mean squared error (MSE) and the mean

integrated squared error (MISE), also we discuss the asymptotic normality and the

consistency of the kernel density estimator.

Definition 1.3.2. Biasedness and Unbiasedness [6]

If f̂(θ) is an estimator of θ and assume Θ be a set of parameters then the bias

of an estimator is defined to be expected value (assuming it exists) of its sampling

error, that is,

Bias(f̂(θ)) = E(f̂(θ))− f(θ).

If Bias(f̂(θ)) = 0 for all θ ∈ Θ, then E(f̂(θ)) = θ and the estimator f̂(θ) is

defined to be an unbiased estimator of θ.

Definition 1.3.3. The mean squared error (MSE) is used to measure the error

when estimating the density function at a single point. It is defined by

MSE(f̂(x)) = E(f̂(x)− f(x))2 (1.3.4)

From its definition, the MSE measures the average squared difference between the

density estimator and the true density.

MSE(f̂(x)) = E(f̂(x)− f(x))2

= E(f̂(x))2 − 2Ef̂(x)f(x) + E(f(x))2

= [E(f̂(x))2 − (Ef̂(x))2] + [(Ef̂(x))2 − 2Ef̂(x)f(x) + f(x)2]

= V ar(f̂(x)) + (Ef̂(x)− f(x))2.
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Definition 1.3.4. An error criterion that measures the distance between f̂(x) and

f(x) is the integrated squared error (ISE) given by

ISEf̂(x) =

∫ ∞
−∞

[f̂(x)− f(x)]2dx (1.3.5)

Note that the ISE is not appropriate if we deal with all data sets, so we prefer to

analyze the expected value of this random quantity, the integrated squared error.

Theorem 1.3.1. Let X be a random variable having a density f ; then

MISE(f̂(x)) =
1

n
[

∫ ∞
−∞

K2(x− y)f(y)dy − [

∫ ∞
−∞

K(x− y)f(y)dy]2]

+ [

∫ ∞
−∞

K(x− y)f(y)dy]2 − f(x)]2 (1.3.6)

Proof: See [8]

Now to compute the MISE of f̂(x), we use variance and bias of f̂(x).

Definition 1.3.5. The expected value of ISE is called the mean integrated squared

error (MISE) is given by

MISE(f̂(x)) = E(ISEf̂(x)) = E

∫ ∞
−∞

[f̂(x)− f(x)]2dx (1.3.7)

By changing the order of integration, we have

MISE(f̂(x)) =

∫ ∞
−∞

MSE(f̂(x))dx

=

∫ ∞
−∞

V ar(f̂(x))dx+

∫ ∞
−∞

[(Ef̂(x)− f(x))2]dx

Theorem 1.3.2. The MISE of an estimator f̂(x) of a density f(x) is given by

MISE(f̂(x)) =
1

n

∫ ∞
−∞

∫ ∞
−∞

K2(x− y)f(y)dydx

+ (1− 1

n
)

∫ ∞
−∞

[

∫ ∞
−∞

K(x− y)f(y)dy]2dx]

− 2

∫ ∞
−∞

[

∫ ∞
−∞

K(x− y)f(y)dy]f(x)dx

+

∫ ∞
−∞

f 2(x)dx
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Proof: See [8]

Definition 1.3.6. Asymptotic Unbiasedness[6]

An estimator θ̂i of θi is said to be asymptotically unbiased if

E(θ̂i)→ θi as i→∞

for all possible values of θi , Θ̂ is asymptotically unbiased estimator of Θ if θ̂i is

asymptotically unbiased for i = 1, ....., k.

Theorem 1.3.3. Let X be a random variable having a density f ; then the bias of

f̂(x) can be expressed as

E(f̂(x))− f(x) =
1

2
h2µ2(K)f ′′(x) + o(h2), (1.3.8)

where,∫∞
−∞K(z)dz = 1,

∫∞
−∞ zK(z)dz = 0,∫∞

−∞ z
2K(z)dz <∞, µ2(K) =

∫∞
−∞ z

2K(z)dz

Proof: See [23]

Theorem 1.3.4. Let X be a random variable having a density f ; then

V ar(f̂(x)) =
1

nh
R(K)f(x) + o(

1

nh
), (1.3.9)

where, R(K) =
∫∞
−∞K

2(x)dx

Proof: See [23]

Corollary 1.3.1. The Mean-Squared Error of f̂(x) is given by :

MSE(f̂(x)) =
µ2
r(K)

(r!)2
f (r)(x)2h2r +

f(x)R(K)

nh
(1.3.10)

where, µj(K) =
∫∞
−∞ u

jK(u)du, r is the order of the kernel and R(K) =
∫∞
−∞K

2(u)du.

Proof: By the definition of the mean squared error we have :
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MSE(f̂(x)) = E(f̂(x)− f(x))2

= Bias(f̂(x))2 + V ar(f̂(x))

∼= (
1

r!
f r(x)hrµr(k))2 +

f(x)R(K)

nh

=
µr(k)2

(r!)2
f r(x)2h2r +

f(x)R(K)

nh

Remark 1.3.1. Since our approximation for the MSE is based on asymptotic ex-

pansions, this is also called the asymptotic mean squared-error AMSE, which mean

that

AMSE(f̂) = MSE(f̂) =
µr(k)2

(r!)2
f r(x)2h2r +

f(x)R(K)

nh
(1.3.11)

The next remark is very important and we will use it in Chapter 3, especially for

the conditions under which the results of the chapter hold.

Remark 1.3.2. In Equation (1.2.10), the first term (squared bias) is increasing in

h and the second term (the variance) is decreasing in nh and hence to make the

MSE(f̂(x)) to decline as n→∞ we have to make both of these terms small, which

meaning that as n→∞ we must have h→ 0and nh→∞. That is, the bandwidth

h must decrease, but not at a rate faster than sample size n.

Theorem 1.3.5. The MISE of an estimator f̂(x) of the unknown density f is given

by

MISE(f̂(x)) = AMISE(f̂(x)) + o{h4 + (nh)−1} (1.3.12)

where AMISE is the asymptotic mean integral squared error of f̂(x) given by

AMISE(f̂(x)) =
1

4
h4µ2

2(K)R(f ′′) + (nh)−1R(K). (1.3.13)

Proof:

Now to compute the MISE of f̂(x), we use variance and bias of f̂(x)

MISE (f̂(x)) =

∫ ∞
−∞

[V ar(f̂(x))]dx+

∫ ∞
−∞

[E(Ef̂(x)− f(x))2]dx

= n−1h−1
n

∫ ∞
−∞

K2(t)dx+

∫ ∞
−∞

bias2
hn(x)dx

= n−1h−1
n

∫ ∞
−∞

K2(t)dx+
1

4
h4
nµ2(K)

∫ ∞
−∞

f ′′2(t)dt
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Notice that the integral squared bias is asymptotically proportional to h4, so to

reduce this quantity one needs to take h to be small. On the other hand, taking a

small h increases the integral variance since it is proportional to (nh)−1. Therefore,

as n increases, h should vary in such a way that each of the components of the MISE

becomes small. This is known as the variance-bias trade-off. The trade-off between

bias and variance in the bandwidth distributions seems to be an intrinsic part of

the performance of data-based bandwidth selectors. Less bias seems to entail more

variance, and at some cost in bias, much less variance can be obtained.

Remark 1.3.3. A kernel is higher-order kernel if r > 2, such kernels will have

negative parts and are not probability densities. In our thesis we will consider that

the kernels are of the second order r = 2 and the assumptions(C) that we will

need are summarized below :

1. The unknown density function f(x) has continuous second derivative f (2)(x).

2. The bandwidth h = hn is a sequence of positive numbers and satisfies h → 0

and nh→∞ as n→∞ (see Remark 1.3.2).

3. The kernel K is a bounded probability density function of order 2 and sym-

metric about the zero.

Under the assumptions in Remark 1.3.1, we have the following results :

1. The bias of f̂(x) is given by :

Bias(f̂(x)) =
1

2!
f (2)(x)h2µ2(K) + o(h2) (1.3.14)

which means that the Bias is of order o(h2), which implies that f̂(x) is asymp-

totically unbiased estimator since assumption C2.

2. The bias is large, whenever the absolute value of the second derivative |f (2)(x)|

is large.

3. The variance of f̂(x) is given by :

V ar(f̂(x)) =
f(x)R(K)

nh
+ o(

1

n
) (1.3.15)

which meas that The variance is of order nh, hence the variance converges to

zero by assumption C2.
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4. The asymptotic mean squared error is given by :

AMSE(f̂) = MSE(f̂) =
µ2(k)2

4
f (2)(x)2h4 +

f(x)R(K)

nh
(1.3.16)

5. The asymptotic mean integrated squared error is given by :

AMISE(f̂) =
µ2(k)2

4
R(f (2)(x))h4 +

R(K)

nh
(1.3.17)

The next table present some of common second order kernels with R(K) and µ2(K)

already evaluated.

Kernel Equation R(K) µ2(K)

Normal KNW (x) = 1√
2π
e−

x2

2
1

2
√
π

1

Epanechnikov K1(x) = 3
4
(1− x2)I(|x|≤1)

3
5

1
5

Gaussian KG(x) = 1√
2π
e−

x2

2
1

2
√
π

1

Table 1.1: Common Second Order Kernels

Corollary 1.3.2. Under the assumptions C1,C2 and C3 we have :

f̂(x)
p→ f(x)

Proof: Using Chebychevs inequality and Equation 1.3.16, we have for ε > 0:

P
(∣∣∣f̂(x)− f(x)

∣∣∣ > ε
)
≤
E
(
f̂(x)− f(x)

)2

ε2

=
µ2(k)2

4ε2
f (2)(x)2h4 +

f(x)R(K)

nhε2

→ 0, as n→∞

since h→ 0 and nh→∞, the first and second term vanishes respectively.

The next theorem present the asymptotic normality of the kernel density estima-

tor.

Theorem 1.3.6. : Under the assumptions C1,C2 and C3 with additional condition

(nh5)
1
2 → 0 as n→∞, we have :

(nh)
1
2

(
f̂(x)− f(x)

)
d→ N (0, f(x)R(K))
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Proof: See [7].

Finally, we present the kernel estimator for the cdf F̂ (x).

Definition 1.3.7. The kernel estimator of the cdf is defined by :

F̂ (x) =

∫ x

−∞
f̂(u)du =

1

n

n∑
i=1

∫ x

−∞
K

(
u−Xi

h

)
du. (1.3.18)

Remark 1.3.4. : By Corollary 1.3.1, Definition 1.3.7 and under the assumptions

C1,C2 and C3 we have F̂ (x)
p→ F (x).

1.3.3 Optimal Bandwidth

The problem of bandwidth selection is very important in density estimation. Choice

of the appropriate bandwidth is critical to the performance of most nonparametric

density estimators. When the bandwidth is very small, the estimate will be very

close to the original data. The estimate will be almost unbiased , but it will have

large variation under repeated sampling. If the bandwidth is very large, the estimate

will be very smooth, lying close to the mean of all the data. Such an estimate will

have small variance, but it will be highly biased.

If we differentiate the expression of the AMSE in Equation (1.3.16) with respect

to h and setting it equal to zero, we get :

4h3µ2(K)2f (2)(x)2

4
=
f(x)R(K)

n
h−2 (1.3.19)

Multiply Equation (1.3.19) by h2 both sides to get :

h5
(
µ2(K)2f (2)(x)2

)
=
f(x)R(K)

n
(1.3.20)

Next, solving Equation (1.3.20) for h, we get the optimal bandwidth h∗:

h∗ =

(
f(x)R(K)

µ2(K)2f (2)(x)2

) 1
5

n−
1
5 (1.3.21)

Note that the optimal bandwidth h∗ is proportional to n−
1
5 , and we say that the

optimal bandwidth is of order o(n−
1
5 ).
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Now to find the optimal AMSE (AMSE∗), we substitute h∗ in Equation (1.3.16):

AMSE∗ =

(
f (2)(x)µ2(K)

2!

)2(
(2!)2f(x)R(K)

4µ2(K)2f (2)(x)2

) 4
5

n−
4
5

+ f(x)R(K)

(
(2!)2f(x)R(K)

4µ2(K)2f (2)(x)2

)− 1
5

n−
4
5

=

(
f (2)(x)µ2(K)

2!

)2(
(2!)2f(x)R(K)

4µ2(K)2f (2)(x)2

) 4
5

n−
4
5

+ 4

(
f (2)(x)µ2(K)

2!

)2(
(2!)2f(x)R(K)

4µ2(K)2f (2)(x)2

) 4
5

n−
4
5

= 5

(
f (2)(x)µ2(K)

2!

)2(
f(x)R(K)

µ2(K)2f (2)(x)2

) 4
5

n−
4
5 (1.3.22)

Now for the global properties we take the integration of the formula of h∗ in

Equation 1.3.19 and using the facts that
∫∞
−∞ f(x)dx = 1 and

∫∞
−∞ f

(2)2(x)dx =

R(f (2)), we get the optimal bandwidth h∗∗:

h∗∗ =

(
R(K)

nµ2(K)2R(f (2))

) 1
5

(1.3.23)

Now to find the optimal AMISE (AMISE∗∗), we integrate the formula of the

AMSE∗ in Equation 1.3.22 :

AMISE∗∗(f̂(x)) =
5

4

(
R(f (2))µ2(K)2R(K)4

) 1
5 n−

4
5 (1.3.24)

Remark 1.3.5. Note that the AMISE∗∗(f̂(x)) in Equation 1.3.22, is of order n−
4
5 ,

which is the best obtainable rate of convergence for the class of the second order

kernels as [20] stated.

Remark 1.3.6. The rule of thumb were [17] used replaces the unknown pdf f in

Equation 1.3.21 by a reference distribution function having variance equal to the

sample variance. An illustration given in Chapter 2 and later in Chapter 3 we

follow the same way.

1.4 Inverse Gaussian Distribution

Tweedie [18] who was first study and apply this to a certain class of distribution

when he noted the inverse relationship between the cumulant generating functions

22



of these distributions and those of Gaussian distributions. Wald [19] derived the

same class of distributions. The following definition describe the canonical form of

the two parameter IG(µ, λ) inverse Gaussian distribution.

Definition 1.4.1. [5] A random variable X have an inverse Gaussian distribution

if fX(x|µ, λ) is the density defined as :

fX(x|µ, λ) =

√
λ√

2πx3
exp

(
− λ

2µ

(
x

µ
− 2 +

µ

x

))
, x > 0, µ > 0, λ > 0. (1.4.1)

We will denote this distribution by IG(µ, λ).

Remark 1.4.1. By the previous definition, if X is distributed as IG(µ, λ), then aX

(a > 0)distributed as IG(aµ, aλ).

Remark 1.4.2. The following theorem show that using definition 1.4.1 we can prove

that the IG(µ, λ) inverse Gaussian distribution can be written in exponential family

form.

Theorem 1.4.1. The inverse Gaussian distribution is a two-parameter exponential

family.

Proof : The pdf of the IG distribution can be written as: for all x > 0, µ > 0, λ >

0

we have,

fX(x|µ, λ) =
1√
x3

√
λ

2π
exp

(
λ

µ

)
exp

(
−x λ

2µ2
− λ

2x

)
=

1√
x3

√
λ

2π
exp

(
λ

µ

)
exp

(
− λ

2µ2
x− λ

2

1

x

)

Setting :

1. h(x) = 1√
x3
,∀x > 0 ,

2. c(µ, λ) =
√

λ
2π
exp

(
λ
µ

)
,

3. w1(µ, λ) = − λ
2µ2

,

4. w2(µ, λ) = −λ
2

and
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5. t1(x) = x and t2(x) = 1
x
.

Hence, the pdf of the IG distribution becomes :

fX(x|µ, λ) = h(x)c(µ, λ)exp (w1(µ, λ)t1(x) + w2(µ, λ)t2(x))

Therefore, the IG distribution is in two parameters exponential family form.

Figure 1.2, Shows the pdf of IG for different µ and λ.

Figure 1.2: IG distribution with different µ and λ.

The Moments of the IG distribution

Next we give in detail the moments of the IG distribution.

Recall that the moment generating function for any random variable X is defined

as

MX(t) = E(etX)

and the cumulant moment is defined as

KX(t) = logMX(t)
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Theorem 1.4.2. Let X be a random variable have an IG(µ, λ)distribution, then

the moment generating function of X is given by :

MX(t) = exp

(
λ

µ

(
1−

(
1− 2tµ2

λ

)1/2
))

, µ > 0, λ > 0 (1.4.2)

Proof : Using the definition of moments generating function we have:

MX(t) = E
(
etX
)

=

∫ ∞
0

etxfX(x|µ, λ)dx

=

∫ ∞
0

etx
√
λ√

2πx3
exp

(
− λ

2µ

(
x

µ
− 2 +

µ

x

))
dx

=

∫ ∞
0

√
λ√

2πx3
exp

(
− xλ

2µ2
− λ

2x
+
λ

µ
+ tx

)
dx

=

∫ ∞
0

√
λ√

2πx3
exp

(
−λx(

λ− 2tµ2

2λµ2
)− λ

2x
+
λ

µ

)
dx

= exp

(
λ

µ
− λ

µt

)∫ ∞
0

√
λ√

2πx3
exp

(
−λx
2µ2

t

− λ

2x
+
λ

µt

)
dx.

where

µt =

(
λµ2

λ− 2tµ2

) 1
2

and assuming that t < λ
2µ2

, hence we have :

MX(t) = exp

(
λ

µ
− λ

µt

)
= exp

(
λ

µ

(
1−

(
1− 2tµ2

λ

)1/2
))

.

From Theorem 1.4.2, we can conclude the following results:

Corollary 1.4.1. Let X be a random variable have an IG(µ, λ)distribution, then

the cumulant moment function of X is given by :

KX(t) =
λ

µ

(
1−

(
1− 2tµ2

λ

)1/2
)
, µ > 0, λ > 0 (1.4.3)

Proof : Taking the logarithm both sides in equation (1.4.2), we get the cumulant

moment

KX(t) =
λ

µ

(
1−

(
1− 2tµ2

λ

)1/2
)
.
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Corollary 1.4.2. Let X be a random variable have an IG(µ, λ)distribution, then

the mean of X is given by :

E(X) = µ (1.4.4)

Proof : Using the cumulant moment we can get the mean,

K ′X(0) = E(X)

so taking the first derivative both sides in equation (1.4.3) we have :

K ′X(t) =
λ

µ

((
1

2

(
1− 2tµ2

λ

)−1/2
)
−2µ2

λ

)

putting t = 0,we have :

E(X) = K ′X(0) = µ

Corollary 1.4.3. Let X be a random variable have an IG(µ, λ) distribution, then

the variance of X is given by :

V ar(X) =
µ3

λ
(1.4.5)

Proof : To find the variance we use the cumulant moment:

K ′′X(0) = V ar(X)

so taking the second derivative both sides in equation (1.4.3) we get

K ′′X(t) =
−µ
2

(
1− 2t

µ2

λ

)−3/2 −2µ2

λ

putting t = 0 we get the variance :

V ar(X) = K ′′X(0)

=
µ3

λ
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Chapter 2

Kernel Estimator of the Hazard

Rate Function

In this chapter we will discuss some methods used for smoothing the hazard rate

function to specify the appropriate method which we consider in our thesis especially

in Chapter 3. The Chapter is divided in three sections. Section one presents the

definition of the hazard rate function and we discuss some of its properties. Section

two proposes the kernel estimator for the hazard rate function and we discuss its

properties and we present the Gaussian kernel estimator as an example and in order

to compare it with the IG kernel estimator in Chapter 4.

2.1 Hazard Rate Function

Survival analysis is a branch of statistics that deals with analysis of time duration

until one or more events happen, such as death in biological organisms and failure

in mechanical systems. This topic is called reliability theory or reliability analysis in

engineering, duration analysis or duration modeling in economics, and event history

analysis in sociology.

Theorem 2.1.1. The hazard rate function r(.) is defined as

r(x) = lim
∆x−→0

P (X ≤ x+ ∆x | X > x)

∆x
, x > 0 (2.1.1)
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and it can be written as

r(x) =
f(x)

1− F (x)
=
f(x)

S(x)
(2.1.2)

where f(.) and F (.) are the density and distribution function of a continuous

random variable X respectively, and S(x) is the Survival function.

Proof :

Let A := X > x (meaning the life time greater than x) and B := X > x + y this

implies that A ∩B := X > x+ y, hence P (A) = P (X > x) = S(x) = 1− F (x) and

P (A ∩B) = P (X > x+ y) = S(x+ y), then we have :

P (X > x+ y|X > x) =
S(x+ y)

S(x)
(2.1.3)

now since P (X > x+ y|X > x) = P (X − x > y|X > x), letting Y = X − x and by

Equation (2.1.3) we have :

S(Y |X > x) =
S(x+ y)

S(x)
(2.1.4)

taking the complement of Equation (2.1.4) we get the conditional distribution func-

tion :

F (y|X > x) = 1− S(y|X > x)

= 1− S(x+ y)

S(x)

=
S(x)− S(x+ y)

S(x)

=
F (x+ y)− F (x)

1− F (x)
(2.1.5)

taking the derivative of Equation (2.1.5) we get the conditional failure density :

f(y|X > x) =
d

dy
(F (y|X > x))

=
d

dy
(
F (x+ y)− F (x)

1− F (x)
)

=
f(x+ y)

1− F (x)

=
f(x+ y)

S(x)
(2.1.6)
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now For small ∆, we have:

P (x < X < x+ ∆|X > x)

∆
≈ f(∆|X > x)

=
f(x+ ∆)

S(x)

letting ∆→ 0 we get the hazard rate as :

r(x) = lim
∆→0

P (x < X < x+ ∆|X > x)

∆

= lim
∆→0

f(∆|X > x)

= lim
∆→0

f(x+ ∆)

S(x)

=
f(x)

S(x)

=
f(x)

1− F (x)
(2.1.7)

Example 2.1.1. If we suppose that f(x) is an exponential distribution, then we

have : f(x) = αe−αx and the cdf is given by F (x) = 1 − e−αx which imply that

S(x) = 1− F (x) = e−αx. Hence the hazard rate function is given by

r(x) =
f(x)

1− F (x)

=
αe−αx

e−αx

= α.

Therefore, an exponential failure density corresponds to a constant hazard function.

2.2 Estimation the Hazard Rate Function

Several methods for estimation the hazard rate function have been studied. The

non parametrically method has the advantage of flexibility because no formal as-

sumptions are made about the mechanism that generates the sample order than

the randomness, such as the kernel estimation as we discussed in section 1.2. In

this section, we will discuss this estimator and we discuss its properties under the

assumptions we assumed in Chapter 1 and we present the definition of the boundary

effect which hold due to the symmetric kernels.
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Definition 2.2.1. If X1, X2, .., Xn is a random sample distributed as X , then Wat-

son and leadbetter [21] proposed the following estimator for r(.)

r̂(x) =
f̂(x)

1− F̂ (x)
(2.2.1)

where f̂(x) = 1
nh

∑n
i=1K(x−Xi

h
) , and F̂ (x) = 1

nh

∑n
i=1

∫ x
−∞K(u−Xi

h
)du

where K is a bounded and symmetric kernel, integrating to one.

Conditions

The following conditions will be used in the sequel:

C1 Suppose that the kernel function K satisfies the following:

(i) K is asymmetric density function.

(ii) limy−→∞ |y|K(y) = 0

(iii)
∫∞
−∞K

2(u)du <∞

(iv)
∫∞
−∞ uK(u)du = 0

(v)
∫∞
−∞ u

2K(u)du <∞

C2 Suppose that the bandwidth h satisfies the following:

(i) h→ 0.

(ii) nh→∞.

(iii) nh5 → 0.

C3 f ′′ exists and integrable.

Next, we discuss properties of the estimator given in Equation 2.2.2. The mean,

variance and bias of the kernel estimator for the hazard rate function will discuss,

the MSE and AMSE will present and the asymptotic normality will investigate.

Remark 2.2.1. By Remark 1.3.2 , we have F̂ (x)
p→ F (x). Hence, since Ŝ(x) =

1− F̂ (x) we get that Ŝ(x)
p→ S(x).

Theorem 2.2.1. Under the assumptions C1,C2 and C3 we have :

Bias(r̂(x)) =
f (2)(x)

2S(x)
h2µ2(K) + o(h2) (2.2.2)

and

V ar(r̂(x)) =
r(x)

S(x)nh
R(K) + o(

1

nh
) (2.2.3)
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Proof: For the first part, we find first the mean, by Remark 2.2.1 we have:

Ŝ(x)
p→ S(x)

hence,

E(r̂(x)) =
E(f̂(x))

S(x)
(2.2.4)

Now, by proof of Theorem 1.3.3 (with r = 2), we have

E(f̂(x)) = f(x) +
1

2
f (2)(x)h2µ2(K) + o(h2) (2.2.5)

using Equation 2.2.5 in Equation 2.2.4 we have :

E(r̂(x)) =
f(x) + 1

2
f (2)(x)h2µ2(K)

S(x)
+ o(h2) (2.2.6)

then , the bias is given by :

Bias(r̂(x)) = E(r̂(x))− r(x)

=
1
2
f (2)(x)h2µ2(K)

S(x)
+ o(h2)

For the second part, we have

V ar(r̂(x)) =
V ar(f̂(x))

S(x)2

=
1

S(x)2

f(x)R(K)

nh
+ o(

1

nh
), (by Equation 1.3.9)

=
r(x)R(K)

S(x)nh
+ o(

1

nh
)

Remark 2.2.2. From Equations 2.2.2 and 2.2.3 we can see that the bias increasing

in h2 and the variance decreasing in nh, hence under the assumptions we have

Bias(r̂(x))→ 0 and V ar(r̂(x))→ 0 as n→∞.

Corollary 2.2.1. The mean squared error of the kernel estimator for the hazard

rate function is given by :

MSE(r̂(x)) =

(
f (2)(x)

2S(x)
h2µ2(K) + o(h2)

)2

+
r(x)R(K)

S(x)nh
+ o(

1

nh
) (2.2.7)

Proof: By Equations 2.2.2 and 2.2.3 and the definition of the mean squared error.

Corollary 2.2.2. The asymptotic mean squared error of the kernel estimator for

the hazard rate function is given by :

AMSE(r̂(x)) =

(
f (2)(x)

2S(x)
h2µ2(K))

)2

+
r(x)R(K)

S(x)nh
(2.2.8)

31



Proof: By letting o(h2)→ 0 and o( 1
nh

)→ 0 in Equation 2.2.7.

Remark 2.2.3. Under the assumptions C1,C2 and C3 and Equation 2.2.8, we have

AMSE(r̂(x))→ 0 as n→∞.

2.2.1 The Asymptotic Normality of the Kernel Estimator

r̂(x)

Theorem 2.2.2. Under the assumptions C1,C2 and C3 with additional condition

(nh5)
1
2 → 0 as n→∞, we have :

√
nh (r̂(x)− r(x))

d→ N

(
0,
r(x)

S(x)
R(K)

)
(2.2.9)

Proof: We have :

√
nh (r̂(x)− r(x)) =

√
nh

(
f̂(x)

Ŝ(x)
− f(x)

S(x)

)

=
√
nh

(
f̂(x)

Ŝ(x)
− f(x)

Ŝ(x)
− f(x)

S(x)
+
f(x)

Ŝ(x)

)

=

√
nh

Ŝ(x)

(
f̂(x)− f(x)− f(x)Ŝ(x)

S(x)
+ f(x)

)

=

√
nh

Ŝ(x)

(
f̂(x)− f(x)

)
+

√
nhf(x)

S(x)Ŝ(x)

(
Ŝ(x)− S(x)

)
d→ 1

S(x)
N (0, f(x)R(K))

d→ N

(
0,
r(x)

S(x)
R(K)

)
because Remark 2.2.1 (the second term vanishes) and Theorem 1.2.1 complete the

proof.

Bandwidth selection:

In order to find the optimal bandwidth we will consider the same way discussed in

Chapter 1, so first we take the derivative of the Equation 2.2.7 with respect to h and

Equating it to zero we get :

4h3f
′′(x)2µ2(K)2

S2(x)
= h−2 r(x)R(K)

S(x)n
(2.2.10)
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Multiplying Equation 2.2.10 by h2 and solving for h we get the optimal bandwidth

that minimizes AMSE:

h∗ =

(
f(x)R(K)

f ′′(x)2µ2(K)2

) 1
5

n−
1
5 (2.2.11)

Note that the optimal bandwidth is of order o(n−
1
5 ). Substituting the result 2.2.10 in

Equation 2.2.7 and after some simplification we have :

AMSE∗(r̂(x)) =

(
f ′′(x)

1
5

2S(x)
µ2(K)

1
5f(x)

2
5R(K)

2
5

)2

n−
4
5 +

(
f ′′(x)

1
5

S(x)
µ2(K)

1
5f(x)

2
5R(K)

2
5

)2

n−
4
5

=
5

4

(
f ′′(x)

1
5

S(x)
µ2(K)

1
5f(x)

2
5R(K)

2
5

)2

n−
4
5 (2.2.12)

2.2.2 The Gaussian Kernel Estimator for The Hazard Rate

Function

Next we discuss the Gaussian kernel estimator for the hazard rate function as an

example of the estimation the hazard rate function using symmetric kernels. The

mean, variance and bias will be investigated and we will find the AMSE in order to

make a comparison with the IG kernel estimator which we present in Chapter 4.

Definition 2.2.2. The Gaussian kernel KG(x) is defined by :

KG(x) =
1√
2π
e−

x2

2 , for all x ∈ <. (2.2.13)

Hence, by Definition 1.3.1, the Gaussian kernel estimator of the pdf is given as

in the next definition.

Definition 2.2.3. The Gaussian kernel estimator of the pdf is given by :

f̂G(x) =
1

nh

n∑
i=1

KG

(
x−Xi

h

)
(2.2.14)

where KG(x) as in definition 2.2.2 .

Next, the G kernel estimator for the cdf will be presented.

Definition 2.2.4. The Gaussian kernel estimator of the pdf is given by :

F̂G(x) =
1

nh

n∑
i=1

∫ x

0

KG

(
u−Xi

h

)
du (2.2.15)
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Now by using ŜG(x) = 1 − F̂G(x) , we present the G kernel estimator for the

hazard rate function.

Definition 2.2.5. The G kernel estimator for the hazard rate function is given by :

r̂G(x) =
f̂G(x)

1− F̂G(x)
=
f̂G(x)

ŜG(x)
(2.2.16)

where, f̂G(x) and F̂G(x) as in definitions 2.2.3 and 2.2.4 respectively.

Now we give the properties of r̂G(x).

Theorem 2.2.3. Under the assumptions C1,C2 and C3 we have,

Bias(r̂G(x)) =
f ′′(x)h2

2S(x)
+ o(h2) (2.2.17)

and

V ar(r̂G(x)) =
f(x)

2nh
√
πS2(x)

+ o(
1

nh
) (2.2.18)

Proof: To prove the first part, we use Equation 2.2.2 with substituting the value of

(µ2(KG) = 1). Similarly for the second part we use Equation 2.2.3 with substituting

the value of (R(KG) = 1
2
√
π

).

The next corollaries present the MSE(r̂G(x)) and AMSE(r̂G(x)).

Corollary 2.2.3. The mean squared error of the Gaussian kernel estimator of the

hazard rate function is given by :

MSE(r̂G(x)) =

(
f ′′(x)h2

2S(x)
+ o(h2)

)2

+
r(x)

2nh
√
πS(x)

+ o(
1

nh
) (2.2.19)

Proof: Using Equations 2.2.12 and 2.2.13 and by the definition of MSE directly

we get the results.

Corollary 2.2.4. The asymptotic mean squared error of the Gaussian kernel esti-

mator of the hazard rate function is given by :

AMSE(r̂G(x)) =

(
f ′′(x)h2

2S(x)

)2

+
r(x)

2nh
√
πS(x)

(2.2.20)

Proof: By letting o(h2)→ 0 and o( 1
nh

)→ 0 in Equation 2.2.14 we get the result.

The asymptotic normality of the kernel estimator r̂G(x) presented in the next

theorem.
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Theorem 2.2.4. Under the assumptions C1,C2 and C3 with additional condition

(nh5)
1
2 → 0 as n→∞, we have :

√
nh (r̂G(x)− r(x))

d→ N

(
0,

r(x)

2
√
πS(x)

)
(2.2.21)

Proof: By Theorem 2.2.2 with substituting the value of (R(KG) = 1
2
√
π

).

Corollary 2.2.5. The optimal bandwidth of the Gaussian kernel estimator for the

hazard rate function is given by:

h∗ =

(
f(x)

2
√
πf ′′(x)2

) 1
5

n−
1
5 (2.2.22)

Proof: By Equation 2.2.11 with substituting the values of R(KG) and µ2(KG).

Corollary 2.2.6. The optimal mean squared error of the Gaussian kernel estimator

for the hazard rate function is given by:

AMSE∗(r̂G(x)) =
5

4

(
f ′′(x)

1
5f(x)

2
5 (2
√
π)

2
5S(x)

)2

n−
4
5 (2.2.23)

Proof: By Equation 2.2.12 with substituting the values of R(KG) and µ(KG).

Regarding the global properties the optimal bandwidths and mean integrated squared

errors can be derived by taking the the integration of Equations 2.2.22 and 2.2.23

and using that
∫∞

0
f(x)dx = 1 we have :

h∗∗ =

(
1

2
√
π
∫∞

0
f ′′(x)2dx

) 1
5

n−
1
5 (2.2.24)

and

AMISE∗∗(r̂G(x)) =
5

4

( ∫∞
0
f ′′(x)

1
5dx

(2
√
π)

2
5

∫∞
0
S(x)dx

)2

n−
4
5 (2.2.25)

2.2.3 Practical Optimal Bandwidth:

Now we consider the rule of the thumb were [17] used to find the practical optimal

bandwidth(see Remark 1.3.1).

Example 2.2.1. If we consider the standard normal distribution as reference distri-

bution (with variance σ2) and setting fG be the standard normal density in Equation
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2.2.24, we have:

R(f ′′) =

∫ ∞
0

(f ′′(x))2dx

= σ−5

∫ ∞
0

(f
(2)
G (x))2dx

=
3

8
π−

1
2σ−5,

then, the rule of thumb gives :

h∗∗ = (4π)−
1
10 (

3

8
π−

1
2 )−

1
5σn−

1
5

= 1.06σn−
1
5 .

Note that h∗∗ depends on estimating σ from the data , hence by taking σ̂2 =
∑

(xi−x̄)
n−1

,

which means that :

h∗∗ = 1.06σ̂n−
1
5 . (2.2.26)

Boundary Effect

Note that the support of the hazard rate function is in the non-negative part of the

real line [0,∞), so when the estimation is based on symmetric kernels its will be

under the boundary effect (called a boundary bias problem) near the zero, its

causes that the estimator of the hazard rate function will take values outside the

support.

To solve this problem, Chen replaced the symmetric kernels by asymmetric Gamma

kernel which never assigns weight outside the support. Scaillet used this idea and

proposed two new classes of density estimators, rely on the use of inverse Gaussian

IG and the RIG kernels in place of the Gamma kernel. In [14], the estimation of

the hazard rate function using the IG kernel has been considered. In Chapter 3, we

will consider the nonparametric estimation of the hazard rate function for (iid) data

using the IG kernel based.
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Chapter 3

Estimation of the Hazard Rate

Function Using the IG Kernel

In this chapter, we will study the inverse Gaussian(IG) kernel estimator that can be

used as a non-parametrically estimation for the hazard rate function. In Chapter 1,

Section 4. we studied the inverse Gaussian distribution and we discussed some of its

properties, such as the flexible shape and its support in the non-negative part of the

real line. The IG kernel estimator is free of boundary bias. In parallel its achieves

the optimal rate of convergence for the mean integrated squared error (MISE)

within the class of non-negative kernel density estimators, (See Scaillet2004) [15].

In Section 3.1 we discuss the inverse Gaussian kernel estimator of the pdf and cdf

for independent and identically distributed data, Section 3.2 will contain a study for

the (IG) kernel estimator for the hazard rate function.

3.1 The IG Kernel Estimator

In this section we state first the conditions under which the results of this chapter

will be proved. Also we present the IG kernel estimator of the pdf and the cdf for

independent and identically distributed data, then we will derive the asymptotic

normality and the strong consistency of the proposed estimator.
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Conditions

1. Let X1, X2, · · · , Xn be a random sample from a distribution with an unknown

probability density function f defined on [0,∞), such that f is twice continu-

ously differentiable, and
∫∞

0
(x3f ′′(x))2dx <∞.

2. h is a smoothing parameter satisfying h+ 1
nh
→ 0 , and nh

5
2 → 0, as n→∞.

Under the previous two conditions the inverse Gaussian kernel KIG(u) and the (IG)

kernel estimators of the pdf and the cdf will state in the following definitions.

Definition 3.1.1. [15] The inverse Gaussian (IG) kernel is defined by :

KIG(x, 1
h

)(u) =
1√

2πhu3
exp

(
− 1

2hx

(u
x
− 2 +

x

u

))
,u > 0 (3.1.1)

where h+ 1
nh
→ 0 as n→∞ .

Using this kernel, the inverse Gaussian (IG) pdf kernel estimator which proposed

by Scaillet [15] is defined as follows :

Definition 3.1.2. [15] The inverse Gaussian (IG) kernel estimator of the pdf is

defined by :

f̂IG(x) =
1

n

n∑
i=1

KIG(x, 1
h

)(Xi) (3.1.2)

Definition 3.1.3. The inverse Gaussian (IG)kernel estimator of the cdf is defined

by :

F̂IG(x) =

∫ x

0

f̂IG(u)du =
1

n

n∑
i=1

∫ x

0

KIG(u, 1
h

)(Xi)du. (3.1.3)

The Properties of the IG Kernel Estimator

Next, we discuss the properties of f̂IG(x) and the estimator of the cdf F̂IG(x).

Firstly, the variance and the bias of the inverse Gaussian kernel estimator of the pdf

f̂IG(x) will be investigated in the following theorem.

Theorem 3.1.1. [15] Under conditions C1 and C2, we have :

Bias(f̂IG(x)) =
1

2
x3f ′′(x)h+ o(h). (3.1.4)

and

V ar(f̂IG(x)) =
1

2n
√
πh
x−

3
2f(x) + o(n−1h−

1
2 ) (3.1.5)
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Proof:

E(f̂IG(x)) =

∫ ∞
0

KIG(x,
1

h
)(u)f(u)du

= E(f(ζx)), (3.1.6)

where, ζx follows a IG(x, 1
h
) distribution. where, µx = E(ζx) = x and Vx =

V ar(ζx) = x3h. Using this and since f is twice continuously differentiable(by con-

dition 2), we can expand f(ζx) about µx using Taylor series (Theorem 1.1.5) as

follows:

f(ζx) = f(µx) + f ′(µx)(ζx − µx) +
f ′′(µx)

2!
(ζx − µx)2 + o(h)

Next we have,

E(f(ζx)) = E(f(µx)) + E(f ′(µx))E((ζx − µx)) + E(
f ′′(µx)

2!
)E((ζx − µx)2) + o(h)

= f(x) + f ′(x)(µx − µx) +
f ′′(x)

2!
Vx + o(h)

= f(x) +
x3

2
f ′′(x)h+ o(h). (3.1.7)

Hence,

Bias(f̂IG(x)) = E(f̂IG(x))− f(x)

= E(f(ζx))− f(x), (using Equation (3.1.6))

= f(x) +
x3

2
f ′′(x)h+ o(h)− f(x), (using Equation (3.1.7))

Therefore,

Bias(f̂IG(x)) =
1

2
x3f ′′(x)h+ o(h).

Next, we prove the second part of the theorem, note that:

V ar(f̂IG(x)) =
1

n
V ar(KIG(x,

1

h
)(Xi))

=
1

n
E(KIG(x,

1

h
)(Xi)

2) + o(
1

h
). (3.1.8)
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Equation (3.1.7) can be proved in the same way as in Theorem 1.2.2.

E

(
KIG(x,

1

h
)(Xi)

2

)
=

∫ ∞
0

1

2πhu3
exp(− 1

hx
(
u

x
− 2 +

x

u
))f(u)du

=
1√
4πh

∫ ∞
0

1√
π h

2
u2
u−

3
2 exp(− 1

hx
(
u

x
− 2 +

x

u
))f(u)du

=
1√
4πh

∫ ∞
0

u−
3
2f(u)

√
2
h√

2πu
exp(− 1

2hx
(
u

x
− 2 +

x

u
))du

=
1√
4πh

E
(
η
− 3

2
x f(ηx)

)
,

(3.1.9)

where, ηx follows a IG
(
x, 2

h

)
.

Since µx = E(ηx) = x and Vx = V ar(ηx) = x3h
2

, and we obtain by Taylor series :

E(η
− 3

2
x f(ηx)) = µ

− 3
2

x f(µx) +
1

2
(
15

4
x−

7
2f(x)− x−

5
2f ′(x) + x−

3
2f ′′(x))Vx + o(h)

= µ
− 3

2
x f(µx) +

1

4
(
15

4
x−

1
2f(x)− 3x−

1
2f ′(x) + x

3
2f ′′(x))h+ o(h)

= µ
− 3

2
x f(µx) + o(h)

= x−
1
2f(x) + o(h) (3.1.10)

Now, using the Equations (3.1.10),(3.1.9) in (3.1.8) we get :

V ar(f̂IG(x)) =
1

2n
√
πh
x−

3
2f(x) + o(n−1h−

1
2 )

From Theorem 3.1.1 and under the condition 1 and 2, we conclude that f̂IG(x)

appears to have the following asymptotic properties:

1. The IG kernel estimator f̂IG(x) is free boundary bias, because its bias

Bias(f̂IG(x)) is of order o(h) in the interior of [0,∞) and near zero.

2. Since the expression of theBias(f̂IG(x)) depends on x3f ′′(x), then as
∫∞

0
(x3f ′′(x))

2
<

∞ (by C1), the terms x3f ′′(x)→ 0 and hence x3f ′′(x)→ 0 as x→∞. So the

Bias(f̂IG(x)) is smaller as x increases.

3. By Equation 3.1.4, we deduce that the Bias(f̂IG(x)) increase in h, and another

look to Equation 3.1.5, we can deduce that the V ar(f̂IG(x)) is decrease in nh
1
2 .

Hence by assuming that as n → ∞ we must have h → 0 and nh
1
2 → 0 were

hold by C2 we can establish the strong consistency of the estimator.
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Asymptotic Normality of the Estimator f̂IG(x):

Theorem 3.1.2. Under the conditions C1 and C2 the following holds :

√
nh

1
2 (f̂IG(x)− f(x))

d→ N(0, 1
2
√
π
x−

3
2f(x)).

Proof: Let Vni = KIG(x, 1
h
)(Xi), i = 1, 2, · · · , n , then by Definition 3.1.2, f̂IG(x)

can be written as : f̂IG(x) = 1
n

∑n
i=1 Vni, where Vni, i = 1, 2, · · · , n are (iid) random

variables.

Next, we show that Liapounove condition (Theorem 1.1.4) is satisfied, that is for

some δ > 0,

lim
n→∞

E|Vn − E(Vn)|2+δ

n
δ
2σ2+δ(Vn)

= 0. (3.1.11)

Assume that ηx follows a IG(x, 2+δ
h

) distribution. where, µx = E(ηx) = x and

Tx = V ar(ηx) = x3

2+δ
.

Hence,

E|Vn|2+δ = E

[(
1√

2πhy

)2+δ

exp

((
−(2 + δ)(x− h)

2h

)(
y

x− h
− 2 +

x− h
y

))]

=
1

(2πh)(1+ δ
2)

∫ ∞
0

y−(1+ δ
2)
[
exp

((
−(2 + δ) (x− h)

2h

)(
y

x− h
− 2 +

x− h
y

))]
f(y)dy

=

√
2πh

√
2 + δ (2πh)(1+ δ

2)

∫ ∞
0

y−
1
2

(1+δ)KIG

(
x,

2 + δ

h

)
(y)f(y)dy

=

√
2πh

√
2 + δ (2πh)(1+ δ

2)
E
(
η
− 3

2
(1+δ)

x f (ηx)
)
. (3.1.12)

Using Taylor’s series we expand η
− 3

2
(1+δ)

x f(ηx) about µx as :

η
− 3

2
(1+δ)

x f(ηx) = µ
− 3

2
(1+δ)

x f(µx) + (µ
− 3

2
(1+δ)

x f ′(µx)−
3

2
µ
− 5

2
(1+δ)

x f(µx))(ηx − µx)

+ (µ
− 3

2
(1+δ)

x f ′′(µx)−
3

2
µ
− 5

2
(1+δ)

x f ′(µx)−
3

2
µ
− 5

2
(1+δ)

x f(µx)

+
15

4
µ
− 7

2
(1+δ)

x f(µx))(ηx − µx)2 + o(h)
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Hence,

E(η
− 3

2
(1+δ)

x f(ηx)) = x−
3
2

(1+δ)f(x) +
1

2
(x−

3
2

(1+δ)f ′′(x)− 3

2
x−

5
2

(1+δ)f ′

− 3

2
x−

5
2

(1+δ)f ′) +
15

4
x−

7
2

(1+δ)f(x))Txo(h)

= x−
3
2

(1+δ)f(x) +
1

2(2 + δ)
(x−

3
2

(1+δ)f ′′(x)− 3

2
x−

5
2

(1+δ)f ′

− 3

2
x−

5
2

(1+δ)f ′) +
15

4
x−

7
2

(1+δ)f(x))x3h+ o(h)

= x−
3
2

(1+δ)f(x) + o(h).

subtituing in equation (3.1.12) this implies that :

E|Vn|2+δ =
1

√
2 + δ(2πh)

1+δ
2

)
x−

3
2

(1+δ)f(x) + o(h−
(1+δ)

2 )

Now, substitute δ = 0 we get :

V ar(Vn) =
1

2
√
π
h−

1
2x−

3
2f(x) + o(h−

1
2 ).

using this we have :

E|Vn − E(Vn)|2+δ

n
δ
2σ2+δ(Vn)

≤ E|Vn|2+δ

n
δ
2

(
1

2
√
π
h−

1
2x−

3
2f(x)

) 2+δ
2

→

1
√

2+δ(2πh)(
1+δ
2 )

x−
3
2

(1+δ)f(x)

n
δ
2

(
1

2
√
π
h−

1
2x−

3
2f(x)

) 2+δ
2

=

1
√

2+δ(2πh)(
1+δ
2 )

x−
3
2

(1+δ)f(x)

n
δ
2h

δ
4

(
1

2
√
π
x−

3
2f(x)

) 2+δ
2

=

1
√

2+δ(2π)(
1+δ
2 )

x−
3
2

(1+δ)f(x)

(nh
1
2 )

δ
2

(
1

2
√
π
x−

3
2f(x)

) 2+δ
2

→ 0

The last term vanishes as n→∞, since C2 implies that h→ 0 and nh→∞, then

h
1
2 goes to zero slower than h and this implies that nh

1
2 →∞. On the other hand,

the remaining components of the last term are bounded by condition C1. Since

under the same condition nh
1
2 → ∞ we have V ar

(
f̂IG(x)

)
→ 0. Therefore by

Liapounove theorem (1.1.4) we have :

f̂IG(x)− f(x)√
V ar

(
f̂IG(x)

) d→ N(0, 1). (3.1.13)
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Substituting the expression of V ar
(
f̂IG(x)

)
, we get :

f̂IG(x)− f(x)√
1

2n
√
πh
x−

3
2f(x)

d→ N(0, 1). (3.1.14)

Which implies that :√
nh

1
2

(
f̂IG(x)− f(x)

)
d→ N(0,

1

2
√
π
x−

3
2f(x)).

Next we will show that the error in estimating the cumulative density function van-

ishes with probability.

Lemma 3.1.1. Under the conditions 1 and 2 the following holds :√
nh

1
2 |F̂IG(x)− F (x)| p→ 0

Proof: Using the definition of F̂ (x), we have :

E(F̂IG(x)) =

∫ ∞
0

∫ x

0

KIG(u,
1

h
)(y)duf(y)dy

=

∫ x

0

∫ ∞
0

KIG(u,
1

h
)(y)f(y)dydu

=

∫ x

0

E(f(ζu))du (3.1.15)

where, ζu follows a IG(u, 1
h
) distribution. Using Taylor’s series we expand f(ζu)

about the mean of ζu (µu = E(ζu) = u) as :

f(ζu) = f(µu) + f ′(µu)(ζu − µu) +
1

2
f ′′(µu)(ζu − µu)2 + o(h)

Hence we have :

E(f(ζu)) = f(u) +
1

2
f ′′(u)Vu + o(h), (where Vu = V ar(ζu) = (u− h)h+ 2h2)

= f(u) +
1

2
f ′′(u)hu+ o(h).

Using the result in (3.1.15) we get :

E(F̂IG(x)) =

∫ x

0

E(f(ζu))du

=

∫ x

0

(f(u) +
1

2
f ′′(u3)hu)du+ o(h)

= F (x) +
h

2
(

∫ x

0

u3f ′′(u)du) + o(h)

= F (x) + o(h).
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Which implies the following result :√
nh

1
2 |E(F̂IG(x))− F (x)| = o((nh

5
2 )

1
2 )→ 0. (3.1.16)

Now, F̂IG(x) can be written in the following form :

F̂IG(x) =
1

n

n∑
i=1

∫ x

0

KIG(u,
1

h
)(Xi)du

=
1

n

n∑
i=1

Wi(x)

where Wi(x) =
∫ x

0
KIG(u, 1

h
)(Xi)du. Let ε > 0, δ > 0 be given, using Chebychev’s

inequality (1.1.3) we have:

P ((nh
1
2 )

1
2 |F̂IG(x)− E(F (x))| > ε) ≤ ε−2−2δ(nh

1
2 )1+δE| 1

n

n∑
i=1

(Wi(x)− E(Wi(x)))|2+δ

= ε−2−2δh
1+δ
2 n−1−δE|

n∑
i=1

(Wi(x)− E(Wi(x)))|2+δ

≤ 21+δε−2−2δ(n−1h
1
2 )1+δ

n∑
i=1

E|Wi(x)|2+2δ

+ 21+δε−2−2δ(n−1h
1
2 )1+δ

n∑
i=1

|E(Wi(x))|2+2δ.

and we have :

(n−1h
1
2 )1+δ

n∑
i=1

E|(Wi(x))|2+2δ = (n−1h
1
2 )1+δn

∫ ∞
0

∫ x

0

(
KIG(u,

1

h
)(y)

)2+2δ

duf(y)dy

= n−δh
1+δ
2

∫ x

0

∫ ∞
0

(
KIG(u,

1

h
)(y)

)2+2δ

f(y)dydu

= n−δh
1+δ
2

∫ x

0

1
√

2 + 2δ(2)
1+2δ

2

u−
3
2

(1+2δ)f(u)du+ o(h−
1+2δ

2 )

≤ Cn−δh
1+2δ

2 h−
1+2δ

2

= Cn−δh−
δ

2

= C(nh
1
2 )−δ

→ 0.

This implies that, √
nh

1
2 |F̂IG(x)− E(F (x))| p→ 0. (3.1.17)
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Now, using the results(3.1.16),(3.1.17)and by triangle inequality we obtain that :√
nh

1
2 |F̂IG(x)− F (x)| ≤

√
nh

1
2 |F̂IG(x)− E(F̂IG(x))|+

√
nh

1
2 |E(F̂IG(x))− F (x)|

p→ 0.

The proof now is complete.

3.2 The IG Kernel Estimator for the Hazard Rate

Function

In this section, we consider the nonparametric estimation of the hazard rate function

for (iid) data using the inverse Gaussian kernel IG, the asymptotic normality of

the proposed estimator will be derived and we close this section by investigate the

selection of the optimal bandwidth.

Firstly, we recall the definition of hazard rate function .

Definition 3.2.1. The hazard rate function or age-specific failure rate , defined by:

r(x) = lim
∆−→0

P (x < X ≤ x+ ∆|x ≤ X)

∆
(3.2.1)

and by the definition of kernel we have :

r(x) =
f(x)

1− F (x)
(3.2.2)

where f(x) is the pdf of the distribution and F (x) is the cdf.

As in Chapter 2, the survivor function S(x) = 1 − F (x), hence the hazard rate

function is : r(x) = f(x)
S(x)

. The next definition state the kernel estimator for the

survivor function using Equation 2.2.1 .

Definition 3.2.2. The kernel estimator for the survivor function is constructed

using kernel density estimator in equation (3.1.3), as :

ŜIG(x) = 1− F̂IG(x) (3.2.3)

where,

F̂IG(x) =

∫ x

0

f̂IG(u)du =
1

n

n∑
i=1

∫ x

0

KIG(u,
1

h
)(Xi). (3.2.4)
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By Definition 3.2.2 and using Definition 2.2.1, now we study the smoothed indirect

IG kernel estimator for the hazard rate function.

Definition 3.2.3. The IG kernel estimator for the hazard rate function is given by:

r̂IG(x) =
f̂IG(x)

ŜIG(x)
, (3.2.5)

where, f̂IG(x) and ŜIG(x) as in definition 3.1.2 and 3.2.3 respectively.

3.2.1 The Properties of the IG Kernel Estimator r̂IG(x)

By Definition 3.2.3, we present the mean, variance and the bias in the following

theorem.

Theorem 3.2.1. Under the conditions C1 and C2 we have :

Bias(r̂IG(x)) =
1
2
x3f ′′(x)h

S(x)
+ o(h), (3.2.6)

and

V ar(r̂IG(x)) =
1

2n
√
πh
x−

3
2
r(x)

S(x)
+ o(n−1h−

1
2 ). (3.2.7)

Proof: To find the bias we find the mean :

E(r̂IG(x)) ≈ E(f̂IG(x))

E(ŜIG(x))

=
f(x) + 1

2
x3f ′′(x)h

S(x)
+ o(h), (since ŜIG(x)

p→ S(x))

= r(x) +
1
2
x3f ′′(x)h

S(x)
+ o(h). (3.2.8)

Hence we have :

Bias(r̂IG(x)) ≈ E(r̂IG(x))− r(x)

=
1
2
x3f ′′(x)h

S(x)
+ o(h). (using Equation 3.2.8)
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Now we prove the second part of the theorem, Since by definition 3.2.3,

V ar (r̂IG(x)) = V ar

(
f̂IG(x)

ŜIG(x)

)

= V ar

(
f̂IG(x)

S(x)

)
=

1

S(x)2
V ar

(
f̂IG(x)

)
=

1

S(x)2

1

2n
√
πh
x−

3
2f(x) + o(n−1h−

3
2 ), (by Theorem 3.1.1)

=
1

2n
√
πh
x−

3
2
f(x)

S(x)2
+ o(n−1h−

1
2 )

=
1

2n
√
πh
x−

3
2
r(x)

S(x)
+ o(n−1h−

1
2 ).

Remark 3.2.1. Form Theorem 3.2.1, we note that by Equation (3.2.6) the Bias(r̂IG(x))

is increasing in h and by Equation (3.2.7) the V ar (r̂IG(x)) is decreasing in nh
1
2 . And

hence under the conditions C1 and C2, we have Bias(r̂IG(x))→ 0 and V ar (r̂IG(x))→

0 as n→∞ which give us the asymptotic consistency.

Next, we analyze the performance of the IG kernel estimator for the hazard rate

function r̂IG(x) by considering the mean squared error MSE and asymptotic mean

squared error AMSE. We will use this to get the global properties and to investigate

the optimal bandwidth later. Firstly, using Theorem 3.2.1, we give the mean squared

error MSE in the next corollary.

Corollary 3.2.1. The mean squared error MSE(r̂IG(x)) is given by :

MSE(r̂IG(x)) =

( 1
2
xf ′′(x)h

S(x)
+ o(h)

)2

+
1

2n
√
πh
x−

3
2
r(x)

S(x)
+ o(n−1h−

1
2 ). (3.2.9)

Proof:

MSE(r̂IG(x)) = (Bias(r̂IG(x)))2 + V ar(r̂IG(x))

=

( 1
2
x3f ′′(x)h

S(x)
+ o(h)

)2

+
1

2n
√
πh
x−

3
2
r(x)

S(x)
+ o(n−1h−

1
2 ).

A closer look to Equation 3.2.9, we see that the MSE increases in h (the first term)

and decreases in nh
1
2 (the second term) and hence to make the MSE to decline as

n → ∞, we have to make these both terms small and this is hold by condition C2

we assumed before.
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Remark 3.2.2. By the same way in Chapter 1, letting o(h) and o(n−1h−
1
2 ) → 0,

the asymptotic mean squared-error (AMSE) is given by :

AMSE(r̂IG(x)) =

( 1
2
x3f ′′(x)h

S(x)

)
)2 +

1

2n
√
πh
x−

3
2
r(x)

S(x)
(3.2.10)

Asymptotic Normality of the Estimator r̂IG(x):

Theorem 3.2.2. Under the conditions C1 and C2, the following holds :√
nh

1
2 (r̂IG(x)− r(x))

d→ N

(
0,

1

2
√
π
x−

3
2
r(x)

S(x)

)
.

Proof:√
nh

1
2 (r̂IG(x)− r(x)) =

√
nh

1
2

(
f̂IG(x)

ŜIG(x)
− f(x)

S(x)

)

=
√
nh

1
2

(
f̂IG(x)

ŜIG(x)
− f(x)

ŜIG(x)
− f(x)

S(x)
+

f(x)

ŜIG(x)

)

=

√
nh

1
2

ŜIG(x)

(
f̂IG(x)− f(x)− f(x)ŜIG(x)

S(x)
+ f(x)

)

=

√
nh

1
2

ŜIG(x)
(f̂IG(x)− f(x)) +

√
nh

1
2f(x)

S(x)ŜIG(x)
(ŜIG(x)− S(x))

(3.2.11)

d→ 1

S(x)
N

(
0,

1

2
√
π
x−

3
2f(x)

)
+ 0

d→ N

(
0,

r(x)

2
√
πS(x)

x−
3
2f(x)

)
. (3.2.12)

The result 3.2.12 is by Theorem 3.1.2 and Lemma 3.1.1 , since by Theorem 3.1.2,

the first term in equation 3.2.11 is asymptotically distributed and the second term

vanishes by Lemma 3.1.1 .

3.2.2 Bandwidth Selection

In Chapter 1 and Chapter 2 we discussed the ways for finding the optimal bandwidth.

Here we will use the same way. We will get the global properties AMISE. In order

to find the optimal AMSE (AMSE∗) , we differentiate the AMSE in Equation
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3.2.10 with respect to h, then we equating it to zero, to obtain :

2h

( 1
2
x3f ′′(x)

S(x)

)2

− 1

2

1

2n
√
π
h−

3
2x−

3
2
r(x)

S(x)
= 0. (3.2.13)

Next, Multiplying Equation (3.2.13) by h
3
2 both sides, and replacing r(x) by f(x)

S(x)

we get :

2h
5
2

( 1
2
x3f ′′(x)

S(x)

)2

=
1

4n
√
π
x−

3
2
f(x)

S(x)2
. (3.2.14)

Now, solving (3.2.14) for h we have :

h
5
2 =

(
1

4n
√
π
x−

3
2
f(x)

S2(x)

)(
2
S2(x)

f ′′(x)2x2

)
=

x−
5
2

2n
√
π

f(x)

f ′′(x)2

Hence h∗ is given by :

h∗ =

(
x−

5
2

2n
√
π

f(x)

f ′′(x)2

) 2
5

=

(
1

2
√
π

f(x)

f ′′(x)2

) 2
5

x−1n−
2
5 . (3.2.15)

Using the result (3.2.15) in (3.2.10) we have :

AMSE∗(r̂IG) =

(
x3f ′′(x)

2S(x)
x−3n−

2
5

(
f(x)

2
√
π

) 2
5 1

f ′′(x)
4
5

)2

+
1

2n
√
π
x−

1
2
f(x)

S(x)2
h−

1
2

=

(
xf ′′(x)

2S(x)
x−1n−

2
5

(
f(x)

2
√
π

) 2
5 1

f ′′(x)
4
5

)2

+
1

2n
√
π
x−

1
2
f(x)

S(x)2

(
f(x)

2
√
πf ′′(x)2

)− 1
5

x
1
2n

1
5

=
1

4

(
f(x)

2
√
π

) 4
5

(
n−

4
5f ′′(x)

2
5

S(x)2

)
+

(
f(x)

2
√
π

) 4
5

(
n−

4
5f ′′(x)

2
5

S(x)2

)

=
5

4

(
f(x)

2
√
π

) 4
5

(
n−

4
5f ′′(x)

2
5

S(x)2

)
.

(3.2.16)

Note that the optimal bandwidth h∗ is proportional to n−
2
5 , and as in Chapter 1 we

stuied that the optimal bandwidth is of order o(n−
2
5 ).

Global Properties :

Regarding global properties the optimal bandwidths h∗∗ and mean integrated

squared errors MISE∗∗ will be discussed here :
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Using Equation (3.2.15) by multiplying the denominator and nominator by x2 and

taking the integration we get :

h∗∗ =

(∫∞
0

1
2
√
π
x−

5
2x2f(x)dx∫∞

0
x2f ′′(x)2dx

) 2
5

n−
2
5

=

(∫∞
0

1
2
√
π
x−

3
2f(x)dx∫∞

0
(x3f ′′(x))2 dx

) 2
5

n−
2
5 . (3.2.17)

To find AMISE∗∗, we multiply Equation(3.2.17) by
(
x
2
5

x
2
5

)
and taking the integration

as follow :

AMISE∗∗(r̂IG(x)) =
5

4

(
1

2
√
π

∫ ∞
0

x−
3
2f(x)dx

) 4
5

(∫∞
0

(x3f ′′(x)2)
1
5dx

S(x)2

)
n−

4
5

(3.2.18)

By Remark 1.3.3 and Equation 3.2.18, we deduce that the IG kernel estimator for

the hazard rate function, achieve the optimal rate of convergence for the AMISE

within the class of non-negative kernels (class of second order kernel functions).

Practical Optimal Bandwidth :

In practice, the bandwidth selection can be done by using the same rule which

proposed by Scaillet. Scaillet used the same way were Silverman proposed (see

Example 2.2.1), but for the log-normal probability density function in the IG case.

For this, if lnx follows a normal distribution with parameters µ and σ2 we have :∫ ∞
0

x−
1
2f(x)dx = exp(

1

8
(σ2 − 4µ)). (3.2.19)

and ∫ ∞
0

(xf ′′(x))2dx =
12 + 4σ2 + σ4

32
√
πσ5

exp(
1

4
(9σ2 − 12µ)). (3.2.20)

Hence, using 3.2.19 and 3.2.20 in Equation 3.2.17 the optimal bandwidth is given

by :

h∗∗ =

(
16σ5exp(1

8
(−17σ2 + 20µ))

12 + 4σ2 + σ4

) 2
5

n−
2
5 . (3.2.21)

where, the unknown parameters σ and µ are estimated by the arithmetic mean as

follow :

1. x̄ = 1
n

∑n
i=1 lnxi ,

50



2. σ̂2 = 1
n−1

∑n
i=1(lnxi − x̄)2.

Conclusion :

The conclusion of this chapter is that by using a constant bandwidth h, the

IG kernel estimator for the hazard rate function r̂IG appears to have the following

asymptotic properties:

1. r̂IG(x) is free boundary bias, because its bias Bias(r̂IG(x)) is of order o(h)

in the interior of [0,∞) and near zero.

2. r̂IG(x) is mean square consistent for r(x).

3. r̂IG(x) is an asymptotically unbiased estimator of r(x).

4. r̂IG(x) is asymptotically normally distributed.

Finally, we summarize the comparison between the two proposed estimators for

the hazard rate function (r̂IG(x) and r̂G(x)) by comparing there biases and variances

near the zero and comparing the AMSE∗ for each estimator.

1. The Bias :

Recall that

Bias(r̂IG(x)) =
1
2
x3f ′′(x)h

S(x)
+ o(h),

and

Bias(r̂G(x)) =
f ′′(x)h2

2S(x)
+ o(h2).

we see that the expressions of the Bias(r̂IG(x)) and Bias(r̂G(x)) increases in xh and

h2 respectively, and hence near the zero (x ∈ (0, h)) we have xh < h2, which imply

that Bias(r̂IG(x)) < Bias(r̂G(x)).

2. The Variance :

Recall that,

V ar(r̂IG(x)) =
1

2n
√
πh
x−

1
2
r(x)

S(x)
+ o(n−1h−

1
2 ). (3.2.22)
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and

V ar(r̂G(x)) =
f(x)

2nh
√
πS2(x)

+ o(
1

nh
), (3.2.23)

we see that the expressions of the V ar(r̂IG(x)) and V ar(r̂G(x)) decreases in
√
xh

and h respectively, and hence as x ∈ (0, h) we have
√
xh < h, which imply that

V ar(r̂IG(x)) > V ar(r̂G(x)).

3. The AMSE∗ :

Finally, for any x ∈ [0,∞), the AMSE∗ for both estimators is the same

AMSE∗(r̂IG(x)) = AMSE∗(r̂G(x)) =
5

4

(
f(x)

2
√
π

) 4
5

(
n−

4
5f ′′(x)

2
5

S(x)2

)
,

which means that they have the same behavior in practical applications.

The comparison appear clearly in the next chapter which proposed a comparison

with applications using real data and simulated data describing the behavior of the

two estimators especially near zero.
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Chapter 4

Applications

In this Chapter, we test the performance of the IG kernel estimator of the pdf, cdf

and the smoothed indirect IG kernel estimator for the hazard rate function using

applications to real and simulated data. The chapter is in three sections. Section one

contains the first application which deals with simulated data set from the normal

distribution, and we estimated the pdf and the hazard rate function by using two

different kernels, the normal and the Epanchinkove kernel. In the second application,

we used a simulated data for the exponential distribution, and we estimated the pdf

and the hazard rate function by using the IG and Gaussian kernel estimators.

Section two deals with real life data set (the suicide data), and we estimated the

hazard rate function by using the normal and Epanchinkove kernel estimators, and

we estimated the pdf and the hazard rate function by using the IG kernel estimator.

Section three is a conclusion summarizes the main results of the thesis.

For the practical implementation of the IG estimator, we will use the bandwidth is

computed using the following equation from Silverman[17]

h = 1.06sn−
1
5 , (4.0.1)

where s is the sample standard deviation and n is the sample size, and for the

Gaussian estimator we will use the rule of chapter 2. The applications will construct

using S-Plus program.
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4.1 An Application with Simulated Data

The performance of IG estimator is tested using two simulated data, and we com-

puted for each estimator the Mean Squared Error (MSE) , where

MSE =
n∑
i=1

(yni − yi)2

n

where yi denotes the true value and yni denotes its predicted value.

In the first application, we used a simulated data for the standard normal distri-

bution, and we estimated the pdf and hazard rate function by using two different

kernels, the normal and the Epanchinkove kernel. In the second application, we

used a simulated data for the exponential distribution, and we estimated the pdf

and the hazard rate function by using the IG and Gaussian kernel estimators.

Application 1 : In the first application, we have simulated data of size 200 from

the standard normal distrubution. Then we used the kernel estimator

f̂(x) =
1

nh

n∑
i=1

K(
x−Xi

h
)

which we have studied in the first chapters. Using two different kernels, the normal

and the Epanchinkove kernel respectively.

KNW (x) = 1√
2π
e

−x2
2 ,−∞ < x <∞

KEP (x) = 3
4
(1− x2)I(|x|≤1)

Figure 4.1, Figure 4.2 show the Normal kernel and Epanchinkove kernel estimator

of the density function of the data.
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Figure 4.1: The Normal kernel estimator of the pdf

Figure 4.2: The Epanchinkove kernel estimator of the pdf
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Figure 4.3 and Figure 4.4 show the kernel estimator of the hazard rate function

for the simulated data, which we have studied in chapter 2, Equation 2.1 using the

normal kernel and the Epanchinkove kernel respectively.

Figure 4.3: The true Hazard Function and hazard estimation of normal kernel.

Figure 4.4: The true Hazard Function and hazard estimation of Epanchinkove kernel.
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We note of Figure 4.3 and 4.4 , The hazard estimation of the Normal and Ep-

anchinkove kernel estimators are sufficient about zero .

Table 4.1 contains the results for the Normal and Epanchinkove kernel estimators

for the simulated data, where we computed the MSE .

Table 4.1: The MSE for Application 1.

MSE

Normal Krenel 0.008975474

Epanchinkove Kernel 0.001135421

From the table, we show that the Epanchinkove kernel estimator of the hazard

gives interesting results for the MSE.

Application 2 : A sample of size 200 from the exponential distribution with

pdf f(x) = e−x, x > 0, is simulated. After that the density function and the hazard

rate functions were estimated using the IG and the Gaussian estimators. The IG

and Gaussian kernel estimators of the density function for the simulated data of the

exponential distribution presented in Figure 4.5.

Figure 4.5: The IG and Gaussian kernel estimators of the density function for the

simulated data of the exponential distribution

The Figures show that the performance of the IG estimator is better than that of

57



the Gaussian estimator at the boundary near the zero.

The hazard rate function for the exponential distribution

h(x) = f(x)
1−F (x) = e−x

1−(1−e−x) = 1

In Table 4.2, we computed the MSE for both the IG and Gaussian kernel estimators

of the hazard rate function for the simulated data of the exponential distribution.

Table 4.2: The MSE for the IG and Gaussian kernel estimators for Application 2.

MSE

The Gaussian kernel 0.02929727

Inverse Gaussian kernel 0.007413355

Figure 4.6 shows the IG and Gaussian kernel estimators of the hazard rate func-

tion for the simulated data of the exponential distribution.

Figure 4.6: The IG and Gaussian kernel estimators of the hazard rate function for

the simulated data of the exponential distribution

From Table 4.2 and Figure 4.6 , We note the IG estimator is better than that of

the Gaussian estimator at the boundary near the zero.
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4.2 An Application with Real Data

In this section, we use the survival time of the lengths of 86 spells of psychiatric

treatment undergone by patients used as controls in a study of suicide risks by

Silverman ( Table 4.1, page 8 ) [17], to exhibit the practical performance of the IG

estimator. The data gives the lengths of the treatment spells (in days) of control

patients were hospitalized. The objective is to estimate the hazard rate function

which in this case represents the instant potential per unit of time that an individual

die within the time interval (x, x + ∆) given that it was known to be alive up to

time x.

Table 4.3: Lengths of treatment spells (in days) of control patients in suicide study

(Data from [17]).

Lengths(in days)

1 25 40 83 123 256

1 27 49 84 126 257

1 27 49 84 129 311

5 30 54 84 134 314

7 30 56 90 144 322

8 31 56 91 147 369

8 31 62 92 153 415

13 32 63 93 163 573

14 34 65 93 167 609

14 35 65 103 175 640

17 36 67 103 228 737

18 37 75 111 231

21 38 76 112 235

21 39 79 119 242

22 39 82 122 256
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We estimated the hazard rate function of the suicide data by using the normal

kernel estimator and we presented in Figure 4.7, and it estimated using Epanchinkove

kernel is presented in Figure 4.8.

Figure 4.7: The Normal kernel estimatior of the hazard rate function for suicide

data

Figure 4.8: The Epanchinkove kernel estimatior of the hazard rate function for

suicide data
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Then, in Figure 4.9, shows the IG kernel estimators for the pdf of the suicide

data, and in Figure 4.10, we presented the IG kernel estimators of the hazard rate

function for the suicide data.

Figure 4.9: The IG kernel estimator for the pdf of suicide data

Figure 4.10: The IG kernel estimator of the hazard rate function estimate for the

suicide data.
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4.3 Summary

Conclusion

In this thesis, we have discussed a new kernel estimator of the hazard rate function

for (iid) data based on the IG with non negative support which was proposed by

Scaillet in [15]. The proposed estimator overcomes the bias problem when the hazard

rate function is estimated at the boundary region near the zero.

The asymptotic normality, the strong consistency and the AMSE of the proposed

estimator were obtained. The AMSE of the new estimator is smaller than that of

the Gaussian kernel near the zero.

All applications from the simulated and real data show that the performance of

the proposed estimator is better than that of the Gaussian kernel estimator at the

boundary region near the zero. This is due to weight allocation by the Gaussian

kernel outside the density support when smoothing is carried out at the boundary

near the zero.

Recommendations

A new estimator can be modified by considering a new bandwidth selection technique

that uses a variable bandwidth that depends on the points at which the hazard

rate function is estimated rather than a constant variable (see [7]).
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