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ABSTRACT OF THE THESIS

High Speed Networking in the Multi-Core Era

by

Benjamin Wun

Doctor of Philosophy in Computer Engineering

Washington University in St. Louis, 2011

Research Advisor: Professor Patrick Crowley

High speed networking is a demanding task that has traditionally been performed in

dedicated, purpose built hardware or specialized network processors. These platforms

sacrifice flexibility or programmability in favor of performance. Recently, there has

been much interest in using multi-core general purpose processors for this task, which

have the advantage of being easily programmable and upgradeable. The best way

to exploit these new architectures for networking is an open question that has been

the subject of much recent research. In this dissertation, I explore the best way to

exploit multi-core general purpose processors for packet processing applications. This

includes both new architectural organizations for the processors as well as changes

to the systems software. I intend to demonstrate the efficacy of these techniques by

using them to build an open and extensible network security and monitoring platform

that can out perform existing solutions.
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Chapter 1

Introduction

High speed packet processing is a demanding but important task that is usually

performed in dedicated, purpose built hardware. As networks get more complex, ad-

ditional tasks such as network security and monitoring, or the deployment of research

protocols, have created a demand for programmable network devices that can be ex-

tended by the end user to perform new tasks or test new ideas. The existing solutions

to this problem range from software routers based on general purpose processors, to

specialized network processors and extensions to commercial routers. No single so-

lution delivers the combination of flexibility, programmability and high performance

required in this domain.

Recently, general purpose processors (GPPs) have been adopting characteristics com-

mon to network processing, especially the use of multi-threaded processing cores and

multiple cores on a chip. These additions make conventional processors better able

to meet the requirements of high speed networking applications; furthermore, general

purpose processors are easier to program than network processors (NPs). GPPs can

use standard operating systems and programming languages, and do not expose ar-

chitectural details to the extent that NPs do. However, the software frameworks on

GPPs are often not optimized for multi-core environments, or for the demanding and

specialized task of line rate network processing. Many projects have tried to make

it easier to write networking code on GPPs, but none seem to offer the definitive

solution.

In this dissertation, I will explore new architectures, both software and hardware,

for designing programmable high speed network processing platforms. I will further

1



demonstrate the effectiveness of such an architecture for creating network monitoring

applications.

The first part of this study will investigate architectural additions to general purpose

processors to support networking. I propose and evaluate a heterogeneous multi-core

architecture that moves network stack processing to a series of specialized cores on

the same processor die as the main CPU.

The second part of this study will examine the best way to create programmable

packet processing platforms in the context of existing general purpose platforms. I

examine the efficacy of various parallelization strategies on Snort, an example of a

complex and stateful network application. I present an API for writing complex,

stateful, pipelined network applications and examine its efficacy by porting the Snort

intrusion detection system to use it. Finally, I take the lessons learned from paral-

lelizing Snort and apply them to the design of a scheduler API for network centric

applications.

1.1 Contributions

This thesis makes several contributions.

First, we propose a novel hardware architecture that uses a cluster of specialized

cores to perform networking tasks on behalf of a host processor, a technique known

as network onloading. We evaluate this architecture by building a prototype using

the IXP network processor as a starting point. We demonstrate an improvement in

packet reception throughput from 40 to 100 % depending on the incoming packet

size.

Second, we propose an API for writing networking applications on multi-core archi-

tectures. We evaluate the effectiveness of this API by porting the Snort intrusion

detection system to use it.

Finally, we extend the API to include provisions for writing new schedulers that

dynamically adapt the application mapping to the underlying hardware based on

2



changes in the workload. We use this API to evaluate the effectiveness of two dif-

ferent scheduling algorithms and demonstrate the usefulness of each under different

scenarios.

1.2 Methodology

We test the proposed ideas by building working prototypes. Evaluating the prototypes

can happen in a variety of ways. When possible, systems were tested using the Open

Network Laboratory, a reprogrammable network testbed [51]. Other systems were

evaluated in a more ad-hoc fashion. The details of each experiment are described in

further detail in the appropriate chapter.

1.3 Organization

This document is organized around a series of projects in which ideas are proposed

and prototypes built to test them. Each chapter represents a project organized around

a single idea, and as such, background information and related work for each project

are presented in the relevant chapter. The remainder of this document is organized

as follows. Chapter 2 proposes a novel architecture for network onloading. Chapter

3 presents an evaluation of a parallelized version of Snort and an analysis of the

bottleneck encountered by it. Chapter 4 presents an API for writing parallelized

network applications. Chapter 5 extends this API to allow the writing of new packet

schedulers and evaluates the efficacy of two different schedulers, one of which has not

previously been published.
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Chapter 2

Hardware Acceleration

In this section, we examine the proposition that the addition of small, simple cores

to a general purpose CPU can accelerate standard sockets network I/O, either by

employing the techniques of server NICs or through network onloading, which moves

network protocol processing from the host CPU (which must be shared with other

applications) to a set of dedicated resources. The goal of this proposed architecture is

to find a way to preserve traditional network programming semantics while bringing

performance in line with modern demands. To evaluate this proposal, we have built

a prototype system using the Intel IXP network processor [22]. We will begin this

section by providing some background about the IXP, then provide some further

background on network processing on general purpose processors, discuss related

work, and finish by describing our proposed architecture.

2.1 Packet Processing and the Intel IXP

IXP Network Processors (NPs) feature two types of processors. The first is an ARM

based XScale which boots a traditional OS and is typically used in management and

slow path processing. The second processor type, the microengine (ME), is a small

embedded core for line-rate packet processing. IXP NPs have a single XScale, and

4, 8, or 16 MEs, depending on the specific chip. In this work, we use the IXP2350,

which is illustrated in Figure 2.1.

In our prototype, the XScale is the host CPU, and the MEs provide I/O acceleration.

This is an atypical use of the XScale. In most application, the XScale would only
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Figure 2.1: Organization of the IXP 2350 NP

receive exception packets, a relatively small fraction of traffic. In our system, an

application on the XScale is the source and destination for every packet. We use

the IXP for its convenient approximation of our architectural model. The XScale

represents a high-performance GPP for which the MEs accelerate network I/O.

Each IXP ME provides hardware support for 8 hardware thread contexts, including

register storage, multi-threading ISA extensions, and a thread arbiter. Each ME

has its own local data and instruction storage, both implemented as SRAMs. An

ME communicates asynchronously with other units via I/O commands and transfer

registers. A DRAM read, for example, is carried out by sending a read operation to the

DRAM controller (via the Command Outlet FIFO) that specifies the desired address

as well as the target incoming transfer registers to which the data should be delivered.

Hardware signals are specified in the ISA and are asserted when requested operations

have completed. This message-passing style and the use of hardware signals allow ME

software to initiate multiple external requests without blocking, as long as subsequent

computation does not depend on the completion of these requests. This interface

provides both a more efficient way to access memory and a way to hide memory

latencies.

Other units provide critical functions or resources in hardware, including a config-

urable hash unit, 16KB of on-chip scratch memory and 128KB of message SRAM.
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The IXP 2350 include a DDR SDRAM and a QDR SRAM controller on-chip as chan-

nels for bulk and latency-sensitive data storage, respectively. A separate channel of

SDRAM is used by the OS and programs on the XScale. Both the MEs and XScale

are clocked at 900 MHz.

All IXP processors contain a Media Switch Fabric (MSF) to facilitate high speed

communication between the MEs and MACs. The IXP2350 uses the MSF to interface

to its two, 1Gbps on-chip MACs. Having the MAC located on-chip over a high speed

interface is a great advantage for scalable, high speed networking [10].

2.2 Linux Network Stack

On general purpose processors, network processing is split between the network in-

terface card (NIC) and the network stack running in the operating system kernel on

the host CPU. In this section we provide some brief background on how packets flow

through a modern system.

First, we take a look at packet reception. When a packet arrives at the NIC, it raises

an interrupt, which causes the host to stop whatever program it is executing in order

to run the network receive code. The host copies the packet from the NIC to a buffer

in main memory. From there, the headers and checksums are verified, the packet is

classified and the payload is copied to the buffer of the user program that is waiting

for it.

On the transmit side, the host copies packets from a program’s buffer into a protected

kernel space buffer. From there, it adds the proper headers and computes checksums.

It then copies the packet into the NIC’s buffer and tells it to transmit the packet.

With this data flow, all processing is done on the host processor, which cannot execute

other programs while it is handling network traffic. Since network processing shares

the CPU with other programs, under load, the system may drop a large number

of packets or become so dominated by network processing that other programs are

starved of resources. Modern NICs include accelerators to offload or streamline parts

of this process, including interrupt moderation, receive rings and checksum offload.
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These are discussed in more detail in our description of our prototype system in

section 2.4. In network onloading, we take this a step further and move all network

protocol processing to dedicated resources, freeing the host CPU to perform other

tasks, as discussed in section 2.4.2.

A further bottleneck in this scenario is the movement of data from user to kernel

space. Not only does it require moving a potentially large amount of data, it requires

a context switch from kernel to user space and back, which can be very costly- up to

36 percent in some scenarios [23]. However, this is unavoidable if we are to preserve

the sockets programming model, which is an explicit goal of this part of the project.

2.3 Related Work

TCP offload engines (TOEs), which move protocol processing from the host CPU to

the NIC, are being used to accelerate specific tasks, such as storage area networking or

for use with protocols such as RDMA [33] [48]. Though commercial implementations

exist, it is inconclusive whether TOEs are actually an effective solution, with some

studies showing the TOE itself to be the actual bottleneck [5] [43]. Our approach

differs from that taken with TOEs, as IXP MEs are on-chip, fully-programmable, and

closely coupled with the CPU, thus bypassing the major problems with TOEs and

providing additional opportunities for optimization. Furthermore, our interest is in

accelerating general purpose networking, whereas most TOEs are used to accelerate

a specific task.

Binkert et al., in a simulation based study, have examined the efficacy of moving

the NIC’s location relative to the CPU [10]. They found that putting the NIC

on a direct HyperTransport like channel and eliminating the I/O bus bottleneck

greatly increased system throughput. Locating the NIC on chip produced further

improvements for the receive path and also allowed packet data to be directly written

into cache, a potential accelerator for certain network workloads. While the IXP has

no mechanism for direct cache access by the MEs, the MEs, MSF, and MACs are

located on-chip with a dedicated off-chip connection to the PHY.
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The ETA [41] project demonstrates a new interface for communication between a

host processor and an associated packet processing engine (PPE). Their interface

allows for asynchronous operation, whereby a user program can send off a packet

for transmission or request notification of arriving packets without blocking. The

traditional sockets interface semantics require a program to block until the packet

is sent or until a packet arrives. For the prototype ETA system, the PPE was a

Xeon processor in an SMP system. This prototype showed both improved network

throughput and an increase in surplus cycles for the host processor. This differs from

our research because ETA uses a state of the art superscalar out of order processor

with a high clock rate, deep pipeline and prodigious amounts of cache as the packet

processing engine, whereas our project uses the smaller, in order, single issue MEs

of the IXP. The smaller, simpler MEs are more power and area efficient for this task

than the Xeon.

The authors of ETA have advocated TCP Onloading by combining ETA with a mem-

ory aware reference stack (MARS) [41]. MARS is an attempt to mitigate memory

access latencies by using asynchronous memory copies, light-weight threading, and

direct cache access. The first two are already present in the IXP.

Finally, recent advances in NIC architectures for virtualization have produced com-

mercial NICs with multiple receive queues and the ability to classify packets at the

NIC. This pushes some functionality traditionally performed in the CPU to the NIC

and provides an alternative approach to exploiting multi-core processors. This ap-

proach is implemented in homogeneous multi-core environments (though it does not

have to be) and packets are still processed in a traditional network stack (either in

the OS or VM) and only yields real performance gains when there are a large number

of flows involved which can be processed in parallel.

2.4 Network Acceleration

In order to evaluate the effectiveness of our onloading proposal, we have explored

two ways of using the MEs to accelerate network processing in the Linux kernel

running on the XScale. The first, which we term the softnic approach, is to have

the MEs emulate a high end server NIC [11], while leaving the networking stack

8



Figure 2.2: Architecture Comparison

on the XScale unmodified. Our second system is an onload engine that moves the

networking stack to the MEs, and only performs high level interface functions on the

XScale. Both systems either enhance or replace the kernel’s networking stack and

support the sockets interface for communicating with user programs.

2.4.1 Software NIC

Figure 2.2 contains an illustration of the softnic’s architecture. To transmit a

packet from the softnic, a user program calls the sendmesg system call. The upper,

unmodified layers of the network stack in the Linux kernel will copy the data to be

9



sent into a kernel space buffer, determine the interface the packet should be sent out

on, and add headers. At this point, the fully formed packet is passed to the driver

layer code, which is where our softnic modifications take over. The driver code places

the buffer on a ring to the MEs for transmission. The kernel on the XScale is now

finished with this packet and can go on to process the next one. An ME is constantly

polling this ring (a hardware controlled scratchpad ring) for work. When it dequeues

a packet buffer, it copies the contents into an internal buffer and raises an interrupt,

letting the Xscale know it can now free that buffer. The internal buffer is then passed

to another ME in a pipelined fashion for transmission. When a packet arrives at

the MEs in the softnic, its checksum is verified, and it is copied into a kernel packet

buffer, a pool of which has been preallocated for the MEs’ use. The filled buffer is put

on a ring for delivery to the XScale, and an interrupt is raised. The interrupt handler

on the XScale will turn off interrupts, pull packets off the receive ring, and enqueue

them for processing by higher levels in the kernel. Interrupts are re-enabled when

the receive ring has been emptied. This is the adaptive polling technique. Control

devolves to the unmodified Linux stack and a soft interrupt is raised, invoking the

protocol processing code.

2.4.2 Onloader

Figure 2.2 also illustrates the organization of the onloader. When sendmsg is called

in the onloader, the kernel prepares the user buffer for DMA and signals the MEs

that a buffer is ready for processing. The MEs copy data directly from the user buffer

into an internal buffer. The MEs then add headers and transmit the packet.

When a packet arrives at the onloader, an ME verifies the checksum, examines the

headers, looks up the control block for that connection, and enqueues the packet for

the proper connection. An interrupt is raised only if there is an idle process waiting

for that packet to arrive. The only work the Xscale needs to do is to notify the waiting

process that a packet is now available.

Our onload engine currently only supports UDP over IP. We believe that our re-

sults will also apply to TCP, as most of the OS infrastructure, such as interrupts,

DMA, sockets interface etc. are common between them. The only major difference

10



is the protocol processing step, which is a demonstrably small component of packet

processing [14].

2.4.3 Emulated NIC

To determine how well the softnic and onload engine accelerate networking, we

compare them to a base case wherein the MEs perform the minimum possible work

to get packets to and from the MSF and most tasks are left to the XScale (called the

emu nic in the graphics). The left side of Figure 2.2 illustrates the organization of the

emulated nic. The emu nic corresponds to a low end NIC in a desktop system. The

main difference between the softnic and this base case is that the driver code on the

XScale must compute checksums and do all data copies between kernel buffers and

device buffers. Additionally, interrupt handling is more expensive, because interrupts

are raised for every packet on reception instead of adaptively polling after the first

one.

2.5 Results

This section describes the experiments we ran to evaluate the effectiveness of the

onloader in accelerating networking operations.

2.5.1 Experiment Setup

Our hardware setup consists of an IXP2350 system, connected through a gigabit

Ethernet switch to a PC running Linux 2.4.19. The PC sends packets to the IXP to

test the IXP’s receive throughput, and receives packets from the IXP to determine

the IXP’s send throughput. We have determined by sending packets between two

PCs that the PC does not represent a bottleneck.

As will be seen, applications executing on the 900 MHz XScale processor cannot re-

ceive or transmit packets at rates greater than 500 Mbps. While the packet processing

11



code on the MEs can sustain approximately 2 Gbps, this rate cannot be delivered

to the XScale and the applications it hosts. The main challenge facing the end-host

system is data copying. Data not only has to be copied from the network into internal

buffers and out again, but also into and out of user buffers within the system. As

we will see, the cost of this is due not only to moving bytes, but also to pinning and

aligning with virtual pages. Normally, router applications implement their fast path

on the MEs alone and use the XScale for exceptions, but since we must interface with

user programs on the XScale, we incur the overheads of sharing it with other OS

functions, such as timer interrupts, or task scheduling.

While the XScale on the IXP2350 cannot perform end-host network processing tasks

at gigabit rates, we note that our goal is not absolute performance, but to validate

our idea that small, simple, efficient cores attached to a general purpose processor

can accelerate network processing. Hence, our use of the emu nic as a base case for

performance.

We ran our experiments using the Iperf benchmark [37] in UDP mode. In server

mode, Iperf waits for a client to connect, and counts the number of bytes received

until a termination packet is received. A timestamp is taken after reception of the

first packet and reception of the termination packet for determining the achieved

throughput. The client program sends fixed sized packets for a given amount of time,

followed by a termination packet, and keeps track of the number of bytes sent and

the elapsed time. This is a test of throughput in a bulk data movement application.

2.5.2 Receive Path

Figure 2.3 shows the achievable receive throughput for the 3 cases. We can see

that both the softnic and onloader are clearly superior to the base case. For large

packets, a nearly 10-fold improvement is seen. This is mainly due to the MEs’ superior

ability to move memory from buffer to buffer. The base case NIC suffers from the

XScale’s more limited bandwidth when copying between two buffers. Furthermore,

while the number of data copies is the same between the base NIC and the softnic

(from the MSF to an internal buffer, to a kernel buffer, to a user buffer), the softnic

handles the copy from the internal to kernel buffer asynchronously on the MEs. The
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Figure 2.3: Receive Throughput Comparison

onloader avoids the copy to a kernel buffer altogether and copies data directly from

its internal buffers into the user program’s buffers.

Figure 2.4 shows the percentage improvement of the onloader over the softnic for

different packet sizes. Between the softnic and the onloader, the onloader has

superior receive performance, with throughput increase between 100% and 40%. This

difference is especially true for smaller packets, where per packet overheads, such as

header processing and control buffer lookups, dominate execution time. The main

reason for the improvement is that the onloader can asynchronously receive and

enqueue packets while the XScale can be dedicated to other tasks, such as running

the userspace benchmarking program. For the softnic, the XScale must split its time

between packet processing and other tasks. With larger packets, the per byte costs

of checksumming and data copying are dominant, and as this is done on the MEs in

both the softnic and onloader, the difference between them becomes quite small,

about 20%.

Figure 2.5 shows the throughput of various onloader receive components. The top

line shows the sending rate of the PC. The first set of bars is the receive throughput

of the driver and receive blocks of the onloader, with no user program consuming

the received packets. These blocks receive packets from the network, move them into

an internal buffer, verify checksums, parse the headers, look up control blocks and
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Figure 2.5: Receive Components
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Figure 2.6: Transmit Throughput

enqueue the packets for future reference. They achieve a receive throughput very

close to the sender’s sending rate. The second set of bars shows the throughput of

the entire onloader system, including the driver and receive block, as well as an

XScale component that calls the recvmsg system call and moves the packet payloads

into a user buffer. As the driver and receive blocks receive packets about as fast as

they are being sent, we must conclude that the movement of data into user space

using sockets is our receive bottleneck.

2.5.3 Transmit Path

On the transmit side, the onloader and softnic are again superior to the base case,

as demonstrated in Figure 2.6. The main reason is because the onloader and softnic

take advantage of the MEs’ superior ability to move memory, whereas the base case is

hampered by the XScale’s limited memory throughput. There is no clear advantage

for either the softnic or onloader on the transmit side, as the main bottleneck here is

memory copying and checksumming, which are offloaded to the MEs in both cases. As

with the receive path, the softnic on transmit has the advantage of asynchronously

performing a DMA from kernel buffers to ME buffers on the MEs while the onloader

copies directly from user buffers to internal ME buffers.
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2.6 Design Improvements

Our experience designing the onloader has demonstrated some aspects of the IXP

design that should be modified in a system designed for onloading. These observations

apply to any on-chip I/O acceleration technique. One such weakness is the lack of

a Memory Management Unit (MMU). In order for the MEs to copy data directly

to and from user space buffers into internal buffers, achieving the equivalent of zero

copy semantics, the kernel on the XScale must first ensure that all pages of the user

buffer exist in memory, walk the system’s page tables to find their locations, and

clean or invalidate the cache in order to keep consistency. This is very inefficient; in

early implementations, we found this cost to account for a third of the per packet

overhead. In order to get around this problem, we cached previous mappings of user

space buffers for each connection, so that if a program reuses the same buffer (as

the Iperf benchmark does), this costly overhead does not have to be incurred again.

This resulted in a 1.5X increase in throughput for the receive path, which is reflected

in our numbers for the previous section. Without this optimization, the onloader is

actually slower than the softnic, despite eliminating one buffer to buffer copy. Giving

the MEs a Translation Lookaside Buffer (TLB) would effectively do the same job in

hardware, without having to incur page walking overheads on the XScale.

Another optimization would be to have the MEs participate fully in the XScale’s

cache coherence protocol. The ability of the MEs to push data into the L2 on writes

to DRAM was a big improvement for both the onloader and softnic. If, instead

of using the push feature (which is optional), the XScale were to invalidate those

addresses in its cache and reload the data from memory, our experiments show that

the softnic would suffer a 35% degradation in performance. As of the current model

IXP2350s, this is the only feature available for cache coherence. A full coherence

protocol, which would include letting the MEs snoop the XScale cache on a memory

read, would prove advantageous for the transmit path.

One problem with supporting the sockets interface is that the system has no control

over where the application allocates its user buffers. Thus when moving data into

these buffers, the DMA mechanism must contend with both crossing page boundaries

and DRAM word alignment. For DRAM alignment, a read-modify-write may be
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necessary to avoid overwriting other data that shares a given DRAM word with the

user buffer.

2.7 Conclusion

The architecture proposed in this section is a set of hardware and software changes

that we believe represent the best way to preserve traditional socket programming

semantics in modern multi-core systems. In the next section, we examine strategies

for parallelizing applications on existing hardware and apply those lessons to the

design of a network API targeted at writing efficient, parallel networking applications

on multi-core processors.
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Chapter 3

Parallelization of Snort

The Snort [42] intrusion detection program is a popular tool for securing networks

using deep packet inspection to detect the signature of malicious packets. For Snort

to be effective, it must be able to keep up with increasing line rates. Future processors

will improve performance through the addition of more cores, and high performance

programs such as Snort need to be parallelized to take advantage of these newly

available resources.

We parallelize Snort by running a full copy of the Snort detection engine on each

core in the system. Packets of the same flow are processed in order on the same core

and parallelism is achieved by processing packets from different flows in parallel on

different cores.

We further contribute a study of the efficacy of a static flow pinning scheme under

realistic scenarios. We test our parallel Snort implementation against real world

packet traces collected from multiple sources, including the internal and external

Intel web servers, and publicly available traces of connections between university

networks and the internet core from the National Laboratory for Applied Networking

Research (NLANR). Results from the Intel servers are not presented directly for

privacy reasons, but were used to confirm results obtained using the other traces.

The NLANR traces are no longer available on the web, but this paper [29] gives

a good overview of their characteristics. The lessons learned from this case study

will be applied in the following chapters to the design of an API for writing efficient

parallel networking code.
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3.1 Parallel Snort

We parallelize Snort by replicating its functions across multiple cores and processing

multiple packets from different flows in parallel on different cores. Packets in the

same flow are processed sequentially on the same core to preserve in order delivery

and limit the sharing of per flow data across cores, which reduces lock and cache

contention between cores. We use a two stage pipeline to process packets- the first

stage, running in a dedicated core, receives packets (using libpcap), performs clas-

sification on those packet and passes them to the second stage. The second stage

contains the rest of Snort’s functionality, such as stream reassembly, regular expres-

sion matching, and event logging. This second stage can be replicated in multiple

threads, with each instance pinned to a particular CPU core. Flows are pinned to

a particular thread in order to increase cache locality and reduce context switch-

ing overheads. Flow pinning also allows us to eliminate locks for flow specific data

structures. Another optimization is the per thread packet pool- using separate buffer

pools increases cache locality and allows the queues to be implemented as lockless ring

buffers. Furthermore, using preallocated buffers improves performance by eliminating

expensive malloc calls from the fast path. While there have been other attempts to

parallelize Snort [6] [27] [46] [7], we are aware of only one other that does so in a flow

aware manner [45]. Their methodology differs from ours in that they do dynamic

reassignment of flows and and do not have a thread dedicated exclusively to flow

classification. It is hard to compare our results to theirs, as we use different packet

traces, different versions of Snort and different hardware. However, they observe a

roughly 3x speedup when moving from 1 to 4 threads, which, as demonstrated in the

next section, is what we observe as well.

3.1.1 Experimental Setup

Our experiments were run on an 8 core Xeon system (dual quad core CPUs), with

packet traces read off a disk to avoid having the network become a bottleneck, since

we are interested in the performance of the Snort program, not the network stack.

Furthermore, dropping packets can cause major changes in Snort’s behavior and

reading the trace from a file allows Snort to throttle its own input rate. We measured
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Figure 3.1: Flow Pinning vs. Simple Threading

the total time Snort requires to process a trace and used that as the metric for

comparison.

Our traces were collected from multiple sources, including the internal and external

Intel web servers, and connections between university networks and the internet core

(NLANR), described earlier in this chapter. We believe these to be a good sampling of

real world workloads likely to be encountered by Snort. Since these traces only include

packet headers, synthetic packet bodies were inserted for testing. These packet bodies

contain random data and are not meant to simulate any particular attack signature.

3.1.2 Evaluation

Our first experiment was to examine the efficacy of flow pinning. For this we had 2

versions of Snort- one that does flow pinning, and one that does not and has locks

inserted for the access of per flow data structures. The result, as demonstrated in

Figure 1, is that flow pinning is an important and effective optimization, though the

level of effectiveness depends on the particular workload. This being the case, we

focused our work on the flow pinned version of Snort. Next, we tested the scalability

of this scheme by running Snort over several workloads using different numbers of

cores. Figure 3.2 illustrates the scaling of 2 stage Snort for one of the workloads
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Figure 3.2: Two Stage Snort Scaling vs. Ideal

(MRA-1104710888-1), along with a curve representing ideal scaling (i.e. time to run

Snort using one core divided by N). As more cores are added, Snort’s performance

deviates further and further from ideal. For some traces (not shown), performance

even degrades above a certain number of cores. Table 3.1 shows the data used to

make that graph as well as well as the actual % difference from ideal.

Table 3.1: Two Stage Snort Scaling Data

Num Threads Seconds Ideal % difference
1 12.4 12.4 0
2 6.8 6.2 -9.6
3 5.7 4.4 -29.5
4 4.2 3.1 -35.4
5 4.5 2.5 -80.0
6 3.6 2.1 -71.4
7 3.6 1.8 -100.0

3.2 Scaling

We found that failure to scale as expected was caused by an uneven distribution of

work among the threads. Some packets take much longer to process than average,
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Figure 3.3: Packet Processing Time Distribution

and those packets can cause a single thread to be continually busy while the others

clear their queues and sit idle. This is true even if the number of packets processed

by each thread is similar. Figure 3 shows the distribution of time required to process

individual packets in Snort when only a single thread is used. Using only one thread

eliminates variables such as lock contention and competition between threads for

resources (buses, L2 cache space, etc). As can be seen from the distribution, most

packets take around 12000 clock cycles to process, but there are plenty of packets

that take more, with clusters around 68000 and 77000 clock cycles. Not shown on the

graph are 3 additional packets that take several orders of magnitude more processing

time. These longer packets might cause a single thread to become backed up and

block the entire program, especially if they occur in bursts and are correlated on

specific flows. We believe the latter behavior to be likely, but have not tested it.

In order to confirm our suspicion that uneven packet times are the cause of our poor

scaling, we wrote a simulator that takes a trace of packet runtimes from the two

stage Snort using 1 process thread, and simulates the queuing behavior. This allows

us to eliminate lock contention and other possible factors. We wanted to see if we

could replicate the scaling issues in the simulator, and if clamping the runtimes of all

packets to not exceed a maximum value, we could improve the scaling.
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Figure 3.4: Queuing Simulation Scaling with Runtimes Clamped to 31200 Clocks

Table 3.2: Queuing Simulation Scaling with Runtimes Clamped to 31200 Clocks

Num Threads Clocks Ideal % difference
1 28693218 28693218 0
2 15475780 14346609 -7.871
3 11071555 9564406 -15.758
4 8175468 7173304 -13.971
5 7264940 5738643 -26.597
6 6282468 4782203 -31.372
7 5434540 4099031 -32.581

We ran our simulator using an unmodified packet trace and received results similar

to what we saw in practice. Next, we clamped the max runtime for any packet to be

31200 simulated clock ticks (which are NOT directly convertible to real clock ticks

as they have been scaled to speed up simulation runs). Looking at the packet pro-

cessing time distribution, 31200 is at the high end of the first peak in the graph, and

we consider anything above that to be an excessively long processing time. Thus,

clamping the runtimes to 31200 clocks should effectively eliminate the effects of ex-

cessively uneven packet processing times from the simulation, while maintaining the

same number of packets and their distribution to the threads. The result, shown in

Figure 3.4 is scaling that is much closer to ideal. For exact numbers, compare the

% difference from ideal in table 3.2 to the one in table 3.1. We feel that the results

of this simulation study confirm our theory that uneven packet processing times are
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the main reason for Snort’s lack of scaling. If poor packet distribution is indeed a

problem, it would seem to be a lesser one.

3.3 Lessons

The experience of programming and benchmarking Snort has taught us several lessons

that we will apply to the design of a parallel network programming API in the fol-

lowing chapters.

First is the efficacy of flow-pinning in reducing lock contention in complex, stateful

programs. Our experiments clearly show that this is an effective strategy and should

be incorporated in future applications.

Second, the fact that Snort’s performance is being gated by the relatively few excep-

tional packets is an interesting result. Head of line blocking by exceptional packets

becomes a major concern with the static scheduling scheme currently in use. In the

next chapter, we develop new scheduling strategies that might behave better under

these circumstances. Unfortunately, we were unable to apply them to the parallelized

Snort implementations we have been using throughout this chapter, as they are owned

by Intel and were no longer available to us at the time of the following experiments.
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Chapter 4

Software Router API

Network devices are becoming ever more complex. The demand for new capabilities

in routers has lead to an interest in programmable network devices that are capable of

high speed packet processing. However, the traditional programming tools for general

purpose processors are not designed for the specific and demanding task of network

packet processing. In our view, no current programming environment provides the

ideal set of characteristics for a networking device. These include good performance,

reuse of familiar languages, ease of use, and backwards compatibility. Because the

needs of the network programming community are not being met by existing solutions,

we see an opportunity to provide a programming environment that will be beneficial to

network operators, system vendors, semiconductor vendors, and software developers

alike.

In this chapter, we will present our API for writing high performance packet process-

ing applications that run on general purpose processors.

4.1 Requirements of a Framework

The goal of this chapter is to present a framework for writing network centric pro-

grams. We believe the most important considerations for such a framework are per-

formance and backwards compatibility, which we discuss in this section.
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Table 4.1: Processor Characteristics
Processor
(NP=Network
Processor
GP=General
Purpose
Processor)

Clock
(MHz)

CPU
Power
(W)

Chipset
Power
(W)

Packet
I/O
(Gbps)

Mem
I/O
(Gbps)

Processor
Cores

Core
Issue
Width

Peak
BIPS

Peak
BIPS/W

Cisco SPP
(NP)

250 35 0 192 175 188 1 47 1.34

Intel
IXP2855
(NP)

1500 27 0 25 121.16 16 1 24 0.89

Cavium
Octeon
CN5860
(NP)

1000 40 0 25 102.4 16 2 32 0.8

Raza XLR
732

1000 32 0 25 230.4 8 1 7 0.25

Cavium
Octeon
CN3860
(NP)

600 30 0 25 102.4 16 2 19.2 0.64

Intel Quad-
Core Xeon
5300, In-
tel 5000P
chipset
(GPP)

2330 80 30 0 85.6 4 4 37.28 0.34

AMD
Dual-Core
Opteron
1218 HE
(GPP)

2600 65 0 192 85.6 2 3 15.6 0.24

Niagara 2
(NP)

1400 84 0 40 307.2 8 2 22.4 0.27

4.1.1 Performance

Modern processors have enough raw performance to process packets at high rates.

Even general purpose processors of the newest generation, such as a 4-core Nehalem,

can process minimum sized packets at close to line rate for gigabit connections. Ta-

ble 4.1 shows the peak performance (expressed in billions of instructions per second)

for a variety of NPs and GPPs (data from [22] [35] [20] [2] [24] [15] [4]) . NPs tend

to use less power and are designed to be able to achieve that peak, but GPPs tend

to have the best peak performance, leading us to believe that they should be able
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to compete with NPs if properly harnessed. A poor software layer can significantly

reduce performance. A major goal of a good framework should be that it can be

easily implemented on a number of systems without unduly strangling performance.

For example, a major shortcoming of the NP-Click [47] project is that small-packet

performance is greatly reduced compared with that on an application written in the

IXPs native C-derivative.

Our proposed API, the Network Runtime Environment (NRTE) uses a pipelining

approach that has several advantages for getting the most performance out of a general

purpose processor. Pipelining allows us to reduce the cache footprint on each core

by reducing the working set of each core. Secondly, pipelining allows us to process

multiple packets in different stages in parallel. Finally, the use of flow-pinning takes

advantage of cache locality by keeping per flow data structures on the same core and

its associated cache. This reduces cache thrashing and lock contention.

4.1.2 Backwards Compatibility

We expect future generations of networking devices to get a performance boost from

additional threading and fixed-function accelerators, and the ability to take advantage

of these new features automatically is paramount. How this can be done is an open

question. Some attempts have been made to find ways to automatically map program

components to hardware threads [16] [12]. None of these solutions is perfect. First,

there is a tradeoff between static mapping at compile time and automatic remapping

at runtime. The former obviates the need to have a runtime system that can remap

program components, which can potentially require significant overhead. The latter

would be better at adapting to changing workloads. As demonstrated in [39] the

ability to adapt to different workloads can significantly improve performance in the

face of changing workloads.

Future proofing is difficult; if we make the assumption that future performance comes

from greater parallelism, the proper way to exploit that parallelism automatically

is not clear. One possibility is to organize programs in a pool of worker threads,

and to scale up the number of program threads as the available number of hardware

threads increases, but not all applications are amenable to this type of parallelization.
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Programs that use pipelined parallelism and distribute their stages among multiple

hardware threads can only scale to a point; once the number of hardware threads

exceeds the number of explicit stages in the program, these applications will no longer

automatically benefit without programmer intervention. Figure 4.1 illustrates the

two different types of organization. At the very least, programmers must either

change their code to create more duplicate threads, or write extra code to allow their

programs to adapt automatically, but this is cumbersome and done on a case-by-case

basis. The NRTEs solution is to duplicate pipeline stages at runtime, which allows

it to use both strategies in a straightforward manner without the need to rewrite or

recompile the application.

4.2 Existing Frameworks

There exist many APIs and programming frameworks that solve some aspect of the

problem we are examining. We examine their characteristics in this section.
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RouteBricks [19] defines a vision for using a cluster of PCs to process up to 35 Gbps of

traffic in a software router. We aim at more modest targets using a single PC. Route-

bricks exploits parallelism in multi-core architectures by having each core dedicated

to performing network processing for a single NIC queue rather than pipelining. They

are targeting applications where there is little processing at each node and network

I/O is the bottleneck. We are more concerned with applications that are dominated

by application processing.

The Click [30] framework provides a library of predefined elements for common

networking tasks that can be composed into a complete application using the Click

language. Additional functionality can be added by writing new elements in C++

that conform to the Click framework. One disadvantage is that it requires a pro-

grammer to learn the Click language to write applications. Another disadvantage of

Click is that the framework for writing new elements is written in C++, which is not

usually available for embedded platforms such as network processors. While Click

configurations are potentially portable if a Click implementation that includes the

elements used in the configuration is already available for the target platform, the

implementation of new elements is not. Implementing new protocols (for example,

[49]) not supported by existing Click elements is difficult to do in a portable fashion.

The NP-Click [47] project created a Click implementation for the IXP network pro-

cessors, but the underlying element implementations were rewritten in IXP-C, and

the interface for writing new elements is incompatible with the original Click.

There are various solutions for easing the programming of NPs that abstract away

some of the difficulties of programming in a low-level environment. These include

Shangri-la [12] and the Intel auto-partitioning compiler [16]. These are C-based

solutions, but they both run only on Intel’s IXP network processor. Shangri-la’s

Baker programming language is platform-independent, but it is not truly portable

because no implementations exist for other platforms.

Another proposed solution is NetVM [17], a virtual machine for network processing.

NetVM attempts to define a virtual machine with its own virtual instruction set. An

interpreter or compiler can take this generated byte code and run it on a specific

platform. The authors define an architecture for this virtual machine, but not a

programming model. Moreover, the prototype performs rather poorly. It took 2236
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clock cycles to perform an IPv4 filtering task that took a Berkeley Packet Filter

implementation 124 clocks to perform.

Recently, Juniper began offering third parties the ability to program their routers

through their Partner Solution Development Platform (PSDP) [36], which provides

a framework on top of the JUNOS operating system running on their routers. This

solution apparently provides a uniform framework for all Juniper routers, but there

is not much information publicly available. However, it demonstrates that companies

are beginning to see the advantages of opening up their router platforms to third-

parties.

Finally, projects such as XORP [28] pursue a complementary goal. XORP is an inter-

face for control-plane processing, which runs above the data plane. XORP can work

using different data-plane implementations, including Click. It could also potentially

implement the data plane using the interface we will introduce in this chapter.

4.3 NRTE

The Network Runtime Environment (NRTE) is our implementation of a multi-core

oriented, network programming environment. It is implemented as a C library, which

presents programmers with a familiar programming language that is portable across

many platforms. It is explicitly designed to allow programmers to expose as much

parallelism as possible in their programs while leaving the details of mapping to the

underlying hardware threads up to the runtime.

The NRTE requires the user to handle parallelism. It is the programmer’s respon-

sibility to break the application into stages and to make these stages thread-safe.

The application is organized as a pipeline with stages communicating with each other

over queues. The runtime is responsible for mapping these stages onto the underlying

hardware. Additional parallel computing resources are taken advantage of by dupli-

cating stages and splitting the incoming packet flows among these duplicates. The

user specifies the hardware mapping using a control program.
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The NRTE provides two types of stages: explicit and implicit. The explicit stages

are threads under explicit user control; they launch and run to completion much like

a thread created using the pthreads library. Implicit stages are registered as callback

functions on an associated queue. The registered function is called by the runtime

to process elements on that queue. The instantiation of implicit stages is left to

the runtime; if the user indicates that the implicit stage is safe to duplicate (i.e.,

is thread-safe), the runtime can create duplicates of that stage to run on multiple

hardware threads. Packets are distributed among the duplicates using flow-pinning.

The user specifies the flow definition via a classification function. The runtime uses

this function to send packets of the same flow to the same stage, so they can be pro-

cessed in order and take advantage of cache locality for flow-specific data structures.

Parallelism is achieved by processing different flows on different threads. The use of

implicit stages in this manner allows us to scale the application to take advantage of

increasing numbers of cores on future processors.

The NRTE’s strategy for dealing with multi-threading differs from Click’s. Click

creates a task list for its configuration and load-balances the tasks across cores. This

does not take into account caching effects, and it has a fixed amount of parallelism.

If there are more hardware threads than tasks, Click cannot make use of them. By

repeatedly duplicating the bottleneck stage(s), the NRTE actually creates parallelism,

which can potentially scale to as many threads as are provided by the hardware.

We confirmed the usefulness of flow-pinning by creating an application that mimics

the access pattern of stateful packet-processing applications. This application receives

incoming elements and accesses and modifies state associated with that elements

flow. We measured the time it took the application to process a fixed number of

elements; we found that when flow-pinning was used to distribute the incoming data,

the application ran in 12.04 seconds. When the incoming data was distributed without

regard to flow, it took 16.19 seconds. This is due mostly to cache-thrashing. Our

micro-benchmark does not include the cost of locking, which would likely be needed to

prevent data corruption in a real application. Including this would further improve the

flow-pinning results because it eliminates the lock synchronization overheads incurred

without flow-pinning when multiple threads attempt to access the same flow state.
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Figure 4.2: Queuing Benchmark

When a stage is duplicated, the underlying queues used to connect that stage to

the rest of the pipeline are also duplicated. This is done to prevent synchronization

overheads that would result if there were only one underlying queue with multiple

replicas trying to read from it. When an implicit stage is duplicated by the runtime,

there will be more than one consumer on that stage’s queue. A simple way to maintain

integrity of the underlying queue would be to use mutual exclusion locks to allow

atomic access to a single producer or consumer at a time, but we observed that

this quickly became the program’s bottleneck. Instead, by implementing the logical

queue abstraction as a set of point-to-point queues with a single producer and a

single consumer each, we remove this necessity. The underlying physical queues do

not require locks. Figure 4.2 shows a micro-benchmark we constructed comparing

the use of the NRTE’s queuing strategy of single consumer/producer circular buffers

with an implementation where a single queue (still a circular buffer) is shared among

multiple consumers, requiring synchronization with locks. The program has a single

producer enqueuing items onto a queue and we measured the time it took for the

consumers to dequeue all of them. The producer was producing while the consumer

was simultaneously consuming. We varied the number of consumers from one to three,

mapping a single producer or consumer to each core in our test system until we ran out

of cores. The data points shown are representative of the observed performance but

are not deterministic. The data show that the single-queue implementation, which

requires lock synchronization for each enqueue or dequeue, performs far worse than the
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multiple-queues implementation. In addition, as we vary the number of consumers,

the single-queue implementation scales poorly. The multiple-queues implementation

scales well; no change in performance is observed between the one- and two-consumer

cases. When moving to three consumers, performance degrades, but not for queuing

reasons; the third consumer is placed on a core that shares an L2 cache with the

producer, resulting in cache-capacity problems.

The NRTE also includes a packet abstraction and libraries to deal with common

packet-processing tasks. Packet-handling abstractions allow the user to write platform-

independent code, so that running NRTE-derived programs that must run in different

environments does not require extensive rewrites. For example, in different situations,

the same application may be run as a user space program that manipulates pack-

ets using sockets; or as a Linux kernel module that directly manipulates packets in

skbuffs, the kernel’s data structure for storing packet and meta data information. Li-

braries that provide common functions such as check-summing or efficient algorithms

for longest prefix match will allow programmers to concentrate on what is unique to

their programs rather than reinventing the wheel. Finally, putting efficient implemen-

tations for common data structures into the framework provides both the convenience

and the ability to take advantage of underlying hardware support without program-

mer intervention. An example of this is data encryption. Hardware support exists

for this on specialized platforms such as the Tolopai [3]. On older x86 platforms this

is not present, but efficient software implementations, will be substituted.

Table 4.2: NRTE API Summary

Function Name Description
rte register explicit input function Create a stand-alone thread
rte register queue Create a queue and register it’s handler function
rte enqueue Enqueue an element to a queue
rte start Start runtime after all elements are registered

Table 4.2 contains a summary of the NRTE API. A complete listing is given in

appendix A. We will illustrate the workings of the NRTE with an example. Our

example begins with the following code snippet:

main ( ) {
a = A( ) ;
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b = B( a ) ;

C(b ) ;

}

Where A(), B(), and C() are functions that perform packet-processing operations.

This can be turned into a pipeline, with dataflow illustrated in Figure 4.3 using the

NRTE with the following code:

n r t e q u e u e i d t q1 , q2 ;

void A( void ∗ i gnored )

{ //Do A’ s work , then send on

u i n t 6 4 t A elem ;

nrte enqueue ( q1 , A elem ) ;

}

void B( u i n t 6 4 t s t age id , unsigned int f l ow id , u i n t 6 4 t A elem )

{ //Do B ’ s work , then send on

u i n t 6 4 t B elem ;

nrte enqueue ( q2 , B elem ) ;

}

void C( u i n t 6 4 t s t age id , unsigned int f l ow id , u i n t 6 4 t B elem )

{ //Do C ’ s work

}

unsigned int f l o w c l a s s i f i e r ( u i n t 6 4 t elem )

{ //dummy f u n c t i o n . Simply r e t u r n s input

return (unsigned int ) elem ;

}
main ( )

{
// Create the f l o w graph in the NRTE

q2=n r t e r e g i s t e r q u e u e (C, f l o w c l a s s i f i e r ) ;

q1=n r t e r e g i s t e r q u e u e (B, f l o w c l a s s i f i e r )

n r t e r e g i s t e r e x p l i c i t i n p u t f u n c t i o n (A) ;
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Figure 4.3: NRTE Dataflow

n r t e s t a r t ( ) ;

}

This code creates an explicit stage to run the first calculation, A(), and two implicit

queues to calculate B() and C(). When A() finishes its calculation, the result is

enqueued to the second stage, which performs calculation B(), which in turn passes

its output to stage C(). A dummy flow classifier function is defined, which will be

called if the implicit stages are duplicated to help the runtime decide which copy to

pass it to. The main function is responsible for registering the stages with the runtime

and then kicking things off by calling rte start(). Once this happens, control passes

to the runtime, which will start the explicit stage, A(), and run the implicit stages

B() and C() when items appear on their respective queues. The three stages would

most likely be run on three different hardware cores or threads.

Figure 4.3 shows the mapping of the logical pipeline to hardware. The first configu-

ration maps a single copy of each stage to a separate core. The next panel illustrates

what happens if the runtime decides to replicate the second stage, B. The stage is

copied and the second copy mapped to another hardware thread. The queues asso-

ciated with it are also duplicated; stage A will see one logical queue, (q1) but the
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underlying implementation is two single-producer, single-consumer queues (the q1s).

The runtime takes care of deciding on which queue to put an element enqueued from

A. The same is true at the other end; each copy of B has its own queue to C, although

to the single thread running C, it looks like a single logical endpoint. The use of sep-

arate point-to-point queues in the underlying implementation allows these queues to

be implemented efficiently and without locking, which, as we demonstrated earlier,

can quickly become a bottleneck if there are multiple producers and/or consumers.

Note that the duplication and mapping of the stages is done at runtime by a control

program and is not expressed in the application itself. This makes it easy for the

programmer to make their code independent of the number of cores on the system;

mapping to hardware is done at runtime. Furthermore, the programmer can exper-

iment with different mappings to find the optimal mapping for a given platform or

workload.

This section outlined our vision for a high performance, multi-threaded networking

API. In the next section, we present an evaluation of our prototype implementation.

4.4 Performance Evaluation

We have implemented a prototype of the NRTE that runs on x86 Linux systems.

This initial prototype implements the NRTE threading model and packet handling

abstractions, but requires the user to manually map stages to cores at runtime using

a control program; automatic scheduling will be discussed in a later section. This

section demonstrates that the NRTE prototype demonstrates the qualities of a good

API that we outlined above without sacrificing performance.

4.4.1 Test Setup

Our test system uses dual, dual core Xeon processors (a total of 4 cores), and a 4

port e1000 network card, running Linux with a 2.6.20.1 kernel. Another machine

using the Linux kernels pktgen module is used as a traffic generator. Forwarding

rates were measured at the receiving end, using a receiver that is capable of receiving
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packets faster than the test system is able to forward them. The pktgen module sends

packets at a constant, adjustable rate. The source and destination addresses of the

UDP packts being sent are incremented with each packet sent in order to send packets

that will map to different flows. This setup is used for both the IPv4 Forwarder and

NAT experiments presented below.

For our tests, we measured implementations of IPv4 forwarding and NAT, written

using the NRTE against Click configurations for the same application running in

user space. Click performs better running as a kernel module, but we envision our

API will be most useful for complex applications written in user space where the

networking overhead is not the bottleneck. The user space test is still meaningful as

a comparison, and is the mode that must be used in platforms such as Planetlab [13],

that do not allow programmers to run code in the kernel for security and isolation

reasons. Environments like Planetlab are an important target, as they can be used to

prototype new protocols, and if a portable API like the RTE is used in the prototype,

moving to more high performance platforms will be easier

4.4.2 IPv4 Forwarder

Our implementation of the IPv4 forwarder is functionally equivalent to the Click

router configuration we used. They use the same algorithm for longest prefix match

(DIR 24-8 BASIC) [26], which performs efficient lookups in at most 2 memory ac-

cesses.

The NRTE forwarder uses two pipeline stages: an RX stage that receives and classifies

packets, and a forwarder stage that does most of the forwarding work (checksum

computation, route lookup). RX is an explicit stage; there is only one copy which is

instantiated by the user. The forwarder stage is an implicit stage, which is duplicated

three times, with packets split by flow (defined in this case simply by the destination

address) among the copies. While no flow specific data structures are necessary in this

application, flow pinning results in in-order packet processing for each flow, which has

implications for protocols such as TCP. The duplication and mapping of the forwarder

stage is done at runtime by a control program and is not expressed in the program

itself, which allows future versions of the NRTE to automatically do this mapping
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Figure 4.4: IPv4 Forwarding Comparison

without modifying the application code. In this manner, all 4 cores of our test system

are utilized, with the decision of how many copies of the forwarder stage to create

deferred until runtime.

We measured forwarding rates for each application for a variety of packet sizes and

sender rates. The plotted data points are each from a single representative 60 second

run and the details of the input traffic were described above. The results are shown

in Figure 4.4. This data clearly shows that over a wide range of packet sizes and

sender rates, the NRTE IPv4 forwarder performs as well or better than the Click

configuration.

4.4.3 NAT

Our second test application is network address translation (NAT). We tested a click

configuration using the IPRewriter class and an NRTE based implementation. The

NRTE implementation used a single receive stage and three NAT stages that did

most of the work. We tested the rewriting of IP destination addresses and UDP

destination ports. Figure 4.5 shows the results, using a representative 60 second run

for each sender rate tested. We can see that once again the NRTE and Click versions

of the same application perform comparably.
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Figure 4.5: NAT Comparison

4.4.4 Snort

We have ported Snort [42], a popular open source intrusion detection program,

to work with the NRTE. We divided Snort up into 4 functional blocks- a packet

receive and classification stage run as an explicit stage, and three implicit stages- a

preprocessor stage that runs Snort preprocessors such as TCP stream reassembly and

portscan detection, a detect stage that performs regular expression matching and a

logging stage that logs the results. The three implicit stages are written to be thread

safe so they can be replicated. Packets flow from stage to stage in the order they have

been listed, with packets in different stages running in parallel on different cores.

The pipelined nature of this application allows us to demonstrate one of the strengths

of the NRTE. By leaving mapping decisions to runtime, we are able to test different

pipeline configurations to find the best one for each workload. For some workloads,

replicating the preprocessor stage improved performance; for other, replicating the

detect stage was the better option. Having a control program that allows the pro-

grammer to decide the programs mapping to hardware at runtime, without rewriting

the program, is thus an extremely useful tool.

The Snort experiments were run on an 8 core Xeon system (dual quad core CPUs),

with packet traces read off a disk to avoid having the network become a bottleneck,
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Figure 4.6: Snort Comparison

since we are interested in the performance of the Snort program, not the network

stack. Furthermore, dropping packets can cause major changes in Snort’s behavior

and reading the trace from a file allows Snort to throttle its own input rate. We

measured the total time Snort requires to process a trace and used that as the metric

for comparison.

Our traces were collected from multiple sources, including the internal and external

Intel web servers, and connections between university networks and the internet core,

obtained from the National Laboratory for Applied Networking Research (NLANR).

The NLANR traces are no longer available on the web, but this paper gives a good

overview of their characteristics [29]. The ANL traces are collected from the link

between the Argonne National Lab and its internet service provider. This is an OC-3

(155 Mbps) link and each trace contains about 0.5 million packets. The MRA traces

are from the link connecting Merit and Abilene- two large networks. This is an OC-12

link and each trace contains about 5 million packets. The MRA link is closer to the

core of the internet while the ANL traces are at the edge. We believe these to be a

good sampling of real world workloads likely to be encountered by Snort. Since these

traces only include packet headers, synthetic packet bodies were inserted for testing.
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Figure 4.7: Latency Measurements

These bodies contain random data and are not meant to simulate any particular

attack signature.

The results are in Figure 4.6. As can be seen from this graph, the multithread

enabled RTE-Snort significantly outperforms the single-threaded original Snort in

processing all workloads. While the speedup of the ANL traces can be attributed

to the parallelism that we were able to extract via pipelining, the big speedups in

processing the MRA traces are due to the large number of flows ( 25000) in these

traces. We were able to leverage this parallelism in the data by replicating the TCP

stream reassembly stage (the bottleneck stage) and pinning subsets of the flows to each

replica. In this fashion, the NRTE allows more hardware resources to be effectively

applied to the application bottleneck.

4.4.5 Latency

For our final experiment, we examine the latency of packets traversing our IPv4 router

implementations. The experiment is set up the same as that in section 4.4.2, but this

time, a ping is sent from one machine connected to the router system on a different

port to another machine also connected to the router. This was done with varying

levels of background traffic, generated in the same manner as in the previous IPv4
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forwarder experiment. The latency for a reply was measured at the ping sender.

Figure 4.7 shows the results of this experiment for the Click router and the NRTE

router. For both large and minimum sized packets, the NRTE based router produces

much lower round trip times than the Click router.
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Chapter 5

Scheduler API

We have demonstrated the effectiveness of our NRTE interface for writing networking

applications in chapter 4, as well as the shortfalls of simple packet allocation strategies

in chapter 3. In this chapter, we examine the use of more complex packet scheduling

algorithms and their application to the NRTE. We present an interface for writing new

schedulers and demonstrate the different performance profiles achieved using different

scheduling algorithms. We start by reintroducing the NRTE application interface and

the updates needed to deal with dynamic scheduling. We follow with a description

of the scheduler programming interface and a description of the two schedulers we

tested.

5.1 NRTE

The Network Runtime Environment (NRTE) is our API for writing efficient multicore

networking applications. Specifically, we target applications that can be effectively

pipelined but require a large amount of per flow state and guarantees about packet or-

dering and dropping. For example, searching a packet payload for regular expressions

is most effective if it is done over a fully reassembled and in order stream. Dropping

packets from within the reassembled stream or processing them out of order could

cause the search to produce false negatives.

We provide two sets of mechanisms to achieve our goals. First, the application API

provides efficient inter-core communication, flow pinning, and flow control to prevent

unwanted dropping of packets once they enter the pipeline. These mechanisms are
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useful for stateful applications such as intrusion detection which perform better when

packets in a single flow arrive in order. It should be noted that while flow information

is collected by the API, not all schedulers will support flow pinning.

Our second mechanism is a backend scheduler API. The NRTE is capable of dynam-

ically adjusting the application pipeline to adapt to different environments. This can

include running on hardware with varying numbers of cores, or changing traffic pat-

terns. The best algorithm for this adaptation may vary by application, architecture,

and other factors. The NRTE provides a well defined API for allowing users to write

new scheduling algorithms.

5.1.1 Application Interface

Users of the NRTE are expected to break their applications into pipeline stages. The

NRTE provides two types of stages: explicit stages are threads that run in an infinite

loop, whereas implicit stages register a function that is run whenever a packet is

enqueued on the associated queue. The NRTE runtime is responsible for mapping

these stages to the available hardware cores in the system. If a stage is thread safe

and can be easily duplicated, the NRTE runtime may duplicate an implicit stage

that requires more processor time and split the traffic between the copies. A fuller

explanation of the NRTE front end can be found in the previous chapter or here [54].

Each component in the NRTE has associated adaptation functions to initialize and

tear down state when a duplicate is created by the scheduler. This is necessary for

applications such as TCP reassembly, which keep a lot of per state information, but

can keep it thread local and lockless if flows are pinned. Each component also has

a classify function associated with it so that flow membership can be determined by

the application programmer and not fixed by the API.

In order to accommodate scheduling and dynamic adaptation, the underlying archi-

tecture of the NRTE has changed greatly from that presented in the previous chapter.

Each core has a single thread pinned to it. All components scheduled to run on that

core are run in this thread context. The thread cycles through all the stages scheduled

to run on it. Explicit stages are run on each cycle through the stage list. Implicit

stages are run if there are any pending packets on their incoming queues.
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There is a scheduler thread that takes care of schedule computation. It wakes up every

scheduling interval (currently 10 seconds), pauses all the processing threads, reads and

resets all the statistics buffers, and reads the updated schedule. Schedule computation

itself is allowed to run in parallel to other tasks as some schedulers can take a long

time to run. This is achieved by having 2 sets of buffers for the statistics and 2 copies

of the schedule. The live version of each is swapped at each scheduling interval. After

reading the new schedule, the scheduler thread sends updates to all the processing

threads, at which point they wake up and make necessary adjustments (adding and

removing components and their associated queues). If there is a backlog of packets

in a queue that is being removed from the system, its contents are redistributed to

the remaining copies of that stage in a manner that is defined by the scheduler. With

careful design of our data structures, we have been able to eliminate almost all locking

from normal operations in the NRTE internals.

5.1.2 Scheduler Interface

The Scheduler API provides the interface between the NRTE runtime and the schedul-

ing algorithms that map components to cores. We have written several schedulers

that conform to this API, which we describe later in this chapter.

The scheduler API is embodied in the ScheduleBuilder class, which provides a set

of virtual functions, listed in table 5.1, that will be called by the NRTE’s frontend

to calculate new schedules. All schedulers must subclass the ScheduleBuilder and

provide instantiations of these functions. With the exception of feeding the Scheduler

the logical topology, that is, the configuration of the components and the queues

between them, the scheduler interface is not directly accessed by the application

programmer. Rather, these functions are used by the NRTE runtime to automatically

adjust the physical topology of the system to adapt to new conditions. A full listing

of the ScheduleBuilder’s member functions is given in appendix B.

All topology information is stored in the ScheduleBuilder. When a programmer cre-

ates stages with the NRTE frontend, they are automatically registered with the Sched-

uleBuilder by the API. Further topology information, such as the logical edges in the

system, must be specified by the programmer.
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Table 5.1: SchedulerBuilder Class Member Functions

Function Name Description
addComponent Register a component with

the scheduler
addOutputQueue Register a queue with the

scheduler
pinComponent Force a component to run

on a particular core
finalize Tell the runtime that all

topology information has
been input

computeSchedule Compute a new schedule
selectVirtualQueue Tells the runtime which

copy of a component to send
the next packet to

getComponentMapping Returns a list of cores on
which a particular compo-
nent is run

getEdges Returns a list of the cores
on which a component may
send packets

Once the topology has been fed to the scheduler, the NRTE can call the Schedule-

Builder to compute new schedules. Information about the new topology is exported

to the NRTE runtime through a series of functions exported by the ScheduleBuilder

class. These include the location of physical component instances and the existence

of edges between components on different cores.

Information also needs to flow to the ScheduleBuilder from the NRTE. The Statistics

class represents an abstract class interface that is implemented by the NRTE runtime

to communicate runtime statistics to the ScheduleBuilder. These include the number

of packets processed or dropped in each stage, the amount of processor time used

by each component and the remaining backlog on each queue. A summary of the

Statistics member functions are listed in table 5.2. These are the counters that are

relevant to the schedulers we have implemented. Different statistics classes could be

created for different schedulers if new algorithms arise that need other information.
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Table 5.2: Statistics Class Member Functions

Function Name Description
getVirtualComponentTimeUsed Returns the total number

of sec of processing time
used by this component on
the specified core during the
previous measurement win-
dow.

getVirtualComponentPacketsProcessed Returns the total number of
packets accepted and out-
put by the given component
on the given core during the
last measurement window.

getVirutalComponentEdgeDiscards Returns the total number
of packets discarded by the
given component on the
given core, destined for the
given destination during the
last measurement window.

getVirtualComponentEdgeOutput Returns the total number of
packets output by the given
component running on the
given core to the given com-
ponent on the given core, on
the queue with the index.

getVirtualOutputQueueBacklog Returns the total number of
packets backlogged on the
output queue at end of mea-
surement window.

selectVirutalQueue Tells the runtime which
copy of a component to send
the next packet to
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5.2 Schedulers

One of the major advantages of the scheduling framework is that we can track net-

work traffic and processing characteristics, and adapt to changes. We consider two

algorithms which rely on this information to compute multicore schedules adapted to

the current traffic.

The first algorithm we consider is the one described in [52]. The authors, working

from a Click [30] infrastructure, submit the hypothesis that previous solutions suffer

from a lack of task granularity. That is, the system consists of a small number of

monolithic components, often of high processing requirements. This makes it difficult

to assign instances to cores with any reasonable hope of obtaining a balanced load.

They present a new algorithm which decreases task size by duplicating components.

These component instances are assigned to cores with the goal of distributing pro-

cessing load as evenly as possible. For example, a high workload component such as

IPSec Decryption could be duplicated three times, with each instance running on a

different core, and traffic for the component split evenly among them. In assigning

these instances to cores, an attempt is made to keep the components’ pipelines of

components together on the same core when possible. The major goals of the algo-

rithm are: balance processing load as evenly as possible among cores, and compute

schedules very quickly to adapt to changing loads as rapidly as possible. We will refer

to this algorithm as the WW algorithm, after the authors’ initials.

We now consider a second algorithm designed to overcome some of the WW algo-

rithm’s shortcomings. The WW algorithm relies on the implicit assumption that

per-packet processing requirements are large compared to the cache impact of mov-

ing packets from core to core. For pure forwarding applications such as IPv4, this

is not the case. In experimental evaluation of the WW algorithm, it was found that

IPv4 packet processing performed better on a single core than balanced across 8 cores.

Based on the hypothesis that unnecessary inter-core crossings were the cause of poor

performance, we created a new scheduling algorithm based on two new goals: do not

overload any cores, and minimize inter-core crossings. This algorithm relies on the ad-

ditional functionality that components need not be split by integral duplications, and

that traffic from a given instance need not be split evenly among downstream com-

ponent instances. The component graph schedule is formulated as a linear program,

48



with constraints that ensure that no individual cores are overloaded. The objective

of the linear program is to minimize the number of packets sent from core to core. In

consequence, we also tend to minimize the number of cores in use. We refer to this

as the LP algorithm.

Our implementation of the WW algorithm has a minor change from the original

algorithm as published. The WW algorithm was used to create integral numbers of

tasks, and each task corresponded to a call to the component from a thread scheduler.

That is, if two copies of a single task were assigned to a given core, the component

would be called twice in a scheduling round to process a packet on that core. Each

instance of the same component shared the same input queues, so only the thread

scheduling enforces the schedule. In our scheduling framework, however, all tasks on

the same core become a single aggregated component instance. Each instance has a

separate input queue and processes packets as they become available. The schedule

is enforced by upstream components, which send packets to instances based on the

precomputed schedule.

The LP algorithm has some difficult implementation edge cases. First, the formu-

lation of the linear program propagates measured input loads forward through the

component graph to predict inter-core crossings. In edge cases due to measurement

granularities, it is possible for the linear program to predict a system overload which

allows no feasible solution. In these cases, we simply fall back to the WW algorithm.

Because this only happens when per-packet processing is very high, the impact of

inter-core crossings is negligible. Second, if a component is never used during a mea-

surement window, the linear program solution need not schedule that component at

all. We ensure that all components are scheduled by assigning unused components to

a ”dump” core.

Both algorithms are implemented in a shared scheduling system which gathers all

statistics from the running system, then calls the scheduling algorithm to com-

pute scheduling weights between component instances. Once the desired schedul-

ing weights between component instances is available, these are used to generate

weighted deficit round robin (WDRR) packet schedulers at the egress of each com-

ponent. During actual packet processing, both scheduling algorithms rely on exactly

the same implementation.
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Figure 5.1: ONL Configuration

Schedule changes are done at longer time intervals than with the original WW, as

our LP scheduler takes a longer time to run and our components are expected to

maintain state that needs to be initialized or torn down on each reschedule.

5.3 Synthetic Benchmark

We created a benchmark to test our API and schedulers based on the IPSec pipeline

used in [52]. Our version is not a real IPSec router, but the topology and workload

mimics one. We artificially lengthened the pipeline and created a dummy encryption

workload based on the blowfish encryption algorithm. This was done in order to

create a workload capable of stressing our hardware at 1 Gbps traffic. A diagram of

this topology is displayed in Figure 5.2. All traffic goes through the initial pipeline

that mimics an IPv4 forwarder performing a series of header checks and other routine

bookkeeping. At the demux component, normal IPv4 traffic is sent to the forwarder

component, which lookups the next hop and sends traffic out the proper interface.

Specially marked traffic enters the encryption loop, where a dummy encryption work-

load is performed on the packet body and before it is reinjected into the IPv4 pipeline.

This mimics the action of an IPSec router decrypting and decapsulating the packet.
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Our test setup involves sending UDP packets with 1300 byte payloads from one host to

another with a test system in the middle acting as a router with our dummy workload.

This topology was setup in the Open Network Lab (ONL) [51], a reprogrammable

network testbed. The system under test running our pipeline is an 8 core Nehalem

with 12 GB of memory. 2 end hosts are connected to each of the NICs on the

Nehalem through a gigabit switch. This topology is illustrated in Figure 5.1. Our

benchmark consists of sending traffic in one direction and measuring the maximum

throughput reached in the steady state by each scheduler as we vary the percentage

of the traffic that goes through the IPSec loop. Figure 5.3 shows the results of this

experiment using both the WW and LP schedulers. The data used to generate the

graph and calculate confidence intervals is given in table 5.3. We can see that the LP

performs better at lower levels of IPSec traffic, while the two schedulers have similar

performance above 40 percent IPSec traffic. This demonstrates the superiority of the

LP under certain conditions and the effectiveness of the NRTE’s scheduler interface

in allowing us to test different schedulers on the same application program. Given

the topology we used, this result is exactly what we expected to see. The results are

robust when using a 95 percent confidence interval on the mean using a t-test with 4

degrees of freedom.

Table 5.3: Scheduler Benchmark Data

% IPSec Traffic LP (Mbps) var WW(Mbps) var
0 741 .014 575 .17
10 537 291.9 495 .0001
20 487 143.5 435 126.07
30 438 5.59 387 .288
40 346 3.7e-5 345 .8
50 296 1.8 297 5.0e-5
60 297 .0009 297 9.0e-5
70 289 1.6 288 .46
80 242 142.2 239 324
90 247 .4 247 .0003
100 246 .49 247 .0007

One result that differs from theory is that the LP takes a longer time to converge

to the steady state than the WW. We believe this is due to the fact that we are

collecting statistics in user space, which means the schedulers are not being fed data

on the number of packets being dropped in the kernel. Nor is the scheduler able to
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account for the amount of processor time used to process packets. In the future we

would like to find a way to account for these resources and see if that allows the LP

to converge more quickly, as it should in theory.

5.4 Regex Application

To test our API on a completely functional, real world task, we developed an inline

deep packet inspection application. This application consists of 4 stages- packet

reception (RCV), TCP reassembly (RSM), regular expression matching (REG), and

IP forwarding (FWD). The regular expression matching is based on the hybrid finite

automata (HFA) presented by Becchi and Crowley in [8]. To our knowledge, this is

the first fully functional deep packet inspection application to incorporate this work.

The only live packet testing done before assumed UDP packets with signatures that

did not span multiple packets[9]. Packets proceed in the order RCV, RSM, REG,

FWD.

The RCV and FWD stages are the simplest. The RCV stage is an rte explicit stage

that continuously reads packets from a socket and enqueues them to the RSM stage.

The FWD stage is an implicit stage that reads packets passed to it and forwards them

out the proper socket. This involves reading the incoming socket from the packet’s

metadata, looking up the outgoing device from a hash table, and doing a socket write.

The RSM stage reassembles TCP streams before sending them to the REG stage.

This is an important task as the regular expression parsing needs to work over fully

reassembled, in order streams in order to properly detect the target signatures. Oth-

erwise, matching signatures that span multiple packets can be missed. The RSM

stage passes packets to REG stage as they are ready- in order packets are immedi-

ately passed, while out of order packets are buffered until the missing holes are filled,

and then the entire backlog is passed on. This piecemeal reassembly is necessary

because our application performs all of this inline.

The REG stage performs regular expression matching on the packets passed in from

the RSM stage. This stage assumes that no packets are dropped in the handoff from

the RSM stage, as proper regex matching requires the fully reassembled stream. This
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is supported by the transaction mechanism of the NRTE described above. When an

enqueue is attempted by the RSM stage to a full queue, it detects this and backs

out the state changes and puts the packet back at the head of the incoming queue.

Processing will resume later as if that packet had never entered the stage.

The regex matching is performed by treating the body of the incoming packet as an

input string to a hybrid FA constructed from a set of regular expressions fed in at

application startup. The FA is traversed and the state of the traversal is saved so

that it can resume when the next packet of that flow arrives. This allows us to detect

regular expressions that span multiple packets.

The pipeline can be further deepened by using multiple REG stages that each search

for a different set of regular expressions. This is useful for creating multiple, smaller

state machines. If the state machines can be reduced in size to fit within the cache

of a processor, we expect to realize some performance gain.

5.4.1 Evaluation

We evaluated the regex matching application by testing it against both live traffic

and by feeding it artificial packet traces. The regex tool provided by [8] includes

a tool for generating streams that match a ruleset with a certain probability. We

generated streams that matched at different probabilities for a variety of rulesets.

The network configuration tested is shown in figure 5.1. The system that runs the

regex application serves as a router, with senders and receivers connected to different

ports so that all traffic must go through it.

We found that throughput was hindered by the locking required to synchronize access

to shared flow specific data structures. We tested different static mappings by manu-

ally configuring them. When we map a single copy of each stage to its own CPU, we

get a baseline of 50 Mbps. This drops to 20 Mbps when we allow the regex stage to

be duplicated on 5 processors by a mesh scheduler that puts copies of all nonpinned

stages to all cores. We believe this is due to lock contention. If we modify the pipeline

to dispense with reordering packets, the same topology achieves 250 Mbps, which is
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consistent with the linear speedup expected when duplicating the bottleneck stage

from 1 to 5 cores. This is consistent with experiments we performed in chapter 3.

The lesson we take away from this set of experiments is that we need to develop a

scheduler that will schedule flows rather than packets. Such a flow pinning scheduler

would allow all packets in a single flow to be processed only in a single copy of each

stage. In this scenario, we can eliminate locks on per flow data structures. In the

regex application, this would allow us to eliminate all the locks. We can also eliminate

checks for packet reordering in the REG stage. When flow-pinning, both the REG

and RSM stages can keep local per thread copies of flow state that will not be accessed

by other threads, as packets for that flow will only be processed on that copy of the

stage. This eliminates the need to access and modify the global state table for every

incoming packet, which is inefficient and requires locking. Access to the global table

is only needed when a flow is accessed on a core for the first time, or when a flow is

migrating to a different core when the mappings change. In the first case, the state

is copied into the thread local cache, and in the latter it is written back to the global

table.

We believe a flow pinning scheduler can be achieved with a minor modification of the

LP scheduler, but more substantial engineering effort would be required to modify

the NRTE runtime to pass flow liveness information to the scheduler. This is left for

future work.

5.5 Related Work

Deep packet inspection is performed by many intrusion detection systems, including

Snort [42], Bro [38] and PAM. These applications use a different regex engine and

take a different approach to parallelization. Attempts to parallelize these applications

include [34] [6] [27] [45] [7] [46]. None of these use either the regex engine or the

scheduling algorithms we present in this paper. Furthermore, none of them are built

atop an API that allows their insights to be reused in other applications.
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Click [30] and its derivatives provide a framework for building software routers by

breaking them into small components and connecting them using a high level lan-

guage. Click targets a somewhat different niche. Click elements usually represent a

small simple computation, and it can be difficult to write complex, stateful applica-

tions in this manner. Furthermore, on multicore systems, Click uses a work stealing

scheduler to allocate work to processors. We provide multiple schedulers and a doc-

umented API to create new ones. There have been many other proposed APIs [44],

but none of them provide the scheduler flexibility that we do.

5.6 Conclusion

We have presented a dynamically adapting framework for writing complex, stateful

network processing applications with an additional API for writing new schedulers.

We demonstrated the usefulness of the API in achieving different performance char-

acteristics under different scenarios using different schedulers. We also used our API

to write a deep packet inspection application that demonstrates the usability of our

API for real world applications as well as pointing the way to future refinements.
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Chapter 6

Conclusion

6.1 Summary

Multi-core architectures hold great promise for making high performance networking

applications that are easy to create and modify. Different strategies for exploiting this

parallelism require modifications to current generations of hardware and software.

In this dissertation, we have examined both hardware and software methods for ex-

ploiting the parallelism of modern multi-core CPUs. On the hardware organization

side, we have demonstrated the usefulness of network onloading using a cluster of spe-

cialized cores. On the software side, we have designed an API for writing pipelined

networking applications and demonstrated its usefulness in parallelizing existing ap-

plications. We also showed the usefulness of a scheduler API for creating new al-

gorithms to map the logical pipeline to the underlying hardware. The efficacy of

different scheduler algorithms under different circumstances has also been shown.

6.2 Future Directions

Network onloading can be improved by exploiting new hardware mechanisms such as

I/O MMUs that have become available in some new architectures. As discussed in

chapter 2, forcing the host processor to handle page table pinning and virtual address

translation for the onload engine is a major overhead.
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Other things to investigate include the effect of onloading in a system with more

general purpose cores. Our prototype used a single onloader to service a single general

purpose core. The proper organization of a more complex architecture is an open area

of research. There are issues such as synchronizing access to the onloader and the

number of onloading engines needed to provide enough bandwidth for multiple cores.

There are multiple directions for future research regarding the NRTE. The first is

the development of a flow-pinning scheduler. This would allow us to support appli-

cations such as the deep packet inspection engine from chapter 5. The investigation

of the interplay between the Linear Programming and Wolf and Wu schedulers under

realistic workloads will be very interesting.
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Appendix A

NRTE API

A.1 Terminology

Pipeline A user created graph connecting various application stages. There are no

restrictions on the kind of graphs that might result from these interconnections. For

instance graphs with cycles or with an arbitrary degree of fan-out are considered to

be valid pipelines.

Stage A logical entity that performs some processing on elements as they pass

through a pipeline. A stage typically works on an element, then passes it on to the

next stage in the pipeline, and then goes back to get the next element to work on

from its upstream stage. There are two kinds of stages (Explicit and Implicit input)

depending on their style of receiving the elements they process.

Explicit Input Stage A pipeline stage that obtains the elements that it processes

by explicitly dequeuing the elements from a queue or reading from a NIC. Thus, in

addition to the code for element processing an explicit input stage will have code to

extract elements from its source.

Implicit Input Stage A pipeline stage that processes elements that are passed to

it as input parameters. The code in the stage is only concerned with processing the

element it receives. It terminates after processing the given element. As such it relies

on another entity to remove elements produced by the upstream stage in the pipeline.
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Stage Instance When a stage is actually executed in a thread context, it is referred

to as a stage instance.

Flow A concept whereby various elements of a stream of data are related to each

other in an application defined manner. A TCP connection is an example of a flow

in which all the packets of the connection have the same 5-tuple (source IP address,

destination IP address, source port, destination port, protocol). Typically an appli-

cation that is processing a flow will access some flow state for processing each element

of the flow.

Flow Pinning An optimization technique wherein all the elements of a flow are

sent to the same core. This improves cache utilization since all the processing for

the elements of the flow that requires access to the flow state happens on the same

core. Without flow pinning the elements are sent to different cores resulting in the

flow state having to shuttle back and forth between the caches of the cores which is

inefficient.

A.2 Common Data Types

rte queue id t

Definition typedef uint64 t rte queue id t

Description Type used to specify queue identifiers

rte flow classifier func t

Definition typedef unsigned int (*rte flow classifier func t) (uint64 t elem)

Description Pointer to function that identifies the flow of a given element. This

function returns a flow identifier.

rte explicit input func t

Definition typedef int (*rte explicit input func t) (void *cookie)
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Description Pointer to function that does the processing associated with an ex-

plicit input stage. If an explicit input function is registered (refer

to the rte register explicit input function function), the RTE cre-

ates a thread of execution for the function when the RTE starts.

The RTE does not duplicate these stages (hence the function need

not be thread-safe). However the RTE decides where to execute an

explicit input function and might choose to change the mapping at

run time.

Any state that the function might need during execution (like the

queue(s) to read from) can be passed in using the argument it

accepts. The RTE is given this information when the function is

registered.

The explicit function is essentially the body of an infinite loop, but

with control and invocation left to the runtime. It is meant to be

used as a packet source. The return value should be one of the RTE

return codes. See the section on return codes for a description.

rte implicit input func t

Definition typedef int (*rte implicit input func t) ( uint64 t stage id, unsigned

int flow id, uint64 t elem)
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Description Pointer to function that processes the given element in the given

flow. This type is used for stages that do not explicitly read

from a queue. The stage is associated with a queue (refer to the

rte register queue function) and the RTE assumes the responsibil-

ity for dequeuing elements from the queue and invoking the stage;

i.e., the function pointed to by this function pointer. In addition the

RTE identifies the flow the dequeued element belongs to and passes

in the flow identifier along with the element when this function is

invoked. The stage id is the value that was registered with the

RTE when the queue was created. It may be used to disambiguate

between multiple queues that use the same function.

At the time of queue creation the programmer can specify whether

this function can be duplicated. If duplication is allowed, this func-

tion MUST be thread-safe since new threads could be created to

execute this function at the discretion of the RTE.

Note that this function is expected to return after processing the

given element. It will be invoked by the RTE for every element

read off the queue with which this function is associated. The

return value should be one of the RTE return codes described in

another section.

rte adapt callback func t

Definition typedef void (*rte adapt callback func t) ( uint64 t stage id,

rte cb status, status, unsigned int num instances)
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Description Pointer to function that is invoked by the RTE when the stage as-

sociated with the given queue is adapted. The association between

the stage and the callback function is made when the queue which

feeds the stage is created (refer to the rte register queue function).

This function is intended to be used by stages that modify their in-

ternal state based on the number of copies of the stage. The stage id

is the value that was registered with the RTE when the queue was

created. It can be used to disambiguate between multiple queues

that use the same adapt callback function. The status can be

RTE CB SETUP, RTE CB NUM CHANGE or RTE CB DEAD.

Setup tells the function that a new duplicate of the stage is be-

ing created in this thread, allowing per copy initialization to be

performed. Dead tells the function that the associated copy of the

stage is going away, and num change tells the function that an ex-

isting copy is going to continue running but the number of copies

in the system has changed.

A.3 Initialization and Shutdown API

rte start

Signature int rte start(void)

Description Starts the run time environment. Prior to this call, all nec-

essary application components must be registered with the

run time (refer to the rte register explicit input function and

rte register queue functions). Once started, the RTE per-

forms any internal initializations and then creates new threads

to start executing the registered application components.

Paramaters In None

Paramaters Out Return value <= 0 indicates failure; >0 indicates success

rte stop

Signature int rte stop(void)
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Description Stops the run time environment. Once this function is in-

voked, no new data is read in by the application. Once all the

data that is already in the application pipeline is processed,

the threads created by the RTE are terminated.

After the RTE is shutdown the rte start call returns allowing

the main application thread to perform any application state

cleanup.

Parameters In None

Parameters Out Return value <= 0 indicates failure; >0 indicates success

rte register explicit input function

Signature int rte register explicit input function(rte explicit input func t

explicit stage, void *cookie)

Description Creates a thread of control to execute function explicit stage.

The RTE will not attempt to duplicate this thread; however

it can choose to map it to any core on the system.

Parameters In explicit stage Pointer to function to be registered with the

RTE

cookie Parameter passed to the registered function when it is

invoked

Parameters Out Return value <= 0 indicates failure; >0 indicates success

rte register queue

Signature rte queue id t rte register queue( rte implicit input func t

implicit stage, uint64 t stage id, boolean allow duplication,

rte flow classifier func t flow classifier, boolean al-

ways classify, rte adapt callback func t adapt cb)

Description Creates a queue and returns a queue identifier that can be

used to refer to the created queue.
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Parameters In implicit stage Pointer to function to be called to handle the

element retrieved from the queue.

A NULL value can be passed to instruct the RTE to not

retrieve from the queue. In this case it is the programmers

responsibility to remove and process the elements from the

queue. When implicit stage is NULL, all the other parameters

are ignored.

stage id A user specified nonce value that will be returned

by the RTE in any callback associated with this queue. This

is useful when the same function is used to handle multiple

queues. The stage id value can be used to identify the context

in which the specific callback should be processed. This value

is opaque to the RTE and pointers to the stage context can

be passed in as well.

allow duplication Flag indicating whether the RTE is allowed

to duplicate (i.e. create new threads to run) the stage pointed

to by implicit stage. Typically this flag should be set to true;

it is provided to include in a pipeline legacy code that is not

thread safe.

flow classifier Pointer to function that classifies the elements

retrieved from the queue into its constituent flow. The RTE

calls this function on each element added to a queue. If the

RTE duplicates the receiving stage, the flow identifier is used

(flow id modulo num instances) to determine which copy re-

ceives the element. This ensures that elements belonging to a

flow, as identified by this function, are sent to the same copy

of the implicit stage. This prevents any cached flow state from

having to migrate between different threads. This also avoids

reordering of elements in a flow.

If no flow classifier function is specified (flow classifier =

NULL) an element can be sent to any stage instance at the

choice of the RTE.
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Since the RTE uses the flow classifier function to determine

an elements flow identifier, the RTEs ability to distribute the

flows amongst the copies of the implicit stage depends on the

effectiveness of this function. Also the ability of the RTE to

maintain element order within a flow depends on this function.

For instance, if this function changes its definition of a flow

over time the RTE cannot provide any guarantees. Finally, if

stricter definitions of element ordering need to be imposed it is

left to the application developer to enforce these (for instance

by adding an extra stage that manages ordering)

always classify The RTE need not invoke the flow classifier

function when there is only one copy of the receiving stage.

In this case the flow id passed in to the receive stage will

be 0. However, if the receive stage uses the flow id for its

processing it can request the RTE to classify even when there

is only one copy of the stage. This can be done by setting the

always classify flag to true.

adapt cb Pointer to callback function that is invoked whenever

the RTE changes the number of copies of the stage.

Parameters Out rte queue id Returns a queue identifier referring to the created

queue, 0 if the queue could not be created.

A.4 Queuing API

The queuing API supports dequeuing and enqueuing of elements from queues. These

functions allow a developer to break an application into a pipeline while passing

information into the RTE that allows: identification of the parallelizable components,

monitoring of the pipeline stage load, adaptation of the pipeline configuration.

These functions aim to minimize the impact of adding queues into an existing appli-

cation (by automatically dequeuing elements for implicit stages) while allowing for

applications where the developer might require more control over how the elements

of different queues are handled.
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rte enqueue

Signature int rte enqueue ( rte queue id t qid, uint64 t elem)

Description Adds the element elem onto the queue referred to by

qid. While any 64 bit value can be enqueued, it is ex-

pected that this will typically be a pointer to some data

(typically packet data). When a pointer is enqueued,

the sender must ensure that data pointed to by elem is

around when a receiver looks at it later. This function

blocks until elem is successfully placed on the queue.

Parameters In qid Identifier referring to the queue on which data must

be added.

elem The data to enqueue

Parameters Out Return Value <= 0 indicates error, the caller retains

ownership of elem in this case; >0 indicates success
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Appendix B

Schedule Builder API

The ScheduleBuilder has a series of life stages through which it proceeds under the

control of the caller.

B.1 Phase 0 pre-instantiation

A ScheduleBuilder (or subclass) is instantiated by the construction:

ScheduleBuilder(unsigned int numProc, unsigned int cacheMax)

numProc is the number of cores for which well schedule. This parameter MUST be a

positive integer, or sbException will be thrown.

cacheMax is an optional parameter for caching schedulers. If unspecified, the sched-

uler does not cache. If specified, it is the number of pre-computed schedules to keep

around for faster lookup. Not currently implemented but may be a future possibility.

After construction, a ScheduleBuilder is in Phase 1, Topology Creation.
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B.2 Phase 1- Topology Creation

At this point, the ScheduleBuilder has no knowledge of the directed component multi-

graph. No schedule may be computed, and attempts to use the scheduling methods

will throw sbException.

Multithreading note: the Topology Creation methods are not guaranteed to be thread

safe.

Components are referenced by handles of type handle t. handle t is an alias for

(void*), but obviously any bitstring of appropriate length may be used.

Components can be added to the ScheduleBuilder in two ways: explicitly or implicitly.

Explicit Component Addition

addComponent(handle t componentHandle, boolean isSource, std::string name)

componentHandle is treated as an opaque bit string of length sizeof(void*). It MUST

be unique (never been added previously) or sbException will be thrown. Either is-

Source or name may be omitted, and these parameters may appear in any order. The

optional isSource flag designates the component as a source of packets; that is, pack-

ets from the network may originate here. If not specified, isSource defaults to false.

The name is an optional parameter used by any output methods (primarily debugging

methods) to identify the component in output. If not provided, the component will

be identified by an assigned number. The name need not be unique (components may

have identical names).

Implicit component addition happens when an unknown component handle is

referenced in any topology setup method, such as by adding a queue to/from it or

changing the optional attributes. Implicitly added components are not sources, and

have assigned names.

Adding Output Queues
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Queues between components are added using addOutputQueue. If a component not

previously seen is used as a queue endpoint, the component is implicitly added to the

topology.

addOutputQueue(handle t tailComponentHandle, handle t headComponentHandle,

unsigned int index)

tailComponentHandle is the handle of the writer to the Queue; that is, the tail of the

edge. headComponentHandle is the handle of the reader of the Queue; that is, the

head of the edge. The index is an optional unique identifier for disambiguating multi-

ple queues between the same components. For efficiency, it is strongly recommended

that they be contiguous numbers starting from 0. (The vertex implementation may

allocate an array from 0 .. maxEdgeIndex.) If unspecified, the index defaults to 0,

the normal case when the system is not a multigraph.

Optional Attributes

Components may be given optional attributes to control how they are scheduled.

Marking components as non-parallelizable

Most multi-core schedulers anticipate being able to schedule the same component on

multiple cores as once. Not all components can be safely parallelized. A component

may be marked in the topology as non-parallelizable, and the scheduler will not

schedule that component on multiple cores regardless of consequences. This may

lead to violating core capacity constraints for schedulers which consider this factor.

void setComponentNoParallel(handle t componentHandle)

As with other methods which accept a component handle, unknown components will

be implicitly added to the topology.

Pinning a component to a core

A component may be pinned to a specific core. That is, the component must be

scheduled on exactly and only that core regardless of consequences. This may lead
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to violating core capacity constraints for schedulers which consider this factor. The

component is considered implicitly non-parallelizable.

void pinComponent(handle t componentHandle, int core)

As with other methods which accept a component handle, unknown components will

be implicitly added to the topology.

There is no provision for pinning a component to a set of cores.

Finalizing

Once a Topology has been fully entered, it must be finalized before schedules may

be computed. Finalization also validates the topology for any errors. If the topology

is found to be invalid, sbException is thrown. It is possible that different Schedule-

Builder subclasses may validate differently, and that the same topology may be valid

under one subclass but invalid under another. For example, the TrivialScheduler will

permit a NULL Statistics pointer in finalize().

Topologies are finalized as follows, entering phase 2, scheduling.

void finalize(Statistics *stats)

The stats pointer is an object which can provides the needed statistics gathering

methods. It may acceptably be NULL for some schedulers. If the topology is found

to be invalid for some reason, sbException is thrown. Otherwise, the ScheduleBuilder

enters phase 2.

B.3 Phase 2- Scheduling

At this point, the topology is locked and no more changes may be made. Further

attempts to call the methods of Phase 1 will result in sbException being thrown.
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Runtime statistics are gathered in measurement windows with an arbitrary length.

When statistics gathering begins, the ScheduleBuilder must be notified by calling

setMeasurementWindowStart().

void setMeasurementWindowStart(struct timeval *tv)

tv is an optional parameter used to tell the ScheduleBuilder that the current mea-

surement window actually started at a specific time, and is expected to be in the

format used by gettimeofday(). If not provided or if NULL, the ScheduleBuilder will

use the current time (from gettimeofday()).

When measurement windows change, the ScheduleBuilder should be notified:

void flipMeasurementWindow(struct timeval *tv)

This tells the ScheduleBuilder that the current open measurement window has ended,

and to begin a new one.

To compute a schedule, call the following method:

void computeSchedule()

computeSchedule() is not reentrant, and multiple calls are not allowed. (Subsequent

calls will throw sbException until the first call completes.)

The ScheduleBuilder will gather all needed statistics from the last (closed) measure-

ment window and compute a new schedule.

To use the scheduler on a per-packet basis, components with packets to send on a

queue should call

int selectVirtualQueue(int tailProc, handle t tailHandle, handle t headHandle, int

index)
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The tailProc identifies the core on which the component is currently running. The

tailHandle identifies the component with a packet to send. headHandle identifies the

destination component. The index is optional and identifies the output queue for

multigraphs. (If unspecified, index defaults to zero, the norm for non-multigraphs.)

selectVirtualQueue is thread-safe, although there will be a mutex-based performance

penalty on simultaneous calls with identical parameters.

Topology Extraction

As convenience functions, the running system can get information about the current

schedule.

cpumask t is an alias for unsigned long int.

cpumask t getComponentMapping(handle t componentHandle)

Returns a bitmask indicating which processors this component may run on for this

scheduling period. For example, bit 0 (the least significant bit) is set to 1 if this

component may run on processor 0.

cpumask t getEdges(int tailProc, handle t tailHandle, handle t headHandle, unsigned

int index)

Returns a bitmask of the processors to which this virtual component may send on

the given logical output queues.
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