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ABSTRACT OF THE THESIS

Indoor Scene Localization to Fight Sex Trafficking in Hotels

by

Abigail Stylianou

Master of Science in Computer Science

Washington University in St. Louis, December 2016

Research Advisor: Dr. Robert Pless

Images are key to fighting sex trafficking. They are: (a) used to advertise for sex services,(b)

shared among criminal networks, and (c) connect a person in an image to the place where

the image was taken. This work explores the ability to link images to indoor places in order

to support the investigation and prosecution of sex trafficking. We propose and develop a

framework that includes a database of open-source information available on the Internet, a

crowd-sourcing approach to gathering additional images, and explore a variety of matching

approaches based both on hand-tuned features such as SIFT and learned features using

state of the art deep learning approaches. We concentrate on spatio-temporal indexing of

hotel rooms, and to date have an index of more than 1.5 million geo-coded images. Our

smart-phone app collects contextual information and metadata alongside images.
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Chapter 1

Introduction

Images are key to fighting sex trafficking. They are: (a) used to advertise for sex services,(b)

shared among criminal networks, and (c) connect a person in an image to the place where

the image was taken. This work explores the ability to link images to indoor places in order

to support the investigation and prosecution of sex trafficking. We propose and develop a

framework that includes a database of open-source information available on the Internet, a

crowd-sourcing approach to gathering additional images, and explore a variety of matching

approaches based both on hand-tuned features such as SIFT and learned features using

state of the art deep learning approaches. We concentrate on spatio-temporal indexing of

hotel rooms, and to date have an index of more than 1.5 million geo-coded images. Our

smart-phone app collects contextual information and metadata alongside images.

Images are a common way to advertise sex services. Images are interesting from an inves-

tigative standpoint because they connect the person in the image to the location where the

image was taken. Therefore, they can help to characterize where a particular person was at

different times. In the context of a sex trafficking investigation, this can be used to directly

confirm that a person was in different states or countries. Among other things, this can

change the set of laws under which a trafficker can be prosecuted.

We build a dataset from publicly shared imagery on hotel booking sites, as well as from

a smartphone app to crowd-sourcing the collection of pictures of hotel rooms. The crowd-

sourcing option takes advantage of large scale trends in how people use social media; approxi-

mately 350 million photos are uploaded daily to Facebook. Tapping into this already common

behavior creates the potential to rapidly create a relatively comprehensive, distributed, and

continually updated resource that details the current appearance of hotel rooms worldwide.
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It also permits exploration into creating apps that encourage the acquisition of the most

useful pictures for the matching process.

We know of no prior efforts to explicitly match images to hotel rooms. Informal discussion

with investigators reveal that the most commonly used technologies are manual searches

through possible hotels in an area of interest, or using tools like Google ”search by image”

which returns images that are visually similar to a query. While Google does not advertise

its proprietary searching method, there is a rich literature on content based image retrieval,

and recent research on methods that scale up to large image database sizes [16]. In our

paper, we explore baseline approaches based on SIFT features [15], and convolutional neural

networks [13].

Our work seeks approaches to create Internet tools to fight sex-trafficking. It is widely

understood that cyber-space markets are challenging places to coordinate efforts, because

there is an asymmetry of incentives in cyber-space markets. Technology can be easily ex-

ploited by sex-traffickers to coordinate activities and advertising services. In contrast, the

anti-trafficking efforts are sometimes hampered because the incentives for non-profit organi-

zations often make them less likely to freely share resources as they struggle for recognition

and funding for their efforts [4].

Open data has been used in trying to estimate the prevalence of trafficking [7] and to de-

termine the effectiveness of US anti-trafficking funding projects [8]. Technology efforts have

focussed on create search tools that index open data in different forms to create an interface

that can be used for query and analysis [12, 19, 17], but to our knowledge there has not be

any system that is explicitly focused on imagery.
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Figure 1.1: A database of carefully annotated pictures of hotel rooms offers an important
investigative tool. We explore frameworks that combine a crowd-sourcing mobile phone app
that contributes to a database of images with a system that computes features from each
image and offers an interface to find match query images to similar images in the database.

3



Chapter 2

Dataset Creation Application Details

In order to have the highest likelihood of finding a good feature match between a investiga-

tor’s query image and the images in our dataset, our dataset should have as many images

of as many rooms in as many hotels as possible. Additionally, it should have images from

as many different times as possible. Hotels regularly renovate and change their internal ap-

pearance, meaning that photographs in our dataset may become outdated. These outdated

images may still be valuable, however, in pinpointing the time frame in which an individual

was trafficked (e.g., “This photograph was taken before the 2015 renovations, which means

the person in the photograph was a minor at the time the advertisement was placed.”).

2.1 Publicly Available Imagery

We keep track of the millions of images made available through Expedia’s Affiliate Network

API (http://developer.ean.com/) and create a reference in our database to the original

data and its associated metadata. These photos, however, are often provided by the hotels

themselves and may not present a comprehensive view of the hotel itself (e.g., only the

nicest rooms from good angles in the best lighting). They may also not be updated following

renovations. Both of those flaws would be problematic if these photographs were the only

representations our dataset had of these hotels.

4
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Figure 2.1: Screenshots of the smartphone app, TraffickCam, that allows anyone to con-
tribute to the database. The app is designed to require minimal user time and to protect
the user’s identity.

2.2 Crowd-sourced Image Collection

To supplement the images captured from existing datasets, we have created a smartphone

crowd-sourcing application named TraffickCam, which allows travellers to upload their own

photographs of a hotel room. This application is shown in Figure 2.1. Users are asked to

provide minimal information regarding the photo – the name of the hotel they’re staying in

and their room number, along with images of the room.

The application, called TraffickCam, is available from the iOS and Android stores, in addition

to being accessible via any modern browser at http://traffickcam.org.

Examples of images from both the Expedia dataset and the TraffickCam dataset, as well as

representative images that law enforcement might upload to the TraffickCam system can be

seen in Figure 2.2.

5
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2.3 Dataset Scope

The present TraffickCam database includes 1,629,505 images from 150,289 unique hotels. Of

these hotels, 131,244 hotels have only Expedia images, 15,242 have only TraffickCam images,

and 10,742 hotels have both TraffickCam and Expedia images. Figure 2.3 shows a histogram

of the number of images per hotel. For TraffickCam, the most common number of images

per hotel are in increments of four, due to the app requesting four images at a time (but

allowing any number between one and four).

While the TraffickCam application purposefully collects no identifiable information about

users to protect them from any legal action, we are able to estimate the number of users per

hotel by the timestamp of the images uploaded – the application asks users for a set of four

images, so we assume images that are disjoint in time are from different users. The plot in

Figure 2.4 shows that most TraffickCam hotels have only a user or two, while a few have

many more users. These hotels with many users are largely locations where TraffickCam

training events have been held.

2.4 Implementation Details

We have implemented a RESTful API in Python Django, a web framework for rapid web de-

velopment. Django handles the interaction between the server side code, web front end code,

MySQL database and Apache web server. Test, stage and production Ubuntu environments

are hosted through Amazon Web Services.

The iOS app, available through the Apple App Store, is simply a container that renders

an HTML5+jQuery+AJAX web application hosted on https://traffickcam.org, rather

than a full native application. This allows for rapid development and easy exploration of

different user experience choices (e.g., different motivational messages to display to users

upon submission). The Android application is a native application available on the Google

Play store.

6
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2.5 Application Statistics

Since TraffickCam was released in December of 2015, there have been 68,700 installations on

iOS devices and 28,500 installations on Android devices. These installations are primarily

from users in the United States, where the search tool will first be deployed for law en-

forcement, but also include several thousand installations each from Europe and Asia. On

average since the advertised release of the TraffickCam applications for iOS and Android in

June of 2016, users have submitted just over 530 images a day.

The search interface based on the methods detailed in this work is currently being evaluated

by St. Louis County Police Department.
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(a) Expedia Images

(b) TraffickCam Images

(c) Example Censored Query Images from Law Enforcement

Figure 2.2: The top set of images are from Expedia and the middle set of images taken by
TraffickCam users at the same hotel. The bottom set of images are censored versions of the
types of images that might be provided by law enforcement. These examples demonstrate
the discrepancy in the types of photos provided by Expedia, by the TraffickCam app and by
law enforcement. 8



Figure 2.3: The number of images per hotel for both TraffickCam and Expedia.

Figure 2.4: This histogram shows that there are largely only a few users at a particular hotel,
with a few hotels where a larger number of users have submitted photos.
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Chapter 3

Feature Matching Approaches

The approaches to scene recognition that we explore in this work are based on the simi-

larity of descriptors, small numerical representations of either locations in an image (‘local

feature descriptors’) or the entire image (‘image descriptors’). Local feature descriptors are

either extracted densely (evenly sampled across the image at different scales) or at keypoint

locations. There are different approaches to finding keypoints in an image, but the gist

of each approach is to find locations in the image with high texture and extract feature

descriptions for the regions of the image about those locations. These features can then

either be matched directly to each other using a nearest neighbor search, or by mapping the

descriptors to an even smaller representation, for example by creating dictionaries of similar

features and describing those features with the same ‘word’. Here, we discuss approaches to

scene recognition using both local feature descriptors and image descriptors, and different

types of matching routines.

3.1 k-Nearest Neighbor Matching with SIFT Features

Local feature descriptors are small numerical representations of small parts of an image.

In evaluating local feature descriptors, we focus on David Lowe’s widely used Scale Invari-

ent Feature Transform (SIFT) features [15], and specifically the VLFeat implementation of

Lowe’s algorithm [18]. SIFT features are designed to produce similar features (in descriptor

space) regardless of the scale or orientation of the image region being described. This is

particularly important in the context of matching images of a victim of sex trafficking in

a hotel room to a database of hotel room images, as the features (such as the headboard,
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curtains, carpet, etc.) may be in very different configurations at different scales between the

different datasets.

To evaluate the performance of SIFT features in matching images from hotel rooms, we

follow this methodology: given a query image, we first extract SIFT features using the

MATLAB implementation [18]. For each of those features, we find the k-nearest neighbors

in the set of features extracted from the database of images using the VLFeat’s MATLAB

implementation of FLANN’s KD-Tree Forests [18]. Each nearest neighbor match between a

feature in the query image and a feature in a database image is a “vote” that the query image

was taken in the same hotel as the database image. Votes are weighted by their ranking in

the nearest neighbor match (e.g., the first nearest neighbor is weighted more heavily than

the fifth nearest neighbor) to determine a list of candidate hotels where the query image

might have been taken.

This voting scheme per feature is based off of [21], which addressed the problem of outdoor

scene recognition on Google Street View images.

3.2 k-Nearest Neighbor Matching with Learned Fea-

tures

We compare the performance of SIFT feature matching with feature representations learned

from an existing deep convolutional neural network (CNN) architecture [13]. We use a

publicly-available, pre-trained model, which we call Places, trained on the Places Database [22]

for scene recognition from 205 categories (e.g., airplane cabin, hotel room, shed). In this

CNN architecture, features are extracted from images in a layered, feed-forward manner.

Initial layers of the architecture consist of convolutions, local response normalization, local

pooling, dropout layers, and rectified linear (ReLU) activation units. The top layers of the

network are four fully connected layers ‘fc6’, ‘fc7’, ‘fc8’, and the final output layer ‘prob’

that represents a categorical probability distribution. The dimensionality of these top layers

in Places are 4096, 4096, 205, and 205 respectively. We perform feature extraction using

Caffe [10], an open source deep learning framework.

11



The advantage of this nearest neighbor voting approach is that we search for feature matches

over our entire local feature descriptor space. This means that if there is a small crayon

mark on the wall in a query image and a matching mark on the wall in another image.

In approaches that quantize the local features into a smaller descriptor, those identifying

features may be ignored. We could even explore weighting these exact matches proportionally

based on the distance between features, as opposed to the default approach in SIFT feature

matching proposed by Lowe that checks whether two features are 20% closer to each other

in feature space than the next closest match [15]. We do not, however, explore these types

of metrics which might further improve the performance of this exact matching approach,

as we are looking to implement a real world system and the time constraints of this exact

feature matching make this approach to search infeasible.

3.3 Bag of Words Matching with SIFT Features

Matching image features to image features can be extremely computationally expensive.

SIFT features are 128-dimensional, and even the non-dense SIFT implementation we use

extracts around 1000 features per 480x640 image. Solving for the nearest neighbor of each

feature in that 128 dimensional space, as we do in the voting scheme described above, is

computationally infeasible for even image databases of a few thousand images. One option to

make the search more scalable is to represent each feature not as a 128 element representation,

but rather as a single ‘word’ from a dictionary of possible words – an approach known as

‘bag of words.’

To compute a dictionary of possible words, we compute SIFT features from every image

in a dataset comprised of 20,000 TraffickCam images, 5,360 indoor images from the Places

dataset [22] and 4,250 images from the CalTech Pedestrian dataset [6]. We include the

CalTech images in order to learn a more diverse dictionary of words. We then use the SciPy

implementation of the k-means clustering algorithm to solve for 5,000 cluster centers, which

will be the words in our dictionary [11]. We have experimented with other dictionary sizes,

but find that too many words result in words that are too specific, at a loss of robustness to

changes in scale and orientation between features. Additionally, larger dictionary sizes take

significantly longer for the k-means clustering to converge, without any gains in performance.
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To test the performance of this approach, we first extract the SIFT features from both the

entire dataset and the query image. Each 128-dimensional feature is then mapped to its

nearest cluster center, or word. For an entire image, we can then compute the frequency of

each of the 5,000 words in our dictionary for that feature – a ‘bag of words.’ Then, instead

of matching each of the 128 dimensional SIFT features (around 1000 per image), we solve

for which of 5,000-dimensional bags of words from the database of images is closest to the

5,000 dimensional bag of words from the query.

3.4 Vector of Locally Aggregated Descriptors (VLAD)

Matching

Current state of the art approaches to outdoor scene localization are based on vectors of

locally aggregated descriptors (VLAD) [9, 1]. VLAD features are similar to bag of words with

regards to image retrieval and scene localization, both starting with vector quantization of a

large number of local descriptors (like SIFT features) into a smaller representation. Where

bag of words encodes the number of features assigned to each cluster center, VLAD instead

encodes the distance from the cluster center. The feature size (around 4000 dimensions per

image) allows VLAD features to scale well for large scale matching, and the encoding of

distance from the cluster center allows for some improvement in the performance of this

descriptor for recognition.

We specifically implement a variation of VLAD features called NetVLAD. These features are

the product of a convolutional neural network with a ‘VLAD’ layer that aggregates features

extracted from the conv5 convolutional layer. The NetVLAD authors train this network on a

large number of Google Street View images for the purpose of outdoor scene recognition [1].

As we show in Chapter 4 Section4.2, training a model specifically for the task of scene

recognition produces better results than using hand tuned features such as SIFT.

We use the author’s MATLAB implementation of NetVLAD, along with the trained model

recommended and provided to us by the authors (‘VGG-16 + NetVLAD + whitening, trained

on Pittsburgh’), to produce image descriptors and then follow the same procedure for eval-

uation as described in Section 3.3 of this chapter.
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Chapter 4

Experimental Results

We perform two separate sets of experiments on different subsets of the datasets described

in Chapter 3 Section 3.1, first matching photos from Expedia to other images from Expedia,

and then matching images from the TraffickCam dataset to images from Expedia. Both

experiments match images of hotel rooms to other images of hotel rooms. While this problem

is likely simpler than matching images of victims of sex trafficking in hotel rooms to images

of empty hotel rooms, to date, there is no feasible way to build a labeled dataset of images

of victims in hotel rooms. We discuss this challenge and the need for additional work on this

front further in Chapter 5.

4.1 Matching Between Expedia Images

The first set of experiments are basic, matching images from the Expedia dataset to other

images from the Expedia dataset. For this experiment, the images for both the queries and

the database are hand selected from the larger datasets to remove images that are inconsistent

with the experiments, e.g., photos of a hotel lobby that are incorrectly labeled as hotel

interiors. Within a single hotel, the images are largely consistent in lighting, color and even

layout. This is because the Expedia images are largely provided by hotels for advertising

purposes, showing off rooms in their best conditions using professional photography and

lighting.
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Feature Set Top 1 Top 10 Top 20
SIFT 0.44 0.66 0.69

Places (fc6) 0.32 0.63 0.69
Places (fc7) 0.26 0.54 0.65
Places (fc8) 0.14 0.44 0.52

Places (output) 0.04 0.25 0.31

Table 4.1: Results with baseline feature matching methods. SIFT feature matching perfor-
mance is better than features extracted from Places in identifying the correct hotel in the
single most similar image (Top 1). SIFT features and features extracted from Places (‘fc6’)
have similar performance in identifying the correct hotel in the Top 10 and Top 20 most
similar images.

In this set of experiments, we compare the performance of matching with SIFT features as

described in Chapter 3 Section 3.1 and with the performance of learned feature descriptors

as described in Chapter 3 Section 3.2.

For each query image, we follow the methodology detailed in Chapter 3 Section 3.1, and

compute the 20 nearest neighbors in the experimental database based on each of the feature

type described in the previous section. For each query image, we find which hotel in which

each of the 20 nearest neighbor images were captured, and report whether the correct hotel

was in the top 1, top 5 and top 20 nearest neighbors.

The results of this experiment are reported in Table 4.1. SIFT feature matching generally

has the best performance, identifying an image from the same hotel as the query image as

the closest match 44% of the time. SIFT feature matching and matching using the feature

extracted from Places layer ‘fc6’ have similar performance when identifying the correct hotel

in the top 10 and top 20 closest matches. The places ‘output’ layer has generally poor

performance. We show example results for SIFT feature matching in Figure 4.2.

4.2 Matching TraffickCam to Expedia Images

This second set of experiments is more difficult, and hopefully more similar in terms of the

discrepancy between the query images and the database of images to the actual problem
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of matching photos of victims of sex trafficking to photos of hotel rooms. This discrepancy

can be seen in the images in Figure 2.2. In this set of experiments, we attempt to match

images from the TraffickCam dataset, which are captured by TraffickCam users on their

smartphones with clutter in the room and suboptimal lighting conditions, to images from the

more professionally captured Expedia dataset. In order to create the TraffickCam portion of

the dataset, we filter for hotel locations where between three and ten users submitted images

of the hotel and include all images (both TraffickCam and Expedia) from those hotels. We

then train a classifier to label each of those images as hotel room, bathroom or other, using

the GoogleNet architecture and 75,000 labeled images from the SUN dataset [20] and the

Expedia dataset. This classifier achieves 96.9% accuracy on a test set comprised of SUN

and Expedia images (we have not evaluated performance on a test set with TraffickCam

images). For these experiments, we evaluate performance in 50 TraffickCam query images

from 50 different hotels, and match against a database of 968 Expedia images from 100 hotels

including the 50 query hotels.

In this set of experiments, we evaluate SIFT based matching as described in Chapter 3 Sec-

tion 3.1, bag of words based matching of SIFT features as described in Chapter 3 Section 3.3,

and NetVLAD based matching as described in Chapter 3 Section 3.4.

Figure 4.1 shows the metric ‘Any @ N’, for N from 1 to 100, for each matching method.

‘Any @ N’ measures whether there are any instance of the correct answer between 1 and N.

This metric is more appropriate for this problem domain than more traditional ‘Recall @

N’, as we care whether we match to any instance of the correct hotel in the top N results,

but not whether we match to all instances of that hotel (in fact, we specifically would not

want to match a picture of a bed to a picture of a bathroom). The results in Table 4.1 and

Figure 4.1 can be compared by observing the ‘Any @ N’ plot for N = 1, 10, 20. Overall,

the best performance is achieved with NetVLAD features extracted from a convolutional

neural network for the explicit purpose of performing well on scene recognition. Figure 4.3

shows example success and failure cases for the NetVLAD feature descriptor. NetVLAD

especially outperforms SIFT and BOW matching for low values of N. This is equivalent to

finding the correct result on an earlier search page, which is important when considering

law enforcement users want to find the correct match as early in the search as possible, as

opposed to clicking through many pages of results.
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Figure 4.1: We show here matching performance for each of the different feature types in
the experiment matching TraffickCam images to Expedia images. We use a variation of
the common ‘Recall @ N’ metric, that we call the ‘Any @ N’ metric. ‘Any @ N’ measures
whether there are any instance of the correct answer between 1 and N. The best performance
is achieved by the NetVLAD whole image descriptor, especially for low values of N, but there
is significant room for improvement over all current methods.
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(a) A successful matching between images from dramatically different viewpoints.

(b) A successful matching that demonstrates the limitations of our current dataset. These
two images are more visually similar than we would ever expect in real world query data.

(c) A failed matching, where SIFT feature matching found visually similar features in the
furniture in hotel rooms in two different hotels.

Figure 4.2: The left column shows query images from the Expedia dataset, and the right
image shows the image in the same dataset that was found to be the closest match using
SIFT features and the matching pipeline described in Chapter 3 Section 3.1. The top two
rows show correctly matched pairs, where the query image and result image were taken in
the same hotel. The bottom row shows an incorrectly matched pair.
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(a) A successful matching between images from different viewpoints and image conditions.

(b) A successful matching between images from very similar viewpoints.

(c) An incorrect, but reasonable matching with similar room configurations.

Figure 4.3: The left column shows query images from TraffickCam, and the right image
shows the image which was found to be the closest match in the Expedia dataset, using
NetVLAD features and the matching pipeline described in Chapter 3 Section 3.4. The top
two rows show correctly matched pairs, where the query image and result image were taken
in the same hotel. The bottom row shows an incorrectly matched pair.
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Chapter 5

Conclusions and Future Work

This work details a project to find existing Internet imagery and crowd-source the collection

of additional imagery of hotel rooms. The dataset creates a resource that can be used in

investigations of sex-trafficking because it provides possible locations where photographs

of sex-trafficking victims were taken. Our initial results are promising on two different

experimental datasets, each including thousands of images either of all the Expedia images

from a hotel in a city or of all of the TraffickCam and Expedia images from a random

collection of hotels around the United States. Qualitatively, this first experiment is a test

on a scale that may itself be useful (if the investigation already knows to focus on a city).

The current experiments are, however, simpler than the real world problem of matching law

enforcement provided images of victims of sex trafficking in hotel rooms to images of empty

hotel rooms. Building a dataset that is more representative of the types of images that might

be used in a law enforcement query (e.g., with large occlusions, sub-optimal lighting, non-

professional equipment, etc.), and evaluating different matching methods on that dataset,

will be an extremely important area of future work to truly assess the validity of a particular

matching routine for this problem domain.

Additionally, the scale of the presented experiments is still significantly smaller than the

scale at which the TraffickCam system will be truly useful for law enforcement around the

country. While it is possibly to create indices of imagery on a local or regional basis that

might operate at the scale discussed in this paper (thousands of images), more realistically

the system needs to scale to search millions of images at a time. Limiting law enforcement

to a single area, when the reality of trafficking is that it often occurs across state lines and

regional boundaries, would limit the usefulness of the TraffickCam system.
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The first piece of making the system usable at a national scale is to implement a more

efficient search over whatever feature we choose. The current search is based on a Python

implementation of Whoosh, which was built for text searches. There are alternative search

architectures, including Elastic Search, that may be much better suited for our particular

search domain and the scale at which it needs to operate.

In addition to improving the search efficiency, there is still room for significant improvement

in the accuracy of the system. In Chapter 4 Section 4.2, we show that the best search

accuracy is achieved using NetVLAD image descriptors. It is not particularly surprising

that a learned feature, trained specifically for the task of scene recognition, outperforms hand

crafted features like SIFT on this particular task. However, there is potential for significant

improvement over the baseline NetVLAD performance by training the same architecture

with a dataset that includes indoor imagery (NetVLAD was trained on outdoor imagery

for the purpose of outdoor scene recognition), and is room for exploration of different deep

learning architectures that may be even more suited for our particular task.

One additional area of future work that may yield significant improvement in the accuracy

of the recognition system is to implement semantic labeling of each scene as a pre-processing

step. Existing work, such as [3], demonstrates that convolutional neural networks can be

used to provide reasonable pixel-wise classification of an image. Our early experiments in

using such a network to label indoor scenes with classes such as ‘bed’, ‘curtains’ and ‘lamp’,

have yielded promising results. With these semantic labels, we could then implement a

smarter matching routine that only attempts to match features from objects of the same

class. This may be particularly important in hotel room matching, where the same carpet

or artwork may be present throughout a hotel or hotel chain, while other objects such as

furniture might vary.

Finally, there is room to explore whether the existing TraffickCam application captures the

best imagery to support the task of recognizing hotel rooms. The application at present

asks users to provide images from specific parts of their hotel room in order to maximize the

coverage provided of the room. It is possible, however, that there are very specific features

that are most important in recognizing a scene – for example, it may be that the curtains

or carpet in a room are always the features that are most visible in query images of victims

of sex trafficking. In that case, we would want to design the TraffickCam user experience to
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provide the images that are most beneficial to the matching problem, such as close ups of

the curtains or pictures of the carpet in different lighting conditions.
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