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ABSTRACT 

 

 Educational modeling in agricultural and environmental sciences provides 

access to the scientific knowledge needed to address local and global challenges that 

affect human wellbeing. Ecosystem services tradeoffs frameworks can enhance 

wellbeing by facilitating agricultural landscape design to produce multiple 

ecosystem services while maintaining farmer profitability and mitigating risk to 

farmers. At present, few broadly accessible tools evaluate how changes to land 

management affect the types and levels of ecosystem services delivered to humans. I 

developed a tool, People in Ecosystems/Watershed Integration version 2 (PE/WI or 

PE/WI v2), to fill this gap and foster multidimensional and integrative land-

management decisions. 

PE/WI is an online educational watershed simulation that allows users to 

design land-use configurations and evaluate ecosystem services tradeoffs. PE/WI 

creates a novel learning environment with visualizations that simplify complex 

land-use and ecosystem services relationships. Its ecological modeling framework 

aims to teach concepts of minimized tradeoffs and maximized co-benefits across 

spatial and temporal watershed dimensions. This approach allows users to 

simultaneously consider agricultural land use, climate conditions, production 

outcomes, and environmental outcomes such as nutrient levels in water, habitat 

provision for biodiversity, soil erosion, and carbon management.  
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As an educational tool, PE/WI has enormous flexibility. Initial use with 

students in age groups from middle through graduate school covered multiple, 

diverse learning objectives. PE/WI enhances lessons involving discussion of 

ecological principles; economic valuation of ecosystem services outputs and 

discussion of payments for ecosystem services; consideration of tradeoffs and 

societal constraints to land-use change; and design of landscape scenarios to meet 

assigned goals. In initial uses, I have seen PE/WI’s ability to fundamentally alter 

people’s frameworks for land use and management. 

Beyond classrooms, I see an enormous future potential for PE/WI to help 

people understand how commodities might be co-produced with other ecosystem 

services; develop shared understanding of watershed processes; foster multi-

stakeholder, watershed-scale decisions; and develop strategies to mitigate economic 

and social risks associated with climate change, biodiversity loss, and natural 

resource impairment. PE/WI combines the best available science with an appealing, 

interactive platform that I hope will engage groups such as students, farmers, and 

policy makers in the US Corn Belt and beyond. 
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  CHAPTER 1

GENERAL INTRODUCTION 

 

Educational modeling in agricultural and environmental sciences provides 

students and decision makers access to the scientific knowledge needed to address 

local and global challenges that affect human wellbeing. As individuals and societies 

consider issues wrought with complexity, uncertainty, and societal urgency, 

researchers including Biggs et al. (2010) have called for “new ways of thinking” that 

“reframe the relationship between science and decision making” (p. 267). 

Beginning in 2004, a team of researchers at Iowa State University, with 

funding support from the US Forest Service Northern Research Station, developed a 

Microsoft Excel-based educational modeling tool, People in Ecosystems/Watershed 

Integration, version 1 (PE/WI or PE/WI v1), to teach complex tradeoffs among 

ecosystem services in agricultural landscapes (Schulte, Donahey, Gran, Isenhart, & 

Tyndall, 2010). The tool, primarily used in university instruction, alters the learning 

environment by using visualizations to simplify complex relationships between land 

uses and ecosystem services. PE/WI’s ecological modeling framework encourages 

new ways of scientific thinking. Users take on decision-making roles through 

personalized scenario creation, and scenario outcomes allow users to qualitatively 

and quantitatively consider land-use tradeoffs among ecosystem services. Outside of 

a PE/WI type model, evaluations of land-use tradeoffs tend to be complex 

abstractions (de Groot, Alkemade, Braat, Hein, & Willemen, 2010). 
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While the initial spreadsheet-based PE/WI filled a critical niche in 

educational modeling within environmental and agricultural contexts (Schulte et al., 

2010), the PE/WI research team identified several opportunities to re-evaluate and 

expand the PE/WI science model, add new components, and improve the user 

interface. Starting in 2013 with funding support from The McKnight Foundation, 

work began on People in Ecosystems/Watershed Integration, version 2 (PE/WI or 

PE/WI v2). We developed PE/WI v2 as an open source, web-based application using 

current web technologies with front-end (client-side) programming in JavaScript. I 

served on the team as graduate researcher and project manager. Other 

collaborators included seven consulting faculty members, three computer 

programmers, and a graphic designer. 

We developed the PE/WI v2 model through a rigorous process of 

synthesizing the best available scientific research and conducting expert model 

reviews by scientists spanning multiple disciplines. Throughout development of the 

model, we emphasized simplification of inputs and modeling with a preservation of 

the complex relationships (Garcia-Barrios, Speelman, & Pimm, 2008; Long et al., 

2014). To reach a broader user group beyond academic and research professionals, 

we synthesized existing research on watershed land use, dynamics, and outcomes—

often too complex and detailed for general user groups—into an interactive, 

dynamic model that teaches concepts through user experimentation and 

comparison of results. 
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Creating a tool that integrates the science on agricultural production and 

social-ecological processes is not enough to reach the broader public. To encourage 

user adoption, we created a tool without burdensome user-supplied knowledge or 

data requirements. Motivating users to adopt and use an educational tool also 

requires that the tool be engaging, fun, simple, accessible, reliable and 

computationally accurate. PE/WI v2 incorporates this dual approach to 

transforming knowledge of land-use impacts. 

User perspective and feedback played an important role in PE/WI’s 

development. Upon release of the new version in beta, we encouraged educators 

and students using PE/WI v2 in classrooms at several universities nation-wide to 

provide suggestions for improvement. They found the web-based user interface 

appealing and fun, with attractive graphic illustrations, interactive features, and 

user-designated layouts. They also identified opportunities to enhance PE/WI’s 

model and design. For example, one user suggested adding the ability to save and 

share land-use designs in PE/WI. We implemented this feature, which benefits 

students working in groups and allows teachers to collect land-use design data sets 

as part of the assignment. We received numerous additional ideas, which we 

anticipate developing in future versions of the tool.  

In summary, the new version of PE/WI addresses critical needs for 

educational modeling of ecosystem services from landscapes. I see PE/WI v2 as a 

stepping stone to many future versions or adaptations of the tool. While we base the 

current PE/WI in an Iowa agricultural landscape, future possibilities for the tool’s 
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content and model components are numerous and, for example, could include a 

montane forest landscape in Colorado, a tropical forest landscape in Indonesia, a 

costal landscape in Belize, or an urban landscape in Europe. With its open source 

development platform and simple modeling approach, I envision collaboration from 

researchers, students, practitioners, and other stakeholders with a wide range of 

backgrounds and interests.  

The remainder of this chapter outlines the organization of this thesis. 

Chapter 2, entitled “People in Ecosystems/Watershed Integration: Visualizing 

ecosystem services tradeoffs in an agricultural landscape,” begins with an in-depth 

discussion of ecosystem services frameworks, ecological modeling, and technology-

based educational tools. The main focus of Chapter 2 details the four components of 

the PE/WI tool including: 

 DATA: Land-use configurations, pre-defined physiographic 

characteristics, and climate conditions of the watershed; 

 CONTROLS: User controls for design of land-use configuration, 

download and upload of land-use configurations, review of selected 

pre-defined physiographic characteristics, review and modification of 

climate conditions, and evaluation of outcomes; 

 OUTCOMES: Interactive graphic, spatial mapping, and numerical 

results; and 
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 MODULES: Model calculations using pre-defined physiographic 

characteristics data, published or expert-reviewed model parameters, 

and land-use configurations as inputs to produce outcomes data. 

Chapter 3, entitled “People in Ecosystems/Watershed Integration: A web-based 

learning tool for evaluating ecosystem services tradeoffs from watersheds” updates 

publication of the first PE/WI model in 2010 in the Journal of Soil and Water 

Conservation (Schulte et al., 2010). As an outreach paper with an intended audience 

of conservation-oriented researchers and practitioners, Chapter 3 reviews the 

historical challenges of managing agricultural ecosystems for multiple services, 

overviews updates to the new PE/WI model, and presents a learning exercise with 

example land-use scenarios and discussion of ecosystem service outcomes in 

PE/WI. Chapter 4 provides a general conclusion.  
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  CHAPTER 2
 

PEOPLE IN ECOSYSTEMS/WATERSHED INTEGRATION: VISUALIZING ECOSYSTEM 
SERVICES TRADEOFFS IN AGRICULTURAL LANDSCAPES 

 
A paper to be submitted for publication to the journal Ecological Modelling 

Carrie M. Chennault, Lisa A. Schulte, and John C. Tyndall 

  

2.1 Introduction 

The percentage of Earth’s human-dominated ecosystems continues to 

increase and disrupt natural ecosystem function even while common metrics of 

human wellbeing rise at the global scale (Daily, 1999; Mendenhall, Karp, Meyer, 

Hadly, & Daily, 2014; Raudsepp-Hearne et al., 2010). This environmentalist’s 

paradox persists with increased food production enhancing human wellbeing, 

although at more local scales the costs of ecosystem degradation can exceed benefits 

(Raudsepp-Hearne et al., 2010). To resolve this apparent paradox and enhance 

human wellbeing, Raudsepp-Hearne et al. (2010) and others suggest directing 

research to more fully elucidate human dependence on ecosystems. 

Identifying, designing, and improving public understanding of 

multifunctional landscapes across spatial and temporal scales is a critical strategy 

for sustainable ecosystem management on a “crowded planet” (Lovell & Johnston, 

2009b; Palmer et al., 2004). With a focus on terrestrial ecosystems, Wu (2013) 

proposed that landscapes or regions, which he defined as “multiple ecosystems over 

a watershed or a geopolitically-defined area” (p. 1000), are the operational scale at 
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which humans can interact with nature to improve ecosystem functioning, provision 

of multiple ecosystem services, and human wellbeing. Landscape ecology as a 

discipline has advanced understanding of the impacts of landscape pattern on 

biodiversity and ecological processes, and therefore on ecosystem services and 

human wellbeing (Lovell & Johnston, 2009a, 2009b; Wu, 2013). 

While opportunity exists to broaden land-management decision criteria to 

include a suite of economic, environmental, and social factors, our experience with 

land managers, students, policy makers, and agricultural and natural resource 

professionals indicates that people in general do not fully or accurately understand 

the link between land use and multiple ecosystem service outcomes. By combining 

the best available research with a simple, accessible modeling approach, we argue 

that ecological modeling provides an effective mechanism for exploration and 

communication of landscape-scale ecosystem services tradeoffs. 

We present a model for an educational watershed simulation tool that allows 

users to design alternative land-use configurations and evaluate tradeoffs in 

ecosystem service indicator outcomes. People in Ecosystems/Watershed 

Integration, version 2 (PE/WI or PE/WI v2) accomplishes our educational 

objectives by making more transparent the complex relationships between land use 

and land-use outcomes, without requiring a high level of user-supplied knowledge 

and information common to more advanced decision-making tools. Members of our 

team led the development of an initial Microsoft Office Excel-based version of 

PE/WI v1 (Schulte, Donahey, Gran, Isenhart, & Tyndall, 2010). PE/WI v2 updates 
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included migration to a more user-friendly, web-based format, an expanded 

watershed area, additional land-use options, varying climate conditions, a temporal 

component, expanded model components, an expanded set of ecosystem service 

indicators, improved graphics, and enhanced interaction with watershed tools and 

indicator outputs. 

PE/WI works through user manipulation of land use across 593 grid cells in a 

2,383 hectare watershed across three years of play (Figure 2-1). Based on spatial-

temporal designs of land use and random interannual climate variability, the PE/WI 

model calculates levels of 16 ecosystem service indicators. We report ecosystem 

services indicators in PE/WI that include both well-known, short-term measures of 

land-use productivity and indicators of environmental benefits associated with both 

shorter-term and longer-term ecological processes. Ecosystem services indicators in 

PE/WI are intermediate services needed to produce “final” services enjoyed by 

humans (Ringold, Boyd, Landers, & Weber, 2013), though PE/WI does not report 

“final” services. Beneficiaries of ecosystem services directly experience “final” 

services as specific private and public outcomes (Kroeger & Casey, 2007). As in real 

life, the PE/WI decision maker determines the perceived value of outcomes based 

on social mores and individual motivations, and similarly may determine the best 

land-use configuration to achieve desired outcomes.  

We designed PE/WI and its model in an agricultural ecosystem context to 

create a tool with direct relevance to agriculture and natural resource students at 

Iowa State University, as well as to decision makers in the US Corn Belt region. 
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However, PE/WI’s model, its conceptual framework, and its general relationships 

between land use and ecosystem services teach lessons that apply more broadly to 

other ecosystem and landscape management contexts. Thus, US Corn Belt 

agriculture is one case of land use, and PE/WI has transformative potential for 

landscapes well beyond the Midwest region. PE/WI has the potential to impact 

short-term land-use transformation among decision makers who value co-

production of economic goods and environmental services, but previously lacked 

information regarding how to implement co-production on the landscape. The 

potential for long-term land-use transformation lies in the feedback effect of 

broadened information and understanding of ecosystem services on individual and 

societal values and constraints. 

In the sections below we elaborate on the history of the US Corn Belt 

landscape, connecting historical and potential land use in the region with 

relationships between social-ecological science and society. We also discuss the role 

of educational tools in addressing current and future land-use challenges.  

   

2.1.1 Multifunctional Land Use and Tradeoffs in Social-Ecological Systems 

Land use is a human manifestation complicated by social, economic, and 

environmental pressures and constraints. It influences and is influenced by 

individual and societal values, assumptions, knowledge, and evaluation criteria 

(Costanza et al., 2014; Janssen, 2013; Sorice, Kreuter, Wilcox, & Fox, 2014). Land use 

generally reflects individual and collective human decisions and represents a choice 
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among alternative options, though members of society do not equally share in the 

ability to influence or design land use (Jackson, 2008).  

The landscape design in the Midwest Corn Belt region of the United States 

provides ecosystem services in the form of fuel, feed, food, and fiber from row crop 

agriculture. Emphasis on short-term individual economic gains and cultural norms 

developed over generations of intensive, row-crop production have led to the 

region’s large-scale corn and soybean monocultures. Alternative land use and 

practices outside of corn and soybean production have not gained significant 

momentum because, as Jackson (2008) noted, “the current economic structure of 

our food system will not permit farmers to use it” (p. 32). 

While a corn and soybean production system provides high levels of a small 

number of provisioning ecosystem services, commodity production externalizes 

high real and opportunity costs to producers and society. As Tallis and Polasky 

(2009) noted: “a single sector approach that ignores the multitude of connections 

among components of natural and social systems generally fails to provide as high a 

value to society…as would management that accounted for the complete range of 

services” (p. 266). To account for the full value of ecosystems, researchers have 

developed alternative approaches to evaluate broader sustainability criteria by 

taking monetary and nonmonetary factors, both in the present and future, into 

account (Power, 2010). These criteria may include economic productivity, 

ecosystem resilience, and human adaptability. 
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Multifunctional agriculture has the potential to achieve numerous ecosystem 

service benefits in addition or as alternatives to short-term maximization of 

commodity products (Boody et al., 2005). In practice, challenges in accounting for 

the costs and benefits of multifunctional agriculture have deterred its adoption on 

the landscape (Swinton, Lupi, Robertson, & Hamilton, 2007). For example, short-

term, private outcomes often are directly visible, whereas longer-term, more 

broadly distributed benefits and costs may be less well-known or less certain to the 

decision maker. Robertson et al. (2014) noted that farmers are more likely to 

provide environmental services that are direct and local, and found that farmers 

perceive provision of widespread benefits as unfairly “shouldering a perceived 

public burden” (p. 8). Provision of ecosystem services therefore depends on the 

local importance of a particular service or on payments for those services. 

Transitioning to multifunctional agricultural systems also depends on the objectives 

that decision makers adopt, as well as their understanding of multiple spatially and 

temporally-driven outcomes. 

 Applying social science frameworks, such as the reasoned action approach 

(Fishbein & Ajzen, 2011), to ecosystem services suggests that decision-making 

models and tools have the potential to alter land-use patterns to the extent that new 

information better equips decision makers to meet current objectives or guides 

formation of new objectives. Conversely, dynamic social-ecological systems can 

place external pressure on decision makers to shift production of ecosystem 
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services. The shift in production may create additional demand for ecosystem 

services tools and alter land-use patterns. 

Yet, how these factors will affect the landscape is uncertain. Complex 

interrelationships exist among decision-maker objectives due to technological 

changes, ecosystem dynamics, social mores, individual motivations, economic and 

political factors, and understanding of associations between land-use decisions and 

ecosystem service outcomes. Efforts to steer land-use on an environmentally 

sustainable trajectory depend on social action (Daily, 1999). Part of that social 

challenge is communicating the existing science that supports a correct 

understanding of associations between land-use decisions and outcomes. 

Communicating science to decision makers and the public entails synthesizing 

research from multiple disciplines to inform complex land-use and land-

management decisions in agricultural systems (Coiner, Wu, & Polasky, 2001). 

An ecosystem services framework can serve as a starting point to 

communicate how changes in land use and agroecosystem management produce 

changes in the types and levels of services that benefit humans. To illustrate flows of 

ecosystem services and disservices in and out of agricultural ecosystems, Zhang, 

Ricketts, Kremen, Carney, and Swinton (2007) illustrated flows of ecosystem 

services and disservices in and out of agricultural ecosystems, which we adapted to 

show how the PE/WI model fits within such a framework (Figure 2-2). 

Changes in land use, for example, may entail tradeoffs in short-term 

production of commodity grain crops and associated revenue by taking land out of 
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production to install conservation practices (Robertson et al., 2014). Strategic 

placement of alternative land uses and conservation best management practices 

(BMPs), however, may replace decreases in provisioning services with increases in 

other ecosystem services. The Iowa Nutrient Reduction Strategy (NRS) (Iowa, 2013) 

quantified these types of ecosystem services tradeoffs for the state of Iowa. Their 

analyses compared the effects of BMPs such as in-field nutrient management, edge-

of-field and erosion control practices, and land-use changes in terms of decreases in 

provisioning services, namely lost corn and soybean production, and increases in 

other ecosystem service indicators, namely nitrogen and phosphorus loads in 

surface waters.  

Connecting theory to practice, designers of alternative agricultural system 

approaches aim to produce multiple ecosystem services. Various approaches 

describe their operations and practices as sustainable, multifunctional, 

agroecological, organic, or diversified (Boody et al., 2005; Kremen & Miles, 2012). 

However, few information and evaluation tools exist for producers to explicitly 

incorporate ecosystem services frameworks like the one presented by Zhang et al. 

(2007) into management decisions. The PE/WI setup enables users to simulate a 

range of real-world land-management options, including conventional practices, 

conservation practices, and alternative land uses. Users may implement spatially 

and temporally driven strategies by designing configurations of various land-use 

types—each associated with specific management practices—and rotating land-use 

types across multiple years of play. Each strategy and management option uniquely 
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impacts ecosystem function. By evaluating ecosystem service indicators, users then 

may compare how well each strategy across different climate scenarios 

accomplishes their desired objectives.  

Research studies and tools to date have typically focused on a small number 

of ecosystem services (Power, 2010). Researchers, including Power, have called for 

spatially and temporally explicit frameworks that cover a wider range of ecosystem 

service outputs. We developed PE/WI as a tool to bridge the informational gap 

between land-use design and ecosystem services outcomes, designed to be 

accessible to land managers, producers, students, and the general public without 

guidance from an expert modeler.  

 

2.2 Materials and Methods 

The PE/WI watershed is static in its physiographic properties, but interactive 

and variable in terms of climate and land use. The tool provides an interface for 

users to visualize five of the pre-defined physiographic characteristics of the 

watershed and configure land use—15 land-use types—across each cell grid 

location in the watershed annually across three years. Land-use selection, in 

conjunction with pre-defined physiographic characteristics and annual average 

climate conditions, serve as inputs for modeling ecosystem services outputs.  

PE/WI presents outputs both to users both as biophysical ecosystem service 

indicator numerical values and converted to a unitless index score ranging between 

0 and 100. Users may compare index scores for all outputs across three years 
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through an interactive graphic plot. Additionally users may evaluate outputs maps 

to identify source areas for three ecosystem service indicators across each year and 

review numerical results that include area in each land-use type, annual 

precipitation levels, and number of utilized strategic wetlands. 

 

2.2.1 Model Specification  

PE/WI users directly or indirectly interact with the four components of the 

PE/WI tool: 

 DATA: Land-use configurations, pre-defined physiographic 

characteristics, and climate conditions of the watershed; 

 CONTROLS: User controls for design of land-use configuration, 

download and upload of land-use configurations, review of selected 

pre-defined physiographic characteristics, review and modification of 

climate conditions, and evaluation of outcomes; 

 OUTCOMES: Interactive graphic, spatial mapping, and numerical 

results; 

 MODULES: Model calculations using pre-defined physiographic 

characteristics data, published or expert-reviewed model parameters, 

and land-use configurations as inputs to produce outcomes data. 

The following sections specify the PE/WI model according to its data, controls, 

outcomes, and modules. The Modules section presents the core science model. 
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2.2.2 Data 

The first component of PE/WI is data, which consists of inputs into the 

PE/WI model. The PE/WI watershed is a fictitious watershed based on two Iowa 

landform regions, the Des Moines Lobe and the Southern Iowa Drift Plain (Prior, 

1991). Rather than use an actual watershed for PE/WI, we created a fictitious 

watershed to 1) provide users unique land-use and management challenges from 

multiple regions, and 2) encourage use of PE/WI as a general educational tool to 

inform decision making, rather than use as a location-specific decision tool. 

However, PE/WI makes extensive use of real-world data. The PE/WI watershed—

which we represented spatially in the application as a collection of 593 grid cells 

configured around a vector-graphic stream to approximate a 2,383 hectare 

watershed—pulls in data from the Iowa Soil Properties and Interpretations 

Database (ISPAID) (Iowa State University, 2010). Each grid cell has an area of 

approximately 4 ha, though we reduced the land area for grid cells containing 

portions of the stream (Table 2-1). We nested each grid cell within one of 20 

subwatersheds, which are nested in the PE/WI watershed (Table 2-1). We 

additionally mapped each grid cell to a specific soil map series, and its associated 

data set, from one of two Iowa counties—Boone County in the Des Moines Lobe and 

Jasper County in the Southern Iowa Drift Plain.  

When users open the PE/WI application, they see a watershed map loaded 

with a pre-defined initial land-use data set to represent Year 0 land-use 

configuration. We created a generic land-use data set for Year 0 with land-use 
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options available in PE/WI. However, the initial land-use data set does not represent 

a realistic or intentional land-use configuration, nor does it impact temporally-

driven ecosystem service indicator outcomes. We deliberately chose an arbitrary 

configuration to emphasize user imagination in creating PE/WI scenarios. Because 

PE/WI results in a given year depend on prior year precipitation, we pre-defined 

climate conditions for Year 0 to use as model inputs. Upon starting PE/WI, the 

program randomly assigns annual climate conditions based upon historical annual 

precipitation data from Iowa to simulate climate variability across years. The PE/WI 

model consists of seven annual precipitation levels, occurring with varying 

frequency (Table 2-1).  

By interacting with PE/WI controls to change land-use types, users start 

their designs for Year 1, followed by Years 2 and 3. This creates a land-use data set 

that users may download, save, share, and later re-upload in PE/WI. PE/WI contains 

15 land-use types (Table 2-3). 

Either initially, during, or after creating land-use designs, users may evaluate 

maps of important watershed physiographic characteristics and take climate 

information into consideration in order to direct land-use decisions for production 

of desired ecosystem services. The pre-defined physiographic characteristics data 

visible to users in PE/WI include topographic relief (Table 2-4), flood frequency, and 

drainage class data for each soil map series from ISPAID (Iowa State University, 

2010); as well as realistically-delineated subwatershed boundaries and strategic 

wetland location data. Additional physiographic characteristics from ISPAID serving 
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as model inputs include corn suitability rating (an index rating soil type suitability 

for row-crop production); yields for corn, soybean, and alfalfa-brome; slope range; 

hydrologic group; soil texture (surface horizon); subsoil group (B horizon only); 

permeability; and an erodibility factor (Kw).  

 

2.2.3 Controls 

Controls in PE/WI include a design control to interactively create land-use 

configurations on the virtual watershed and multiple display controls to evaluate 

input and outcome data. Through the design control, users may click any of the land-

use icons to activate their computer input device (typically a mouse, stylus, or 

touchpad finger contact) as one of 15 land-use and land-management options. 

Navigating on the screen to individual cell grids and using a point, click, and drag 

sequence, each selected cell grid takes on the active land use. Next, users navigate to 

different years to create future land-use designs, which they access by clicking on 

Year tabs labeled “1,” “2”, and “3.” 

The display controls provide informational functionality, allowing users to 

navigate to maps of physiographic characteristics by clicking on the “Physical 

Features” icons, and view PE/WI outcomes by clicking on the “Scores,” “Maps,” and 

“Results” tabs.  

We created two additional controls to enhance usability, especially in 

classroom or group settings: a download and upload control to save, re-upload 

and/or share land-use data sets, and a hidden control—accessed by a keyboard 
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short-cut “Control + p”—to set precipitation levels rather than use random climate 

conditions.  

 

2.2.4 Outcomes 

Inputs to the PE/WI model—land-use types, physical features, and climate—

interact through the model to produce outcomes for users to evaluate. PE/WI 

presents its outcomes as interactive graphic, spatial mapping, and numerical 

summary results. Specifically, PE/WI displays interactive graphic results as a plot of 

16 unitless index scores for all three years, in which 0 indicates the lowest 

attainable score in PE/WI and 100 indicates the highest attainable score in PE/WI 

(Figure 2-3). The 16 outcomes consist of nine crop and livestock production indices, 

three water quality indices, one soil quality index, one greenhouse gas index, one 

game wildlife habitat index, and one biodiversity index. The conversion of each 

model output to an index allows users to compare relative performance among 

ecosystem service indicators and assess tradeoffs across multiple years or previous 

designs. We adapted a Data Driven Documents (D3) (Bostock, Ogievetsky, & Heer, 

2011) open source template to create the interactive index plot, which allows users 

to highlight their ecosystem service indicators of interest. 

PE/WI additionally provides spatial mapping of three ecosystem service 

indicators: nitrate watershed percent contribution (Figure 2-4), gross erosion, and 

phosphorus index risk assessment. In the nitrate watershed percent contribution 

example (Figure 2-4), the upper left subwatershed contributes most heavily to 
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nitrate-N concentration levels in the first year. In subsequent years, the nitrate 

percent contribution becomes more even across all watersheds. Although this map 

does not indicate whether overall nitrate-N concentration is low or high relative to 

some standard, spatial mapping of percent contribution indicates locations for users 

to target land-use changes to lower concentration overall. The other two maps—

gross erosion and phosphorus index risk—show absolute levels of erosion and P-

index for each grid cell in the watershed. Similar to the nitrate contribution map, 

these two ecosystem service indicators maps enable users to identify and target 

areas for improvement in the watershed. 

Finally, PE/WI presents users with numerical summary results for all three 

years. These results include annual area and percent area of the PE/WI watershed 

in each land-use type; annual value for each ecosystem service indicator; annual 

index score for each ecosystem service indicator; annual number of strategic 

wetland areas in a wetland land-use type; and annual precipitation. Area, ecosystem 

service indicator values, and annual precipitation appear in metric and English 

units. 

 

2.2.5 Modules 

PE/WI models ecosystem and supporting services through seven modules: 

biodiversity, game wildlife, carbon sequestration, nitrate concentration, phosphorus 

loading, sediment delivered, and yield. These seven categories further break down 

into 16 ecosystem service indicators reported as outcomes to users.  
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Biodiversity 

 The biodiversity model in PE/WI presents a relative measure indicating how 

well a landscape pattern maintains habitat suitability at the watershed scale for 

native species (Fischer, Lindenmayer, & Manning, 2006), based upon landscape 

configuration and composition (Fahrig et al., 2011). We developed the biodiversity 

model to reflect habitat suitability for a suite of native species, with emphasis on 

native bird species due to the relatively greater scientific understanding of this 

taxon compared to others. 

The importance of biodiversity on the landscape scale is important to 

humans because, according to Robertson et al. (2014), it “affects the capacity of 

agriculture to deliver ecosystem services, especially those related to biocontrol and 

water quality”(p. 4). To provide one example of how biodiversity supports 

ecosystem services, research and experimentation conducted by Costamagna and 

Landis (2006) at the Kellogg Biological Station Long Term Ecological Research site 

shows the importance of ladybird beetles in controlling soybean aphids, which in 

turn reduces the risk of decreased crop production. Details for each component of 

the biodiversity calculation follow. 

PE/WI users receive between 0 and 10 biodiversity points annually, with 10 

indicating a PE/WI landscape that best maintains habitat quality. The biodiversity 

score breaks down into five calculations with associated rules to form a point 

system (Table 2-5). The landscape composition component calculates the percent 
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area of native vegetation land-use types and land-use types with high diversity and 

low input relative to conventionally row-cropped systems. Calculations of landscape 

composition and configuration include stream buffering and wetland percent area 

and strategic location. Together, the biodiversity score calculations account for the 

effects of land-use type, land management, and landscape pattern on native species 

habitat (Fischer et al., 2006).  

PE/WI also provides users with an index to evaluate all indicators on a 

relative basis. To assign an index score for biodiversity, PE/WI converts biodiversity 

points to the index score on a straight-line basis with scores ranging between 0, the 

lowest score attainable in PE/WI, and 100, highest score attainable in PE/WI. For 

example, 5.5 biodiversity points in PE/WI equals an index score of 55 out of 100. 

The first biodiversity calculation in PE/WI considers landscape composition 

of native vegetation. Fischer, Lindenmayer, and Manning (2006) presented 10 

guiding principles for biodiversity in agricultural landscapes. They concluded that 

placing large areas into native vegetation “tends to support higher biodiversity than 

structurally simple or degraded vegetation” (p. 81). More recently, ecologists 

studying biodiversity in suburban and rural landscapes have developed and tested 

countryside biogeography frameworks that predict the ability of agricultural 

landscapes to support biodiversity, if managed appropriately for habitat and if 

species have access to proximate reserve areas of native vegetation such as forests 

(Mendenhall et al., 2014). We classified three land-use types offered in the PE/WI 

model as structurally complex, native vegetation: conservation forest, prairie, and 
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wetland. Users receive between 0 and 4 biodiversity points based on the amount of 

the watershed in native vegetation (Table 2-5).  

Fischer, Lindenmayer, and Manning’s (2006) principles noted that “a matrix 

that has a similar vegetation structure to patches of native vegetation (i.e. that has a 

low contrast) will supply numerous benefits to ecosystem functioning”(p. 81). 

Additionally, non-native perennial land uses may provide habitat for different 

species, particularly when, as Fahrig et al. (2011) described, “production areas have 

structural similarities to extant natural areas in the same landscape” (p. 107). 

Accordingly, in addition to native vegetation, we allocated biodiversity points to 

agricultural land-uses that better support wildlife richness and abundance 

compared to conventionally row-cropped systems. To conceptualize our model, we 

adapted to PE/WI a framework that categorizes suitability of agricultural bioenergy 

landscapes to support wildlife richness and abundance according to two gradients: 

levels of agricultural inputs and plant diversity (Schulte, Ontl, & Larsen, 2013), 

(Figure 2-5). Like Schulte et al. (2013), we categorized land use as supporting low or 

high diversity and as using low or high inputs. Additionally, we designed the PE/WI 

biodiversity model to award points for each land use with high-diversity and/or 

low-input land uses relative to a conventional row-cropped system. The point 

system has a hierarchical structure that awards greater overall points to land-use 

types that incorporate relatively higher diversity and lower inputs. 

The second biodiversity calculation considers the percent area in all three 

native vegetation land uses and three high-diversity land uses. We included the 
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three land-use types in the first biodiversity calculation as native vegetation, and 

three additional land-use types offered in the PE/WI model as high-diversity: 

conventional forest; mixed fruit and vegetables; and rotational grazing. Users 

receive between 0 and 1.5 biodiversity points for this calculation (Table 2-5). 

The third biodiversity calculation considers the percent area in all three 

native vegetation land uses; three high-diversity land uses; three low-diversity, high 

input land uses; and three low diversity, low-input land uses. Native vegetation and 

high-diversity land uses are identical to land uses from the first and second 

biodiversity calculations. The addition of three low-diversity, high-input land uses 

and three low diversity, low-input land uses represent land-use types that are not as 

beneficial as any of the six land-use types in the second calculation. Nevertheless, 

these land-use types rank higher in the matrix than conventional row-cropped 

systems (Figure 2-5). The additional low-diversity, high-input land uses include: 

conservation corn, conservation soybean, and permanent pasture. We selected 

conservation corn and conservation soybean for inclusion in this category because 

we defined management practices for conservation row crops to include winter 

cover crops, no-till, and grassed waterways, and/or buffers. Low diversity, low-

input land uses include: grass hay, herbaceous perennial bioenergy, and short-

rotation woody bioenergy. Users receive between 0 and 1.5 biodiversity points for 

this calculation (Table 2-5). 

The fourth biodiversity calculation in PE/WI subdivides into two 

calculations: percent area in wetland and strategic placement of wetlands. Wetlands 
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provide invertebrate and amphibian habitat, with prairie pothole wetlands being 

especially important for birds (Best, Freemark, Dinsmore, & Camp, 1995; M. L. 

Hunter, 2005). Users receive between 0 and 1.5 biodiversity points for wetlands 

(Table 2-5). 

The fifth biodiversity calculation in PE/WI is percent of buffered stream. 

Based on Fischer, Lindenmayer, and Manning’s (2006) principle that stream buffers 

protect sensitive aquatic ecosystems and that corridors connect patches of native 

vegetation, users receive between 0 and 1.5 additional biodiversity points based 

upon the percent of stream-adjacent cells placed in one or more land uses that 

function as a stream buffer and corridor for native species (Table 2-5). Streams and 

riparian areas provide habitat for diverse and abundant wildlife, and land managers 

can use strips of vegetation in these zones to protect against agricultural runoff and 

conserve these sensitive ecosystems (M. L. Hunter, 2005). To receive points for 

buffering, users must create stream buffers using the following land-use types: 

conservation corn, conservation forest, conservation soybean, conventional forest, 

grass hay, herbaceous perennial bioenergy, mixed fruit and vegetables, prairie, 

rotational grazing, short-rotation woody bioenergy, and wetland. We assume 

conservation corn and conservation soybean best management practices include 

stream buffering. 
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Game Wildlife 

The game wildlife model in PE/WI, similar to the biodiversity model, 

presents a relative measure indicating how well a landscape pattern maintains 

habitat quality for game species (Fischer et al., 2006) based upon landscape 

configuration and composition (Fahrig et al., 2011). Game species include deer, 

ducks, turkey, pheasant, quail, and sport fish. Users receive between 0 and 10 game 

wildlife points annually, with 10 indicating a PE/WI landscape that best maintains 

game habitat quality. Although the game wildlife index is similar to the biodiversity 

index, we adjusted it to reflect less sensitivity to need for natural habitats and 

greater need to reach a minimum threshold area for land-use types that support 

each game species. The game wildlife score breaks down into six calculations (Table 

2-6). The first two calculations consider the percent area of native vegetation land-

use types and land-use types with high diversity and low input relative to 

conventionally row-cropped systems. The remaining calculations consider the 

percent area in conservation forest, grassland, and wetland, as well as the percent of 

stream buffered. Together, the game wildlife score calculations account for the 

effects of land-use type, land management, and landscape pattern on native species 

habitat (Fischer et al., 2006).  

PE/WI also provides users with an index to evaluate all indicators on a 

relative basis. To create an index score for game wildlife, PE/WI converts game 

wildlife points to the index score on a straight-line basis with scores ranging 

between 0, the lowest score attainable in PE/WI, and 100, highest score attainable 
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in PE/WI. For example, 5.5 game wildlife points in PE/WI equals an index score of 

55 out of 100.  

Similar to biodiversity calculations, we considered land-use type suitability 

for game wildlife habitat along two gradients: agricultural inputs and level of plant 

diversity (Schulte et al., 2013), (Figure 2-5). 

The first game wildlife calculation considers the percent area in all three 

native vegetation land uses and three high-diversity land uses. We classified the 

three land-use types as native vegetation: conservation forest, prairie, and wetland, 

and three additional land-use types offered in the PE/WI model as high diversity: 

conventional forest; mixed fruit and vegetables; and rotational grazing. Users 

receive between 0 and 4.0 game wildlife points for this calculation (Table 2-6). 

The second game wildlife calculation considers the percent area in all three 

native vegetation land uses; three high-diversity land uses; three low-diversity, high 

input land uses; and three low diversity, low-input land uses. Native vegetation and 

high-diversity land uses are identical to land uses from the first game wildlife 

calculation. The addition of three low-diversity, high-input land uses and three low 

diversity, low-input land uses represent land-use types that are not as beneficial as 

any of the six land-use types in the first calculation. Nevertheless, these land-use 

types rank higher in the matrix than conventional row-cropped systems (Figure 

2-5). The additional low-diversity, high-input land uses include: conservation corn, 

conservation soybean, and permanent pasture. We selected conservation corn and 

conservation soybean for inclusion in this category because we defined 
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management practices for conservation row crops to include winter cover crops, no-

till, and grassed waterways, and/or buffers. Low diversity, low-input land uses 

include: grass hay, herbaceous perennial bioenergy, and short-rotation woody 

bioenergy. Users receive between 0 and 1.5 game wildlife points for this calculation 

(Table 2-6). 

The third game wildlife calculation in PE/WI is percent area in conservation 

forest. Forests provide important habitat for game wildlife, including nesting birds 

(Best et al., 1995; M. L. Hunter, Jr. & Schmiegelow, 2010). Incorporating at least 

some forest into an agricultural landscape supports game wildlife including 

northern bobwhite quail, wild turkey, and white-tailed deer (Brennan, 1999; 

McRoberts, Wallace, & Eaton, 2014). Users receive between 0 and 1 game wildlife 

points; more specifically, a user receives 1.0 point when placing at least five percent 

of the watershed in conservation forest (Figure 2-6). 

The fourth game wildlife calculation in PE/WI is percent area in grassland. 

Incorporating at least some grassland into an agricultural landscape supports game 

wildlife including northern bobwhite quail and ring-necked pheasant (Brennan, 

1999; Giudice & Ratti, 2001). Users receive between 0 and 1 game wildlife points; 

more specifically, a user receives 1.0 point when placing at least five percent of the 

watershed in a combination of herbaceous perennial bioenergy, prairie, and/or 

rotational grazing (Table 2-6).  

The fifth game wildlife calculation in PE/WI is percent area in wetland. 

Prairie pothole wetlands are important for birds, especially water nesting bird 
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species (Best et al., 1995; M. L. Hunter, 2005). Incorporating at least some wetland 

into an agricultural landscape supports game wildlife such as mallards (Drilling, 

Titman, & Mckinney, 2002). Margins of wetlands also provide good winter habitat 

for ring-necked pheasants (Giudice & Ratti, 2001). Users receive between 0 and 1 

game wildlife points; more specifically, a user receives 1.0 point when placing at 

least five percent of the watershed in wetland (Table 2-6).  

The sixth game wildlife calculation in PE/WI is percent of buffered stream, 

and users receive between 0 and 1.5 game wildlife points (Table 2-6), based on 

Fischer, Lindenmayer, and Manning’s (2006) principle that stream buffers protect 

sensitive aquatic ecosystems and that corridors connect patches of native 

vegetation. To receive points for stream buffering, users must create stream buffers 

using the following land-use types: conservation corn, conservation forest, 

conservation soybean, conventional forest, prairie, rotational grazing, and wetland. 

We assume conservation corn and conservation soybean best management 

practices include stream buffering. 

  

Carbon 

Soil carbon sequestration serves as a potential strategy to offset atmospheric 

carbon dioxide (CO2) emissions linked to climate change (Fissore, Espeleta, Nater, 

Hobbie, & Reich, 2010). Soil carbon sequestration can play an especially important 

role in mitigating emissions because incremental changes in land-management 

practices are inexpensive and easily adoptable/adaptable compared to other 
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climate mitigation technologies (W. M. Post et al., 2004). The vulnerability of 

agriculture to climate change—decreased production resulting from extreme 

weather events, climate shifts, increased risks of soil erosion, and reduced soil 

fertility—makes adoption of mitigation and adaptation strategies important both to 

local producers in the US Corn Belt and to global producers and consumers (J. G. 

Arbuckle, Jr., Morton, & Hobbs, 2013).  

While agricultural activities primarily generate greenhouse gases such as 

nitrous oxide (N2O) and methane (CH4) (US EPA, 2014) that would provide 

important ecosystem disservice indicators to PE/WI users, we did not include these 

parameters in PE/WI v2. We instead selected soil carbon sequestration for its 

potential for landscape-scale mitigation. As Fissore et al. (2010) noted, “Because 

cultivated agricultural lands are often C-depleted, they have the potential to 

sequester C when converted to other land-cover types that positively affect their net 

C balance” (p. 410). Other considerations for selecting a carbon model included 

potential for increasing participation of land owners and managers in carbon credit 

markets (Jiang & Koo, 2014), and potential irreversibility of climate change due to 

carbon dioxide’s especially long falloff time after anthropogenic emissions have 

ceased (Solomon, Plattner, Knutti, & Friedlingstein, 2009). As future research 

findings further our understanding of biological sources and sinks of nitrous oxide 

and methane, and carbon equivalent conversion mechanisms gain acceptance in 

carbon credit markets, the potential will exist to expand the PE/WI carbon model to 

a more general greenhouse gas model.  
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Currently, the carbon model in PE/WI presents a measure of potential 

sequestered carbon resulting from vegetation conversion of an annual conventional 

row-crop land use to alternative land-use or land-management practices. A meta-

analysis conducted by Fissore et al. (2010) summarized available empirical data on 

carbon sequestration rates to obtain mean “C sequestration rates in plant biomass 

and soil for alternative land-use/land-cover changes” (Supplemental Information, 

WebPanel 1). These summary figures serve as the primary source for PE/WI carbon 

model calculations (Table 2-7). Because the Fissore et al. (2010) meta-analysis did 

not provide results specific to two PE/WI land-use types—alfalfa and herbaceous 

perennial bioenergy crops—we based calculations for those land-use types on 

empirical data from Iowa (Al-Kaisi, Yin, & Licht, 2005), (Table 2-7). 

The PE/WI model for annual carbon sequestration, C, of the watershed 

equals the sum, as land-use type i goes from 1 to n, of the product of land-use type 

area, A, and sequestration rate. We based sequestration rates on Fissore et al. 

(2010) and Al-Kaisi, Yin, and Licht (2005), (Table 2-7). Additionally, PE/WI reports 

an index score between 0 and 100 that indicates how well a given watershed 

performs relative to both the lowest amount of annual carbon sequestration 

attainable in PE/WI, indexed to 0, and the highest amount of annual carbon 

sequestration attainable in PE/WI, indexed to 100. PE/WI calculates the index score 

on a straight-line basis.  

To illustrate carbon tradeoffs, the highest carbon sequestration attainable in 

PE/WI equals 11,176.7 Mg yr-1 and occurs in a scenario of 100% area in short-
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rotation woody bioenergy at a rate of 4.69 Mg ha-1 yr-1. The lowest carbon 

sequestration attainable in PE/WI equals 0.0 Mg yr-1 and occurs in a scenario of 

100% area in a combination of conventional corn, conventional soybean, and/or 

mixed fruit and vegetables at a rate of 0.0 Mg ha-1 yr-1. If a user places 75% of the 

area, 1788.5 ha, in conservation corn and the 25%, 594.6 ha, in rotational grazing, 

the following calculation computes total carbon sequestration for the year, equal to 

887.8 Mg yr-1. 

  ∑    
 

   
 

                                                      

                       [3] 

To calculate the index score, PE/WI divides carbon sequestered, C, by the difference 

between the highest and lowest attainable values and multiplies by 100. In this 

example, the index score equals 7.9 out of 100. 

While carbon sequestration in the PE/WI model presents exact figures to 

users, the best available research has noted the high degree of uncertainty regarding 

carbon sequestration and land use. The availability of published empirical data also 

presented challenges in estimating carbon sequestration values for PE/WI. For the 

mixed fruit and vegetable land-use type, we found no literature citing results from 

experiments measuring sequestered carbon, though the literature did suggest 

potential to increase carbon sequestration in organic fruit and vegetable systems. 

We consulted Cynthia Cambardella (USDA Agricultural Research Service, personal 
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communication, 2014), who is conducting research on carbon sequestration in fruit 

and vegetable production systems. She advised us based on her preliminary 

understanding of potential carbon sequestration to not report increases in carbon 

sequestration relative to annual row crop systems.  

 

Nitrate 

PE/WI reports nitrate-N concentration levels from the outlet of the model 

watershed. Nitrate-N concentrations in drinking water negatively affect human 

health as levels increase and exceed a contamination level of 10 mg/L ("National 

Primary Drinking Water Regulations," 2010). At broader spatial scales, multiple 

subwatersheds contribute nitrate-N to a given body of water, highlighting the 

relationship in PE/WI between subwatershed and watershed. Beyond drinking 

water and human health, nitrate-N loading affects aquatic ecosystems and human 

activity downstream by creating hypoxic zones in gulf regions (US EPA, 2008). 

Although PE/WI reports nitrate-N concentration rather than total nitrate-N load, 

reduced concentration implies reduced loading for a given volume of water. 

The nitrate-N calculation in PE/WI presents mean nitrate-N concentrations 

in surface water for the modeled watershed. Estimates are based on Schilling and 

Libra’s examination (2000) of watershed characteristics and nitrate-N 

concentrations in Iowa. Schilling and Libra approximated mean nitrate-N 

concentrations in Iowa surface waters as 11% of the percent area of a watershed in 

row crops ranging in area from 47 to 2,774 km2. They also concluded that 
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watershed size “affects the relationship of nitrate concentrations in surface water to 

percent row crops in watersheds” (p. 1849), finding nitrate-N concentration 

relationships of 14% of the percent area of a subwatershed in row crops, 11% for 

small and large watersheds, and 7% for large interior basins.  

Because the PE/WI watershed is less than half the size of the watersheds that 

Schilling and Libra (2000) associated with the 11% multiplier, we used the 14% 

multiplier for subwatersheds in PE/WI nitrate model calculations. To calculate 

subwatershed nitrate-N concentration, we first assigned one of two multipliers, 

14% or 0%, to each grid cell in PE/WI and weighted each grid cell’s multiplier by the 

area of the grid cell as a percent of the subwatershed area. We assigned a 14% 

multiplier to conventional corn, conservation corn, conventional soybean, 

conservation soybean, and mixed fruit and vegetables, as row-crop land-use types. 

We assigned all other land-use types a 0% multiplier, and in the final step of the 

calculation restricted nitrate-N concentration to a minimum concentration of 2 

mg/L in line with empirical data of nitrate-N concentration in surface waters of fully 

perennial ecosystems (Randall et al., 1997). Calculating concentration using the 

row-crop multiplier, Rij, produces a baseline nitrate-N concentration based on land 

use (Table 2-8). Other factors—climatic cycles and management decisions—alter 

this baseline by reducing or temporally redistributing nitrate-N release into surface 

water. We accounted for these factors in the model by creating three additional 

multipliers (Table 2-8), which we describe in detail below.  
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The PE/WI model for watershed annual mean nitrate-N concentration, N, 

averages subwatershed nitrate-N concentration, weighted by subwatershed area, 

Ai.., proportional to watershed area, A... Because we restricted nitrate-N 

concentration to a minimum of 2 mg/L in line with data on fully perennial systems 

(Randall et al., 1997), subwatershed nitrate-N concentration, in mg/L, equals the 

maximum of: 2 or 100 multiplied by the product of: 1) precipitation multiplier, P; 2) 

strategic wetland multiplier, Wi; 3) row crop multiplier, Rij, a weighted average by 

grid cell area proportional to subwatershed area; and 4) conservation row-crop 

multiplier, Cij, also a weighted average by grid cell area proportional to 

subwatershed area. The formula for watershed annual mean nitrate-N 

concentration appears below (Table 2-8). 

  ∑ [   {       ∑    
  
        }  

   

   
] 

        [4] 

We selected nitrate-N concentration as an indicator of water quality to 

PE/WI users. To reflect how well each year’s land-use configuration controls for 

nitrate pollution, we created a unitless nitrate pollution control index score, Nindex, 

ranging between 0 and 100. High nitrate-N concentration translates to low pollution 

control, and thus a low index score, and vice versa. The highest nitrate-N 

concentration value attainable in PE/WI occurs in a 100% conventional row-crop 

scenario during a wet year that follows a dry year. Because of interannual variability 

in precipitation, users are not able to generate the scenario with PE/WI’s highest 

concentration value in every year. The highest attainable nitrate-N concentration 
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value equals 29.52 mg/L, calculated as 100 times the product of 0.14, the row crop 

multiplier, and 2.11, the precipitation multiplier. Conservation and wetland 

multipliers both equal 1.00 in this scenario. The lowest attainable N value in PE/WI 

equals the pre-defined minimum concentration of 2 mg/L. Suppose N for a given 

year equals 14 mg/L; then the index score equals 56.42 out of 100, with its formula 

as follows. 

           (  
   

       
)        [5] 

In addition to a nitrate pollution control index score, PE/WI generates a map for 

users to evaluate the percent contribution of each subwatershed to the overall 

watershed nitrate-N concentration, PCi. PE/WI calculates the percent contribution 

of each subwatershed, i, as the product of subwatershed nitrate-N concentration 

and the ratio of subwatershed area to watershed area. The formula for percent 

contribution follows. 

    
 

 
(   {       ∑    

  
        }  

   

   
)     [6] 

Detailed model assumptions and rules in the nitrate-N concentration 

calculation follow. The nitrate-N concentration calculation first evaluates each grid 

cell in PE/WI to determine its relative contribution to the overall watershed annual 

nitrate-N concentration level. PE/WI users can alter baseline contribution of each 

grid cell Rij by selecting a conservation row crop—conservation corn or 

conservation soybean. The conservation multiplier, Cij, reduces baseline 

concentration of a grid cell by either 31% or 39%, depending on the Major Land 
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Resource Area (MLRA) to which a grid cell belongs—the Des Moines Lobe (103) or 

Southern Iowa Drift Plain (108C) (Iowa, 2013).  

According to the Iowa Nutrient Reduction Strategy (NRS) (Iowa, 2013), 

reducing nitrogen-N application rates and planting cover crops are the most 

effective in-field methods by which to reduce nitrate-N losses from corn and 

soybean systems. We did not vary nitrogen application form or rates between 

conventional and conservation row crops. Rather, nitrogen application rates vary 

only by MLRA based on Iowa NRS figures (Iowa, 2013, Section 2.2 Table 11). Thus, 

we did not include a concentration reduction factor based upon reduced fertilization 

rates between conventional and conservation corn and soybean land-use types. In 

PE/WI we assumed that two land-use types, conservation corn and conservation 

soybean, incorporate cover crops as a management practice. For those land-use 

types, we apply a nitrate-N reduction factor based on Iowa NRS estimates in which a 

winter cereal rye cover crop exhibits a 31% mean reduction in nitrate-N 

concentration (Iowa, 2013). 

In the Des Moines Lobe grid cells, the conservation multiplier Cij, equals 

100% minus a 31% cover crop reduction, totaling 69% or 0.69. To calculate the 

conservation multiplier for the Southern Iowa Drift Plain grid cells, we added 

together the effect of each of the two practices, 31% cover crop reduction plus a 7% 

edge-of-field buffer reduction, and subtracted from 100%, totaling 62% or 0.62 

(Iowa, 2013). The Iowa NRS listed edge-of-field buffers as another potential practice 

to reduce nitrate-N concentration in Iowa waters (Iowa, 2013). While the Iowa NRS 
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science team estimated a 91% concentration reduction from the water that flows 

through the soil below the buffer, they noted that this percentage accounts for an 

overall reduction of 7% because only a very small portion of the water moves 

through the active buffer zone. In the model, we assumed conservation best 

management practices include adoption of edge-of-field buffers only in the Southern 

Iowa Drift Plain grid cells, which is consistent with land-use practices in the region 

(Brown & Schulte, 2011).  

The precipitation multiplier, P, represents the effects of interannual patterns 

of precipitation on mean nitrate-N concentrations in surface water (Table 2-8). 

Randall and Mulla (2001) cited three previous studies to establish a relationship 

between precipitation and annual flow-weighted nitrate-N concentration (Randall, 

1998; Randall et al., 1997; Randall & Iragavarapu, 1995). These studies illustrated 

climate cycles of dry years with relatively low concentrations and buildup of 

residual soil nitrate-nitrogen, followed by wet years with very high concentrations 

and transport and delivery of residual soil nitrate-nitrogen to streams. Elevated 

concentrations returned to baseline levels in subsequent years of normal and above-

normal precipitation. 

Using the five data sets from these studies we created precipitation 

multipliers in the PE/WI nitrate model as follows. We chose to designate a 

precipitation multiplier for each of the climate cycles with which Randall and Mulla 

(2001) established a relationship to annual flow-weighted nitrate-N concentration. 

We used the authors’ descriptions of precipitation levels in each year as dry, normal, 
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above-normal, and wet to label their data from each year in relationship to one of 

four climatic cycles: (a) dry year, (b) initial wet or above normal precipitation year 

after a dry year, (c) initial normal precipitation year after a dry year, or (d) 

background year (i.e. any year not falling into the first three groups). Next, for each 

data set we calculated the mean of the reported mean flow-weighted annual nitrate-

N concentration values within each climate cycle group. We then indexed the 

calculated mean of each climate cycle group as a percentage of the background 

climate cycle group mean. Finally, we calculated the mean of indexed values for each 

climate cycle group across all five data sets. This resulted in multipliers of 0.86 for 

dry year, 2.11 for an initial wet or above normal precipitation year after a dry year, 

1.69 for a normal precipitation year after a dry year, and 1.00 for background years. 

To assign multipliers in the PE/WI model, we classified PE/WI’s seven precipitation 

levels as dry, normal, or wet (Table 2-2). 

The final factor to reduce baseline nitrate-N concentration, the strategic 

wetland multiplier, Wi, depends on whether the user places the wetland land-use 

type on pre-defined strategic wetland locations (Table 2-8). We created a static 

strategic wetland data set in PE/WI that users may view by navigating to the 

physical feature maps. The strategic wetland map helps users to identify optimal 

locations for restoring a wetland, which we based upon physiographic features of 

the watershed. Twenty strategic wetland locations exist in PE/WI, and we assigned 

subwatersheds containing strategic wetlands a potential nitrate-N concentration 

reduction of 52% (Iowa, 2013). More precisely, if a subwatershed contains one or 



  41 

     

 

 

more strategic wetlands, and PE/WI users designate at least one strategic wetland 

in a wetland land-use type, then PE/WI calculates a strategic wetland multiplier of 

0.48 for the subwatershed.  

The remainder of the nitrate section presents a discussion of additional 

factors that we did not incorporate into the PE/WI nitrate model. We decided not to 

include these and other factors to minimize model complexity in terms of land use, 

management practices, and spatial scale influences on nitrate-N concentration 

estimates and nitrate as an ecosystem services indicator.  

The PE/WI nitrate model simplifies land use into two categories, as either 

annual row crop or perennial vegetation. Schilling and Libra (2000) did not 

explicitly consider the impact of land uses such as pasture, alfalfa, hay, or bioenergy 

crops on nitrate-N concentration levels. Because corn and soybean dominate land 

use in Iowa, the model may not estimate nitrate-N concentration in watersheds with 

low annual row crop composition. Consequently, PE/WI concentration results 

account for the contribution of annual row crop and perennial vegetation land uses 

to the extent that a given scenario is similar in composition to data from the 

Schilling and Libra analysis. PE/WI scenarios with a large percentage of perennial 

vegetation in a subwatershed may underestimate concentration levels because the 

model does not account for factors within perennial vegetation systems that have 

potential to elevate nitrate-N concentration levels above 2 mg/L. As one example, 

Russelle (2004) discussed leaching potential from alfalfa without proper 

management. The dearth of data on perennial systems limits the PE/WI nitrate 
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model; the Iowa Nutrient Reduction Strategy science assessment (Iowa, 2013) 

pointed to “little pertinent data about nitrate-N concentrations coming from pasture 

in Iowa” (p. 12). The science team assumed that grazed pasture functions similarly 

to Conservation Reserve Program (CRP) land covers. Based upon available data—

and scientific judgment where data were lacking—the science team concluded that 

Iowa will achieve reductions in concentration levels upon conversion of row-crop 

production to other land uses. This includes CRP and grazed pasture concentration 

reductions of 85%. 

The Iowa Nutrient Reduction Strategy science assessment (Iowa, 2013) also 

suggested several nutrient management practices that we did not incorporate into 

the PE/WI model. For example, the assessment pointed to use of denitrification 

woodchip bioreactors to treat tile-drained water, with 43% mean nitrate-N 

concentration reduction for treated water (Iowa, 2013). The option of placing 

bioreactors is not included in PE/WI at this time to minimize model complexity. 

 

Gross Erosion 

Erosion is the process of “detachment and transport of soil and rock by 

moving water, wind, and other geologic agents” (USDA NRCS, 1998, p. 1) and, in 

excess, has documented negative soil and water quality impacts such as diminished 

crop productivity and impaired aquatic stream habitat (Lyons & Courtney, 1990; 

Smith, Lerohl, Messele, & Janzen, 2000). Details for each component of the 

calculation and parameters follow. 
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We used the 2004 Iowa Phosphorus Index (P-Index) guidelines (Mallarino, 

Stewart, Baker, Downing, & Sawyer, 2005; USDA NRCS, 2004a) to inform 

calculations of water erosion in PE/WI. P-index guidelines defined gross erosion as 

rill and interrill erosion, ephemeral gully erosion, and classical gully erosion. Due to 

lack of published data on classical gully erosion, PE/WI only provides figures for rill 

and interrill erosion, based on the Revised Universal Soil Loss Equation (RULSE) 

(Renard, Foster, Weesies, McCool, & Yoder, 1997), and ephemeral gully erosion, 

based on statewide estimates for Iowa (USDA NRCS, 1997). USDA NRCS (1998) 

listed other common sources of erosion, including streambank, landslides, roads, 

roadbanks, construction sites, and feedlots, that we did not incorporate into the 

PE/WI erosion model due to a lack of published data, in some instances, and to stay 

within scope of our modeling objectives.  

PE/WI quantifies gross erosion, E, in PE/WI as the amount of soil loss per 

year in the fictitious watershed from ephemeral gully erosion, rill erosion, and 

interill erosion. Using results from E, we created a unitless erosion control index 

score, Eindex, ranging between 0 and 100, with 0 corresponding to the highest erosion 

quantity attainable in PE/WI and 100 corresponding to the lowest erosion quantity 

attainable in PE/WI. High gross erosion translates to low erosion control, and thus a 

low index score, and vice versa. The highest erosion value attainable in PE/WI 

occurs in a year with maximum precipitation in which land use is a 100% 

continuous conventional soybean scenario, i.e. all conventional soybean in the 

current year and all conventional soybean in the preceding year. The lowest erosion 
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value attainable in PE/WI occurs in a year with minimum precipitation in which 

land use is 100% combination of herbaceous perennial bioenergy and/or prairie. 

The two subcomponents in the gross erosion calculation are ephemeral gully 

erosion and RUSLE, the latter of which describes rill and interill erosion. Ephemeral 

gully erosion has only recently received attention, and a precise ephemeral gully 

erosion model does not currently exist for Iowa (Eller, 2014). Thus we created a 

simple ephemeral gully erosion model for PE/WI, in which we modified USDA NRCS 

(1997) estimates of 6.7 Mg/ha for Iowa upward by 50% to 10.1 Mg/ha for 

conventional annual row-crop practices, and downward by 50% to 3.4 Mg/ha for 

conservation annual row-crop practices (Thomas Isenhart, Iowa State University, 

personal communication, 2014). Because published research has not quantified 

relationships between ephemeral gully erosion and row-cropping practices, the 

50% upward and downward adjustments reflect directionally accurate models 

based our understanding of the effects of conservation practices on ephemeral gully 

erosion. 

The RUSLE soil loss calculation takes the product of five factors: rainfall 

erosivity factor, R, soil erodibility factor, K, slope length steepness factor, LS, cover 

management factor, C, and practice support factor, P (Renard et al., 1997), (Table 

2-9). We converted RUSLE factors between SI units and US customary units using 

USDA Agricultural Handbook 703 (Renard et al., 1997, Table A-2). 

Rainfall erosivity, R-factor, estimates account for climate effects on erosion. 

Typically, RUSLE calculations use a static R-factor value set for a location or region 
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based on historic average storm erosivity values. PE/WI instead varies R-factor 

values by annual precipitation levels, according to an equation provided by Renard 

and Freimund (1994). We selected this model to emphasize the relationship 

between climate variability and interannual differences in erosion rates. 

Soil erodibility, K-factor, accounts for soil susceptibility to erosion, or as 

USDA Agricultural Handbook 703 (Renard et al., 1997) states, the “ease with which 

soil is detached by splash during rainfall or by surface flow or both” (p. 68). The 

measurement unit for the K-index is the rate of soil loss per unit of rainfall erosivity. 

ISPAID (Iowa State University, 2010) provides K-factor values for each soil type, 

which we incorporated within PE/WI. 

For slope length-steepness, LS-factor, estimates we assumed a relationship 

between slope steepness, S-factor, and slope length, L-factor, similar to values that 

Iowa NRCS Technical Note 29 (USDA NRCS, 2008b) presented in a plot entitled 

“Slope length related to slope gradient” (p. 5). 

We derived cover management, C-factor, values based on estimates for 

Squaw Creek Watershed in Boone, Hamilton, Story and Webster Counties, Iowa 

(Wendt, 2007). Cover management depends not only on current year land use but 

also on prior year land use. We found one challenge in deriving appropriate C-factor 

values in that year 1 PE/WI erosion depends on prior land-use type. Currently, the 

erosion model assumes that a hypothetical year 0 did not have the following annual 

row crop land-use types: conventional corn, conservation corn, conventional 

soybean, conservation soybean, mixed fruit and vegetables. This contrasts with the 
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carbon model, which assumes conversion from a conventional corn and/or 

conventional soybean system. It also contrasts with the initial land-use types 

displayed on the watershed upon users opening the PE/WI application. 

We calculated practice support, P-factor, as the product of a contour 

subfactor and a terrace subfactor. We assumed that only conservation corn and 

conservation soybean land-use types incorporate contouring and terracing, and only 

at downhill slopes greater than 2%. RUSLE instructions (Renard et al., 1997) 

suggested to modify estimates of soil loss with contouring when the slope length, L-

factor, exceeds the critical slope length at which contouring fails and permits rill 

erosion. For PE/WI, we defined critical slope lengths based upon Iowa NRCS USLE 

Erosion Prediction (USDA NRCS, 2002, Table IIIa), which resulted in no L-factors 

exceeding critical lengths. We selected contour subfactors for 10 year EI (storm 

intensity) equal to 80 and low (1-3”) ridge or oriented roughness height, and 

assumed median row grades for each downhill slope category (USDA NRCS, 2002, 

Table IIIe), as well as terrace subfactors (Table IIId). We selected closed outlet 

terrace values for PE/WI, which vary based on horizontal terrace intervals that we 

set equal to Iowa NRCS terrace standards recommendations on maximum terrace 

spacing for each slope category (USDA NRCS, 2008a). 

 

Sediment 

Sediment delivery describes the quantity of eroded soil that arrives at a 

specific location in a body of water, such as a lake, river, or stream (USDA NRCS, 
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1998). High levels of sediment delivery contribute to water quality impairment both 

locally and downstream (Alexander et al., 2008; Iowa, 2013; Lyons & Courtney, 

1990; Vache, Eilers, & Santelmann, 2002). Sediment and phosphorus are tightly 

linked because phosphorus moves with sediment. Details for each component of the 

calculation and parameters follow. 

We used the 2004 Iowa Phosphorus Index (P-Index) guidelines (Mallarino et 

al., 2005; USDA NRCS, 2004a) to inform calculations of sediment delivery in PE/WI. 

According to Mallarino et al. (2005) the erosion component of the index is “an 

approximate (proportional) estimate of the total amount of sediment-bound P 

(excluding dissolved P) delivered to a stream…that is likely to become available to 

aquatic ecosystems” (p. 5). The erosion component of the Iowa P-Index calculates 

the product of five factors: buffer factor, enrichment factor, gross erosion, sediment 

delivery ratio, and soil test P (STP) erosion factor. The PE/WI model modifies the 

erosion component calculation to arrive at an estimate of eroded sediment 

delivered to the stream. We removed two factors from the product, enrichment 

factor and STP erosion factor. These factors serve as multipliers to convert sediment 

to phosphorus for the P-Index. The enrichment factor adjusts the erosion 

component to account for soils with higher concentrations of phosphorus, and the 

STP erosion factor converts sediment delivery to sediment-bound phosphorus 

based on estimates of soil P concentration. The remaining three multiplicative 

factors—buffer factor, gross erosion, and sediment delivery ratio—provide the 
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PE/WI estimate of the total amount of sediment delivery to a stream. Thus, we used 

the following equation: 

∑ ∑    (             )
  
   

 
           [7] 

The Iowa P-Index sets the buffer factor, Bij, equal to 0.5 for vegetative buffers that 

meet the USDA NRCS practice standard 393 for a filter strip (USDA NRCS, 2004a). 

For PE/WI, we assumed that conservation corn and conservation soybean land-use 

types include vegetative buffers. Additionally, we assumed that the following PE/WI 

land-use types function as vegetative buffers: conservation forest, conventional 

forest, grass hay, herbaceous perennial bioenergy, prairie, short-rotation woody 

bioenergy, and wetland. 

As described previously, Gross erosion, E, provides estimates of total rill and 

interrill erosion using RUSLE (Renard et al., 1997) and ephemeral gully erosion, 

based on Iowa statewide estimates (USDA NRCS, 1997). Detailed explanations of 

RUSLE subcomponent calculations are in the preceding section, Gross Erosion 

(Table 2-9 and Table 2-11). 

Sediment delivery ratio (SDR) converts gross erosion into sediment yield and 

“represents the efficiency of the watershed in moving soil particles from areas of 

erosion to the point where sediment yield is measured” (USDA NRCS, 1998, p. 6). 

SDR functions for each landform region in Iowa estimate SDR as a function of 

drainage area because of its close relationship with sediment delivery (USDA NRCS, 

1998). PE/WI uses “SDR 2” ratios for the Southern Iowa Drift Plain and “SDR 4” 
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ratios for the Des Moines Lobe (Table 2-10 and Figure 2-6). For PE/WI, we derived 

SDR as a function of drainage area according to “Chart 1” and calculated two SDR 

values for the PE/WI watershed. These values equal 4.4% for the Des Moines Lobe 

and 27.8% for the Southern Iowa Drift Plain (Table 2-11). 

 

Phosphorus 

Phosphorus delivery to stream in PE/WI estimates phosphorus transport 

from sources across the watershed to surface waters. Loss of phosphorus from 

agricultural fields into surface waters has negative consequences at multiple 

scales—at local scales where producers incur expenses to apply phosphorus 

fertilizers to fields, at near and distant regional scales where freshwater 

eutrophication threatens aquatic species and human economy, and at more distant 

regional scales where Gulf Hypoxia also threatens aquatic ecosystems and human 

economy of the northern Gulf of Mexico (Alexander et al., 2008; Iowa, 2013; 

Jacobson, David, & Drinkwater, 2011; US EPA, 2008). 

The PE/WI model uses the Iowa Phosphorus Index (P-Index) (USDA NRCS, 

2004a) to calculate annual phosphorus loading. Iowa NRCS Technical Note 25, with 

P-Index calculation instructions, described three primary phosphorus delivery 

pathways to surface waters: 1) an erosion component, measuring delivery with 

sediment; 2) a runoff component, measuring delivery with runoff; and 3) a 

subsurface drainage component, measuring delivery with subsurface drainage 

(USDA NRCS, 2004a). 
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PE/WI calculates P-Index values for each grid cell, and a simple summation 

of grid cell values yields watershed annual in-stream phosphorus delivery. We 

selected index parameter values based upon sources including Iowa NRCS Technical 

Note 25 (USDA NRCS, 2004a), Iowa Nutrient Reduction Strategy (Iowa, 2013), 

expert consultation (Matthew Helmers and Thomas Isenhart, Iowa State University, 

personal communication, 2014), and data from other published sources. Details for 

each component of the calculation and parameters follow. 

The erosion component is the product of five parameters: gross erosion 

(Table 2-9), sediment trap factor or sediment delivery ratio (SDR) (Table 2-11) 

buffer factor, enrichment factor, and soil test phosphorus (STP) erosion factor 

(USDA NRCS, 2004a). See Gross Erosion and Sediment sections above for further 

information. The enrichment factor adjusts the erosion component to account for 

soils with higher concentrations of phosphorus, and the STP erosion factor converts 

sediment delivery to sediment-bound phosphorus based on estimates of soil P 

concentration (USDA NRCS, 2004a). We used major landform region area (MLRA) 

average STP values of: Bray-1 P, Mehlich-3 STP of 30 ppm concentration for the Des 

Moines and 27 ppm concentration for the Southern Iowa Drift Plain (Iowa, 2013). 

The runoff component of the Iowa P-Index measures phosphorus delivery 

with water runoff (USDA NRCS, 2004a). The runoff component consists of the 

product of a runoff factor, precipitation, and the sum of STP runoff factor and P 

application factor (Table 2-12). The runoff factor equation takes 50% of the 

observed weighted average percent of runoff in Iowa for Runoff Curve Number 
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(RCN) levels of 50, 60, 70, 80, 90, and 95, to account for approximately 50% of 

observed rain events in Iowa that fall below the limit for production of runoff 

(Mallarino et al., 2005). Our calculation uses runoff factor values converted from 

RCN (USDA NRCS, 2004b), (Table 2-12, Table 2-13). 

PE/WI uses each modeled year’s precipitation level to calculate that year’s 

hypothetical P-Index value. We converted precipitation to units of million 

megagrams per unit area, in accordance with P-Index instructions.  

The next runoff subcomponent, STP runoff factor, represents the 

concentration of dissolved phosphorus in runoff based on soil test P values. As with 

the erosion STP factor, we used average soil test P values of: Bray-1 P, Mehlich-3 

STP of 30 ppm concentration for the Des Moines and 27 ppm concentration for the 

Southern Iowa Drift Plain (Iowa, 2013). The P application factor depends on P2O5 

application rate and method of application. For conservation corn and conservation 

soybean land-use types, we assumed surface application with no incorporation. For 

conventional corn, conventional soybean, and mixed fruit and vegetable land-use 

types, we assumed management across the watershed with two methods occurring 

in equal proportion: surface application with no incorporation and incorporating 

within one week (Matthew Helmers and Thomas Isenhart, Iowa State University, 

personal communication, 2014). Mallarino et al. (2005) provided a time and method 

factor that we used in P application factor calculations. 

The subsurface drainage component of the Iowa P-Index consists the product 

of precipitation, a flow factor, and an STP drainage factor (USDA NRCS, 2004a). The 
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P-Index again uses precipitation and STP concentrations to determine factor values. 

The flow factor takes on a value of 0.1 if subsurface flow is present, with 10% 

representing the observed average annual precipitation percentage that flows 

through the subsurface in Iowa; otherwise flow factor takes on a value of zero 

(Mallarino et al., 2005). Using P-Index guidelines, PE/WI assumes a flow factor of 

0.1 when an ISPAID soil map unit has the following attributes: slopes of 5% or less; 

texture of 40% clay or coarser; and poor or very poor in natural drainage (Iowa 

State University, 2010; USDA NRCS, 2004a) (Table 2-12). 

 

Yields 

Yield calculations in PE/WI provide estimates of marketable crop and 

livestock production for several land-use types in the watershed (Table 2-14). In 

terms of ecosystem services, crop and livestock production provides primarily food, 

fuel, and feed for consumers, as well as a source of producer income that benefits 

individual and community livelihoods. 

While the yield types (Table 2-14) include both existing and emerging 

agricultural products in Iowa, they do not exhaust possible markets for each land-

use type. For example, corn yield includes only grain production and does not 

include stover for biofuel production. Additionally, two of the native perennial land-

use types—prairie and wetland—do not have associated yields. Markets do exist, 

however, for prairie vegetation, with prairie seeds and native grasses for biomass 

production as two examples. Prairie, wetland, and conservation forest areas also 
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produce marketable venues for tourism, recreation, and hunting that we did not 

report in PE/WI. Details for the calculation of each PE/WI yield type follow. 

Annual yield on a per unit area basis equals production of a given crop or 

livestock for a year divided by watershed area. While PE/WI presents all production 

types on an annual basis, the number of cattle supported by grazing land accounts 

only for the grazing season. 

The general formula for crop and livestock production, Y, is the sum total of 

production across the watershed for each yield type (Table 2-15). The yield index 

scales from 0-100 and equals 100 times the yield from a user-created scenario 

divided by the maximum attainable yield. The maximum attainable yield for each 

yield type occurs under the following conditions: 1) all productive areas have land-

use types associated with that yield type, and 2) the yield precipitation factor equals 

1. 

Production for each grid cell equals the product of grid cell area, Aij; yield 

base rate per unit area YBij, which is a function of yield type; and yield precipitation 

factor, YPij (Table 2-16).  

The remainder of this section presents models of yield base rate per unit area 

for each yield type (Table 2-14). We derived corn (Zea mays L.) yield estimates for 

conventional corn and conservation corn from ISPAID (Iowa State University, 2010) 

data that modeled corn yield for each soil mapping unit based on “parent material, 

slope class, erosion class, natural drainage class, and nature of the subsoil in terms 

of rooting environment to include limiting layers, soil depth, and plant water 
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capacity…[and] potential for periodic flooding and weather conditions” (Miller, 

Fenton, Oneal, Tiffany, & Burras, 2010, p. 6), (Table 2-17). They reported that 

ISPAID corn yield estimates assumed high-level management.  

To show interannual variability in PE/WI, we multiplied this base corn yield 

level (Table 2-17) by a yield precipitation factor to reduce base yields in years of 

extreme climate conditions. For a given precipitation level, PE/WI applies a specific 

yield precipitation factor according to land-use type (Table 2-16). For model 

simplification, we further assumed no yield difference between conventional corn 

and conservation corn by making the following assumptions: conservation practices 

that take land out of production are located in unproductive areas of a field, 

conservation corn exhibits similar yield responses as conventional corn to extreme 

climate conditions, and yields do not decline as a result of cover crops or no-till 

practices. Because ISPAID reported corn yield in bushels (volume) per acre, we 

converted to metric units of Mg (mass) per hectare using a factor of value 0.0254 

megagrams per bushel. We calculated the factor based on an approximate 

relationship of 56 lbs per bushel of corn (Johanns, 2013). 

Similar to corn, we derived conventional and conservation soybean (Glycine 

max (L.) Merr.) yield estimates from ISPAID (Iowa State University, 2010) data of 

modeled soybean yield for each soil mapping unit based on a percentage of corn 

yield equivalent to 29%. We multiplied the soybean yield base rate (Table 2-17) by 

the yield precipitation factor for extreme climate conditions and assumed no yield 

differences between conventional soybean and conservation soybean. To convert 
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between bushels in ISPAID and metric units, we used an approximate relationship of 

60 lbs per bushel of soybeans (Johanns, 2013) to derive a factor of 0.0272 

megagrams per bushel. 

ISPAID (Iowa State University, 2010) also provided estimates of alfalfa-grass 

hay yields for stands of alfalfa (Medicago sativa L.) and either bromegrass (Bromus 

inermis Leyss.) or orchard grass (Dactylis glomerata L.). We used these estimates for 

two PE/WI land-use types: alfalfa and grass hay (Table 2-18). The ISPAID model 

estimated alfalfa-grass hay yields as a percentage of corn yields: 2.8% for 

excessively, somewhat excessively, well, and most moderately well drained soils; 

2.6% for two moderately drained soil associations and all somewhat poorly drained 

soils; and 2.1% for poorly and very poorly drained soils. However, we set minimum 

base yield rates of 8.07 megagrams of alfalfa and grass hay per hectare based on 

expert consultation (Emily Heaton and Matt Liebman, Iowa State University, 

personal communication, 2014). To arrive at total yield, we multiplied both alfalfa 

base yield rate and grass hay base yield rate by the yield precipitation factor for 

extreme climate conditions. 

Permanent pasture and rotational grazing land-use types both have potential 

to support a wide range of ruminant livestock. We used PE/WI alfalfa and grass hay 

yield potentials to estimate the number of cattle that each ISPAID soil mapping unit 

supports; however, note that the PE/WI model does not use production from areas 

in alfalfa or grass hay land-use types to support cattle, only production from areas in 

permanent pasture and rotational grazing land-use types.  
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Although ISPAID reports animal unit months (AUM) for three different forage 

types (Miller et al., 2010), we chose an alternative production unit. Based on expert 

consultation (Devan McGranahan, North Dakota State University, personal 

communication, 2014), we instead calculated the number of grazing cattle 

supported on permanent pasture and rotational grazing land per grazing season, 

which we approximated at 200 days per year in Iowa based on a survey of Iowa beef 

production in which most respondents reported a grazing season of April 15 

through November 1 (Iowa Beef Center, 2007), (Table 2-19). This unit of 

measurement is more familiar than AUM to a general PE/WI user outside of the 

livestock industry.  

The PE/WI model assumes daily intake of 3% of 0.544 Mg bodyweight and 

seasonal forage utilization rates of 35% for permanent pasture and 55% for 

rotational grazing, based upon Iowa NRCS Technical Note 32 (USDA NRCS, 2008c). 

We implicitly assumed that cattle outside of grazing season require additional 

inputs including feed, water, and shelter. However, we did not include those factors 

in the model nor report them alongside results to maintain focus on ecosystem 

service benefits produced by the watershed landscape. Users of PE/WI could 

separately create economic analyses and operational budgets that utilize non-

grazed alfalfa or grass hay yields as feed inputs for the non-grazing season. 

The formula for yield base rate for permanent pasture and rotational grazing 

land-use types equals yield base rate for alfalfa multiplied by the percentage of 

seasonal utilization of forage production, SU, and divided by total intake over the 
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grazing season per animal, which is the product of grazing season length, GS, and 

daily intake, DI (Table 2-19).  

For mixed fruit and vegetable crops, we selected grapes (Vitis riparia), green 

beans (Phaseolus vulgaris), squash (Cucurbita pepo), and strawberries (Fragaria × 

ananassa) as examples of crops that are increasingly popular among Iowa fruit and 

vegetable producers and have high demand in local and regional metropolitan 

markets (Bregendahl & Enderton, 2013; Iowa State University News Service, 2014; 

Swenson, 2011). For green beans, squash, and strawberries, we used yield values 

published by Iowa State University Extension and Outreach (Taber, 2009). Due to a 

lack of grape yield information from Iowa, we are using regionally similar data (New 

York state), which indicated ‘Elvira’ grape yields of 17.6 megagrams per hectare 

(Delate & Friedrich, 2004; R. M. Post & Robinson, 1995). To calculate yield, we 

further allocated one-quarter of each grid cell in a mixed fruit and vegetable land-

use type to each of the four crops (Table 2-20). 

 Although we assigned separate yield values for each crop, PE/WI only 

reports one final quantity for mixed fruit and vegetable yield. Additionally, we 

created a soil texture multiplier to downward adjust yields for unfavorable soil 

textures (Taber, 2009), (Table 2-20). We created multiplier values based upon 

general relationships between soil types and crop adaptation from the Iowa State 

University Extension and Outreach commercial vegetable production publication 

(Taber, 2009). 
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PE/WI also estimates wood production for conventional forest and 

conservation forest land-use types based on soil mapping unit yield ranging from 

the 2007 Iowa Woodland Suitability Composite (IDNR & USDA NRCS, 2007), (Table 

2-21). Yield estimates assume selection of tree species suitable for a given location, 

as recommended in the Iowa Woodland Suitability Composite. These estimates 

serve as base yield amounts of wood production for conventional forest. To account 

for yield differences due to management practices in conservation forest land-use 

types, we applied a 30% reduction to wood production estimates from the Iowa 

Woodland Suitability Composite for conservation forest yield. 

Bioenergy crops are an emerging market in the US Corn Belt (Heaton et al., 

2013). For PE/WI, we selected herbaceous perennial crops and short-rotation 

woody crops to represent the potential of the watershed to produce bioenergy. For 

the land-use type herbaceous perennial bioenergy, switchgrass (Panicum virgatum 

L.) biomass yields range between 4.39 and 6.61 megagrams per hectare, which we 

scaled based on a modification to ISPAID corn suitability ratings (CSR) (Emily 

Heaton, Iowa State University, personal communication, 2014), (Table 2-22). 

We chose switchgrass as the PE/WI herbaceous perennial bioenergy crop 

since it is the most developed perennial dedicated energy crop in the region (US 

DOE, 2011), although other possible options included miscanthus or other native 

warm-season grasses. We further assumed no added inputs of nitrogen and 

phosphorus fertilization, based on expert consultation, even though general 

guidelines for switchgrass production typically recommend high levels of fertilizer 



  59 

     

 

 

application after an establishment year. Unlike corn and soybean production 

systems in the US Corn Belt, which focus almost exclusively on maximized 

production, we developed the herbaceous perennial bioenergy crop model in PE/WI 

to balance production of multiple ecosystem services benefits. 

Finally, PE/WI provides biomass yield estimates for production of short-

rotation woody bioenergy crops based on 10-year aspen (P. alba x P. grandidentata) 

biomass figures of 224 Mg/ha (Manatt et al., 2013). For annual production figures, 

we made an assumption of temporally spaced plantings such that one-tenth of an 

area in production becomes ready for harvest each year. Thus, annual production 

equals 22.4 Mg/ha of biomass.  

 

2.3 Examples and Outcomes 

 We constructed four scenarios in PE/WI to illustrate tradeoffs in ecosystem 

services indicator outcomes (Table 2-23). The four scenarios represent a 

combination of two spatial configurations: 1) corn-soybean-corn rotation or 2) two-

thirds conservation corn-soybean-corn rotation with one-third strategically placed 

perennial land uses; with two temporal sequences: 1) normal climate or 2) 

interannual climate variability. 

 Analysis of outcomes allows users to answer questions such as, “How well do 

conventional corn and conventional soybean provide for multiple ecosystem 

services?” Additionally, “Is a conventional corn and soybean system as resilient to 

extreme climate swings as a conservation row crop system with strategically placed 
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perennial land-use types?” The results from PE/WI also provide inputs for financial 

analyses associated with alternative crop production versus traditional crop 

production systems. 

Users completing this exercise will find that negative yield responses to 

extreme climate conditions are less severe for perennial land-use types, such as 

herbaceous perennial bioenergy or grass hay, than for annual row crop production. 

This strategy provides one form of risk mitigation to producers and society. Annual 

row crop systems are more sensitive to dry-wet climate cycles, which lead to large 

spikes in stream nitrate-N concentration. Heavy rainfall years also elevate 

phosphorus loading, erosion, and sediment delivered to stream. Other ecosystem 

service indicators also perform better in systems incorporating perennial land uses, 

and include carbon sequestration levels, biodiversity, and game wildlife habitat. 

At the same time as the indicator values for an array of ecosystem benefits 

increase, the systems incorporating perennial land-use types lose a substantial 

amount of annual row-crop yield due to land taken out of production. In turn, 

producers gain other marketable agricultural products. In the real world, decision 

makers may consider whether such a combined annual-perennial crop and livestock 

system fulfills societal demands for agricultural goods and environmental services 

and whether it also supports farmer economic wellbeing.  

 



  61 

     

 

 

2.4 Discussion 

Continued engagement with PE/WI gives users the opportunity to synthesize 

outcomes and identify reoccurring patterns between land use and outcomes. In 

conjunction with in-classroom lessons and discussion, learning materials provided 

through the PE/WI website, or guidance from conservation professionals or other 

educators, we expect users to develop better understanding and demonstration of 

learning objectives.  

Ecosystem service indicators in PE/WI also provide inputs for further 

analyses. PE/WI users may convert production of marketable quantities into 

monetary values for economic analyses and, more generally, production of 

ecosystem service indicators into levels of final ecosystem services. In addition to 

analyses of total productive capacities of various landscape scenarios, users may 

reflect on outcomes in terms of spatial and temporal scales. The number of 

beneficiaries, where they are located, and when they experience each of the services 

or disservices on a landscape varies by service. Tradeoffs do not occur solely among 

ecosystem services, but also among beneficiaries. 

Few existing tools provide a broadly accessible, yet comprehensive 

framework for consideration of ecosystem services. PE/WI has transformative 

potential to fundamentally alter people’s frameworks for land-use decision making 

(Schulte et al., 2010). With future development of PE/WI, opportunity exists to 

expand and improve the model to better support enhanced decision making. Next, 
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we discuss the main areas for future refinement and enhancement of the PE/WI 

model. 

 

2.4.1 Final Ecosystem Services 

While this version of PE/WI contains indicators of many ecosystem services, 

future versions of PE/WI may conceivably model how biophysical indicators 

translate into final services. Final services such as clean drinking water and human 

nutrition provide more meaning to the broader public than biophysical indicators. 

Daily et al. (2009) depicted relationships between ecosystems, ecosystem services, 

values, institutions, and decisions (p. 23). They noted that the relationships are 

particularly complex because any factor can directly influence another. The 

following examples demonstrate the importance of final ecosystem services for 

analyzing tradeoffs. 

Nitrate-N contamination of drinking water provides an example that 

underscores the importance of integrating both biophysical indicators of ecosystem 

services and final ecosystem services into decision models. The federal limit on 

nitrate-N concentration in drinking water is 10 mg/L ("National Primary Drinking 

Water Regulations," 2010). A concentration level that exceeds the limit therefore 

indicates a final ecosystem disservice of unsafe drinking water. Rural and 

metropolitan municipal water suppliers that utilized contaminated water must 

bring the nitrate-N concentration to a safe level before it enters the public system, 

and this process often entails high costs associated with treating or securing 
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alternative sources of water. When volume demand rises, a community may 

experience a non-linear increase in ecosystem disservice as the nitrate-N 

concentration level increases. This non-linear relationship occurs when safe water 

supplies are increasingly difficult and expensive to obtain. If contamination levels 

regularly exceed the ability of municipal water suppliers to find additional sources, 

municipalities have fewer options and may spend considerable resources building 

and operating nitrate removal facilities. Such non-linearity between a biophysical 

indicator level and final service or disservice level warrants consideration as society 

evaluates tradeoffs with other ecosystem services. Providing direct measures of 

final ecosystem services will enable evaluation and decision processes that are more 

in line with people’s needs, values, desires, and demands from ecosystems. 

Another example illustrating how tradeoffs differ between intermediate and 

final ecosystem services is human health and nutrition. A number of land-use types 

in PE/WI generate crops or livestock production for human food consumption. 

However, yield measures alone are not adequate to quantity the level of final 

services that benefit humans. For instance, PE/WI includes mixed fruit and 

vegetables for human food and beverage consumption. Other commodity crops such 

as corn enter a variety of fuel and feed markets, and enter food markets to a less 

extent, with less than 12% of corn grown domestically for food, seed, and other 

industrial uses (USDA ERS, 2014). Comparing final service levels would likely entail 

consideration of calories, nutritional benefits, demand for food products, and other 

factors. Creating a human nutrition index in a future version of PE/WI would 
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provide users one type of final service, though there are numerous other indices 

that also measure final services related to food production.  

Modeling final ecosystem services, while valuable, presents challenges 

because of a lack of methodologies to evaluate final service levels and impacts to 

human wellbeing (Ruckelshaus et al., 2013). Modeling final ecosystem services also 

is prone to greater subjectivity than modeling biophysical indicators. Future 

versions of PE/WI that incorporate final ecosystem services will require careful 

examination of what services people use, who uses them, how various users benefit 

from them, and how they interact with other socioeconomic implications of land 

use. 

 

2.4.2 Uncertainty 

Uncertainty in selection of model parameters and values also presented an 

interesting challenge in developing PE/WI. As future research on alternative crops 

and environmental services in the US Corn Belt fills gaps in current understanding 

of biophysical functioning at watershed and landscape scales, we can improve the 

accuracy of several PE/WI parameter estimates. For example, we do not fully 

understand the relationship between perennial land-use types, such as alfalfa, 

pasture, and herbaceous bioenergy, and nitrate-N concentration levels at a 

watershed or landscape scale. Further, we do not precisely understand how 

variability in management, including fertilization, affects that relationship. The team 

that conducted the Iowa Nutrient Reduction Strategy science assessment evaluated 
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research on crops such as alfalfa in the context of a rotation with annual row crops, 

and used data from CRP land to represent the performance of pasture land-use 

types. Neither the Lawlor curve (Lawlor, Helmers, Baker, Melvin, & Lemke, 2008) 

used in the Nutrient Reduction Strategy model (Iowa, 2013) nor the Schilling and 

Libra estimate (Schilling & Libra, 2000), which we incorporated into PE/WI, 

evaluated crops other than corn and soybean.  

Uncertainty also exists in PE/WI due to variations in existing literature. For 

example, Fissore et al.’s (2010) meta-analysis published on carbon sequestration 

potential in the Midwest US found large standard deviations in published carbon 

sequestration data, especially for certain land uses and management practices. 

Subsequent literature review by Cambardella, Johnson, and Varvel (2012) pointed 

to a “relatively poor understanding of the mechanisms that determine SOC changes 

in response to land management practices” (p. 52). 

Research gaps such as these exist for each PE/WI module and indicate need 

for additional research and further refinement of the model as continued research 

supports more informed models. For the current version of PE/WI, when possible, 

we consulted subject expert advice to estimate model relationships and parameter 

values; otherwise, we excluded models, such as classical gully erosion and 

streambank erosion, from PE/WI altogether. 
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2.5 Conclusion 

PE/WI serves as a framework around which users may conceptualize 

relationships between land use and ecosystem services to devise alternative 

scenarios with potential to satisfy collective societal needs while also maintaining 

individual needs of agricultural producers. The current PE/WI model fills an 

enormous gap, both conceptually and as a functioning tool, with potential to change 

how people approach land-use decisions in agricultural landscapes. The tool 

combines the best available science with an appealing, interactive platform that we 

hope will engage user groups ranging from students to farmers to policy makers in 

the US Corn Belt and beyond.  
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Table 2-1. PE/WI Watershed Area 
Description Notation Rule Value 

Grid cell area     Area of individual grid cell, j, in subwatershed i       

Subwatershed area     Sum of mi grid cell areas, Aij, in subwatershed i 

∑   

  

   

 

       

Watershed area     Sum of n * mi grid cell areas, Aij, in the watershed 

∑∑   

  

   

 

   

 

           

 

Table 2-2. Climate Type and Percent Frequency Distribution of Annual Precipitation 
Values in PE/WI 
Precipitation (pr) 
(cm yr-1) 

Climate Type Frequency 

62.4 Dry 5% 
71.6 Dry 15% 
77.2 Normal 15% 
81.7 Normal 15% 
87.2 Normal 15% 
92.6 Wet 15% 

114.6 Wet 5% 
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Table 2-3. PE/WI Land-use Category, Type, and Description 
Land-use 
Category 

Land-use Type Description 

Perennial 
legume 

Alfalfa Perennial forage crop harvested primarily for hay or silage; 
may be included in long-term rotations with other crops. 

Annual grain Conservation corn Annual grain crop managed using conservation practices, 
such as no-till, cover crops, grassed waterways, and/or 
buffers. Contouring and/or terracing where location-
appropriate. 

Conventional corn Annual grain crop managed using conventional tillage. 
Annual 
legume 

Conservation 
soybean 

Annual legume crop managed using conservation practices, 
such as no-till, cover crops, grassed waterways, and/or 
buffers. Contouring and/or terracing where location-
appropriate. 

Conventional 
soybean 

Annual legume crop managed using conventional tillage. 

Pasture Permanent pasture Forage (alfalfa and/or grass) grazed by cattle throughout 
the typical grazing season. 

Rotational grazing Forage (alfalfa and/or grass) grazed by cattle through the 
typical grazing season; managed by strategically rotating 
cattle across paddocks to promote even grazing. 

Perennial 
herbaceous 
(non-pasture) 

Grass hay Perennial forage crop harvested primarily for hay or silage. 
Herbaceous 
perennial bioenergy 

Perennial herbaceous crop (switchgrass) harvested as 
biomass for biopower and biofuel generation. Low levels of 
management. 

Prairie Diverse mix of tallgrass prairie vegetation native to Iowa. 
Wetlanda Constructed pooled water areas designed to include water, 

soil, and plant features that restore ecological functions and 
processes of native, naturally occurring wetlands.  
Managed for habitat for biodiversity, controlling nitrate 
flow to streams, or both. 

Perennial 
woody 

Conservation forest Managed for historically relevant compositional and 
structural diversity using uneven-aged (gap or patch cuts) 
or even-aged (shelterwood, crop tree release) techniques 
and other management (timber stand improvement, 
prescribed burning and/or tactical grazing, removal of 
invasives). Management of coarse woody debris, mast-
bearing trees, and sensitive areas such as riparian zones, 
ephemeral ponds, and rock outcrops. 

Conventional forest “Managed” on an ad hoc basis, in which the forest is 
periodically high-graded (most valuable trees periodically 
removed, uneven-aged/gap cuts) or clearcut. No attention 
to composition or structure of forests/woodlands 
historically present in the region. 

Short-rotation 
woody bioenergy 

Short-rotation aspen crop with 10-year rotation, harvested 
as biomass for biopower and biofuel generation. 

a(K. Arbuckle & Pease, 1999) 
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Table 2-4. PE/WI Topographic Relief Ranges 
Topographic  
relief (tr) 

0-1% 
1-2% 
2-5% 
5-9% 

9-14% 
14-18% 

114.6 

 

  



  80 

     

 

 

Table 2-5. Biodiversity Point System 
Calculation Land-use Type Metric Points Thresholds 
Native vegetation Conservation forest, 

Prairie, 
Wetland 

Percent of 
watershed 
area 

0.0 Less than 10% area 
1.0 At least 10%, less than 25% 

area 
2.0 At least 25%, less than 50% 

area 
3.0 At least 50%, less than 

100% area 
4.0 100% area 

Native vegetation 
and other high-
diversity land 
uses 

Conservation forest, 
Conventional forest, 
Mixed fruits and 
vegetables, 
Prairie, 
Rotational grazing, 
Wetland 

Percent of 
watershed 
area 

0.0 Less than 10% area 
0.5 At least 10%, less than 50% 

area 
1.0 At least 50%, less than 

100% area 
1.5 100% area 

Native vegetation, 
and 
comparatively 
high-diversity 
and/or low-input 
land uses* 

Conservation corn, 
Conservation forest, 
Conservation soybean, 
Conventional forest, 
Grass hay, 
Herbaceous perennial 
bioenergy, 
Mixed fruits and 
vegetables, 
Prairie, 
Rotational grazing, 
Short-rotation woody 
bioenergy, 
Wetland 

Percent of 
watershed 
area 

0.0 Less than 10% area 
0.5 At least 10%, less than 50% 

area 
1.0 At least 50%, less than 

100% area 
1.5 100% area 

Wetland Wetland Percent of 
watershed 
area and 
strategic 
location 

0.0 Less than 5% area and less 
than 50% of strategic 
wetland locations in 
wetland land-use type 

0.5 At least 5% area and at least 
50% of strategic wetland 
locations in wetland land-
use type 

1.0 At least 5% area and at least 
75% of strategic wetland 
locations in wetland land-
use type 

1.5 At least 5% area and 100% 
of strategic wetland 
locations in wetland land-
use type 
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Calculation Land-use Type Metric Points Thresholds 
Stream buffer Conservation corn, 

Conservation forest, 
Conservation soybean, 
Conventional forest, 
Grass hay, 
Herbaceous perennial 
bioenergy, 
Mixed fruits and 
vegetables, Prairie, 
Rotational grazing, 
Short-rotation woody 
bioenergy, 
Wetland 

Percent of 
stream-
adjacent 
cells 

0.0 Less than 10% stream-
adjacent cells 

0.5 At least 10%, less than 50% 
stream-adjacent cells 

1.0 At least 50%, less than 
100% stream-adjacent cells 

1.5 100% stream-adjacent cells 

Note: 
*In this calculation, PE/WI awards up to 1.5 biodiversity points for land uses that include native 
vegetation and other high-diversity land uses, as well as both low-diversity, high-input and low-
diversity, low-input land uses that provide higher diversity support and require fewer inputs than 
conventionally row-cropped systems. 

Table 2-5. (Continued) 
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Table 2-6. Game Wildlife Points 
Calculation Land-use Types Metric Points Thresholds 
Native 
vegetation and 
other high 
diversity land 
uses 

Conservation forest, 
Conventional forest, 
Mixed fruits and 
vegetables, 
Prairie, 
Rotational grazing, 
Wetland 

Percent of 
watershed 
area 

0.0 Less than 10% area 
1.0 At least 10%, less than 25% 

area 
2.0 At least 25%, less than 50% 

area 
3.0 At least 50%, less than 100% 

area 
4.0 100% area 

Native 
vegetation and 
comparatively 
high-diversity 
and/or low-
input land 
uses* 

Conservation corn, 
Conservation forest, 
Conservation 
soybean, 
Conventional forest, 
Grass hay, 
Herbaceous perennial 
bioenergy, 
Mixed fruits and 
vegetables, 
Prairie, 
Rotational grazing, 
Short-rotation woody 
bioenergy, 
Wetland 

Percent of 
watershed 
area 

0.0 Less than 10% area 
0.5 At least 10%, less than 50% 

area 
1.0 At least 50%, less than 100% 

area 
1.5 100% area 

Conservation 
forest 

Conservation forest Percent of 
watershed 
area 

0.0 Less than 5% area 
1.0 At least 5% area 

Grassland Herbaceous perennial 
bioenergy, 
Prairie, 
Rotational grazing 

Percent of 
watershed 
area 

0.0 Less than 5% area 
1.0 At least 5% area 

Wetland Wetland Percent of 
watershed 
area 

0.0 Less than 5% area 
1.0 At least 5% area 
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Calculation Land-use Types Metric Points Thresholds 
Stream buffer Conservation corn, 

Conservation forest, 
Conservation 
soybean, 
Conventional forest, 
Grass hay, 
Herbaceous perennial 
bioenergy, 
Mixed fruits and 
vegetables, Prairie, 
Rotational grazing, 
Short-rotation woody 
bioenergy, 
Wetland 

Percent of 
stream-
adjacent 
cells 

0.0 Less than 10% stream-
adjacent cells 

0.5 At least 10%, less than 50% 
stream-adjacent cells 

1.0 At least 50%, less than 100% 
stream-adjacent cells 

1.5 100% stream-adjacent cells 

Note: 
*In this calculation, PE/WI awards up to 1.5 game wildlife points for land uses that include native 
vegetation and other high-diversity land uses, as well as both low-diversity, high-input and low-
diversity, low-input land uses that provide higher diversity support and require fewer inputs than 
conventionally row-cropped systems. 

  

Table 2-6. (Continued) 
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Table 2-7. Carbon Sequestration Rates by Land-use Type: Values in PE/WI 
Source From Annual Row 

Crop Typesa to 
Measured Unit PE/WI Land-use Types Values 

(Mg ha-1 yr-

1) 
Fissore et 
al. (2010) 
 

Forests Total biomass 
and soils 

Conservation forest, 
Conventional forest 

3.67 

Incorporation of 
cover crops 

Soils Conservation corn, 
Conservation soybean 

0.40 

Perennial 
grassland 

Soils Prairie 1.07 

Pasture or hay land Soils Grass hay, Permanent 
pasture, Rotational 
grazing 

0.29 

Prairie potholes Soils Wetland 3.05 
Short-rotation 
woody crops 

Total biomass 
and soils 

Short-rotation woody 
bioenergy 

4.69 

Al-Kaisi et 
al. (2005) 

Switchgrass SOC, 0-15 cm 
soil depthb 

Herbaceous perennial 
bioenergy 

1.20 

Corn-soybean-
alfalfa rotation 

SOC, 0-15 cm 
soil depthb 

Alfalfa 0.50 

aConventional corn, Conventional soybean, Mixed fruit and vegetables  

bAl-Kaisi (2005, p. 642) reported soil organic carbon (SOC) content increases during a 10-year 
period compared with initial SOC content; measurements were taken at the 0-15 cm soil profile. 

 

  



  85 

     

 

 

Table 2-8. Nitrate-N Concentration: Range of Possible Values in PE/WI 
Description Notation Rule Possible Values 

Watershed 
nitrate-N 
concentration 

   

∑[   {       ∑   

  

   

     }  
   

   

]

 

   

 

          
               

Nitrate pollution 
control index 

       
    (  

   

       
) 

      

Subwatershed 
nitrate-N 
percent 
contribution 

       {       ∑    
  
        }  

   

   

 
 

       

Precipitation 
multipliera 

  Dry: Precipitation current year ≤ 71.6 cm      

Normal after dry: Precipitation current 
year = 77.2 cm, 81.7 cm, or 87.2 cm; and 
Precipitation prior year ≤ 71.6 cm 

     

Wet after dry: Precipitation current year ≥ 
92.6; and Precipitation prior year ≤ 71.6 cm 

     

Background: All other climate cycles      

Wetland 
multiplierb 

   At least one strategic wetland in the 
subwatershed with wetland land-use type 

     

No strategic wetland locations in the 
subwatershed with wetland land-use type 

     

Row crop 
multiplierc 

    Land-use types: Conservation corn, 
Conservation soybean, Conventional corn, 
Conventional soybean, Mixed fruit and 
vegetables 

     
   

   

 

Land-use types: Alfalfa, Conservation 
forest, Conventional forest, Hay, 
Herbaceous bioenergy, Permanent pasture, 
Prairie, Rotational grazing, Short-rotation 
woody bioenergy, Wetland 

0.00 

Conservation 
row crop 
multiplierd  

    Land-use types in Des Moines Lobe: 
Conservation corn, Conservation soybean 

     
   

   

 

Land-use types in Southern Iowa Drift 
Plain: Conservation corn, Conservation 
soybean 

     
   

   

 

Land-use types: Alfalfa, Conservation 
forest, Conventional corn, Conventional 
forest, Conventional soybean, Hay, 
Herbaceous bioenergy, Permanent pasture, 
Prairie, Rotational grazing, Short-rotation 
woody bioenergy, Wetland 

     
   

   

 

a(Randall & Mulla, 2001) 
b(Thomas Isenhart, Iowa State University, personal communication, 2013) 
c(Schilling & Libra, 2000) 
d(Iowa, 2013) 
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Table 2-9. Gross Erosion: Range of Possible Values in PE/WI 
Description Notation Rule Possible Values 
Gross 
erosiona 

   
∑∑      

  

   

 

   

 
          
          
           

Gross 
erosion 
index 

        
    (

         

             
) 

      

Gross 
erosion ratea 

                        
         
               

RUSLE rill 
and interrill 
erosion rateb 

                                   
         
          

Ephemeral 
gully erosion 
ratec 

     Land-use types:, Conventional corn, 
Conventional soybean, Mixed fruit and 
vegetables 

            
            

Land-use types: Alfalfa, Conservation corn, 
Conservation soybean 

        
             

Land-use types: All others       
            

Rainfall 
erosivity 
factord 

  

 
                             
 
                         
                            

          
          
           
           

Soil 
erodibility 
factore 

    Soil series in Des Moines Lobe: Boone County 
(B); and Southern Iowa Drift Plain: Jasper 
County (J) 
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Description Notation Rule Possible Values 
Slope length 
steepness 
factorb 

     Land-use types: Alfalfa, Conservation corn, 
Conservation soybean, Conventional corn, 
Conventional soybean, Mixed fruit and 
vegetables 
               

               

               

               

                

                 

 

          

Land-use types: Permanent pasture, 
Rotational grazing 
               

               

               

               

                

                 

 

          

Land-use types: All others 1 
                  

              

               

               

 

       

                   

             

             

             

               

                

 

        

Cover 
management 
factorf 

    Conventional corn preceding annual row 
crop: 
                        
                           
                        
                           
                                 

            

Conservation corn preceding annual row 
crop: 
                        
                           
                        
                           
                                 

            

Table 2-9. (Continued) 
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Description Notation Rule Possible Values 
Conventional soybean or mixed fruit and 
vegetables preceding annual row crop: 
                        
                           
                        
                           
                                 

            

Conservation soybean preceding annual row 
crop: 
                        
                           
                        
                           
                                 

            

All land-use types except Conventional corn, 
Conservation corn, Conventional soybean, 
Conservation soybean, and Mixed fruit and 
vegetables preceding annual row crop: 
                        
                           
                        
                           
                                 

            

Any land-use type preceding the following 
land-use types: 
                                
              
                          
                          
                                
              
                
              
                         
                        

            

Support 
practice 
factorbg 

    Land-use type: Conservation corn, 
Conservation soybean  

         
                     

 

         

Land-use type: All others 1 
Contour 
subfactorg 

                   

              

              

             

             

 

        

Table 2-9. (Continued) 
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Description Notation Rule Possible Values 
Terrace 
subfactorg 

                       
                            

                            

                            

                            

                  

 

      

Terrace 
intervalh 

                     
              
              
              
               
               

 

            

a(USDA NRCS, 2004a) 
b(Renard et al., 1997) 
c(USDA NRCS, 1997) 
d(Renard & Freimund, 1994) 

e(Iowa State University, 2010) 
f(Wendt, 2007) 
g(USDA NRCS, 2002) 
h(USDA NRCS, 2008a) 
 

  

Table 2-9. (Continued) 
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Table 2-10. Sediment Delivery Ratio (SDR) by Iowa Landform Region and Drainage 
Area, from Iowa NRCS Erosion and Sediment Delivery (USDA NRCS, 1998). 

Hectares SDR1 SDR2 SDR3 SDR4 
0.4 97.0 94.0 88.0  80.0 
4.0 84.5 68.0 44.0 25.5 

25.9 75.0 50.0 25.0 10.0 
40.5 73.0 47.0 23.0 9.0 

404.7 65.0 35.0 17.5 6.0 
4,046.9 57.0 26.0 13.0 4.0 

 

Table 2-11. Sediment Delivery to Stream: Range of Possible Values in PE/WI 
Description Notation Rule Possible Values 

Sediment 
delivery to 
streama 

   
∑∑   (             )

  

   

 

   

 
           
         
           

Sediment 
control index 

        
    (

          

             
) 

      

Buffer 
factorb 

    Land-use types: Conservation corn, Conservation 
forest, Conservation soybean, Conventional forest, 
Grass hay, Herbaceous perennial bioenergy, Prairie, 
Wetland, Short-rotation woody bioenergy 

    

Land-use types: All others 1 

Gross 
erosion ratea 

               

(see Table 2-9) 

           
         
                

Sediment 
delivery 
ratioc 

      Grid cells in Des Moines Lobe: 

     
 
 
                         

 
 

   
 

      

Grid cells in Southern Iowa Drift Plain: 

     
  
  

                          
  
  

   
 

      

a(USDA NRCS, 2004a)  
b(Matthew Helmers and Thomas Isenhart, Iowa State University, personal communication, 2014) 
c(USDA NRCS, 1998) 
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Table 2-12. Phosphorus Delivery to Stream: Range of Possible Values in PE/WI 
Description Notation Rule Possible Values 

Phosphorus 
delivery to 
streama 

  
∑∑      

  

   

 

   

 
           
         
          

Phosphorus 
control index 

        
    (

      

          
) 

      

Iowa P-Indexa                                
          
               

Erosion 
componenta 

                              

     
 

 

           
          
               

Runoff 
componenta 

              (           ) 

 

           
          
               

Drainage 
componenta 

                                
               

Buffer factorab     Land-use types: Conservation corn, 
Conservation forest, Conservation soybean, 
Conventional forest, Grass hay, Herbaceous 
perennial bioenergy, Prairie, Wetland, Short-
rotation woody bioenergy 

    

Land-use types: all others   
Enrichment 
factora 

     Land-use types: Conventional corn, 
Conventional soybean, Mixed fruit and 
vegetables 

1.1 

Land-use types: All others 1.3 
Soil test P 
erosion factorc 

           (         )                 ⁄                 

Soil test P 
concentrationd 

      Soil series in Des Moines Lobe        
Soil series in Southern Iowa Drift Plain        

Runoff factora*                       
   

                   
  

                             

           
          

Precipitation 
factora 

                            
           
                

Soil test P 
runoff factorc 

                                      

P application 
factorc 

          

    
                

 
               

P application 
rate, as 
P2O5

defgh*† ‡ 

      Des Moines Lobe with land-use types: 
Conservation corn, Conventional corn 

           
               

Southern Iowa Drift Plain with land-use types: 
Conservation corn, Conventional corn  

          
               

Des Moines Lobe with land-use types: 
Conservation soybean, Conventional soybean 

          
               

Southern Iowa Drift Plain with land-use types: 
Conservation soybean, Conventional soybean 
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Description Notation Rule Possible Values 

Land-use type: alfalfa 
       [       ] 

           
          
               

Land-use types: Permanent pasture, Rotational 
grazing 
                           [       ] 

           
          
               

Des Moines Lobe with land-use type: Grass hay           
               

Southern Iowa Drift Plain with land-use type: 
Grass hay 

          
               

Land-use type: Mixed fruit and vegetables 
     [              

                ] 

          
               

Land-use types: All others                  
Time and 
method 
factorbc 

     Land-use types: Conservation corn, 
Conservation soybean, Grass hay, Permanent 
pasture, Rotational grazing 

  

Land-use types: Alfalfa 0.9 
Land-use types: Conventional corn, 
Conventional soybean, Mixed fruit and 
vegetables 

    

Flow factora      Soil map series meeting conditions for one of 
the following options: 
Option 1 

 Slope range no greater than 5%;  
 Drainage class of 60, 65, or 70 (Poor, 

Poor-Very poor, or Very poor);  
 Subsoil group of 1 or 2 (Clay less than 

40%) 
Option 2 

 Permeability code no greater than 35 
or equal to 58, 72, or 75 (Coarse 
texture subsoil/substrate) 

    

Soil map series: All others   
Soil test P 
drainage 
factorc 

                    

             
 

        

Table 2-12. (Continued) 
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Description Notation Rule Possible Values 
a(USDA NRCS, 2004a) 
b(Matthew Helmers and Thomas Isenhart, Iowa State University, personal communication, 2014) 
c(Mallarino et al., 2005)  
d(Iowa, 2013) 
e(Goolsby et al., 1999) 
f(Jacobson et al., 2011) 
g(Laboski, Peters, & Bundy, 2006) 
h(Sawyer, Mallarino, Killorn, & Barnhart, 2008) 
 
Notes: *  
Runoff Curve Number (RCNij) estimates (Table 2-13). 
†Yield rates for alfalfa (YBij[Alfalfa])(Table 2-18); and green beans (GBY), and squash (SQY) 
(Table 2-20) 
‡ Seasonal utilization rate (SU) and average daily intake (DI) (Table 2-19). 
 

  

Table 2-12. (Continued) 
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Table 2-13. Runoff Curve Numbers (USDA NRCS, 2004b) 
Land-use Type Topographic 

relief 
Hydrologic 
Group 

Flow 
Factor 

Value 

Alfalfa      A - 58 
B, C, D, B/D > 0 72 
C 0 81 
D, B/D 0 85 

Alfalfa     A - 55 
B, C, D, B/D > 0 69 
C 0 78 
D, B/D 0 83 

Conservation corn, Conservation 
soybean 

    A - 64 
B, C, D, B/D > 0 74 
C 0 81 
D, B/D 0 85 

    A - 61 
B, C, D, B/D > 0 70 
C 0 77 
D, B/D 0 80 

Conservation forest, Conventional 
forest, Short-rotation woody bioenergy 

- A - 30 
B, C, D, B/D > 0 55 
C 0 70 
D, B/D 0 77 

Conventional corn, Conventional 
soybean, Mixed fruit and vegetables 

- A - 72 
B, C, D, B/D > 0 81 
C 0 88 
D, B/D 0 91 

Grass hay, Herbaceous bioenergy - A − 30 
B, C, D, B/D > 0 58 
C 0 71 
D, B/D 0 78 

Permanent pasture - A − 68 
B, C, D, B/D > 0 79 
C 0 86 
D, B/D 0 89 

Prairie, Wetland - A − 30 
B, C, D, B/D > 0 48 
C 0 65 
D, B/D 0 73 

Rotational grazing - A − 49 
B, C, D, B/D > 0 69 
C 0 79 
D, B/D 0 84 
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Table 2-14. Crop and Livestock Production 
Yield Type PE/WI Land-use Types Units 
Alfalfa hay (Medicago sativa L.) Alfalfa Megagrams 
Cattle Permanent pasture, Rotational grazing Animals 
Corn grain (Zea mays L.) Conventional corn, Conservation corn Megagrams 
Grass hay Grass hay Megagrams 
Herbaceous perennial 
biomass (Panicum virgatum L.) 

Herbaceous perennial bioenergy Megagrams 

Mixed fruit and vegetables Mixed fruit and vegetables Megagrams 
Short-rotation woody 
biomass 

Short-rotation woody bioenergy Megagrams 

Soybeans (Glycine max (L.) 

Merr.) 
Conservation soybean, Conventional soybean Megagrams 

Wood Conservation forest, Conventional forest Cubic meters 

 

Table 2-15. Yield 
Description Notation Rule Values 

Yield  [          ]  
∑∑        [          ]      

  

   

 

   

 
       

Yield index  [          ]      
    

 [          ]

 [          ]   

 
      

 

Table 2-16. Yield Type Precipitation Factor at Different Precipitation Levels 
Land-use Types Precipitation (cm) Factors 
 62.4 71.6 77.2 81.7 87.2 92.6 114.6 
Alfalfa, Grass hay, Herbaceous Perennial 
bioenergy, Permanent pasture, Rotational 
grazing 

0.75 0.90 1.00 1.00 1.00 0.90 0.75 

Conservation corn, Conservation soybean, 
Conventional corn, Conventional soybean 

0.95 1.00 1.00 1.00 1.00 1.00 0.95 

Mixed fruit & vegetables  1.00 1.00 1.00 1.00 1.00 0.90 0.75 

All others 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 2-17. Yield Base Rate: Corn and Soybeana 
County ISPAID Soil Type Yield Base Rate (Mg ha-1 year-1) 

Corn Soybean 
Boone County Clarion 138B 14.0 4.37 

Buckney 1636 0 0 
Canisteo 507 13.4 4.17 
Coland 135 13.2 4.10 
Nicollet 55 14.3 4.44 
Okoboji 90 11.2 3.49 

Jasper County Downs 162D2 12.9 4.03 
Gara-Armstrong 993E2 0 0 
Ackmore-Colo 5B 12.6 3.90 
Tama 120C2 13.9 4.30 
Tama 120B 14.7 4.57 
Muscatine 119 15.1 4.70 
Nodaway 220 13.1 4.10 

a(Iowa State University, 2010) 

 

Table 2-18. Yield Base Rate: Alfalfa and Grass Haya 
County ISPAID Soil Type Yield Base Rate  

(Mg ha-1 year-1) 
Boone County Clarion 138B 14.1 

Buckney 1636 8.07 
Canisteo 507 9.64 
Coland 135 9.42 
Nicollet 55 14.4 
Okoboji 90 8.07 

Jasper County Downs 162D2 12.6 
Gara-Armstrong 
993E2 8.07 
Ackmore-Colo 5B 9.19 
Tama 120C2 14.6 
Tama 120B 15.5 
Muscatine 119 15.0 
Nodaway 220 14.1 

a(Iowa State University, 2010) 
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Table 2-19. Yield Base Rate for Cattle: Range of Possible Values in PE/WI 
Description Notation Rule Possible 

Values 
Cattle supported  
yield base ratea 

    [      ]     [       ]           ⁄            
             
       

Seasonal utilization ratea    Land-use type: Permanent pasture      
Land-use type: Rotational grazing      

Average daily intakea    3% of live bodyweight 
                    

          
          
         

Grazing season lengthb    April 15 – November 1          
a(USDA NRCS, 2008c)  
b(Iowa Beef Center, 2007)  

 

Table 2-20. Yield Base Rate: Mixed Fruit and Vegetables: Range of Possible Values in 
PE/WI 

Description Notation Rule Possible Values 
Mixed fruit and 
vegetable yield base 
rate 

     

[
           

             
] 

                 
    
      

          
              

Grape yieldab     -                     
Green bean yieldc     -                     
Squash yieldc     -                     
Strawberry yieldc     -                     
Soil texture 
multiplierc 

    Fine sandy loam  .00 
Silt loam      
Loam      
Clay loam, Mucky silt 
loam, Silty clay loam 

     

a(Delate & Friedrich, 2004) 

b(R. M. Post & Robinson, 1995) 

c(Taber, 2009) 

 

  



  98 

     

 

 

Table 2-21. Yield Base Rate: Woodab 
County ISPAID Soil Type Yield Base Rate 

(m3 ha-1 year-1) 
Boone County Clarion 138B 1.630 

Buckney 1636 0.741 

Canisteo 507 0.504 
Coland 135 0.504 
Nicollet 55 1.040 
Okoboji 90 0.504 

Jasper County Downs 162D2 1.630 
Gara-Armstrong 993E2 1.560 
Ackmore-Colo 5B 0.771 
Tama 120C2 1.630 
Tama 120B 1.630 
Muscatine 119 1.040 
Nodaway 220 1.631 

a(IDNR & USDA NRCS, 2007) 
bYield Base Rate figures are for conventional forest.  
We apply a 30% reduction factor for conservation forest wood 
yield. 

 
Table 2-22. Yield Base Rate: Herbaceous Perennial Bioenergya 

County ISPAID Soil Type Yield Base Rate 
(Mg ha-1 year-1) 

Boone County Clarion 138B 5.77 
Buckney 1636 4.39 
Canisteo 507 5.65 
Coland 135 5.65 
Nicollet 55 6.25 
Okoboji 90 4.39 

Jasper County Downs 162D2 4.39 
Gara-Armstrong 993E2 4.39 
Ackmore-Colo 5B 4.81 
Tama 120C2 5.29 
Tama 120B 6.31 
Muscatine 119 6.61 
Nodaway 220 5.83 

a(Emily Heaton, Iowa State University, personal communication, 
2014) 
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Table 2-23. PE/WI Example Scenarios 
Scenario 
Number 

Scenario Description 

1 Conventional corn-soybean-corn rotation with normal climate, i.e. precipitation 
equals 81.7 cm in all years. 

2 Conventional corn-soybean-corn rotation with interannual climate variability, i.e. 
precipitation equals 81.7 cm in year 0, 62.4 cm in year 1, 114.6 cm in year 2, and 
81.7 cm in year 3. 

3 Two-thirds area in conservation corn-soybean-corn rotation and one-third in 
strategically placed marketable perennial land-use types with normal climate, i.e. 
precipitation equals 81.7 cm in all years. 

4 Two-thirds area in conservation corn-soybean-corn rotation and one-third in 
strategically placed marketable perennial land-use types with interannual climate 
variability, i.e. precipitation equals 81.7 cm in year 0, 62.4 cm in year 1, 114.6 cm in 
year 2, and 81.7 cm in year 3. 
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Figure 2-1. PE/WI Interface: Controls (left), Interactive Watershed (center), 
Download and Info Tabs (upper right), Ecosystem Service Indicators (middle right), 
and Design Years (bottom right). 
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Figure 2-2. Ecosystem services and disservices to and from agriculture, adapted 
from Zhang et al. (2007). Asterisks (*) represent services and disservices either 
indirectly or directly reported in PE/WI. 
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Figure 2-3. PE/WI Index Score Results 
 

 

Figure 2-4. PE/WI Spatial-Temporal Maps of Ecosystem Service Indicators 
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Figure 2-5. Diversity and input matrix for managed ecosystems, with native 
vegetation included (lower right) for reference; adapted from Schulte, Ontl, and 
Larsen (2013).  
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Figure 2-6. Sediment Delivery Ratio; from Iowa NRCS Erosion and Sediment 
Delivery (USDA NRCS, 1998).  
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  CHAPTER 3
 

PEOPLE IN ECOSYSTEMS/WATERSHED INTEGRATION: A WEB-BASED LEARNING 
TOOL FOR EVALUATING ECOSYSTEM SERVICES TRADEOFFS FROM WATERSHEDS 

 
A paper to be submitted for publication to the Journal of Soil and Water Conservation 

Carrie M. Chennault, Lisa A. Schulte, and John C. Tyndall 

 

Introduction 

Society has the knowledge, information, and expertise to provide valuable 

ecological functions from agricultural landscapes while supporting vibrant farmer 

and rural livelihoods, but that potential remains largely untapped. While intensive 

production systems common to the United States Corn Belt and other agricultural 

regions provide high levels of a small number of provisioning ecosystem services, 

these systems externalize high costs to producers and society. Farmers face a host of 

environmental and societal pressures that threaten operations, profitability, and 

community livelihoods, including volatile markets; extreme weather; soil 

degradation; surface water impairment; and groundwater contamination 

(Robertson et al., 2014). By managing for multiple ecosystem services, farmers can 

help mitigate such risks to themselves and society. 

The aim of agricultural modernization is to support a growing human 

population with limited resources. We suggest that an integrated ecosystem 

services tradeoffs framework provides an opportunity to design landscapes that 

enhance the production of multiple services while maintaining farmer profitability 
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or mitigating risk to farmers. At present, however, few tools exist to evaluate how 

changes to land management affect the types and levels of services delivered to 

humans.  

People in Ecosystems/Watershed Integration, version 2 (PE/WI or PE/WI 

v2) is a new tool that integrates research on agricultural production and 

environmental services with a virtual interactive watershed. In designing PE/WI v2, 

our objective was to allow users to better visualize market and non-market 

environmental outcomes of land-use decisions. PE/WI v2 is an online tool with a 

simple approach: users design and evaluate patterns of land use on a virtual US Corn 

Belt watershed across multiple years and variable climate conditions.  

PE/WI illustrates agronomic, watershed, and biodiversity management 

principles important for sustainable land use and land management. The tool also 

teaches complex principles key to human livelihoods, including resilience and 

adaptation during periods of climate and political-economic uncertainty. The web-

based PE/WI v2 improves upon the original spreadsheet-based PE/WI v1 tool 

(Schulte, Donahey, Gran, Isenhart, & Tyndall, 2010) with new and intuitive modeling 

and graphic user-interface features.  

Our goal with PE/WI is to foster multidimensional and integrative thinking 

regarding land-management decisions. PE/WI is an educational tool with the 

capacity to broadly inform users on the consequences of land-use choices (Schulte 

et al., 2010). It differs from other models that simulate the complex tradeoffs 

associated with land use in that it does not require guidance from expert modelers. 
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PE/WI provides instant feedback to any user, reveals both relative and absolute 

tradeoffs among ecosystem services, and does not require user-supplied data. This 

innovative approach allows stakeholders to simultaneously consider agricultural 

land use, climate conditions, production outcomes (e.g., crops and livestock), and 

environmental outcomes such as nutrient and sediment levels in water, habitat 

provision for biodiversity, soil erosion, and carbon management.  

 

Overview of Model Updates 

The PE/WI v2 tool is a fully-contained, open source web-based application 

that does not require user-supplied data. Updates from the first version include a 

more user-friendly, web-based format, an expanded watershed area, additional 

land-use options, varying climate conditions, a temporal component, expanded 

model components, an expanded set of output indicators, improved graphics, and 

enhanced interaction with watershed tools and indicator outputs. PE/WI v2 model 

update incorporates additional real-world data on soil properties and the effects of 

temporal and climate sequences, and reflects other recent advances in scientific 

understanding. While the current model represents a hybrid of real-world data 

within a fictitious US Corn Belt watershed, we see enormous potential to eventually 

adapt the model structure to real-world watersheds.  

Users interact with the PE/WI model through interface controls to create 

land-use designs for Year 1, followed by Years 2 and 3 (Figure 3-1). This interaction 

creates a land-use data set that users may download, save, share, and later re-
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upload in PE/WI. The tool includes a main watershed interface, five predefined 

physical feature maps, 15 land-use options, seven climate conditions, an interactive 

plot of 16 ecosystem service indices, three environmental service maps, and 

summary numerical results. User-created land-use designs, in conjunction with 

predefined physiographic characteristics and randomized annual climate 

conditions, serve as inputs for modeling ecosystem services outputs.  

The PE/WI v2 interactive watershed is a fictitious watershed based on two 

Iowa landform regions, the Des Moines Lobe and the Southern Iowa Drift Plain 

(Prior, 1991, p. 30), representing the western and eastern halves of the PE/WI 

watershed, respectively. The PE/WI v2 watershed—which we represented spatially 

in the application as a collection of 593 grid cells configured around a vector-

graphic stream to approximate a 2,383 hectare watershed—uses data from the Iowa 

Soil Properties and Interpretations Database, ISPAID (Iowa State University, 2010). 

To simulate climate variability across years, the program randomly assigns annual 

climate conditions based on historical annual precipitation data from Iowa. 

Users manipulate land use in each PE/WI grid cell by selecting one of 15 

land-use types for each year (Table 3-1). PE/WI also allows users to apply in-field, 

prairie/wetland restoration, and riparian zone conservation practices on a cell by 

cell basis. Maps of predefined physical features (e.g. topographic relief, flood 

frequency, strategic wetland locations, subwatershed boundaries, and drainage 

class) further inform user land-use selection. 
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Based on the user-supplied designs of land-use, the PE/WI model calculates 

levels of 16 ecosystem service indicators. Provisioning ecosystem service indicators 

include nine commodity crop and livestock production types (alfalfa, cattle, corn, 

grass hay, herbaceous perennial bioenergy, mixed fruit and vegetable, short-

rotation woody bioenergy, soybean, and wood). Regulating ecosystem service 

indicators fall into three groups: stream water quality indicators include control of 

nitrate, sediment, and phosphorus pollution; the soil quality indicator of soil erosion 

control; and the climate regulation indicator of carbon sequestration. Habitat for 

biodiversity serves as a supporting ecosystem service indicator. Cultural ecosystem 

service indicators include habitat for game wildlife; water quality indicators may 

also represent opportunities to provide cultural services. 

Each of the 16 ecosystem service indicators translates to a unitless index 

score ranging between 0 (lowest level of ecosystem service attainable in the 

simulation) and 100 (highest level of ecosystem service attainable in the simulation) 

(Figure 3-2). Scores are represented by a graphic plot that allows users to select 

which ecosystem services to highlight and provides a comprehensive visualization 

of tradeoffs. 

Users also may view output maps of source areas for three indicators across 

each year: soil erosion, watershed phosphorus contributions, and nitrate watershed 

percent contributions. The example map (Figure 3-3) resulted from a user 

manipulation over the three-year period of simulation that targeted the upper left-

hand subwatershed for improvements water quality management. In addition to 
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index scores and plots, PE/WI results include numerical summaries of area in each 

land-use type, index scores, and biophysical values for each ecosystem service 

indicator. The ecosystem service indicator outputs in PE/WI, presented graphically, 

spatially, and numerically, enrich the user experience and ability to evaluate 

tradeoffs. 

 

Learning Concepts and Exercises 

As individuals and societies consider issues of high complexity, uncertainty, 

and societal urgency, researchers including Biggs et al. (2010) call for “new ways of 

thinking” that “reframe the relationship between science and decision making” (p. 

267). PE/WI supports this new way of thinking through multiple learning 

opportunities, including scenario planning, which Biggs et al. (2010) heralded as 

pivotal for teaching students and society how to address environmental challenges.  

PE/WI has enormous flexibility as an educational tool. We briefly present 

four learning opportunities here. We then expand on one example, allowing users to 

explore PE/WI learning opportunities, exercises, and concepts. Although we 

mention four opportunities here, PE/WI supports many other learning 

opportunities. Instructors or facilitators may use PE/WI to engage users to: 

 Discuss ecological principles underlying the PE/WI model; 

 Use ecosystem service indicator outputs as inputs for economic 

valuations and broader discussion of payments for ecosystem services; 

 Consider tradeoffs and societal constraints to land-use change; 



111 

 

 

 

 Design landscape scenarios that meet assigned goals and objectives, such 

as Iowa Nutrient Reduction Strategy goals for nitrogen and phosphorus 

reduction (Iowa, 2013). 

The remainder of this section focuses on the fourth learning opportunity, 

scenario design to meet goals and objectives. PE/WI facilitates scenario creation, 

allowing users to explore and understand complex social-ecological relationships 

without delving into details underlying those relationships. We intend for PE/WI 

learning exercises to help users explore how different land uses, as well as 

landscape configuration, lead to different ecosystem service outcomes and tradeoffs. 

To understand the connections between landscape designs and results, users 

iteratively create designs and review indices, maps, and summary results for 

ecosystem service indicators (Figure 3-2 and Figure 3-3). This process aids learners 

in multidimensional and integrative thinking by allowing people to visualize results 

across space and time and to modify land-use types to meet desired goals for the 

watershed. 

We provide example basic learning concepts and exercises to help users get 

started with PE/WI (Table 3-2). The exercises range in level from beginner to 

advanced learner and may be completed individually or in a group setting. Each 

exercise builds upon concepts in the previous exercise. General questions for 

reflection include: “When and where on the landscape are land-use tradeoffs 

minimized? How are ecosystem service co-benefits maximized? How do spatial 

patterns of land use affect ecosystem service outcomes? How does variation in 
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annual precipitation affect ecosystem service outcomes?” Users can answer these 

questions because PE/WI helps people understand how production and associated 

tradeoffs vary across space and time. 

To demonstrate how our exercises help users achieve learning objectives, we 

present three scenario designs created by PE/WI users during the “Targeting for 

Water Quality” exercise (Table 3-3), which aims to teach users the concepts of 

minimized tradeoffs and maximized co-benefits. There is no single correct design, 

and users created several designs that accomplished the exercise’s objectives of 

minimized tradeoffs and maximized co-benefits. Furthermore, designs were more or 

less effective depending on different climate scenarios. In the following illustration, 

we consider tradeoffs in user designs compared to a baseline scenario land-use of 

100% conventional corn-soybean rotation. 

The three user designs in this example incorporated management and land-

use practices with an objective of dramatically improving water quality with 

minimal production loss. Users aimed to create designs that would meet goals for 

nutrient reduction set forth in the Iowa Nutrient Reduction Strategy (Iowa, 2013). 

The user-selected suite of environmentally beneficial strategies reflects real-world 

practices for managing ecosystem function, including in-field conservation 

practices, edge-of-field and erosion control practices, and land-use change. PE/WI, 

for example, helps users test the effect of targeted water quality management by 

establishing perennial plant cover in environmentally sensitive landscape positions 

(e.g., steep slopes, shallow soils, adjacencies to water bodies), where the physical 
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structure of perennial plant systems can have a greater impact on reducing nutrient 

and sediment losses compared to a more arbitrary placement of the same practices 

(Secchi, Tyndall, Schulte, & Asbjornsen, 2008).  

Strategies that are effective under average climate conditions may not work 

well in years with extreme climate cycles (Table 3-3, scenarios 1 and 2). Further, 

adoption of a broad suite of conservation practices alone is not enough to achieve 

Iowa Nutrient Reduction Strategy goals for nitrogen and phosphorus reduction 

(Iowa, 2013). In the second and third PE/WI watershed designs, users made 

tradeoffs that reduced agricultural production of corn and soybean by 

approximately 10%, and only by incorporating all four strategies did they effectively 

mitigate nutrient pollution in years with extreme climate cycles.  

 

Conclusion 

Few existing tools provide the type of learning platform that PE/WI offers: a 

broadly accessible, yet comprehensive framework for considering ecosystem 

services tradeoffs. In initial uses, we have seen PE/WI’s ability to fundamentally 

alter people’s frameworks for land-use management and decision making. We see 

an enormous future potential for PE/WI to help: people understand how 

commodities might be co-produced with other ecosystem services; land managers, 

land owners, and communities develop shared understanding of watershed 

processes and foster multi-stakeholder, watershed-scale decision making; and 

agricultural stakeholders develop effective strategies to mitigate economic and 
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social risks associated with climate change, biodiversity loss, and natural resource 

impairment. The updated tool combines the best available science with an 

appealing, interactive platform that we hope will engage user groups such as 

students, farmers, and policy makers in the US Corn Belt and beyond. 

 

User Instructions 

PE/WI is available online at http://www.nrem.iastate.edu/landscape/pewi. 

The supporting website, http://www.nrem.iastate.edu/landscape/content/pewi, 

provides supporting materials, including links to a user guide and lesson plans. We 

are currently collecting a library of learning exercises and lesson plans for public 

use, to be made available on the PE/WI supporting website. We encourage 

educators and other PE/WI users to contribute to the library. For a comprehensive 

overview of the computational framework and data used for PE/WI, see Chennault 

(2014, Ch. 2).  
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Table 3-1. PE/WI Land-use Category, Type, and Description 
Land-use 
Category 

Land-use Type Description 

Perennial 
legume 

Alfalfa Perennial forage crop harvested primarily for hay or silage; 
may be included in long-term rotations with other crops. 

Annual grain Conservation corn Annual grain crop managed using conservation practices, 
such as no-till, cover crops, grassed waterways, and/or 
buffers. Contouring and/or terracing where location-
appropriate. 

Conventional corn Annual grain crop managed using conventional tillage. 
Annual 
legume 

Conservation soybean Annual legume crop managed using conservation practices, 
such as no-till, cover crops, grassed waterways, and/or 
buffers. Contouring and/or terracing where location-
appropriate. 

Conventional soybean Annual legume crop managed using conventional tillage. 
Pasture Permanent pasture Forage (alfalfa and/or grass) grazed by cattle throughout 

the typical grazing season. 
Rotational grazing Forage (alfalfa and/or grass) grazed by cattle through the 

typical grazing season; managed by strategically rotating 
cattle across paddocks to promote even grazing. 

Perennial 
herbaceous 
(non-
pasture) 

Grass hay Perennial forage crop harvested primarily for hay or silage. 
Herbaceous perennial 
bioenergy 

Perennial herbaceous crop (switchgrass) harvested as 
biomass for biopower and biofuel generation. Low levels of 
management. 

Prairie Diverse mix of tallgrass prairie vegetation native to Iowa. 
Wetlanda Constructed pooled water areas designed to include water, 

soil, and plant features that restore ecological functions and 
processes of native, naturally occurring wetlands.  
Managed for habitat for biodiversity, controlling nitrate 
flow to streams, or both. 

Perennial 
woody 

Conservation forest Managed for historically relevant compositional and 
structural diversity using uneven-aged (gap or patch cuts) 
or even-aged (shelterwood, crop tree release) techniques 
and other management (timber stand improvement, 
prescribed burning and/or tactical grazing, removal of 
invasives). Management of coarse woody debris, mast-
bearing trees, and sensitive areas such as riparian zones, 
ephemeral ponds, and rock outcrops. 

Conventional forest “Managed” on an ad hoc basis, in which the forest is 
periodically high-graded (most valuable trees periodically 
removed, uneven-aged/gap cuts) or clearcut. No attention 
to composition or structure of forests/woodlands 
historically present in the region. 

Short-rotation woody 
bioenergy 

Short-rotation aspen crop with 10-year rotation, harvested 
as biomass for biopower and biofuel generation. 

a(Arbuckle & Pease, 1999) 
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Table 3-2. Example PE/WI Learning Concepts and Exercises 
Concepts Objectives Exercises 
Ecological 
Functions 

Understand how watershed 
ecosystem service 
indicators are linked to 
land use and land cover. 

Create two scenarios: 
1) All corn and soybean 
2) All perennial vegetation 

Questions: 
1) Which scenario has the highest potential to 

produce the following ecosystem goods: crops, 
timber, cattle? 

2) Which scenario has the highest potential to 
produce the following ecosystem service 
indicators: habitat for biodiversity, carbon 
storage, water quality? 

3) Which land-use types are perennial types? 
4) How does the presence of perennial 

vegetation in the watershed relate to the 
delivery of services? 

Targeting Understand how some 
locations in watersheds 
have greater positive or 
negative impact on 
watershed ecosystem 
service indicators than 
others, due to their 
environmental 
configuration. 

Create three scenarios: 
1) Agricultural production landscape 
2) Scenario 1 altered to dramatically improve 

water quality, with minimal production loss 
3) Scenario 2 altered to dramatically improve 

habitat for biodiversity, with minimal 
production loss 

Questions: 
1) Why are each of the five physical feature maps 

(topographic relief, flood frequency, 
subwatershed boundaries, strategic wetland 
areas, and drainage class) are important? 

2) How does spatial placement of perennial 
vegetation impact the following ecosystem 
services: water quality, biodiversity, game 
wildlife, crop productivity, carbon 
sequestration? 

Tradeoffs Understand that tradeoffs 
exist among land-use types 
and their location in 
achieving multiple outputs 
from watersheds. 
 
Understand how to 
enhance co-benefits 
(multiple ecosystem goods 
and services) from land-use 
types and their locations. 

Create one scenario: 
1) Maximize all watershed ecosystem goods and 

services 
Questions: 

1) What are the characteristics of the scenario in 
terms of land-use composition and 
placement? 

2) What are the key decisions for developing this 
scenario? 

3) What are two economic, two ecological, and 
two social challenges to achieving this design 
in the real world? 
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Table 3-3. Learning Exercise: Targeting to Improve Water Quality with Minimal 
Production Loss 
 Design 1 Design 2 Design 3 
Landscape Design 

   
Conservation Annual 
Row Crops 

Yes No Yes 

Alternative Crops: 
locations where 
annual row crop 
yields are lower 

Yes Yes Yes 

Alternative Crops: 
locations where 
slopes >9% 

No Yes Yes 

Strategic Wetlands No Yes Yes 
% Max Annual Row 
Crop Production: 
normal precipitation 

100% 90% 90% 

% N Reduction: 
normal precipitation 

36% 43% 59% 

% P Reduction: 
normal precipitation 

75% 31% 79% 

% Max Annual Row 
Crop Production: 
extreme dry-wet 
cycles 

85% 76% 76% 

% N Reduction: dry-
wet cycles 

-7.8% 3.6% 31% 

% P Reduction: dry-
wet cycles 

71% 14% 75% 
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Table 3-4. "Targeting Water Quality" Exercise: Percent Area in each Land-use Type 
and Precipitation Levels for Normal and Dry-Wet Cycle Scenarios 
 Percent Area 

Design 1 
Percent Area 

Design 2 
Percent Area 

Design 3 
Land-use Type Y1 Y2 Y3 Y1 Y2 Y3 Y1 Y2 Y3 

Conservation Corn 93.8 - 93.8    83.5 - 83.5 

Conservation Forest 1.3 1.3 1.3 1.8 1.8 1.8 1.8 1.8 1.8 

Conservation Soybean - 93.8 - - - - - 83.5 - 

Conventional Corn - - - 83.5 - 83.5 - - - 

Conventional Soybean - - - - 83.5 - - - - 

Grass Hay 2.7 2.7 2.7 4.9 4.9 4.9 4.9 4.9 4.9 

Herbaceous Perennial 
Bioenergy 

2.2 2.2 2.2 6.4 6.4 6.4 6.4 6.4 6.4 

Wetland - - - 3.4 3.4 3.4 3.4 3.4 3.4 

Precipitation    

Normal 
(year 0 = 81.7 cm) 

81.7 81.7 81.7 81.7 81.7 81.7 81.7 81.7 81.7 

Dry-wet cycle  
(year 0 = 24.58 cm) 

114.6 71.6 92.6 114.6 71.6 92.6 114.6 71.6 92.6 
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Figure 3-1. PE/WI Interface: Controls (left), Interactive Watershed (center), Download 
and Info Tabs (upper right), Ecosystem Service Indicators (middle right), and Design 
Years (bottom right) 
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Figure 3-2. Example Index Scores for Three Year Scenario with Normal-Normal-Dry 
Climate Sequence 
 

 
Figure 3-3. Example Watershed Maps of Results for Nitrate Watershed Percent 
Contribution by Year 
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  CHAPTER 4
 

GENERAL CONCLUSION 

 

The People in Ecosystems/Watershed Integration (PE/WI) project provided me 

with opportunity to explore and synthesize research on ecosystem management of 

agricultural watersheds from a range of academic disciplines. The science supporting 

PE/WI is rich, complex, rigorously developed and reviewed, often well-established, and 

sometimes uncertain.  

Synthesis research enables scientists to communicate their work to the broader 

public, and PE/WI-like modeling tools provide effective mechanisms to distribute 

scientific knowledge. Throughout development of PE/WI, our team repeated a mantra 

of “Keep it simple” to remind ourselves that the detailed intricacies of scientific data can 

translate into a simple, yet comprehensive and computationally accurate framework. In 

retrospect, few aspects of PE/WI are truly simple beyond its user interface. The science 

illuminating the relationship between land use, climate, ecosystem functions, and 

ecosystem services requires a vast body of knowledge and expertise that, in sum, is 

beyond my intellectual attainment or that of any single scientist. To communicate 

science, even among scientists, we translate, summarize, conclude, and generalize. 

Communicating research to the public challenges us further to disseminate clear 

messages that enhance rather than cloud understanding. Whether the lessons and 

nuanced concepts embedded in PE/WI easily translate into acquired knowledge for its 

users remains an important question to investigate.  
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After the initial phase of PE/WI v2 development and model publication, I will 

transition directly into doctoral research in sustainable agriculture. At present, 

opportunities for continued research and expansion on PE/WI remain promising. I plan 

to seek funding support to test PE/WI’s effectiveness as an educational tool with 

multiple stakeholder groups, primarily focusing on university students in agricultural 

and environmental sciences; farmers; land managers; and land owners. While the scope 

of testing for educational effectiveness may remain narrow, I hope to gain insight into 

multiple educational dimensions of the tool, such as: PE/WI’s ability to promote new 

ways of scientific thinking and its capacity as a scenario planning tool to influence 

decisions; whether PE/WI’s technological platform, including visualizations and 

interactions, enable users to more effectively process information and draw 

connections among complex system components; and how well PE/WI enables users to 

analyze ecosystem service relationships spatially and temporally. 

Concurrent with educational testing of PE/WI, I also plan to pursue 

opportunities to present at conferences and share PE/WI more broadly with multiple 

stakeholder groups. PE/WI has enormous potential for us to adapt the model structure 

to other contexts, including real-world watersheds. Collaborating with other scientists 

and research teams creates potential to take PE/WI in numerous, exciting and new 

directions.  
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