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ABSTRACT 

 

 The Corn Belt of the Midwestern United States is among the most productive grain-

producing regions of the world.  Yet the development of the Corn Belt has been accompanied by 

a suite of environmental concerns.  Alternative systems have been proposed that remediate 

environmental quality while relying on fewer external inputs (e.g., synthetic nitrogen fertilizer) 

than dominate cropping systems of corn and soybean.  Two examples of such alternative systems 

are diversified crop rotations and perennial bioenergy systems.  In diverse and less diverse crop 

rotations, the supply of nitrogen (N) to crops is mediated by the N flux from external inputs as 

well as internal soil cycling, although evidence suggests that in diverse rotations internal soil N 

cycling plays a more prominent role.  Chapter 2 explores belowground N cycling and provides 

evidence that diversifying crop rotations increases organic soil N pools and rates of N release 

from soil organic matter into labile organic forms.  Chapter 3 contrasts perennial and annual 

bioenergy systems by their standing root biomasses and rates of root decomposition as they vary 

across landscape positions. Results suggest that root biomass is best predicted by choice of 

annual or perennial crop, but that within cropping systems root biomass is sensitive to landscape 

position.  In contrast to root biomass, rates of root decay for each crop were constant across 

landscape positions. 
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CHAPTER I 

 GENERAL INTRODUCTION  
 

Multifunctional Agriculture 

The Corn Belt of the Midwestern United States is among the most productive grain-

producing regions of the world (Guanter et al., 2014).  Yet its development has been 

accompanied by a suite of environmental concerns, largely centered around degradation of soil 

and water quality, which are closely connected to patterns of agricultural management.  Most 

grain-producing land in the Corn Belt is characterized by relatively short periods of soil cover, 

i.e., 4-5 months of the year, and cropping systems comprised of summer annuals, which are 

associated with topsoil erosion and depletion of soil organic matter compared to native cover 

(David et al., 2009; Montgomery, 2007). A combination of summer annual cropping, tile 

drainage in the region, and use of nitrogen (N) fertilizer, in conjunction with the highly mobile 

nature of dissolved nitrogen in the environment, has led to N pollution in fresh and coastal 

waters (David et al., 2010; McIsaac et al., 2001).  Furthermore, the simplification of agricultural 

landscapes has led to a loss of agricultural, as well as natural, biodiversity (Werling et al., 2014).  

These environmental concerns are closely linked to the substitution of agrichemical inputs for 

the services provided by a diverse agricultural landscape that includes patches of perennial cover.  

For example, nitrogen fertilizers have replaced the role of leguminous forages or cover crops in 
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crop rotations.  Overall, Corn Belt systems have been highly optimized for grain production, in 

part due to the use of external inputs, and in some cases at the expense of environmental quality.  

In light of these environmental concerns, an emerging framework for multifunctional agriculture 

in the Corn Belt Region calls for the joint production of both agricultural commodities and a 

range of ecological services (Swinton et al., 2007).  Implied in these systems is often a reduction 

in use of external inputs, as nutrient, weed, and pest management are to some extent internalized 

(Davis et al., 2012).  

 

Multifunctional agricultural landscapes are characterized by longer periods of soil cover 

and greater diversity of vegetative cover in space and time (Liebman et al., 2013).   An example 

of multifunctional agriculture includes diversified crop rotations, which often imply integration 

of livestock and leguminous N fixation by annual cover crops or perennial legumes.  

Leguminous N fixation reduces dependence on N fertilizer, and can also cause increases above 

baseline periods of vegetative soil cover.  Multifunctional agricultural systems are also 

characterized by the reintegration of perennials.  Perennials provide year round soil cover, reduce 

soil erosion, can increase soil organic matter (SOM) through extensive root networks, and in 

agricultural systems aboveground perennial biomass can be used as biofuels (Schulte et al., 

2006; Zan et al., 2001).  Overall, these multifunctional landscapes can remediate ecosystem 
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services, such as the regulation of water flow and quality, carbon storage, forest production, and 

preservation of habitats and biodiversity (Foley et al., 2005).  This thesis explores root and 

nitrogen dynamics as they connect to particular ecosystem services of soil organic matter 

maintenance and nitrogen cycling and retention in two multifunctional agricultural systems.  

  

Thesis Organization  

Chapter 2 describes nitrogen cycling as mediated by soil microbial communities in 

diverse and less diverse crop rotations at the Marsden Farm in Boone County, Iowa.  The goal of 

the Marsden Farm experiment is to test the hypothesis that by diversifying simple corn-soybean 

cropping systems, substantial reductions in agrichemical inputs can be achieved while still 

maintaining crop yields.  A decade of work at the site has shown that diverse rotations can be 

managed with lower synthetic N fertilizer inputs while maintaining corn and soybean yields 

(Davis et al., 2012).  Although total soil nitrogen and carbon are not different between cropping 

systems at the site, the similarity in corn yields across cropping systems suggests that 

belowground activity of N cycling and N retention may be a key mechanism supporting N 

supply to crops.  Furthermore, soil N concentrations as assessed by suction-cup lysimeters are 

lower in corn in the more diverse, 4-year rotation compared to soil N concentrations under other 

crops (Tomer and Liebman, 2014), suggesting soil N may be less prone to leaching under the 
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same crops of different crop rotations. In order to assess the soil N cycle as it supports lower 

synthetic N fertilizer applications in more diverse rotations, and to test the potential for lower N 

loss (as assessed by size of the inorganic nitrogen pool), we studied soil N pools and microbial 

activity under the corn year of each rotation during the 2013 growing season.  

  

Chapter 3 describes root biomass and root decomposition of two bioenergy cropping 

systems, a perennial (switchgrass, Panicum virgatum) and an annual (corn, Zea mays) at the 

Uthe Farm in Boone County, Iowa.  The goal of the Landscape Biomass Project conducted at the 

Uthe Farm is to test a diverse portfolio of bioenergy cropping systems against the current 

standard, corn, and furthermore to understand how the placement of these crops on the landscape 

influences their productivity as well as ecosystem function.  The first four years of work at the 

site has shown that productivity is more sensitive to weather conditions across years than to 

landscape position (Wilson et al., 2014).  Nevertheless, at other sites in Iowa, landscape 

position’s effect on aboveground productivity has been reported (Cambardella et al., 2004), 

though landscape’s effect on root decomposition has not been well documented.  Root biomass 

and root decomposition are crucial for their role in soil organic matter maintenance.  To test the 

hypothesis that root biomass and decomposition rates would be sensitive to cropping system as 
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well as landscape position, from August 2011 through August 2012 we assessed in situ 

decomposition of corn and switchgrass roots.  
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CHAPTER II 
NITROGEN SYNCHRONY IN DIVERSIFIED CROP ROTATIONS 

  
Introduction  

Agriculture in the Midwestern United States relies heavily on manufactured inputs of 

nitrogen (N) fertilizer to increase yields (Robertson and Vitousek, 2009), primarily in systems of 

one or two dominant crops.  Much of this N is not actually acquired by crop plants, and its loss to 

the environment has caused degradation of water quality (David et al., 2010; Sobota et al., 2013).  

Diversifying crop systems through rotation reduces the need for manufactured fertilizers (Davis 

et al., 2012; Robertson and Swinton, 2005), and overall results in a smaller discrepancy between 

inputs and harvested exports of N (Blesh and Drinkwater, 2013).  

  

Nitrogen management in intensive cropping systems focuses on fertilizing to create a 

pool of inorganic N large enough to meet crop demands.  A crop with particularly high N 

demands, corn, can take up 225 kg N ha-1 in the six weeks during peak growth, and a high 

yielding corn crop may take up 308 kg N ha-1 total (Sawyer et al., 2006). The recovery of applied 

N in grain is low, however, at only about 37% (Cassman et al., 2002), and this in combination 

with N pollution from wayward fertilizer has prompted development of the ‘N synchrony 

framework’ (Cassman et al., 2002).  This framework attempts to minimize pools of available N 

in soil by aligning soil N availability with crop N demand, often through pulsed applications of 
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mineral N or use of chemical nitrification inhibitors. Continued N pollution in surface water has 

prompted mandates to improve water quality (EPA, 2008), and suggests that current approaches 

to N synchrony have not been widely effective in reducing N loss; even if enacted over all 

farmed land in Iowa, a state central to the Corn Belt, projected state-level reductions in riverine 

nitrate-N loading from this suite of N synchrony practices falls below 10% (ISU, 2013). 

 

In diversified crop rotations, the focus of N management shifts from supplying large 

pools of N to promoting gradual N input and release, from either biological N fixation or from 

the decomposition of manure, compost, or crop residues.  The ability of these organic fertilizers 

to supply adequate nitrogen for a crop such as corn with high N demands has been questioned, 

although research suggests that adding cover crops, green manures and use of compost (all 

techniques in diversified systems) leads to larger pools of labile soil organic matter (SOM; Blesh 

and Drinkwater, 2013; Power and Doran, 1984), and faster turnover rate of SOM pools, i.e., 

more active N cycling, has also been hypothesized (McDaniel et al., 2014).  Supplying N to 

crops in diversified rotations thus may rely less on pinpointing external N applications and more 

on promoting internal cycling of soil N, and these methods may in themselves promote smaller 

pools of inorganic N, a safeguard against N loss.  While the efficacy of diversified rotations in 

increasing the efficiency of N use has been shown across seasons or years (Blesh and Drinkwater, 
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2013), suggesting that the goals of N synchrony are being met in diversified rotations, the 

mechanisms underpinning N synchrony within a season in diversified rotations have not been 

well explored.   

  

Microbes govern many of the internal N transformations that release plant-available N 

from organic matter, and are thus of central importance to N availability in both diverse and less-

diverse rotations.  The N decomposition pathway, from complex macromolecules into 

polypeptides and amines, is driven by activity of extracellular enzymes secreted by microbes.  

Specific classes of enzymes, aminohydrolases and proteases (the latter a broader term), liberate 

amino acids from soil proteins.  Proteolysis is considered to be the rate-limiting step in the 

release of amino acids and N mineralization, as mineralization to N occurs more quickly (Jan et 

al., 2009).  Not all enzyme activity is associated with N release, however; carbon cycling 

enzymes facilitate microbial uptake of carbon, although their activity is also sensitive to inputs of 

high C:N ratio, and may occur simply as an expression of overflow metabolism (Schimel and 

Weintraub, 2003).  Microbial biomass itself is a sink for applied N, and has previously been 

described as acting as a ‘source and sink’ for N at seasonal time scales (Garcia and Rice, 1994), 

however these dynamics in relation to N synchrony have not been rigorously tested to our 
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knowledge.  The microbial habitat, and therefore microbial abundance and activity in relation to 

N cycling, is highly sensitive to agricultural management.  

 

Management systems influence microbes through the quantity and quality of organic 

matter inputs, the duration of soil cover they provide, and the frequency and intensity of soil 

disturbance with tillage.  The common, baseline management systems throughout the Midwest, 

corn and corn-soy with mineral N fertilizer, are associated with decreased microbial abundance 

and activity relative to more diverse systems, presumably due to the relative paucity of plant 

inputs and shortened duration of plant cover throughout the year (Drinkwater and Snapp, 2007; 

McDaniel et al, 2014).  Adding manure or compost to a corn-soy rotation, increasing periods of 

soil cover with a perennial or cover crop, and decreasing tillage, tend to increase microbial 

biomass and activity (Drinkwater and Snapp, 2007).  

 

We framed our work around the overarching question of whether diversifying crop 

systems affects pool sizes and fluxes of organic N, and whether this cycling aligns soil N 

availability with plant N demand in more diversified rotations.  Specifically, we hypothesized 

that throughout a growing season, more diverse rotations (compared to less diverse rotations) 

would support 1) more microbial biomass and higher rates of enzyme activity, but rely on 2) 
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smaller pools of dissolved inorganic nitrogen (DIN).  We also hypothesized that diversified 

rotations would 3) exhibit seasonal dynamics in microbial biomass and enzyme activity that 

would constitute greater N alignment with demand (i.e., greater decrease in microbial biomass 

nitrogen (MBN) around the time of peak corn N uptake; greater increase in enzyme activity), in 

contrast to a pulse of N at the beginning of the season in the less diverse rotation. In order to hold 

constant the effect of crop on soil N cycling, we studied only soils under corn in a group of three 

crop rotations ranging from less diverse (2-yr corn-soy) to more diverse (3- and 4-yr, which also 

incorporate a green manure or a perennial legume/forage).  This whole-systems site is not 

designed to isolate particular management practices as they influence soil biological process, but 

rather to study the impacts of cropping systems as they are likely to appear on farms or across 

landscapes.   

 

Methods 

Field Site       

Field work was conducted at the Iowa State University Marsden Farm in Boone County, 

Iowa (42°01’ N; 93°47’ W; 333 m above sea level) during the 2013 growing season (May – 

October). Soils at the site are predominately Clarion loam (fine-loamy, mixed, superactive, mesic, 

Typic Hapludolls), Nicollet loam (fine-loamy, mixed, superactive, mesic, Aquic Hapludolls), and 
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Webster silty clay loam (fine-loamy, mixed, superactive, mesic, Typic Endoaquolls).  Weather 

conditions were measured about 1 km from the site.  Fifty year average annual rainfall from May 

to October at the site is 592 mm and mean temperature is 19°C for the same period.  During 

2013, total rainfall from May to October was slightly lower than the longer term average, 436 

mm, and average air temperature was 19°C.  Soil properties measured 0-20cm are as follows: 

soil organic matter, 51 g kg-1, Bray P, 31 mg kg-1 (Liebman et al., 2008). Soil pH across 0-20cm, 

as measured in May 2013, was 7.5. Prior to establishment of experimental plots, the site had 

been managed for at least 20 years in corn-soybean rotation receiving conventional fertilizer 

inputs.  

 

Plots were established in 2002 in a randomized complete block design, with each crop 

phase of every crop rotation present every year.  Plots were 18 m x 85 m.  A 2-yr (corn/soybean) 

rotation was managed with conventional fertilizer inputs.  The 3-yr (corn/soybean/small grain + 

red clover green manure) and 4-yr (corn/soybean/small grain + alfalfa/alfalfa hay) rotations were 

representative of diversified farming systems in the Midwest. Compared to the 2-yr rotation, the 

3- and 4-yr rotations received lower synthetic N fertilizer: averaged across 2002-2011, inorganic 

N fertilizer application in the 2-yr rotation was 4.8 and 6.9 fold greater than in the 3-yr and 4-yr 

rotations, respectively (Davis et al., 2012).  Synthetic N fertilizer was applied in the 2-yr rotation 
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at conventional rates based on soil tests. Three- and 4-yr rotations received composted cattle 

manure and reduced rates of synthetic fertilizers.  Calculated application rates of total N, P, and 

K in composted manure, and a more complete site description, can be found in Davis et al. 

(2012) and Liebman et al. (2008).  In all rotations, the late spring nitrate test (Blackmer et al., 

1997) was used for corn to determine rates for post-emergence side-dress N applications.  

Mineral N applications during the 2013 study season were as follows: corn in 2-yr rotations 

received 112 kg ha-1 N just before planting on 15 May, whereas no synthetic N was applied to 

the 3- and 4-yr rotations at planting; side dress N applications on June 28 were 112, 84, and 56 

kg N ha-1 for the 2-, 3-, and 4-yr rotations, respectively.  All N was in form of 32% liquid urea 

ammonium nitrate (UAN).  

 

In all cropping systems, fall chisel plowing was used after corn harvest and spring field 

cultivation was used before soybean planting.  In the 3-yr system, zero tillage or spring disking 

was used after soybean harvest to prepare for small grain and red clover planting, followed by 

fall moldboard plowing after establishment of red clover.  Spring disking and field cultivation 

was then used prior to corn planting.  Tillage practices in the 4-yr system were similar to those in 

the 3-yr system, with the only exception that moldboard plowing was used to incorporate alfalfa 

rather than red clover in the fall before corn planting.  Working depth for moldboard plow used 
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to incorporate red clover and alfalfa in the diversified rotations was 23 cm, and working depth 

for chisel plow used for partial incorporation of corn residue in all rotations was 33 cm, however 

carbon measurements from this site show that most corn residue was incorporated only to the 0-

10 cm depth (Lazicki, 2011).  

  

Soil sampling  

Soils were collected from the corn phase of each rotation eight times throughout the 2013 

growing season (22 May, 5 June, 19 June, 8 July, 28 July, 5 August, 3 September, 7 October).  

At each sampling date, a set of 10 cores was taken from each plot using a 2.2-cm diameter core, 

and soil cores were divided into 0-10 cm and 10-20 cm depths before compositing.  Sampling 

locations were randomized but were taken in a ratio of 3 row:1 inter-row to control for strong 

variability of root and N locations (e.g., Buczko et al., 2008).  Soils were sieved to 4 mm and 

stored at 4°C until subsampling (within 48 hours) for subsequent analyses.  Gravimetric moisture 

content was measured as water mass loss upon drying at 105 °C to a constant weight and was 

used to determine wet-weight to dry-weight ratios. All response variables are presented on a dry 

weight basis.  
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Microbial biomass and inorganic N 

Microbial biomass was estimated using direct chloroform-fumigation-extraction 

(modified from Vance et al., 1987).  Briefly, ~15 g fresh soil was extracted with 45 mL 0.5 M 

K2SO4 either immediately or following a 24-hour incubation with chloroform.  Three replicates 

per plot and depth were analyzed for each extraction, giving a total number of 144 samples to 

analyze at each sampling date. Extracts were analyzed for non-purgeable organic C and total N 

via combustion catalytic oxidation (Shimadzu TOC-L analyzer, Shimadzu Corporation, 

Columbia, Maryland, USA). Microbial biomass C and N were calculated as the difference 

between fumigated and unfumigated extracts, with conversion factors of 0.45 for C (Vance et al., 

1987) and 0.54 for N (Brookes et al., 1985) used to convert organic C and N to microbial 

biomass.  Unfumigated extracts were used to measure NO3
- and NH4

+ concentrations via 

spectrophotometry (BioTek Synergy HT plate reader, BioTek Instruments, Inc., Winooski, VT, 

USA) following Hood-Nowotny et al. (2010).  As cropping systems did not significantly affect 

bulk densities, conversions to kg N ha-1 were made using separate bulk densities by depth, with 

1.03 and 1.18 g cm-3 for 0-10 and 10-20-cm depths, respectively (Lazicki, 2011).  
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Enzyme activity: proteolysis of native soil substrate 

Potential activity of protease was measured with a method modified from Lipson et al. 

(1999) and Watanabe and Hayano (1995) on subsamples of soil stored at -80°C (Brzostek et al., 

2012).  Soils were preincubated at 23°C for 12 hours.  All soil samples (~3.0-3.5 g) received 10 

mL 0.02 M MOPS (3-(N-morpholino)propanesulfonic acid) buffer at pH 7.5.  All samples also 

received 0.4 mL toluene, which inhibits microbial uptake (Skujins, 1967).  Initial samples, used 

to determine standing pool of free primary amines, received 3 mL trichloroacetic acid (TCA) 

mix immediately in order to halt proteolytic reactions.  Incubated samples were shaken 

lengthwise at 120 rpm for 4 hours at 23°C before addition of 3 mL TCA mix.  All samples were 

centrifuged at 2300 rpm for 5 min and the supernatant filtered through Whatman #42 papers.  

Three technical replicates per plot and depth combination were run for both initial and incubated 

samples, giving a total of 144 samples per sampling date. An incubation time of 4 hours is 

common for proteolytic assays (Brzostek and Finzi, 2011; Brzostek et al., 2012), and preliminary 

work showed that 4 hours was within the linear range of reaction for these soils.  While a buffer 

of sodium acetate has been used commonly in recent soil protease assays (Brzostek and Finzi, 

2011; Hofmockel et al., 2010), we chose MOPS buffer over sodium acetate for its ability to 

buffer soils at either end of our pH range (~6.5-8.5). Sodium acetate buffers at lower pH (4-6).  

Extracts were stored at -20°C until analysis.    
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The concentration of total free primary amine-N (TFPA-N) in soil extracts was evaluated 

using the ο-phthaldialdehyde (OPA) and β-mercaptoethanol method, similar to Darrouzet-Nardi 

et al. (2013).  Concentrations were calculated against an L-leucine standard curve, and total free 

primary amine-N was calculated following Darrouzet-Nardi et al. (2013). Three analytical 

replicates per sample and incubation time combination were run on each plate, along with buffer 

blanks and an OPA standard curve.  Note that the OPA reagent used here reacts with amino acids 

as well as other free primary amines such as peptides and amino sugars (Chen et al., 1979), thus 

the designation total free primary amine-N rather than amino acid-N. The interference of NH4
+ 

with OPA reagent was subtracted following (Darrouzet-Nardi et al., 2013) using NH4
+ 

concentrations in MOPS extracts determined via colorimetric analysis (Hood-Nowotny et al., 

2010).  Native proteolytic rate (ηmol g soil-1 hr-1) was found as the difference between incubated 

and initial samples.   

 

Enzyme activity: aminopeptidase and C-cycling activity under saturating conditions      

Potential enzyme activities were measured on subsamples of soil stored at -20°C.  A suite 

of six enzymes was measured, three involved in carbon decomposition as well as three 

aminohydrolases, which liberate amino acids or tripeptides from polypeptides.  Carbon cycling 
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enzymes were tested with MUB (Methylumbelliferone) -linked substrates: CB, 4-MUB-β-D-

cellobioside; BG, 4-MUB β-D-glucopyranoside; BX, 4-MUB β-D-xylosidase.  Aminohydrolases 

were tested with MUC (7-amino-4-methylcoumarin) -linked substrates: LAP, L-leucine-7-

amido-4-MUC; Ala, L-alanine-7-amido-4-MUC; AAP, L-alanine-alanine-phenylalanine-7-

amido-4- MUC, AAP. Briefly, 1 g of soil was homogenized with 125 mL of 100 mM tris 

maleate buffer, pH 7.5.  MUB- or MUC- linked substrates were added at saturating 

concentrations of 400µM for all substrates.  Plates were incubated at 23° C for 3 hours and read 

using a fluorometer (360 nm excitation and 460 nm emission; BioTek Instruments, Inc., 

Winooski, VT, USA) without the addition of NaOH. Eight analytical replicates per sample and 

substrate combination were run and each plate included a MUB or MUC standard curve, 

substrate controls, and homogenate controls.  Enzyme activity was calculated as ηmol enzyme   

g-1 soil h-1 based on MUB or MUC standard curves and accounting for the quench of each 

sample (Anderson-Teixeira et al., 2013; German et al., 2011). The linearity reaction of the 3-

hour incubation was confirmed in preliminary work.   

 

Statistical analyses   

All analyses were performed using repeated measures mixed effects ANOVA in JMP Pro 

11.  When present, replicates from the same plot and depth were averaged before analysis, and 
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values for the whole soil profile (0-20 cm) were found by averaging values for samples of both 

depths.  Data were transformed where necessary to meet assumptions of normality as judged 

visually and by the Shapiro-Wilk test.  In the ANOVA mixed model, a full factorial model was 

used, with sampling date, depth, and cropping system as main effects, as well as each of their 

interactions.  An ‘ID’ term, coded by plot and depth (12 plots x 2 depths; total 24 ‘ID’) was 

repeated across each sampling date, and served to account for plot-to-plot variability. Residual, 

AR(1) and unstructured covariance structures were compared, and the ‘ID’ term was used 

differently based on covariance structure: in the residual covariance structure, it was used as a 

random effect; in AR(1) and unstructured, it was used as the subject term under repeated effects. 

Covariance structures were chosen based on the lowest Akaike Information Criterion (AIC).  

Subsequent pair-wise comparisons were made using Tukey’s Honestly Significant Difference.  

Significance was determined at α = 0.05.  

 

Results 

Microbial biomass   

The response of both microbial biomass carbon (MBC) and microbial biomass nitrogen 

(MBN) to cropping system was dependent on depth (MBC, P = 0.006; MBN, P = 0.001), where 

the 2-yr rotation at the 10-20 cm depth supported significantly lower MBC and MBN than any 
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other cropping system and depth combination.  Other cropping system and depth combinations 

were not significantly different from each other.  Microbial biomass C varied strongly by day (P 

= 0.0001, Table 2.1), with MBC values peaking in the middle of the season (23 July) and rising 

again later in the season (through 7 October).  Microbial biomass N exhibited a day × depth 

interaction (P = 0.044), however overall patterns of MBN across the season were similar to those 

of MBC (Table 2.1), and overall comparisons of depth revealed no significant differences 

between depths at any sampling day.  The peak in MBC and MBN on 23 July corresponded to 

periods of relatively low gravimetric water content (Fig. 2.4). There was a trend toward the 2-yr 

rotation at 10-20 cm depth having higher MBC:MBN ratio than the 2-yr rotation at 0-10 cm 

depth or the 4-yr rotation at 10-20 cm depth (Table 2.5);  MBC:MBN ratios also varied by 

sampling day, with C:N ratios lower at 5 June and 19 June and peaking at 8 July (Table 2.1).   

 

Enzyme activity: proteolysis of native soil 

Proteolysis of native soil substrate varied by cropping system and by day (p = 0.005 and 

0.0001, respectively), and these effects were independent of depth.  The 4-yr rotation was 

significantly higher in native proteolysis than the 2-yr rotation (p = 0.004), however the 2-yr and 

3-yr or 3-yr and 4-yr rotations were not significantly different (p = 0.274 and p = 0.120, 
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respectively).  Proteolysis of native soil substrate fluctuated strongly throughout the season, with 

highest production at 22 May and 8 July, with lower rates at 23 July and 3 September (Table 2.1).     

 

Enzyme activity: aminopeptidase and C-cycling activity under saturating conditions      

Potential activity of all enzymes varied by day (P < 0.0001 for all), although seasonal 

trends for C-cycling (BG, BX, and CB) and aminohydrolase (LAP, Ala, and AAP) were not 

consistent with each other (Table 2.2, Figures 2.1 and 2.2).  Aminohydrolase enzymes generally 

peaked in the middle of the season (8 July) while BG, BX and CB shared an increase late in the 

season (7 October).  Averaging across the season, stratification of the 2-yr rotation system was 

apparent for all enzymes, with higher potential activity in the 0-10 cm depth compared to the10-

20 cm depth (Table 2.7).  In contrast to the 2-yr rotation, the 3-yr and 4-yr treatments lacked 

consistent stratification (Table 2.7).  

    

Specific enzyme activity  

Potential activity of all enzymes was scaled to MBC to determine biomass-specific 

activity. For all enzymes, potential activity showed a pronounced stratification in the 2-yr system, 

with 0-10 cm having higher specific enzyme activity compared to the 10-20 cm depth (Table 2.7). 

In contrast to the 2-yr rotation, 3-yr and 4-yr treatments lacked consistent stratification (Table 
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2.7).  In most pair-wise comparisons of the 3-yr and 4-yr rotations at the 0-20 cm depth, the 3-yr 

rotation had higher specific activity than the 4-yr rotation, the exceptions being specific activity 

of LAP and Ala. Specific activity in 2-year and 3-yr rotations were not statistically different for 

any enzyme.  Consistent across enzymes was a numerical trend for the 4-yr rotation to be lower 

in specific activity than the 2-yr rotation, although this was statistically significant only for CB 

(Table 2.7).  

 

Inorganic nitrogen   

The temporal response of DIN varied by depth (P = 0.021, Fig. 2.3). Across all cropping 

systems and sampling dates, DIN was greater in 0-10 cm than 10-20 cm depths by 1.5-fold (0-10 

cm = 31.8 ± 1.1 µg N g-1 soil; 10-20 cm = 21.3 ± 1.1 µg N g-1 soil, p = 0.024), however high 

DIN concentration in 0-10 cm depth was most evident later in the season (28 July and after). 

When separated by N species, ammonium and nitrate concentrations showed a similar pattern 

across the season, with an increase later in the season, after side dress N, which was more 

pronounced in the 0-10 cm depth (data not shown; total DIN, Fig. 2.3).  Ammonium 

concentrations were higher in the 0-10 cm than 10-20 cm depths by a factor of 1.6 (P = 0.088), 

and also showed an interaction of depth and day (P = 0.012), with the 0-10 cm depth higher later 

in the season, after fertilizer N sidedressing, compared to the 10-20 cm depth.  Nitrate 
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concentrations exhibited a depth by treatment interaction, with the 2-yr rotation at 0-10 cm depth 

higher in NO3- concentrations than the 10-20 cm depth.  Concentrations of total K2SO4 -

extractable inorganic nitrogen (DIN) varied by 5.6-fold across sampling dates (‘Day’; p < 

0.0001). DIN concentrations were generally lower early in the season and higher later in the 

season, after side dress N on 28 June.  Across the season and both depths, cropping systems did 

not differ from each other (P = 0.546).   

 

Standing pool of total free primary amine-N (TFPA-N) was sensitive to day and a day by 

depth interaction (P < 0.0001 and 0.003, data not shown), however because of the rapid turnover 

time of TFPA (Jones et al., 2009; Hobbie and Hobbie, 2013) this form of nitrogen comprised a 

small pool compared K2SO4- extractable inorganic nitrogen and so was not included in 

subsequent analyses.  Total free primary amine-N, averaged across all observations, was three 

orders of magnitude lower than average DIN (0.076 and 26 µg N g-1 soil for TFPA-N and DIN, 

respectively).  

Discussion 

   

All measured variables (microbial biomass, native protease activity, potential enzyme 

activity, and DIN) were highly variable throughout the season (P < 0.0001, Table 2.4).  For only 
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a few variables did the effect of rotation depend on the day; for some, the effect of depth varied 

by sampling date.  Trends in nutrient cycling between rotations are discussed below without 

regard to day, followed by an examination of whether variability between sampling dates 

supports seasonal expression of biological activity that underpins N synchrony.   

 

Does diversification support more microbial biomass? 

Consistent with our hypothesis, diversifying crop rotations was accompanied by an 

increase in microbial biomass.  Microbial biomass is well-know to responds to inputs of organic 

matter in the context of crop rotations (Gunapala and Scow, 1998), and sources of organic matter 

in diversified rotations included composted manure, red clover as green manure, or root input of 

alfalfa.  A particularly consistent pattern in the distribution of microbial biomass between 

rotations and depths was the depletion in microbial biomass at 10-20 cm in the less diverse, but 

not in the more diverse rotations at this site (Table 2.5).  Less disruptive tillage is a likely driver 

of this stratification of microbial biomass in the less diverse rotation, and is consistent with 

others who have found that chisel tilled (Karlen et al., 2013) or reduced tillage (Kandeler et al., 

1999) concentrates  MBC in surface soil compared to deeper tillage, while soils at depth are 

relatively depleted of MBC.  Cropping systems with a heavy representation of corn (compared to 

deep rooted perennials) may be especially prone to this kind of stratification with reduced tillage 
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because corn supplies fewer deep root inputs compared to perennials but an abundance of 

aboveground input (Anderson-Teixeira et al., 2013).  In this study, the effects of tillage and 

diversification (with either cover crop or perennial crop) were confounded.  More diversified 

rotations were moldboard plowed, a more intensive form of soil disturbance than the chisel 

tilling and disking in the less diverse rotation.  Although tillage is generally reported to reduce 

microbial biomass (Pandey et al., 2014), such that deep tillage like moldboard plowing is 

discouraged for the sake of conserving soil organic matter stocks (Karlen et al., 2013), our 

findings suggest that, given relatively flat land as at the Marsden Farm, perennial forages and 

cover crops may remediate soil microbial biomass beyond the detrimental effects of the intensive 

tillage they often require.  Indeed, losses in soil C during conversion of native grasslands to 

agriculture may be due more to annual cropping and attenuated periods of soil cover, in the place 

of perennial cover, rather than tillage per se (DuPont et al., 2010).   

 

Does diversification support faster rates of N cycling?   

Enzyme activity liberates N from soil organic matter, and proteolysis is an important step 

in the decomposition pathway from polymers to free amines, preceding mineralization to NH4
+.  

Few studies have tested proteolysis with only native soil as a substrate, and to our knowledge 

those have used forests, alpine systems, native grasslands, or other unmanaged systems 
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(Hofmockel et al., 2010; Raab et al., 1999; Weintraub and Schimel, 2005).  In these systems DIN 

concentrations are orders of magnitude lower than in corn systems, and likely display different 

patterns of microbial resource allocation related to N cycling. Most studies in agricultural 

systems test enzyme activity under saturating substrate conditions, which estimates potential 

activity, or the enzyme pool.  In order to estimate pools of aminohydrolase and carbon-degrading 

enzymes we assessed potential enzyme activity.  In order to understand potential limitations of 

substrate on liberation of N from SOM, we assessed proteolysis of native soil. These assays 

revealed different patterns in the responses of native proteolysis and potential aminohydrolase 

activity to crop rotation (Tables 2.5 and 2.7).   

 

With native soil as a substrate, the liberation of free primary amines from soil organic 

matter was higher in more diverse rotations compared to less diverse rotations (Table 2.5).  In 

studies of native proteolysis, albeit from unmanaged systems, it is often substrate that controls 

enzyme activity (Rejsek et al., 2007; Vranova et al., 2013). For example, when comparing native 

proteolysis with soil amended with proteinaceous substrate in alpine, subalpine fen, and short 

grass steppe soils, Raab et al. (1999) found that NaOH-extractable soil protein explained 81.6% 

of the variability in proteolysis of native soil.  Increases in proteolysis in diversified rotations are 

consistent with those of Fauci and Dick (1994), who found that manure-treated plots had higher 
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protease activity relative to inorganic N fertilized plots, as well as laboratory incubations in 

which added substrate increased rates of proteolysis (Geisseler and Horwath, 2008).  At the 

Marsden Farm, proteinaceous substrate in the more diverse rotations could have originated from 

composted manure, red clover green manure (3-yr rotation only) or alfalfa root inputs (4-yr 

rotation only).    

 

Estimates for leguminous nitrogen fixation from clover and alfalfa vary widely. In red 

clover, nitrogenous inputs have been estimated as ranging between 69 and 373 kg N ha-1 

annually (Hogh-Jensen and Schoerring, 2001; Peoples et al., 1995). In alfalfa, N fixation has 

been estimated as ranging between 90 and 386 kg N ha-1 annually (Peoples et al., 1995; Russelle 

and Birr, 2004).  While previous work at this site has estimated total external N inputs to the 4-yr 

rotation to be about 60% of N inputs in the 2-yr rotation (Lazicki, 2011), it may be that a more 

tightly constrained accounting of biological N fixation would reveal a greater total flux of N into 

more diverse cropping systems. Regardless of relative N inputs, however, the coupled C and N 

inputs from biological N fixation are likely a key factor both driving and limiting rates of native 

proteolysis in all rotations. 
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With saturating conditions, there was a trend for enzyme activity of aminohydrolases to 

be lower in the 4-yr rotation compared to the 2-yr or 3-yr rotations, and strongly sensitive to 

depth in the 2-yr rotation.  In studies of potential activity, enzymatic response to diversifying 

crop rotation are generally report an increase in enzyme activities (Ekenler and M, 2002; Klose 

and Tabatabai, 2000) as a response to greater substrate availability.  However, enzyme 

production may also be an expression of resource allocation toward nutrient demand.  Whether 

enzyme production is driven by microbial demand or triggered by substrate availability (two 

seemingly opposing circumstances) is an ongoing debate in the literature (Weintraub and 

Schimel, 2005).  Taken together, our results suggest that substrate availability limited N release 

from SOM in all rotations, and that diversified rotations were higher in substrate than less 

diverse rotations.  The fact that potential activity gives mixed signals regarding N release in 

different rotations highlights the need to consider use of native substrate assays, or other methods, 

such as potentially mineralizable C and N, when estimating in situ rates of nutrient 

transformation.    

 

Potential activity of C-cycling enzymes responds positively to both mineral N 

fertilization and additions of carbon substrate (Grandy et al., 2013; Hargreaves and Hofmockel, 

2013). In identifying mineral N availability as a driver of C-cycling enzyme activity we should 
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be cautious, however, because in all systems concentrations of inorganic N were relatively high 

throughout the season, and thus did not align with divergences in C-cycling enzyme activity 

between treatments and depths.  Increases in C-cycling activity were therefore more likely driven 

by inputs of corn residue. The similarity between potential aminohydrolase activity and potential 

activity of the C-cycling enzymes BG, BX, and CB (Table 2.7), when considered across the 

season, suggests that at this site aminohydrolase synthesis may be more attuned to supply and 

demand of C than of N.  While proteases are sometimes described as N acquisition enzymes 

(Geisseler et al., 2010), neither the patterns of potential aminohydrolase nor native protease 

appeared to be suppressed by increases in DIN concentration throughout the season, as would be 

expected were protease enzymes production stimulated by N demand. Indeed, laboratory 

incubations have often failed to find protease suppression with the addition of inorganic N 

(Geisseler and Horwath, 2008; Jan et al., 2009), and a review of field studies found that protease 

activity was insensitive to additions of inorganic N (relative to unfertilized controls, (Geisseler 

and Scow, 2014)).  While there is evidence that proteases may serve as an N acquisition enzymes 

when N is limiting ( Geisseler and Horwath, 2009), DIN concentrations at this site were high 

throughout the season (Table 2.6).  In agricultural systems, where N is especially abundant, 

protease and aminohydrolase activity may be viewed more appropriately not as a signal of N 

demand but for their by-products of N release.   
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Does biomass-specific enzyme activity differ between cropping systems? 

Both microbial biomass and potential enzyme activity are considered measures of soil 

health (Bandick and Dick, 1999; Stockdale and Watson, 2009).  However, microbial biomass 

and potential activity do not always increase or decrease in concord with one another; increases 

in potential enzyme activity without subsequent increases in microbial biomass can be a sign of 

resource allocation toward enzyme production and respiration rather than biomass, which in turn 

leads to reduced substrate use efficiency.   

 

We found an overall increase in biomass-specific BG activity in the 3-yr system 

compared to the 4-yr system, a strong depth response in the 2-yr system, but overall trends 

suggested that the 4-yr rotation reduced specific activity compared to the 2-yr rotation (Table 

2.8). Specific activity is often interpreted as a measure of microbial stress (Dilly and Munch, 

1998; Rietz and Haynes, 2003), and agricultural use may induce a stress response. Trasar-Cepeda 

et al. (2008) found that agricultural use lowered SOM and microbial biomass but increased 

specific activity of hydrolytic enzymes compared to forested soils.  In a comparison of 

conventional and organic systems, where crops and tillage were held constant but organic 

management used cover crops and manure rather than mineral fertilizer, organic management 

was reported to increase MBC but decrease metabolic quotient and specific activity of the 
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enzyme BG (Lagomarsino et al., 2009).  The author attributed the effects to a decrease in 

metabolic requirements of the microbial community.   

 

The bacterial:fungal biomass ratio may be predictive of maintenance requirements.  

Fungi are thought to require lower specific maintenance than bacteria (Sakamoto, 1994). While 

we did not assay microbial community, microbial C:N may reflect bacterial:fungal ratio (Fierer 

et al., 2009; Joergensen and Emmerling, 2006).  In the less diverse 2-yr rotation, stratification by 

depth is consistent with this hypothesis, as the 10-20 cm depth had higher C:N ratios than the 0-

10 cm depth (Table 2.5) and also lower specific activity compared to other treatment by depth 

combinations (Table 2.8), however trends across other rotations are not evident. These 

interpretations of specific activity should be taken in light of recent research finding that the C:N 

ratios between fungi and bacteria may overlap (Strickland and Rousk, 2010).      

 

Does diversification supply crop N demand while relying on smaller pools of DIN?    

Some evidence shows that diversified crop rotations may rely on attenuated DIN pools 

(Power and Doran, 1984), a safeguard against N loss.  During our study period, however, DIN 

pools were high in all crop rotations (Table 2.5).  Interestingly, these similarities in DIN 

concentrations across crop rotations do not align with the disparity in side dress N rates (112, 84, 
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and 56 kg N ha-1 for the 2-, 3-, and 4-yr rotations, respectively).  Relatively high DIN pools in 3-

yr and 4-yr rotations suggest that net N mineralization may play a larger role in available N in 

these rotations.  In support of this interpretation, Lazicki (2011) found larger pools of potentially 

mineralizable N in more diversified rotations at this site, similar to Pang and Letey (2000), and 

we found higher rates of native proteolysis at this site as well.  Furthermore, diversified crop 

rotations surpassed N supply to crops compared to the less diverse 2-yr rotation; N uptake from 

corn was higher in the 4-yr rotation compared to the 2-yr rotation (W. Osterholz, forthcoming 

work), suggesting faster rates of replenishment of DIN pools in the 4-yr system compared to the 

2-yr system.   These results from the 2013 growing season are, however, limited in their breadth: 

rates of side dress N fertilizer application are informed in part by spring weather patterns, which 

are variable across growing seasons. Taken together with differences in the side dress rate in 

2013, however, our DIN results indicate a greater supply of N from SOM in diverse rotations 

than in short rotations, which in itself may be a mechanism explaining reduced reliance on 

mineral N fertilizers in more diverse rotations.   

 

Do seasonal dynamics support N synchrony more in one rotation than another?   

Every soil indicator measured fluctuated strongly throughout the sampling season (Table 

2.4), although few of these variations were attributable to definite causes from management or 
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sampling day. An exception was the sharp increase in DIN pools in July (Fig. 2.3), which 

corresponded to side dress N fertilizer application, and the gradual decline of DIN throughout the 

season, which corresponded with corn uptake of N.  An increase in aminohydrolase activities 

after sidedress, on 8 July (Fig. 2.3), may also be a response to sidedress N, which was applied as 

32% UAN and contained 35% urea.  While urea behaves as an inorganic fertilizer in soil, it 

possesses the same chemical group that characterizes a peptide bond, thus protease assays could 

detect urease enzymes produced in response to sidedress N.   Enzyme activity is also sensitive to 

plant inputs to soil.  Late in the corn life cycle, after the blister kernel stage (close to 5 August for 

this study), roots begin to senesce as the plant redirects nutrients to developing kernels (Sawyer 

et al., 2006), potentially causing an influx of labile root C.  The increase in C-cycling activity 

later in the season may be attributable to this root turnover (Table 2.2).  In general, biological 

activity in cropland is highly variable across time (Jones et al., 2002; Lee and Schmidt, 2014), 

consistent with the fluctuations found here.      

 

Taken together, the similarities in DIN concentrations between rotations, and thus 

comparable vulnerability of N to loss, suggest that N efficiency demonstrated elsewhere in 

diversified rotations may be a product of differences in N storage and cycling enacted over time 

scales longer than one season. Diversified rotations typically have longer periods of soil cover 
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throughout the year, especially in systems where perennials can reduce N loss via leaching (Toth 

and Fox, 1998), which may be a stronger driver of N retention than soil N dynamics under corn.    

 

Conclusions 

Diversifying crop systems shifts reliance to organic N forms and promotes larger pools of 

microbial biomass.  We found that crop system diversification also increased rates of native soil 

proteolysis, but that the response of potential aminohydrolase to crop system diversification was 

not consistent with that of native proteolysis. Our contrasting results between native and 

potential enzymatic activity highlight the need to address what kinds of microbial activity are 

considered “desirable” in agricultural systems.  Overall, our data support the hypothesis that crop 

systems diversification can promote larger pools of microbial biomass N and release of labile 

organic N.  
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Figures  

  
Figure 2.1. Activity of BG, BX, and CB by sampling date, crop system, and depth. Two-yr 
(blue), 3-yr (red), and 4-yr (green) crop rotations; nmol g-1 soil hr-1.  Tick marks represent one 
standard error of the mean (n = 4 per treatment and depth).   
 

  
 
Figure 2.2. Activity of LAP (i.e. Leu), Ala, and AAP by sampling date, crop system, and depth. 
Two-yr (blue), 3-yr (red), and 4-yr (green) crop rotations; nmol g-1 soil hr-1.  Tick marks 
represent one standard error of the mean (n = 4 per treatment and depth).  
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Figure 2.3. Pool sizes of DIN (red) and MBN (blue) by sampling date and depth.  Tick marks 
represent one standard error of the mean (n = 4 per treatment and depth).  Inorganic N applied 
during the 2013 growing season differed among rotations: 2-yr rotations received 112 kg ha-1 N 
just before planting on 15 May, whereas no synthetic N was applied to the 3- and 4-yr rotations 
at planting. Side dress N applications on June 28 were 112, 84, and 56 kg N ha-1 for the 2-, 3-, 
and 4-yr rotations, respectively. 
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A            B 

        
Figure 2.4.  (A) Mean volumetric water content (m3 m-3) across the season.  One probe installed 
in each plot at 10cm depth (ECH2O TE and 5TE probes; Decagon Devices, Pullman, WA). (B) 
Mean gravimetric water content at each sampling date (g water g-1 dry soil), 0-20cm. Tick marks 
represent standard errors.  
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Tables 
 

Table 2.1.  Variation across sampling dates in microbial biomass, native protease activity, and native ammonification.  Pluses (+) and 
minuses (-) represent significant positive and negative deviations from the overall mean of a column, respectively.  Means and 
standard errors; standard errors calculated with 22-24 observations per cell (12 plots x 2 depths).    

	  

	  	  	  

	  

Day	   MBC	   MBN	   MBC:	  MBN	  
	  

Native	  protease	  activity	   Native	  ammonification	  

	   ug	  g-‐1	  soil	   	   nmol	  g-‐1	  soil	  hr-‐1	  
22-‐May	   424.08	   (1.08)	   	   44.05	   (3.09)	   	   9.77	   (2.77)	   	   9.07	   (4e-‐10)	   +	   10.36	   (4.4e-‐5)	   	  
5-‐Jun	   255.61	   (1.06)	   -‐	   35.31	   (2.91)	   	   7.37	   (2.76)	   -‐	   4.96	   (3.4e-‐9)	   	   19.46	   (1.1e-‐4)	   	  
19-‐Jun	   323.63	   (1.08)	   -‐	   39.35	   (2.96)	   	   8.30	   (2.79)	   -‐	   3.59	   (9e-‐10)	   	   12.63	   (5.3e-‐5)	   	  
8-‐Jul	   754.53	   (1.06)	   +	   48.69	   (2.94)	   +	   15.69	   (2.75)	   +	   7.05	   (1e-‐10)	   +	   6.98	   (8e-‐5)	   -‐	  
23-‐Jul	   433.40	   (1.06)	   	   48.08	   (3.33)	   +	   9.54	   (2.78)	   	   1.17	   (3.3e-‐9)	   -‐	   120.09	   (4.7e-‐5)	   +	  
5-‐Aug	   279.25	   (1.09)	   -‐	   33.82	   (3.27)	   -‐	   8.81	   (2.78)	   	   4.46	   (3e-‐10)	   	   18.04	   (7.5e-‐5)	   	  
3-‐Sep	   324.67	   (1.07)	   -‐	   30.08	   (3.23)	   -‐	   10.65	   (2.78)	   	   1.37	   (7.1e-‐9)	   -‐	   46.95	   (5.1e-‐5)	   	  
7-‐Oct	   471.05	   (1.06)	   +	   46.08	   (3.15)	   +	   10.45	   (2.78)	   	   4.39	   (1.7e-‐9)	   	   59.39	   (7.7e-‐5)	   	  
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Table 2.2.  Variation across sampling dates in potential enzyme activity.  Pluses (+) and minuses (-) represent significant positive and 
negative deviations from the overall mean of a column, respectively.  Means and standard errors; standard errors calculated with 22-24 
observations per cell (12 plots x 2 depths).   
Day	   BG	  activity	   BX	  activity	   CB	  activity	   LAP	  activity	   Ala	  activity	   AAP	  Activity	  

	   nmol	  g-‐1	  soil	  hr-‐1	  
22-‐May	   721.48	   (71.3)	   	   76.39	   (0.67)	   	   2.67	   (1.5e-‐3)	   	   6.67	   (0.15)	   -‐	   1.06	   (1e-‐5)	   -‐	   26.52	   (4.7e-‐4)	   -‐	  
5-‐Jun	   746.77	   (78.02)	   	   66.41	   (0.65)	   	   2.66	   (4.3e-‐3)	   	   283.10	   (0.58)	   	   620.49	   (2.5e-‐4)	   +	   11.71	   (2.4e-‐4)	   -‐	  
19-‐Jun	   975.89	   (81.97)	   +	   59.79	   (0.55)	   	   7.65	   (1e-‐3)	   	   133.69	   (0.23)	   +	   14.15	   (2.8e-‐4)	   -‐	   50.16	   (2.7e-‐4)	   	  
8-‐Jul	   618.19	   (52.1)	   -‐	   52.74	   (0.36)	   -‐	   2.18	   (3.2e-‐3)	   	   1090.64	   (0.26)	   +	   1320.49	   (1.5e-‐4)	   +	   195.82	   (1.1e-‐3)	   +	  
23-‐Jul	   742.09	   (67.63)	   	   73.88	   (0.56)	   	   5.51	   (1e-‐2)	   	   1109.15	   (0.28)	   	   1355.00	   (2.3-‐4)	   +	   305.88	   (3.7e-‐4)	   +	  
5-‐Aug	   755.90	   (69.35)	   	   82.70	   (0.51)	   	   2.72	   (9.7e-‐4)	   	   167.90	   (0.31)	   	   74.42	   (9.4e-‐4)	   	   39.63	   (3.7e-‐4)	   	  
3-‐Sep	   737.41	   (70.9)	   	   66.64	   (0.55)	   	   3.20	   (4e-‐4)	   	   337.54	   (0.31)	   	   210.01	   (7.2e-‐4)	   	   123.97	   (4.5e-‐4)	   	  
7-‐Oct	   927.41	   (74.44)	   +	   118.60	   (0.51)	   +	   15.65	   (1.7e-‐3)	   +	   56.88	   (0.35)	   -‐	   1.03	   (3e-‐7)	   -‐	   203.72	   (4e-‐4)	   -‐	  
  
 
 
Table 2.3.  Variation across sampling dates biomass-specific potential enzyme activity.  Pluses (+) and minuses (-) represent 
significant positive and negative deviations from the overall mean of a column, respectively.  Means and standard errors; standard 
errors calculated with 22-24 observations per cell (12 plots x 2 depths).  
Day	   Specific	  BG	  Activity	   Specific	  BX	  Activity	   Specific	  CB	  Activity	   Specific	  LAP	  Activity	   Specific	  Ala	  Activity	   Specific	  AAP	  Activity	  

	   nmol	  ug-‐1	  MBC	  g-‐1	  soil	  hr-‐1	  
22-‐May	   1.60	   (0.007)	   	   0.18	   (0.002)	   	   0.008	   (2e-‐11)	   	   0.01	   (5e-‐7)	   -‐	   0.003	   (2e-‐8)	   -‐	   0.06	   (1e-‐6)	   -‐	  
5-‐Jun	   2.61	   (0.007)	   +	   0.26	   (0.002)	   +	   0.015	   (9e-‐11)	   	   0.78	   (6e-‐6)	   	   2.460	   (1e-‐6)	   +	   0.05	   (9e-‐7)	   -‐	  
19-‐Jun	   2.81	   (0.009)	   +	   0.17	   (0.002)	   	   0.029	   (2e-‐11)	   	   0.30	   (1e-‐6)	   	   0.050	   (9e-‐7)	   -‐	   0.15	   (7e-‐7)	   	  
8-‐Jul	   0.78	   (0.002)	   -‐	   0.07	   (0.0004)	   -‐	   0.004	   (2e-‐11)	   -‐	   1.37	   (3e-‐7)	   +	   1.800	   (3e-‐7)	   +	   0.27	   (2e-‐6)	   	  
23-‐Jul	   1.60	   (0.004)	   	   0.17	   (0.001)	   	   0.019	   (1e-‐10)	   	   2.37	   (6e-‐7)	   +	   3.180	   (7e-‐7)	   +	   0.72	   (1e-‐6)	   +	  
5-‐Aug	   2.59	   (0.009)	   +	   0.29	   (0.002)	   +	   0.012	   (9e-‐12)	   	   0.45	   (3e-‐6)	   	   0.280	   (4e-‐6)	   	   0.15	   (2e-‐6)	   	  
3-‐Sep	   2.30	   (0.007)	   	   0.20	   (0.002)	   	   0.012	   (6e-‐12)	   	   0.83	   (2e-‐6)	   	   0.640	   (2e-‐6)	   +	   0.38	   (1e-‐6)	   	  
7-‐Oct	   1.89	   (0.006)	   	   0.25	   (0.001)	   	   0.043	   (7e-‐11)	   +	   0.07	   (2e-‐6)	   -‐	   0.002	   (7e-‐10)	   -‐	   0.44	   (9e-‐7)	   +	  
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Table 2.4. P-values from repeated measures ANOVA.  

	   MBC	   MBN	  
MBC:	  
MBN	   NO3

-‐-‐N	   NH4
+-‐N	  

Total	  
DIN	  

Native	  
protease	  

Native	  
Ammonification	  

BG	  
activity	  

BX	  
activity	  

CB	  
activity	  

LAP	  
activity	  

Ala	  
activity	  

AAP	  
activity	  

Day	  	   <.0001	   <.0001	   <.0001	   <.0001	   <.0001	   <.0001	   <.0001	   <.0001	   <.0001	   <.0001	   0.000	   <.0001	   <.0001	   <.0001	  
Depth	  	   0.130	   0.283	   0.694	   0.002	   0.098	   0.026	   0.842	   0.315	   0.005	   0.021	   0.054	   0.014	   0.075	   0.141	  
Crop	  system	  	   <.0001	   <.0001	   0.953	   0.495	   0.408	   0.536	   0.008	   0.237	   0.013	   0.016	   0.015	   0.082	   0.116	   0.049	  
Day*Depth	   0.445	   0.076	   0.432	   0.001	   0.010	   0.029	   0.472	   0.996	   0.667	   0.571	   0.300	   0.152	   0.029	   0.240	  
Day*Crop	  system	   0.962	   0.965	   0.722	   0.447	   0.272	   0.493	   0.131	   0.487	   0.403	   0.108	   0.555	   0.197	   0.403	   0.062	  
Depth*Crop	  system	   0.006	   0.001	   0.014	   0.037	   0.612	   0.363	   0.795	   0.952	   <.0001	   0.000	   0.003	   0.002	   0.057	   0.006	  
Day*Depth*Crop	  
system	   0.998	   0.991	   0.735	   0.750	   0.288	   0.906	   1.000	   0.396	   0.003	   0.092	   0.091	   0.069	   0.000	   0.147	  

	  	  

Table 2.4 (continued). P-values from repeated measures ANOVA.  
	   Specific	  BG	  

activity	  
Specific	  BX	  
activity	  

Specific	  CB	  
activity	  

Specific	  LAP	  
activity	  

Specific	  Ala	  
activity	  

Specific	  AAP	  
activity	  

Day	   <.0001	   <.0001	   <.0001	   <.0001	   <.0001	   <.0001	  
Depth	  	   0.079	   0.027	   0.070	   0.020	   0.132	   0.166	  
Crop	  system	  	   0.006	   0.015	   0.007	   0.069	   0.068	   0.029	  
Day*Depth	   0.515	   0.200	   0.351	   0.038	   0.008	   0.048	  
Day*	  Crop	  system	   0.274	   0.021	   0.584	   0.126	   0.304	   0.046	  
Depth*Crop	  system	  	   0.009	   0.001	   0.005	   0.007	   0.198	   0.016	  
Day*Depth*	  	  
Crop	  System	   0.060	   0.053	   0.052	   0.012	   0.000	   0.065	  
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Table 2.5.  Mean microbial biomass, native protease activity, and native ammonification by crop system and depth, averaged across 
sampling dates. Error terms represent standard errors. Standard errors were calculated with observations of either 62-64 (for 0-20cm; 4 
plots x 2 depths x 8 sampling dates) or 30-32 (for 0-10 cm and 10-20 cm; 4 plots x 8 sampling dates).        
Crop	  

System	   Depth	   MBC	   MBN	   MBC:MBN	  
Native	  protease	  	  

	  activity	   Native	  ammonification	  
	   	   ug	  g-‐1	  soil	   	   nmol	  g-‐1	  hr	  
2	   0-‐10	  cm	   385.35	   (1.07)	   aa	   41.84	   (2.96)	   a	   8.95	   (2.79)	   a	   1.63	   (1e-‐10)	   aa	   33.72	   (1e-‐4)	   a	  
	   10-‐20	  cm	   253.64	   (1.07)	   b	   23.46	   (2.38)	   b	   10.83	   (2.78)	   a	   1.08	   (1e-‐10)	   a	   26.05	   (6e-‐5)	   a	  
3	   0-‐10	  cm	   383.82	   (1.09)	   a	   39.34	   (2.89)	   a	   9.86	   (2.78)	   a	   2.89	   (6e-‐10)	   a	   34.85	   (4e-‐5)	   a	  
	   10-‐20	  cm	   393.66	   (1.07)	   a	   41.55	   (2.68)	   a	   9.48	   (2.78)	   a	   4.14	   (2e-‐10)	   a	   29.12	   (4e-‐5)	   a	  
4	   0-‐10	  cm	   449.25	   (1.08)	   a	   44.86	   (2.69)	   a	   10.27	   (2.78)	   a	   9.24	   (6e-‐10)	   a	   22.56	   (3e-‐5)	   a	  
	   10-‐20	  cm	   496.37	   (1.08)	   a	   55.29	   (2.87)	   a	   9.27	   (2.77)	   a	   11.86	   (5e-‐10)	   a	   14.76	   (6e-‐5)	   a	  
	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	  
2	   0-‐20cm	   312.64	   (1.06)	   Cb	   31.90	   (2.62)	   B	   9.82	   (2.77)	   A	   1.33	   (8.7e-‐12)	   Bb	   29.69	   (1e-‐5)	   A	  
3	   	   388.71	   (1.06)	   B	   40.44	   (2.44)	   A	   9.67	   (2.76)	   A	   3.47	   (3.3e-‐11)	   AB	   31.88	   (1e-‐5)	   A	  
4	   	   472.22	   (1.05)	   A	   49.91	   (2.48)	   A	   9.75	   (2.76)	   A	   10.48	   (4.5e-‐11)	   A	   18.33	   (1e-‐5)	   A	  

a	  -‐	  Entries	  in	  a	  column	  that	  share	  a	  lowercase	  letter	  are	  not	  significantly	  different	  at	  P	  =	  0.05	  (Tukey's	  HSD)	   
b	  -‐	  Entries	  in	  a	  column	  that	  share	  an	  uppercase	  letter	  are	  not	  significantly	  different	  at	  P	  =	  0.05	  (Tukey's	  HSD) 
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Table 2.6. Mean inorganic N concentration by crop system and depth, averaged across sampling dates. Error terms represent standard 
errors. Standard errors were calculated with observations of either 62-64 (for 0-20cm; 4 plots x 2 depths x 8 sampling dates) or 30-32 
(for 0-10 cm and 10-20 cm; 4 plots x 8 sampling dates).        
Crop	  

System	   Depth	  
NO3

-‐-‐N	   NH4
+-‐N	   Total	  DIN	  

	   	   ug	  g-‐1	  soil	  
2	   0-‐10	  cm	   27.92	   (1.9e-‐5)	   aa	   9.94	   (1e-‐4)	   a	   42.60	   (1.16)	   a	  
	   10-‐20	  cm	   11.32	   (1.7e-‐5)	   b	   4.48	   (1e-‐4)	   a	   20.68	   (1.17)	   a	  
3	   0-‐10	  cm	   16.21	   (4.2e-‐5)	   ab	   6.02	   (2e-‐4)	   a	   26.14	   (1.2)	   a	  
	   10-‐20	  cm	   14.26	   (9e-‐6)	   b	   5.22	   (1e-‐4)	   a	   22.55	   (1.18)	   a	  
4	   0-‐10	  cm	   19.84	   (1.9e-‐5)	   ab	   5.46	   (1e-‐4)	   a	   28.74	   (1.18)	   a	  
	   10-‐20	  cm	   14.51	   (2e-‐5)	   b	   3.23	   (1e-‐4)	   a	   20.79	   (1.17)	   a	  
	   	   	   	   	   	   	   	   	   	   	  
2	   0-‐20cm	   18.24	   (9e-‐6)	   Aa	   6.79	   (2.9e-‐5)	   A	   29.64	   (1.13)	   A	  
3	   	   15.21	   (6e-‐6)	   A	   5.61	   (3e-‐5)	   A	   24.36	   (1.13)	   A	  
4	   	   17.02	   (5e-‐6)	   A	   4.23	   (2.5e-‐5)	   A	   24.44	   (1.12)	   A	  

a	  -‐	  Entries	  in	  a	  column	  that	  share	  a	  lowercase	  letter	  are	  not	  significantly	  different	  at	  P	  =	  0.05	  (Tukey's	  HSD)	   
b	  -‐	  Entries	  in	  a	  column	  that	  share	  an	  uppercase	  letter	  are	  not	  significantly	  different	  at	  P	  =	  0.05	  (Tukey's	  HSD) 
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Table 2.7. Mean potential enzyme activity by crop system and depth, averaged across sampling dates. Error terms represent standard 
errors. Standard errors were calculated with observations of either 62-64 (for 0-20 cm; 4 plots x 2 depths x 8 sampling dates) or 30-32 
(for 0-10 cm and 10-20 cm; 4 plots x 8 sampling dates).   
Crop	  

System	   Depth	   BG	  activity	   BX	  activity	   CB	  activity	   LAP	  activity	   Ala	  activity	   AAP	  activity	  
	   	   nmol	  g-‐1	  hr	  

2	   0-‐10	  cm	   1145.34	   (64.62)	   aa	   119.21	   (0.38)	   a	   21.86	   (2e-‐4)	   a	   678.77	   (0.26)	   a	   316.85	   (2e-‐3)	   a	   389.34	   (3e-‐5)	   a	  
	   10-‐20	  cm	   333.06	   (21.73)	   d	   14.82	   (0.18)	   b	   1.32	   (2e-‐7)	   b	   30.61	   (0.2)	   b	   47.70	   (9e-‐4)	   b	   15.17	   (2e-‐4)	   b	  
3	   0-‐10	  cm	   877.48	   (31.63)	   abe	   98.91	   (0.18)	   a	   6.19	   (5e-‐4)	   ab	   421.95	   (0.32)	   a	   196.85	   (2e-‐3)	   ab	   147.52	   (1e-‐4)	   ab	  
	   10-‐20	  cm	   962.44	   (51.83)	   ab	   109.34	   (0.26)	   a	   8.51	   (1e-‐3)	   ab	   384.47	   (0.44)	   a	   183.86	   (2e-‐3)	   ab	   170.22	   (3e-‐4)	   ab	  
4	   0-‐10	  cm	   610.03	   (42.01)	   cde	   58.61	   (0.29)	   ab	   1.61	   (7e-‐4)	   b	   146.68	   (0.36)	   ab	   73.91	   (9e-‐4)	   ab	   18.63	   (2e-‐4)	   b	  
	   10-‐20	  cm	   740.52	   (47.11)	   bc	   74.71	   (0.25)	   ab	   2.11	   (1e-‐3)	   b	   209.25	   (0.37)	   ab	   77.09	   (1e-‐3)	   ab	   52.10	   (3e-‐4)	   ab	  

	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	  
2	   0-‐20cm	   739.20	   (59.86)	   ABb	   54.53	   (0.34)	   B	   5.37	   (1.27)	   AB	   211.52	   (0.17)	   A	   134.40	   (3e-‐4)	   A	   99.55	   (6e-‐5)	   AB	  
3	   	   919.96	   (30.59)	   A	   104.06	   (0.11)	   A	   7.26	   (1.29)	   A	   402.92	   (0.13)	   A	   190.26	   (3e-‐4)	   A	   158.55	   (4e-‐5)	   A	  
4	   	   675.27	   (32.37)	   B	   66.41	   (0.14)	   AB	   1.84	   (1.3)	   B	   176.12	   (0.13)	   A	   75.48	   (2e-‐4)	   A	   31.99	   (5e-‐5)	   B	  

a	  -‐	  Entries	  in	  a	  column	  that	  share	  a	  lowercase	  letter	  are	  not	  significantly	  different	  at	  P	  =	  0.05	  (Tukey's	  HSD)	   
b	  -‐	  Entries	  in	  a	  column	  that	  share	  an	  uppercase	  letter	  are	  not	  significantly	  different	  at	  P	  =	  0.05	  (Tukey's	  HSD) 
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Table 2.8.  Mean biomass-specific potential enzyme activity by crop system and depth, averaged across sampling dates. Error terms 
represent standard errors. Standard errors were calculated with observations of either 62-64 (for 0-20cm; 4 plots x 2 depths x 8 
sampling dates) or 30-32 (for 0-10 cm and 10-20 cm; 4 plots x 8 sampling dates). 
Crop	  

System	  
Depth	   Specific	  BG	  activity	   Specific	  BX	  activity	   Specific	  CB	  activity	   Specific	  LAP	  activity	   Specific	  Ala	  activity	   Specific	  AAP	  activity	  

	   	   nmol	  ug-‐1	  MBC	  g-‐1	  soil	  hr-‐1	  
2	   0-‐10	  cm	   2.96	   (0.008)	   aa	   0.33	   (1e-‐3)	   a	   0.07	   (7e-‐12)	   a	   1.49	   (6e-‐7)	   a	   0.83	   (4e-‐6)	   a	   0.98	   (3e-‐8)	   a	  
	   10-‐20	  cm	   1.37	   (0.003)	   b	   0.06	   (8e-‐4)	   b	   0.01	   (4e-‐15)	   b	   0.06	   (8e-‐7)	   b	   0.17	   (3e-‐6)	   a	   0.05	   (4e-‐7)	   b	  
3	   0-‐10	  cm	   2.36	   (0.004)	   ab	   0.26	   (7e-‐4)	   a	   0.02	   (1e-‐11)	   ab	   0.91	   (1e-‐6)	   a	   0.56	   (5e-‐6)	   a	   0.40	   (3e-‐7)	   ab	  
	   10-‐20	  cm	   2.50	   (0.005)	   ab	   0.29	   (9e-‐4)	   a	   0.03	   (2e-‐11)	   ab	   0.72	   (2e-‐6)	   ab	   0.47	   (5e-‐6)	   a	   0.42	   (8e-‐7)	   ab	  
4	   0-‐10	  cm	   1.36	   (0.005)	   b	   0.14	   (9e-‐4)	   ab	   0.01	   (7e-‐12)	   b	   0.21	   (1e-‐6)	   ab	   0.16	   (2e-‐6)	   a	   0.04	   (5e-‐7)	   b	  
	   10-‐20	  cm	   1.51	   (0.005)	   b	   0.16	   (8e-‐4)	   ab	   0.01	   (9e-‐12)	   b	   0.29	   (2e-‐6)	   ab	   0.16	   (2e-‐6)	   a	   0.10	   (7e-‐7)	   ab	  
	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	  
2	   0-‐20cm	   2.09	   (0.004)	   ABb	   0.17	   (1e-‐3)	   AB	   0.02	   (8e-‐12)	   A	   0.38	   (4e-‐7)	   A	   0.40	   (7e-‐7)	   A	   0.29	   (1e-‐7)	   AB	  
3	   	   2.43	   (0.002)	   A	   0.28	   (4e-‐4)	   A	   0.03	   (2e-‐12)	   A	   0.81	   (3e-‐7)	   A	   0.51	   (8e-‐7)	   A	   0.41	   (9e-‐8)	   A	  
4	   	   1.43	   (0.002)	   B	   0.15	   (4e-‐4)	   B	   0.01	   (7e-‐12)	   B	   0.25	   (3e-‐7)	   A	   0.16	   (4e-‐7)	   A	   0.07	   (1e-‐7)	   B	  

a	  -‐	  Entries	  in	  a	  column	  that	  share	  a	  lowercase	  letter	  are	  not	  significantly	  different	  at	  P	  =	  0.05	  (Tukey's	  HSD)	   
b	  -‐	  Entries	  in	  a	  column	  that	  share	  an	  uppercase	  letter	  are	  not	  significantly	  different	  at	  P	  =	  0.05	  (Tukey's	  HSD) 
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CHAPTER III 

ROOT BIOMASS AND DECOMPOSITION OF  
BIOENERGY CROPS ACROSS A LANDSCAPE GRADIENT 

 
Introduction 

Fine roots are a primary source of soil organic matter in agroecosystems (SOM; Puget 

and Drinkwater, 2001; Rasse et al., 2005), and root decomposition represents a major pathway of 

root input into SOM as well as nutrient release for crop uptake. In agronomic systems, root 

tissues contribute ten times more to protected SOM than surface residues (Gale and Cambardella, 

2000).  In bioenergy systems, where aboveground biomass is aggressively harvested, and whose 

success is measured in part relative to a mandate for providing an environmentally preferable 

substitute for fossil fuels, root inputs are equally crucial to SOM maintenance and environmental 

benefits.   

 

 Bioenergy cropping systems, e.g., annual or perennial, differ widely in the ecosystem 

services they provide.  Annual crops, typically corn, are the current standard for bioenergy 

production and excel at yielding high quantities of grain and stover.  As the dominant landscape 

cover in many agricultural regions, annual cropping systems are accompanied by environmental 

costs such as soil erosion, nutrient loss, and depletion of SOM over time (Lal, 2004; Pimentel et 

al., 1995; Raymond et al., 2012).  Integrating perennial bioenergy crops such as poplar, 
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switchgrass, miscanthus, and native plant mixtures such as prairie into agricultural landscapes 

has been proposed for perennials’ ability to provide ecosystem services beyond production 

(Schulte et al., 2006).  Relative to annual crops, perennials reduce soil erosion and nutrient 

exports (Tilman et al 2006, Glover et al 2010).  Perennials also support higher concentrations of 

SOM than do annuals (Anderson-Teixeira et al., 2013; Buyanovsky et al., 1987).  The 

mechanisms underlying maintenance of a higher SOM pool under perennials are attributed to 

belowground activity by roots.   

 

 Plant tissue chemistry is an important predictor of decomposition rates (Silver and Miya, 

2001), however it is not clear whether annuals and perennial crops are easily categorized into 

non-overlapping categories of labile and recalcitrant root biomass.  Following resource 

acquisition strategies, it has been hypothesized that annuals should produce nutrient-rich, quickly 

decomposing tissues that favor fast nutrient cycling, whereas perennials should favor more 

recalcitrant tissues (Wardle 2004). While this hypothesis has been supported for leaf tissues 

(Wardle et al., 1998), less work has been done regarding whether this hypothesis can be extended 

to root tissues.  Some studies have found that, compared to annuals, perennial roots have lower 

nitrogen (N) concentrations (Birouste et al., 2012; Roumet et al., 2006), higher carbon to 

nitrogen (C:N) ratios (Birouste et al., 2012; Mapfumo et al., 2002; Shi et al., 2012), lower 
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soluble C concentrations (Shi et al., 2012), and higher hemicellulose concentrations (Birouste et 

al., 2012), which overall corroborates the idea that root tissues of perennial species are slower to 

decompose than those of annuals. In the limited number of direct comparisons between annual 

and perennial root decomposition, however, perennial root decomposition has been reported as 

variable by perennial species (Koteen et al., 2011; Shi et al., 2012).  There has been even less 

direct comparison of decomposition rates between annual and perennial grasses in the context of 

managed systems.  

 

 The strategic integration of bioenergy systems into the landscape requires 

understanding of how their performance varies across the landscape.  Landscape positions, 

defined according to their slope and elevation along a hillside, create variable conditions for 

production of aboveground biomass.  In an Iowa watershed, long-term corn yields on the 

backslope were lower than yields on the footslope and toeslope (Cambardella et al., 2004).  In a 

similar study at the Landscape Biomass experiment, switchgrass stand establishment on the 

backslope was lower than other landscape positions (Ontl et al., 2013).  These differences in crop 

performance may track differences in soil nutrient retention, soil depth, or soil moisture across 

landscape positions.  Steeper, more erosive landscape features, such as the backslope, have less 

potentially mineralizable N compared to other landscape positions, while depositional areas, 
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such as the footslope have more POM-C and POM-N (Cambardella et al., 2004).  This suggests 

there is higher soil quality in depositional landscape positions compared to erosive landscape 

positions.  Additionally, water is more likely to pool in depositional areas of the landscape, 

creating wetter but cooler soil conditions (Moorman et al., 2004), which may decrease rates of 

decomposition. These suites of soil properties characterize the landscape positions of agricultural 

regions, yet their effect on root biomass and decomposition has not been well studied.  

 

 In order to address root biomass and decomposition between annual and perennial 

bioenergy crops, and to describe their variability by landscape position, we used a toposequence 

of corn and switchgrass and measured in situ root decomposition across one year.  We 

hypothesized that switchgrass, compared to corn, would have 1) greater standing root biomass, 

2) higher C:N, and 3) slower rates of decomposition, and that these effects would override any 

influence of landscape in determining quantity of root input decomposed.  We also hypothesized 

that 4) root biomass of each crop would be lower on more erosive elements, such as the 

backslope or summit, compared to the footslope and that 5) decomposition rates would be slower 

on wetter landscape positions, ie, the footslope, than backslope and summit.  Overall, we sought 

to describe the quantity of root biomass input to soil through decomposition processes over 1 
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year in annual and perennial bioenergy cropping systems, and the influence of landscape on 

these processes. 

  

Methods 

Field Site 

 This study was conducted as part of the Landscape Biomass Project, located at Iowa State 

University’s Uthe Research and Demonstration Farm in Boone County, Iowa (41°55’ N; 93°45’ 

W). The experiment consists of a randomized complete block design with bioenergy cropping 

systems replicated three times at each of five landscape positions.  We studied cropping systems 

on three landscape positions (summit, backslope, and toeslope) situated across a topographic 

gradient from 325-m to 305-m elevation. Plots measuring 0.05 ha were established in fall 2008 

on land previously in corn-soybean rotation.  Soils at the site are classified as fine-loamy 

Hapludoll Mollisols.  Among the three landscape positions studied here, soil N, SOC, depth of A 

horizon, and POM were statistically equivalent (Ontl et al., 2013). There was a trend toward 

higher POM on the toeslope (0.226 ± 0.018 vs 0.230 ± 0.017 and 0.199 ± 0.003  g kg-1 for 

toeslope, summit, and backslope, respectively) and a trend toward deeper A horizon on the 

toeslope (46.5 ± 9.7 vs 33.0 ± 6.2 and 37.8 ± 6.5 cm for toeslope, summit and backslope, 

respectively) (Ontl et al., 2013). Soil drainage classes varied among landscape positions.  All 
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three landscape positions included Clarion soils, which are classified as moderately-well drained, 

and were the only soil class present on the backslope. Soils on the summit were Nicollet 

(somewhat poorly drained) and Zenor (excessively drained).  Soils on the toeslope were 

Spillville (somewhat poorly drained) (Ontl et al., 2013).  For a complete site description, see 

Wilson et al. (2014). 

 

Two bioenergy cropping systems were evaluated in this study: switchgrass (Panicum 

virgatum L., cv: ‘Cave-In-Rock’) and continuous corn (Zea mays L.), which were sampled 

between August 2011 and August 2012. Nitrogen fertilization rates were based on nutrient 

demands of crops (Vogel et al., 2002); in 2011 corn and switchgrass were fertilized at rates of 

168 kg urea-N ha-1 for corn and 134 kg urea-N ha-1 for switchgrass. Both cropping systems 

received 56 kg P2O5 ha-1 and 112 kg KCl ha-1, and were managed without tillage.  Weather 

conditions were measured approximately 15 km from the site.  Fifty-year average annual 

precipitation is 844 mm, and mean annual air temperature is 9°C.  For the year approximating the 

study period, 1 August 2011 – 31 July, 2012, total precipitation was 626 mm and mean air 

temperature was 12°C.  
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Root decomposition cores  

To estimate fine root decay rates, we used the intact core method, following Dornbush et 

al. (2002).  Root distribution in row crops is highly heterogeneous, and to obtain a representative 

estimate we used a nonrandom sampling scheme: for every core adjacent to a corn plant, three 

were placed midway between corn rows, a ratio which protects from overestimating root density 

at the plot scale, as would a 1:1 ratio of row:interrow sampling (Buczko et al., 2008).  

Switchgrass cores were placed randomly in plots.  A set of 216 cores was taken in August 2011, 

and one third of cores (72 cores) was used to estimate initial biomass of fine roots (12 cores per 

crop/landscape position).  While corn root cores captured only the roots produced in the 2011 

growing season, switchgrass root cores included roots produced in previous growing seasons, 

possibly dating to switchgrass seeding in May 2009.  Two thirds of cores were left in the field 

for collection 1 month and 1 year after collection of ‘initial’ cores, however due to soil 

movement, only 33 out of 72 cores were recovered for the one-year time point.  Loss of cores did 

not prevent statistical analysis because all plots were represented by at least one core.  While in 

the field, soil cores were placed in 25 cm plastic sleeves, which accommodated a 20 cm soil core 

above 5 cm of sand, used for drainage. Both ends of the tube were fitted with 160 µm 

polyethylene mesh to allow passage of water and gas while discouraging root ingrowth.  After 

removal from the field, soil cores were stored at 4°C and processed within one week by washing 
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over 250 µm mesh for 3 hours.  Remaining material was oven-dried at 65°C and then hand-

sorted in deionized water to remove sand and debris from roots.  Crown nodes were also 

removed, if present.  Roots were again oven-dried at 65°C, weighed for total mass, and ground in 

a ball-mill for chemical analyses.   

 

Chemical Analyses 

Total fine root C and N were measured using a Carlo Erba NA 1500 Elemental Analyzer 

(CE Instruments, Milan, Italy).  Root mass on a g m-2 basis was calculated as (root biomass g / 

883 cm -3 per decomposition core) x (20 cm depth) x (10,000 cm-2 / m-2). Mass of C and N in 

fine root was calculated as total root mass multiplied by the concentration of C or N.   

 

Statistical Analyses 

 All analyses were run in R v. 3.0.1 (R Core Team, 2013).  Replicate cores within plots 

were averaged before analysis, and all data were transformed to fit assumptions of normality.   

We tested for differences in root biomass, root C, root N, and root C:N using analysis of variance 

(ANOVA) with main effects for sampling day, landscape position, and cropping system, as well 

as each of their interactions. Models were initially tested with block as an error term in a mixed 

effects linear model; however, these models were qualitatively the same as ANOVAs without a 
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random term. Therefore, we used the simpler model and Tukey’s Honestly Significant 

Difference for pairwise comparisons after observing significant factors within each ANOVA.   

To test decay rates of fine roots, nonlinear least-squares estimates for decay parameters in 

exponential decay functions were produced using the nls function in R.  Root variables from 1 

month and 1 year samplings were first normalized by initial root variables, and then root decay 

was estimated as 

M(t) = M(0)eßt                                  (1) 

where M(t) is litter mass at time t, and M(0) is initial litter mass, and ß is litter decomposition 

rate. Differences in ß were tested with ANOVA, with crop and landscape as main effects as well 

as their interaction. Significance was determined at α = 0.05.  

 

Results 

On a land area basis, root biomass, root C, root N, and root C:N ratios at all sampling 

dates were higher under switchgrass compared to corn (P<0.0001; Table 3.1).  Averaging over 

time, both corn and switchgrass varied by landscape position.  Corn at the summit had 

significantly lower root biomass (P<0.0006), root C (P<0.0106), and root N (P<0.001) when 
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compared to corn at other landscape positions (Fig. 3.1A).  Switchgrass root biomass and root C 

were significantly lower on the backslope than on other landscape positions (P=0.003 and 0.039 

respectively).  Switchgrass but not corn root C:N was sensitive to landscape position (Fig. 3.1A), 

and was lower on the backslope than other landscape positions.  Corn root C:N was stable during 

decomposition, while switchgrass root C:N decreased between one month and one year 

(P<0.007).       

  

Quantity of root biomass decomposed after 1 year differed by crop and landscape 

position. Averaging across landscape positions, switchgrass decomposed twice the root biomass 

of corn (98.84 vs 47.76 g m-2), however N released from root biomass was similar between crops 

(0.67 and 0.7 g N m-2 for corn and switchgrass, respectively), owing to separation in initial C:N 

ratios (24.5 vs 57 for corn and switchgrass, respectively).   At the summit, corn root biomass 

decomposed was approximately half of that on backslope and toeslope (30 vs 53.1 and 60.2 g m-2 

on summit, backslope, and toeslope, respectively).  Switchgrass root decomposed at the 

backslope was lower than on the summit or toeslope (84.4 vs 91.4 and 120. 7 g m-2 for backslope, 

summit, and toeslope, respectively).  Decay functions for root variables show that corn root 

biomass, root C, and root N decomposed more quickly than switchgrass (Fig. 3.2, Table 3.3).  

Decay rates were not sensitive to landscape position (P >0.6).   
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Discussion 

Fine roots are an important source of soil organic matter (Gale and Cambardella, 2000; 

Gale et al., 2000), especially in bioenergy cropping systems where aboveground biomass is 

exported for feedstock rather than returned to soil.  By estimating root decomposition, this study 

addresses potential root input to SOM and nutrient release from decomposition from annual and 

perennial bioenergy crops.  We found that, compared to corn, switchgrass produced greater 

standing root biomass, which decomposed more slowly. Nevertheless, switchgrass root biomass 

inputs to soil were greater than those of corn, while nitrogen release was on par with that of corn.  

  

Research suggests that for perennials to persist across seasons, and to be relatively 

conservative of nutrients, they have greater investment in root biomass of lower quality 

compared to annuals (Mapfumo et al., 2002; Roumet et al., 2006).  Our findings, although 

perhaps novel for a bioenergy system of highly managed crops, are consistent with these 

ecological paradigms.  The faster decomposition rates of the annual crop, corn, corresponded to 

its lower C:N ratio. It should be noted, however, that C:N ratio, while an good predictor of root 

decomposition rates across broad taxonomic groups (i.e., conifer, graminoid, broad leaf, Silver 

and Miya, (2001)), has not often been found to be a strong predictor of decomposition rates 
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among species as closely related as perennial grasses (Gorissen and Cotrufo, 2000; Vivanco and 

Austin, 2006).  Between and among crop species, specific controls over decomposition rates of 

fine roots may also include root architecture (de Graaff et al., 2013), or parameters of root 

quality not measured here such as concentrations of lignin or other phenolic compounds, but in 

general are yet to be elucidated.  Our findings suggest that annual and perennial bioenergy crops 

may be divergent enough in root tissue quality for C:N ratio to serve as a useful predictor of their 

relative decomposition rates.  

 

Despite slower rates of decomposition, over a year switchgrass decomposed more root 

biomass than did corn, and, at then end of a year, 13 times more switchgrass root biomass 

remained yet to decompose.  These patterns in belowground biomass allocation are consistent 

with those observed under other perennial bioenergy systems compared to corn (Anderson-

Teixeira et al., 2013), and provide a mechanism for SOC accrual typically witnessed under 

perennial systems (Frank et al 2004).  It is important to note though that root biomass and root 

decomposition may not necessarily reflect soil SOM accumulation, as the mechanisms of SOM 

protection are complex and depend on many factors (e.g., stabilization efficiency, soil 

temperature, and soil carbon saturation).  Perhaps most of interest in comparing crop choice at 

field scale is the concept of stabilization efficiency, which holds that assimilation of organic 
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input by microbes biomass is highly dependent on its C:N ratio.  If these principles hold true for 

roots, switchgrass may move into protected SOM with less efficiency, as more biomass is 

channeled to overflow metabolism and respiration compared to corn.  Nevertheless, root biomass 

has been found to predict SOM accumulation (Frank et al., 2004; Zan et al., 2001), and studies 

showing SOC increases under perennial cropping systems relative to annual systems suggest that 

even though stabilization efficiency per unit root mass may be higher with lower C:N ratio (as in 

annuals), differences in root biomass between perennial and annual cropping systems outweigh 

potential variability in stabilization efficiency.  

 

For both crops, landscape position drove variability in root biomass, and in general 

variability supported the idea that drier, more erosive features, such as the summit and backslope, 

sustain less root biomass, while wetter, more depositional features promote more root biomass.  

An alternative framework for predicting root biomass would hold that drier soils on the summit 

would encourage root growth, however at this site moisture may have stunted overall corn 

productivity.  Root biomass data across multiple growing seasons would be needed to test either 

of these hypotheses.  Overall, root biomass at this site appears to be more sensitive to landscape 

position than aboveground yield; across years 2009-2011, aboveground yield of switchgrass and 

corn at this site were relatively stable across landscape positions (Wilson 2014). The significant 
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influences of landscape position on root biomass suggest that crop plants’ belowground 

productivity is more adaptive to environmental cues than is their aboveground productivity.   It 

should be noted, however, that aboveground yields at this site are more sensitive to year and 

associated weather than to landscape positions, and in some but not all years the effect of crop 

varies by landscape (Wilson, 2014).  Data presented here should thus be interpreted with the 

understanding that similar patterns may arise in root biomass – i.e., the interaction of crop and 

landscape may not be consistent across growing seasons.  

 

In contrast to root biomass, and contrary to our hypotheses, rates of root decomposition 

(expressed as a percentage of initial biomass), were stable across landscape position.  As root 

biomass differed across the landscape, while rates root decomposition were unaffected, root 

inputs via decomposition corresponded to root biomass as it varied by landscape position.  

Altered root input by landscape position may point to a feedback mechanism in which poorer 

quality soils on erosive features maintain relatively low root biomass, which in turn maintains 

less SOM, whereas depositional areas with deeper, richer soils and higher soil moisture support 

greater plant input and thus may accrue SOM more rapidly.  Stable root decomposition rates 

across the landscape counter our hypothesis, but are supported by the fact that potential factors 

governing decomposition, such as microbial biomass, enzyme activity, and respiration at this site 
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were stable across landscape positions in 2011 (Hargreaves and Hofmockel, 2013).  Overall, our 

findings suggest that landscape position affects root growth, but that plant traits govern 

decomposition rate. A further implication of these findings is that at different landscape positions 

within the same cropping system, the turnover time of roots is similar (Larreguy et al., 2011). 

However, differences in root biomass and root input between crops overwhelmed the effect of 

landscape position in determining root biomass and inputs; even the least productive switchgrass 

position, the backslope, had 2.3 times more root biomass and 1.4 times more root input than most 

productive corn position, the toeslope.  Heterogeneity across landscapes may tip the scales of 

performance for more closely related annual crops, however for crops as widely divergent as 

corn and switchgrass, our data show that landscape position is secondary to crop in determining 

root biomass and root input.     

  

Conclusions 

This study provides a side-by-side comparison of decomposition rates of annual and 

perennial bioenergy systems across a landscape gradient. Irrespective of landscape position, 

switchgrass produced more root biomass, and switchgrass roots decomposed more slowly than 

did corn roots.  With crops, root production varied across landscape positions, however decay 
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rates were constant.  Overall, root decomposition rates were more sensitive to crop and 

associated differences in root tissue quality (C:N ratio) than to landscape position.   

 

Figures 

  
Figure 3.1. Effects of crop by landscape position (A) and by sampling date (B) on root biomass, 
root N, root C, and root C:N ratio. Points on each plot represent mean values for corn (black) and 
switchgrass (gray), and bars represent bootstrapped 95% confidence intervals. Landscape 
positions: Su = summit, Bs = backslope, Ts = toeslope.  
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Figure 3.2.  Exponential decay constants for root biomass (black), root N (dark gray), and root C 
(light gray) under each cropping system. Beta values represents decay rates as a percentage of 
standing root biomass; beta values farther from zero indicate faster decay rates. Points on each 
plot represent mean values for each variable and bars represent bootstrapped 95% confidence 
intervals. 
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Tables   

 

Table 3.1. Mean root variables for each sampling date, landscape position, and cropping system.  
All root variables represent 0-20cm.  Error terms represent standard errors.  
Time	   Position	   Crop	   Root	  biomass	   Root	  N	   Root	  C	   Root	  C:N	  
months	   	   	   g	  m	  -‐2	   	  
0	   Summit	   Corn	   32.30	   (6)	   0.40	   (0.1)	   12.00	   (2)	   26.4	   (0.8)	  
0	   Summit	   Switchgrass	   176.20	   (20.7)	   1.20	   (0.2)	   74.90	   (8.1)	   62.6	   (2.8)	  
0	   Backslope	   Corn	   61.20	   (11.6)	   1.00	   (0.2)	   21.80	   (3.3)	   23.7	   (2.6)	  
0	   Backslope	   Switchgrass	   157.20	   (22.2)	   1.30	   (0.1)	   67.50	   (8.8)	   51.7	   (2.5)	  
0	   Toeslope	   Corn	   68.00	   (17.2)	   0.90	   (0.1)	   23.00	   (5.8)	   23.4	   (2.6)	  
0	   Toeslope	   Switchgrass	   211.90	   (49.3)	   1.50	   (0.3)	   90.70	   (22.3)	   56.8	   (4.7)	  
1	   Summit	   Corn	   12.20	   (1)	   0.20	   (0)	   4.90	   (0.5)	   24.9	   (1.6)	  
1	   Summit	   Switchgrass	   135.80	   (4.4)	   1.00	   (0)	   58.40	   (2)	   60.1	   (0.6)	  
1	   Backslope	   Corn	   29.50	   (1)	   0.50	   (0.1)	   11.80	   (0.5)	   25.4	   (2.6)	  
1	   Backslope	   Switchgrass	   155.90	   (29.7)	   1.20	   (0.1)	   68.20	   (12.4)	   52.9	   (2.4)	  
1	   Toeslope	   Corn	   32.70	   (13.4)	   0.50	   (0.2)	   12.30	   (4.6)	   23.9	   (1)	  
1	   Toeslope	   Switchgrass	   166.80	   (43.4)	   1.10	   0.3	   72.10	   (18.8)	   62.4	   (4.5)	  
12	   Summit	   Corn	   2.30	   (0)	   0.00	   NA	   1.10	   NA	   23.6	   NA	  
12	   Summit	   Switchgrass	   84.80	   NA	   0.60	   NA	   36.90	   NA	   58.1	   NA	  
12	   Backslope	   Corn	   8.10	   (0.7)	   0.20	   (0)	   3.90	   (0.4)	   26.3	   (2.5)	  
12	   Backslope	   Switchgrass	   72.80	   (29.5)	   0.60	   (0.2)	   25.70	   (10.2)	   41.2	   (2.2)	  
12	   Toeslope	   Corn	   7.80	   (0.3)	   0.10	   (0)	   3.00	   (0)	   29.2	   (6.1)	  
12	   Toeslope	   Switchgrass	   91.20	   (15.2)	   0.70	   (0.1)	   36.70	   (8.5)	   48.8	   (2.3)	  
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Table 3.2. ANOVA tables for root variables on a g m-2 basis.     

 

  

Root	  biomass	   	  	   Df	   Sum	  Sq	   Mean	  Sq	   F	   P-‐value	  

	   Time	   2	   18.39	   9.20	   62.00	   <.0001	  
	   Position	   2	   3.81	   1.90	   12.80	   <.0001	  
	   Crop	   1	   43.23	   43.23	   291.52	   <.0001	  
	   Time*Position	   4	   0.46	   0.12	   0.78	   0.547	  
	   Time*Crop	   2	   2.99	   1.50	   10.09	   0.0004	  
	   Position*Crop	   2	   1.92	   0.96	   6.46	   0.0044	  
	   Time*Position*Crop	   4	   0.25	   0.06	   0.42	   0.796	  
	   Residual	   32	   4.74	   0.15	   	   	  
Root	  N	   	  	   	  	   	  	   	  	   	  	   	  	  
	  	   Time	   2	   11.39	   5.69	   46.78	   <.0001	  
	   Position	   2	   2.44	   1.22	   10.00	   0.00044	  
	   Crop	   1	   13.72	   13.72	   112.73	   <.0001	  
	   Time*Position	   4	   0.06	   0.02	   0.13	   0.969	  
	   Time*Crop	   2	   1.89	   0.94	   7.76	   0.002	  
	   Position*Crop	   2	   1.49	   0.75	   6.14	   0.006	  
	   Time*Position*Crop	   4	   0.20	   0.05	   0.41	   0.801	  
	  	   Residual	   31	   3.77	   0.12	   	  	   	  	  
Root	  C	   	  	   	  	   	  	   	  	   	  	   	  	  
	   Time	   2	   13.24	   6.62	   45.57	   <.0001	  
	   Position	   2	   1.68	   0.84	   5.80	   0.007	  
	   Crop	   1	   43.78	   43.78	   301.33	   <.0001	  
	   Time*Position	   4	   0.12	   0.03	   0.20	   0.934	  
	   Time*Crop	   2	   1.58	   0.79	   5.45	   0.009	  
	   Position*Crop	   2	   1.75	   0.88	   6.03	   0.006	  
	   Time*Position*Crop	   4	   0.39	   0.10	   0.68	   0.614	  
	   Residual	   31	   4.50	   0.15	   	   	  
Root	  C:N	   	  	   	  	   	  	   	  	   	  	   	  	  
	   Time	   2	   114	   57	   2.17	   0.131	  
	   Position	   2	   216	   108	   4.11	   0.026	  
	   Crop	   1	   10767	   10767	   409.19	   <.0001	  
	   Time*Position	   4	   67	   17	   0.64	   0.64	  
	   Time*Crop	   2	   403	   202	   7.66	   0.002	  
	   Position*Crop	   2	   198	   99	   3.76	   0.035	  
	   Time*Position*Crop	   4	   87	   22	   0.83	   0.517	  
	   Residual	   31	   816	   26	   	  	   	  
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Table 3.3.  ANOVA tables for decay constants for root biomass, root N, and root C.    

Root	  biomass	   	  	   Df	   Sum	  Sq	   Mean	  Sq	   F	   P-‐value	  

	   Landscape	   2	   0.101	   0.050	   0.351	   0.711	  
	   Crop	   1	   2.174	   2.174	   15.131	   0.002	  
	   Landscape*Crop	   2	   0.019	   0.010	   0.067	   0.935	  
	   Residual	   12	   1.724	   0.144	   	   	  
Root	  N	   	  	   	  	   	  	   	  	   	  	   	  	  
	   Landscape	   2	   0.065	   0.032	   0.312	   0.737	  
	   Crop	   1	   1.341	   1.341	   12.988	   0.004	  
	   Landscape*Crop	   2	   0.019	   0.010	   0.094	   0.911	  
	   Residual	   12	   1.239	   0.103	   	   	  
Root	  C	   	  	   	  	   	  	   	  	   	  	   	  	  
	   Landscape	   2	   0.131	   0.066	   0.505	   0.616	  
	   Crop	   1	   1.513	   1.513	   11.636	   0.005	  
	   Landscape*Crop	   2	   0.035	   0.018	   0.136	   0.874	  
	  	   Residual	   12	   1.560	   0.130	   	  	   	  	  
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CHAPTER IV 

GENERAL CONCLUSIONS  

Multifunctional agriculture provides an important framework for working toward the dual 

goals of production and environmental quality.  This thesis explores dynamics of two ecosystem 

services, nitrogen retention and cycling and SOM maintenance, as they are influenced by two 

multifunctional agricultural systems.  Chapter 2 describes nitrogen cycling in diverse and less 

diverse crop rotations, showing that that diversification increased microbial biomass and rates of 

proteolysis of native soil.  Contrary to our hypotheses, and previous work in diversified systems, 

inorganic N pools were not different between crop systems.  However, the relatively low 

inorganic N inputs to more diverse rotations during the study season suggest that soil N 

mineralization was a more important pathway in maintaining the DIN pool while also supplying 

crops with N.   

 

Chapter 3 describes root biomass and root decomposition of two bioenergy cropping 

systems, a perennial (switchgrass) and an annual (corn) across a landscape gradient.  Root 

biomass was more sensitive to crop that to landscape positions. Across all landscape positions, 

switchgrass root biomass was greater than corn root biomass.  Switchgrass C:N ratios were 

higher than those for corn, which was likely an important factor governing the slower rates of 
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decay in switchgrass roots.  Root decay rates were not influenced by landscape position.  Root 

inputs to SOM, estimated as biomass lost over a year, were greater under switchgrass compared 

to corn.   
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APPENDIX 

POTENTIALLY MINERALIZABLE SOIL NITROGEN IN A LONG-TERM INCUBATION    

AS INFLUENCED BY CROPPING SYSTEM DIVERSITY  

Background  

 In order to test potentially mineralizable N from soils under diverse and less diverse crop 

rotations, an incubation was initiated following the method of Nadelhoffer (1990). Soils were 

collected from three cropping systems experiments in the Midwestern United States: the Iowa 

State University Marsden Farm, in Boone County, Iowa; the University of Wisconsin Wisconsin 

Integrated Cropping Systems Trail (WICST) in Columbia County, Wisconsin; and the University 

of Minnesota Variable Input Crop Management System (VICMS) in Redwood County, 

Minnesota. At each site, cropping systems representative of diverse and less diverse crop 

rotations (i.e., short and long, respectively) were used in a 400-day incubation.  During the 

incubation soils were leached 12 times with a dilute nutrient solution containing no nitrogen 

(Nadelhoffer, 1990), and the leachate analyzed colorimetrically for NO3-N concentrations. 
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Results 

   
Figure A.1. Mean cumulative NO3-N leached from short (red) and long (blue) rotations in a 400 
day incubation.  Soil from Marsden Farm (M), VICMS (V), and WICST (W).   Error bars 
represent standard errors.  
 
Table A.1.  ANOVA table for cumulative NO3-N leached.    

	  
	  
Nparm	   df	   DfDen	   F	  Ratio	   P-‐value	  

Site	   2	   2	   16	   55.0685	   <.0001	  
Crop	  System	   1	   1	   16	   28.9908	   <.0001	  
Site*Crop	  System	   2	   2	   16	   0.718	   0.5028	  

	  	  	  

Table A.2.  Estimates of cumulative NO3-N leached by site and crop system (L = long rotation, 
S = short rotation).  Error terms represent standard errors.  
Site Crop	  System	   Cumulative	  NO3-‐N	  leached	   
  ug	  g-‐1	  soil 
Marsden	   L 70.31	   (5.36) 
Marsden S 47.34 (3.54) 
VICMS L 96.63 (9.78) 
VICMS S 64.18 (4.52) 
WICST L 141.37 (7.16) 
WICST S 112.21 (10.33) 
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