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ABSTRACT 

 

 The use of tillage and plastic mulch are common practices among cucurbit 

growers to provide warm, moist, weed-free soil around plants. However, there are 

environmental drawbacks to the use of plastic mulches, such as the material waste given 

that these products are used for a single season, and the reduced soil health and stability 

that can come from frequent and intensive tillage. As an alternative strategy, a biological 

mulch can be formed by rolling and killing a cover crop stand by using a roller crimper. 

Narrow, tilled strips can be formed within this mulch for the crop to grow in a strip tillage 

system. This strategy can retain soil moisture and limit weed growth between rows 

compared to a non-mulched system, but has a tendency to create cooler soils, which can 

negatively impact growth for warm season crops, for example cucurbits. However, 

rowcovers could be used to mitigate this issue, as they can warm the air and soil, and 

provide protection to plants against insects and wind. 

 In these studies, two production systems were compared (conventional tillage 

with black plastic mulch and strip tillage into rolled cereal rye) with and without the use 

of spunbonded rowcovers in conventionally and organically managed summer squash and 

muskmelon production. Overall, there were many benefits from using the plastic mulch 

system for both muskmelon and summer squash production. In general, the soil under 

plastic mulch was warmer than the soil in strip tillage, though it also tended to be lower 

in soil moisture. Despite this, the use of rowcovers in conjunction with strip tillage had 

promising results in squash production, in part due to the increased air temperature 

provided by the rowcovers. We found more positive outcomes from using rowcovers in 

organically managed crop than in conventionally managed crops. We saw no consistent 
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effect of production system on soil microbial biomass carbon. A long-term trial would be 

needed to observe many of the soil health benefits from this conservation tillage system.
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CHAPTER 1. GENERAL INTRODUCTION 

 

 The use of plastic in horticulture has been increasing since its introduction in the 

1950s. Plastic mulches are one of the many plastic products used in horticulture today. In 

2004, approximately 140 tons of polyethylene plastic mulch was used in the United 

States alone (Shogren and Hochmuth, 2004), and in 2006 the global use of plastic mulch 

was estimated at 700 tons (Espi et al., 2006). Plastic mulches can offer a wide range of 

benefits to horticultural crops, including warming of the soil, decreasing weed pressure 

within the row, decreasing the amount of soil moisture lost to evaporation, and ultimately 

increasing the amount and quality of produce (Kasirajan and Ngouajio, 2012; Lamont, 

2005). A plastic mulch system (plasticulture) has consequently become standard practice 

for growing crops, especially warm season crops like cucurbits. 

 The benefits of using plastic mulch come at a cost to the environment. Since 

polyethylene mulches are designed to be used for one season, each year tons of plastic are 

removed from fields and either hauled to landfills or burned (Kasirajan and Ngouajio, 

2012). Due to the amount of soil adhering to the plastic, recycling the material poses 

serious challenges (Hemphill, 1993). Researchers have designed bio- and 

photodegradable film mulches to solve the disposal problem; however, these alternative 

materials vary in their ability to last throughout the season or to completely degrade after 

being tilled (Kasirajan and Ngouajio, 2012). Although some of these products can 

produce similar yields compared to typical polyethylene mulch, they are often much 

more expensive (Cirujeda et al., 2012). 
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 The issue of disposal is not the sole concern when it comes to the growing use of 

plasticulture. In order to properly install plastic and degradable film mulches alike, 

intensive tillage is employed. Intensive and deep tillage can reduce soil aggregate 

stability when compared to less intensive tillage regimes (Karlen et al., 2013; Stenberg et 

al., 2000). Over time, less aggressive or reduced tillage can improve soil health indicators 

such as soil microbial biomass carbon and total organic carbon (Karlen et al., 2013). 

Compounded with the effects of tillage, impervious plastic can accelerate runoff and 

increase soil erosion if water is channeled off the plastic and into the alleyways during 

rain events (Wan and El-Swaify, 1999). These facts point to the need for an alternative to 

plastic mulch that involves reduced tillage. 

 One technique for mulching in a reduced tillage system is to create a mulch from 

a rolled and crimped cover crop and till only narrow strips for planting. In this system, a 

cover crop that produces dense biomass is grown to maturity, at which point a roller 

crimper is used to push the cover crop over in one direction and kill it by crimping. A 

common cover crop used for this purpose is cereal rye (Secale cereal) because it is 

readily available and affordable, can be drilled or broadcast seeded, and can provide 

ground cover over the winter. Herbicides may be used to ensure a complete kill, but 

rolling can achieve sufficient kill if the planting and termination of cereal rye are timed 

correctly (Mirsky et al., 2009). The cover crop is left intact and connected to the root 

system to aid its persistence throughout the season and create uniform coverage over the 

soil (Teasdale and Mohler, 1993). This strategy also improves ease of planting given the 

uni-directional orientation of the residue (Creamer and Dabney, 2002). This, or a similar 
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system, can help limit weed growth compared to systems in which the cover crop is 

chopped into smaller pieces (Creamer et al., 1995; Wayman et al., 2014). 

 Many crops have been shown to produce similar yields in a rolled cover crop 

system compared to a bare ground system, including summer squash (Nesmith et al., 

1994), peppers (Delate, 2008), pumpkins (Wyenandt et al., 2011), and carrots (Brainard 

and Noyes, 2012). Canali et al. (2013) found that zucchini planted no-till into rolled 

barley had the same yield as a conventionally tilled system without cover crops. Leavitt 

et al. (2011), however, found that tomato, zucchini and pepper planted no-till into rolled 

rye, hairy vetch, or a rye-vetch mixture had lower yields than a conventionally tilled 

system without cover crops. Overall, there is a mixed, though generally positive, 

perception that rolled cover crop systems can be as productive as conventionally tilled 

systems. 

 None of these studies, however, compared rolled cover crop systems to 

plasticulture. Organic residue on the soil can lower soil temperature, and this, 

compounded with the warming effects of plastic mulch, leads to a large discrepancy in 

soil warmth between rolled cover crop and plastic mulch systems (Schonbeck and 

Evanylo, 1998). When growing warm season crops like cucurbits, this could pose a 

challenge for using a rolled cover crop system. An additional strategy, such as the use of 

rowcovers, may be needed for a rolled cover crop strip tillage system to be as productive 

as plasticulture. 

 A rowcover is a sheet of material that can be laid over one or several rows of 

crops, often used with a support structure, such as wire hoops, to keep the material from 

damaging the crop. One main function is microclimate modification; rowcovers create 
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warm air around the plants, and can even warm the soil within the row (Ibarra-Jiménez et 

al., 2004), though the extent of warming is dependent on the thickness of the rowcover 

(Nair and Ngouajio, 2010). They can also provide a physical barrier between insects and 

plants (Weintraub, 2009). For cucurbit crops, the cucumber beetle is a common insect 

pest. Not only does the cucumber beetle feed on plants, but it can carry a bacterium, 

Erwinia tracheiphila, in its gut. This bacterium, when transferred to cucurbits through 

insect feeding, causes bacterial wilt. Bacterial wilt has a wide host range, and can cause 

severe yield loss in many cucurbit crops (McGrath, 2004). Rowcovers can decrease the 

incidence of bacterial wilt and increase yield in muskmelon, depending on the timing of 

rowcover removal and the abundance of cucumber beetles in a given season (Caudle et 

al., 2013; Saalau Rojas et al., 2011). Because cucurbits are insect pollinated, rowcovers 

must be removed to allow for pollination unless supplemental pollinators are provided 

under the rowcovers (Saalau Rojas et al., 2011). Spunbonded rowcovers are a common 

choice for growers who want both microclimate modification and insect exclusion.  

 Rowcovers have been shown to increase yields in fresh beans (Gogo et al., 2014), 

muskmelon (Cline et al., 2008), and watermelon (Soltani et al., 1995), among other crops. 

Rowcovers can also increase early production in muskmelon (Motsenbocker and 

Bonanno, 1989; Wells and Loy, 1985). However, Ibarra et al. (2001) showed that 

spunbonded rowcovers in a plasticulture system increased plant biomass but not yield in 

muskmelon. In cucumbers, spunbonded rowcovers had no effect on plant biomass or 

yield in plasticulture cucumbers (Ibarra-Jiménez et al., 2004). Nair and Ngouajio (2010) 

saw a yield increase when rowcovers were used in cucumber on black plastic mulch, but 
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only when compost was added to all treatments. There is potential for rowcovers to aid in 

plant growth and yield, though previous studies are not conclusive. 

 My thesis research focused on the field work I performed in 2013 and 2014, in 

which I compared two production systems (plasticulture and rolled rye strip tillage) with 

and without rowcovers in conventionally and organically managed summer squash and 

muskmelon. Chapter 2 will focus on the results from the muskmelon portion of this 

research, and Chapter 3 will focus on the summer squash. In Chapter 4, I will draw 

conclusions about the studies, and point to areas where more research is needed. 
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CHAPTER 2. EVALUATING STRIP TILLAGE AND ROWCOVER USE IN 

ORGANIC AND CONVENTIONAL MUSKMELON PRODUCTION 

 

 

Modified from a paper accepted to HortTechnology 

 

 

Jennifer Tillman
1
, Ajay Nair

1
*, Mark Gleason

2
, and Jean Batzer

2 

 

 

Summary 

 Increasing interest in using cover crops and reduced tillage to build soil health has 

created a demand for strategies to implement rolled cover crop systems. In northern areas 

of the U.S., cool soil temperature in rolled cover crop systems can create a challenge 

when growing warm season vegetable crops. The use of rowcovers could mitigate the 

issue and facilitate adoption of rolled cover crop systems for both conventional and 

organic growers. This study investigated muskmelon (Cucumis melo) in two production 

systems [strip tillage into rolled rye (ST) or conventional tillage with black plastic mulch 

(plasticulture)] with or without the use of spunbonded polypropylene rowcovers. The trial 

was conducted in two fields, one in organic management and the other in conventional 

management. In general, ST led to cooler, moister soils than plasticulture, but rowcovers 

rarely impacted soil temperature. Rowcovers increased mean and maximum daily air 

temperature and decreased light intensity. Rowcovers sometimes increased fruit size, but 

rarely affected marketable yield. Overall, ST reduced total and marketable yield 

compared to plasticulture; however, ST with rowcovers often produced similar vegetative  

1
Department of Horticulture, Iowa State University, Ames, IA 50010 

2
Department of Plant Pathology and Microbiology, Iowa State University 

*To whom correspondence should be addressed. E-mail nairajay@iastate.edu 
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growth compared to plasticulture without rowcovers. Given the slow vining growth habit 

of muskmelon and the late planting inherent in a rolled rye system, achieving high 

muskmelon yields, especially early yields, may be difficult. 

 

Introduction 

 Current cucurbit production systems in the U.S. often rely on tillage and plastic 

film mulches to create favorable growing conditions of warm soils and minimal weed 

pressure around plants; however, there are environmental concerns about the disposal of 

plastic mulches (Hemphill, 1993).  An alternative would be to use biodegradable film 

mulches, but they are often prohibitively expensive (Kasirajan and Ngouajio, 2012). 

Additionally, in order to achieve adequate soil to plastic contact with film mulches, 

intensive tillage is used, but this practice can harm soil microbes (Jackson et al., 2003), 

decrease soil carbon (Roper et al., 2010) and decrease earthworm diversity (Pelosi et al., 

2014). These factors, and others, are indicators of soil health, as they can be used to 

measure the soil’s ability to sustain and support a viable ecosystem. Interest in preserving 

soil health and building topsoil is increasing among organic and conventional growers, 

and a focus on cover crop usage and reduced tillage systems could minimize negative 

impacts on soil chemical, biological, and physical properties (Balota et al., 2014; Doran, 

1987; Roper et al., 2010; Wyland et al., 1996). 

 Reduced tillage systems can produce similar or greater yields compared to 

conventional tillage systems in several vegetable crops such as carrot (Daucus carota) 

(Brainard and Noyes, 2012), cabbage (Brassica oleracea) (Haramoto and Brainard, 

2012), pepper (Capsicum annuum) (Delate, 2008), pumpkin (Cucurbita pepo) (Rapp et 
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al., 2004), summer squash (Cucurbita pepo) (Nesmith et al., 1994), sweet corn (Zea 

mays) (Luna and Staben, 2002), and zucchini (Cucurbita pepo) (Canali et al., 2013). 

 Although reduced tillage systems can increase long-term soil productivity and 

health, several drawbacks may discourage the adoption of these practices. Growers may 

confront issues with soil compaction (Salem et al., 2015) and weeds in the years 

transitioning to reduced tillage (Peigné et al., 2007) and soil temperature can be reduced 

when some reduced tillage strategies are employed (Canali et al., 2013; Licht and Al-

Kaisi, 2005). Depending on the crop, location, and time of year, growers may face 

reduced yields compared to conventional tillage (Bottenberg et al., 1997; Hoyt et al., 

1994). 

 One method of reduced tillage involves seeding a cover crop in the fall, most 

commonly cereal rye (Secale cereale), and allowing it to reach anthesis in the spring. A 

roller crimper is then used to kill the cover crop, thus creating an organic mulch for the 

cash crop. Cash crops could be planted either using a no-tillage approach or by creating a 

narrow tilled strip into which cash crops are seeded or transplanted.  Benefits of strip 

tillage into rolled cover crops include reduction in weeds between rows (Leavitt et al., 

2011; Smith et al., 2011), soil erosion protection (Creamer and Dabney, 2002), and 

preservation of soil structure. Additionally, strip tillage provides warmer soil in the 

planting zone compared to no-till (Licht and Al-Kaisi, 2005). However, rolled cover crop 

mulches can tie up nitrogen in grass based cover crop systems (Delate, 2008) and 

decrease soil temperature compared to conventional tillage (Leavitt et al., 2011). Crop 

planting may also be delayed since cereal rye must reach anthesis in order to be 
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effectively terminated by a roller crimper (Mirsky et al., 2009). Nevertheless, rolled cover 

crops are becoming an increasingly popular strategy in reduced tillage operations. 

 Rowcovers can increase temperature of both the air and soil (Gogo et al., 2014; 

Ibarra et al., 2001; Nair and Ngouajio, 2010), and have been shown to increase yields in 

various vegetable crops such as muskmelon (Cline et al., 2008; Saalau Rojas et al., 2011), 

french beans (Gogo et al., 2014) and watermelon (Soltani et al., 1995). Rowcovers serve 

as a physical barrier for the plants, reducing insect damage, disease spread (Saalau Rojas 

et al., 2011), and movement of pests that lay eggs near plants (Cline et al., 2008). This 

can be particularly important in regions where cucurbit bacterial wilt (Erwinia 

tracheiphila), spread by spotted and striped cucumber beetles (Diabrotica 

undecimpunctata and Acalymma vittatum), is a major factor in yield loss. 

 The goal of this experiment was to determine if a rolled rye strip tillage system 

could be as productive for muskmelon in Iowa as a standard system of plasticulture 

through the added use of rowcovers. 

 

Materials and Methods 

Study site 

 The study was conducted at the Muscatine Island Research and Demonstration 

Farm in Fruitland, IA (lat. 041°21’15” N, long. 091°08’08” W). Fields used in 2013 and 

2014 were adjacent. The 2013 field had been previously in a poor stand of sorghum 

sudangrass, and the 2014 field had been previously in a corn/soybean rotation under 

conventional management. Soils are categorized as well-drained, Fruitfield coarse sand 

(sandy, mixed, mesic Entic Hapludolls). 
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Experimental design 

 In each year, a split-plot design with four replications was used in adjacent 

organically and conventionally managed fields. In both years, the organically managed 

field was not certified organic. Production system was the main plot factor [strip tillage 

into rolled rye (ST) or conventional tillage with black plastic mulch (plasticulture)] and 

rowcover was the subplot factor (rowcover or no rowcover). Experimental units in each 

replication consisted of 18 plants per 31-ft row. One row of muskmelon separated whole 

plot treatments and acted as a guard row, as no data was collected from it.  

Field implementation 

 Organically and conventionally managed fields were separated by a 12-ft-wide 

buffer area. Organic management consisted of using organically certified seeds, fertilizer, 

and insecticides. Conventional management consisted of using treated seeds and 

synthetic fertilizer, insecticides, and herbicides. 

 Field operation timing is summarized in Table 2.1. Cereal rye was drilled in Oct. 

2012 at 50 lb/acre. Because of a marginal rye stand in 2013, the rate was increased to 110 

lb/acre the following season. 

 To prepare ST plots, cereal rye was rolled with a roller crimper (I&J 

Manufacturing, Gap, PA) within 1 week of reaching anthesis to maximize kill and 

minimize regrowth (Mirsky et al., 2009). This was followed by a single pass of the strip 

tiller (6000 Strip-Till; Hiniker Co., Mankato, MN). When establishing the strips in 2013, 

it was challenging to get the strip tiller to run smoothly due to heavy cereal rye residue, 

so in 2014, an extra pass with the strip tiller was made in April before rye stem 

elongation. Distance between melon rows was 6 ft center to center. Drip tape (12 inch 

emitter spacing, 0.45 gal/min/100 ft) was laid on the surface in the strip tilled region. 
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 To prepare the plasticulture plots, cereal rye was mowed and tilled in May. The 

plots were again tilled in June before using a plastic mulch layer to create 6-ft center to 

center raised beds and lay drip tape under black plastic mulch (0.9-mil thick, 4-ft wide).  

A timer was used to irrigate all fields with 0.07 in water per day initially, gradually 

increasing to 0.27 inch per day by the end of the season. 

 Granular fertilizer was applied and incorporated after tillage operations, but prior 

to establishing raised beds. Rate of fertilizer application was based on a preplant soil test. 

In 2013, ST plots received half of the total fertilizer preplant and the other half at 

rowcover removal, whereas plasticulture plots received all fertilizer preplant. Total 

fertility applied was 95 lb/acre of N using urea (46N–0P–0K) for conventional plots and 

5N–0.4P–0.8K (Fertrell Co., Bainbridge, PA) for organic plots. 

 In 2014, a system was designed for the conventionally managed field to fertigate 

N through drip irrigation. We were unable to find an organic fertilizer compatible with 

our fertigation system. The conventionally managed field received one third of the total N 

fertilizer preplant and the rest through fertigation. All K fertility was applied preplant. 

The organically managed field received all fertilizer preplant. Total fertility applied was 

150 lb·acre
-1

 of N and 83 lb/acre of K using urea and KCl (0N–0P–49.8K) preplant and 

urea ammonium nitrate (32N–0P–0K) through fertigation for the conventional field and 

4N–0.9P–3.3K (Fertrell Co.) for the organic field. 

 Untreated ‘Athena’ muskmelon seeds (Syngenta Seeds, Gilroy, CA) and organic 

potting mix (Mix #11; Beautiful Land Products, West Branch, IA) were used for the 

organic field, and insecticide-treated seeds were used for the conventional field. Seeds 

were planted into 98-cell trays in mid-May of both years. Transplants were planted using 
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a mechanical transplanter (Mulch Planter 1265; Holland Transplanter Co., Holland, MI) 

in early June of both years with an in-row spacing of 22 inch. 

 Wire hoops were placed every 4 ft down the row and spunbonded rowcovers 

(AG-30; Agribon, Polymer Group Inc., Charlotte, NC) were installed the same day of 

transplanting. Rowcover edges were buried in plasticulture plots and were weighed down 

with water-filled lay-flat hose in ST plots to avoid disturbing the rolled rye. These 

methods also prevented tearing the rowcover fabric so it could be used again. Rowcover 

ends were opened and pinned up when 50% of plants had female flowers. Rowcovers 

were removed 7 d later. 

 Plots with no rowcovers received an insecticide treatment at planting. An 

imidacloprid drench (Admire; Bayer CropScience, Research Triangle Park, NC) was used 

in the conventionally managed field and spinosad (Entrust SC; Dow AgroSciences, 

Indianapolis, IN) combined with a feeding stimulant (Cidetrak D; Trécé, Adair, OK) was 

applied as a band spray in the organically managed field. After rowcovers were removed, 

plants in the organically managed field were sprayed weekly with kaolin clay (Surround 

WP; Tessenderlo Kerley, Phoenix, AZ), an insect deterrent. Weekly scouting was used to 

monitor insects and diseases for further sprays which included permethrin (Pounce; FMC 

Corporation, Philadelphia, PA), chlorothalonil (Bravo Ultrex Weatherstik; Syngenta Crop 

Protection, Greensboro, NC), and myclobutanil (Rally; Dow AgroSciences) for the 

conventional field and spinosad, pyrethrin (Pyganic; McLaughlin Gormley King, 

Minneapolis, MN), copper, sulfur, and neem oil (Trilogy; Certis USA, Columbia, MD) 

for the organically managed field.  In 2013, one cucumber beetle per plant was the 

threshold for spraying. In 2014, the cucumber beetle thresholds were 0.5 per plant 
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preflowering, one per plant during fruit pollination, and three per plant at vine touch. In 

2013, the entire conventionally managed field was sprayed with a grass herbicide (Poast; 

BASF Corporation, Research Triangle Park, NC) on 9 July. In both years, plots were 

hand weeded after rowcover removal. 

Data collection  

 Environmental monitoring. Hobo temperature sensors (Onset Computer 

Corporation; Bourne, MA) were placed 6 inch below soil surface between two plants 

within a row in three replications in the conventionally managed field. Temperature was 

recorded by the sensors every 60 min from date of transplant until last harvest. Hobo 

temperature/light sensors (Onset Computer Corporation; Bourne, MA) were attached to 

wooden stakes and installed between two plants within a row in three replications in the 

conventionally managed field. Sensors were 6 inch above soil surface. Air temperature 

and light intensity were recorded by the sensors every 30 min from date of transplant 

until last harvest. Soil moisture sensors (10HS; Decagon Devices, Pullman, WA) were 

inserted horizontally into an exposed surface of soil 6 inch below the surface between 

plants within a row in all no rowcover treatments in four replications in the 

conventionally managed field. Soil moisture was measured only in the no rowcover 

treatments because we were not interested in the effect of rowcover on soil moisture. The 

attached data loggers (Em5b loggers, Decagon; Pullman, WA) recorded volumetric water 

content every 60 min throughout the growing season until last harvest. Environmental 

monitoring occurred solely in the conventional fields because the differences in 

management systems (conventional and organic) in our experiment would likely not 

affect air temperature, soil temperature, or soil moisture. 
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 Plant measurements. Before the first muskmelon harvest, three plants from each 

plot were excavated for measurement of vine length and plant biomass. All fruit were 

removed from vines and soil was removed from roots. In plots that had fewer than 10 

living plants, only vine length was measured, thus retaining plants so that adequate 

harvest data could be collected. Vine length was measured from the base to the end of the 

vine. For plant biomass, plants were placed in paper bags and oven dried at 67 °C for five 

days before weighing. Muskmelons were harvested at full-slip, two to three times per 

week. They were categorized as marketable if they weighed at least 2 lb, had adequate 

netting, and were free of damage caused by insects or pathogens. The number and total 

weight of marketable and non-marketable (cull) melons were recorded for each plot. 

There were twelve harvests from 1–30 Aug. 2013 and five from 14–29 Aug. 2014. 

Statistical analysis 

 Data were analyzed using PROC GLIMMIX of SAS (Version 9.3, SAS Institute 

Inc.; Cary, NC). Replication was treated as a random factor. Mean separation was 

performed by “lsmeans” and “pdiff” statements using the Satterthwaite method. 

Unprotected least significant difference (LSD) was used, thereby allowing for 

comparisons between treatments even without significant main effects or interactions. 

This was important because the main research question was not about the wholeplot or 

subplot treatments themselves, but about how they interact. 
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Results 

Weather 

 Monthly rainfall amounts during the 2013 and 2014 growing seasons were similar 

to 20-year averages, except for unusually low rainfall amounts in Aug. 2013 (Table 2.2). 

Average monthly temperatures were similar to the 20-year averages, with slightly cooler 

than normal weather in July 2014. 

Soil temperature 

 Production system had a more consistent effect on soil temperature than did 

rowcovers (Table 2.3). Before removal of rowcovers in 2013, plasticulture increased 

daily mean and maximum soil temperature compared to ST by 1.7 and 2.7 °C, 

respectively, averaging across rowcover treatments. In 2014 before rowcovers were 

removed, plasticulture increased minimum and mean soil temperature by 1.7 and 2.0 °C, 

respectively, and rowcovers increased minimum soil temperature by 1.0 °C. 

 Once rowcovers were removed in 2013, production system did not affect soil 

temperature. In 2014, minimum and mean soil temperatures remained 1.2 °C higher in 

plasticulture compared to ST after rowcovers were removed, and maximum soil 

temperatures in plasticulture plots were 1.4 °C higher. After rowcover-removal in 2014, 

the plasticulture plots that previously had rowcovers had cooler soil than the plasticulture 

plots that had never had rowcovers. There was no interaction between system and 

rowcover in either year. 

Air temperature and light intensity 

 A strong storm on 17 June 2014 disrupted a number of sensors. Those sensors 

were repositioned 24 June 2014. Data from 17–24 June 2014 have been discarded.  
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 Rowcovers increased daily mean and maximum air temperature compared to 

treatments without rowcovers, and increased daily minimum air temperature in 2014 

(Table 2.4). While rowcovers increased mean air temperature by 4.2 and 3.0 °C in 2013 

and 2014, respectively, maximum temperatures were increased by 11.7 and 6.1 °C. Over 

both years, rowcovers reduced daily mean light intensity by 33% to 37% and daily 

maximum light intensity by 32% to 37%. 

Soil moisture 

 Production system had no significant effect on soil moisture in 2013, as seen in 

Table 2.5; however, daily minimum, mean and maximum soil moisture during the 

midseason period was marginally (P < 0.1) higher in ST than in plasticulture. In 2014, ST 

plots had higher minimum, mean, and maximum daily volumetric water content 

throughout the entire season. 

Plant growth 

 In 2013, there were interactions between the effect of production system and the 

effect of rowcover on plant biomass and vine length (Table 2.6); rowcovers more greatly 

increased melon plant biomass and vine length in plasticulture treatments than they did in 

ST treatments. 

 In 2014, rowcovers did not affect plant biomass or vine length (Table 2.6). Plants 

in plasticulture had more biomass than those in ST in both the organically and 

conventionally managed fields, whereas plants in plasticulture had longer vines only in 

the organically managed field. 
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Yield 

 Production system had a significant effect on marketable muskmelon yield; plants 

grown in plasticulture produced more than those grown in ST in both years in the organic 

and conventional fields (Table 2.7). Rowcovers had a significant effect on the yield only 

in the 2014 organic field, where ST with rowcover had a higher yield than ST without 

rowcover. There was no interaction between production system and rowcover in regard to 

yield. Based on mean separation, the ST with rowcover treatment never produced an 

equivalent yield to either of the plasticulture treatments. In the conventional field in 2013, 

however, the ST without rowcover treatment produced the same yield as the plasticulture 

with rowcover treatment. 

 The average weight of each fruit was not affected by production system except in 

the organic field in 2014, when melons from plants grown in plasticulture were 0.5 lbs 

heavier on average than those from plants grown in ST. Rowcovers increased the average 

weight of melons in both years and in both organically and conventionally managed 

fields by 0.6 to 0.9 lbs, except in the conventional field in 2014 when rowcovers had no 

effect. 

 For non-marketable (cull) weights in the 2013 organic field, there was an 

interaction between production system and rowcover, where rowcovers increased cull 

weights to a greater degree in plasticulture than in ST. In the 2014 organic field, both 

plasticulture and rowcovers increased cull weights and there was no interaction. In the 

conventional fields, rowcovers increased cull weights in both years. A large percentage of 

yield loss caused by insect damage on fruit was due to a sudden influx of cucumber 

beetles close to harvest for which insecticides were not applied. 
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Discussion 

 Soil temperatures were more affected by production system early in the season in 

2013 when rowcovers were installed compared to later in the season when rowcovers had 

been removed. This could be due to the melon plants vining out and covering the surface 

of the black plastic as the season progressed, thus blocking solar radiation from heating 

the plastic mulch surface. 

 In previous studies, spunbonded rowcovers increased mean soil temperature at 

depths of 2.5 cm (Nair and Ngouajio, 2010), 5 cm (Motsenbocker and Bonanno, 1989), 

and 10 cm (Ibarra-Jiménez et al., 2004; Soltani et al., 1995). We did not see a strong 

effect by rowcovers on soil temperature at a depth of 6 in. This is confirmed by Wolfe et 

al. (1989), as they also did not see significant differences at the similar depth of 15 cm. 

The soil in this study was a well-drained coarse sand, so one might expect the soil 

temperature to respond more quickly to temperature fluctuations than it would in a 

heavier soil; however, this was not observed at a depth of 6 in. Soil temperature has been 

shown to be a predictor of vegetative growth in muskmelon (Jenni et al., 1996) and may 

be a better predictor of yield than air temperature (Ibarra et al., 2001). 

 Rowcovers increased maximum daily air temperature to a point that has been 

shown to be detrimental to muskmelon plants. Jenni et al. (1996) found that damage to 

muskmelon may occur when air temperature exceeds 40 °C; this threshold was exceeded 

by 1.3 to 2.3 °C in no-rowcover treatments, and by 8.4 to 13.0 °C in rowcover treatments, 

depending on the year. Similarly, Ibarra et al. (2001) found that maximum air 

temperature under rowcovers reached 51.2 to 52.6 °C as opposed to 37.2 °C in plots with 

no rowcover; they saw no positive effect of rowcovers on muskmelon yield. This 
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suggests that the weight of rowcovers used in our experiment, 0.9 oz·yd
-2

, perhaps 

contributed to higher than optimal air temperatures. If high temperatures appear to be 

damaging plants, we recommend using a rowcover that does not trap as much heat, such 

as a thinner spunbonded material or a nylon mesh. 

 Since the melons were grown in the summer and in full sun, the decreased light 

intensity under the rowcovers likely did not negatively affect their growth. Perring et al. 

(1989) found that only muskmelon grown under spunbonded rowcovers in the fall, as 

opposed to the spring, experienced yield loss. However, Nair and Ngouajio (2010) found 

that cucumbers grown under a thick rowcover (60% light transmission) sometimes 

produced lower yields than those grown under a light rowcover (85% light transmission). 

It is hard to differentiate between the effect of temperature and light intensity, as thicker 

rowcovers trap more heat and block more light. 

 Strip tillage can increase soil moisture compared to conventional tillage without 

plastic mulch (Haramoto and Brainard, 2012), in part because organic residue on the 

ground in strip tillage can decrease evaporation (Johnson and Hoyt, 1999). However, in 

the current study, it is doubtful that the thin rye mulch prevented more evaporation within 

the plant row than the film of plastic in plasticulture plots. Because we planted cereal rye 

in October, as opposed to the preferable September planting date, to accommodate 

soybean harvest and because of the sandy soil at our site that lacks nutrients and organic 

matter, the rye stand in both years was not thick enough to completely cover the soil after 

rolling. This not only allowed weeds to grow between rows, but also allowed for more 

evaporation and soil warming than would have been observed if the rye residue had been 

thicker. 
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 Whether in a reduced or conventional tillage system, organic mulches can help 

maintain greater soil moisture than plots covered in plastic mulch, as organic mulches 

allow rain to penetrate, while plastic films deflect most rainfall (Schonbeck and Evanylo, 

1998). Both production systems in the current study received the same amount of 

irrigation through drip tape, but most rainfall could not reach the plants in the 

plasticulture system. If irrigation is limited or non-existent in a certain farm setting, strip 

tillage could provide a substantial benefit to muskmelon by allowing rain infiltration 

while minimizing evaporation. 

 Given that rowcovers, especially when combined with plasticulture, increased 

plant biomass in 2013, we do not believe the high temperature under the rowcovers 

negatively affected vegetative growth. This contradicts the assumption that air 

temperatures over 40 °C would have a negative effect on vine growth as suggested by 

Jenni et al. (1996). In 2014, however, rowcovers did not increase plant biomass or vine 

length. This was unexpected, as daily maximum air temperatures in 2013 in rowcover 

treatments were higher than those in 2014, and both were well over 40 °C (Table 2.4). 

 The significant interaction between system and rowcover in 2013 may have 

occurred because plots were not weeded until just after rowcovers were removed so as to 

not favor the no-rowcover treatment. There were few weeds under the rowcovers in 

plasticulture plots, but weeds in ST plots did become problematic by that point in the 

season. Because of this, the rowcovers had a positive effect in plasticulture, but weed 

competition may have precluded this increase in melon plant biomass in ST. The same 

weeding protocol was used in 2014, however the interaction was not observed. 
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 Plant biomass and vine length of ST with rowcover was the same in plasticulture 

without rowcover for both fields in both years with only one exception. This finding 

shows that ST can produce plants of similar size to those grown in a plasticulture system 

through the use of rowcovers. 

 In our study, plasticulture treatments produced higher marketable yields than ST 

across both years in conventional and organically managed fields. The only instance 

when rowcovers increased marketable yield compared to no-rowcover treatments was for 

organic ST plots in 2014 (Table 2.7). This supports the claim that soil temperature may 

be more important for muskmelon plant growth and yield than air temperature (Ibarra et 

al., 2001), because plasticulture systems tended to increase 15-cm soil temperature, while 

rowcovers rarely affected it. Even though rowcovers should provide protection from 

insects and insect-transmitted diseases (Saalau Rojas et al., 2011), the treatment of ST 

with rowcovers did not ever produce an equivalent yield compared to plasticulture 

without rowcovers. The benefit that rowcovers have to offer may change from year to 

year depending on weather conditions, disease presence, and which, if any, insecticides 

are used after rowcover removal. 

 Studies have found that spunbonded rowcovers can increase marketable 

muskmelon yield (Cline et al., 2008) and increase early muskmelon yield (Motsenbocker 

and Bonanno, 1989). Given that the system of rolled cereal rye depends on abundant 

biomass production and, especially in organic systems, the termination of cereal rye at 

anthesis stage to achieve successful termination, planting muskmelon early enough to 

capture the early season market would be challenging, even with rowcovers.  
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Conclusions 

 The goal of a strip tillage system in rolled cover crops is to generate optimal cover 

crop biomass to provide weed control and moisture retention throughout the growing 

season. However, this often leads to delayed melon planting, as growers are supposed to 

wait until cereal rye reaches anthesis stage for effective termination using a roller 

crimper. This leads to challenges in early season melon production in a rolled rye system. 

Because there is potential for building soil health through long-term reduction in tillage, 

strip tillage remains an important area of research. Rowcovers could be a useful tool in 

transitioning to reduced tillage systems. In this study rowcovers did not increase 

marketable muskmelon yield, but did increase fruit weight and plant biomass. Controlling 

weeds remains a challenge in strip tillage muskmelon production due to the slow vine 

growth and canopy closure, so achieving a thick rye mulch in strip tillage is important, 

though it may prevent early planting.  
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Table 2.1. Timeline of treatment establishment in muskmelon trials in Muscatine, IA in 

2013 and 2014. 
  

Operation 2013 2014 

Drilled cereal rye cover crop, variety unknown 12 Oct. 2012 2 Oct. 2013 

Established strip tillage plots - 8 Apr. 

Took soil samples for nutrient recommendation 1 May 23 Apr. 

Muskmelon seeded into 98-cell trays 9 May 12 May 

Mowed and incorporated rye (plasticulture) 9 May 29 May 

Roller-crimped rye at anthesis (strip tillage) 22 May 29 May 

(Re)established strips (strip tillage) 3 June 29 May 

Tilled and laid plastic (plasticulture) 3 June 5 June 

Transplanted muskmelon, installed rowcovers 4 June 10 June 

Opened rowcover ends 11 July 10 July 

Removed rowcovers 18 July 17 July 
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Table 2.2. Monthly total precipitation and average daily temperature during the 2013 and 

2014 growing seasons and the 20-year average in Muscatine, IA
z
. 

 

z
Monthly data from Iowa Environmental Mesonet at the Muscatine, IA location. 

y
Twenty year averages from 1995–2014. 

 Monthly precipitation (mm)  Avg monthly temp (°C)
 

Month 2013 2014 20-yr avg
y 

 2013 2014 20-yr avg 

June 154 125 136  21.7 22.8 22.4 

July 75 116 88  23.3 21.7 24.4 

Aug. 1 107 104  23.3 22.8 23.4 



 

 

 3
0 

Table 2.3. Minimum, mean, and maximum daily soil temperature at 15 cm depth in conventionally managed muskmelon before and 

after rowcover (RC) removal. 

 

 

 

 

 

 

 

 

 

 

z
Pre rowcover removal: 5 June–17 July 2013, 11 June–9 July 2014 

y
Post rowcover removal: 18 July–28 Aug. 2013, 10 July–28 Aug. 2014 

 Pre RC removal
 
(°C)

z
  Post RC removal

 
(°C)

y
 

System Rowcover
x 

Min
w
 Mean Max  Min Mean Max 

  2013 

Plasticulture RC
 

24.3 a
v 

27.6 a 30.7 a  21.6 24.3 b 26.3 a 

 NRC 24.1 ab 27.3 a 30.8 a  22.7 25.1 a 27.3 ab 

Strip tillage RC 23.8 ab 26.1 b 28.6 b  22.5 24.4 ab 26.6 ab 

 NRC 23.3 b 25.4 b 27.4 b  22.5 24.2 b 25.9 b 

  -------------------------------Significance------------------------------- 

System (S) NS *** **  NS NS NS 
Rowcover (R) * NS NS  NS NS NS 
S × R NS NS NS  NS NS NS 

  2014 

Plasticulture RC 24.7 a 28.1 a 31.8 a  23.5 a 25.7 b 28.1 ab 

 NRC 23.6 b 27.1 a 31.0 ab  23.9 a 26.4 a 29.0 a 

Strip tillage RC 22.9 c 25.7 b 28.8 b  22.7 b 24.7 c 26.9 c 

 NRC 22.0 d 25.5 b 30.1 ab  22.4 b 24.9 c 27.5 bc 

  -------------------------------Significance------------------------------- 

System (S) *** *** NS  *** *** * 

Rowcover (R) *** NS NS  NS * NS 
S × R NS NS NS  NS NS NS 



 

 

 3
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Table 2.3 continued 

 

x
RC = rowcover, NRC = no rowcover 

w
Average daily minimum, mean and maximum temperature. 

v
Mean separation (by year in columns) based on least significant differences at P < 0.05. 

NS, *, **, ***
 Nonsignificant or significant at P < 0.05, 0.01, or 0.001, respectively, based on F-test.
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Table 2.4. Air temperature and light intensity in conventionally managed muskmelon in 

2013 and 2014 before opening rowcovers, averaged across production system treatments. 

 

 

 

 

z
RC = rowcover, NRC = no rowcover 

y
Average daily minimum, mean and maximum temperature. 

x
Rowcovers unopened 5 June–10 July 2013. 

w
Rowcovers unopened 11 June–9 July 2014. A storm disrupted row covers and sensors 

17 June 2014; data from 17–24 June have been discarded. 

NS, *, **, ***
 Nonsignificant or significant at P < 0.05, 0.01, or 0.001, respectively, based on 

F-test. 

 Air temp  

(°C) 

 Light intensity 

(lumens/m
2
) 

Rowcover
z 

Min
y 

Mean Max  Mean Max 

 2013
x
 

RC 17.4 31.5 53.0  310 1248 

NRC 16.9 27.3 41.3  446 1800 

 NS *** ***  *** *** 

 2014
w
 

RC 15.7 29.4 48.4  312 1238 

NRC 14.3 26.4 42.3  487 1951 

 ** *** ***  *** *** 
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Table 2.5. Soil moisture (m
3
/m

3
) at 15 cm depth in conventionally managed melon with no rowcovers. 

 

 

 

 

z
Early season: 14 June–2 July 2013, 11 June–6 July 2014 

y
Midseason: 3 July–30 July 2013, 7 July–1 Aug. 2014 

x
Late season: 31 July–28 Aug. 2013, 2 Aug.–28 Aug. 2014 

w
Average daily minimum, mean and maximum soil moisture. 

NS, *, **, ***
 Nonsignificant or significant at P < 0.05, 0.01, or 0.001, respectively, based on F-test. 

 

 Early season
z 

 Midseason
y 

 Late season
x 

System Min
w 

Mean Max  Min Mean Max  Min Mean Max 

 2013 

Plasticulture 0.19 0.20 0.21  0.16 0.17 0.19  0.21 0.22 0.24 

Strip tillage 0.21 0.22 0.26  0.22 0.24 0.28  0.24 0.26 0.29 

 NS NS NS  NS NS NS  NS NS NS 

 2014 

Plasticulture 0.14 0.15 0.16  0.11 0.12 0.13  0.15 0.16 0.17 

Strip tillage 0.18 0.20 0.22  0.19 0.21 0.23  0.20 0.22 0.24 

  **  **  **   ***  ***  ***   ***  ***  ** 
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Table 2.6. Plant biomass and vine length of organically and conventionally managed muskmelon in 2013 and 2014. 

z
RC = rowcover, NRC = no rowcover 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y
Mean separation (by year in columns) based on least significant differences at P < 0.05. 

NS, *, **, ***
 Nonsignificant or significant at P < 0.05, 0.01, or 0.001, respectively, based on F-test. 

System Rowcover
z 

2013  2014 

Plant 

biomass (g) 

Vine length 

(cm) 

 Plant 

biomass (g) 

Vine length 

(cm) 

Organic  

Plasticulture RC
 

139 a
y 

277 a  97 a 183 a 

 NRC   70 b 136 bc  80 ab 166 ab 

Strip tillage RC   54 b 161 b  41 b 138 bc 

 NRC   37 b 117 c  30 b 115 c 

  ----------------------------Significance---------------------------- 

System (S) *** ***  ** ** 

Rowcover (R) ** ***  NS NS 

S × R * **  NS NS 

Conventional  

Plasticulture RC 148 a 271 a  76 a 163 a 

 NRC   78 b 175 b  66 ab 143 ab 

Strip tillage RC   60 b 193 b  43 c 140 b 

 NRC   40 c 142 c  47 bc 139 b 

  ----------------------------Significance---------------------------- 

System (S) ** ***  *** NS 

Rowcover (R) *** ***  NS NS 
S × R ** **  NS NS 
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Table 2.7. Marketable yield, marketable fruit weight, and non-marketable (cull) weight (lb) of organically and conventionally 

managed muskmelon in 2013 and 2014. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z
RC = rowcover, NRC = no rowcover 

y
Mean separation in columns based on least significant differences at P < 0.05. 

NS, *, **, ***
 Nonsignificant or significant at P < 0.05, 0.01, or 0.001, respectively, based on F-test.

 

 2013  2014 

System Rowcover
z 

Marketable  Cull  Marketable  Cull 

Yield 

(lb/plant) 

Fruit wt 

(lb) 

 

lb/plant 

 Yield 

(lb/plant) 

Fruit wt  

(lb) 

 

lb/plant 

Organic  

Plasticulture RC 3.6 a
y 

4.4 a  4.2 a  2.8 a 4.1 a  4.5 a 

 NRC 3.1 a 3.7 b  1.3 c  2.5 a 3.7 a  2.6 b 

Strip tillage RC 1.6 b 4.7 a  2.2 b  1.5 b 3.7 a  1.6 c 

 NRC 1.4 b 3.7 b  0.8 c  0.4 c 3.0 b  0.8 c 

  -------------------------------------Significance------------------------------------- 

System (S) ** NS  ***  ** **  *** 

Row cover (R) NS ***  ***  * **  ** 

S x R NS NS  *  NS NS  NS 

Conventional  

Plasticulture RC 4.1 ab 4.7 a  4.0 a  3.1 a 4.1 a  4.5 a 

 NRC 5.0 a 3.7 b  0.9 b  3.2 a 4.0 a  2.9 c 

Strip tillage RC 1.6 c 4.0 b  3.0 a  0.7 b 2.3 a  3.9 ab 

 NRC 2.4 bc 3.7 b  1.1 b  0.9 b 4.0 a  3.0 bc 

  -------------------------------------Significance------------------------------------- 

System (S) * NS  NS  *** NS  NS 

Row cover (R) NS **  ***  NS NS  ** 

S x R NS NS  NS  NS NS  NS 



36 
 

 

CHAPTER 3. ROWCOVERS AND STRIP TILLAGE COULD PROVIDE AN 

ALTERNATIVE TO PLASTICULTURE SYSTEMS IN SUMMER SQUASH 

PRODUCTION 
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Abstract 

 Plastic mulch is often used in cucurbit production, but it has negative soil health 

and environmental implications due to use of tillage for installation and generation of 

plastic waste. This two-year study aimed to find a viable alternative to plastic mulch 

through the use of strip tillage and rowcovers. A split plot design was used in both 

conventionally and organically managed summer squash (Cucurbita pepo), with 

production system as the whole plot factor [conventional tillage with black plastic mulch 

(PL) and rolled cereal rye (Secale cereale) with strip tillage (ST)] and rowcover use as 

the subplot factor (rowcover until anthesis or no rowcover). Rowcovers increased average 

air temperature by 1.6 to 4.0 °C and increased maximum air temperature by up to 10.3 

°C. Rowcovers decreased average light intensity by 33% to 39%. Though soil 

temperature in PL tended to be higher than in ST, in one year rowcovers helped bridge 

the gap. Plant biomass was consistently higher in the PL than ST system. Averaged 

across rowcover treatments, plants in PL had higher marketable yields than those in ST;  
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however, the use of rowcovers often led to comparable yields between production system 

treatments. Rowcover was a significant factor explaining marketable yield for the 

organically managed fields both years. There was no consistent effect of production 

system on soil microbial biomass carbon. Based on our results, strip tillage into rolled rye 

could be a viable alternative to plasticulture for summer squash production in Iowa, and 

rowcovers could help increase yields in strip tillage especially in organic management 

systems. 

 

Introduction 

Plastic mulch is commonly used by cucurbit growers, as it increases soil 

temperature, reduces weed pressure, retains moisture, and increases earliness of harvest 

for many crops (Lamont, 2005). Black plastic mulch can increase cucurbit yields 

compared to those grown without mulch for cucumber (Ibarra-Jiménez et al., 2004), 

muskmelon (Ibarra et al., 2001), and summer squash (Mahadeen, 2014). However, there 

are concerns about environmental sustainability due to the generation of plastic waste 

(Hemphill, 1993) and the disturbance to the soil from intensive tillage employed for 

proper installation of plastic mulch. Bio- and photodegradable film mulches address the 

issue of waste, but they are more expensive (Cirujeda et al., 2012), vary in their ability to 

decompose at the proper time (Kasirajan and Ngouajio, 2012), and do not eliminate the 

need for intensive tillage. Tillage degrades soil structure (Peigné et al., 2007), making it 

more susceptible to compaction, and can decrease soil microbial biomass (Karlen et al., 

2013), soil moisture (Hoyt et al., 1994), and earthworm diversity (Pelosi et al., 2014). 
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 In studying alternatives to the use of plastic mulches as a way to build soil health, 

it is also important to consider the use of cover crops as a means to reduce soil erosion 

and add organic matter. Cover crops must be managed so they do not compete with the 

main crop, however. One common approach is to incorporate the cover crop into the soil 

through tillage. This adds organic matter to the soil, but again, it leaves the soil 

vulnerable to erosion (Dickey et al., 1983) among its other potential negative 

consequences. 

 One way to terminate cover crops without tillage is to use a roller crimper, which 

kills a mature cover crop by pushing it over and crimping each stem multiple times. The 

rolled and crimped residue is then left intact on the soil surface to serve as a biological 

mulch that can be used as an alternative to plastic mulch. This technique can be adapted 

to both no-tillage and strip tillage systems. Heavy residue on the soil surface can lower 

soil temperatures compared to bare soil (Schonbeck and Evanylo, 1998), but reduces 

weed pressure (Leavitt et al., 2011) and helps maintain high soil moisture (Schonbeck 

and Evanylo, 1998). Rolled cover crop systems have produced equivalent yields to tilled 

bare ground systems for pumpkin (Wyenandt et al., 2011), organic bell pepper (Delate, 

2008), winter squash (Hoyt, 1999), and tomato (Hoyt, 1999). However, Leavitt et al. 

(2011) found that tomato, zucchini, and bell pepper in a no-till rolled cover crop system 

in Minnesota had lower yields than in a conventionally tilled system without cover crops, 

potentially due to the cooler northern U.S. climate. These mixed results indicate the need 

for a technique to mitigate the potential yield loss when using a rolled cover crop system 

as opposed to bare ground. 
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 Given the increased yields in plasticulture systems compared to bare ground, and 

the mixed results when comparing rolled cover crop systems to bare ground, it is not 

surprising that little work has been done comparing rolled cover crop systems to 

plasticulture systems, especially in warm season crops like cucurbits. One way to 

overcome the possible yield loss in a rolled cover crop system is to use rowcovers. 

Rowcovers can increase air temperature and soil temperature (Ibarra et al., 2001), and 

have been shown to increase yield of muskmelon (Cline et al., 2008), cucumber (Nair and 

Ngouajio, 2010), and watermelon (Soltani et al., 1995). By physically preventing insects 

from reaching young plants, rowcovers not only prevent damage from insect feeding, but 

also reduce the spread of insect-transmitted pathogens like Erwinia tracheiphila (Saalau 

Rojas et al., 2011). This pathogen causes cucurbit bacterial wilt, a devastating disease for 

cucurbit growers. 

 Our goal was to determine if using rowcovers in a strip tillage system could 

produce equivalent yield to plasticulture systems in organically and conventionally 

managed summer squash. We compared two production systems [conventional tillage 

with black plastic mulch (PL) and rolled rye strip tillage (ST)] with and without the use 

of rowcovers in organically and conventionally managed fields of summer squash. 

 

Materials and methods 

Experimental site 

 Trials were conducted in Fruitfield coarse sand (sandy, mixed, mesic Entic 

Hapludolls) at the Muscatine Island Research and Demonstration Farm in Fruitland, IA 

(lat. 041°21’15” N, long. 091°08’08” W). The 2013 field had previously been in sorghum 
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sudangrass, and the 2014 field had previously been in a corn/soybean rotation under 

conventional management. 

Planting material 

 For the conventionally managed field, ‘Lioness’ summer squash seeds (Seedway, 

Hall, NY) treated with thiamethoxam, azoxystrobin, mefenoxam, and fludioxonil were 

sowed into 72-cell trays with potting mix (Metro Mix 360; Sun Gro Horticulture, 

Agawam, MA). Untreated summer squash seeds were sowed with organic potting mix 

(Mix #11; Beautiful Land Products, West Branch, IA) into 72-cell trays for the 

organically managed field. 

Experimental design and treatments 

 A split-plot complete block design with four replications was used for both 

organically and conventionally managed fields, which were separated by a 3.7-m buffer. 

The whole plot factor was production system [(strip tillage into rolled cereal rye (ST) or 

conventional tillage with black plastic mulch (PL)] and the subplot factor was rowcover 

use (rowcover or no rowcover). Spacing between rows was 1.8 m. A guard row separated 

whole plot treatments. Each experimental unit consisted of 18 plants per 9.5-m row. 

Land preparation 

 Timing of field operations is summarized in Table 3.1. Cereal rye was seeded 

with a drill across all fields in October prior to each field season. In 2012, cereal rye was 

drilled at a rate of 56 kg·ha
-1

. Due to an insufficient stand of rye in Spring 2013, the 

October 2013 seeding rate was increased to 123 kg·ha
-1

. 
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 Cereal rye in PL treatments was mowed and tilled in May. Plots were again tilled 

in June before laying black plastic mulch (0.02 mm thick) on raised beds with drip tape 

(0.3 emitter spacing, 0.028 L·s
-1

·30.5 m
-1

). 

 Cereal rye in ST treatments was mechanically killed using a rear-mounted, 

chevron-patterned roller crimper (I&J Manufacturing, Gap, PA). Rolling was performed 

when cereal rye was at anthesis stage to maximize kill and minimize regrowth (Mirsky et 

al., 2009). In 2013, strips were made using a strip tiller (6000 Strip-Till; Hiniker Co., 

Mankato, MN) after rolling the rye. There were challenges in strip tilling within the 

mature rye residue in 2013. To mitigate this issue in 2014, an extra pass with the strip 

tiller was made in early April before rye stem elongation. This approach allowed the strip 

tiller to work efficiently in the rolled rye residue and form strips that were 20 cm wide in 

May. Drip tape was laid on the surface of the strip tilled zone. 

 Fertilizer was applied in a 0.6-m-wide band centered on each row after tillage and 

then incorporated. Fertilizer application was based on a preplant soil test. In 2013, a total 

of 72 kg·ha
-1

 of N was added using urea (46N–0P–0K) in the conventionally managed 

field and an organic fertilizer (5N–0.4P–0.8K) (Fertrell Co., Bainbridge, PA) in the 

organically managed field. PL treatments received all fertilizer preplant but ST treatments 

received one-half preplant and the other half was side-dressed when rowcovers were 

removed. 

 In 2014, a system was designed for the conventionally managed field to fertigate 

N through drip irrigation. Based on the preplant soil test, a total of 93 kg·ha
-1

 of K and 

112 kg·ha
-1

 of N was applied to the conventionally managed field using KCl (0N–0P–

49.8K), granular urea, and liquid urea ammonium nitrate (32N–0P–0K). An organic 
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fertilizer (4N–0.9P–3.3K) (Fertrell Co.) was used in the organically managed field to 

cover both N and K requirements. All treatments in the conventionally managed field 

received one-third of the total N requirement preplant with urea, and two-thirds through 

fertigation with urea ammonium nitrate. Treatments in the organically managed field 

received all fertilizer preplant because there was not an acceptable organic liquid 

fertilizer for the fertigation system. 

 Four-week-old squash seedlings were transplanted in June using a mechanical 

transplanter (Mulch Planter 1265; Holland Transplanter Co., Holland, MI) with an in-row 

spacing of 56 cm. The same day as transplanting, wire hoops were installed every 1.2 m 

down the row in rowcover treatments, and spunbonded rowcovers (AG-30; Agribon, 

Polymer Group Inc., Charlotte, NC) were placed over the rows. Rowcover edges in the 

PL treatments were covered with soil. Edges in ST treatments were held in place using 

water-filled lay-flat hose to minimize disturbance to the rye mulch and prevent tearing of 

the rowcover fabric. Rowcovers were removed when 50% of squash plants had female 

flowers. 

 In the conventionally managed field, treatments without rowcovers received an 

imidacloprid drench (Admire; Bayer CropScience, Research Triangle Park, NC) at 

planting. In the organically managed field, treatments without rowcovers initially 

received a foliar spray of spinosad (Entrust SC; Dow AgroSciences, Indianapolis, IN) 

combined with an insect feeding stimulant (Cidetrak D; Trécé, Adair, OK). Plants under 

rowcovers did not receive any insecticide until rowcovers were removed. 

 Fields were scouted weekly for insects and diseases. A pheromone trap was 

installed 300 m from the study site to monitor squash vine borer (Melittia cucurbitae); the 
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threshold was one adult moth per trap. Thresholds for squash bugs (Anasa tristis) and 

striped cucumber beetles (Acalymma vittatum) were one egg mass per plant and one 

insect per plant, respectively. Pesticide sprays were applied with a backpack sprayer 

when thresholds were reached; sprays approved by the National Organic Program were 

used in the organically managed fields. Plots were hand weeded after rowcover removal. 

In 2013, the entire conventionally managed field was sprayed with a grass herbicide 

(Poast; BASF Corporation, Research Triangle Park, NC) on 9 July. 

Data collection 

 Environmental monitoring. Hobo pendant temperature/light sensors (Onset 

Computer Corporation; Bourne, MA) were attached to wooden stakes placed within the 

row, 15 cm above the soil surface, in three replications in the conventionally managed 

field. They recorded air temperature and light intensity every 30 min throughout the 

growing season. Hobo pendant temperature sensors were buried within the row, 15 cm 

below the soil surface, in three replications in the conventionally managed field. They 

recorded soil temperature every 60 min throughout the growing season. 

 Plant measurements. A SPAD meter (SPAD 502 Plus; Konica Minolta Sensing 

Americas, Ramsey, NJ) was used to measure chlorophyll content on 15 July 2013 and 12 

Aug. 2014 at midday on a sunny day. Measurements were taken on eight plants in each 

subplot. Two readings from the youngest fully expanded leaf were averaged. Fruit were 

harvested twice per week. Fruit were classified as marketable if they were 15–23 cm 

long, had minimal scarring, were well-formed, and had no insect damage. The number 

and total weight of marketable and non-marketable (cull) squash were recorded for each 

plot. Because the harvest schedule was insufficient to prevent overgrown squash, 
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marketable yield is reported as number of squash instead of weight, and includes 

oversized squash that were otherwise marketable. There were 14 harvests from 2 July to 

16 Aug. in 2013 and 12 harvests from 7 July to 15 Aug. in 2014. At first harvest, on 2 

July 2013 and 7 July 2014, three plants from each plot were excavated for measurement 

of plant biomass. All fruit were removed from the plants and soil was removed from 

roots. Plants were placed in paper bags and oven dried at 67 °C for five days before 

weighing. 

 Soil microbial biomass carbon. Soil samples were taken at the end of each 

growing season (29 Aug. 2013 and 19 Aug. 2014). Three soil cores (3.8 cm diameter, 15 

cm depth) were taken within the row in each plot to make one composite sample per plot. 

Soil was kept in a sealed bag in a cooler at 4 °C until analysis. Soil samples were sieved 

using a 2 mm sieve. The sieve size was deemed appropriate instead of a more common 8 

mm sieve (Karlen et al., 2013; Vance et al., 1987) because the sandy texture of the soil 

made it easy to sieve without much disturbance to the soil even with a smaller mesh size. 

Microbial biomass carbon (MBC) was extracted using a chloroform fumigation 

extraction method with a procedure modified from Vance et al. (1987). In 2013, extracts 

were analyzed on a Phoenix 8000 UV-Persulfate Total Organic Carbon (TOC) Analyzer 

(Teledyne Tekmar, Mason, OH). In 2014, a Torch Combustion TOC/TN Analyzer 

(Teledyne Tekmar) was used. A conversion factor of 0.33 was used when calculating 

microbial biomass carbon. 

Statistical analysis 

 Data were analyzed using PROC GLIMMIX and PROC MIXED of SAS (Version 

9.3, SAS Institute Inc.; Cary, NC). Years and management systems (organic and 
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conventional) were analyzed separately. Replication was treated as a random factor. 

Mean separation was performed by “lsmeans” and “pdiff” statements using the 

Satterthwaite method. Unprotected least significant difference (LSD) was used, thereby 

allowing for comparisons among treatments even without significant main effects or 

interactions. This was important because the main research question was not about the 

wholeplot or subplot treatments themselves, but about how they interacted. 

 

Results 

Weather 

 Monthly rainfall amounts during the 2013 and 2014 growing seasons were similar 

to 20-year averages, except for unusually low rainfall in August 2013 (Table 3.2). 

Average monthly growing degree days (GDDs) were similar to 20-year averages, though 

in both years July had fewer GDDs compared to the 20-year average. 

Air temperature and light intensity 

 In 2013, rowcovers did not affect minimum air temperature, but they increased 

mean air temperature by 3.1 to 4.0 °C and increased maximum air temperature by 6.2 to 

10.3 °C (Table 3.3). In 2014 rowcovers increased minimum air temperature during the 

early season period by 1.4 °C. Similarly to 2013, rowcovers increased mean air 

temperature in both season periods by 1.6 to 2.6 °C. Surprisingly, rowcovers increased 

maximum air temperature in the early season by 5.4 °C but had no effect in the 

midseason period. 

 Rowcovers decreased mean light intensity averaged over 24 hr by 33% to 39% 

and decreased maximum light intensity by 34% to 44%, depending on the year (Table 
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3.4). The weight of rowcover used in this experiment is expected to have 70% light 

transmission when new, but the rowcovers used in this experiment had been used in 

previous seasons as is the typical practice for most growers using rowcovers. 

Soil temperature 

 In 2013, rowcover had no effect on soil temperature in ST or PL systems (Table 

3.5). While minimum soil temperature was unaffected by production system in 2013, PL 

treatments had higher mean and maximum soil temperature both before and after 

rowcover removal. Before rowcover removal, mean and maximum soil temperatures 

were 2.1 and 3.5 °C higher in PL, respectively. After rowcover removal, mean and 

maximum soil temperatures were 1.0 and 2.1 °C higher in PL, respectively. 

 In contrast, in 2014 rowcovers increased minimum and mean soil temperature by 

1.3 and 1.1 °C, respectively, before they were removed. In 2014, when averaging across 

rowcover treatments, PL treatments always had higher minimum, mean, and maximum 

soil temperatures than ST treatments, raising the daily minimum soil temperature by 1.7 

to 1.8 °C, daily mean soil temperature by 1.7 to 2.0 °C, and daily maximum soil 

temperature by 2.0 °C. However, before the rowcovers were removed there was no 

difference in soil temperature between ST with rowcover and PL without rowcover. 

Plant biomass and leaf chlorophyll content 

 Table 3.6 shows that PL treatments had higher plant biomass than ST treatments 

in organically and conventionally managed fields in both years. Yet, in the 

conventionally managed field in 2014, biomass in ST with or without rowcovers did not 

differ from biomass in PL without rowcovers. There was no trend for the effect of 

production system or rowcovers on SPAD meter readings; in the conventionally managed 
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field in 2013, however, the plants in ST without rowcovers had the highest SPAD meter 

readings. 

Yield 

 In the organically managed field, production system affected marketable yield in 

both years (Table 3.7). PL treatments produced 2.6 and 2.1 more marketable squash per 

plant than ST treatments in 2013 and 2014, respectively. Rowcovers also affected 

marketable yield in both years in the organically managed field; treatments with 

rowcovers produced 0.7 and 1.3 more marketable squash per plant than treatments 

without rowcovers in 2013 and 2014, respectively. In 2014, the yield from plants in ST 

with rowcovers did not differ from plants in PL without rowcovers. Interaction between 

production system and rowcover was not statistically significant. 

 In the conventionally managed field, production system influenced marketable 

yield in both years, as it did in the organically managed field (Table 3.7). In 2013 and 

2014, PL treatments produced 1.6 and 1.5 more marketable squash per plant than ST 

treatments, respectively. In contrast to the organically managed field, rowcovers had no 

effect on marketable yield in either year for the conventionally managed summer squash. 

In 2013, plants in PL with rowcovers produced equivalent yield to ST with or without 

rowcovers, whereas plants in PL without rowcovers produced more squash than either ST 

treatment. This outcome could be explained by a windstorm that occurred just before 

rowcovers were removed from the squash in 2013. The wind pushed the rowcovers down 

onto the plants, causing many petioles to snap on the large plants in PL. Though the 

plants recovered, we speculate that this decreased their yield. 
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 In 2013, there were more nonmarketable (cull) summer squash in PL treatments 

than in ST treatments in both the organically and conventionally managed fields. In 

contrast, in 2014, there was no effect of production system on number of cull summer 

squash in either field. 

Soil microbial biomass carbon 

 Production system had no effect on MBC in organically or conventionally 

managed plots in 2013 or 2014 (Table 3.8). There was, however, marginally (P = 0.056) 

higher MBC in the PL treatment in the conventionally managed field in 2014 than the ST 

treatment. 

 

Discussion 

 Our results indicate that summer squash grown in a rolled rye strip tillage system 

can be as productive as summer squash grown in plasticulture. The 2013 organically 

managed field was the only case in which there was no equivalent yield between some of 

the ST and PL treatments. Walters and Kindhart (2002) found that summer squash grown 

in no-till and strip tillage systems had equivalent yields compared to those grown in a 

conventionally tilled system, but their experiment did not involve the use of black plastic 

mulch. Rowcovers increased squash yield in the ST treatments in the organically 

managed fields only, though we saw equivalent yields between some ST and PL 

treatments in the conventionally managed fields as well. 

 We expected rowcovers to have a stronger positive effect on plant biomass 

production than observed, as rowcovers have been shown to increase plant biomass 

(Ibarra et al., 2001) and vine cover (Cline et al., 2008) in muskmelon. Nair and Ngouajio 
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(2010) found that rowcovers increased cucumber growth when used in a system that 

incorporated compost. However, it is possible that the rowcovers provided too much 

additional heat; previous research has found that increasing air temperature above 40 °C 

can decrease muskmelon plant biomass (Jenni et al., 1996) and yield (Motsenbocker and 

Bonanno, 1989). In this study, though, even treatments without rowcovers approached or 

surpassed average daily maximum temperatures of 40 °C, and rowcovers had a neutral or 

positive effect on plant biomass and marketable yield. There is some evidence that the 

sensors used to monitor air temperature recorded higher temperatures in the treatments 

without rowcovers than actually occurred because of their placement in the direct sun. 

Jenni et al. (1996) placed thermocouples in white plastic tubes to avoid this problem. Our 

results reiterate the strong effect of plastic mulch on increased squash vegetative growth 

(Mahadeen, 2014). 

 Rowcovers had a more pronounced positive effect on squash yield in the 

organically managed field compared to the conventionally managed field. This could 

have been due to a difference in the efficacy of the pesticides used. The organic 

pesticides may not have been as effective as the conventional pesticides, leading to a 

larger discrepancy in insect damage and disease spread between rowcover and no-

rowcover treatments in the organically managed fields compared to the conventionally 

managed fields. 

 Though light intensity was reduced under rowcovers, it likely did not impact the 

growth of plants because rowcovers were in place in June, when there are ample hours of 

intense sunlight. Even under rowcovers, direct sunlight should have a photon flux density 

beyond the saturation point for a C3 plant such as summer squash (Wells and Loy, 1985). 
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 When averaged over rowcover treatments, PL had increased yield and biomass 

compared to ST in our study. Many researchers have measured the effect of mulch 

treatments on soil temperature at depths of 10 cm or less (Bonanno and Lamont, 1987; 

Ibarra-Jiménez et al., 2004; Schonbeck and Evanylo, 1998; Soltani et al., 1995) and have 

found that black plastic mulch increases soil temperature compared to bare ground by 2 

to 4 °C. Schonbeck and Evanylo (1998) found that at a depth of 9 cm, a thick layer of hay 

reduced afternoon soil temperature compared to bare ground by 2.5 to 4.5 °C. Even at a 

depth of 15 cm, we found the soil under black plastic mulch was on average 1 to 2 °C 

warmer than that in ST. In our study, the rye mulch likely did not have much of a cooling 

effect, as our rye mulch did not provide complete coverage of the soil. Rye growth was 

potentially limited by the sandy nature of the soil and in conjunction with an October 

planting date which did not allow for as much rye growth in the fall as would occur with 

an earlier planting date (Mirsky et al., 2009). 

 We hypothesized that MBC would be higher in ST treatments than in PL 

treatments due to the different levels of soil disruption, yet our results were inconsistent. 

We chose to measure MBC specifically because it is known to be more responsive to 

management practices than other measurements such as soil organic carbon or soil 

organic matter. However, some researchers have found no differences in MBC even after 

multiple consecutive years of tillage treatment differences (Awale et al., 2013; Karlen et 

al., 2014). Karlen et al. (2013) did find that after at least 26 years, MBC was higher in no-

till plots than in those that were tilled with a moldboard plow. Additionally, Overstreet 

and Hoyt (2008) found that after ten years of strip tilling in the same location each year, 

the MBC between rows, in the undisturbed region, was higher than that within the 
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annually disturbed region. In our study, the warm and organic-residue-rich soil in the PL 

treatments could have provided a beneficial habitat for microbial growth in the short 

term. We suspect that tillage treatments would need to be established for more than one 

growing season to see a benefit of a reduced tillage system on MBC. 

 The air warming effect of rowcovers often allows growers to plant earlier in the 

season without risking frost damage. However, in a rolled rye system, early planting is 

challenging. Cereal rye should be at anthesis stage when using a roller crimper in order to 

get an effective kill without regrowth, if not using herbicide (Mirsky et al., 2009), though 

waiting even longer, until early milk stage, can sometimes provide a more effective kill 

(Wayman et al., 2014). The maximal amount of biomass production is also needed to 

effectively suppress weeds and retain moisture (Price and Norsworthy, 2013). Given 

these requirements, planting of squash is delayed and rowcovers in a rolled rye system 

would likely be covering plants during the heat of the summer. This could be a limitation 

to the rolled rye strip tillage system. 

 Even given this challenge, our results show that summer squash grown in a rolled 

rye strip tillage system can have yields comparable to summer squash grown in 

plasticulture. Given that long-term reduced tillage can increase various aspects of soil 

health, the option of using a rolled rye strip tillage system in summer squash production 

could provide a tool for growers to build soil health. Rowcovers could provide a yield 

boost in this system, especially when used in an organically managed system.  
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Table 3.1. Field operations for the 2013 and 2014 growing seasons. 

 

 

 

 

 

 

z
ST = strip tillage 

y
PL = plasticulture  

Operation 2013 2014 

Cereal rye drilled 12 Oct. 2012 2 Oct. 2013 

Rye strip tilled (ST
z
) - 8 Apr. 

Squash seeded in 72-cell trays 9 May 14 May 

Rye mowed and tilled (PL
y
)

 
9 May 29 May 

Rye crimped at anthesis (ST) 22 May 29 May 

Rye strip tilled (ST) 3 June 29 May 

Soil tilled and plastic laid (PL) 3 June 5 June 

Squash transplanted, rowcovers laid 4 June 5 June 

Rowcovers removed 26 June 1 July 
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Table 3.2. Monthly total precipitation and average growing degree days (GDD) during 

the 2013 and 2014 growing seasons and the 20-year average in Muscatine, IA
z
. 

 

 

 

 

 

z
Monthly data from Iowa Environmental Mesonet at the Muscatine, IA location. 

y
Growing degree days with base 10 °C and maximum  30 °C. 

x
Twenty year averages from 1995–2014.  

 Monthly precipitation (mm)  Monthly avg GDD
y 

Month 2013 2014 20-yr avg
x 

 2013 2014 20-yr avg 

June 154 125 136  345 375 362 

July 75 116 88  391 356 426 

Aug. 0.5 107 104  386 398 403 
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Table 3.3. Air temperature in conventionally managed summer squash in 2013 and 2014 

before rowcovers were removed. 

 

 

 

 

 

 

 

 

z
Early season: 5 June–15 June 2013, 6 June–16 June 2014 

y
Midseason: 16 June–25 June 2013, 25 June–30 June 2014 

x
Average daily minimum, mean and maximum air temperatures pooled across 

management systems. 

w
P values based on F-test. 

v
A strong storm on 17 June 2014 disrupted a number of sensors. Those sensors were 

repositioned 24 June 2014. Data from 17–24 June 2014 have been discarded.  

 Early season
z
  Midseason

y
 

Treatment Min
x 

Mean Max °C Min Mean Max 

 2013 

Rowcover 16.3 28.9 49.8  18.6 32.6 52.8 

No rowcover 15.7 24.9 39.5  18.0 29.5 46.6 

P value
w 

0.208 <.0001 <.0001  0.210 <.0001 <.0001 

 2014
v 

Rowcover 14.9 27.0 46.4  19.8 29.6 46.5 

No rowcover 13.5 24.4 41.0  18.8 28.0 44.0 

P value 0.007 <.0001 <.0001  0.129 0.022 0.149 
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Table 3.4. Light intensity in conventionally managed summer squash in 2013 and 2014 

before rowcovers were removed
z
. 

 

  

 

 

 

 

z
Rowcover were in place 5–25 June 2013 and 6–30 June 2014 

y
Average daily mean and maximum light intensities pooled across production systems. 

x
P values based on F-test. 

w
A strong storm on 17 June 2014 disrupted a number of sensors. Those sensors were 

repositioned 24 June 2014. Data from 17–24 June 2014 have been discarded. 

 Light intensity (lumens·m
-2

) 

Treatment Mean
y 

Maximum 

 2013 

Rowcover 274 1154 

No rowcover 407 1742 

P value
x 

<.0001 <.0001 

 2014
w 

Rowcover 238 1045 

No rowcover 392 1874 

P value <.0001 0.0002 
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Table 3.5. Soil temperature at 15 cm depth in conventionally managed summer squash in 2013 and 2014. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z
Before rowcover removal: 5–25 June 2013, 6–30 June 2014; After rowcover removal: 26 June–31 July 2013, 1 July–1 Aug. 2014 

y
RC = rowcover, NRC = no rowcover 

x
Average daily minimum, mean and maximum soil temperatures. 

w
Mean separation (by year in columns) based on least significant difference at P < 0.05. 

V
P values based on F-test. 

Production

System Rowcover
y 

Before RC removal
 
(°C)

z
  After RC removal

 
(°C) 

Min
x
 Mean Max  Min Mean Max 

  2013 

Plasticulture RC 23.4 26.9 a
w 

30.6 a  22.8 26.4 a 29.7 a 

 NRC 21.6 26.3 a 31.0 a  20.9 25.8 ab 29.5 a 

Strip tillage RC 22.8 24.8 b 27.2 b  23.3 25.3 b 27.4 b 

 NRC 21.6 24.3 b 27.4 b  22.1 25.0 b 27.6 b 

  ------------------------------Significance
v
----------------------------- 

System (S) 0.661 <.0001 0.003  0.420 0.018 0.002 

Rowcover (R)  0.066 0.096 0.457  0.152 0.217 0.966 

S × R 0.736 0.967 0.802  0.733 0.702 0.705 

  2014 

Plasticulture RC 24.7 a 27.7 a 30.9 a  23.2 a 25.3 a 27.8 a 

 NRC 23.5 b 26.4 b 29.6 ab  23.1 a 25.5 a 28.0 a 

Strip tillage RC 22.9 b 25.5 bc 28.2 b  21.6 b 23.8 b 25.9 b 

 NRC 21.6 c 24.6 c 28.3 b  21.2 b 23.6 b 25.9 b 

  ------------------------------Significance------------------------------ 

System (S) <.0001 0.0001 0.003  0.002 0.001 0.003 

Rowcover (R) <.0001 0.006 0.273  0.541 0.954 0.870 

S × R 0.848 0.471 0.167  0.746 0.641 0.810 
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Table 3.6. Plant biomass and SPAD meter readings in conventionally and organically managed summer squash in 2013 and 2014. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z
RC = rowcover, NRC = no rowcover 

y
Mean separation (by year in columns) based on least significant difference at P < 0.05. 

X
P values based on F-test.  

Production 

System Rowcover
z 

Biomass 

(g/plant)
 

 SPAD  Biomass 

(g/plant)
 

 SPAD 

Organic 2013  2014 

Plasticulture RC 47.7 a
y
  37.8  40.2 a  34.6 

 NRC 43.5 a  35.5  37.6 a  33.9 

Strip tillage RC 21.0 b  36.4  26.4 b  36.2 

 NRC 13.7 b  35.6  23.0 b  35.7 

  -----------------------------Significance
x
--------------------------- 

System (S) 0.001  0.432  0.002  0.166 

Rowcover (R) 0.080  0.086  0.409  0.630 

S × R 0.595  0.369  0.912  0.944 

Conventional 2013  2014 

Plasticulture RC 44.9 a  36.7 b  32.1 a  35.1 

 NRC 45.6 a  36.8 b  23.3 b  39.5 

Strip tillage RC 25.5 b  39.2 b  17.7 b  36.3 

 NRC 19.7 b  41.2 a  16.6 b  35.8 

  -----------------------------Significance---------------------------- 

System (S) 0.0001  0.038  0.0004  0.614 

Rowcover (R) 0.323  0.121  0.081  0.426 

S ×R 0.208  0.164  0.168  0.326 
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Table 3.7. Marketable and nonmarketable yield of organically and conventionally managed summer squash in 2013 and 2014. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z
RC = rowcover, NRC = no rowcover 

y
Mean separation (by year in columns) based on least significant difference at P < 0.05. 

X
P values based on F-test. 

 

Production 

System Rowcover
z 

Marketable
 

 Cull  Marketable  Cull 

Yield (no./plant)  Yield (no./plant) 

Organic 2013  2014 

Plasticulture RC 7.2 a
y 

 1.4 a  7.7 a  0.9 

 NRC 6.9 a  1.3 a  6.7 b  1.0 

Strip tillage RC 4.9 b  0.8 b  5.9 b  0.8 

 NRC 4.0 c  0.5 b  4.2 c  0.9 

  -----------------------------Significance
x
---------------------------- 

System (S) 0.006  0.020  <.0001  0.500 

Rowcover (R) 0.038  0.126  0.001  0.429 

S × R 0.257  0.312  0.285  0.992 

Conventional 2013  2014 

Plasticulture RC 7.1 ab  1.5 ab  9.2 a  1.1 

 NRC 8.3 a  1.6 a  8.5 ab  1.0 

Strip tillage RC 6.1 b  1.0 b  7.4 b  0.9 

 NRC 6.0 b  0.9 b  7.2 b  0.8 

  -----------------------------Significance----------------------------- 

System (S) 0.016  0.011  0.007  0.373 

Rowcover (R) 0.178  0.843  0.334  0.296 

S ×R 0.123  0.589  0.545  0.797 
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Table 3.8. Soil microbial biomass carbon (SMBC) (mg/kg) in conventionally and 

organically managed summer squash in 2013 and 2014. 

 

  

 

 

 

 

Z
P values based on F-test. 

 

 

 

 

 

  

Production System SMBC (mg/kg) 

Organic 2013 2014 

Plasticulture 75.8 151.0 

Strip tillage 62.1 118.0 

P value
z 

0.417 0.138 

Conventional 
  

Plasticulture 85.1 125.3 

Strip tillage 69.8 114.6 

P value 0.331 0.056 
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CHAPTER 4. CONCLUSIONS 

 There were many similarities between how summer squash and muskmelon were 

affected by the production system and rowcover treatments. For both crops, plasticulture 

gave a general advantage over strip tillage in plant growth and yield. This was likely 

caused by the increase in soil temperature along with the decrease in weed pressure, both 

recognized benefits of using plastic mulch. Though we did not adequately measure weed 

biomass throughout the season, we spent noticeably more time weeding strip tillage plots 

than plasticulture plots, and were often not able to weed as frequently as desirable. The 

higher weed pressure in strip tillage could have negatively affected crop growth. 

 Additionally, rowcovers had a more positive and consistent effect in the 

organically managed plots compared to the conventionally managed plots for both crops. 

This discrepancy could have been due to the organic pesticides being less effective than 

the conventional pesticides. Perhaps this led to the rowcovers being a more distinct 

advantage for the organically managed plants, whereas the conventional insecticides 

provided a similar efficacy compared to the rowcovers. 

 Though there were similarities in how the two crops responded to the production 

system treatments, summer squash seemed to be a better fit than muskmelon for the 

rolled rye strip tillage system. In muskmelon, plants in plasticulture always produced 

more fruit than plants in strip tillage, whereas there was some overlap in yield between 

the production systems in summer squash. This appeared to be primarily an issue of 

growth habit. Summer squash quickly forms a more complete canopy, allowing it to more 

effectively compete with weeds compared to muskmelon. The vining, slower-growing 

muskmelon did not outcompete weeds early in the season. By the time the rowcovers 
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were removed and we weeded all plots, the muskmelon plants in strip tillage treatments 

were more overwhelmed with weeds than the summer squash. In fact, we did not weed 

the summer squash plots at all in 2014, yet spent many hours weeding the muskmelon 

plots. Additionally, there could be a difference in range of ideal soil temperatures for 

summer squash and muskmelon. Muskmelon may require warmer soil than summer 

squash for maximum yield. 

 In many horticultural crops, early-season yields are desired due to their higher 

market value than produce later in the season. Plasticulture can increase early yields in 

muskmelon (Ibarra-Jiménez et al., 2004; Ibarra et al., 2001), which is in part why 

plasticulture in muskmelons is popular. In this study, it was not feasible to attain an early 

yield in strip tillage because planting could only occur after rye reached maturity. We 

therefore planted the transplants in early June both years. Due to the fact that we planted 

both production system treatments on the same day to minimize confounding effects, we 

started harvesting summer squash in early July and muskmelon in August, likely later 

than the somewhat ambiguous “early market” time period. 

 Rowcovers did not have as pronounced of an effect on yield as we anticipated. 

One explanation for this is that, because of our June planting, we may have missed the 

first wave of cucumber beetles. By the time the next wave of cucumber beetles arrived, 

the rowcovers had already been removed. In addition, due to the later planting date, the 

warming effect that the rowcovers provided may not have been as advantageous to the 

plants as it would have been earlier in the season when the air temperature was lower.  

 After two years of field trials, I am left with some unanswered questions 

regarding the possibility of finding a more sustainable approach to growing cucurbit 
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crops. Below are some directions for future research in this area that could help find a 

viable alternative to plastic mulches. 

1. Perform these trials on different soil conditions and plant rye earlier in an effort to 

establish a thicker stand of rye. 

2. Manage all treatments for weeds as a grower would. Plots without rowcovers would be 

weeded before rowcovers are removed from other plots. Periodic weeding of strip tillage 

plots under the rowcovers may be needed. 

3. Maintain the same placement of strips from year to year. No-till drill the cover crop 

seeds in strip tillage plots so that the between-row areas are left undisturbed for multiple 

consecutive years. Ideally rotate crops from year to year to manage disease issues, similar 

to work done by Dr. Daniel Brainard at Michigan State University. 

4. Breed for earlier maturing rye or other cereal crops so rolling and planting can occur 

earlier in the season and potentially produce earlier yields. 

5. Test for different soil health indicators, such as soil respiration, soil microbial biomass 

at shallower depths, etc. 

6. Perform an economic analysis of strip tillage and plasticulture 
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